TIBCO FOCUS®
Maintaining Databases

Release 8207.27.0
March 2021
DN1001059.0321

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

Contents

1. Modifying Data Sources With MODIFYccciccecnncnnnnsnannsnannnnnnnns 17
INErOAUCTION . o et e e e 17
Examples of MODIFY ProCeSSIiNg . ..ot i et ettt ettt e et ettt ettt 18

Adding Data to @ Data SOUICE.o vttt et e e et 19
Updating Data in @ Data SOUICE. oottt e et ettt ns 20
Deleting Data From a Data SOUrCE.ottt e e e e e et e e 21
Additional MODIFY FacCilities oot e e e e et 21
MUIDIE USEr ACCESS. « vt vttt ittt et et ettt et e ettt et et et enens 23
Managing Your Data: Advanced Features.ttt i e et it 26
MODIFY Command SyNtaX.v vttt it et ettt e ettt e e 28
Executing MODIFY ReqUESTS. . .. oottt e e e e e ettt 29
Other Ways of Maintaining FOCUS Data Sources.ttt iiineennns 32

The EMPLOYEE Data SOUICE.ottt e e e ettt ae e 33
Describing Incoming Datao e 33
Reading Fixed-Format Data: The FIXFORM Statement.o, 35
Controlling Whether FIXFORM Input Fields Are Conditional. 44

Describing Date Fields.o e 47
Using Date Format Fields. oot e e et ettt et e s 50
Reading in Comma-delimited Data: The FREEFORM Statement........................ 52
Identifying Values in a Comma-delimited Data Source., 54
Prompting for Data One Field at a Time: The PROMPT Statement...................... 58
SPECIal RESPONSES . ittt e et e e e 63
Canceling a TranSacCtioN.ottt e e et e e 64
ENding EXECULION. .. oot e it e e et e e e 64
Correcting Field Values.ottt et e e ettt et s 64
TYPING ANad. . . .o e 65
Repeating @ Previous RESPONSE. . .o v vttt i e e et e e et e et e et e 65
ENtering NO Data. . ..o oottt e e e e e e e 66
Breaking Out of Repeating Groups. oo ittt e e et e et 66
Invoking the FIDEL Facility: The CRTFORM Statement............o, 68
Entering Text Data USiNg TEDottt e e et e e ettt e e aeas 69
Entering Text Field Data.t e e e et 71

Maintaining Databases 3

Contents

Defining @ Text Field.ottt e e ettt ettt e 71
Displaying Text Fields.o e e et et 71
Specifying the Source of Data: The DATA Statement. i, 72
Reading Selected Portions of Transaction Data Sources: The START and STOP Statements 73
Modifying Data: MATCH and NEXT oo e et et et e e 75
The MATCH Statement. o e e e ettt 75
Adding, Updating, and Deleting Segment Instances.ttt inenenn. 79
Performing Other Tasks Using MATCH. i e e 84
Modifying Segments in FOCUS Structures.t i et 87
MoOdifyiNg SEEMENTS. . .ottt e e e e e 91
Selecting the Instance After the Current Position: The NEXT Statement. 102
Displaying Unique Segments.ttt e 104
Computations: COMPUTE and VALIDATEt e e e e et et e e e aeans 106
Computing Values: The COMPUTE Statement. ...t i e 106
Using the COMPUTE Statement. i e e 111
Compiling MODIFY Expressions Using Native Arithmetic..............o L. 113
Validating Transaction Values: The VALIDATE Statement. 114
VALIDATE Phrases in MATCH and NEXT Statements. i, 119
Special FUNCHIONS.o i e e e e et e e e 122
Reading Cross-Referenced FOCUS Data Sources: The LOOKUP Function............... 124
Messages: TYPE, LOG, and HELPMESSAGE i e e 130
Displaying Specific Messages: The TYPE Statement. o i, 131
Logging Transactions: The LOG Statement. it 139
Displaying Messages: The HELPMESSAGE Attribute., 144
Displaying Messages: Setting PF Keys to HELP. it 145
CaSE LOZIC . v v ittt ittt e e 145
RUIES GOVEIMING CasSS. . .« ittt it it it e ettt e e ettt ettt 147
Executing a Case at the Beginning of a Request Only: The START Case................ 149
Branching to Different Cases: The GOTO, PERFORM, and IF Statements............... 149
Rules Governing BranChing.t e e et 156
GOTO, PERFORM, and IF Phrases in MATCH Statements. 157
Case Logic Applications. oo it e e 159
Tracing Case Logic: The TRACE Facility.o i e e 167

Contents I

Multiple RECOrd ProCeSSINg . .o v v vttt e et e ettt e ettt e 169
The REPEAT Method. . . . oottt e e et ettt ettt 170

The Selection Phase: Selecting the Parent Instance....................., 170

The Collection Phase: Storing Instancesina Buffer........................... 171

The Display Phase: Displaying Instances in One CRTFORM. 175

The Modification Phase. i e e e 178

Manual Methods. e 180
INitialization.o e 181

The Collection Phase: The HOLDINDEX Field. oot 182

The Display Phase: The SCREENINDEX Field. 185

The Modification Phase: The GETHOLD Statement. 186

Advanced Facilitiesot e 195
Modifying Multiple Data Sources in One Request: The COMBINE Command............ 196
Differences Between COMBINE and JOIN Commands.oviiiiniinennnnnn.. 203
Active and Inactive Fields. i e 204
Protecting Against System Failures.ot e e e e it 211
Displaying MODIFY Request Logic: The ECHO Facility. . ..o ... 213
Dialogue Manager Statistical Variables. e 217
MODIFY Query Commands. ou ittt it et e ettt ettt et 217
Managing MODIFY Transactions: COMMIT and ROLLBACK., 218
MODIFY Syntax SUMMATYttt e et ettt et e e et e e et a e 221
MODIFY ReqUEST SyNtaX. . .ottt e e e e et ettt et e e 221
Transaction Statement Syntax.o it e 224
MATCH and NEXT Statement ACtioNns.t e e e 224

2. Designing Screens With FIDELccciccieecncnnnnsnnnssnnnnnnnnnnnns 227

INErOTUCTION . . o et e e e e e e 227
Using FIDEL With MODIFY. . ..ottt e e et ettt et ettt 228
Using FIDEL With Dialogue Manager.cii it e et e et 229
Screen Management Concepts and Facilities.t i 230
Using FIDEL Screens: Operating Conventions.ooiuiii it i i e e 231

Describing the CRT SCreeNo e e e e e ettt e 232
Specifying Elements of the CRTFORM. i e e e et et 233

Maintaining Databases 5

Contents

Defining @ Field.ot e e e e e e 234
Using Spot Markers for Text and Field Positioning. i i, 236
Specifying Lowercase Entry: UPPER/LOWER. it it 238
Data Entry, Display and Turnaround Fields. i i et 239
Using Data Entry, Display, and Turnaround Fields. 241
Controlling the Use of PF Keys.ot e e e e e 244
Resetting PF Key CoNtrols. . ..ottt e ettt e e 246
Setting PF Key Fields for Branching Purposes., 247
Specifying Screen Attributes. e 248
Using Background Effects.ot e e e 252
Using Labeled Fields.o e e et e et e 252
Dynamically Changing Screen Attributes.t 253
Specifying Cursor POSitioN. . ..ot e e et e e 256
Determining Current Cursor Position for Branching Purposes. 258
Annotated Example: MODIFY. i i e e et e e e e e 261
Annotated Example: Dialogue Manager. . ..o v i ittt e e e 262
USINg FIDEL in MODIFY ..ottt ettt et et ettt et et e e e ettt eens 264
Conditional and Non-Conditional Fields. it 264
Using FIXFORM and FIDEL in a Single MODIFY. i i s 268
Generating Automatic CRTFORMS.ot e e et e e eaans 270
Using Multiple CRTFORMS: LINE.t e e 274
CRTFORMS @and Case LOZIC. .« v v vttt i ettt e ettt et as 279
Specifying Groups of Fields.ot e e 281
Specifying Groups of Fields for Input. o i e e 281
Using REPEAT to Display Multiple Records. iiii i iieee 282
Using Groups of Fields With Case LogiC. ovii ittt e e e eeaas 285
Handling ErrOrs. . .o e e e e e e e 289
Handling Format Errors. .. oot e e e e e et e e e 289
VALIDATE and CRTFORM Display LOZIC.ottt i i e e e e e 290
Handling Errors With Repeating Groups.ot i 290
Rejecting NOMATCH or Duplicate Data.o oiii i e e 292
LOgEINE TranSaCtioNS. . . oottt ettt et 293
Additional Screen Control OptioNS. v vttt e e e e e e e 293

Contents I

Clearing the Screen: CLEAR/NOCLEAR. it e e e e e 293

Specifying Screen Size: WIDTH/HEIGHT.o e 294

Changing the Size of the Message Area: TYPE. 296

Using FIDEL in Dialogue Manager . .. vv vttt et ettt e ettt e et 297
Allocating Space on the Screen for Variable Fields. o it 297
Starting and Ending CRTFORMS: BEGIN/END.ot 298
Clearing the Screen in Dialogue Manager. vv vt e et ae e 299
Changing the Size of the Message Area: -CRTFORM TYPE. i, 299
Annotated Example: -CRTFORM. i et e e e et e e 300
Using the FOCUS Screen Painteroi it i e e e ettt e e aeas 302
Entering Screen Painter.o e 302

PF Keys in PAINT. ..o e e e 304

Entering Data Onto the SCreen.o e e et e e 306
Editing FUNCLIONS.o e e e 306

Sample PAINT SCreeN. . ..ttt e et e e ettt et e e 307

Defining @ BoX 0N the SCreen. ... oo ittt e e e e e et 309

Identifying Fields: ASSIGN.ot e e e e e et e 310
Viewing the Screen: FIDEL. i e et 312
Generating CRTFORMs Automatically.ooit i e et e e aeas 312
Terminating Screen Painter.ot e e e e 314

3. Creating and Rebuilding aDataSourcecccivennnernnnannanannnnnnns 317
Creating a New Data Source: The CREATE Commandciiiiiiiii i iiiiiiinenn 318
Rebuilding a Data Source: The REBUILD Commandttt 320
Controlling the Frequency of REBUILD MeSSages. vv ittt ii it it i iieiieiiaans 322
Optimizing File Size: The REBUILD Subcommand 323
Using the REBUILD Subcommand.oiiiiii ittt e et e ieaene e 324
Changing Data Source Structure: The REORG Subcommandiiivinn.... 325
Using the REORG Subcommand.t e e e 328
Indexing Fields: The INDEX Subcommand oo et iea e 330
Using the INDEX SubCOmMMaNd. oot e e e e et 331
Creating an External Index: The EXTERNAL INDEX Subcommand 332
Concatenating Index Databases. vt i i e e e 336

Maintaining Databases 7

Contents

Positioning Indexed Fields.t e e e e e 337
Activating an External Index.t e 337
Checking Data Source Integrity: The CHECK Subcommando .. 338
Using the CHECK OptioN. ..ottt et ettt e e e ettt 339
Confirming Structural Integrity Using ? FILE and TABLEF. it 340
Changing the Data Source Creation Date and Time: The TIMESTAMP Subcommand 342
Converting Legacy Dates: The DATE NEW Subcommando, 343
How DATE NEW Converts Legacy Dates.ot e e e 344
What DATE NEW Does Not ConVert. ot e et ee et 346
Using the New Master File Created by DATE NEW.ot i e 346
Action Taken on a Date Field During REBUILD/DATE NEW. 347
Creating a Multi-Dimensional Index: The MDINDEX Subcommand 348

4. Directly Editing FOCUS Databases With SCANcccccveicnerennsnnneea:349

INErOTUCTION . . ot e e e 349
SCAN vs. MODIFY, HLI, @and FSCAN.ottt e et e et e e eaeens 350
Entering SCAN MOGe . . . oot e e e e e e e e e 351
Moving Through the Database and Locating Recordsoiiiiiiiiiiiiinnenn. 351
What You See in SCAN Display Lines.ot i e e e e e 352
Identifying Data Fields in Scan. e e e 353
Ways to Move Through Databases. ot e e ettt 354

L 355

LOC ATE. . ettt et e e e e e 355

TLO C ATE. . .ttt e et e e e 356

NEX T . ottt ettt e e e e e e e e e e 356

JUM P L s 357

U e e 357

Displaying Field Names and Field Contents. i i 358
TYPE SUDCOMMANG. ot 358

DISPLAY SubCOMM@ANG.ttt et 358
Suppressing the Display.o vt e e e e e 359

Show Lists and Short-Path Records. e e 359
Adding SegMENT INSTANCES . . ot v ittt e e it e e et e e e 361

Contents I

MoVing SEgMENT INSTANCES . . .o vttt e e e e e et e e et e s 361
Changing Field Contentsot e e e et et ettt e 361
Deleting Fields and Segmentsot et 361
Saving Changes Made in SCAN SESSIONS ..o v vttt ittt e et e et ee s 362
ENding the SeSSIoN ..o e e e 362
Exiting and Saving the Changes. i i e e e 362
Exiting Without Saving the Changes.t e e et 362
Auxiliary SCAN FUNCHIONS . ..ottt e e e e e e e e et ettt 362
Displaying a Previous SCAN Subcommand. ittt 362
Preset X or Y to Execute a SCAN Subcommand., 362
SUDCOMMEANT SUMMIAIY .« . ottt et ittt et et e et e et e e e ettt ettt eaens 363
AGAIN ComMMaNd. . . ettt et e et e e et e e e e 364
BACK ComMmMaNnd. . . .o ottt et et et et e e e 365
CHANGE Command.ottt e e et e e et et ettt et 366
Using the CHANGE Command.ttt e e 366
CRTFORM CommaNnd.ottt e e e e et e e ettt 368
Using the CRTFORM ComMmMaNnd.ttt ittt e et et ettt e e e 368
DELETE COMM@ANG. . . . et ettt it et e e et et e e ettt e et e et a e 369
DISPLAY COMMANG. . . . oottt et e e e e e e e e e e e e e 370

END COmMmMaNnd. . ..ottt it ittt et e e e e e 371

| o 3 T = o o 371
INPUT COmMMaANG.ottt e e e ettt e eeae s 372
JUMP ComMmMand. . ..ottt ittt et e e e e e e 373
LOCATE COomMMaNd. . . .ot ittt e et et e e et et e et ettt 373
MARK COmMMaNd. oot e e e e 375
MOVE COMM@ANG. . . ettt et et et et e e e e e e e e e e e e ettt e e et 376

NEXT COMMANG.ottt e e et et e e e e et e e et 377

QUIT CommaNnd.ttt et et et et et et et et e e e 377
REPLACE COMMaANG. . .ot ittt et ettt e e et e e e ettt e e e e e et ee s 378
Using the REPLACE Command.ttt e et eaeaaens 379

SAVE COMMANG. . . ottt et et et e e e e e e e e 380
SHOW ComMmMaNnd. . . oottt it et et e e e e e e e e e ettt 381
Using the SHOW Command. oottt e et a e 382

Maintaining Databases 9

Contents

10

0 10 = 0o o T F=T o 383
TOP COmMMaANGd. . .ottt ittt et et e e et e e e e 385
TYPE COMMaANA.ottt et e et et e e e e e e 385
UP ComMmMaNnd. .. .ottt e e e e e e e e 386
Xand Y ComMmManads. . oottt ettt et et e e e e e 387
070 21 2= T 1R 388

INErOTUCTION . . ot 389
Databases on Which FSCAN Can Operate.ttt e e et 390
Segments on Which FSCAN Can Operate.ottt e i eaeas 390
Fields That FSCAN Can Display.ot e e e e s e e e e e e e eaeens 391
Database Integrity Considerations. i i e e e e 391
DBA CoNnsSIderations.o u .ottt e e 391

ENtering FSCAN ..o e e e e e e e 392
Entering FSCAN With @ SHOW List. oot e e e e e e 392
Allowing Uppercase and Lowercase Alpha Fields. ...ttt 394

USING FSCAN . ottt e e e et e e et e e 394

The FSCAN Facility and FOCUS Structurest et e e e 396

SCrolliNg the SCrEEN . . . e e e e e 400

Selecting a Specific Instance by Defining a CurrentInstancec i, 403

Displaying Descendant Segments: The CHILD, PARENT, and JUMP Commands 411

Displaying a Single Instance on One Screen: The SINGLE and MULTIPLE Commands 414

Modifying the Databasettt e et e e e e 415
Adding New Segment Instances: The "I" Prefix. 415
Updating Non-Key Field Values. o et 417
Changing Key Field Values. it i e e e ettt e aeas 421
Deleting Segment Instances: The DELETE Command., 423

Repeating a Command: ? @and = ottt e 425

Saving Changes: The SAVE Without Exiting FSCAN Command ..., 425

Exiting FSCAN: The END, FILE, QQUIT, and QUITCommandsouitiiinnnrnnnn... 425

The FSCAN HELP FacCility . . .o . ottt e e e e e et e e 426

312) 11 12 1. =T VS 427

Contents I

Summary of CommaNnds.t e e e e 427
Backward. e 427
CHANG . . o 427
CHII. . o e e e 428
DElEte. . e e 428
D101 o T 0 P 428
Display Field Name.t e e e e et et e e 428
o 428
Bl o ettt e 428
FING. . e 429
1 430
FOIWard. .. . e 430
1= 1 T 430
0T o 430
JUMID. o e e e e e 430
1 431
3 431
[0 o= | = 431
Ky . et et e e 432
0o = 432
N Xt [N e et e ettt e e e e 432
ParENt. . . e 433
QUL L ottt e e e e e 433
QUL+ttt 433
REPIACE. . . ot 433
REPIACE KEY. . ittt e e et e e 433
RE S . . ottt s 434
= 434
S . i e e 434
SN, .t e 434
L1 o 434
e e e e e e e e e e 434
L Lttt e et et ae e et ae et e e e 435

Maintaining Databases 11

Contents

Summary of PF KeYS. . ..o i e e e e e 435
Summary of Prefix Area Commands.ouiii it i e e e e 435

6. MasterFilesand Diagramsccccternnnnnnnnnsnannsnnnnsnnnnsannnnnnnnnns 437
Creating Sample Data SOUICESottt e ettt e e aaaes 437
EMPLOYEE Data SOUICEottt ittt e et e et e et a e 439
EMPLOYEE Master File. . ..o ottt e e et ettt et 441
EMPLOYEE Structure Diagram.ottt e et et e et 442
JOBFILE Data SOUICE . . . o oo e ittt e et e e e ettt e e e et e e et et 442
JOBFILE Master File. . ..ottt e e e e e e e et s 443
JOBFILE Structure Diagram.ottt ettt ettt 443
EDUCFILE Dat@ SOUICE e ottt et it et et e e e e et e ettt e e et e e eeaens 444
EDUCFILE Master File. . .o v ettt e e et ettt ettt e e 444
EDUCFILE Structure Diagram.ottt e e et e et eaaens 445
SALES Data SOUICE . . . o e o e it ittt et e e et et e e et e e e e 445
SALES Master File. ..o e e e e e e 446
SALES Structure Diagram.ot e e 447
PROD Data SOUICE . . . ettt et it et e et et e e e e e e et a et n e eaneens 447
PROD Master File. . .ottt e e e e e e et ettt 448
PROD Structure Diagram.ottt e e et e e e 448

CAR Data SOUICEottt et e et e e e e 448
CAR Master File. . ..ottt e e e e e e e e e 449

CAR Structure Diagram.ottt e e e e 450
LEDGER Data SOUICEottt et et e e et e e ettt e ettt 450
LEDGER Master File.ot e e e et e et e e et e 451
LEDGER Structure Diagram. oottt i e e et 451
FINANCE Data SOUICE . . . oottt it it et e et et e e et e e et e e e e e e eaenns 451
FINANCE Master File.t e e ettt ettt eeeeas 451
FINANCE Structure Diagram.ottt e e e e e et e e eaaaens 452
REGION Data SOUICE oottt e e e et e et et eee s 452
REGION Master File.ot e e e e e e ettt et e s 452
REGION Structure Diagram.t et ettt 452
COURSES Data SOUICE . . .o e ettt ittt et et e e et et e et et e a e e aeneens 453

12

Contents I

COURSES Master File. . ..ot e e e et 453
COURSES Structure Diagram.ottt ittt e e e et e et e e e 453
EMPDATA Data SOUICE . . .ot ittt it ettt et et e e ettt e ettt e e et e eaeaaens 453
EMPDATA Master File. . ..o e e e ettt eaee s 454
EMPDATA Structure Diagram. . ..o v ittt et e e et e et e ettt 454
EXPERSON Data SOUICEottt it ittt e e et e e ettt a e 454
EXPERSON Master File.o e e e ettt 455
EXPERSON Structure Digagram.oiit ittt et et ettt eae s 455
TRAINING Data SOUICEottt e e e e e e et et ettt e 455
TRAINING Master File. . ..ot e e e e e e et 456
TRAINING Structure Diagram.ottt et ettt et e et e et 456
COURSE Data SOUICE . . .t ittt et et e et e e e e et e e e e ettt a e ns 456
COURSE Master File. . ..ot et e et 456
COURSE Structure Diagram.ottt et et e e et e ettt e 457
JOBHIST Data SOUICEottt e et e e e et e ettt ettt e s 457
JOBHIST Master File.o e e e e et 457
JOBHIST Structure Diagram.ottt e e e e e ettt e 457
JOBLIST Dat@ SOUICE . . . oottt et ettt et et e e e et et e et ettt 457
JOBLIST Master File. . ..o e e e et et 458
JOBLIST Structure Diagram. oottt e e et e et et 458
LOCATOR Data SOUICE . . .o vttt it it e et et e e e e e e e e ettt e e ettt eanaens 458
LOCATOR Master File. . .. ot e e e e e ettt 458
LOCATOR Structure Diagram. . .. oottt e e e ettt ettt e e it e e 459
PERSINFO Data SOUICEottt e et e e e e et ettt ettt 459
PERSINFO Master File.o e e et e 459
PERSINFO Structure Diagram.ottt it ettt e et ettt 459
SALHIST Data SOUICE . . . oottt et ettt et e e e e et e e e e e e e et 460
SALHIST Master File.o e e e e e 460
SALHIST Structure Diagram.ttt ittt et e e et ettt ettt e 460
PAYHIST File . .ot e e et et e e e e e 460
PAYHIST Master File. . .. o e e e et 460
PAYHIST Structure Diagram. v ittt ittt e ettt e ettt 461
COMASTER File . .ottt e e e e e e e e e et et 461

Maintaining Databases 13

Contents

COMASTER Master File. oo e e e e 462
COMASTER Structure Diagram. oot ittt et et ettt et et ea e 463
VIDEOTRK, MOVIES, and ITEMS Data SOUICESottt i e e ee e aa e 463
VIDEOTRK Master File. e e e e e e 464
VIDEOTRK Structure Diagram.vu it ittt e e et et ettt et e e e 465
MOVIES Master File.ot e e e e e e e 466
MOVIES Structure Diagraml. . .. v it et ettt e ettt e ettt et i aeaenns 466
ITEMS Master File. . .. oot e e e e e e e et it 466
ITEMS Structure Diagram.ot e e ettt e 467
VIDEOTR2 Data SOUICEttt e ittt et e et e e ettt e ettt e e et aen e 467
VIDEOTR2 Master File. . .. oot e e e e e ettt 467
VIDEOTR2 Structure Diagram.o vttt et e e e e ettt eaeaaens 468
Gotham Grinds Data SOUICESottt e e et ae s 468
GGDEMOG Master File. . ..ottt e e e e et e e e 469
GGDEMOG Structure Diagram.ottt e e et et 470
GGORDER Master File.ot e e et e 470
GGORDER Structure Diagram. vt it ittt e e et ettt et 471
GGPRODS Master File.ot e e e et e e e 471
GGPRODS Structure Diagram. . .. vt ittt et e ettt ettt e 472
GGSALES Master File.ot i e e e e e e i e 472
GGSALES Structure Diagram.oo it e e e e 473
GGSTORES Master File. oo e ettt 473
GGSTORES Structure Diagram.o vttt it i e et et et e et 473
Century Corp Data SOUICES vttt ittt e e e et e e et et e e ae 474
CENTCOMP Master File. . ..o e e e e et 475
CENTCOMP Structure Diagram. . .. oo ittt it et ettt ettt ettt e e 475
CENTFIN Master File. o e e e e 476
CENTFIN Structure Diagram. . ..o ittt ittt et ettt e ettt e et anens 476
CENTHR Master File. . ..ot e e e et ettt ettt iaeans 477
CENTHR Structure Diagram.o u ittt e e ettt e e 479
CENTINV Master File. . ..ot e e e e e et 480
CENTINV Structure Diggram.ou ittt e e et e ettt et e 480
CENTORD Master File.ot e e et e et 481

14

Contents I

CENTORD Structure Diagram. ... v ottt ittt ettt et e et e aeeeenns 482
CENTQA Master File. . ..ottt e i e e et ettt et e e 483
CENTQA Structure Diagram.ottt it e e ettt et et 484
CENTGL Master File. . ..o e e e e e 484
CENTGL Structure Diagram.ottt e et et et ettt ettt et 485
CENTSYSF Master File. . ..ot e e e ettt ea e 485
CENTSYSF Structure Diagram. vt i e e et e ettt as 485
CENTSTMT Master File. .. oot e e e e et et ettt 486
CENTSTMT Structure Diagram.ottt e e e e et e e aaens 487

7.Error Messagesvcccvernnncnnnsnnnnnnsnnnsnnnnnnnnnnsnnnnnnnnnnsnnnnnnnss 489

ACCeSSING Error Files ..ottt e et e e e e 489
DiSplaying MESSa8ES . . ottt ittt et e e 489
Legal and Third-Party Noticesccvcinimeinnnnnnnnnnnnsnnannsnnnnnnnnnnnns 491

Maintaining Databases 15

Contents

16

Chapter
Modifying Data Sources With MODIFY

These topics describe how to maintain FOCUS-supported data sources using the FOCUS
MODIFY facility. MODIFY requests can add, update, and delete data from FOCUS data
sources, including HOLD files converted to FOCUS format (see the Creating Reports
manual).

The MODIFY facility is also used to maintain data in relational structures, Adabas data
sources, and VSAM data sources. See documentation for specific data adapters for
details about using MODIFY in those environments.

MODIFY can also be used to load fixed format sequential data sources that consist of a
single segment. Data is loaded in the order in which it is input. Update and delete
operations are not supported with this type of data source. If the file already exists, new
data is loaded at the end. In order to append data to a sequential data source with
HiperFOCUS ON, the record format must be fixed.

In this chapter:

4 Introduction 4 Modifying Data: MATCH and NEXT
d Examples of MODIFY Processing 4 Computations: COMPUTE and VALIDATE
- Additional MODIFY Facilities - Messages: TYPE, LOG, and
o) HELPMESSAGE
.4 Describing Incoming Data
) 1 Case Logic
.4 Special Responses
)) 4 Multiple Record Processing
4 Entering Text Data Using TED
)) 4 Advanced Facilities
.4 Reading Selected Portions of
Transaction Data Sources: The START - MODIFY Syntax Summary

and STOP Statements

Introduction
A MODIFY request processes a transaction in three steps:

1. It reads a transaction for incoming data values. Transactions can come from external data
sources, may be supplied by the user in screens or in response to prompts, or can be
included as part of the request itself.

Maintaining Databases 17

Examples of MODIFY Processing

2. It selects a segment instance for changing or deleting, or confirms that a segment instance
does not exist yet in the data source.

3. It changes or deletes the segment instance it selected, or adds a new segment instance.

This is shown graphically in the following diagram:

Term mal

Transaction File

The request first reads a transaction (that is, a related collection of incoming data values).
Describing Incoming Data on page 33 describes the FIXFORM, FREEFORM, PROMPT, and
CRTFORM statements that describe transactions read by the request.

After it reads a transaction, the request selects a segment instance in the data source to
modify. It does this in either of two ways:

- It searches the data source for segment instances containing the same values as the
transaction. This is done with a MATCH statement.

- It selects the next segment instance after the current position. This is done with a NEXT
statement.

The MATCH and NEXT statements are discussed in Modifying Data: MATCH and NEXT on page
75.

The request then either adds, updates, or deletes data source values using the incoming
values, or it rejects the transaction.

Examples of MODIFY Processing

This section provides examples of MODIFY processing that add, update and delete data from a
data source.

18

1. Modifying Data Sources With MODIFY I

Each request indicates the data source it is modifying, the method of reading data, the
transaction values it searches for in the data source, and the actions it takes depending on
whether the values are in the data source or not. If it is reading a transaction data source, the
request must indicate the name of the data source.

Adding Data to a Data Source

The following sample MODIFY request adds new employee data to the EMPLOYEE data source.
When you run the request, it prompts you for an employee ID number, last name, and first
name. After you enter these three values, the request adds the information to the data source
and prompts you for three more values for the same fields. When you are finished entering
data, end execution by entering the word END to any prompt.

The request is as follows:

. MODI FY FI LE EMPLOYEE

. PROVPT EMP_I D LAST_NAME FI RST_NAME
. MATCH EMP_I D

ON MATCH REJECT

ON NOVATCH | NCLUDE

. DATA

auPdwbhR

The parts of the request are as follows:

1. The MODIFY FILE EMPLOYEE statement indicates that the request modifies the EMPLOYEE
data source.

2. The PROMPT statement indicates that the request will prompt you for the employee's ID
(EMP_ID), last name, and first name on the terminal.

3. The MATCH EMP_ID statement searches the data source for the employee ID that you
entered.

4. If the ID is already in the data source (that is, an ID in the data source matches the ID you
entered), the MATCH statement rejects your transaction.

5. If the ID is not yet in the data source, the MATCH statement adds your transaction to the
data source.

6. The DATA statement begins prompting for data.

Maintaining Databases 19

Examples of MODIFY Processing

Updating Data in a Data Source

MODIFY requests can update data in a data source, replacing data source values with
transaction (incoming data) values. The following sample request updates employee
department assignments and salaries. When you run the request, it reads the data from a
separate data source called EMPDEPT. Each record in the data source consists of three fields:

4 The EMP_ID field contains the employee ID number. It is the first nine characters on the
record.

4 The DEPARTMENT field contains the new department assignment, and is the next ten
characters.

.d The CURR_SAL field contains the new salary, and is the last eight characters.
This is the EMPDEPT data source:

* % x TOP OF FILE * * *
071382660PRODUCTI ON27500. 00
112847612SALES 24800. 75
451123478MARKETI NG 26950. 00
* * * END OF FILE * * *

The request is as follows:

MODI FY FI LE EMPLOYEE
FI XFORM EMP_I D/ 9 DEPARTMENT/ 10 CURR_SAL/ 8
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_SAL
DATA ON EMPDEPT
END

P WNNNRE

The parts of the request are as follows:

1. The FIXFORM statement indicates that the transaction records are in fixed positions in the
EMPDEPT data source and describes the positions of the fields in each record.

2. The MATCH EMP_ID statement searches the data source for the employee ID in each
record. If the ID is not in the data source, the request rejects the record. If the ID is in the
data source, the request replaces the DEPARTMENT and CURR_SAL values in the data
source with the values on the record.

3. The DATA statement indicates that the data is contained in the data source EMPDEPT.
EMPDEPT is the ddname to which the data file is allocated, and can be different from the
system file name.

4. The END statement completes the request and initiates processing.

20

1. Modifying Data Sources With MODIFY I

Deleting Data From a Data Source

This sample request deletes information on employees from the data source. When you run
the request, it prompts you for an employee ID. When you enter the ID, it deletes all
information relating to that employee from the data source.

MODI FY FI LE EMPLOYEE
1. PROWT EWP_I D
2. MATCH EMP_ID
ON MATCH DELETE
ON NOVATCH REJECT
3. DATA

The parts of the request are as follows:

1. The PROMPT statement indicates that the request will prompt you for the employee's ID.

2. The MATCH statement searches for the employee ID in the data source. If the ID is in the
data source, the request deletes all information relating to the employee from the data
source.

3. The DATA statement begins prompting for data.

Additional MODIFY Facilities

You can also instruct the request to perform other tasks:

- Test transaction values to determine whether they are acceptable. You do this using the
VALIDATE statement, described in Computations: COMPUTE and VALIDATE on page 106.

. Perform calculations and store the results in either transaction or temporary fields. You do
this using the COMPUTE statement, described in Computations: COMPUTE and VALIDATE on
page 106.

- Display messages that contain values from transaction fields, temporary fields, or data
source fields. You do this using the TYPE statement, discussed in Messages: TYPE, LOG,
and HELPMESSAGE on page 130.

.4 Record transactions processed by the request using the TYPE and LOG statements
described in Messages: TYPE, LOG, and HELPMESSAGE on page 130. These statements
can sort accepted transactions from rejected transactions and can sort rejected
transactions by reason for rejection.

You can design MODIFY requests using Case Logic, a method which divides requests into
sections called "cases." The request can branch to the beginning of a case during execution.
Case Logic, discussed in Case Logic on page 145, makes it possible for requests to offer the
terminal operator selections and to process transactions in different ways.

Maintaining Databases 21

Additional MODIFY Facilities

Reference:

22

You can design MODIFY requests that process multiple segment instances at one time.
Multiple Record Processing is described in Multiple Record Processing on page 169, including
the modification of several segment instances on one FIDEL screen.

Notes on Using JOIN Syntax With MODIFY

For software that supports the MODIFY facility, note the following;:

_I

_I

The JOIN command allows you to read (but not to modify) data in a second FOCUS data
source using the MODIFY LOOKUP function. To modify multiple FOCUS data sources in one
request, use the COMBINE command.

The LOOKUP function in MODIFY requests cannot be used on a DEFINE-based JOIN; DEFINE
is not evaluated during a MODIFY procedure.

The MODIFY LOOKUP function cannot retrieve data in a cross-referenced segment using
concatenated fields (a multi-field join).

FOCUS offers a variety of other advanced features that facilitate use of the MODIFY command
in more complex applications. These features are listed below and described in Advanced
Facilities on page 195:

_I

The COMBINE command for modifying multiple FOCUS data sources in one MODIFY
request.

The COMPILE command for translating MODIFY requests into compiled code ready for
execution.

4 The ACTIVATE and DEACTIVATE statements for activating and deactivating fields.

.4 The Checkpoint and Absolute File Integrity facilities and the COMMIT and ROLLBACK

Subcommands for protecting FOCUS data sources from system failures.

4 The ECHO facility for displaying the logical structure of MODIFY requests.

.4 Dialogue Manager system variables that record execution statistics every time a MODIFY

_I

request is run.

FOCUS query commands that display statistical information on MODIFY request executions
and FOCUS data sources.

The rest of this introduction contains:

.4 The basic syntax of MODIFY requests.

_I

Instructions for executing MODIFY requests.

1. Modifying Data Sources With MODIFY I

- A summary of facilities other than MODIFY that can be used to maintain FOCUS data
sources.

- A short description of the parts of the EMPLOYEE data source most used in the examples.

Multiple User Access

Suppose you need to update a particular data source, but three other users have been

assigned to work on the data source at the same time. How can you be sure that one user's
changes will not override or overwrite another user's changes? MODIFY, used in conjunction
with the Simultaneous Usage (SU) facility, ensures data integrity under those circumstances.

To enter SU mode, you initiate a background job process called a FOCUS Database Server. The
user ids running FOCUS or Host Language Interface programs are called source machines. The
users (using their source machines) send requests and transactions to the FOCUS Database
Server, which processes the transactions and transmits the retrieved data or messages back
to the source machine. The following diagram illustrates the process:

— g
[s Source <} Central
1 _> "7 Wachmei | Database
—T
User 1 T
4 ¥
I I"’ Source —— C-:-mmm:l lc:ah-:n ™~ D';ﬁe
— Machine 2 Facility Server
—_— (sinkmachine)
User 2
I » Source
E— j Machine 3
—T T
User 3
Private
Database

Under SU, when you run a MODIFY request
1. The request identifies the instance to be changed with MATCH or NEXT commands.

Maintaining Databases 23

Additional MODIFY Facilities

Reference:

24

2. The source machine forwards the transaction values to the FOCUS Database Server, which
uses the values to retrieve the correct instance.

3. The FOCUS Database Server retrieves the original data source instance, holds one copy,
and sends another to the source (user id) that requested the data.

4. The source machine updates its copy of the instance with the new field values, or marks
the copy for deletion and sends the updated copy back to the FOCUS Database Server. The
FOCUS Database Server compares the copy of the instance that it saved with the instance
stored in the data source to check whether the data source instance has since been
updated by another user.

At this point, two courses of action are possible:

. If the copy and the current instance in the data source are the same, FOCUS changes
the instance using the copy from the source machine.

. If the original and the current instance in the data source are different, SU signals a
conflict and rejects the source machine copy.

Notice that a source machine may work on separate, locally controlled data sources.

SU Features

With SU you can display a list of the active source machine userids and the fields of the
FOCUS Database Server data sources from your source machine, and record all user actions in
a sequential data source called HLIPRINT. The HLIPRINT data source records each user action,
the data source on which the action took place, the segment read or modified by the action,
and the user id that issued the action. It can also include the:

.4 Date and time of the action.
4 CPU time it took to execute the action.
4 Number of 1/0 operations required to execute the action.

4 Name of the FOCUS stored procedure executing the action, and the name of the case
executing the action (for MODIFY requests using Case Logic).

1. Modifying Data Sources With MODIFY I

Another SU feature is the FOCURRENT variable that alerts users to transaction conflicts. When
you submit a MODIFY transaction in SU, FOCUS stores a value in a variable called FOCURRENT
to indicate what happened to the transaction. You can design your MODIFY requests to test
FOCURRENT and take different actions, depending on whether the transaction was accepted or
rejected. The following request tests the FOCURRENT variable:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
GOTO NEWBAL
CASE NEWBAL
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH PROVPT CURR SAL
ON MATCH UPDATE CURR_SAL
ON MATCH | F FOCURRENT EQ 0 GOTO TOP;
ON MATCH TYPE
"VALUE CHANGED. NEW VALUE <D. CURR SAL>"
ENDCASE
DATA

The request prompts for an employee ID and then branches to the case NEWSAL. If the ID is in
the data source, you are prompted for the current salary of the employee; the current salary is
updated on the source machine copy. The transaction is submitted.

Next, the request tests the values of the variable FOCURRENT:

d If FOCURRENT is O, the transaction is accepted and the request prompts you for the next
EMP_ID.

- If FOCURRENT is not O, the transaction is rejected. The request branches back to the top of
the procedure. If the instance is found, FOCUS prompts for the current salary and
resubmits the transaction. If the instance was deleted, the request reports back a
NOMATCH condition and prompts you for the next transaction.

By testing the FOCURRENT variable, MODIFY requests can process transactions after they
have been rejected because of conflicts.

Maintaining Databases 25

Additional MODIFY Facilities

Managing Your Data: Advanced Features

In addition to the basic operations of the MODIFY facility, many other features are available to
help you refine your MODIFY requests. This section describes them briefly.

Feature Description

Absolute File Integrity Causes FOCUS to write changes to the data source to another
section of the disk rather than overwriting the data source. If the
request executes normally, the new section of the disk becomes
part of the data source. If the system fails, the original data
source is preserved.

ACTIVATE Activates an inactive transaction field. It declares a transaction
field to be present so the transaction field can be used for
matching, including, and updating. The MOVE option equates the
transaction value of the transaction field to the corresponding
data source field. The RETAIN option does not move the data
source value to the transaction field.

DEACTIVATE (RETAIN) Deactivates a transaction field. The DEACTIVATE command
changes a transaction value to blank if alphanumeric, to zero if
numeric, or to the MISSING transaction value for transaction
fields described by the MISSING=ON attribute. It also deactivates
the corresponding data source field. The RETAIN option
deactivates the field without changing its value.

CHECK Limits the number of transactions lost if the system fails when
you are modifying a data source by identifying a checkpoint.
CHECK activates the Checkpoint facility that enables FOCUS to
write more frequently to the data source. (The point at which the
transactions are written is called the "checkpoint.") The
Checkpoint Facility is useful in cases when a system failure
occurs while MODIFY requests are executing.

COMBINE Enables you to modify multiple FOCUS, relational, or Adabas data
sources in one MODIFY request.

26

1. Modifying Data Sources With MODIFY I

Feature

Description

COMMIT and
ROLLBACK

Control the changes made to data sources and protect the data
sources from system failures. COMMIT and ROLLBACK improve
SU performance; here the ability to group individual transactions
as one logical transaction reduces the number of individual
transactions and the amount of communication needed between
the FOCUS Database Server and source userids. COMMIT and
ROLLBACK are used in lieu of CHECK.

COMPUTE

Enables you to modify incoming data field values and to define
temporary fields.

DECODE

Enables you to compare transaction values against a list of
acceptable and unacceptable values.

LOOKUP

Tests for the existence of non-indexed values in cross-referenced
FOCUS, relational, or Adabas data sources and makes these
values available for other computations.

ECHO

Displays the logical structure of MODIFY requests. This feature is
a good debugging tool for analyzing a MODIFY request, especially
if the logic is complex and MATCH and NEXT defaults are used.

FIND

Searches another FOCUS, relational, or Adabas data source for
the presence of the transaction value.

LOG

Enables you to record transactions and error messages in
separate files automatically, and to control the display of rejection
messages at the terminal.

MULTIPLE RECORD
PROCESSING
COMMANDS

Enable you to process multiple segment instances at one time
and are often used with CRTFORM. A few of the important
commands used in multiple record processing are GETHOLD and
REPEAT. GETHOLD retrieves transaction records from memory and
uses them to modify a data source; GETHOLD collects and
retrieves segment instances. REPEAT does re-iterative
processing.

TYPE

Displays or stores messages in a separate file that you prepare.

Maintaining Databases

27

Additional MODIFY Facilities

Feature Description
VALIDATE Enables you to reject transactions that contain unacceptable
values.
MODIFY Command Syntax

The general syntax of the MODIFY command is

MODI FY FILE fil enane [ECHO TRACE]

statenents
DATA [ON ddnane| VI A prograni
/I ncom ng data

[END]

where:
MODI FY FI LE

Begins the request.
filenamne

Is the name of the FOCUS, relational, fixed format sequential, VSAM, or Adabas data
source you are modifying. This name must be the same as the Master File of the data
source. For information about modifying non-FOCUS data sources, see the appropriate
data adapter documentation.

Note: Although you can use MODIFY to load a fixed format sequential file, the sequential
data source must consist of a single segment, and data is loaded in the order in which it
is input. Update and delete operations are not supported. To append data to an existing
sequential data source with HiperFOCUS ON, the record format must be fixed.

ECHO

Invokes the ECHO facility, which displays the request logic (see Displaying MODIFY Request
Logic: The ECHO Facility on page 213).

TRACE

Invokes the TRACE facility, which displays the name of each case that is entered during
the execution of the request if the request uses Case Logic (see Tracing Case Logic: The
TRACE Facility on page 167).

28

1. Modifying Data Sources With MODIFY I

statenents
Are the MODIFY statements in the request. Each statement must begin on a separate line.
DATA

Specifies the source of incoming data. Note that nothing should come between this
statement and the END statement, unless you are supplying the incoming data in the
request itself. In that case, place the data after the DATA statement.

ON ddnane
Is a DATA statement parameter. See Specifying the Source of Data: The DATA Statement on
page 72.

VI A program

Is a DATA statement parameter.
/ncom ng data

Is the data you are using to modify the data source if you are supplying the data in the
request itself.

END

Concludes the request. Do not add this statement if the request contains PROMPT
statements (PROMPT statements are discussed in Prompting for Data One Field at a Time:
The PROMPT Statement on page 58).

Executing MODIFY Requests

You can enter and run a MODIFY request either by entering it at the terminal or by running it as
a stored procedure (stored procedures are discussed in the Developing Applications manual).
When you start execution of the request, FOCUS executes the request for each transaction
until:

.d There is no more data to be read in the incoming transaction data source (the file
containing the incoming data).

.4 The user signals a halt (if the request is prompting the user for data).

.4 The STOP statement signals a halt to the processing of transactions in an incoming data
source (see Reading Selected Portions of Transaction Data Sources: The START and STOP
Statements on page 73).

.4 The request encounters a GOTO EXIT statement.

Maintaining Databases 29

Additional MODIFY Facilities

Syntax:

30

How to Execute a Request as a Stored Procedure

To enter a MODIFY request as a stored procedure, type the request in a procedure file
(procedures are discussed in the Developing Applications manual). If you are including the
incoming data in the request (which you might do for testing purposes), place the data after
the DATA statement in the stored procedure. End the request with the END statement unless
the request contains PROMPT statements.

After saving the file, enter at the FOCUS prompt
EX focexec

where focexec is the name of the stored procedure.

FOCUS responds with an echo of the file name, date, and time as follows:

filenane ON date AT tine

The request then either begins prompting you for data or starts reading the stored
transactions.

When the request finishes execution, it displays the following statistics

TRANSACTI ONS: TOTAL = 17 ACCEPTED = n REJECTED = n
SEGMVENTS: | NPUT = n UPDATED = n DELETED = n
where:
n

Is an integer.

TRANSACTI ONS

Are the transactions processed by the request.
TOTAL

Is the total number of transactions processed.
ACCEPTED

Is the number of transactions accepted by the request and used to maintain the data
source.

REJECTED
Is the number of transactions rejected by the request.
SEGVENTS

Is the number of segment instances modified by the request.

1. Modifying Data Sources With MODIFY I

Syntax:

I NPUT

Is the number of new segment instances.
UPDATED

Is the number of instances updated.
DELETED

Is the number of instances deleted.

To suppress this message, include the following command in the procedure before the MODIFY
request:

SET MESSAGE = OFF

How to Execute MODIFY Requests Online

To execute a MODIFY request online, enter
MODI FY FI LE 7/ /enane

where
filenane
is the FOCUS name of the data source you are modifying.

FOCUS responds with an echo of the data source name, date, and time as follows:

filenanme ON date AT tine
ENTER SUBCOMVANDS:

Enter each MODIFY statement in the request (such as FIXFORM, MATCH, COMPUTE, TYPE)
followed by a DATA statement and the incoming data (if the data is not coming from another
data source or from the terminal). Then enter the END statement (unless the request contains
PROMPT statements).

The request can then start prompting you for data, read from an external data source, or
accept transaction records from the terminal (if the request contains FIXFORM or FREEFORM
statements but does not specify the ddname of an external data source).

If it accepts transaction records from the terminal, the request appears:
START:
Start entering the data, one record at a time. Every time you enter a record, the request

processes it and displays a message if it rejects the record. After you have entered the data,
enter the END statement. This ends execution.

Maintaining Databases 31

Additional MODIFY Facilities

If you are entering a MODIFY request online and you want to cancel the request and start over,
enter QUIT. This returns you to the FOCUS prompt.

If you enter a statement online that FOCUS considers an error, it will prompt you for a
correction. This error correction facility is described in the Creating Reports manual.

You should not enter MODIFY requests online unless the requests are short. If you enter a
statement you want to change, you must quit the request and start over.

The example below shows a sample MODIFY request being entered online:

>
modi fy file enpl oyee

EMPLOYEEFOCUS Al ON 08/15/85 AT 16. 36. 05
ENTER SUBCOMVANDS:
freeformenp_id curr_sal
match enp_id
on nomatch reject
on match update curr_sal
dat a
START:
enp_i d=071382660, curr_sal =21400. 50,
enp_i d=112847612, curr_sal =20350. 00,
enp_i d=117593129, curr_sal =22600. 34,
end

@B BB

Notice that when the request finishes execution, it displays the following statistics:

TRANSACTI ONS: TOTAL= 3 ACCEPTED= 3 REJECTED= 0
SEGVENTS: I NPUT= 0 UPDATED= 3 DELETED= O

These statistics are explained in the preceding section.

Other Ways of Maintaining FOCUS Data Sources

32

Although the MODIFY command is one of the primary methods of maintaining FOCUS data
sources, there are four other facilities for changing data in FOCUS data sources:

.4 The Maintain facility allows you to maintain data sources (including FOCUS, DB2, SQL/DS,
Oracle, Teradata, and VSAM data sources) using event-driven and set-based processing in
with a Graphical User Interface. The Maintain facility is described in Introduction to
Maintain, through Expressions Reference.

-l The FSCAN and SCAN facility allows you to edit FOCUS data sources interactively on a field-
by-field basis. You enter a subcommand to make each change. The facility can update key
fields. The FSCAN facility is the subject of Directly Editing FOCUS Databases With FSCAN on
page 389. SCAN is the subject of Directly Editing FOCUS Databases With SCAN on page
349.

1. Modifying Data Sources With MODIFY I

-l The Host Language Interface (HLI) allows you to maintain FOCUS data sources from
computer programs written in BAL, FORTRAN, COBOL, and PL/1. HLI is covered in the Host
Language Interface Users Manual.

Unlike the FSCAN facility mentioned above, the MODIFY command allows you to make many
changes with one execution. It can run in both interactive and batch modes. It will prompt you
for the values it needs to make the changes, or it may read the values from a transaction data
source. However, it cannot update key fields.

Note that although the FOCUS Report Writer can write reports from many kinds of non-FOCUS
data sources (such as ISAM, VSAM, and IMS data sources), the MODIFY command maintains
only FOCUS data sources, and with the proper interface, VSAM data sources, and SQL and
Teradata tables.

You can only MODIFY one partition of a partitioned FOCUS data source at one time. You must
explicitly allocate the partition to be modified. Alternatively, you can create separate Master
Files for each partition for use in MODIFY procedures. For more information about partitioned
FOCUS data sources, see the Describing Data manual.

The EMPLOYEE Data Source

The examples in this chapter use the EMPLOYEE data source, a data source used to record
employee information for a company. The Master File and the diagram of the entire data
source structure are shown in Master Files and Diagrams. Most of the examples use three
segments in the EMPLOYEE data source:

.d The EMPINFO segment contains information directly relating to employees in a company:
employee ID, last name, first name, hire date, department assignment, current salary, job
code, and classroom hours.

.4 The SALINFO segment contains information relating to employees' monthly pay: the pay
date and the amount of pay.

.4 The DEDUCT segment contains information about the deductions taken off each monthly
pay check: the type of deduction and the amount of the deduction.

Describing Incoming Data

This section describes the statements that read and describe transactions. These are the
FIXFORM, FREEFORM, PROMPT, and CRTFORM statements. The last part of the section
discusses the DATA, START, and STOP statements.

Maintaining Databases 33

Describing Incoming Data

34

To modify a data source, the MODIFY request first reads incoming data. It then uses this data
to select the segment instances that must be changed or deleted, or to confirm that the
instances have not been entered yet and to add them. The data may be in fixed or comma-
delimited format, it may be stored in sequential data sources or within the request itself, and it
may be entered directly by users on terminals.

There are four MODIFY statements that read and describe incoming data. Some read data from
sequential data sources and the request itself; some prompt users on terminals for data. They
are:

FI XFORM Reads data in fixed format. That is, the fields occupy fixed positions
in each record.

FREEFORM Reads data in comma-delimited format. That is, the fields in each
record are separated by a comma (,). Each record is terminated by a
comma and a dollar sign (,$).

PROVPT Prompts users on terminals for data values one field at a time. This
statement works on all terminals.

CRTFORM Displays formatted screens (called CRTFORMs) on terminals and
allows users to enter multiple data values at one time.

Note: PROMPT, FREEFORM, FIXFORM, and CRTFORM statements accept data that includes
numbers expressed in scientific notation. For more information on the use of scientific notation
in expressions, refer to the Creating Reports manual.

If a request does not have one of these statements, it defaults to FREEFORM and reads data
from a comma-delimited list.

These statements can be placed in requests in two ways:

d The statements can stand by themselves. These statements read data every time the
request repeats.

d The statements can be phrases in MATCH or NEXT statements (discussed in Modifying
Data: MATCH and NEXT on page 75). These phrases only read data when the MATCH or
NEXT statement is executed.

1. Modifying Data Sources With MODIFY I

A request may have an unlimited number of statements of one type (for example, 10 PROMPT
statements), except for CRTFORM where up to 255 such statements are allowed. You may
also mix the following statements in one request:

J FREEFORM statements and PROMPT statements.

.4 One FIXFORM statement with up to 255 CRTFORMSs.

If you are reading data from a data source or user program, you must allocate the source of
the data to a ddname.

Note: Do not begin any field used in a CRTFORM or FIXFORM statement with Xn, where n is any
numeric value. This applies to fields in the Master File and computed fields.

FOCUS allows the use of up to 3,072 fields in each MODIFY request. This total includes both
data source fields and temporary fields.

The last part of the section discusses several other features related to reading transactions.
They are:

d The DATA statement that marks the end of the executable portion of the request and
specifies the source of the transactions (the request itself, a data source, the terminal, or
a user program).

.d The START and STOP statements that limit the request to reading a portion of the
transaction data source.

Reading Fixed-Format Data: The FIXFORM Statement

The FIXFORM statement reads data in fixed format. That is, each field has a fixed position in
each record. The FIXFORM statement can read data from sequential data sources, including
HOLD, SAVE, and SAVB files generated by TABLE requests.

The FIXFORM statement reads in one logical record at a time starting from column one and
divides the record into transaction fields. Subsequent FIXFORM statements may redefine the
record, dividing it into different sets of fields.

Note: Multiple FIXFORM statements in a request can function as a single statement.

For example, you are adding the names of five new employees to the EMPLOYEE data source.
The data is stored in a sequential data source called NEWEMP.

This is how the data source appears on a text editor such as TED:

Maintaining Databases 35

Describing Incoming Data

Syntax:

36

+ 1 + 2 03

* %+ TOP OF FILE * * *

222333444BLACK SUSAN 27500. 00
456456456 NEWWAN JERRY 24800. 75
999888777HUNTI NGTON LAWRENCE 26950. 00
246246246L1 NDQUI ST DEBRA 19300. 40

666888222MCI NTYRE ~ GEORGE 31900. 60

* * * END OF FILE * * *

Each record in the data source consists of four fields, each field in a fixed position on the

record:

4 The EMP_ID field (employee ID numbers) occupies the first nine bytes of each record

(columns 1 through 9).

. The LAST_NAME field occupies the next ten bytes (columns 10 through 19).

4 The FIRST_NAME field occupies the next ten bytes (columns 20 through 29).

4 The CURR_SAL field (current salaries) occupies the last eight bytes in each record (columns

30 through 37).

You can describe the record format with this FIXFORM statement:

FI XFORM EMP_I D/ 9 LAST_NAME/ 10 FI RST_NAME/ 10 CURR_SAL/ 8

To add the records to the FOCUS data source, include the preceding statement in this MODIFY

request:

MODI FY FI LE EMPLOYEE

FI XFORM EMP_I D/ 9 LAST_NAME/ 10 FI RST_NAME/ 10 CURR_SAL/ 8

MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA ON NEVEMP
END

How to Use a FIXFORM Statement
The syntax of the FIXFORM statement is

FI XFORM [ON ddnare] fld-1l form1 ...

or

FI XFORM FROM mast er [ALl AS]

fld-nl formn

1. Modifying Data Sources With MODIFY I

where:
flad-1 ...

Are the names of the incoming data fields that the FIXFORM statement is reading or
redefining. If the name has an embedded blank, enclose it within single quotation marks.

Any field being read by the FIXFORM statement that does not appear in the Master File of
the data source being modified must be predefined in a COMPUTE field/format=;
statement. This COMPUTE must appear in the MODIFY before the FIXFORM.

The list of fields must fit on one line. If the list is too long to fit on one line, use a FIXFORM
statement for each line. For example:

FI XFORM EMP_I D/ 9 LAST_NAME/ 15
FI XFORM CURR_SAL/ 8 ED_HRS/ 4

The two FIXFORM statements act as one statement and read one record into the buffer.
form1 ...

Are the formats of the incoming data fields, as described in How to Specify Field Formats
With FIXFORM on page 41. The formats specify the format type (alphanumeric, integer,
floating point, and so on) and the length of the field in bytes.

Note: No length is specified for the text field format that is variable in length. A FIXFORM
statement can describe up to 12,288 bytes, exclusive of repeating values.

To specify an alphanumeric format, type the length of the field in bytes. For example, a
record contains two alphanumeric fields:

The EMP_ID field, nine bytes long.
The DEPARTMENT field, ten bytes long.

The FIXFORM statement that describes this record is:
FI XFORM EVP_I D/ 9 DEPARTMENT/ 10

Note that alphanumeric transaction fields can modify any data source field regardless of
internal format. Specifying the formats of binary, packed, and zoned transaction fields is
discussed in How to Specify Field Formats With FIXFORM on page 41.

Remember that a transaction field can contain numbers and still be alphanumeric. If you
display a transaction data source on a system editor, alphanumeric data appears normally;
numeric data appears as unprintable hexadecimal characters.

Maintaining Databases 37

Describing Incoming Data

38

ON ddnane

Is an option that specifies the ddname of the transaction data source containing the
incoming data. You use this option most often when the request is reading data from two
different sources: one source is specified by the DATA statement, the other by the ON
ddname option.

Note that if there is more than one FIXFORM statement without the ON ddname option, the
request keeps track of the last column of the physical record read by the last FIXFORM
statement. If the last column is in the middle of the record, the next FIXFORM statement
begins to read from the next column. If the last column is at the end of the record, the
next FIXFORM statement begins to read from column 1 of the next record.

To break a FIXFORM statement having the ON ddname option into smaller statements,
specify the ON ddname option only in the first statement. All the statements must be
together in one block. For example:

FI XFORM ON EMPFI LE EMP_I D/ 9 LAST_NAME/ 15

FI XFORM FI RST_NAME/ 10 DEPARTMENT/ 10
FI XFORM CURR_SAL/ 8 ED _HRS/ 4

FROM nast er

Indicates that the incoming data fields have the same names and formats as the Master
File (named master). If you use this option, do not specify the field names and formats in
the FIXFORM statement itself. Use this option only if the Master File specifies a single
segment SUFFIX=FIX data source. All the fields in the Master File specified by the FROM
phrase must also appear in the Master File specified by the MODIFY command, or an error
will result.

You use this option most often to load data from a HOLD file. For example:

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL BY EMP_I D
ON TABLE HOLD

END

MODI FY FI LE SALARY

FI XFORM FROM HOLD

DATA ON HOLD

END

The TABLE request stores employee IDs and salaries in a HOLD file. The MODIFY request
loads the IDs and salaries into a new FOCUS data source called SALARY. Note that all the
fields in the HOLD Master File must also appear in the SALARY Master File.

1. Modifying Data Sources With MODIFY I

Text fields are supported with FIXFORM from HOLD; only one text field can be read from a
HOLD file and it must be the last field on the HOLD FIXFORM. The representation of
missing text depends on whether MISSING=ON in the Master File or the FIXFORM format is
C for conditional, or a combination of the two.

When duplicate field names exist in a HOLD file, a MODIFY request that includes FIXFORM
FROM HOLD should specify an AS name.

Note: FIXFORM FROM Master File automatically assumes that all fields on the FIXFORM
are conditional fields. Because of this a value of blank does not update the database to a
value of blank. If blank (or spaces) is a valid value, and the update should take place, you
must issue an ACTIVATE RETAIN fieldname fieldname fieldname... or ACTIVATE RETAIN
SEG.fieldname.

ALl AS

Indicates that the alias names from the Master File are to be used to build the FIXFORM
statements.

Note: If the transaction file has a null (missing data) value for a file, and you want to input this
value as a blank, the Master Files for both the transaction file and the data source being
modified must have MISSING=ON for that field.

Syntax: How to Skip Columns in the Record

Often, an incoming transaction contains filler or data you do not need. To skip over characters
or information in the incoming record, type

Xn

where:
n

Is the number of columns you want to skip.

This does not cause the statement to ignore the skipped columns. The statement reads the
entire record; it just does not place the skipped data in any transaction field. Later in the
request, you can place this data into transaction fields by adding a second FIXFORM statement
(see the following section, How to Move Backward Through a Record on page 40).

For example, a transaction record consists of two fields: EMP_ID and CURR_SAL. Two "A"s
separate the fields:

071382660AA23540. 35

You describe this record with this FIXFORM statement:
FI XFORM EMP_I D/ 9 X2 CURR _SAL/ 8

Maintaining Databases 39

Describing Incoming Data

The X2 notation prevents the two "A"s from being placed in the transaction fields.

Note: Do not begin any field used in a CRTFORM or FIXFORM statement with Xn, where n is any
numeric value. This applies to fields in the Master File and computed fields.

Procedure: How to Move Backward Through a Record

After a FIXFORM statement reads a record into the buffer, it places the data into transaction
fields, starting from the beginning of the record and moving toward the end. You can specify
that FIXFORM back up a number of columns to process the data more than once. This enables
you to place the same data into two fields simultaneously. To do this, use the notation

X-n
where n is the number of columns that the statement is to move backward. For example, the

first three digits of employee IDs are a special code that you wish to use later in the request.
Each employee ID is nine digits long. You type this FIXFORM statement:

FI XFORM EMP_I D)9 X-9 EMP_CODE/ 3 X6 CURR_SAL/ 8

A record in the transaction data source is:

07138266023500. 35

The statement interprets the record this way:

EMP_I D/ 9 Reads the first nine bytes as the employee ID (071382660).
X-9 Goes back nine bytes to the beginning of the record.
EMP_CODE/ 3 Reads the first three bytes as the employee code (071).

X6 Moves forward six bytes.

CURR_SAL/ 8 Reads the next eight bytes as the employee salary (23500.35).

This defines three incoming fields, all of which you can use later in the request.

Note: Since the EMP_CODE field is not defined in the Master File, you must define the field
with the COMPUTE statement before the FIXFORM statement (see Computing Values: The
COMPUTE Statement on page 1006).

You may replace any FIXFORM statement with two smaller statements so that the second
statement redefines all or part of the record read by the first statement. For example, you may
replace this FIXFORM statement

40

1. Modifying Data Sources With MODIFY I

Syntax:

FI XFORM EMP_I D/ 9 X-9 EMP_CODE/3 X6 CURR SAL/8

with these two smaller FIXFORM statements:

FI XFORM EMP_| D/ 9 CURR SAL/ 8
FI XFORM X- 17 EMP_CODE/ 3 X14

The first FIXFORM statement reads one record and divides the record into the EMP_ID field
(nine bytes) and the CURR_SAL field (eight bytes).

The second FIXFORM statement moves 17 bytes back to the beginning of the record and
declares the first three bytes to be the EMP_CODE field. It then skips over the last 14 bytes.

Note that you cannot place the X-n notation at the end of a FIXFORM statement. The following
statement is an error:

FI XFORM EMP_I D/ 9 CURR_SAL/ 8 X-17

FIXFORM statements that redefine records in the buffer are especially useful in Case Logic
requests (see Case Logic Applications on page 159).

How to Specify Field Formats With FIXFORM

This section lists the data formats that may be specified in FIXFORM statements. In addition to
alphanumeric format, there are date (DATE), text field (TX), and conditional text field (CTX)
formats, and numeric formats of fields in HOLD and SAVB files and of fields generated by user-
written programs. The formats are

[Al 7 YQVDW/] | A[YQVD| F4 D8 Pl . m[YQVD| DATE /TX [/ CTX Zn[. m

where:

[Al Al YQVD
Specifies an alphanumeric character string n bytes long, where n is an integer.
Date component options (YY, Y, Q, M, D) are included as necessary for a date field.
The V and W options are for AnV fields that were propagated to a HOLD file.

.4 W indicates that the length of the input field is n+6 bytes. The first six bytes contain
the length of the character data within the subsequent n bytes. Use for inputting data
from HOLD FORMAT ALPHA files.

. Vindicates that the length of the input is n+2 bytes. The first two bytes are binary and
contain the length of the character data within the subsequent n bytes. Use for
inputting data from binary HOLD files.

Maintaining Databases 41

Describing Incoming Data

42

| n[YQMVD]

Specifies a binary integer n bytes long, where nis 1, 2, or 4. Date component options (YY,
Y, Q, M, D) are included as necessary for a date field.

F4

Specifies a 4-byte binary floating point number.

Specifies an 8-byte binary double precision number.

Prl . n [YQVD]

Specifies a packed number n bytes long with m digits after an implied decimal point. n is
an integer between 1 and 16 and m is an integer between O and 33. Date component
options (YY, Y, Q, M, D) are included as necessary for a date field.

DATE

Specifies a date field in 4-byte integer format, to be copied to the data source without date
translation or validation. Date format fields can also be read without these restrictions by
specifying alphanumeric, integer, or packed format, as described later in this section.

1 TX| | CX

Specifies a text field format for transaction and conditional transaction fields. Each
FIXFORM statement can include multiple text fields. However, they must appear as the last
fields in the statement, they may not be conditional, and, in the data file, each text field
must be terminated with the %$ character combination on a line by itself. Note that you do
not specify the length when using FIXFORM to read text fields; the length is for display
purposes only (see the Describing Data manual).

See Entering Text Data Using TED on page 69 for general rules.

Note:

. Text fields must be the last fields listed in the FIXFORM statement. If they are being
loaded from a HOLD file, they must also be the last fields in the HOLD file.

d If the word END appears on a line by itself, FOCUS interprets it as a quit action, stops
the procedure, and discards everything entered up to that point for a particular record.

A To end a transaction and exit MODIFY, first enter the end-of-text character (%$) on a
line by itself, then enter END on the next line.

-1 If data is read from an external data source, the record format must be fixed.

1. Modifying Data Sources With MODIFY I

- If atext field is not mentioned in the FIXFORM statement, but it is present in the
Master File, the value of the text field is determined based on the setting of the
MISSING attribute. That is, if MISSING=0N, the text will be entered as a dot (.). If
MISSING=0FF, the text will be entered as a blank.

Znl . m
Specifies a zoned decimal number n bytes long with m digits after an implied decimal
point. n is an integer between 1 and 16 and m is an integer between O and 9.

For example, this FIXFORM statement

FI XFORM EMP_I D/ 9 HI RE_DATE/ | 4 CURR_SAL/ D8 ED_HRS/ P4. 2

defines each record as the following:

.4 The first nine bytes as the character string EMP_ID.

.4 The next four bytes as the binary integer HIRE_DATE.

.4 The next eight bytes as the binary double precision number CURR_SAL.

. The next four bytes as the packed number ED_HRS. The last two digits of the number
follow an implied decimal point.

The FIXFORM statement specifies the field formats of transaction data sources, not the data
source being updated. A transaction field can modify a data source field if the transaction field
has one of the following format types (the format type is the type of field, such as
alphanumeric or floating point):

4 The same format type as the data source field.
.4 Alphanumeric format.
d Zoned format (if the data source field is packed).

If you specify any other format type for the transaction field (for example, an integer
transaction field to modify a floating point data source field), the request may terminate and
generate an error message. To read such a transaction value into a data source field, do the
following:

1. Before the FIXFORM statement, use the COMPUTE statement to define a name for the
incoming data field that is different from the data source field (the COMPUTE statement is
discussed in Computations: COMPUTE and VALIDATE on page 106). The statement also
specifies the field format, showing the format type and the number of digits in the field.

2. In the FIXFORM statement, read the incoming data field using the name you defined in the
COMPUTE statement. The field format in the FIXFORM statement shows the field length in
bytes in the transaction data source.

Maintaining Databases 43

Describing Incoming Data

Syntax:

44

3. After the FIXFORM statement, use the COMPUTE statement to set a field with the same
name as the data source field equal to the value of the field you defined in step 1.

Note: If the incoming field is numeric and the data source field is alphanumeric, use the
EDIT function to do this. The EDIT function is described in the Creating Reports manual.

The following request reads a floating point field called FLOATSAL into the data source double-
precision field CURR_SAL:
MODI FY FI LE EMPLOYEE
COVPUTE FLOATSAL/ F8=;
FI XFORM EMP_| D/ 12 FLOATSAL/ F4
COVWUTE CURR_SAL = FLOATSAL;
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE CURR_SAL
DATA ON FLOAFI LE
END

Notice that the FLOATSAL field is defined with a format of F8 in the first COMPUTE statement
and a format of F4 in the FIXFORM statement. FLOATSAL is an eight-digit field that takes up
four bytes in the transaction data source.

Controlling Whether FIXFORM Input Fields Are Conditional

In MODIFY, by default, FIXFORM FROM mastername treats all transaction data as conditional,
meaning that space-filled fields are considered not present, and as such cannot be updated or
used in updates.

The SET FIXFRMINPUT command enables you to specify how to handle FIXFORM input fields as
either conditional (field/format C) or non-conditional fields. Thus, spaces in a transaction field
can be used for updating database fields.

How to Control Whether FIXFORM Input Fields Are Conditional
SET FI XFRM NPUT = { COND| NONCOND}

where:
COND

Treats all transaction fields generated by FIXFORM FROM mastername as conditional
(format C) fields. COND is the default value.

NONCOND

Treats all transaction fields as present in the transaction, and their contents are treated
as real values.

1. Modifying Data Sources With MODIFY I

Reference:

Example:

Note that if you have not changed the value of the FIXFRMINPUT parameter and you query its
value, the value displays as DEFAULT.

Usage Notes for SET FIXFRMINPUT

4 The FIXFRMINPUT setting does not affect a FIXFORM command that does not have a FROM
phrase.

.4 If you run a compiled MODIFY, its behavior reflects the FIXFRMINPUT setting at the time it
was compiled, even if a different setting is in effect at run time.

Controlling Whether FIXFORM Transaction Fields Are Conditional

The following procedure establishes a transaction file, defining LN1 in HOLD file TRANS to be
blank for PIN 000000040.

SET ASNAMES = ON

DEFI NE FI LE EMPDATA

LN1/A15 = I F PIN EQ ' 000000040" THEN '' ELSE LN;
END

TABLE FI LE EMPDATA

PRINT PIN LN1 AS LN

I F PIN FROM ' 000000010' TO ' 000000100’

ON TABLE HOLD AS TRANS

END

The following procedure, sets the FIXFORM FROM input fields as conditional (the default) and
reports on the output from the MODIFY:

SET FI XFRM NPUT = COND
-? SET FI XFRM NPUT &FI XF

MODI FY FI LE EMPDATA
FI XFORM FROM TRANS
VATCH PI' N

ON MATCH UPDATE LN
ON NOVATCH REJECT
DATA ON TRANS
END

TABLE FI LE EMPDATA

HEADI NG

"VALUE OF FI XFRM NPUT | S &FI XF "
PRINT PIN LN

I F PIN FROM ' 000000010' TO ' 000000100’
END

Maintaining Databases 45

Describing Incoming Data

The output shows that the blank in the transaction file was not used to update the last name
in the data source:

VALUE OF FI XFRM NPUT | S COND
PI' N LASTNAME

000000010 VALI NO
000000020 BELLA
000000030 CASSANOVA
000000040 ADAMS
000000050 ADDANMS
000000060 PATEL
000000070 SANCHEZ
000000080 SO
000000090 PULASKI
000000100 ANDERSON

The following procedure sets the FIXFORM FROM input fields as non-conditional and reports on
the output from the MODIFY:

SET FI XFRM NPUT = NONCOND
-? SET FI XFRM NPUT &FI XF

MODI FY FI LE EMPDATA
FI XFORM FROM TRANS
MATCH PI N

ON MATCH UPDATE LN
ON NOVATCH REJECT
DATA ON TRANS
END

TABLE FI LE EMPDATA

HEADI NG

"VALUE OF FI XFRM NPUT | S &FI XF "
PRI NT PIN LN

I F PIN FROM ' 000000010 TO ' 000000100'
END

46

1. Modifying Data Sources With MODIFY I

The output shows that the last name for PIN 000000040 has been updated to contain blanks:
VALUE OF FI XFRM NPUT | S NONCOND
PI'N LASTNANE

000000010 VALI NO
000000020 BELLA
000000030 CASSANOVA
000000040

000000050 ADDANS
000000060 PATEL
000000070 SANCHEZ
000000080 SO
000000090 PULASKI
000000100 ANDERSON

Describing Date Fields

This section discusses using date format fields in FIXFORM statements. Alphanumeric and
integer format fields with date edit options are not discussed here; they are treated by
FIXFORM like standard alphanumeric and integer fields.

When you use a FIXFORM statement to modify a data source date field, the corresponding data
in the transaction data source can be one of the following three types:

d A numeric date literal. For example, August 17 1989 can be represented in the transaction
data source as 081789. The transaction field format can be An, In, or Pn.

.4 A natural date literal. For example, August 17 1989 can be represented in the transaction
data source as AUG 17 1989. The transaction field format must be An.

Note that all names of days and months in the transaction data source must be in
uppercase, even if the translation option is t or tr. All abbreviated hames of days and
months in the transaction data source must consist of the first three letters of the name.
Commas cannot be included in the date.

4 A date in internal FOCUS date format. This format is used for date fields in SAVB and
unformatted HOLD files. The date is stored as a 4-byte integer representing the elapsed
time since the standard FOCUS base date, as described in the Describing Data manual.
The transaction field format must be DATE.

For example, assume that you have changed the format of the HIRE_DATE field in the
EMPLOYEE Master File from I6YMD to YMDT. You then write a request that creates a new
EMPLOYEE data source. The request begins with this FIXFORM statement:

FI XFORM EMP_I D/ 11 FI RST_NAME/ 10 LAST_NAME/ 10 H RE_DATE/ 9

Both of these records are valid input:

Maintaining Databases 47

Describing Incoming Data

444555666 DOROTHY TAI LOR 860613
444555666 DOROTHY TAILOR 86 JUN 13

To describe date fields in FIXFORM statements, you can use the following transaction field
formats.

. DATE. This specifies a transaction field stored in FOCUS internal date format, which is a 4-
byte integer representing the time elapsed from the standard FOCUS base date, as
described in the Describing Data manual. The transaction field will be copied directly to the
data source without date validation.

For example:

FI XFORM SALEDATE/ DATE

d An, In, Pn. These specify a date field stored in alphanumeric, integer, or packed decimal
format respectively. Numeric date literals and natural date literals are translated as
necessary to suit the data source field's USAGE specification and edit options.

For example, if a data source contains the date field NEWSDATE, and USAGE=MDYY, the
following FIXFORM statements can be used to update NEWSDATE:

FI XFORM NEWSDATE/ A8YYND

FI XFORM NEWSDATE/ A6 DMWY

FI XFORM NEWSDATE/ | 4MDY

FI XFORM NEWSDATE/ | 2YND

FI XFORM NEWSDATE/ P3DMY
FI XFORM NEWSDATE/ A8

Note that the last FIXFORM statement does not specify any date components. Because it is
alphanumeric and has the same length specified by the data source field's USAGE
attribute, it defaults to the USAGE format (which in this case is MDYY).

For all date transaction field formats, the date components (year, quarter, month, day) do not
need to be in the order specified in the USAGE attribute in the Master File; they can be in any
order.

Note, however, that you cannot extract date components from a date field (for example, you
cannot write a YMD transaction field to a YM data source field), and you cannot convert one
component to another (for example, you cannot convert a YM transaction field to a YQ data
source field). The only exceptions are the YY and Y date components, which can be substituted
for each other.

48

1. Modifying Data Sources With MODIFY I

Syntax:

How to Describe Repeating Groups

You may use a fixed-format transaction record to modify multiple segment instances. The set
of transaction fields that modify the instances is called a repeating group because the fields
repeat for each instance. Instead of explicitly specifying each field, you specify the repeating
group once with a multiplying factor in front.

The syntax is
FI XFORM factor (group)

where:
factor

Is the number of times that the group repeats.

group

Is the repeating group consisting of a list of fields and formats.

For example, assume you design a request that records the last 12 months of employees'
monthly pay in the EMPLOYEE data source. Each transaction record contains the employee's
ID and 12 pairs of fields: the first field in each pair is the pay date, the second is the monthly
pay (GROSS). The request is:

MODI FY FI LE EMPLOYEE
FI XFORM EMP_I D)9 X1 12 (PAY_DATE/ 6 GROSS/ 7)
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE
MATCH PAY_DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA ON EMPGRCSS
END

Each incoming record that the request reads contains one EMP_ID field and 12 groups of
fields, each group consisting of a pay date field and a monthly pay field. The request reads a
record, then splits the record into 12 smaller logical records, each consisting of the employee
ID of the original record and one group. FOCUS then executes the request for each logical
record, processing each group separately.

You may specify more than one group in a FIXFORM statement, but they cannot be nested.

Note: To process repeating groups in a Case Logic request, place each repeating group in a
FIXFORM statement in a separate case. The case should include the following:

.4 A counter that counts the group being processed.

Maintaining Databases 49

Describing Incoming Data

- An IF statement that branches out of the case after all the groups are processed.

.4 GOTO phrases that branch back to the beginning of the case after each group is processed.

The following request adds and updates information on employees' monthly pay. Note the ON
INVALID phrase that branches back to the beginning of the case if a monthly pay entry is
greater than $2500. The request is:

MODI FY FI LE EMPLOYEE
COWPUTE
COUNTER/ 13 = 0;
FI XFORM EMP_I D/ 9
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH GOTO NEWPAY
GOTO NEWPAY

CASE NEWPAY
COVPUTE
COUNTER/ | 1 = COUNTER + 1;
| F COUNTER GT 3 GOTO TCP;
FI XFORM 3 (PAY_DATE/ 6 GROSS/ 7)
VALI DATE
PAYTEST = | F GROSS GT 2500 THEN O ELSE 1;
ON | NVALI D GOTO NEWPAY
MATCH PAY_DATE
ON NOVATCH | NCLUDE
ON NOVATCH GOTO NEWPAY
ON MATCH UPDATE GROSS
ON MATCH GOTO NEWPAY
ENDCASE
DATA ON PAYFI LE
END

Using Date Format Fields

Example:

50

The following examples show how to use date format fields.

Conditional Fields

MODIFY requests can process records in which alphanumeric field values may be present in
one input record but absent in another. Such fields are called conditional fields. When the
value of a conditional field is blank, the request does not use the field to modify the data
source and the field remains inactive (active and inactive fields are discussed in Active and
Inactive Fields on page 204).

To indicate to FOCUS that a field is conditional, precede the field format with the letter C. For
example:

FI XFORM FI RST_NAME/ C10 LAST_NAME C15

1. Modifying Data Sources With MODIFY I

Another example: You design a MODIFY request that updates employees' departments and job
codes. If an employee's department or job code has not changed, the corresponding field in
the transaction data source is blank.

The request is:

MODI FY FI LE EMPLOYEE
FI XFORM EMP_| D/ 9 X1 DEPARTMENT/ C10 X1 CURR JOBCODE/ C3
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR JOBCODE
DATA
071382660 SALES B13
112847612 A08
117593129 MARKETI NG
END

The request contains three incoming records after the DATA statement:

4 The first incoming record contains all three fields. The request updates both the
DEPARTMENT and CURR_JOBCODE fields.

4 The next record has the EMP_ID and CURR_JOBCODE fields but no DEPARTMENT field. The
request updates the employee's CURR_JOBCODE value in the data source, but leaves the
DEPARTMENT value the same.

4 The last record has the EMP_ID and DEPARTMENT fields but no CURR_JOBCODE field. The
request updates the employee's DEPARTMENT value in the data source, but leaves the
CURR_JOBCODE value the same.

If you did not describe the DEPARTMENT and CURR_JOBCODE fields as conditional, the
request would change an employee's department or job code to blank whenever these fields in
the incoming records were blank.

If you are adding segment instances, and several fields are conditional, values that are blank
go into the new instances as:

- Blank, if the instance fields are alphanumeric.
. Zero, if the instance fields are numeric.

. The MISSING symbol, if the fields are described with the MISSING=ON attribute in the
Master File (see the Describing Data manual).

Maintaining Databases 51

Describing Incoming Data

Example:

FIXFORM Phrases in MATCH and NEXT Statements

You may use FIXFORM statements as phrases in MATCH and NEXT statements. These phrases
are useful if you want to read records selectively only if a particular segment instance exists in
the data source (or is confirmed not to be in the data source).

For example, you design a MODIFY request that adds records of employees' monthly pay to the
data source:

MODI FY FI LE EMPLOYEE
FI XFORM EMP_I D/ 9 X1 PAY_DATE/ 6
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH CONTI NUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOVATCH FI XFORM ON MONTHPAY GROSS/ 7
ON NOVATCH | NCLUDE

DATA ON EMPPAY
END

The data is kept in two transaction data sources: EMPPAY and MONTHPAY. The EMPPAY data
source contains the employee IDs and the date each employee was paid. The MONTHPAY data
source contains the amount each employee was paid (GROSS). The request must confirm for
every EMPPAY transaction that:

4 The employee ID is recorded in the data source. This is confirmed by the MATCH EMP_ID
statement.

-« The date the employee was paid has not yet been recorded in the data source. This is
confirmed by the MATCH PAY_DATE statement.

Once the request has confirmed this, it can read the monthly pay from the MONTHPAY data
source

ON NOVATCH FI XFORM ON MONTHPAY GROSS/ 7

and record it in the data source:

ON NOVATCH | NCLUDE

Reading in Comma-delimited Data: The FREEFORM Statement

52

The FREEFORM statement reads comma-delimited data, where field values in each record are
separated by commas, and records are terminated by comma-dollar signs (,$). The data may
be stored in the request itself or in separate sequential data sources.

1. Modifying Data Sources With MODIFY I

If the MODIFY request does not provide a statement reading transactions (FIXFORM,
FREEFORM, PROMPT, or CRTFORM), FREEFORM is the default.

The following request updates employee salaries by reading employee IDs and new salaries
from comma-delimited records. The records follow the DATA statement:

MODI FY FI LE EMPLOYEE
FREEFORM EMP_| D CURR_SAL
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE CURR SAL
DATA
EMP_| D=071382660, CURR SAL=21400.50, $
EMP_I D=112847612, CURR SAL=20350. 00, $
EMP_I D=117593129, CURR SAL=22600. 34, $
END

Syntax: How to Use a FREEFORM Statement
The syntax of the FREEFORM statement is

FREEFORM [ON ddnane] [field-1field-2 ... field-n)

where:
ON ddnane

Is an option that specifies the ddname of the transaction data source containing the
incoming data. Use this option only when the DATA statement does not specify a ddname
or specifies a ddname of a different data source.

field-1 ...
Are the names of the fields in the order that they appear in the record.

Note: FREEFORM follows the same rules as FIXFORM when dealing with TEXT fields. For
more information see Reading Fixed-Format Data: The FIXFORM Statement on page 35.

If the order of fields is specified in the data, you do not need it in the syntax and if the order of
fields is specified in the syntax, you do not need it in the data.

The list of fields must fit on one line. If the list is too long for a single line, use a FREEFORM
statement for each line. For example:

FREEFORM EMP_| D LAST_NAME FI RST_NAVE
FREEFORM DEPARTMVENT CURR SAL

These two FREEFORM statements act as one statement and read one record into the buffer.

Maintaining Databases 53

Describing Incoming Data

Each time a FREEFORM statement is executed, it reads one record up to the comma-dollar
sign (,$). It does not read beyond that. If the FREEFORM command is used with incoming data
having embedded commas, the data must be enclosed in single quotation marks in the input
data source.

If a MODIFY request has a FREEFORM statement, the statement must specify all the fields in
the transaction data source. If the transaction data source has fields not specified in the
FREEFORM statement, the request terminates and generates an error message.

If you do not include a transaction statement in your MODIFY request, the request assumes
the default FREEFORM and expects to read comma-delimited data. The request reads one
record every time it executes the first statement in the request. Nevertheless, you should
include a FREEFORM statement to make clear that the request is reading comma-delimited
data, to show when the request reads the data, and to allow greater flexibility in entering data
into comma-delimited data sources.

If the Master File lists a date format with a translation option (see the Describing Data
manual), you can type the date values in the transaction data source as they appear in reports
generated by TABLE requests (but do not type the commas in the dates). Note the following
conditions:

4 The date format must have had the translation option before the FOCUS data source was
created.

. All names of months must be in uppercase, even if the translation option is t or tr.

For example, assume you change the format of the HIRE_DATE field in the EMPLOYEE Master
File from 16YMD to YMDT. You then write a request that creates a new EMPLOYEE data source.
The request begins with this FREEFORM statement:

FREEFORM EMP_I D FI RST_NAME LAST_NAME HI RE_DATE/ 9

Both these records are valid input:

444555666, DOROTHY, TAILOR, 860613, $
444555666, DOROTHY, TAILOR, 86 JUN 13, $

Identifying Values in a Comma-delimited Data Source

54

This section discusses how MODIFY requests identify the values in comma-delimited data
sources and determine what fields they belong to. (For more information on comma-delimited
data sources, see the Describing Data manual.) There are two types of values in comma-
delimited data sources:

d ldentified values are identified explicitly in the data source.

1. Modifying Data Sources With MODIFY I

- Positional values exist by themselves without any identification.
Identified values have the form

identifier = val ue

where identifier identifies the field to which the value belongs.

Identifiers can be one of two types:

.1 Field names or unique truncations of field names. For example:

DEPARTMENT=SALES, CURR_SAL=25000, $

. Aliases. For example:
DPT=SALES, CSAL=25000, $
If the request has a FREEFORM statement, the statement must specify all identified fields.

However, the request identifies the values by their identifiers, not by the order of field names
in the FREEFORM list.

Positional values exist by themselves without any identification in the data source. For
example:

SALES, 25000, $
The MODIFY request identifies positional values by the order of field names specified in the
FREEFORM statement list. If a record consists only of positional values, the request assigns

the first field name in the list to the first value, the second field name in the list to the second
value, and so on. For example, if a request has the statement:

FREEFORM EMP_| D DEPARTMENT CURR_SAL

Then the record

071382660, SALES, 25000, $

is interpreted this way:

EMP_I D. 071382660
DEPARTMENT: SALES
CURR_SAL: 25000

If a record has both identified and positional values, the MODIFY request identifies the
positional values in the following way: it notes the last explicitly identified value to precede the
positional values in the record. It then identifies the positional values by the order of field
names that follow the name of the explicitly identified field in the FREEFORM list.

Maintaining Databases 55

Describing Incoming Data

Example:

56

For example, a MODIFY request has this FREEFORM statement:

FREEFORM EMP_I D FI RST_NAME LAST_NAME CURR_SAL

The transaction data source contains this record:

FI RST_NAMVE=DAVI D, MCHENRY, 21300.45, $

The first value, DAVID, is explicitly identified as the FIRST_NAME field. The request identifies
the next value, MCHENRY, as the LAST_NAME field because LAST_NAME follows FIRST_NAME
on the FREEFORM list. Similarly, the request identifies 21300.45 as the CURR_SAL field. The
EMP_ID field retains the value it was last given.

If the MODIFY request has no FREEFORM statement, it identifies positional values by the order
of field names declared in the Master File. If a record consists of only positional values, the
request assigns the first field name in the Master File to the first value, the second field name
to the second value, and so on. For example, a transaction data source contains this record:

071382660, MCHENRY, DAVID, $

The request identifies the first value, 071382660, as the EMP_ID field because EMP_ID is the
first field in the Master File. The next value, MCHENRY, is the LAST_NAME field (the second
field in the Master File). DAVID becomes the FIRST_NAME field, the third field in the Master
File (the EMPLOYEE Master File is shown in Master Files and Diagrams).

If a record has both identified values and positional values, the MODIFY request identifies the
positional values the following way: it notes the last explicitly identified value to precede the
positional values in the record. It then identifies the positional values by the order of field
names that follow the name of the explicitly identified field in the Master File. For example, the
transaction data source contains this record:

FI RST_NAME=DAVI D, 820406, PRODUCTION, $

The first value, DAVID, is explicitly identified as the FIRST_NAME field. The request identifies
the next value, 820406, as the HIRE_DATE field because HIRE_DATE follows FIRST_NAME in
the Master File. Similarly, the request identifies PRODUCTION as the DEPARTMENT field.

Missing Values in Comma-delimited Data Sources

If a field value is missing for a particular record, you must explicitly identify the name of the
next field in the record. For instance, a FREEFORM statement specifies the following:

FREEFORM EMP_|I D CURR_SAL DEPARTNENT

One record lacks a CURR_SAL value. Type the record this way

1. Modifying Data Sources With MODIFY I

071382660, DEPARTMENT=PRODUCTI ON, $

where 071382660 is an EMP_ID value. The CURR_SAL field remains inactive and will not
change any CURR_SAL values in the data source.

If you are adding segment instances to the data source, the instance fields not receiving a
value become:

d Blank, if the instance fields are alphanumeric.
-1 Zero, if the instance fields are numeric.

4 The MISSING symbol, if the fields are described with the MISSING=0N attribute in the
Master File (see the Describing Data manual).

An important exception: If you omit fields from the beginning of a record, the fields retain the
values last assigned to them from a previous record. For example, a transaction data source
contains these two records:

EMP_| D=071382660, PAY_DATE=820831, GR(0SS=1045.60, $

PAY DATE=820831, GR(0SS=1047.20, $

The second record is lacking an EMP_ID value. Nevertheless, since EMP_ID is at the beginning
of the record, it retains its value of 071382660 for the second record and remains active.

If you use double commas to mark an absent value, the value becomes a blank character
string if alphanumeric, and zero if numeric. Note that the request can use this value to modify
the data source. For example, in the record

071382660, , PRODUCTION, $

the two commas mark the position of the absent CURR_SAL field. The CURR_SAL field
becomes active and can change an employee salary to $0.00.
Example: FREEFORM Phrases in MATCH and NEXT Statements

You may use FREEFORM statements as phrases in MATCH and NEXT statements. These
phrases are useful if you want to read records selectively if a particular segment instance
exists in the data source (or is confirmed not to be in the data source).

For example, the following MODIFY request adds records of employees' monthly pay to the
data source:

Maintaining Databases 57

Describing Incoming Data

MODI FY FI LE EMPLOYEE
FREEFORM EMP_I D PAY_DATE
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH CONTI NUE
MATCH PAY_DATE

ON MATCH REJECT

ON NOVATCH FREEFORM ON MONTHPAY GROSS

ON NOVATCH | NCLUDE
DATA ON EMPPAY
END

The data is kept in two transaction data sources: EMPPAY and MONTHPAY. The EMPPAY data
source contains the employee IDs and the date each employee was paid. The MONTHPAY data
source contains the amount each employee was paid (GROSS). The request must confirm for
every EMPPAY transaction that:

4 The employee ID is recorded in the data source. This is confirmed by the MATCH EMP_ID
statement.

- The date the employee was paid has not yet been recorded in the data source. This is
confirmed by the MATCH PAY_DATE statement.

Once the request has confirmed this, it can read the monthly pay from the MONTHPAY data
source

ON NOVATCH FREEFORM ON MONTHPAY GRGCSS
and record it in the data source:

ON NOVATCH | NCLUDE

Prompting for Data One Field at a Time: The PROMPT Statement

Syntax:

58

The PROMPT statement prompts the user on a terminal for incoming data one field at a time.
Use this statement for requests that may be run on line terminals or by users having no
access to the FIDEL facility. If the requests will be run exclusively by users on full-screen
terminals with access to FIDEL, use the CRTFORM statement instead. The FIDEL facility and
the CRTFORM statement are the subjects of Designing Screens With FIDEL on page 227.

How to Use a PROMPT Statement

The syntax of the PROMPT statement is

PROVPT {field-1[.text.] field-2.text.] ... field-n.text.]]|*}

1. Modifying Data Sources With MODIFY I

where:
field-1 ...

Are the names of the fields for which you are prompting. An asterisk * instead of field
names prompts for all fields described in the Master File in the order that they are
declared.

The list of fields must fit on one line. If the list is too long to fit on one line, use a PROMPT
statement for each line. For example:

PROVPT EMP_I D LAST_NAME FI RST_NAME
PROVPT DEPARTMENT CURR_SAL

Each field in the Master File with a text field format must appear in a separate PROMPT
statement as the last field in the statement. When prompted for text, note that the length
of the text entry is limited only by the amount of virtual storage space. The last line of text
data that you enter must be followed by the end-of-text mark (%$) on a line by itself. For
additional guidelines regarding fields with a text field format, see Entering Text Data Using
TED on page 69.

t ext
Is optional prompting text, up to 38 characters per field.

Do not place an END statement at the end of the request. Conclude the request with the DATA
statement.

The following request updates information about employees' department assignments,

salaries, and job codes:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D DEPARTMENT CURR_SAL CURR_JOBCODE
MATCH EMP_I D
ON MATCH UPDATE DEPARTMENT CURR_SAL CURR_JOBCODE

ON NOVATCH REJECT
DATA

When you execute the command, the following appears on your screen

> EMPLOYEE ON 06/ 19/ 98 AT 14.38. 27
DATA FOR TRANSACTI ON 1

MP_I D= >

where:
EMPLOYEE

Is the system name of the data source (in this case, the TSO name).

Maintaining Databases 59

Describing Incoming Data

60

ON 06/ 19/98 AT 14.38. 27
Is the date and time that FOCUS opened the data source: June 19, 1998 at 2:38:27 p.m.
DATA FOR TRANSACTI ON 1

Notifies the user that the request is prompting for the first transaction. Each cycle of
prompts constitutes one transaction. When the next transaction begins, the request
prompts again for the first field in the cycle. In this request, the EMP_ID, DEPARTMENT,
CURR_SAL, and CURR_JOBCODE prompts constitute one transaction. When the next
transaction begins, the request prompts for the EMP_ID field again.

EMP_ID = >

Is the default prompt for the EMP_ID field (the field name).
As each prompt appears, enter the value for the field requested. When you finish entering
values, end execution by entering End or Quit at any prompt. The following is a sample

execution of the request shown above (user input is shown in lowercase; computer responses
are in uppercase):

> EMPLOYEE ON 06/ 19/ 98 AT 14. 38. 27
DATA FOR TRANSACTI ON 1

EMP_ID = > 071382660

DEPARTMENT =>nms

CURR_SAL = > 22500. 35

CURR_JOBCODE = > bl2

DATA FOR TRANSACTI ON 2

EMP_I D = > end

TRANSACTI ONS: TOTAL= 1 ACCEPTED= 1 REJECTED= 0O
SEGVENTS: I NPUT= 0 UPDATED= 1 DELETED= O

When you design a request that prompts for fields and validates them, we recommend that
validating the field values after every prompt is recommended. This saves extra typing if one of
the field values proves invalid. Validation tests are discussed in Validating Transaction Values:
The VALIDATE Statement on page 114.

If the Master File lists a date format with a translation option (see the Describing Data
manual), you may type the date as it appears in reports generated by TABLE requests (but do
not type the commas in the dates). Note that the date format must have had the translation
option before the FOCUS data source was created.

For example, assume you change the format of the HIRE_DATE field in the EMPLOYEE Master
File from 16YMD to YMDT. You then write a request that creates a new EMPLOYEE data source.
The request begins with this FIXFORM statement:

PROVPT EMP_I D FI RST_NAME LAST NAME HI RE_DATE

1. Modifying Data Sources With MODIFY I

Syntax:

When you execute the request, a sample transaction might appear like this:

DATA FOR TRANSACTI ON 2

EVMP_I D = > 444555666
FI RST_NAMVE = > dorothy
LAST_NAME = > tailor

HI RE_DATE (YMDT) = > 98 jun 13

Note that you can also respond to the HIRE_DATE prompt with the value 980613.

How to Prompt for Repeating Groups

You may prompt for the same group of fields repeatedly. This is convenient when you want to
modify a child segment chain. You prompt once for the key field of the parent instance and
prompt repeatedly for the values of the child instances. Without repeating groups, you must
prompt for the key field of the parent instance each time you prompt for a child instance.

For example, a MODIFY request updates employees' monthly pay. It first prompts for an
employee ID, then for 12 pairs of fields: the first field in each pair is a pay date, the second
field is the updated pay. The pay date and updated pay fields are a repeating group.

To specify a repeating group, use the following syntax
PROVPT factor (group)

where:

factor
Is the number of times the group repeats.
group

Is the repeating group of fields.

Note that the transaction counter that appears during prompting counts each repeating group
cycle of prompts as one transaction.

For example, the following request adds three instances of monthly pay (GROSS) for each
employee:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D 3 (PAY_DATE GROSS)
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH CONTI NUE
MATCH PAY_DATE

ON MATCH REJECT

ON NOVATCH | NCLUDE
DATA

Maintaining Databases 61

Describing Incoming Data

This request prompts you for an employee ID, then a pay date, a monthly pay, a pay date, a
monthly pay, and so on until it prompts you for three pay dates and three monthly pays. It then
prompts you for the next employee ID.

The following is a sample execution of the previous request:

> EMPLOYEE ON 09/19/98 AT 15.01. 38
DATA FOR TRANSACTI ON 1

EVP_I D = > 071382660
PAY_DATE = > 860131
GROSS = > 1360. 50
DATA FOR TRANSACTION 2
PAY_DATE = > 860228
GROSS = > 1360. 85
DATA FOR TRANSACTION 3
PAY_DATE = > 860331
GROSS = > 1360. 50

DATA FOR TRANSACTION 4

EMP_I D = >

You can place multiple repeating groups in the same statement. This PROMPT statement
contains two repeating groups:

PROVPT EMP_I D 3 (PAY_DATE GROSS) 2 (DAT I NC SALARY)

The statement prompts for:

1. An employee ID.
2. A pay date and a monthly pay, three times.
3. A salary raise date (DAT_INC) and a new salary, two times.

4. The next employee ID.
You can nest repeating groups. For example, this prompt statement

PROVPT EMP_ID 6 (PAY_DATE 7 (DED_CODE DED AMT))

prompts for:

1. An employee ID.
A pay date.
A deduction code and deduction amount, seven times.

Steps 2 and 3 repeat for a total of six times.

o kK Wb

The next employee ID.

62

1. Modifying Data Sources With MODIFY I

Syntax:

How to Prompt Text

When you run a request containing PROMPT statements, the request prompts you for each
field by displaying the field name and an equal sign (=). However, you may specify your own
prompt. The syntax is

PROVPT f/ el dnane. t ext.

where:
fiel dname

Is the name of the field you are prompting for.
text

Is the text you want to appear as the prompt, up to 38 characters. Text must be enclosed
within periods.

Note the following rules regarding prompt text:

.4 The text must be delimited by a period (.) on either side, with no space between the field
name and the first period.

.4 The text cannot contain apostrophes or single quotation marks (').
.4 The text must be typed on one line.

- A single MODIFY request can contain up to 4000 characters of prompt text.

This request adds new employees to the EMPLOYEE data source:

MODI FY FI LE EMPLOYEE

PROVPT EMP_I D. ENTER THE EMPLOYEE | D NUMBER: .
PROVPT FI RST_NAME. ENTER FI RST NAME: .

PROVPT LAST_NAME. ENTER LAST NAME: .

PROVPT HI RE_DATE. WHAT DATE WAS EMPLOYEE HI RED?.
PROVPT CURR_SAL. WHAT | S THE STARTI NG SALARY?.

MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

Special Responses

This section discusses special responses to prompts. It covers:

- Canceling a transaction

Maintaining Databases 63

Special Responses

Ending execution

Correcting a field value
Typing ahead

Repeating the last response
Entering no data

Breaking out of repeating groups

L U U o d U U

Invoking the FIDEL Facility

Canceling a Transaction

To cancel a transaction, enter a dollar sign ($) after any prompt. The request displays the
following message

(FOC309) TRANSACTI ON | NCOVPLETE:

and will prompt you for the next transaction. Canceling a transaction clears the buffer of data
and causes the PROMPT statement to re-prompt you for the fields, allowing you to clear a bad
transaction and start over.

Ending Execution

To end execution of the request, enter either Quit or End after any prompt. The request
displays the execution statistics and returns you to the FOCUS command level. The data
source will be updated to the last completed transaction.

Correcting Field Values

64

If you entered an incorrect field value, you can correct it at the next prompt. Type the value for
the next prompt, but do not press Enter. Instead, type a comma and then type

fieldname = corrected-val ue

where:
fiel dnane

Is the field name of the corrected value. Then press Enter. Note that fieldname must be
separated from the previous value by a comma.

The example below shows a user correcting a DEPARTMENT value after the CURR_JOBCODE
prompt.

1. Modifying Data Sources With MODIFY I

> DATA FOR TRANSACTION 1

EMP_ID = > 071382660

DEPARTMENT = > production

CURR_SAL = > 19350. 67
CURR_JOBCODE = > a03, departnent=sal es

DATA FOR TRANSACTI ON 2

EMP_I D = >

Note: If you enter an incorrect field value at the last prompt of a transaction, you cannot
correct the value in that transaction.

Typing Ahead
You can enter several values at one prompt by typing ahead. Enter
val ue-1, value-2, ... value-n
where:
val ue- 1

Is the value of the field for which you are being prompted.
val ue-2 . ..

Are the values of fields you have not yet been prompted for by the PROMPT statement. The
values must be in the order of fields specified by the PROMPT statement, from the field
being prompted for onwards. Separate the values with commas.

For example, a MODIFY request has this PROMPT statement:

PROVPT EMP_I D DEPARTMENT CURR _SAL CURR_JOBCODE

When you run the request, you enter an employee ID, a department, salary, and job code at
the EMP_ID prompt, as shown below.

> DATA FOR TRANSACTI ON 1

EVP_I D = > 071382660, sales, 23800, b04
DATA FOR TRANSACTI ON 2

EMP_I D = >

Repeating a Previous Response

If you are going to respond to a prompt with the same value as the previous prompt, you may
enter a double quotation mark (") instead to save typing.

Maintaining Databases 65

Special Responses

Entering No Data

If you run a request that prompts you for a field that should not contain data, enter a period (.)
after the prompt. The field becomes inactive and does not change any values in the data
source.

If you are adding segments to the data source, the field in the new instance becomes:

- Blank, if the instance field is alphanumeric.
- Zero, if the instance field is numeric.

4 The MISSING symbol, if the field is described with the MISSING=ON attribute in the Master
File (see the Describing Data manual).

Breaking Out of Repeating Groups

66

To break out of a repeating group, enter an exclamation point (!) after any prompt. The request
will immediately prompt you for the first field outside the repeating group.

For example, you run this request:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D 3 (PAY_DATE GROSS)
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE
MATCH PAY_DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

Every time you enter an employee ID, the request prompts you for a pay date and a monthly
pay (GROSS) three times. If you enter an exclamation point at one of these prompts, the
request prompts you for the next employee ID.

Each cycle of prompts within a repeating group counts as one transaction. The repeating group
data you entered before the transaction where you broke out remains active and modifies the
data source.

If you break out of one repeating group nested in another repeating group, the request next
prompts you for the fields of the outer group. For example, a request contains this PROMPT
statement:

PROVPT EMP_ID 6 (PAY_DATE 7 (DED_CODE DED AMT))

You run the request. If you enter an exclamation point at a DED_CODE or DED_AMT prompt,
the request next prompts you for the next PAY_DATE value.

1. Modifying Data Sources With MODIFY I

Reference:

Reference:

PROMPT Phrases in MATCH and NEXT Statements

You can use PROMPT statements as phrases in MATCH or NEXT statements. By doing so, you
avoid prompting the user for data that will be rejected anyway. The following examples
illustrate the differences.

Consider the following request:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR_SAL

MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT

DATA

This request prompts the user for the EMP_ID and CURR_SAL fields. The MATCH statement
searches the data source for the EMP_ID value the user enters (MATCH EMP_ID). If it finds the
value, it updates the CURR_SAL value; otherwise it rejects the transaction. The user must
enter both an EMP_ID and a CURR_SAL value every transaction, whether the transaction is
accepted or not.

However, when the request prompts for the CURR_SAL value in the MATCH statement, the
user enters a CURR_SAL value only if the corresponding EMP_ID value is in the data source.
This request shows how this is done:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D

MATCH EMP_I D
ON MATCH PROVPT CURR_SAL
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT

DATA

The request prompts you for an EMP_ID value. It then searches the data source for the ID you
entered. If it does not find the value, it rejects the ID and prompts you for another ID. Only if it
finds the ID in the data source does it prompt you for a CURR_SAL value.

Using PROMPT and FREEFORM Statements in One Request

You may use PROMPT and FREEFORM statements together in one request. This feature is
useful when key field values are difficult to read and type, such as large numbers or complex
codes. For example, a request might read employee ID numbers from a comma-delimited data
source, use those IDs to locate segment instances, and then prompt the user for the data to
update the employee information.

Maintaining Databases 67

Special Responses

To use FREEFORM and PROMPT together, follow these rules:
. Place all FREEFORM statements before the PROMPT statements.

. Place the data in a separate data source. Specify the data source with the ON ddname
option.

d Do not end the comma-delimited records with dollar signs ($).

Note that when you use FREEFORM together with PROMPT, the transaction counter does not
appear before the prompts.

This request updates employee salaries:

MODI FY FI LE EMPLOYEE
FREEFORM ON EMPNO EMP_I D

MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH TYPE "ENTER SALARY FOR EMPLOYEE #<EMP_| D'
ON MATCH PROVPT CURR SAL
ON MATCH UPDATE CURR SAL
DATA

Note the TYPE phrase in the MATCH statement that informs the user what employee ID the
request is processing. The TYPE statement is described in Displaying Specific Messages: The
TYPE Statement on page 131.

Invoking the FIDEL Facility: The CRTFORM Statement

68

This section is a brief description of the CRTFORM statement, which is discussed fully in
Designing Screens With FIDEL on page 227.

The CRTFORM statement invokes the FIDEL facility, which generates a formatted screen. You
type the transaction values in the designated areas of the screen and press Enter.

To use the FIDEL facility, you must be on a full-screen terminal running FOCUS in interactive
mode, not batch. Note that FIDEL is separate from the MODIFY facility, so your installation may
have MODIFY but not FIDEL. Consult your systems manager or database administrator.

Beneath the CRTFORM statement, you specify the layout of the screen. Enclose each line of
the screen in double quotation marks. On each line, you can type free text instructing the user
and designate data entry areas where the user enters data for specific fields.

You may also display messages to the user in the TYPE area of the CRTFORM using the
HELPMESSAGE attribute (see Displaying Messages: Setting PF Keys to HELP on page 145 and
in the Describing Data manual).

1. Modifying Data Sources With MODIFY I

The following request updates employees' department assignments, salaries, job codes, and
classroom hours:

MODI FY FI LE EMPLOYEE
CRTFORM
' oxxxxx EVPLOYEE | NFORVATI ON UPDATE *****"

"ENTER EMPLOYEE' S | D: <EMP_| D'
"ENTER EMPLOYEE' S DEPARTMVENT: <DEPARTNMENT"
"ENTER CURRENT SALARY: <CURR SAL"
"ENTER JOB CODE: <CURR JOBCCDE"
"ENTER CLASS HOURS: <ED_HRS'
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR SAL
ON MATCH UPDATE CURR _JOBCODE ED_HRS
DATA VI A FI 3270
END

A request may have up to 255 CRTFORM statements, and may also have one FIXFORM
statement preceding the CRTFORM statements. You may place CRTFORM phrases in MATCH
and NEXT statements.

The FIDEL facility has several features that enhance its usability:

4 Turnaround fields display field values as they exist in the data source, which you can then
change.

- Display fields display field values that you cannot change. You can use these fields to
design CRTFORM screens for data source inquiry.

.4 Screen attributes display different parts of the screen in different colors, highlighted,
underlined, or flashing.

.4 Multiple-record processing allows you to modify several segment instances on one screen.

Please refer to Designing Screens With FIDEL on page 227, to learn how to use FIDEL.

Entering Text Data Using TED

While in MODIFY, TED can be used to enter text field data. When TED is used to enter text, a
new temporary file is opened in memory for data input; this file is never written to disk
permanently. The name of this file is the same as the name of the text field. The ddname for
the text field will be TXTFLD. For example

DESCRPT TXTFLD

is the file name and file type of the file opened for the text field DESCRIPT.

Maintaining Databases 69

Entering Text Data Using TED

70

All TED rules and functions apply, including the ability to edit other files. The RUN function in
TED is ignored for text fields and is treated as the FILE command instead.

There are six ways to use the syntax for entering text format data using TED:

TED textfield

ON MATCH TED textfield

ON NOVATCH TED textfield

ON MATCH NOVATCH TED textfield
ON NEXT TED textfield

ON NONEXT TED textfield

For example:

MODI FY FI LE COURSES
PROVPT COURSE_CODE
MATCH COURSE_CODE
ON NOVATCH TED DESCRI PTI ON
ON NOVATCH | NCLUDE
ON MATCH TED DESCRI PTI ON
ON MATCH UPDATE DESCRI PTI ON
DATA

TED will always edit the most recent version of the text field. The first time, this will be the
current data source text field value; the next time that TED is used on the same text field, data
from the previous text transaction will be available for editing.

As a rule, TED will always look for text data in the transaction area first. If no text exists there,
TED looks for text present as a result of MATCH. If there is no data there, TED assumes that
the field is new and brings up a new (empty) file.

After one transaction involving TED is complete, data areas are blanked out before proceeding
with the next transactions (as when DEACTIVATE is used). This means that all text instances
will be newly created (therefore, one course description will not carry over and accidentally be
used for the next course number).

Text fields must always end with the end-of-text mark (%$). Although you may enter this mark
directly in the TED file as the first two characters on the last line, TED will test for the presence
of the end-of-text mark; if it is missing, TED automatically inserts it.

Note: You must supply the end-of-text mark when using PROMPT or FIXFORM.

If you wish to use TED to input data for more than one text field, specify a separate action for
each field:

ON MATCH TED TXFI ELD1
ON MATCH TED TXFI ELD2

The size of the file is limited only by the amount of available storage space.

1. Modifying Data Sources With MODIFY I

Entering Text Field Data
The following rules apply to text field data entry using TED, FIXFORM, FREEFORM, or PROMPT:
-l You can begin entering text data at any position on a line.
.4 Leading blanks on a line are preserved.

A line will be treated as the start of a new paragraph if it starts with three or more blanks.
To prevent the concatenation of lines when a text field is displayed, insert at least three
blanks at the beginning of each line.

. Blank lines are permitted.

Defining a Text Field
The syntax for defining a text field in a Master File is:

FI ELD=f/ el dnane, ALI| AS=aliasnane, FORNVAT=TXnn, $

or

FI ELD=f/ el dnane, ALI| AS=al i asnane, FORVAT=TXnnF, $

where:
fiel dname

Is the name you assign the text field.
al i asnane

Is an alternate name for the field name.

nn
Is the output display length in TABLE for the text field.
F
Is used to format the text field for redisplay when TED is called using ON MATCH or ON
NOMATCH. When F is specified, the text field is formatted as TX80 and is displayed. When
F is not specified, the field is redisplayed exactly as entered.
Displaying Text Fields

FOCUS includes a format option in the text field of the Master File. Use of this determines
whether text will display in the format in which it was entered.

For example, below is a Master File and the sample data that was entered into the field
TXTFLD using TED.

Maintaining Databases 71

Entering Text Data Using TED

FI LE=TEXT, SUFFI X=FCC
SEGNAME=SEGA, SEGTYPE=S1
FI ELD=KEYFLD, , A1, $
FI ELD=TXTFLD, , TX20, $

Sample data entered:

THIS 1S A TEST OF THE NEWTED OPTION ' F'. REMEMBER THAT TED DI SPLAYS 80
CHARACTERS ON THE SCREEN. THREE LEADI NG BLANKS ARE USED TO | NDI CATE A
NEW PARAGRAPH. TEXT FI ELD DATA IS ALWAYS STORED EXACTLY AS ENTERED. VWHEN
F I'S INCLUDED I N THE FORVAT AND THE TEXT FI ELD | S REDI SPLAYED, BLANKS ARE
OM TTED AND THE FI ELD |I'S CONDENSED.

VWHEN F IS NOT | NCLUDED, THE FI ELD | S REDI SPLAYED AS ENTERED.

Since the text field in the Master File does not include the F option, the data will be
redisplayed exactly as entered using TED (ON MATCH TED TXTFLD).

For the next example, the text field includes the F option:

FI LE=TEXT, SUFFI X=FCOC
SEGNAME=SEGA, SEGTYPE=S1
FI ELD=KEYFLD, , A1, $
FI ELD=TXTFLD, , TX20F, $

Note: The same data is entered as in the previous example.

In this case, since the text field does include the F option, when the field is redisplayed,
blanks are omitted and the field is condensed as shown below:

THIS 1S A TEST OF THE NEWTED OPTION ' F'. REMEMBER THAT TED DI SPLAYS 80
CHARACTERS ON THE SCREEN. THREE LEADI NG BLANKS ARE USED TO | NDI CATE A
NEW PARAGRAPH. TEXT FI ELD DATA | S ALWAYS STORED EXACTLY AS ENTERED.
VWHEN F IS I NCLUDED I N THE FORVAT AND THE TEXT FI ELD | S REDI SPLAYED,
BLANKS ARE OM TTED AND THE FI ELD IS CONDENSED. WHEN F |'S NOT | NCLUDED,
THE FI ELD IS REDI SPLAYED AS ENTERED.

Specifying the Source of Data: The DATA Statement

Syntax:

72

The DATA statement marks the end of the executable statements in a request. It also
specifies the source of the data.

How to Use a DATA Statement
DATA [ON ddnane| VI A program

where:
ON ddnane

Indicates that the data is in a data source allocated to ddname.

1. Modifying Data Sources With MODIFY I

VI A program
Indicates that the data is supplied directly from another computer program.

Type the DATA statement without parameters if:

4 The data comes from the request itself.
.4 The request contains only PROMPT statements to read data.

.4 The request does not read any data (this occurs when you use a request to browse through
a data source using the NEXT statement).

Reading Selected Portions of Transaction Data Sources: The START and STOP Statements

Syntax:

MODIFY requests read and process transaction data sources from the first record to the last.
The START statement signals requests to read starting from a particular record in the data
source. The STOP statement signals requests to stop reading at a particular record in the data
source. You may use START and STOP statements to process transaction data sources in
sections, to resume processing a transaction data source after a system crash, and to test a
new request on a limited number of transactions.

How to Use a START Statement
START n

where:

n

Is the number of the first physical record to be processed by the request.

The syntax for the STOP statement is
STOP n

where:

n
Is the number of the last physical record to be processed by the request.
The START and STOP statements may appear anywhere in the request.

For example, the following request reads 300 records from a transaction data source (ddname
SALDATE) starting from the 201st record until the 500th.
MODI FY FI LE EMPLOYEE

START 201
STOP 500

Maintaining Databases 73

Reading Selected Portions of Transaction Data Sources: The START and STOP Statements

74

FI XFORM EMP_| D/ 9 CURR SAL/ 8
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE CURR SAL
DATA ON FI XSAL
END

Note that the numbers are that of physical records, not logical records, and that a request
reads four physical records as one logical record. Assume each input record consists of four
physical records. For example, if you want the request to read the data source starting from
after the first ten transactions, type the START statement as

START 41

because 10 transactions are made up of 40 physical records.

If you are processing a large transaction data source, you may divide the processing into steps
using the START and STOP statements. At the completion of each step, make a backup copy
of the data source. If a step is aborted for any reason, you can use the last backup to restore
the data source.

These two requests are the same. The first processes transactions 1 to 100,000. The second
processes transactions 100,001 to 200,000:

MODI FY FI LE EMPLOYEE

START 1

STOP 100000

FI XFORM EMP_| D/ 9 CURR SAL/ 8

MATCH EMP_I D
ON MATCH UPDATE CURR SAL
ON NOVATCH REJECT

DATA ON FI XSAL

END

MODI FY FI LE EMPLOYEE

START 100001

STOP 200000

FI XFORM EMP_I D/ 9 CURR_SAL/ 8

MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT

DATA ON FI XSAL

END

1. Modifying Data Sources With MODIFY I

Modifying Data: MATCH and NEXT

The MATCH and NEXT statements are the core of MODIFY requests; they are the statements
that determine which data source records are added, changed, or deleted. They work by
selecting a particular segment instance, then updating or deleting it. They may also add new
segment instances.

The MATCH statement selects specific segment instances based on their values. The NEXT
statement selects the next segment instance after the current position.

The MATCH Statement

The MATCH statement selects specific segment instances based on their values. It compares
one or more field values in the instances with corresponding incoming data values. The action
it performs depends on whether there is a segment instance with matching field values.

For example, suppose a MODIFY request was processing this incoming data record in comma-
delimited format

EMP_ID = 123456789, CURR_SAL = 20000, $

and that the request contained this MATCH statement:

MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH | NCLUDE

This MATCH statement compares the EMP_ID value of an incoming data record to the EMP_ID
values in segment instances:

d If a segment instance has EMP_ID value 123456789, the MATCH statement replaces the
CURR_SAL value in the instance with the incoming CURR_SAL value of 20000.

. If there is no instance with the EMP_ID value of 123456789, the MATCH statement
creates a new segment instance with the EMP_ID value of 123456789 and a CURR_SAL
value of 20000.

Notice that the MATCH statement used each of the two incoming data fields differently. It used
the EMP_ID field (specified after the word MATCH) to locate the segment instance (or to prove
that it did not exist); it never altered the EMP_ID value in the segment. If it did locate the
instance, it replaced the CURR_SAL value in the instance with the value in the incoming data
field.

To identify the correct segment instance, the field values that the MATCH statement is
searching for must be unique to the instance within its segment chain. For the most common
types of segments, types S1 and SH1, the key field value is unique to each instance within its
segment chain. This is the value you will usually be searching for.

Maintaining Databases 75

Modifying Data: MATCH and NEXT

Note that the MODIFY command cannot update key fields. To update key fields, use the FSCAN
facility as described in Directly Editing FOCUS Databases With FSCAN on page 389.

Remember from the introduction that FOCUS executes a MODIFY request for every transaction.
Syntax: How to Use a MATCH Statement

MATCH {* [KEYS] [SEG n]|fieldl [field2 field3 ... field-n}
ON MATCH action-1
ON NOVATCH action-2
[ON MATCH NOVATCH act i on- 3]

where:
fieldl ...

Are the names of incoming data fields to be compared with similarly named data source
fields. The names may be full field names, aliases, or truncations. If a field value is
missing, the value is treated as zeros for numeric fields and blanks for alphanumeric
fields.

These fields are segment key fields unless the MATCH statement is modifying a segment
of type SO or blank. If the segment is type Sn or SHn and you do not specify the segment
keys, the request adds the keys to the list automatically and displays a warning message.

If the list of fields is too long to fit on one line, begin each line with the word MATCH. For
example:

MATCH EMP_I D DAT I NC TYPE
MATCH PAY_DATE DED CODE

To compare the values of all fields in the data source with incoming values, enter:

MATCH *

To compare the values of all key fields in the data source with incoming values, enter:

MATCH * KEYS

To compare the values of all key fields in a particular segment, type
MATCH * KEYS SEG n
where n is either the segment name or number as determined by the ? FDT query

(described in the Developing Applications manual).
action-1

If the MATCH statement locates a segment instance with a data value matching the
incoming data value (ON MATCH), it performs this action.

76

1. Modifying Data Sources With MODIFY I

Syntax:

action-2

If the MATCH statement cannot locate a segment instance with a value matching the
incoming data value (ON NOMATCH), it performs this action.

action-3

Whether or not the MATCH statement locates a segment instance with a value matching
the incoming data value (ON MATCH/NOMATCH), it performs this action.

Note that you may include many ON MATCH and ON NOMATCH phrases in one MATCH
statement. MATCH phrases can precede or follow NOMATCH phrases. The actions you may
use in MATCH statements are listed in the section below. They fall into seven groups:

.4 Actions that modify segments.

Actions that control MATCH processing.

Actions that read incoming data fields.

Actions that perform computations and validations or type messages to the terminal.

Actions that control Case Logic.

L U U U u

Actions that control multiple-record processing.
.4 Actions that activate and deactivate fields.

Please note the following rules regarding the MATCH statement:
.4 Each phrase of the MATCH statement must start on a separate line.
.4 The ON MATCH and ON NOMATCH phrases may be reversed.

. If an action has a list of fields, but the list of fields is too long to fit on one line, you may
break the list into two or more lines. Begin each line with the ON MATCH or ON NOMATCH
phrase, followed by the action. For example:

MATCH EMP_I D
ON NOVATCH REJECT

ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH UPDATE CURR_JOBCODE ED_HRS

How to Specify Actions With the ON MATCH/NOMATCH Phrase

The MATCH statement has an ON MATCH/NOMATCH phrase. This phrase specifies an action
to be taken regardless of whether the field value for which the MATCH statement is searching
exists in the data source. This phrase is especially useful when you are using CRTFORMs with
display or turnaround fields (see Designing Screens With FIDEL on page 227). For example:

Maintaining Databases 7

Modifying Data: MATCH and NEXT

Reference:

78

MODI FY FI LE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE' S I D: <EMP_I D'
MATCH EMP_I D
ON MATCH NOVATCH CRTFORM LI NE 3
"ENTER DEPARTMENT: <T. DEPARTMENT"
"ENTER NEW SALARY: <T. CURR_SAL"
ON MATCH UPDATE DEPARTMENT CURR_SAL
ON NOVATCH | NCLUDE
DATA VI A FI 3270
END

This request prompts you for an employee's ID. It then searches for the ID in the data source.
It prompts you for the employee's new department and salary, whether the ID is in the data
source or not. If the ID is in the data source, it updates the employee's department and salary;
otherwise, it adds a new segment instance with the information.

You could not have placed the CRTFORM statement before the MATCH statement, because the
CRTFORM statement contains turnaround fields.

You can specify the following actions in an ON MATCH/NOMATCH phrase:

PROMPT
TED
CRTFORM
GOTO

IF

ACTIVATE
DEACTIVATE
REPEAT

L U U U U U Jd U oud

HOLD

Note: TED in MODIFY can be used only with fields that have a text (TX) format (see Entering
Text Data Using TED on page 69 for entering and editing text fields with TED).

MATCH Statement Defaults
The following are defaults affecting the MATCH statement:

4 If a MODIFY request has neither MATCH nor NEXT statements, it defaults to:

MATCH *
ON NOVATCH | NCLUDE

1. Modifying Data Sources With MODIFY I

It adds the instance even if another instance has the same key values. Since key values
uniquely identify segments, you should avoid doing this unless you are loading data into a
newly created data source, the incoming data is in a data source, and you know that there
are no duplicate key values in the data.

The following request reads in data from a fixed-format data source, ddname EMPDATA, to
load in data into the segments EMPINFO and SALINFO in the EMPLOYEE data source:

MODI FY FI LE EMPLOYEE

FI XFORM EMP_I D/ 9 LAST_NAME/ 15 FI RST_NAME/ 10
FI XFORM PAY_DATE/ | 6 GROSS/ D12. 2

DATA ON EMPDATA

END

. If a MATCH statement has neither an ON MATCH nor an ON NOMATCH phrase, the MATCH
statement defaults to:
ON MATCH CONTI NUE
ON NOVATCH | NCLUDE

d If a MATCH statement has an ON NOMATCH phrase but no ON MATCH phrase, the ON
MATCH phrase defaults to:

ON MATCH CONTI NUE

d If a MATCH statement has a MATCH phrase but no NOMATCH phrase, the ON NOMATCH
phrase defaults to:

ON NOVATCH REJECT

Note: If a MATCH statement has the phrase
ON NOVATCH TYPE

and no other ON NOMATCH phrases, the request automatically adds the phrase:
ON NOVATCH REJECT

Adding, Updating, and Deleting Segment Instances

The most important function of the MATCH statement is the adding, updating, and deleting of
segment instances. The MATCH statement does this by first searching a particular segment
chain within a segment for specific instances (segment chains are groups of segment
instances associated with an instance in the parent segment). The root segment contains just
one segment chain; descendant segments are composed of many segment chains. How the
MATCH statement selects segment chains in descendant segments is explained in Modifying
Data: MATCH and NEXT on page 75.

Maintaining Databases 79

Modifying Data: MATCH and NEXT

The process can be summarized as follows:

1. The MODIFY request reads a transaction. The transaction contains values that identify a
particular segment instance. Usually, these are key field values.

2. The MATCH statement searches the segment for an instance containing the key field

values:

If it is adding a new instance, it must confirm that the instance is not yet in the segment.
Otherwise, it would be adding a duplicate instance.

If it is updating or deleting an instance, it must first find the instance in the segment.

3. The MATCH statement takes action depending on whether it found the instance or not.
These actions are as follows:

ON NOVATCH | NCLUDE

The instance is not yet in the segment. Therefore, the request
creates a new instance using values in the transaction.

ON MATCH REJECT

The new instance already exists in the segment. Therefore,
the request does not add the instance to the data source.
Rather, it rejects the transaction.

ON MATCH UPDATE
/ist

The instance exists in the segment. Therefore, the request
changes the values of the data source fields named in list to
the values in the transaction.

ON MATCH DELETE

The instance exists in the segment. Therefore, the request
deletes the instance, all its descendants, and any references
to the deleted instances in the indexes.

ON NOVATCH REJECT

The instance cannot be found in the segment. Therefore, it
cannot be changed or deleted. The request rejects the
transaction.

Example: Adding Segment Instances

The syntax of a MATCH statement that adds segment instances is:

MATCH keyfiel d
ON MATCH REJECT

ON NOVATCH | NCLUDE

80

1. Modifying Data Sources With MODIFY I

When you include a new instance, the request fills the instance with the transaction field
values. If some segment fields are absent in the transaction, they become blank or zeros in
the instance, or the MISSING symbol if the field is described with the MISSING=0N attribute
(discussed in the Describing Data manual).

FOCUS determines the placing of the instance within a segment chain based on the current
position. The current position is the position of the instance you last added to the chain.

When FOCUS adds the next instance to a keyed segment, it determines whether the instance
goes before or after the current position based on the sort order of the segment. If the
instance goes after the current position, FOCUS matches field values from the current position
forward until it finds the proper place for the new instance. If the instance goes before the
current position, FOCUS matches field values from the beginning of the chain forward until it
finds the place for the new instance.

To increase efficiency, submit your transactions in the same sorted order as the segment
(ascending order for Sn segments, descending order for SHn segments). This causes FOCUS
to move through the chain in one direction only.

If you do not submit the transactions in sorted order, you may get this message:

WARNI NG. . TRANSACTI ONS ARE NOT | N SAME SORT ORDER AS FOCUS FI LE
PROCESSI NG EFFI CI ENCY NMAY BE DEGRADED

This condition indicates that data will not be loaded in an optimal manner.

The following request adds new instances to the root segment of the EMPLOYEE data source.
The fields EMP_ID (the key field), LAST_NAME, and FIRST_NAME in the new instances are filled
with incoming data values; the other fields are left zero or blank:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D LAST NAME FI RST_NAME
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

A sample execution might go as follows:

1. The request prompts you for an employee's ID, last name, and first name.
2. You enter ID 071382660, last name SMITH, and first name HENRY.

3. The request determines whether ID 071382660 is in the segment. It is there, so the
request rejects the transaction, displaying a message telling you so.

4. The request prompts you again for an employee's ID, last name, and first name.

5. You enter ID 123456789, last name SMITH, and first name HENRY.

Maintaining Databases 81

Modifying Data: MATCH and NEXT

Example:

82

6. The request determines whether ID 123456789 is in the segment. It is not there, so the
request adds a new segment instance, with 123456789 as the key value, SMITH in the
LAST_NAME field, and HENRY in the FIRST_NAME field. All other fields in the instance are
blanks and zeros.

Updating Segment Instances

The syntax of a MATCH statement to update segment instances is

MATCH keyfiel d
ON NMATCH UPDATE // st
ON NOVATCH REJECT

where list is a list of data source fields to be updated using the values in the transaction. If the
list of fields is too large to fit on one line, begin each line with the ON MATCH UPDATE phrase.
For example:

ON MATCH UPDATE EMP_I D LN FN
ON MATCH UPDATE HDT DPT CSAL
ON MATCH UPDATE CJC AIT

To update all fields in a matched segment (except the key fields), type:

ON MATCH UPDATE * [SEG 7]

Note: You cannot update key fields. To change key fields, use the FSCAN facility as described
in Directly Editing FOCUS Databases With FSCAN on page 389.

The following request updates the salary (CURR_SAL field) for employees you specify:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR SAL
MATCH EMP_I D
ON MATCH UPDATE CURR SAL
ON NOVATCH REJECT
DATA

A sample execution might go as follows:

1. The request prompts you for an employee's ID and a new salary.
2. You enter ID 123123123 and a salary of $20,000.

3. The request searches the segment for ID 123123123 but cannot find the value. It rejects
the transaction.

4. The request prompts you again for an employee ID and new salary.

5. You enter ID 071382660 and a salary of $20,000.

1. Modifying Data Sources With MODIFY I

Example:

6. The request finds ID 071382660 in the segment and changes the employee's salary to
$20,000.

You can combine adding and updating operations in one MATCH statement:

MATCH keyfiel d
ON MATCH UPDATE field-1 field-2 ... field-n
ON NOVATCH | NCLUDE

This statement searches for a segment instance with a key field value the same as the
similarly named incoming field value. If it finds the instance, it updates the instance. If it
cannot find the instance, it adds a new instance. For example:

MATCH EMP_I D
ON MATCH UPDATE CURR SAL
ON NOVATCH | NCLUDE

Deleting Segment Instances

The syntax of the MATCH statement for deleting a segment instance is:

MATCH keyfiel d
ON MATCH DELETE
ON NOVATCH REJECT

Note that the UPDATE action only updates fields when the transaction fields have values
present.

This request deletes records of employees who have left the company:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON MATCH DELETE
ON NOVATCH REJECT
DATA

A sample execution might go as follows:

1. The request prompts you for an employee ID.
2. You enter ID 987654321.

3. The request cannot find ID 987654321 in the segment, so it rejects the transaction,
displaying a message telling you so.

4. The request prompts you for another employee ID.

5. You enter ID 119329144.

Maintaining Databases 83

Modifying Data: MATCH and NEXT

6. The request finds ID 1193291and so on44 and deletes all record of the employee from the
data source. This includes the employee's instance in the root segment and all descendant
instances (such as pay dates, addresses, and so on).

Performing Other Tasks Using MATCH

Reference:

84

You may specify actions in MATCH statements that can stand alone as statements elsewhere
in the MODIFY request. These actions are: read incoming data, perform computations and
validations, type messages, control Case Logic and multiple record processing, and activate
and deactivate fields.

Note that the MATCH statement can perform several actions if the ON MATCH or ON NOMATCH
condition occurs. To specify this, assign each action a separate ON MATCH or ON NOMATCH
phrase. For example:

MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH TYPE "EMPLOYEE | D NOT FOUND'
ON NOVATCH REJECT

There are two ON NOMATCH phrases in this request: one specifies the TYPE action, the other
the REJECT action. If you include a REJECT action, it must appear last; otherwise the request
will terminate and generate an error message.

Reading Data

The following actions read incoming data. They work just as FIXFORM, FREEFORM, PROMPT,
and CRTFORM statements:

FI XFORM / / st Where list is a list of fields and formats. Reads in data from a fixed-
format data source.

FREEFORM Where list is a list of incoming data fields. Reads in data from a

I7st comma-delimited data source.

PROVPT // st Prompts the user for data in fields named in list one field at a time.
CRTFORM Prompts the user for data using the full-screen FIDEL facility. FIDEL is

described in Designing Screens With FIDEL on page 227.

TED Opens a temporary file for text field data entry using TED.

1. Modifying Data Sources With MODIFY I

Reference: Computations, Validations, and Messages

The following actions perform calculations and validations and type messages. These actions
work the same as the COMPUTE, VALIDATE, and TYPE statements:

COVPUTE Performs computations.

VALI DATE Performs validations.

TYPE [ON Types messages to the terminal. When the ON ddname option is
ddnane used, the messages are sent to a file defined by ddname.

Reference: Controlling Case Logic

The following actions control Case Logic. They are discussed in Branching to Different Cases:
The GOTO, PERFORM, and IF Statements on page 149:

GOTO casenane Branches to another case named by casename.

PERFORM casenamne Branches to another case named by casename, then returns
to the PERFORM.

| F expression [THEN| If the expression is true, the request branches to the case

gg;ééfé cased]: named by casel; otherwise the request branches to case
' named by case2.

Reference: Controlling Multiple Record Processing

These actions control multiple-record processing and are described in The REPEAT Method on

page 170:
REPEAT Begins a REPEAT statement that executes a group of
MODIFY statements repeatedly.
HOLD // st Where list is a list of data fields. Stores field values in a
buffer.

Maintaining Databases 85

Modifying Data: MATCH and NEXT

Reference:

Example:

86

Activating and Deactivating Fields

These actions activate and deactivate fields as described in Active and Inactive Fields on page
204:

ACTI VATE // st Activates fields named in list.

DEACTI VATE // st Deactivates fields named in list.

Place these statements within a MATCH statement if you want to run them only when the
request can locate incoming values in the data source (or confirm that incoming values are not
in the data source). This improves efficiency and makes the request logic more flexible.

Using MATCH Actions in a Request

For example, assume you are designing a request to update employee salaries. Those
employees who have spent more than 100 hours in class (the ED_HRS field) are granted an
extra 3% bonus.

The particular data source you are updating only contains the records of a small number of
company employees, but the transaction data source contains records for every employee in
the company. If you place the COMPUTE statement calculating the bonuses by itself, it will
calculate the bonus for every record in the transaction data source, whether or not the record
will be accepted into the data source. Instead, use the COMPUTE statement as an ON MATCH
option in a MATCH statement. COMPUTE will then calculate the bonus only for employees in
the data source. The request is:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR_SAL
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH COVPUTE

CURR_SAL = | F D. ED HRS GT 100 THEN CURR_SAL*1. 03
ELSE CURR SAL;

ON MATCH UPDATE CURR_SAL
DATA

Note the use of a D. prefixed field in the COMPUTE expression (D.ED_HRS). This field refers
only to ED_HRS values in the data source. You may refer to data source fields when using
statements in MATCH and NEXT statements or after them. The data source fields must either
be in the segment instance you are modifying or in a parent instance along the segment path.

1. Modifying Data Sources With MODIFY I

Modifying Segments in FOCUS Structures

Reference:

Syntax:

This section discusses how the MATCH command modifies segments other than the root
segment. The section covers:

Modifying unique segments.

Modifying descendant segments.

Modifying sibling segments (multi-path data sources).
Modifying segments with no keys.

Modifying segments with multiple keys.

L U U o o U

Using alternate views.

Modifying Unique Segments

Unique segments are segments that consist of only one instance for every parent instance.
They are always descended from other segments, but may not have descendants themselves.
Because unique segment instances are extensions of their parent instances, they have no key
fields.

There are two methods of modifying unique segments:

-1 The CONTINUE TO method allows you to add, update, and delete unique segment
instances.

.4 The WITH-UNIQUES method allows you to add and update unique segment instances, but
not to delete them. However, the WITH-UNIQUES method is easier to use.

How to Modify Segment Instances Using the CONTINUE TO Method

The CONTINUE TO method first locates the parent instance, then proceeds to the unique
instance. The syntax of the MATCH command to modify unique segment instances using the
CONTINUE TO method is:

MATCH keyfiel d
ON NOVATCH act/on-1
ON MATCH CONTI NUE TO w-field
ON MATCH action-2
ON NOVATCH action-3

Maintaining Databases 87

Modifying Data: MATCH and NEXT

88

where:
keyfield
Is the key field of the parent segment instance.
action-1
Is the action the request performs if the parent instance cannot be found.
u-field
Is the name of any field in the unique child segment.
action-2
Is the action the request performs if a unique child instance exists.
action-3
Is the action the request performs if a unique child instance does not exist.
The actions that the request can perform are the same as those described in Adding, Updating,
and Deleting Segment Instances on page 79 and Performing Other Tasks Using MATCH on page

84. The MATCH and NOMATCH phrases that follow the ON MATCH CONTINUE TO phrase can
be in either order.

This example illustrates how the request selects unique segment instances. The root segment
of the EMPLOYEE data source, called EMPINFO, which contains employee IDs, has a unique
child segment called FUNDTRAN that contains information on employee bank accounts where
pay checks are to be directly deposited. Every EMPINFO instance that describes an employee
with a direct deposit bank account has one child instance in the FUNDTRAN segment.

You could prepare the following MODIFY request to enter information on employees that just
opened a direct-deposit account:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D BANK_NAME BANK_ACCT
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE TO BANK_NAVE
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

A sample execution might go as follows:
1. The request prompts for an employee ID, bank name, and bank account number.

2. You enter employee ID 456456456, bank name BEST BANK, and bank account no.
235532.

1. Modifying Data Sources With MODIFY I

3. The request does not find employee ID 456456456, so it rejects the transaction.
4. The request prompts you for another employee ID, bank name, and bank account number.

5. You enter employee ID 071382660, bank name BEST BANK, and bank account no.
235532.

6. The request finds ID 071382660. This employee has a segment recorded in the
FUNDTRAN segment, meaning that the employee already has a direct-deposit bank
account. The request rejects the transaction.

7. The request prompts you for another employee ID, bank name, and bank account number.
8. You enter employee ID 112847612, bank name BEST BANK, and bank account 235532.

9. The request finds employee ID 112847612 but finds no instance recorded for the
employee in the FUNDTRAN segment.

10.The request records the bank name and bank account number in a new instance in the
unique segment.

The following request updates direct-deposit account information:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D BANK_NAME BANK_ACCT
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE TO BANK_NAME
ON MATCH UPDATE BANK_NAME BANK_ACCT
ON NOVATCH REJECT
DATA

The following request deletes account information for employees who have closed their direct-
deposit accounts:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE TO BANK_NAVE
ON MATCH DELETE
ON NOVATCH REJECT
DATA

To modify multiple unique children of one instance using the CONTINUE TO method, use Case
Logic as explained in Case Logic Applications on page 159.

Maintaining Databases 89

Modifying Data: MATCH and NEXT

Syntax: How to Process Unique Instances Using the WITH-UNIQUES Method

The WITH-UNIQUES method processes unique instances as extensions of their parents; that is,
it considers a parent instance and its unique child as one instance. This method first searches
for the parent instance. If it finds the parent, it can update the parent instance and create or
update the unique child at the same time. If it does not find the parent, it can create the
parent instance and the unique child at the same time.

The syntax for the MATCH statement using the WITH-UNIQUES method is

MATCH W TH- UNI QUES keyfiel d
ON MATCH actionl
ON NOVATCH action2

where:
keyfield
Is the key field in the parent segment.
actionl
Is the action performed if the MATCH statement locates the parent instance.
action2
Is the action performed if the MATCH statement does not locate the parent instance.

The MATCH statement can specify these actions:

d The INCLUDE action, which creates a new parent instance and unique children instances
for which there is incoming data.

d The UPDATE action, which updates a parent instance and its unique children. If a child
instance does not exist, FOCUS creates one.

d The DELETE action, which deletes the parent instance and all children instances.

.4 Actions that perform the functions listed in Performing Other Tasks Using MATCH on page
84.

Note that the WITH-UNIQUES method can add and update unique instances, but it cannot
delete them without deleting the parent instance. To delete unique instances, use the
CONTINUE TO method described in How to Modify Segment Instances Using the CONTINUE TO
Method on page 87.

This MODIFY request adds information on new employees, including information on direct-
deposit bank accounts. If an employee is already recorded in the data source, the request
rejects the entire transaction. The request is:

90

1. Modifying Data Sources With MODIFY I

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D FI RST_NAME LAST_NAME
PROVPT BANK_NAME BANK_ACCT
MATCH W TH- UNI QUES EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

This MODIFY request updates employees' account information. If an employee just opened a
direct-deposit account, the request automatically creates a new unique instance to record the
information. The request is:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D BANK_NAME BANK_ ACCT
MATCH W TH- UNI QUES EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE BANK_NAME BANK_ACCT
DATA

This request adds and updates employees' account information, whether or not the employees
are new:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D LAST_NAME FI RST_NAMVE
PROVPT BANK_NAME BANK ACCT
MATCH W TH UNI QUES EMP_I D
ON NOVATCH | NCLUDE

ON MATCH UPDATE BANK_NANME BANK_ACCT
DATA

Note that the WITH-UNIQUES method allows you to include and update the multiple unique
children of one instance in one MATCH statement.

When using MATCH WITH-UNIQUES followed by ON MATCH COMPUTE, each computed field
must have its own ON MATCH COMPUTE statement.

Modifying Segments

The following examples show how to modify segements.

Maintaining Databases 91

Modifying Data: MATCH and NEXT

Example:

92

Modifying Descendant Segments

Modifying descendant segments is similar to modifying the root segment, with one difference:
when a MATCH statement searches a root segment for a key field value, it searches every
instance of the segment. When the MATCH statement searches a descendant segment,
however, it searches only the segment chain belonging to a particular parent instance. If the
MATCH statement cannot find the key field value in this chain, it executes the ON NOMATCH
phrase. To modify the chain, you must first identify the parent instance using a previous
MATCH statement.

The following example illustrates this. The EMPLOYEE data source contains two segments: An
EMPINFO segment containing employee IDs, and a child segment called SALINFO that keeps
track of each employee's monthly pay. Each of these IDs has an instance in the SALINFO
segment for each month that the employee worked (for example, an employee working for
eight months has eight instances in the SALINFO segment).

To modify a June instance in the SALINFO segment, you must first identify which employee was
paid in June. If the MODIFY request cannot find the June instance for one employee, it will
execute the ON NOMATCH phrase even though a June instance exists for another employee.

This request adds a new monthly pay instance for each employee in the company. Note the
word CONTINUE, which causes the request to proceed to the next MATCH statement (which
adds the instances to the descendant segment) without taking any action. Also note that the
phrase ON NOMATCH CONTINUE is illegal:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D PAY_DATE GRCSS
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE
MATCH PAY_DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

An execution might go as follows:
1. The request prompts you for an employee ID, the date the employee was paid, and the

gross earnings paid.

2. You enter an employee ID 159159159, pay date 820831 (August 31, 1982), and gross
earnings of $916.67.

3. The request cannot find ID 159159159, so it rejects the transaction.
4. The request prompts you for another employee ID, pay date, and gross earnings.

5. You enter employee ID 071382660, pay date 820831, and gross earnings of $916.67.

1. Modifying Data Sources With MODIFY I

6. The request finds ID 071382660, and searches the SALINFO segment chain belonging to
071382660 for the pay date 820831.

7. The request finds the pay date 820831 in the segment chain. Since the instance already
exists, the request rejects the transaction.

8. You enter employee ID 071382660, pay date 820930 (September 30, 1982), and gross
earnings of $916.67.

9. The request finds ID 071382660, and searches the SALINFO segment chain belonging to
071382660 for the pay date 820930.

10.The request does not find pay date 820930 in the segment chain, so it includes a new
instance in the SALINFO segment chain for pay date 820930 with gross earnings of
$916.67.

If your request prompts for data (using either PROMPT or CRTFORM), it is better to prompt for
the child key field values after the request locates the parent key field values. This spares the
user from typing the child key if the request cannot locate the parent key. You can rewrite the
previous request as:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH PROVPT PAY_DATE GROSS
MATCH PAY_DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

You can also write the request to include a new EMPINFO segment instance and a new
SALINFO instance if the employee's ID is not already there:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D PAY_DATE GROSS
MATCH EMP_I D
ON NOVATCH | NCLUDE
ON MATCH CONTI NUE
MATCH PAY_DATE
ON NOVATCH | NCLUDE
ON MATCH REJECT
DATA

The first MATCH statement searches the EMPINFO statement for the employee ID that you
entered. If it does not find the ID, the request creates a new EMPINFO segment instance with
the new ID, and a descendant SALINFO instance with the pay date and monthly pay you
entered.

Note that when an INCLUDE action creates a new segment instance, it also creates all
descendant instances for which data is present.

Maintaining Databases 93

Modifying Data: MATCH and NEXT

94

If the employee ID is already in the data source, the second MATCH statement searches the
SALINFO segment for the pay date you entered. If it does not find the ID, the request creates a
new SALINFO instance with the pay date. If the pay date is already in the segment, the request
rejects the transaction.

This request updates monthly pay instances:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH PROVPT PAY_DATE GROSS
MATCH PAY_DATE
ON MATCH UPDATE GROSS
ON NOVATCH REJECT
DATA

This request deletes monthly pay instances:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH PROVPT PAY_ DATE
MATCH PAY_DATE

ON MATCH DELETE

ON NOVATCH REJECT
DATA

You may combine the MATCH statements in the request into one statement. This is called
matching across segments. To match across segments, specify the key fields that the request
must search for from the root segment down to the descendant segment (in that order) after
the MATCH keyword. For example, the request above that updates employee's monthly pay can
be rewritten this way:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D PAY_DATE GROSS
MATCH EVP_I D PAY_DATE

ON NOVATCH REJECT

ON MATCH UPDATE GROSS
DATA

This is the request shown earlier in this section that adds data on new employees and
employees' monthly pay:

1. Modifying Data Sources With MODIFY I

Example:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D PAY_DATE GROSS
MATCH EMP_I D
ON MATCH CONTI NUE
ON NOVATCH | NCLUDE
MATCH PAY_DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

This request can be rewritten this way:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D PAY_DATE GROSS
MATCH EMP_I' D PAY_DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

Note: When a MATCH statement matches across segments, the explicit ON MATCH and ON
NOMATCH phrases in the statement are only executed for the last descendant segment (key
field PAY_DATE in the example). For the other segments, the request executes default
phrases. If you are updating or deleting instances, these phrases are:

ON MATCH CONTI NUE
ON NOVATCH REJECT

If, for example, you include an ON NOMATCH TYPE phrase in the MATCH statement, the phrase
only types a message when there is an ON NOMATCH condition on the last segment.

If you are adding new instances, the default phrases are:

ON MATCH CONTI NUE
ON NOVATCH | NCLUDE

Because of these defaults, use this technique only when you are confident that you
understand the logic of the request.

Modifying FOCUS Structures of Three or More Levels

What has been said for two-level FOCUS structures is true for three or more levels. To modify a
descendant segment instance, you must first identify the parent instances to which the
descendant instance belongs, from the root segment down to the immediate parent segment
(the descendant segment instance belongs to a parent instance, that instance belongs to
grandparent instance, and so on up the FOCUS structure to one of the root instances).

Maintaining Databases 95

Modifying Data: MATCH and NEXT

Example:

96

The following request illustrates this. The SALINFO segment has a child segment called
DEDUCT that records all the different deductions that are taken from each monthly wage. If
four deductions are taken from a monthly pay, that pay has four instances in the DEDUCT
segment. The key field in the DEDUCT segment is DED_CODE; it specifies the type of
deduction, such as certain taxes. The amount of the deduction is contained in the field
DED_AMT.

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D PAY_DATE DED CODE DED_AMI
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH CONTI NUE
MATCH PAY_ DATE

ON NOVATCH REJECT

ON MATCH CONTI NUE
MATCH DED_CODE

ON NOVATCH REJECT

ON MATCH UPDATE DED_AMI
DATA

Modifying Sibling Segments (Multi-Path Data Sources)

If you are modifying sibling segments (segments that have a common parent), place the
MATCH statements modifying the siblings in any order after the MATCH statement identifying
the parent instance. Each sibling must have a separate MATCH statement. If you are modifying
descendants of one of the siblings, the MATCH statements that modify the children should
follow immediately after the MATCH statement that identifies the sibling.

The following request updates the SALINFO and ADDRESS segments, both children of the
EMPINFO segment. The ADDRESS segment contains both home and bank addresses of the
employees; its key field is TYPE, which indicates whether the address is a home address or a
bank address.

The request is as follows:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH PROVPT PAY_DATE GROSS TYPE ADDRESS LN1
MATCH PAY_DATE

ON NOVATCH REJECT

ON MATCH UPDATE GROSS
MATCH TYPE

ON NOVATCH REJECT

ON MATCH UPDATE ADDRESS_LN1
DATA

1. Modifying Data Sources With MODIFY I

Syntax:

Example:

How to Modify Segments With No Keys

Segments of types SO and blank (SEGTYPE=,) have no key fields. Segments of type blank are
always descendant segments; they can never be root segments. Segments of type SO can be
root segments.

To modify these segments, the MATCH statement selects instances by comparing the values
of one or more fields in the segment to a similarly named transaction field. The MATCH
statement has the form

MATCH {* [SEG n] | field-1 field-2 ... field-n}
ON MATCH action-1
ON NOVATCH action-2

where:
field-1 ...

Are any fields in the segment you are modifying.
* SEG n

Matches all fields in the segment, where n is either the segment hame or number as
determined by the ? FDT query (described in the Developing Applications manual).

The difference between segment type SO and blank is in the way FOCUS adds new instances
to the segments.

Storing Data With Type SO Segments

When you add a segment instance to a type SO segment, FOCUS matches field values in the
segment chain from the current position forward through the chain, inserting the instance in
the chain based on ascending order. FOCUS does not search the chain from the beginning;
therefore, if the instance belongs before the current position, FOCUS inserts the instance at
the end of the chain (this means that if you are adding instances to a new segment chain,
FOCUS stores the instances in the order of submission). It may insert the instance even if
another instance has the same field values and you specified ON MATCH REJECT. If, however,
you sort the transactions in ascending sequence before submitting them, you will preserve the
correct sequence in the chain. You will also prevent adding duplicate segments unless you
specify ON MATCH INCLUDE.

Because it is difficult to ensure that segments of type SO do not have instances with duplicate
field values, they are difficult to maintain. You should only use them for data that needs to be
loaded in once and does not need to be changed or deleted.

This is a sample FOCUS data source that stores memos, called MEMO. The Master File is:

Maintaining Databases 97

Modifying Data: MATCH and NEXT

Reference:

Example:

98

FI LEEMEMO |, SUFFI X=FCC , $
SEGVENT=MEMOSEG , SEGTYPE=S1 , $

FI ELD=MEMO_NAME , ALI AS=MEMO , FORVAT=A25 8
SEGVENT=TEXTSEG , SEGTYPE=SO , PARENT=MEMOSEG , $
FI ELD=LI NE , ALI ASSLN , FORVAT=A70 . $

The following request enters ten-line memos into the data source:

MODI FY FI LE MEMD
PROVPT MEMO_NAME 10 (LI NE)
MATCH MEMO_NAMVE

ON MATCH REJECT

ON NOVATCH | NCLUDE
MATCH LI NE

ON MATCH | NCLUDE

ON NOVATCH | NCLUDE
DATA

Note: The INCLUDE action in both ON MATCH and ON NOMATCH phrases adds a line of text
even if the line is the same as another line in the memo (which would happen if you have more
than one blank line in the memo) in all circumstances.

Type Blank Segments

When you add an instance to a type blank segment, the MODIFY request compares the
instance you are adding to every instance in the segment chain, based on the fields you
specify in the MATCH statement. Thus, if you specified the ON MATCH REJECT phrase in the
MATCH statement, the request does not allow you to add an instance that has the same field
values you are matching on as another instance.

You modify type blank segments the same way you modify other segments. Be careful,
however, that the fields you are matching on uniquely identify the segment instances, or you
may not be able to select the instance you want to modify. (MODIFY requests always select the
first instance that fulfills the match conditions.)

Modifying Segments With Multiple Keys

Segments may have multiple keys. These segments are types Sn or SHn where n is the
number of keys. For example, a segment in ascending order that has two keys is type S2; that
is, it has the attribute SEGTYPE=S2 in the Master File. Multiple keys are necessary when the
first field alone cannot uniquely identify a segment instance. For example, a segment has
three fields as described by the Master File:

1. Modifying Data Sources With MODIFY I

Syntax:

FI LE=ADDRESS , SUFFI X=FCC , $
SEGVENT=ADDRSEG , SEGTYPE=S2 , $
FI ELD=LAST_NAME , ALI ASSLNAME , FORVAT=A15 | $
FI ELD=FI RST_NAME , ALI AS=FNAME , FORVAT=A15 | $
FI ELD=ADDRESS , ALl ASSADDR , FORVAT=A80 , $

Since LAST_NAME field is not enough to identify individual segment instances (some people
share the same last name), the segment uses the first two fields, LAST_NAME and
FIRST_NAME, as keys.

Note that multiple keys must always be the first fields in the segment, and they must be next
to each other; that is, a non-key field cannot be between two key fields.

Modifying segments with multiple key fields is the same as modifying segments with one key
field. The one difference is that you must specify all the key fields in the MATCH phrase.
To enter data into the ADDRESS data source, you prepare the following MODIFY request:
MODI FY FI LE ADDRESS
PROVPT LAST_NAME FI RST_NAME ADDRESS
MATCH LAST_NAME FI RST_NAMVE

ON MATCH REJECT

ON NOVATCH | NCLUDE
DATA

A sample execution might go as follows:

1. The request prompts you for the last name, first name, and address.

2. You enter last name FOX, first name GEORGE, and address 2365 N. HAMPTON ST.
HAMILTON, MN 55473.

3. The request searches the segment for an instance with both last name FOX and first name
GEORGE.

4. The request does not find such an instance, so it creates a new instance for George Fox.

Note that you cannot update any of the key fields.

How to Use Alternate File Views

To modify descendant segments, you must first specify the parent segments using a series of
MATCH statements. You can modify a descendant segment directly by declaring the segment
to be the root segment of an alternate file view. To do this, the segment must fulfill three
conditions:

4 The segment must be type S1 or SH1.

.4 The key field must be indexed.

Maintaining Databases 99

Modifying Data: MATCH and NEXT

100

- The key field values should be unique throughout the data source.

To declare an alternate file view, you begin the MODIFY request this way
MODI FY FILE f//enane. field

where:
filenanme
Is the name of the FOCUS data source you are modifying.
field
Is the name of the indexed key field in the root segment of the alternate file view.

Note that you can only update the root segment of the alternate file view; you cannot add or
delete segment instances. However, you can add, update, and delete segment instances in
the descendants of this segment. In addition, you may make use of external indices only using
the FIND and LOOKUP functions. Be aware that an external index cannot be used as an entry
point. For example,

MODI FY FILE 7/ /enane. field

will be ineffective. FIND and LOOKUP are described in Special Functions on page 122.

This sample FOCUS data source, called BANK, contains information on bank accounts. The
Master File is:

FI LE=BANK , SUFFI X=FCC , $
SEGVENT=CUSTSEG , $

FI ELD=SCC SEC NUM , ALI AS=SSN , FORVAT=A9 , $
FI ELD=NAME , AL AS=NAMVE , FORVAT=A30 ,$
SEGVENT=ACCTSEG , SEGTYPE=S1 , PARENT=CUSTSEG 8
FI ELD=ACCT NUM , ALI AS=ACCOUNT , FORVAT=A10 ,
FI ELDTYPE=I 8
FI ELD=AMOUNT , AL AS=AMOUNT , FORVAT=D10. 2, $
SEGVENT=TRANSSEG , SEGTYPE=S1 , PARENT=ACCTSEG ,$
FI ELD=TRANSNUM , ALI AS=TNUM , FORVAT=I 5 ,$
FI ELD=TRANTYPE , ALI AS=TTYPE , FORVAT=A1 . $
FI ELD=TR_AMOUNT , ALI ASSTAMOUNT |, FORVAT=D8.2 , $

This Description contains three segments:
-l The CUSTSEG segment contains social security numbers and names of bank depositors.

.d The ACCTSEG segment, child of CUSTSEG, contains account numbers and the amount of
money in each account. Note that the field ACCT_NUM is indexed and that each account
number is unique throughout the data source.

1. Modifying Data Sources With MODIFY I

-1 The TRANSSEG segment, child of ACCTSEG, contains information on individual bank
account transactions: the transaction serial number (TRANSNUM), the type of transaction
(TRANTYPE, which contains a D for deposits and a W for withdrawals), and the amount of
the transaction (TR_AMOUNT).

To add new account information in the BANK data source, prepare the following MODIFY
request:

MODI FY FI LE BANK
PROVPT SSN NAVE ACCT_NUM AMOUNT
MATCH SSN
ON NOVATCH | NCLUDE
ON MATCH CONTI NUE
MATCH ACCT_NUM
ON NOVATCH | NCLUDE
ON MATCH REJECT
DATA

The MODIFY request above first specifies the parent segment CUSTSEG (MATCH SSN) before
the child segment ACCTSEG (MATCH ACCT_NUM). Since ACCTSEG is an S1 segment with an
indexed key field (ACCT_NUM), you can modify the ACCTSEG directly with this request:

MODI FY FI LE BANK. ACCT_NUM
PROVPT ACCT_NUM AMOUNT
MATCH ACCT_NUM

ON NOVATCH REJECT

ON MATCH UPDATE AMOUNT
DATA

You may modify the root segment of the alternate file view and its descendants in the original
data source structure, but not its parents. In the BANK data source, you may modify the
TRANSSEG segment using the above alternate file view but not the CUSTSEG segment.

This request adds information on new bank account transactions to the data source:

MODI FY FI LE BANK. ACCT_NUM
PROVPT ACCT_NUM AMOUNT PROVPT TRANSNUM TRANTYPE TR_AMOUNT
MATCH ACCT_NUM
ON NOVATCH REJECT
ON MATCH UPDATE AMOUNT
MATCH TRANSNUM
ON MATCH REJECT
ON NOVATCH | NCLUDE
DATA

Maintaining Databases 101

Modifying Data: MATCH and NEXT

Selecting the Instance After the Current Position: The NEXT Statement

Syntax:

102

The NEXT statement selects the next segment instance after the current position, making the
instance the new current position. The current position depends on the execution of MATCH
and NEXT statements:

d If a MATCH or NEXT statement selects a segment instance, the instance becomes the
current position within the segment.

4 If a MATCH or NEXT statement selects a parent instance of a segment chain, the current
position is before the first instance in the chain.

. At the beginning of a request, the current position in the root segment is before the first
instance.

The NEXT statement can modify segment instances similarly to the MATCH statement and
follows the same rules (see The MATCH Statement on page 75). However, the NEXT statement
is most often used for displaying data source values.

How to Use a NEXT Statement

The syntax of the NEXT statement is

NEXT field
ON NEXT action-1
ON NONEXT action-2

where:
field
Is any field in the segment whose instances are being selected.
action-1
Is the action the request takes if there is a next instance to select.
action-2
Is the action the request takes if it has reached the end of the segment chain.

There can be many ON NEXT and ON NONEXT phrases in a single NEXT statement. Each
phrase specifies one action.

1. Modifying Data Sources With MODIFY I

Example:

An action can be any action that is legal in the MATCH statement (see Adding, Updating, and
Deleting Segment Instances on page 79 and Performing Other Tasks Using MATCH on page 84).
However, use ON NEXT INCLUDE and ON NONEXT INCLUDE phrases only to add instances to
segments of type SO or blank. If you use these phrases to modify other segments, you may
duplicate what is already there. The difference between the two phrases is:

.4 ON NEXT INCLUDE adds a new segment instance after the current position.

.4 ON NONEXT INCLUDE adds a new instance at the end of the segment chain. The phrase ON
NEXT INCLUDE is only valid for segments with type SO or blank.

The following phrases are always illegal:

ON NONEXT UPDATE
ON NONEXT DELETE
ON NONEXT CONTI NUE
ON NONEXT CONTI NUE TO

This phrase is legal even in requests that do not involve Case Logic:

ON NONEXT GOTO EXI'T

The phrase terminates the request when the NEXT statement reaches the end of the segment
chain.

Note that a NEXT statement can have multiple ON NEXT and ON NONEXT phrases. For
example, the following statement displays the salaries of every employee in the data source
and shows what their salaries would be if they are granted a 5% increase:

NEXT EMP_I D

ON NEXT COVPUTE NEWSAL = 1.05 * D. CURR_SAL;

ON NEXT TYPE
"EMPLOYEE <D. EMP_I D SALARY NOW <D. CURR_SAL"
"SALARY PLUS 5% | NCREASE: <NEWSAL"

ON NONEXT TYPE
"END OF EMPLOYEE FI LE"

ON NONEXT GOTO EXI'T

Selecting Instances

You can use NEXT statements in non-Case Logic requests to modify or display the data in:
4 The entire root segment.

.4 The first instances of segment chains in descendant segments.

To modify or display data in entire descendant segment chains, you must use Case Logic as
described in Case Logic Applications on page 159.

Maintaining Databases 103

Modifying Data: MATCH and NEXT

The NEXT statement can modify and display data in the root segment. This request displays all
the employee IDs in the employee ID segment:

MODI FY FI LE EMPLOYEE

NEXT EMP_I D
ON NEXT TYPE "EMPLOYEE I D: <D. EMP_I D'
ON NONEXT GOTO EXI'T

DATA

When a NEXT statement modifies or displays data in a descendant segment, it can do so only
to the first instance in a segment chain. Consider the following request:

MODI FY FI LE EMPLOYEE

PROVPT EMP_I D

MATCH EMP_I D

ON NOVATCH REJECT
ON MATCH TYPE "YOU ENTERED | D <EMP_I D"

NEXT PAY_DATE
ON NEXT TYPE
"TH S EMPLOYEE' S LAST PAY DATE"
"WAS <D. PAY_DATE"
ON NONEXT GOTO EXI'T
DATA

The MATCH statement selects an instance with a particular employee ID. The NEXT statement
selects the instance with the employee's last pay date (the pay dates are organized in the data
source from high to low). The PAY_DATE segment is a child of the EMP_ID segment.

The NEXT statement is at its most powerful when it is used to browse through an entire chain.
To browse through a chain in a descendant segment, you must use Case Logic, as described
in Case Logic Applications on page 159.

Displaying Unique Segments

Syntax:

104

You can use the NEXT statement to display and modify the contents of unique segments using
two methods (see Modifying Segments in FOCUS Structures on page 87):

.4 The CONTINUE TO method.

.4 The WITH-UNIQUES method.

How to Use the CONTINUE TO Method
The syntax of the CONTINUE TO method is

1. Modifying Data Sources With MODIFY I

Syntax:

NEXT field
ON NONEXT action-1
ON NEXT CONTINUE TO w-field
ON NEXT action-2
ON NONEXT action-3

where:
field

Is the first field in the parent instance.
action-1

Is the action the request performs if there are no more instances in the parent segment
chain.

u-field

Is the name of any field in the unique child segment.
action-2

Is the action the request performs if the parent instance has a unique child instance.
action-3

Is the action the request performs if the parent instance does not have a unique child
instance.

How to Use the WITH-UNIQUES Method
The syntax of the WITH-UNIQUES method is

NEXT W TH- UNI QUES f/eld
ON NONEXT actionl
ON NEXT action2

where:
field

Is the name of any field in the parent segment.
actionl

Is the action the request performs if there are no more instances in the chain.

Maintaining Databases 105

Computations: COMPUTE and VALIDATE

action2

Is the action the request performs if there is a next instance in the chain. This action can
be performed on either the parent instance or the unique instance. If an UPDATE action
updates a unique instance that does not exist yet, FOCUS creates the instance.

Computations: COMPUTE and VALIDATE

The MODIFY command provides two facilities that perform calculations on incoming data fields,
data source fields, and temporary fields. These are:

- The COMPUTE statement. This statement allows you to modify incoming data field values
and to define temporary fields.

d The VALIDATE statement. This statement allows you to reject transactions that contain
unacceptable values.

FIND and LOOKUP functions can be used only in COMPUTE and VALIDATE statements. For
more information, see Special Functions on page 122.

Computing Values: The COMPUTE Statement

The COMPUTE statement allows you to modify incoming data field values and to define
temporary fields.

A transaction data source (whether stored on the computer or typed on paper) used to modify
a data source often does not contain the same data that is to go into the data source fields.
There are many reasons for this:

- The incoming data contains short codes representing the alphanumeric data that is to go
into the data source. For example, incoming records contain the code P for PRODUCTION
and M for MIS. The PRODUCTION and MIS values update the DEPARTMENT field.

d The incoming data is repetitive: the same value is used to update each instance or the
same series of values is used to update each segment chain. For example, all employees
are to receive a pay increase of 5%.

- The incoming data values are calculable from other values. For example, an employee's
percentage salary increase is equal to the new salary divided by the old salary minus 1.

d Some values vary in predictable ways depending on other values. For example, employee
salary increases depend on the employees' department assignment.

106

1. Modifying Data Sources With MODIFY I

The COMPUTE statement gives you control over the data that modifies the data source. Using
COMPUTE you can:

4 Translate codes into data to modify the data source.
.4 Adjust the values of transaction fields.
- Define a data value or a series of data values to modify the data source repeatedly.

.4 Calculate data values from other sources and use these new values to modify the data
source.

The COMPUTE statement works by setting either an incoming data field or a temporary field to
the value of an expression. The expression may involve existing data source fields, other
temporary fields, and constants.

Note that there are three different types of fields:

.4 Incoming data fields (also called transaction fields) contain data read from transaction data
sources or a terminal. These fields are specified by the FIXFORM, FREEFORM, PROMPT,
and CRTFORM statements. They remain incoming data fields even if their values are
changed by COMPUTE statements.

. Data source fields contain data stored in the data source. Their field names are prefaced
by the D. prefix.

. Temporary fields are created by and receive their values from COMPUTE statements.

The following request uses all three types of fields. The request awards a bonus of $150 to
employees who received salary raises:

MODI FY FI LE EMPLOYEE
1. PROWPT EMP_I D CURR SAL
COWPUTE
2. BONUSAL/ D8. 2 = CURR SAL + 150;
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH COMPUTE
3. CURR SAL = | F CURR SAL GT D. CURR SAL
THEN BONUSAL
ELSE CURR SAL;
ON MATCH UPDATE CURR SAL
DATA

The numbers above refer to these fields:

1. The EMP_ID and CURR_SAL fields are incoming data fields, because they are read by a
PROMPT statement.

2. The BONUSAL field is a temporary field, because it is created by and receives its value from
a COMPUTE statement.

Maintaining Databases 107

Computations: COMPUTE and VALIDATE

108

3. The D.CURR_SAL field is a data source field, since its field name is prefaced with the D.
prefix.

You may use COMPUTE statements to adjust the values of incoming data fields. For example,
your MODIFY request reads salary values from a data source and places them into the field
SALARY. You want to increase all these values by 10%. To do so, add this statement to the
request:

COVWPUTE SALARY = SALARY * 1.1;

In cases where the same field name exists in more than one segment, and that field must be
redefined, the REDEFINES command should be used.

You may use the COMPUTE statement to define an unlimited number of temporary fields. For
example, you define a temporary field TEMPSAL to contain the number 25000 if an employee
is in the MIS department and the number 18000 if an employee is in the PRODUCTION
department:

COWPUTE
TEMPSAL =l F DEPARTMENT IS 'M S THEN 25000
ELSE | F DEPARTMENT | S ' PRCDUCTI ON' THEN 18000;

Note that MODIFY requests allow the use of up to 3,072 fields within the request. The number
includes:

- Data source fields referred to in the request.
.4 Temporary fields created by COMPUTE and VALIDATE statements.
.d Temporary fields created automatically by FOCUS. These include:

.4 FOCURRENT for MODIFY requests run in Simultaneous Usage mode. FOCUS creates one
FOCURRENT variable per request.

4 REPEATCOUNT for MODIFY requests containing REPEAT statements. FOCUS creates one
REPEATCOUNT variable per request regardless of the number of REPEAT statements.

.4 HOLDCOUNT and HOLDINDEX for MODIFY requests containing HOLD statements.
FOCUS creates one HOLDCOUNT and one HOLDINDEX variable per request regardless of
the number of HOLD statements.

Each field referred to or created in a MODIFY request counts as one field toward the 3,072
total, regardless of how often its value is changed by COMPUTE and VALIDATE statements.
However, if a data source field is read by a FIXFORM, FREEFORM, PROMPT, or CRTFORM
statement and also has its value changed by COMPUTE and VALIDATE statements, it counts
as two fields.

1. Modifying Data Sources With MODIFY I

Syntax:

FOCUS compiles most COMPUTE and DEFINE calculations when the request is parsed.
Typically, the new compilation logic executes the compiled calculations in about one-fifth the
time required by uncompiled calculations. However, the compiled form requires more memory.
For this reason, very large MODIFY procedures may require more virtual storage to run and,
should the MODIFY procedures be compiled, they will occupy more disk space.

There are two places in the MODIFY request where you can use COMPUTE statements:

d At the beginning of the request. COMPUTE statements here define temporary field values
for every transaction. Note that these statements may not perform calculations on data
source field values (D. fields).

d In or following MATCH and NEXT statements. COMPUTE statements here define temporary
field values for transactions depending whether or not the MATCH or NEXT statement
selected a particular segment instance. These statements may perform calculations using
data source field values.

This section covers:

.4 The syntax of COMPUTE statements.

4 Use of COMPUTE statements in MATCH and NEXT statements.
.4 Modifying transaction fields.

- Defining non-data source transaction fields.

How to Use a COMPUTE Statement

The syntax of the COMPUTE statement is as follows (note that you can place several COMPUTE
statements after the COMPUTE keyword):

COVPUTE
fielal fornat]
fielall fornat]

expressi on;
expressi on;

where:
field

Is the name of the field being set to the value of expression. The field can be an incoming
data field or it can be a temporary field (whose name must be different from the incoming
field names). Fields can only modify data source fields with the same name.

Maintaining Databases 109

Computations: COMPUTE and VALIDATE

110

fornat

Is the format of the field if the field is temporary. Specify the format when defining the
temporary field for the first time. Field formats are described in the Describing Data
manual.

You can specify the MISSING option to declare temporary field values missing if values in
the expression are missing. The MISSING option is discussed in the Creating Reports
manual.

You can specify the YRTHRESH and DEFCENT options to handle cross-century dates. Using
these options, and working with cross-century dates, is discussed in the Developing
Applications manual.

expression;

Is any expression valid in a DEFINE or TABLE COMPUTE statement. In addition, you may
use the FIND and LOOKUP functions, described in Special Functions on page 122.

Note: The expression can be null; that is, the COMPUTE statement can have the form
COWPUTE £/ el d format=;

where format is the format of the field. This form is used to define transaction fields that
are not listed in the Master File.

Note that you must terminate the expression with a semi-colon (;). You may type a COMPUTE
statement over as many lines as you need, terminating the expression with a semi-colon. The
COMPUTE command supports other attributes such as DFC, YRT, and MISSING. See the
Creating Reports manual for details.

For example:

COVPUTE

CURR_SAL = IF CURR_JOBCCDE |'S A02 THEN 15000
ELSE I F CURR_JOBCODE IS BO2 THEN 17000
ELSE | F CURR_JOBCODE IS B12 THEN 18000
ELSE 20000;

In the preceding example, the temporary field CURR_SAL will contain 15000, 17000, 18000,
or 20000, depending on the value of CURR_JOBCODE. CURR_SAL will then be used later in the
MODIFY request.

You can also place an expression on the same line as a COMPUTE keyword, and several
expressions on one line (ending each expression with a semicolon). For example:

COVWPUTE CURR_SAL=CURR_SAL*1.2; ED HRS = ED HRS-5;

1. Modifying Data Sources With MODIFY I

You can specify the MISSING option to declare temporary field values missing if values in the
expression are missing. The MISSING option is discussed in the Creating Reports manual.

Using the COMPUTE Statement

The following examples show how to use the COMPUTE statement.

Example: Placing COMPUTE Phrases in MATCH and NEXT Statements

You may place COMPUTE statements in MATCH and NEXT statements. The request only
performs the computation if the MATCH or NEXT condition is met. These COMPUTE phrases
may perform calculations on data source field values if these fields are either in the segment
instance being modified or in a parent instance along the segment path (the parent instance,
the parent's parent, and so on until the root segment). To specify data source field values (as
opposed to values in the transaction field with the same name), affix the D. prefix to the front
of the field name.

Note that COMPUTE statements that follow a MATCH or NEXT statement may also perform
calculations on data source field values if these fields are in the instance selected by the
previous statement (or are in the segment path).

When using MATCH WITH-UNIQUES followed by ON MATCH COMPUTE, each computed field
must have its own ON MATCH COMPUTE statement.

The following request calculates employees' new salaries giving them a 10% increase over
their present salaries. It only performs this calculations for employees whose IDs are stored in
the data source:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH COVPUTE

CURR_SAL = D. CURR_SAL * 1.1,

ON MATCH UPDATE CURR SAL
DATA

Example: Changing Incoming Data

You can use the COMPUTE statement to change incoming data. For example, assume you are
preparing a MODIFY request to input new salaries into the data source. Just recently, the
company granted employees in the MIS department an extra 3% pay raise. Rather than
manually recalculating the new salaries for MIS employees, you can include a COMPUTE
statement to do it for you:

Maintaining Databases 111

Computations: COMPUTE and VALIDATE

Syntax:

112

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR_SAL DEPARTMENT
COVPUTE
CURR_SAL = | F DEPARTMENT IS "M S
THEN CURR_SAL * 1.03
ELSE CURR_SAL;
MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT
DATA

The new salary of employees who work in the MIS department will be 1.03 times more what
they would have received ordinarily. Everybody else gets a normal raise.
How to Define Non-Data Source Transaction Fields

If the names of incoming data fields are not listed in the Master File describing the data
source, you must define them to FOCUS before they are read in by a FIXFORM, FREEFORM,
PROMPT, or CRTFORM statement. Otherwise, FOCUS rejects the fields as unidentifiable and
terminates the request.

To define the fields to FOCUS, specify them with the COMPUTE statement using the notation
COVPUTE £/ el dl fornat=;

where:
field
Is the incoming data field you want to define to FOCUS.
format
Is the format of the field. Field formats are described in the Describing Data manual.

Because there is no expression after the equal sign (=), the request reads the statement
before it reads the incoming data. All COMPUTE statements having expressions are executed
after the request reads the incoming data.

For example, you want to record promotions to the MIS and Production Departments in the
data source. However, the transaction data source you are working with lists the departments
by code, not by name: a 1 for MIS and a 2 for Production. You prepare the following MODIFY
request:

1. Modifying Data Sources With MODIFY I

MODI FY FI LE EMPLOYEE
COVMPUTE DEPCODE/ | 1=;
PROVPT EMP_I D DEPCODE
COWPUTE
DEPARTMENT = | F DEPCCDE IS 1 THEN 'M S ELSE ' PRODUCTI ON
MATCH EMP_I D
ON MATCH UPDATE DEPARTMENT
ON NOVATCH REJECT
DATA

The first COMPUTE statement defines the incoming DEPCODE field to FOCUS. The second
COMPUTE statement sets the value of the transaction field DEPARTMENT depending on the
value of DEPCODE. This DEPARTMENT field then updates the DEPARTMENT field in the data
source.

Compiling MODIFY Expressions Using Native Arithmetic

Syntax:

The native compiler for MODIFY processes COMPUTE, IF, and VALIDATE expressions using the
arithmetic operations built into the underlying operating system. This native compiler
eliminates internal format conversions and speeds up expression processing. It significantly
enhances the speed of expressions that use long packed fields and date fields.

Note: Expression compilers for MODIFY are supported only in Mainframe environments. Linux
on the Mainframe does not support these compilers.

How to Control Compilation of MODIFY Expressions
SET MODCOMPUTE={ NATV| NEW OLD}

where:
NATV

Activates the native compiler for MODIFY expressions. NATV is the default value.
NEW

Compiles MODIFY expressions using the standard FOCUS compilation routines, which use
high-precision floating point format for all arithmetic operations.

oD

Does not compile MODIFY expressions.

Maintaining Databases 113

Computations: COMPUTE and VALIDATE

Reference: Usage Notes for SET MODCOMPUTE

The following are usage notes for SET MODCOMPUTE:
J SET MODCOMPUTE can be issued in a user or system profile or on the command line.

J SET MODCOMPUTE is supported with compiled and uncompiled MODIFY procedures.
Expression compilation is different from and compatible with MODIFY procedure
compilation.

- Existing compiled MODIFY procedures run without recompilation. The MODCOMPUTE setting
has no effect on previously compiled MODIFY procedures. In order to make use of this
performance enhancement, compiled MODIFYs must be recompiled with SET
MODCOMPUTE=NATV in effect.

- Expressions using the following features are not compiled by the native compiler:
LIKE operator.
DEFINE functions.
LAST function.

Validating Transaction Values: The VALIDATE Statement

114

Most applications require that data be checked for accuracy before it is accepted into the data
source. The VALIDATE statement checks values against certain conditions. If the value fails
the test, the request rejects the transaction and displays a warning to the user.

For example, assume you are preparing a MODIFY request to update MIS and Production
Department salaries in the data source. No one in those departments is ever paid less than
$6,000 per year or more than $50,000. You can use the VALIDATE statement to reject those
values that fall outside this range, such as a $700 or a $75,000 salary.

VALIDATE statements work the same way as COMPUTE statements: they set the value of a
temporary field to the value of an expression. The only difference is that if the field value is set
to 0, FOCUS rejects the transaction being processed and displays this message

(FOC421) TRANS 7 REJECTED | NVALI D rcode

where:

n

Is the number of the transaction being tested.

rcode

Is the variable receiving the test value.

1. Modifying Data Sources With MODIFY I

The simplest way to use VALIDATE statements is to have them test the values of incoming
data fields. If an incoming value is unacceptable, assign the temporary field a value of O.
Otherwise, assign the field a non-zero value. Note that the temporary field retains its value
after the VALIDATE statement, and you may use this value in other calculations.

Tests provided by the DBA functions, which control access to data sources, function as
involuntary VALIDATE tests and produce similar error messages.

You can place VALIDATE statements in two places in MODIFY requests:

4 At the beginning of the request. VALIDATE statements here test every transaction,
discarding those containing invalid values. Expressions in these VALIDATE statements
cannot use data source field values (D. fields).

.4 In MATCH and NEXT statements. VALIDATE statements here test the transaction depending
whether or not the MATCH or NEXT statement selected a particular segment instance.
Expressions in these VALIDATE statements can use data source field values.

If you are validating fields in a repeating group and one field is rejected, all fields in the
repeating group are rejected. However, if you are validating the fields in a MATCH or NEXT
statement and one field is rejected, the other fields are not rejected.

If the MODIFY request prompts for data (the PROMPT statement), it is a good idea to validate
each field after prompting. If you validate several fields at once, users must enter data for all
the fields before the values they enter are tested. If one data value is invalid, they must
reenter all the data values. If you validate each field, users will be warned as soon as they
enter an invalid value, and the request will reprompt them for the correct value.

This section describes:

4 VALIDATE statement syntax.

Using the VALIDATE statement to validate incoming data.
Use of the ON INVALID phrase.

Use of VALIDATE statements in MATCH and NEXT statements.

L U o U

Testing for the presence of incoming data.
.d Use of the DECODE function in VALIDATE statements.

If you validate data entered on a CRTFORM, invalid values cause the CRTFORM screen to be
redisplayed along with the data you entered. This allows you to correct the data and re-enter it.
You can deactivate this feature using the DEACTIVATE INVALID feature described in Active and
Inactive Fields on page 204.

Maintaining Databases 115

Computations: COMPUTE and VALIDATE

Syntax:

Reference:

116

How to Use a VALIDATE Statement

The syntax of the VALIDATE statement is as follows (note that you may include several
VALIDATE statements after the VALIDATE keyword)

VAL| DATE
field | format]
field format]

expressi on,
expressi on,

where:
field

Is the name of the temporary field. If this field is set to 0, FOCUS rejects the transaction
being processed. Do not use an incoming field name or data source field name for this
name.

fornat

Is the format of the field. The format type must be numeric (I, F, D, or P. Formats are
described in the Describing Data manual). You need to specify the format only if you will
use the field elsewhere in the request.

expression;

Is any expression valid in a DEFINE or TABLE COMPUTE statement (see the Creating
Reports manual). Also, you may use the LOOKUP and FIND function described in Special
Functions on page 122. If the value of the expression is O, FOCUS rejects the transaction
being processed. Note that you must terminate the expression with a semicolon (;).

You may specify the MISSING option to declare temporary field values missing if values in
the expression are missing. The MISSING option is discussed in the Creating Reports
manual.

Using VALIDATE to Test Incoming Data

You use VALIDATE statements most often to test incoming data values, assigning the
temporary field a value of O if a value is not acceptable. The test expression can span several
lines, but it must end with a semi-colon (;). Tests you can use in VALIDATE expressions are:

d IF...THEN...ELSE statements.
- Arithmetic expressions.

. Logical expressions.

1. Modifying Data Sources With MODIFY I

Example:

Example:

Example:

- User functions and subroutines.
4 DECODE functions.

.4 FIND and LOOKUP functions (see Special Functions on page 122).
You can use IF...THEN...ELSE statements in VALIDATE expressions (up to 16 statements per
expression), such as:

SALTEST = | F SALARY LT 50000 THEN 1 ELSE O;

If the incoming SALARY value is less than $50,000, the SALTEST temporary field is set to 1. If
SALARY is $50,000 or greater, SALTEST is set to O and the transaction is rejected. Note that
you may use all operations in VALIDATE IFPFTHENCELSE statements that you use in COMPUTE
and DEFINE statements (see the Creating Reports manual). Also note that all alphanumeric
literals must be enclosed in single quotation marks.

Using Logical Expressions

If an expression is evaluated as true, the temporary field is set to 1. Otherwise, the field is set
to 0. For example:

SALTEST = SALARY LT 50000;

Note that you can use AND and OR operands in logical expressions, as discussed in the
Creating Reports manual. For example:

SALTEST = (SALARY LT 50000) AND (JOB EQ 'B12');

If the incoming salary value is less than $50,000 and the job code is B12, SALTEST is set to
1. Otherwise, SALTEST is set to O.

Using the DECODE Function

This function allows you to compare an incoming field value against a list of acceptable and
unacceptable values. For example:

SALTEST = DECODE JOBCCDE (A03 0 BO7 0 B12 0 ELSE 1);

If the incoming job code is AO3, BO7, or B12, SALTEST is set to O.

Using the FIND Function

This function searches another FOCUS data source for the presence of the incoming field
value. If the value is there, the temporary field is set to a non-zero value; otherwise the field is
set to 0. For example:

Maintaining Databases 117

Computations: COMPUTE and VALIDATE

Syntax:

118

SALTEST = FIND(EMP_I D | N EDUCFI LE) ;
If the incoming employee ID value is not present in the EDUCFILE data source, SALTEST is set
to 0. The FIND function is discussed in Special Functions on page 122.

The following MODIFY request validates the DEPARTMENT and CURR_SAL fields:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D DEPARTMENT CURR_SAL

VALI DATE
DEPTEST = | F DEPARTMENT IS 'M S THEN 1 ELSE O;
SALTEST = CURR_SAL LT 50000;

MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE CURR SAL
DATA

This request will only accept your transactions if you enter MIS for the DEPARTMENT field and
a value less than 50,000 for the CURR_SAL field.
How to Take Action on Invalid Data: The ON INVALID Phrase

If a VALIDATE statement invalidates a transaction, you may take action using the ON INVALID
phrase. This phrase allows you to:

.4 Branch to another case using Case Logic. Case Logic is discussed in Case Logic on page
145.

- Type a message. Typing messages are discussed in Messages: TYPE, LOG, and
HELPMESSAGE on page 130.

The ON INVALID phrase immediately follows the validate statement. The syntax is

ON | NVALI D GOTO casenane
ON | NVALI D PERFORM casenane
ON | NVALI D TYPE [ON ddnane]

where:
GOTO casenane

Branches to another case called casename. GOTO also takes other options described in
Branching to Different Cases: The GOTO, PERFORM, and IF Statements on page 149.

PERFORM casenane

Branches to another case called casename. Execution then continues with the next
statement after ON INVALID. PERFORM also takes other options discussed in Branching to
Different Cases: The GOTO, PERFORM, and IF Statements on page 149.

1. Modifying Data Sources With MODIFY I

TYPE [ON ddnane]

Displays a message of up to four lines on the terminal. If you use the ON ddname option,
the request writes the message to a sequential data source allocated to ddname.

This request updates employee salaries. It warns you when you have entered a salary that fails
its validation test:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR SAL
VAL| DATE
SALTEST = | F CURR SAL GT 50000 THEN 0 ELSE 1;
ON | NVALI D TYPE
"YOU ENTERED A SALARY HI GHER THAN $50, 000"
"THI S SALARY |S TOO HI GH'
" PLEASE REENTER THE EMPLOYEE | D AND SALARY"
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE CURR SAL
DATA

VALIDATE Phrases in MATCH and NEXT Statements

You may place VALIDATE statements in MATCH and NEXT statements. The request only
performs the validation if the MATCH or NEXT condition is met. These VALIDATE phrases may
use data source fields if these fields are either in the segment instance being modified or in a
parent instance along the segment path (the parent instance, the parent's parent, and so on
until the root segment). To specify data source field values, affix the D. prefix to the front of
the field name.

Note that VALIDATE statements that follow a MATCH or NEXT statement may also use data
source fields if these fields are in the instance selected by the previous statement (or are in
the segment path).

This request makes sure that an employee's new salary is not less than the present salary
after it ascertains that the employee's ID is recorded in the data source:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH PROVPT CURR SAL
ON MATCH VALI DATE
SALTEST = | F CURR SAL GE D. CURR SAL THEN 1
ELSE 0;
ON MATCH UPDATE CURR SAL
DATA

Maintaining Databases 119

Computations: COMPUTE and VALIDATE

Example:

Syntax:

120

Testing for the Presence of Transaction Data

You may test for missing data values in transactions using the MISSING feature in IF and
WHERE phrases, described in the Creating Reports manual. These features determine whether
an incoming field is present in the transaction or not, and are especially useful when the
transactions are in a transaction data source.

This request rejects transactions without a job code:

MODI FY FI LE EMPLOYEE
FREEFORM EMP_I D CURR_JOBCODE CURR_SAL
VAL| DATE
JOBTEST = I F CURR_JOBCCDE IS NOT M SSI NG THEN 1
ELSE 0;
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE CURR_JOBCODE CURR_SAL

DATA
EMP_| D=071382660, CURR JOBCODE=A13, CURR SAL=18500.00, $
EMP_| D=112847612, CURR_SAL=19200. 50, $
END

How to Validate Values From a List: The DECODE Function

The DECODE function allows you to compare incoming data values against a list of acceptable
and unacceptable values. This function is described in the Creating Reports manual. This
section discusses how best to use the DECODE function to validate data.

The syntax of the DECODE function is
field = DECODE f/eldnanme (codel resultl...[ELSE default])

where:
field

Is the name of the temporary field. If the field is set to O, the transaction is rejected. Do
not use an incoming field name or data source field name for this name.

fiel dname

Is the incoming data field being tested.
codel ...

Is the list of possible values.
resul t1

Is the number that the temporary field is set to if the incoming field has the preceding
value. Place a O after invalid values; place a non-zero number after valid values.

1. Modifying Data Sources With MODIFY I

ELSE

Indicates what the temporary field is set to if the incoming field does not have a value on
the list. This list may have up to 32,767 literals.

For example, you want to record promotions to various company departments in the data
source. There are five possible departments: Marketing, Accounting, Shipping, Sales, and Data
Processing. You prepare this MODIFY request:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D DEPARTMENT
VALI DATE
DEPTEST = DECODE DEPARTMENT (MARKETI NG 1
ACCOUNTING 1 SHHPPING 1 SALES 1 MS 1
ELSE 0);
MATCH EMP_I D
ON MATCH UPDATE DEPARTNMENT

ON NOVATCH REJECT
DATA

This request accepts MARKETING, ACCOUNTING, SHIPPING, SALES, and MIS as valid incoming
values for the field DEPARTMENT, but rejects all other values.

You may also store the values in a separate file. The file must consist of stacked pairs of
values, the values in each pair separated by a comma or spaces (you may want to arrange
them in columns, see the example below). The left member of each pair is a possible value
and the right member is the value that the temporary field is set to should the incoming data
field have the value on the left.

The syntax of this form of the DECODE command is
fiel d = DECODE / nfield (ddname ELSE n)

where:
field

Is the name of the temporary field. If the field is set to O, the transaction is rejected. Do
not use an incoming or data source field name for this name.

infield
Is the incoming field being tested.
ddnarme

Is the ddname of the file containing the list of possible values. The file may contain up to
32,767 bytes.

Is the value of field if the incoming data value is not in the list.

Maintaining Databases 121

Computations: COMPUTE and VALIDATE

Below is a sample DECODE file.

MARKETI NG 1
ACCOUNTI NG 1
SHI PPI NG 1
SALES 1

MS 1

Special Functions

Syntax:

122

There are two functions that you can use only in MODIFY COMPUTE and VALIDATE statements.
They are:

-1 The FIND function, which tests for the existence of indexed values in FOCUS, relational, or
Adabas data sources.

4 The LOOKUP function, which tests for the existence of non-indexed values in cross-
referenced FOCUS, relational, or Adabas data sources and makes these values available
for other computations.

Note: The LAST function in MODIFY can be used in COMPUTEs and VALIDATES, in combination
with FREEFORM or FIXFORM, to test incoming transaction values against those from a
previously read record. For further information on the LAST function see the Creating Reports
manual.

How to Test for the Existence of Indexed Values in FOCUS Data Sources: The FIND
Function

The FIND function verifies if an incoming data value is in a FOCUS data source field, whether
the field is in the data source you are modifying or in another data source. The function sets a
temporary field to a non-zero value if the incoming value is in the data source field and O if it is
not. Note that a value greater than zero confirms the presence of the data value, not the
number of instances in the data source field. You can then test and branch on this field using
Case Logic, described in Case Logic on page 145.

Note that the data source field you are searching must be indexed, and that the FIND function
does not work on data sources with different DBA passwords.

The syntax of the FIND function is
field = FIND(fieldname [AS dbfield IN file);

where:
field

Is the name of the temporary field.

1. Modifying Data Sources With MODIFY I

Example:

fiel dnanme
Is the full name (not the alias or a truncation) of the incoming field being tested.
AS dbfiel d

Is the full name (not the alias or a truncation) of the data source field containing values to
be compared with the incoming data field. This field must be indexed. If the incoming field
and the data source field have the same name, you can omit this phrase.

file
Is the name of the data source.
Note that there can be no space between FIND and the left parenthesis.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1 if the
incoming value is not in the data source and O if the incoming value is in the data source. Its
syntax is

field= NOT FINX/nfield[AS dbfield N file)

where field, infield, dbfield, and file were explained previously.

You can use any number of FIND functions in COMPUTE and VALIDATE statements. However
more FIND functions increase processing time and require more buffer space in core.

This request tests if each employee ID entered is also in the EDUCFILE data source. It then
displays a message informing you whether it found the ID in the data source or not.

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
COWPUTE
EDTEST = FIND(EMP_I D | N EDUCFI LE) ;
MSG/ A40 = | F EDTEST IS 1 THEN
" STUDENT LI STED | N EDUCATI ON FI LE' ELSE
" STUDENT NOT LI STED | N EDUCATI ON FI LE' ;
MATCH EMP_I D
ON NOVATCH TYPE " <MBG'
ON MATCH TYPE " <MSG'
DATA

Using the FIND Function in VALIDATE Statements

You may use the FIND function in a VALIDATE statement to test if a transaction field value
exists in another FOCUS data source. If the field value is not in that data source, the function
returns a value of O, causing the validation to fail and the request to reject the transaction.

This request updates the number of hours spent by employees in class. It rejects employees
not listed in the EDUCFILE data source, which records class attendance:

Maintaining Databases 123

Computations: COMPUTE and VALIDATE

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D ED_HRS
VALI DATE
EDTEST = FIND(EMP_I D | N EDUCFI LE) ;
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE ED_HRS
DATA

This VALIDATE statement will discard any incoming EMP_ID value not found in the EDUCFILE
data source.

Reading Cross-Referenced FOCUS Data Sources: The LOOKUP Function

124

The LOOKUP function retrieves data values from cross-referenced data sources, both data
sources cross-referenced statically in the Master File and data sources joined dynamically by
the JOIN command. The LOOKUP function is necessary because, unlike TABLE requests,
MODIFY requests cannot read cross-referenced data sources freely. With the LOOKUP function,
the requests can use the data in computations and in messages but cannot modify cross-
referenced data sources; to modify more than one data source in one request, use the
COMBINE command discussed in Modifying Multiple Data Sources in One Request: The
COMBINE Command on page 196.

The LOOKUP function can read cross-referenced segments that are linked directly to a segment
in the host data source (the host segment). This means that the cross-referenced segments
must have segment types of KU, KM, DKU, or DKM (but not KL or KLU) or contain the cross-
referenced field specified by the JOIN command (see the Describing Data manual).

The cross-referenced segment contains two fields of interest:

- The field containing the values you want. This is the field the LOOKUP function specifies.
For example, this LOOKUP function retrieves values from the DATE_ATTEND field:

RTN = LOOKUP(DATE_ATTEND) ;

.4 The cross-referenced field. This field shares values with a field in the host segment called
the host field. These two fields link the host segment to the cross-referenced segment. The
LOOKUP function uses the cross-referenced field, which is indexed, to locate a specific
segment instance.

1. Modifying Data Sources With MODIFY I

To use the LOOKUP function, the MODIFY request reads a transaction value for the host field.
The LOOKUP function then searches the cross-referenced segment for an instance containing
this value in the cross-referenced field:

d If there are no such instances, the function sets a return variable to O. If you use the field
specified by the LOOKUP function in the request, the field assumes a value of blank if
alphanumeric and O if numeric.

. If there are instances (there can be more than one if the cross-referenced segment type is
KM, DKM, or if you specified the ALL keyword in the JOIN command), the function sets the
return variable to one and retrieves the value of the specified field from the first instance it
finds.

The syntax of the LOOKUP function is
rcode = LOOKUP(/i el d);

where:
rcode

Is a variable you specify to receive a return code value. This value is 1 if the LOOKUP
function can locate a cross-referenced segment instance, O if the function cannot.

field

Is the field that you want to retrieve in the cross-referenced data source. Note that this
field name cannot exist in the host data source, and that the LOOKUP function may specify
only one field at a time. Each field you wish to retrieve requires a separate LOOKUP
function. To look up all fields in the cross-referenced segment, use LOOKUP (SEG.field).

Note that there may be no space between LOOKUP and the left parenthesis. The LOOKUP
function can exist by itself or as part of a larger expression. If it exists by itself, it must
terminate with a semicolon.

For example, you wish to update the amount of classroom hours employees have spent.
Because of a new system of accounting, employees taking classes after January 1, 1985 are
to be credited with 10% more classroom hours than their records indicate.

The employee IDs (EMP_ID) and classroom hours (ED_HRS) are located in the host segment.
The class dates (DATE_ATTEND) are located in the cross-referenced segment. The shared field
is the employee ID field.

Maintaining Databases 125

Computations: COMPUTE and VALIDATE

126

The data source structure is shown in this diagram:

EMP ID

ED_HRS

EMP_ 1D
BANK HAME DAT IHC | T ‘ TYPE PAY DATE

DATE ATTEHD

COURSE CODE DEL CODE

COURSE_NAME

The request is:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D ED_HRS

COVPUTE
EDTEST = LOOKUP(DATE_ATTEND) ;
COVPUTE
ED HRS = | F DATE_ATTEND GE 820101 THEN ED HRS * 1.1

ELSE ED_HRS;
MATCH EMP_I D
ON MATCH UPDATE ED_HRS
ON NOVATCH REJECT
DATA

A sample execution of this request might go as follows:

1. The request prompts you for an employee ID and number of class hours. You enter the ID
117593129 and 10 class hours.

2. The LOOKUP function locates the first instance in the cross-referenced segment containing
the employee ID 117593129. Since the instance exists, the function returns a 1 to the
EDTEST variable. This instance lists the class date as 821028 (October 28, 1982).

3. The LOOKUP function retrieves the value 821028 for the DATE_ATTEND field.

4. The COMPUTE statement tests the value of the DATE_ATTEND field. Since October 28,
1982 is after January 1, 1982, the statement increases the incoming ED_HRS value from
10 to 11 hours.

5. The request updates the classroom hours for employee 117593129 using the new
ED_HRS value.

1. Modifying Data Sources With MODIFY I

You may also use a data source value in a specific host segment instance to search the cross-
referenced segment. To do this, prepare the request this way:

. In the MATCH statement that selects the host segment instance, activate the host field.
This can be done with the ACTIVATE phrase (discussed in Active and Inactive Fields on page
204).

4 In the same MATCH statement, place the LOOKUP function after the ACTIVATE phrase.

This request displays the employee IDs, dates of salary raises, employee names, and the
position each employee held after the raise was granted:

.d The employee IDs and names (EMP_ID) are in the root segment.
.d The date of raise (DAT_INC) is in the descendant host segment.
4 The job titles are in the cross-referenced segment.

.4 The shared field is JOBCODE. You never enter any job codes; the values are all stored in
the data source.

The request is:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D DAT I NC
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE
MATCH DAT | NC
ON NOVATCH REJECT
ON MATCH ACTI VATE JOBCODE
ON MATCH COMPUTE
RTN = LOOKUP(JOB_DESC) ;
ON MATCH TYPE

"EMPLOYEE | Dx <EMP_I D"

" DATE | NCREASE: <DAT_I NC"
"NAME: <D. FI RST_NAME <D. LAST_NAME"
" PCSI TI ON: <JOB_DESC'

DATA

A sample execution might go as follows:

1. The request prompts you for an employee ID and date of pay raise. You enter employee ID
071382660 and date of raise 820101 (January 1, 1982).

2. The request locates the instance containing the ID 071382660, then locates the child
instance containing the date of raise 820101.

3. This child instance contains the job code AO7. The ACTIVATE statement activates this
value, making it available to the LOOKUP function.

Maintaining Databases 127

Computations: COMPUTE and VALIDATE

Syntax:

128

4. The LOOKUP function locates the job code AQ7 in the cross-referenced segment. It returns
a 1 into the RTN variable and retrieves the corresponding job description of SECRETARY.

5. The request displays the values using a TYPE statement:

EMPLOYEE | D: 071382660

DATE | NCREASE: 82/01/01

NAIVE: ALFRED STEVENS
PGSI TI ON: SECRETARY

Note: You may also need to activate the host field if you are using the LOOKUP function within
a NEXT statement. This request, similar to the previous one except for the NEXT statement,
displays the latest position held by a particular employee.

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOMATCH REJECT
ON MATCH CONTI NUE
NEXT DAT I NC
NONEXT REJECT
NEXT ACTI VATE JOBCODE
NEXT COVPUTE
RTN = LOOKUP(JOB_DESC) ;
MATCH TYPE
" EMPLOYEE | D <EMP_| D"
"DATE OF POSI TI ON: <DAT_I NC"
"NAVE: <D. FI RST_NAME <D. LAST_ NAME"
" POSI TI ON: <JOB_DESC'
DATA

2 229

How to Use an Extended Syntax With LOOKUP

If the function cannot locate a value of the host field in the cross-referenced segment, you may
specify that the LOOKUP function locate the next highest or lowest cross-referenced field value
in the cross-referenced segment by using an extended syntax.

To use this LOOKUP feature, the index must have been created on FOCUS Release 4.5 or later
with the INDEX parameter set to NEW (the binary tree scheme). To determine what type of
index your data source uses, enter the ? FDT command (see the Developing Applications
manual).

Note that a field retrieved by the LOOKUP function does not require the D. prefix to be
displayed in TYPE statements. FOCUS treats the field value as a transaction value.

The extended syntax of the LOOKUP function is

COVPUTE
rcode = LOOKUP(fi el d operator);

1. Modifying Data Sources With MODIFY I

where:

rcode

Is a variable you specify to receive a return code value. (The value the variable receives

depends on the outcome of the function below.)

field

Is the name of the field you want to use in MODIFY computations. Note that this cannot be

the cross-referenced field.

oper at or

These parameters specify the action the request takes if there is no cross-referenced
segment instance corresponding to the host field value. The actions can be one of the

following;:

EQ causes the LOOKUP function to take no further action if an exact match is not found. If
a match is found, the value of rcode is set to 1; otherwise, it is set to 0. This is the

default.

GE causes the LOOKUP function to locate the instance with the exact or next highest value

of the cross-referenced field.

LE causes the LOOKUP function to locate the instance with the exact or next lowest value

of the indexed field.

Note that there can be no space between LOOKUP and the left parenthesis.

This table summarizes the value of rcode depending on which instance the LOOKUP function

locates:
Action rcode value
Exact cross-referenced value located 1
Next highest cross-referenced value located 2
Next lowest cross-referenced value located 2
Cross-referenced field value not located 0]

Maintaining Databases

129

Messages: TYPE, LOG, and HELPMESSAGE

Reference: Using the LOOKUP Function in VALIDATE Statements

When you use the LOOKUP function, you may want to reject transactions containing values for
which there is no corresponding instance in the cross-reference segment. To do this, place the
function in a VALIDATE statement. If the function cannot locate the instance in the cross-
referenced segment, it sets the value of the return variable to 0. This causes the request to
reject the transaction.

The following request updates an employee's classroom hours (ED_HRS). If the employee
attended classes on or after January 1, 1982, the request increases the number of classroom
hours by 10%. The classroom attendance dates are stored in a cross-referenced segment (field
DATE_ATTEND). The shared field is the employee ID.

The request is:

MODI FY FI ELD EMPLOYEE
PROVPT EMP_I D ED HRS

VALI| DATE
TEST_DATE = LOOKUP(DATE_ATTEND) ;
COWPUTE
ED HRS = | F DATE_ATTEND GE 820101 THEN ED HRS * 1.1
ELSE ED HRS;
MATCH EMP_I D

ON MATCH UPDATE ED_HRS
ON NOVATCH REJECT
DATA

If the employee is not recorded in the cross-referenced segment, then the employee has never
attended a class. This means that a transaction recording the employee's classroom hours is
an error, and should be rejected.

This is the purpose of the LOOKUP function in the VALIDATE statement. If the function cannot
locate an employee's record in the cross-referenced segment, it returns a O to the TEST_DATE
field. This causes the request to reject the transaction.

Messages: TYPE, LOG, and HELPMESSAGE
This section describes how MODIFY requests handle messages. There are four types:
d Messages written into requests.
4 Messages indicating the rejection of transactions.
d Messages originating from the Master File with the HELPMESSAGE attribute.

.4 Messages that echo transactions.

130

1. Modifying Data Sources With MODIFY I

These messages are helpful in debugging MODIFY requests, locating rejected transactions,
and instructing the operator. There are two statements and one attribute that control the
display of messages:

d The TYPE statement enables you to write messages to the terminal and to sequential files.

.4 The LOG statement stores incoming or rejected transactions in sequential files and
controls the display of rejection messages.

d The HELPMESSAGE attribute is a field attribute included in the Master File (of FOCUS data

sources). Text messages specified in the Master are displayed in the TYPE area of MODIFY
CRTFORMSs.

Displaying Specific Messages: The TYPE Statement

The TYPE statement either appears on the terminal or stores in a sequential file messages
that you prepare. This section describes:

4 The syntax of the TYPE statement.
. Use of embedded data fields.

- Use of spot markers.

d Use of extended attributes.

Note: Text fields cannot be used with the TYPE statement.

Syntax: How to Use a TYPE Statement

The syntax of the TYPE statement is

TYPE [AT START| AT END] [ON ddnane]
" nmessage"
["message"]

where:
AT START

Displays a message at the beginning of execution only.

Maintaining Databases 131

Messages: TYPE, LOG, and HELPMESSAGE

132

AT END

Displays a message at the end of execution only. If you are using Case Logic, the TYPE AT
END statement must be in the case that generates the end-ofsfile condition. Either the
case must include a FIXFORM or FREEFORM statement that will reach the end of the
transaction data source; or a PROMPT statement, at which the user will type END or QUIT;
or a CRTFORM statement, at which the user will type END or press the PF3 key.

ON ddnane

Writes the message to a sequential file allocated to ddname. The TYPE statement can
write lines of up to 256 characters each, including blanks and embedded field values. If
you omit this phrase, the request displays the message on the terminal.

nessage

Is any message. Enclose each line in double quotation marks (except when you want to
display two lines as one line, as described later in this section in Embedding Spot Markers
on page 135.) If you are displaying messages at the terminal, the lines begin in column 2
on the screen. If you are writing the message to a file, the lines begin in column 3 in the
file. You may embed spot markers and data fields in the message.

Note that you can type the TYPE statement on one line. For example:

TYPE "THIS IS A ONE LI NE MESSAGE"

TYPE statements can stand by themselves, they can be part of MATCH and NEXT statements,
and they can follow VALIDATE statements. For example:

MODI FY FI LE EMPLOYEE

TYPE

"PLEASE ENTER THE FOLLOW NG DATA'

PROVPT EMP_I D CURR_SAL
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE CURR_SAL
DATA

This request asks the user to enter data at the beginning of every transaction. Note that there
is a blank message line both before and after the message "PLEASE ENTER THE FOLLOWING
DATA:" This enhances readability and appearance.

TYPE statements may be part of MATCH and NEXT statements. For example, this request
warns the user when an employee ID that the user has entered is not in the data source:

1. Modifying Data Sources With MODIFY I

Reference:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR_SAL
MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH TYPE

"NO SUCH EMPLOYEE | N THE DATABASE"
"PLEASE RETYPE THE EMPLOYEE | D"
ON NOVATCH REJECT
DATA

TYPE statements can display messages when incoming data values fail validation tests, as
discussed in Validating Transaction Values: The VALIDATE Statement on page 114. For
example, this request warns the user when a salary higher than $50,000 is entered:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR SAL
VALI DATE
SALTEST = | F CURR SAL LE 50000 THEN 1 ELSE O0;
ON | NVALI D TYPE
"THE CURR SAL VALUE |'S OVER 50000"
" AND THEREFORE CANNOT BE ENTERED | NTO THE"
" DATABASE. PLEASE NOTI FY YOUR SUPERVI SOR. "
MATCH EMP_I D
ON MATCH UPDATE CURR SAL
ON NOVATCH REJECT
DATA

Note that ON INVALID TYPE phrases can occur after VALIDATE statements that stand by
themselves or are part of MATCH statements. For example:

MATCH PAY_DATE
ON NOVATCH REJECT
ON MATCH VALI DATE
GROSS_TEST = | F GROSS LT 1500 THEN 1 ELSE O;
ON I NVALI D TYPE
"GROSS OVER $1500. PLEASE REENTER'

Embedding Data Fields

You can embed data fields in the middle of messages. Embedded data fields are described in
the Creating Reports manual. The kind of field you may embed depends on the position of the
TYPE statement:

.4 TYPE statements preceding MATCH or NEXT statements only accept incoming data fields in
messages, not data source fields.

4 This request contains a TYPE statement before the MATCH statement:

Maintaining Databases 133

Messages: TYPE, LOG, and HELPMESSAGE

134

MODI FY FI LE EMPLOYEE
FI XFORM EMP_I D/ 9 X1 CURR_SAL/ 8
TYPE
"EMPLOYEE | D. <EMP_I D SALARY: <CURR SAL"
MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT
DATA ON EMPSAL
END

.4 TYPE phrases in or following a MATCH or NEXT statement accept both incoming data fields
and data source fields in messages. The data source field must either be in the segment
instance that the MATCH or NEXT statement is modifying or in a parent instance along the
segment path (the parent instance, the parent's parent, and so on to the root segment). To
specify a data source field, affix the prefix D. to the field name.

This TYPE phrase displays both the incoming value of CURR_SAL and the data source value:

ON MATCH TYPE
"SALARY ENTERED | S: <CURR_SAL"
"OLD SALARY WAS: <D. CURR_SAL"

You can use embedded fields together in a statement to display a total. This request totals all
salaries updated:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR SAL
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH COMPUTE
TOTAL_SAL/ D10.2 = TOTAL_SAL + CURR SAL;
ON MATCH UPDATE CURR SAL
TYPE AT END
"TOTAL OF ALL NEW SALARIES | S <TOTAL_SAL"
DATA

Every time the user enters a salary, the request adds it to the running total TOTAL_SAL. After
the user enters the last salary, the request displays the TOTAL_SAL value embedded in the
message.

Note: Each line of text can contain up to 256 characters. This includes the lengths of the

embedded fields as defined by the display field formats (for example, the CURR_SAL field,
having the format D12.2M, takes up 15 characters, including decimal point, commas, and
dollar sign).

Embedded fields enable you to design your own log files to record transactions, replacing the
automatic log file facility activated by the LOG statement. This request logs accepted
transactions into the file ACCFILE and logs rejected transactions into the file REJFILE:

1. Modifying Data Sources With MODIFY I

Reference:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR SAL
MATCH EMP_I D
ON MATCH TYPE ON ACCFI LE
"<EMP_I D <12 <CURR_SAL"
ON MATCH UPDATE CURR SAL
ON NOVATCH TYPE ON REJFI LE
"<EMP_I D <12 <CURR_SAL"
ON NOVATCH REJECT
DATA

This request records in the ACCFILE file the employee ID and new salary entered by the user if
the ID is in the data source and records the ID and salary in the REJFILE file if the ID is not in
the data source. Note that the spot markers in both TYPE messages ensure that the fields will
be aligned in the files, making the files fixed sequential files. If the request logged the
transactions using the MODIFY LOG facility, the files would have been comma-delimited
because the request uses PROMPT to input data. Note that you must issue an allocation for
each log file prior to using it in the MODIFY request.

Embedding Spot Markers

You can embed spot markers in TYPE statement messages. Spot markers are devices that
place message text at different places on the screen. Spot markers are described in Tutorial:
Painting a Procedure. Some common spot markers are shown below (where n is an integer):

<n

Places text starting at the nth column.
<+n

Places text n columns to the right.
</n

Places text n lines down.
<0X

Positions the next character immediately to the right of the last character (skip zero
columns). This is used when you have two or more lines between the double quotation
marks in a procedure that make up a single line of information on a FIDEL screen. No
spaces are inserted between the spot marker and the start of a continuation line.

For example, the statement

Maintaining Databases 135

Messages: TYPE, LOG, and HELPMESSAGE

136

TYPE
"THE DOLLAR SIGN IS I N COLUW 40: <40 $"
"TEN SPACES ARE EMBEDDED <+10 IN THI' S LI NE"
"</1 THIS LINE SKIPS A LI NE <0X
AND PROVI DES AN EXAMPLE OF THE USE <0X
OF A COLUWN MARKER'

produces the following output:

THE DOLLAR SIGN IS IN COLUMN 40: 5
TEN SPACES ARE EMBEDDED IN THIS LINE

THIS LINE SKIPS f LINE AND PROVIDES AN EXAMPLE OF THE USE OF A COLUMN MARKER

Note: The spot marker to skip a line, </n, can appear on the same line with other text in a
TYPE statement. However, in a CRTFORM, this spot marker must appear on a line by itself (see
Designing Screens With FIDEL on page 227).

Sometimes, a line of text you want displayed cannot fit on one line within the TYPE command.
This can occur because you are indenting lines or because there are non-printable characters
in the message, such as spot markers and field prefixes. To have two lines in the TYPE
statement displayed as one line, do the following:

-1 End the first line without an end quotation mark.

.d Do not begin the second line with a quotation mark. Instead, begin the line with a <+n spot
marker where n is any number greater than or equal to zero.
This TYPE statement demonstrates how this feature can be used:

TYPE
"<D. FI RST_NAME <D. LAST_NAME EMP. #<EMP_I D
<+1 SALARY: <CURR_SAL"

If you enter in the employee ID 123764317 and a salary of $27,000, the request displays this
message:

JOAN | RVI NG EMP. #123764317 SALARY: $27,000. 00

You may write a message of several lines this way. Begin the first line of the message with a

quotation mark and end the last line with a quotation mark. Begin alternating lines with the <
+1 spot marker. This causes the request to display every two lines of text as one line.

For example, if you type this statement in the request:

1. Modifying Data Sources With MODIFY I

TYPE
" SALARY UPDATE PROCEDURE
<+1 WRI TTEN JUNE 26, 1985"
"ENTER EACH EMPLOYEE | D AND SALARY
<+1 AFTER THE PROWPTS"

The request displays the message as:

SALARY UPDATE PROCEDURE WRI TTEN JUNE 26, 1985
ENTER EACH EMPLOYEE | D AND SALARY AFTER THE PROVPTS

The following request employs both spot markers and embedded fields in messages:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH TYPE
"</1 EMPLOYEE <EMP_I D NOT | N THE DATABASE"
"PLEASE RETYPE NUVBER OR NOTI FY SUPERVI SOR'
NOVATCH REJECT
MATCH TYPE
"</1 EMPLOYEE <15 LAST _NAME <30 FI RST_NAMVE <45 SALARY"
"</1 <EMP_|I D <15 <D.LAST_NAVE
"<+1 <30 <D. FI RST_NAME <40 <D. CURR SAL"
"</ 1 ENTER SALARY FOR EMPLOYEE <EMP_| D'
ON MATCH PROMPT CURR SAL
ON MATCH UPDATE CURR_SAL
DATA

ON
ON

When you run this request, the session looks like this:

> EMPLOYEE ON 10/ 10/ 98 AT 19.44.47
DATA FOR TRANSACTI ON 1

EVP_I D = > 451123478
EVMPLOYEE LAST_NAME FIRST_NAME SALARY
451123478 MCKNI GHT ROGER $16, 100. 00

ENTER SALARY FOR EMPLOYEE 451123478

CURR_SAL = > 18500
DATA FOR TRANSACTI ON 2

EMP_I D = >

Maintaining Databases 137

Messages: TYPE, LOG, and HELPMESSAGE

Reference: Screen Attributes

138

If your request includes CRTFORMSs, you can enhance TYPE statements with screen attributes,
devices that display a line, part of a line, or an embedded field in color, in reverse video,
flashing, or underlined. Screen attributes are discussed in Designing Screens With FIDEL on
page 227, in connection with the FIDEL facility.

Note the following when using screen attributes in TYPE statements:

4 You may use screen attributes only in TYPE statements that follow a CRTFORM and will
appear on the screen beneath the CRTFORM during execution.

. Extended attributes in TYPE statements only work on terminals that can process all screen
attributes. To use screen attributes in TYPE statements, you must issue the command:

SET EXTTERM = ON

4 When you add an attribute to a line, whether you place the attribute before a field or before
text, the attribute remains in effect until the end of the line or until the next attribute,
whichever comes first.

. Attributes for TYPE statements are cleared at the end of each line. To apply an attribute to
a block of text, type the attribute at the beginning of each line.

This request uses attributes in TYPE statements:

MODI FY FI LE EMPLOYEE

CRTFORM

"ENTER EMPLOYEE | D: <EMP_I| D"
"ENTER SALARY: <CURR_SAL"
MATCH EMP_I D

ON MATCH UPDATE CURR_SAL
ON NOVATCH TYPE
"<.WH TE. EMPLOYEE #<. AQUA. EMP_| D'
"<.WHTE. IS <.RED. NOT <.WH TE. I N THE DATABASE"
"<.VWH TE. PLEASE NOTI FY SUPERVI SCR"
ON NOVATCH REJECT
DATA
END

The request displays the employee ID in aquamarine and the EMPLOYEE IS NOT IN THE
DATABASE message in white, except for the word NOT, which is in red.

1. Modifying Data Sources With MODIFY I

Logging Transactions: The LOG Statement

Syntax:

The LOG statement enables you to record transactions in sequential files automatically and to
control the display of rejection messages at the terminal. You may use the LOG statement to
record transactions in files, one file for each type of transaction: all transactions, accepted
transactions, and different types of rejected transactions. The statement can also shut off
MODIFY command rejection messages, enabling you to substitute your own.

How to Log Transactions in Sequential Files

The LOG statement enables you to record transactions processed by a MODIFY request in
sequential files. You can record all transactions or only transactions accepted into the data
source. You can record in separate files transactions rejected because of an ON MATCH
REJECT or ON NOMATCH REJECT phrase, transactions rejected because of validation tests,
and transactions rejected because of format errors.

Note that you can design your own log files by using the TYPE ON ddname statement described
in Displaying Specific Messages: The TYPE Statement on page 131 instead of the LOG facility.

You add a LOG statement for each file in which you are storing transactions. The syntax for the
LOG statement is

LOG category [ON ddnarne] [MSG { QN OFF}]

where:

category
Is the type of transaction to be logged. The types are:
TRANS are all transactions processed by the request.
ACCEPT are transactions accepted into the data source.

DUPL are transactions rejected because of an ON MATCH REJECT phrase (the transactions
have field values that match those in the data source).

NOVATCH are transactions rejected because of an ON NOMATCH REJECT phrase (the
transactions have field values that do not match values in the data source).

I NVALI D are transactions rejected because of data values that failed validation tests.

FORNVAT are transactions rejected because of data values that have invalid formats (for
example: a numeric field containing letters; an alphanumeric field with more characters
than allowed by the format). Any non-CRTFORM transaction that fails an ACCEPT test can
also be logged to this file.

Maintaining Databases 139

Messages: TYPE, LOG, and HELPMESSAGE

dadnanme

The ddname of the file to which you are writing.

M5G

Controls the display of rejection messages (messages displayed on the terminal when a
transaction is rejected). The default setting is ON, except for ACCEPT where the default is
OFF. The ON setting enables the display of rejection messages.

You can log messages on six files in one request. If the files existed before the user executed
the request, the logged transactions replace the file contents.

How the request stores transactions depends on the statement used to read them in.

FI XFORM

The request stores the transactions in fixed format. Each FIXFORM
statement retrieving data from the data source logs one transaction. Each
transaction consists of the fields defined by the FIXFORM statement plus
the fields to the end of the physical record.

FREEFORM

The request stores the transactions in comma-delimited format. Each
FREEFORM statement logs one transaction. Each transaction consists of
one physical record delimited by a comma-dollar sign (,$).

Note: Unless FREEFORM is explicitly included in the syntax, only the last
line entered will be logged.

PROVPT

The request stores the transactions in comma-delimited format. Each
PROMPT statement logs one transaction. Each transaction consists of data
collected from the first PROMPT statement in the request to the PROMPT
statement logging the transaction.

CRTFORM

The request stores the transactions in fixed format. Each CRTFORM logs
one transaction. Each transaction consists of data collected from the first
CRTFORM in the request to the CRTFORM logging the transaction.

When you allocate the files, you must assign each file a record length just large enough to hold
the transaction. How you determine the length depends on how the request reads

transactions:

140

1. Modifying Data Sources With MODIFY I

Fl XFORM Define the record length as the length of the longest logical transaction
and record, including blanks and commas between the fields. Remember that a
FREEFORM | logical transaction record can extend over more than one line in the
transaction data source (but is recorded as one line in the log file).

PROVPT Define the record length as the sum of the lengths of the fields as defined by
the FORMAT attribute (for example, a field having a format of D12.2 has a
length of 12), plus one byte for each field, plus one more byte.

CRTFORM Define the record length as the sum of the lengths of the fields as defined by
the FORMAT attribute (for example, a field having a format of D12.2 has a
length of 12), plus one byte for each CRTFORM, plus one more byte.

The sample request below updates employee salaries and logs the transactions on five
separate files. The original transaction data source was stored in file ddname SALFILE. Note
the VALIDATE statement that determines whether the salary in each transaction exceeds
$50,000.

MODI FY FI LE EMPLOYEE

LOG TRANS ON ALLTRANS
LOG ACCEPT ON GOODTRAN
LOG NOVATCH ON NOEMPL
LOG I NVALID ON BI GSAL
LOG FORVAT ON BADFORM

PROVPT EMP_I D CURR_SAL
VAL| DATE

SAL_TEST = I F CURR SAL GT 50000 THEN O ELSE 1;
MATCH EMP_I D

ON MATCH UPDATE CURR SAL

ON NOVATCH REJECT
DATA

Note the five files specified in the LOG statements:
.4 The ALLTRANS file records all transactions.
d The GOODTRAN file records transactions accepted into the data source.

d The NOEMPL file records transactions with employee IDs that do not exist in the data
source.

. The BIGSAL file records transactions with salaries that are too big (over $50,000).

-1 The BADFORM file records transactions with salaries having invalid characters.

Maintaining Databases 141

Messages: TYPE, LOG, and HELPMESSAGE

Syntax:

142

How to Control the Printing of Rejection Messages

The MSG option on a LOG statement allows you to control the display of FOCUS automatic
rejection messages. You can replace these messages by shutting them off and displaying your
own messages using the TYPE command. The FOCUS messages are the following:

.4 For transactions rejected because of an ON MATCH REJECT phrase (the transactions have
values that match values in the data source)

(FOC405) TRANS 17 REJECTED DUPL: segnent

where n is the transaction number and segment is the data source segment containing the
data value that matched the transaction value.

.4 For transactions rejected because of an ON NOMATCH REJECT phrase (the transactions
have values that do not match values in the data source)

(FOCA15) TRANS 1 REJECTED NOVATCH segment

where n is the transaction number and segment is the data source segment containing the
data field that failed to match the transaction value.

.4 For transactions rejected because of values that failed validation tests

(FOC421) TRANS n REJECTED | NVALID field

where n is the transaction number and field is the return code field.

.4 For transactions read in using FIXFORM that were rejected because of values with format
errors or ACCEPT errors

(FOC428) TRANS 17 REJECTED FORMAT COL mFLD field

where n is the transaction number, m is the first column of the field having the error, and
field is the data field containing the error.

.4 For transactions read in using FREEFORM and PROMPT that were rejected because of
values with format errors

(FOC210) THE DATA VALUE HAS A FORVAT ERROR Vv

where v is the data value.

. For transactions read in using CRTFORM that were rejected because of values with format
errors

SCREEN REJECTED.. FORMAT ERROR IN FIELD field

1. Modifying Data Sources With MODIFY I

where field is the data field with the format error.

. For transactions read in using CRTFORM or PROMPT that were rejected because a value
failed in an ACCEPT test

(FOC534) Data Value is not anobng the acceptable values for: field

where field is the data field containing the error.

In addition, FOCUS displays the rejected transaction after each rejection message (except for
format error transactions read in using PROMPT and CRTFORM).

You may want to replace these messages with your own. To do so, use the TYPE statement
described in Displaying Specific Messages: The TYPE Statement on page 131. To turn off the
FOCUS messages, use the LOG statement with this syntax

LOG category [ON ddnane] NMsG { QN OFF}

where:
cat egory

Is the type of transaction that triggers the rejection message: DUPL, NOMATCH, INVALID,
and FORMAT. These types are described previously in How to Log Transactions in
Sequential Files on page 139.

ON ddnane

Logs the transaction in a file defined by ddname. This option is described previously in
How to Log Transactions in Sequential Files on page 139.

MSG
Is the parameter that turns FOCUS rejection messages ON (the default) or OFF.

For example, this request shuts off the automatic NOMATCH message and replaces it with
another message:

MODI FY FI LE EMPLOYEE
LOG NOVATCH MSG OFF
PROVPT EMP_I D CURR SAL
MATCH EMP_I D
ON MATCH UPDATE CURR SAL
ON NOVATCH TYPE
"THI S EMPLOYEE | S NOT RECORDED | N THE DATABASE"
"DI D YOU ENTER THE | D NUVBER CORRECTLY?"
"THE NUMBER YOU ENTERED WAS: <EMP_| D'
ON NOVATCH REJECT
DATA

Maintaining Databases 143

Messages: TYPE, LOG, and HELPMESSAGE

Note that you may combine logging and the display of rejection messages in one LOG
statement. For example, to both log transactions rejected because of the ON NOMATCH
REJECT phrase and shut off the FOCUS message that results from those transactions, you can
use this LOG statement:

LOG NOVATCH ON NCEMPL MSG OFF

Adding the logging facility enables the end user to deal with problem transactions after
entering all the data.

Displaying Messages: The HELPMESSAGE Attribute

Syntax:

144

The HELPMESSAGE attribute enables you to specify a text message in the Master File of
FOCUS data sources. The message is displayed in the TYPE area of MODIFY CRTFORMSs.

How to Specify a HELPMESSAGE Attribute
The syntax for specifying the HELPMESSAGE attribute in the Master File is

FI ELDNAVE=nane, ALl AS=al i/ as, FORMAT=for nat,
HELPNVESSAGE= fext...,$

where:
text

Is a one-line text message up to 78 characters, which may include all characters and
digits. Text containing a comma must be enclosed in single quotation marks; leading
blanks are ignored.

For example:

FI ELDNAVE=LAST_NAME, ALI AS=LN, FORVAT=A10,
ACCEPT = SM TH JONES,
HELPMESSACGE = ' LAST_NAME MUST BE SM TH, OR JONES', $

The field for LAST_NAME has an ACCEPT attribute that tests values entered for that field. If a

value other than Smith or Jones is entered, the following messages will be displayed:

(FOC534) DATA VALUE IS NOT AMONG ACCEPTABLE VALUES FOR LAST_NAME
LAST_NAME MUST BE SM TH, OR JONES

The HELPMESSAGE attribute can be used with a field that has an ACCEPT test (see the
Describing Data manual), or any other field in the Master File.

Messages specified with the HELPMESSAGE attribute are displayed when:

4 The value entered for a data source field is invalid according to the ACCEPT test for that
field.

1. Modifying Data Sources With MODIFY I

- The value entered for a data source field causes a format error.

.4 The user places the cursor in the data entry area for a particular field and presses a
predefined PF key.

Regardless of the condition that triggers display of the message specified with the
HELPMESSAGE attribute, the same message will appear.

Displaying Messages: Setting PF Keys to HELP

Case Logic

Syntax:

In order to see the HELPMESSAGE text for a field on the CRTFORM, set a PF key to HELP
before executing the MODIFY procedure. To set a PF key, enter

SET PFnn = HELP

where:
nn
Is the number of the PF key you want to define as your HELP key.

To display a message for a particular field, position the cursor on the data entry area for that
field on the CRTFORM and press the defined PF Key. If no message has been specified for the
field, the following message will be displayed:

NO HELP AVAI LABLE FOR THI S FI ELD.

Case Logic allows you to branch to different parts of MODIFY requests during execution. This
enables you to construct more complex MODIFY requests. For example, Case Logic requests
can offer the terminal operator the choice of different procedures, process different transaction
records differently, or update multiple segment instances with a single transaction.

Case Logic also extends the use of the NEXT statement to process segment chains and
facilitates modifying multiple unique child segments.

To prepare a request using Case Logic, you divide the request into sections called cases. Each
case is labeled, allowing you to branch to the case from elsewhere in the request.

How to Use a Case Statement

Each case begins with the statement

CASE { AT START| casenane}

Maintaining Databases 145

Case Logic

where:
AT START

Indicates that the case is to be executed only at the beginning of the request. This case is
called the START case.

casename
Is a label of up to 12 characters that does not contain embedded blanks or the characters:

+- %/ &%

Each case ends with the statement:
ENDCASE

The CASE and ENDCASE statements must both be on lines by themselves.

The first case in the request, the one immediately following the MODIFY command, needs
neither a beginning nor an ending statement. It is automatically assigned the label TOP. Note,
however, that if the request contains only one case, you may want to begin the case with the
statement CASE TOP and end it with ENDCASE. This allows you to branch to the beginning of
the request from its middle.

The following request updates employee salaries in the EMPLOYEE data source. If the salary is
above $50,000, the request has the user retype the value to confirm it:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR_SAL
I F CURR_SAL GI' 50000 GOTO CONFI RM ELSE GOTO NEWSAL;

CASE NEWSAL
MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT
ENDCASE

CASE CONFI RM

TYPE
"THE SALARY YOU ENTERED EXCEEDS $50, 000"
" PLEASE REENTER THE SALARY TO CONFIRM | T"
"OR ENTER A NEW SALARY"

PROVPT CURR_SAL

GOTO NEWBAL

ENDCASE

DATA

This request consists of three cases: the TOP case, the NEWSAL case, and the CONFIRM
case. (The blank lines between cases are there to enhance readability and are not required.)

The TOP case contains the first two statements in the request:

146

1. Modifying Data Sources With MODIFY I

PROVPT EMP_I D CURR SAL
IF CURR _SAL GT 50000 GOTO CONFI RM

The TOP case prompts you for an employee ID and new salary. It then tests the salary value
you entered. If the salary is more than $50,000, it branches to the CONFIRM case. Otherwise,
the request proceeds with the next case.

The next case is the NEWSAL case. This case updates the employee salaries. After the
update, the request automatically returns to the beginning of the TOP case to prompt for the
next employee ID and salary.

The third case is the CONFIRM case. This is where the request branches if you enter a salary
higher than $50,000. The case asks you to reenter the salary. It then branches to the NEWSAL
case to enter the salary into the data source.

This is the order of cases executed if you enter a salary lower than $50,000:
1. The TOP case.

2. The NEWSAL case.

3. Back to the TOP case.

This is the order of cases executed if you enter a salary higher than $50,000:
1. The TOP case.

2. The CONFIRM case.

3. The NEWSAL case.

4. Back to the TOP case.

Rules Governing Cases

The following rules apply to cases:

.d Each case (except for the TOP case) must begin with a CASE statement and end with an
ENDCASE statement; both statements must appear on separate lines.

4 Each case must have a unique name within the MODIFY request.

.4 The TOP case is always the first case in the procedure. It has no beginning or ending case
statements. No other case may be labeled TOP.

. If the TOP case has both CRTFORM and COMPUTE commands, the CRTFORM (data entry) is
processed before the computation.

Maintaining Databases 147

Case Logic

148

There can be only one START case. If you include a START case, it must come after the
TOP case. The START case is discussed in Executing a Case at the Beginning of a Request
Only: The START Case on page 149.

4 No case may be named EXIT. The label EXIT refers to the end of the request.

4 Except for the TOP case, which must come first, and the START case, which follows after,

the cases may appear in the request in any order.

Except for the TOP and START cases, you can execute a case only by using a GOTO,
PERFORM, or IF statement to branch to it.

At the end of a case, the request branches back to the TOP case unless a GOTO or IF
statement states otherwise.

You cannot branch to the middle of a case, only to its beginning.

Each case must contain complete MODIFY statements, not phrases or fragments. For
example, the following case is illegal because ON NOMATCH REJECT is a phrase belonging
to the MATCH statement.

CASE REJECT

ON NOVATCH REJECT
ENDCASE

Cases cannot be nested; that is, you cannot put a case within another case. Each case
must end before another can begin.

You cannot have a statement between two cases except for comments. As soon as one
case ends, the next case must begin.

Certain MODIFY statements are global and apply to the request as a whole. We recommend
that these statements follow the last case:

START

STOP

LOG

DATA
CHECK

Cases do not allow you to use either the FREEFORM or the PROMPT statement in requests
with FIXFORM or CRTFORM statements. You also cannot use more than one FIXFORM
statement with CRTFORMs. For using FIXFORM statements with CRTFORMs, see Designing
Screens With FIDEL on page 227. You can mix FREEFORM statements with PROMPT
statements in one request, and one FIXFORM statement with CRTFORM statements.

There is no limit to the number of cases you can use in a MODIFY request.

1. Modifying Data Sources With MODIFY I

- If a request repeatedly executes a case that has a CRTFORM, the case can produce up to
75 TYPE messages. If it produces more, FOCUS aborts the request.

. If you use fields with D. and T. prefixes in TYPE statements and CRTFORMs, a MATCH or
NEXT statement must precede the fields, either in the same case or in a previously
executed case (but not before the TOP case).

Executing a Case at the Beginning of a Request Only: The START Case

You can have your request begin execution with an initial case that is never executed
afterwards. This case is called the START case and begins with the label:

CASE AT START

You cannot branch from other cases to the START case, but you can branch from the START
case to other cases. If you do not branch to another case, the START case passes control to
the TOP case. Note that the START case comes after the TOP case in the text of the request.

The following request counts how many employee salaries it updates. However, it starts
counting from three:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR_SAL
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH COVPUTE
SALCOUNT/ 14 = SALCOUNT + 1;
ON MATCH UPDATE CURR_SAL
TYPE AT END
" <SALCOUNT SALARI ES PROCESSED'

CASE AT START

COWPUTE
SALCOUNT = 3;

ENDCASE

DATA

The START case initializes the SALCOUNT counter to 3. After that, the request does not need
to refer to the case again.

Note that temporary fields used in the START case that appear earlier in the request must
have their formats defined there.

Branching to Different Cases: The GOTO, PERFORM, and IF Statements
Three statements branch to other cases:
d The GOTO statement, which branches unconditionally to another case. After the case

executes, control returns to the TOP case.

Maintaining Databases 149

Case Logic

Syntax:

Syntax:

150

-1 The PERFORM statement, which branches unconditionally to another case. When the case
called by the PERFORM reaches ENDCASE, control returns to the statement following the
PERFORM.

4 The IF statement, which branches to GOTO or PERFORM as above, depending on the value
of a logical expression.

How to Branch to Another Case With GOTO

GOTO statements unconditionally branch to another case. The syntax is
GOTO / ocation

where:

[ocation
Is one of the following:

TOP branches to the beginning of the TOP case.

ENDCASE branches to the end of the case. If the case was called by a PERFORM
statement either directly or indirectly (for example, a PERFORM statement called a case
that branched to this case), then control returns to the statement after the most recently
executed PERFORM statement. Otherwise, the request branches back to the TOP case.

casenane branches to the beginning of the specified case.

vari abl e branches to the beginning of the case whose name is the value of the
temporary field variable. The temporary field must have a format of A12.

EXI T terminates the request. This is useful when you want to halt execution before the
last transaction in a data source or the transaction specified by the STOP command. Note
that the statement GOTO EXIT is legal even in MODIFY requests without cases.

If a case does not have a GOTO statement, it branches to the TOP case upon completion
unless a PERFORM or IF statement branches somewhere else.

How to Use a PERFORM Statement

The PERFORM statement causes the request to branch to another case, executes that case,
then returns control to the statement after the most recently executed PERFORM statement.
The syntax is

PERFORM [/ ocation

1. Modifying Data Sources With MODIFY I

where:
/ ocation
Is one of the following:

TOP branches to the beginning of the TOP case. All return points are cleared and the
procedure continues as if no PERFORM statement had executed.

ENDCASE branches to the end of the case. If the case was called by another PERFORM
statement, either directly or indirectly (for example, a PERFORM statement called a case
that branched to this case), then control returns to the statement after the most recently
executed PERFORM statement. Otherwise, the request branches back to the TOP case.

casenamne branches to the beginning of a specified case.

var i abl e branches to the beginning of the case whose name is the value of the
temporary field variable. The temporary field must have a format of A12.

EXI T terminates the request.

A PERFORM statement can branch to a case containing a GOTO or IF statement that branches
to a second case. The second case can branch to a third case, and so on until the request
encounters an ENDCASE statement at the end of a case. Control then returns to the statement
after the most recently executed PERFORM statement.

A PERFORM statement can branch to a case containing a PERFORM statement that leads to
other cases. When the request encounters an ENDCASE statement at the end of a case,
control returns to the statement after the most recently executed PERFORM statement. Control
eventually returns to the original PERFORM.

If a case branches to the TOP case, control does not return to the last PERFORM. Rather, the
request begins a new cycle starting from the TOP case. All PERFORM return points are cleared.

Example: Using the PERFORM Statement

This sample request updates employee salaries. If a user enters a salary greater than
$50,000, the request checks the employee ID against a list of IDs in the sequential data
source EMPLIST. If the employee is listed, the request updates the salary; otherwise, it asks
the user to re-enter the information. The request is:

MODI FY FI LE EMPLOYEE

PROVPT EMP_I D CURR_SAL

PERFORM EMPCHECK

PERFORM UPSAL

TYPE
"SALARY OF EVMPLOYEE <EMP_I D UPDATED"

Maintaining Databases 151

Case Logic

152

CASE EMPCHECK
| F CURR SAL LE 50000 GOTO ENDCASE;
COVPUTE
RAI SE_OK/ A3 = DECODE EMP_I D (EMPLI ST ELSE ' NO);
I|F RAISE OK IS 'NO THEN PERFORM TOP;
ENDCASE

CASE UPSAL
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE CURR_SAL
ENDCASE
DATA
Supposing the data source EMPLIST contained the following data:
071382660 YES
451123478 YES
A sample execution might go as follows:

1. The request prompts you for an employee ID and a salary. You enter ID 818692173 and a
salary of $35,000.
2. The PERFORM EMPCHECK statement branches to the EMPCHECK case.

3. Since the salary is less than $50,000, the PERFORM ENDCASE phrase returns control to
the statement after the PERFORM EMPCHECK statement (PERFORM UPSAL).

4. The PERFORM UPSAL statement branches to the UPSAL case.

5. The case updates the salary and passes control to the TYPE statement (the statement
after the most recently executed PERFORM statement).

6. The TYPE statement displays the message:
SALARY FOR EMPLOYEE 8188692173 UPDATED

7. Control goes to the beginning of the TOP case.
8. The TOP case prompts you for an employee ID and a salary.
9. You enter an ID Of 119329144 and a salary of $65,000.

10.The PERFORM EMPCHECK statement branches to the EMPCHECK case. Since employee
119329144 is not listed in the EMPLIST data source, the IF...GOTO TOP phrase branches
to the TOP case.

11.The TOP case prompts you for an employee ID and a salary. You enter an ID of 071382660
and a salary of $65,000.

12.The PERFORM EMPCHECK statement branches to the EMPCHECK case. Since employee
071382660 is listed in the EMPLIST data source, control returns to the statement after the
most recently executed PERFORM statement (PERFORM UPSAL).

1. Modifying Data Sources With MODIFY I

Reference:

Syntax:

13.The PERFORM UPSAL statement branches to the UPSAL case, which updated the salary.
Control then passes to the TYPE statement (the statement after the most recently executed
PERFORM statement).

14.The TYPE statement displays a message:
SALARY FOR EMPLOYEE 071382660 UPDATED

15.Control goes to the beginning of the TOP case.

Rules for PERFORM Statements

d PERFORM statements can be nested; that is, one PERFORM statement can call a case
containing a second PERFORM statement. PERFORM statements can be nested to any
depth, limited only by available memory. If memory runs out, FOCUS displays the message:

(FOC187) PERFORMS NESTED TOO DEEPLY

- REPEAT statements can contain PERFORM statements. When control returns to the
statement after the most recently executed PERFORM statement, the REPEAT statement

resumes execution. For example:
REPEAT 5 TI MES
PERFORM ANALYSI S

COVPUTE AMOUNT/ D8. 2 = RECEI PTS + AWARDS;
ENDREPEAT

Each pass of this REPEAT statement executes the ANALYSIS case, then computes the
value of the AMOUNT field.

d When a PERFORM statement branches to a case, you can return control to the PERFORM
before the end of the case by including the GOTO ENDCASE or PERFORM ENDCASE
statement in the case.

How to Branch to Another Case With IF
The IF statement branches to another case depending on how an expression is evaluated. The
syntax is

IF expr [THEN] {GOTQ PERFORM /ocationl [ELSE {GOTQ PERFORMy [/ ocation2)

where:
expr

Is any logical expression legal in a DEFINE or COMPUTE IF statement (see the Creating
Reports manual). For example:

Maintaining Databases 153

Case Logic

Example:

154

| F CURR SAL GT 50000

| F SALARY/ 12 LT GROSS

| F LAST_NAME CONTAI NS ' BLACK'

I F (CURR_SAL GT SALARY) OR
(CURR_JOB CONTAINS ' B')

Note that literals must be enclosed in single quotation marks. Parentheses are necessary
if the expression is compound.

IF expressions cannot compare data source fields unless they are used in or following
MATCH or NEXT statements (see Branching to Different Cases: The GOTO, PERFORM, and IF
Statements on page 149).

/ocationl, [|ocation2
The options are:
TOP branches to the TOP case.

ENDCASE branches to the end of the case (the request then branches to the TOP case or
to the statement after the most recently executed PERFORM statement).

casel branches to the case named casel.
var branches to the case whose name is contained in the temporary field var.
EXI T terminates the request.
The word THEN is optional and is there to enhance readability.
An |IF statement can extend over several lines, but must end with a semicolon (;).

Like IF statements in TABLE requests and Dialogue Manager control statements, Case Logic IF
statements can be nested. You can nest IF statements so that if the outer IF expression is
true, the inner IF is executed. Place the inner IF phrase within parentheses following the THEN
phrase.

IF Statement

| F expressionl

THEN (I F expression2

THEN (I F expression3 GOTO case4 ELSE GOTO cased)
ELSE GOTO case?)

ELSE GOTO casel,

You can also nest IF statements so that if the outer IF expression is false, the inner IF is
executed. You place the inner IF statement after the ELSE phrase. The inner IF does not need
parentheses:

1. Modifying Data Sources With MODIFY I

I F expressionl THEN GOTO casel
ELSE | F expressi on2 THEN GOTO caseZ
ELSE | F expressi on3 THEN GOTO case3
ELSE. . .;

The following request offers the user a choice between deleting a segment instance and
including a new one:

MODI FY FI LE EMPLOYEE
COWPUTE CHO CE/ A6=;
TYPE
"ENTER ' UPDATE' TO UPDATE A SALARY"
"ENTER ' DELETE' TO DELETE AN EMPLOYEE"
PROVWPT CHO CE

IF CHO
ELSE |F CHO
ELSE GOTO TOP;

' UPDATE' THEN GOTO UPDSEG
' DELETE' THEN GOTO DELSEG

R QR

IS
IS

CASE UPDSEG
PROVPT EMP_I D CURR_SAL
MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT
ENDCASE

CASE DELSEG
PROVPT EMP_I D
MATCH EMP_I D
ON MATCH DELETE
ON NOVATCH REJECT
ENDCASE
DATA

This request has three cases:

4 The TOP case defines a variable called CHOICE, which will contain your response to its
menu:

If you enter UPDATE, the request branches to the UPDSEG case.
If you enter DELETE, the request branches to the DELSEG case.

If you enter neither, it reprompts you for another response by branching back to the
beginning of the case.

4 The UPDSEG case prompts you for the employee ID and new salary, and updates the
employee's salary.

Maintaining Databases 155

Case Logic

-l The DELSEG case prompts you for the employee ID, and deletes that ID from the data
source.

Rules Governing Branching

The following rules govern the sequence of case execution and branching:

.4 The request first executes the START case, if there is one. It then executes the TOP case,
unless the START case branches to another case.

1 If a case does not execute a GOTO statement, a PERFORM statement, or an IF statement
to branch to another case, it branches to the TOP case by default. This is true of both the
START and TOP cases. However, if the case was called by a PERFORM statement either
directly or indirectly (for example, a PERFORM statement called a case that branched to a
case that branched to this case), then control returns to the statement after the most
recently executed PERFORM statement.

4 A case can branch to itself.

.4 Branching to the TOP case, whether by a GOTO TOP statement, PERFORM TOP statement or
by default, deactivates all data fields (field activation and deactivation are described in
Active and Inactive Fields on page 204) and increments the transaction counter by one.

.4 When you branch to a case, you always branch to the beginning of the case. You can never
branch into the middle of a case.

. If one case contains a MATCH or NEXT statement that selects a particular segment
instance, it can branch to another case that modifies the child segment chain belonging to
the same instance. The second case need not reselect the parent instance, but it must
contain at least one MATCH statement. For example, the segment EMPINFO (key field
EMP_ID) has the child segment SALINFO (key field PAY_DATE). You can include a new
SALINFO segment with this request:

MODI FY FI LE EMPLOYEE
PROVPT EMP_| D PAY_DATE
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH GOTO NEWPAY

CASE NEWPAY
MATCH PAY_DATE
ON NOVATCH | NCLUDE
ON MATCH REJECT
ENDCASE
DATA

156

1. Modifying Data Sources With MODIFY I

The second case, NEWPAY, modifies the segment chain descended from the segment instance
selected in the TOP case.

GOTO, PERFORM, and IF Phrases in MATCH Statements

You can use GOTO, PERFORM, and IF statements in MATCH and NEXT statements, where they
form part of ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT phrases. IF phrases in
MATCH and NEXT statements can use data source fields in expressions. To do this, affix the
D. prefix to the field name. For example, the phrase

ON MATCH I F CURR_SAL LT D. CURR_SAL ...

tests whether the incoming value of CURR_SAL is less than the data source value of
CURR_SAL. The data source value must either be in the segment instance that the MATCH or
NEXT statement is processing or in a parent instance along the segment path (the parent, the
parent's parent, and so on, up to the root segment).

For example, this request does not accept a new salary for an employee if it is less than the
employee's present salary:
MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR_SAL
MATCH EMP_I D
ON NOVATCH REJECT

ON MATCH | F CURR_SAL LT D. CURR_SAL GOTO ERROR,
ON MATCH UPDATE CURR_SAL

CASE ERROR

TYPE
"YOU ENTERED A NEW SALARY"
"LESS THAN THE EMPLOYEE' S PRESENT SALARY"
"PLEASE REENTER DATA"

ENDCASE

DATA

This request consists of two cases:

.4 The TOP case prompts you for an employee ID and new salary. If the employee ID is in the
data source, the case tests whether the new salary is less than the present one. If the new
salary is lower, it branches to the ERROR case. Otherwise, it updates the salary and
branches back to the TOP case.

4 The ERROR case warns you that the salary you entered is unacceptable and branches back
to the TOP case.

Maintaining Databases 157

Case Logic

Example:

158

If the MATCH statement specifies fields in multiple segments (the technique of matching
across segments, described in Modifying Segments in FOCUS Structures on page 87), the
GOTO, PERFORM and IF phrases in the statement are only executed when the MATCH
statement modifies the last segment. For example, this request adds instances to the
EMPINFO, SALINFO, and DEDUCT segments:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D PAY_DATE DED_CODE
GOTO ADD

CASE ADD
MATCH EMP_I D PAY_DATE DED_CODE

ON MATCH REJECT

ON NOVATCH | NCLUDE

ON NOVATCH GOTO MESSAGE
ENDCASE

CASE MESSAGE
TYPE
"NEW | NSTANCE ADDED"
ENDCASE
DATA

The ADD case branches to the MESSAGE case only when it includes a new instance in the
segment containing the DED_CODE field. If you want the case to branch to the MESSAGE case
when it includes a new instance in any of the segments, then write the case with a separate
MATCH statement for each segment it searches:

CASE ADD
MATCH EMP_I D

ON MATCH CONTI NUE

ON NOVATCH | NCLUDE

ON NOVATCH GOTO MESSAGE
MATCH PAY DATE

ON MATCH CONTI NUE

ON NOVATCH | NCLUDE

ON NOVATCH GOTO MESSAGE
MATCH DED_CODE

ON MATCH REJECT

ON NOVATCH | NCLUDE

ON NOVATCH GOTO MESSAGE
ENDCASE

Using Case Logic and Validation Tests

You can also branch to other cases when an incoming field value fails a validation test. Do this
by including GOTO, PERFORM, and IF statements as part of the ON INVALID phrase. For
example, this request processes transactions with salaries higher than $50,000 in a separate
case:

1. Modifying Data Sources With MODIFY I

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
GOTO NEWBAL

CASE NEWSAL
PROVPT CURR_SAL
VALI DATE
SALTEST = I F CURR_SAL GI 50000 THEN O ELSE 1,
ON | NVALI D GOTO HI GHSAL
MATCH EMP_I D
ON MATCH UPDATE CURR_SAL
ON NOVATCH REJECT
ENDCASE

CASE HI GHSAL

TYPE
" SALARY ABOVE $50, 000 NOT ALLOWED'
"RETYPE SALARY BELOW

GOTO NEWSAL

ENDCASE

DATA

Case Logic Applications

Syntax:

This section discusses some examples of applications for Case Logic that extend the
capabilities of MODIFY requests. The applications are:

Looping through segment chains using the NEXT statement.

Modifying multiple unique segments.

Using Case Logic to process transaction data sources.

1

d

4 Using Case Logic to offer user choices.

1

4 Using Case Logic to process transactions based on the values of their fields.
1

Using Case Logic to process transactions with bad values.

How to Loop Through a Segment Chain With the NEXT Statement

The NEXT statement, discussed in Selecting the Instance After the Current Position: The NEXT
Statement on page 102, modifies or displays the next segment instance after the current
position in the data source. Using Case Logic, you can use NEXT statements to process entire
segment chains.

For an entire segment chain to be displayed, the request must branch back to the beginning of
the NEXT statement. Put the NEXT statement in a separate case, as shown below:

Maintaining Databases 159

Case Logic

160

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH TYPE
"WAGES PAI D TO EMPLOYEE #<EMP_| D'
ON MATCH GOTO SALHI ST

CASE SALHI ST

NEXT DAT_I NC
ON NEXT TYPE "<D. DAT_I NC <D. SALARY"
ON NEXT GOTO SALHI ST
ON NONEXT GOTO TOP

ENDCASE

DATA

This request consists of two cases:
4 The TOP case prompts you for an employee ID and branches to the SALHIST case.

d The SALHIST case contains one NEXT statement that displays the next instance of the
employee's salary chain. The case then branches back to the its beginning to display the
next instance. When it reaches the end of the chain, it branches back to the TOP case.

To return to the beginning of a segment chain, use the REPOSITION statement. The syntax is

REPCSI TION /el d

where field is any field of the segment. The REPOSITION statement allows you to return to the
beginning of the segment chain you are now modifying, or to the beginning of the chain of any
of the parent instances along the segment path (that is, the parent instance, the parent's
parent, and so on to the root segment). You can then search the segment chain from the
beginning.

The following request allows you to allocate a new monthly pay for a selected employee for
each pay date. The request accumulates each pay in a total. If this total pay exceeds the
employee's yearly salary, the request returns to the first pay date to permit you to enter new
values for the entire chain:

1. Modifying Data Sources With MODIFY I

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH GOTO PAYLOCOP
CASE PAYLOOP
NEXT PAY_DATE
NONEXT GOTO TOP
NEXT TYPE
"EMPLOYEE | D: <EMP_I D
"PAY DATE: <D.PAY_DATE MONTHLY PAY: <D. GRCSS"
NEXT PROVPT GROSS. ENTER MONTHLY PAY: .
NEXT COVPUTE
TOTAL_PAY/ D10. 2 = TOTAL_PAY + CRCSS;
NEXT | F TOTAL_PAY GTI D. CURR_SAL GOTO ERROCR,
NEXT UPDATE GROSS
NEXT GOTO PAYLOOP
ENDCASE

292

222 29

CASE ERRCR

TYPE
"TOTAL MONTHLY PAY EXCEEDS YEARLY SALARY"
"REENTER PROPOSED PAY STARTI NG FROM'
"THE FI RST PAY DATE"

REPGCSI TI ON PAY_DATE

COWUTE TOTAL_PAY = 0;

GOTO PAYLOOP

ENDCASE

DATA

Note that the ERROR case in the example warns you that the sum of the figures you entered
exceeds the employee's yearly salary. It then repositions the current position of the PAY_DATE
field at the beginning of the segment chain and branches back to the PAYLOOP case, allowing
you to reenter pay figures for the entire chain.

When you use INCLUDE, UPDATE, and DELETE actions in looping NEXT statements, note the
following;:

d Use the ON NEXT INCLUDE and ON NONEXT INCLUDE phrases only to add instances to
segments of type SO or blank. If you use these phrases to modify other segments, you will
duplicate what is already there. The difference between the two phrases is:

ON NEXT INCLUDE adds a new segment instance after the current position.

ON NONEXT INCLUDE adds a new instance at the end of the segment chain.

d Use the ON NEXT UPDATE phrase without restriction. The phrase updates the segment
instance at the current position. If you are looping with the NEXT statement, the phrase
updates the entire chain.

Maintaining Databases 161

Case Logic

-1 Use the ON NEXT DELETE phrase to delete entire segment chains. This phrase deletes the
segment instance at the current position. If you are looping with the NEXT statement, the
phrase deletes the entire chain, but only if you start at the beginning of a chain. Otherwise,
the phrase deletes every second instance.

Note that the phrases ON NONEXT UPDATE and ON NONEXT DELETE are illegal and will
generate error messages.

Example: Modifying Multiple Unique Segments

Modifying unique segments is described in Modifying Segments in FOCUS Structures on page
87. This section describes how to modify several unique segments descended from one parent
using the CONTINUE TO method.

To modify multiple unique segments, prepare separate cases containing a MATCH or NEXT
statement for each segment you are modifying. The sample request below illustrates this. The
request loads data into the SUBSCRIBE data source, which records magazine subscribers,
their mailing addresses, and expiration dates. The Master File is:
FI LE=SUBSCRI B , SUFFI X=FCC, $
SEGVENT=SUBSEG , $

FI ELD=SUBSCRI BER , ALl AS=NAMVE , FORVAT=A35 . $
SEGQVENT=ADDRSEG, SEGTYPE=U, PARENT=SUBSEG . $

FI ELD=ADDRESS , ALl AS=ADDR , FORVAT=A40 . $
SEGQVENT=EXPRSEG, SEGTYPE=U, PARENT=SUBSEG .3

FI ELD=EXPR_DATE , ALl AS=EXDATE , FORVAT=I 6DWT ,$

The following MODIFY request loads the data:

162

1. Modifying Data Sources With MODIFY I

MODI FY FI LE SUBSCRI B
PROVPT SUBSCRI BER
MATCH SUBSCRI BER
ON NOVATCH | NCLUDE
ON MATCH CONTI NUE
GOTO NEWADDR

CASE NEWADDR
PROVPT ADDRESS
MATCH SUBSCRI BER
ON NOVATCH REJECT
ON MATCH CONTI NUE TO ADDRESS
ON MATCH REJECT
ON MATCH GOTO NEWDATE
ON NOVATCH | NCLUDE
ON NOVATCH GOTO NEWDATE
ENDCASE

CASE NEVDATE
PROVPT EXPR_DATE
MATCH SUBSCRI BER
ON NOVATCH REJECT
ON MATCH CONTI NUE TO EXPR_DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE
ENDCASE
DATA

Note the last two cases in the request:

.4 The NEWADDR case loads subscriber addresses into the unique segment ADDRSEG. The
case examines the ADDRSEG segment. Does the subscriber have a mailing address listed?
If not, the request includes the new address. In either event, the request continues to the
NEWDATE case.

- The NEWDATE case loads expiration dates into the sibling unique segment EXPRSEG. It
examines the EXPRSEG segment with the EXPR_DATE field. Does the subscriber have a
magazine expiration date? If not, the request includes the new expiration date. If the
subscriber has an expiration date, the request checks to determine whether it gave the
subscriber a new address.

If the request gave the subscriber a new address, the request does not reject the
transaction.

If the request did not give the subscriber a new address, the request rejects the
transaction.

Maintaining Databases 163

Case Logic

If you were to include the MATCH statements in one case, the request would reject a
transaction if the subscriber already had either an address or an expiration date. Since you
want the transaction rejected only if the subscriber already has both, separate the MATCH
statements into separate cases.

Procedure: How to Use Case Logic to Offer User Selections

You can use Case Logic to offer users a selection of options. The request below offers a
choice between updating employee salaries, monthly pay, or addresses:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH GOTO MENU

CASE MENU

TYPE

"TO UPDATE THE EMPLOYEE' S SALARY, TYPE ' SALARY'
"TO UPDATE THE EMPLOYEE' S MONTHLY PAY, TYPE ' PAY'
"TO UPDATE THE EMPLOYEE' S ADDRESS, TYPE ' ADDRESS
COVPUTE CHO CE/ A7=;

IF CHOCE IS ' SALARY' THEN GOTO SALARY
ELSE |F CHO CE IS ' PAY' THEN GOTO PAY
ELSE |F CHO CE | S ' ADDRESS' THEN GOTO ADDRESS;
TYPE "I LLEGAL CHO CE, PLEASE TYPE ENTRY AGAI N'
GOTO MENU
ENDCASE
CASE SALARY

PROVPT CURR_SAL
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE CURR SAL
ENDCASE
CASE PAY
PROVPT PAY_DATE GROSS
MATCH PAY_DATE
ON NOVATCH REJECT
ON MATCH UPDATE GROSS
ENDCASE
CASE ADDRESS
PROVPT TYPE ADDRESS LNI ADDRESS LN2
MATCH TYPE
ON NOVATCH REJECT
ON MATCH UPDATE ADDRESS_LN1 ADDRESS LN2
ENDCASE
DATA

164

1. Modifying Data Sources With MODIFY I

Procedure: How to Use Case Logic to Process Transaction Data Sources

You can use Case Logic to process records in a transaction data source in different ways. For
example, each transaction record contains a field that defines what type of record it is. The
MODIFY request can use these record types to branch to the appropriate case and process the
transaction.

The following request processes two record types: type A updates employee department
assignments and job codes; type B updates salaries and classroom hours. The record type
field (called RTYPE) is the last field in each record. It contains either the letter A or B,
depending on the record type.

MODI FY FI LE EMPLOYEE
COWUTE RTYPE/ Al=;
FI XFORM X26 RTYPE/ 1
IF RTYPE | S ' A THEN GOTO TYPE_A
ELSE | F RTYPE IS ' B' THEN GOTO TYPE_B;
TYPE "BAD RECTYPE VALUE"
GOro TOP

CASE TYPE_A
FI XFORM X-27 EMP_I D/ 9 X1 DEPARTMENT/ 10
FI XFORM X1 CURR_JOBCODE/ 3 X3
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE
ENDCASE

CASE TYPE B
FI XFORM X-27 EMP_ID/9 X1 CURR SAL/8 X1 ED HRS/ 6 X2
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE CURR SAL ED_HRS
ENDCASE
DATA ON FI XTYPE
END

Notice the three FIXFORM statements: one in each of the cases. Only the statement in the TOP
case reads a record from disk or tape. The other two statements redefine the record for the
case.

Also note that each of these two statements begins with X-27, which allows the case to
redefine the 27-byte record from the beginning. Always place the notation X-n at the beginning
of the FIXFORM statement that is redefining the record, not at the end of the previous FIXFORM
statement.

A FIXFORM statement reads a new record from disk or tape if one of these conditions are met:

.4 The statement is the first FIXFORM statement in the request.

Maintaining Databases 165

Case Logic

Procedure:

166

-l The statement defines records to be longer than they were defined before. For instance, if
one FIXFORM statement defines a record of 80 bytes, and the next FIXFORM statement
defines a record from the same data source as being 90 bytes, the second FIXFORM
statement reads a new record.

.d The statement reads records from a different data source than the one read previously.
This is possible if the statement has the form

FI XFORM ON ddnarne

where ddname is the ddname of the second transaction data source. If the next FIXFORM
statement does not have the ON ddname option, it too reads another record.

How to Use Case Logic to Process Transactions Based on the Values of Their Fields

You can use Case Logic to process transactions depending on their field values. The following
request updates employee salaries. If the user enters a salary higher than $50,000, the
request checks the employee ID against a list of employees authorized for large salaries:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
GOTO NEWSAL

CASE NEWBAL
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH PROMPT CURR SAL
ON MATCH | F CURR SAL GT 50000 THEN GOTO HI GHSAL;
ON MATCH UPDATE CURR SAL
ENDCASE

CASE HI GHSAL
COWPUTE

SALTEST = DECODE EMP_I D (H GHPAY);
IF SALTEST NE 1 THEN GOTO WRONGSAL;
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE CURR SAL
ENDCASE

CASE WWRONGSAL

TYPE
"EMPLOYEE NOT AUTHORI ZED FOR SALARY | NCREASE"
"PLEASE REENTER THE DATA"

ENDCASE

DATA

1. Modifying Data Sources With MODIFY I

Procedure: How to Use Case Logic to Process Transactions With Bad Values

You can use Case Logic to process transactions with values that would otherwise cause the
transactions to be rejected. You do this by combining GOTO and IF phrases with:

.4 The ON MATCH phrase, if you are adding new segment instances.
d The ON NOMATCH phrase, if you are updating or deleting instances.

.4 The ON INVALID phrase, if you are validating incoming data fields.

This request updates employee salaries. If it cannot find an employee record, it queries the
user whether to include the transaction as a new employee record:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D CURR SAL
MATCH EMP_I D
ON MATCH UPDATE CURR SAL
ON NOVATCH GOTO QUERY

CASE QUERY
COWPUTE CHOI CE/ Al=;
TYPE
"EMPLOYEE | D NOT FOUND | N THE DATABASE"
"] NCLUDE THE TRANSACTI ON ANYWAY (Y/ N) ?"
PROVPT CHO CE
IF CHOCE IS'Y THEN GOTO | NCLUDE
ELSE | F CHO CE IS ' N THEN GOTO REJECT;
TYPE "PLEASE TYPE EI THER Y OR N'
GOTO QUERY
ENDCASE

CASE | NCLUDE
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE
ENDCASE

CASE REJECT
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH REJECT
ENDCASE
DATA

Tracing Case Logic: The TRACE Facility

The TRACE facility displays the name of each case that is entered during the execution of a
MODIFY request. This is a useful tool for debugging large Case Logic requests.

You can allocate the output to a file or to your terminal. Then, add the word TRACE to the end
of the MODIFY command line

Maintaining Databases 167

Case Logic

168

MODI FY FI LE f//ename TRACE

where:
filename
is the name of the FOCUS data source you are modifying.

When the TRACE facility is on, it lists in the HLIPRINT file the name of the case about to run

TRACE ===> AT CASE case

where:
case
Is the name of the case.

Note that if you are using FIDEL and displaying the TRACE output on the terminal, the following
happens. When you enter a CRTFORM screen, the screen clears and displays the name of the
next case. Clear the screen, and the next CRTFORM screen appears.

The request and sample execution below illustrate the use of the TRACE facility:

MODI FY FI LE EMPLOYEE TRACE
PROVPT EMP_I D CURR_SAL

| F CURR_SAL GI' 50000 GOTO HI GHSAL
ELSE GOTO UPDATE;

CASE UPDATE
MATCH EMP_I D
ON MATCH UPDATE CURR SAL
ON NOMVATCH REJECT
ENDCASE

CASE HI GHSAL
TYPE

"YOU ENTERED A SALARY ABOVE $50, 000"
PROVPT CURR_SAL. PLEASE REENTER THE SALARY.
I F CURR_SAL GI' 50000 GOTO HI GHSAL
ELSE GOTO UPDATE;

ENDCASE
DATA

The following is a sample execution of the previous request:

1. Modifying Data Sources With MODIFY I

> EMPLOYEE ON 10/ 04/ 98 AT 14.02.33
x% START OF TRACE **

TRACE ===> AT CASE TOP

DATA FOR TRANSACTI ON 1

EMP_ID = > 112847612
CURR_SAL = > 67000
TRACE ===> AT CASE HI GHSAL

YOU ENTERED A SALARY ABOVE $50, 000

PLEASE REENTER THE SALARY > 27000
TRACE ===> AT CASE UPDATE

TRACE ===> AT CASE TOP

DATA FOR TRANSACTI ON 2

EWID=0

Multiple Record Processing

Multiple record processing enables you to process multiple segment instances at one time.
One important application is the use of multiple record processing with the FIDEL facility to
enable the terminal operator to add, update, or delete several segment instances on one
screen. This section discusses multiple record processing based on this application. However,
you can apply the principles stated here to other applications as well.

Usually, a MODIFY request using FIDEL prompts you for a key field value, then uses the value
to retrieve one segment instance. After you modify the instance, you enter the key field value
to retrieve the next instance. This way, you modify segment instances one at a time.

Multiple record processing causes the request to retrieve multiple segment instances before
FIDEL displays instance values. Each time the request retrieves an instance, it stores the
instance values in a work area in memory called the Scratch Pad Area. The request continues
to retrieve instances until it reaches a specified number.

After the request has retrieved the instances, FIDEL reads the instance values from the
Scratch Pad Area and displays them all on one screen. The user can update these values and
transmit the updated values back to the data source with one press of the Enter key.

Note: Text fields cannot be put into the Scratch Pad (HOLD).

You may also design a request that adds several instances at one time, or a request that both
updates existing instances and adds new ones all on the same screen.

The REPEAT Method on page 170 describes multiple record processing using the REPEAT
statement. This method requires only that you know the fields you want to process. However, it
only enables you to process instances from one segment at a time.

Maintaining Databases 169

Multiple Record Processing

Manual Methods on page 180 discusses manual methods that require you to know how
instances are stored in the Scratch Pad Area. These methods are more powerful and enable
you to process multiple segments at one time.

The REPEAT Method

170

One REPEAT statement collects segment instances and loads them into the Scratch Pad Area;
another REPEAT statement retrieves the instances from the Area and uses them to modify the
data source. This method does not require you to know how the instances are stored in the
Area; however, you must process the instances sequentially, and you can process only one
segment at one time.

Multiple record processing has four phases. They are:

1. Selection. The request selects the parent instance of the instances to be processed.

2. Collection. The request retrieves multiple segment instances and stores their data values
in the Scratch Pad Area.

3. Display. The FIDEL facility displays the data on one screen for editing.

4. Modification. The request uses the edited data values to modify the data source.

The Selection Phase: Selecting the Parent Instance

To modify multiple instances in a segment, you must first identify the parent instance. (If you
are modifying the root segment, skip this phase and start with The Collection Phase: Storing
Instances in a Buffer on page 171.) Do this as you would any other request.

For example, the beginning of this request identifies an employee ID in the EMPLOYEE data
source, allowing you to modify the employee's child segment instances:

MODI FY FI LE EMPLOYEE
CRTFORM LI NE 2

LLEE S Sk kO

"* MONTHLY PAY UPDATE x

LIRS Sk

"ENTER EMPLOYEE' S I D: <EMP_I D'

MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH GOTO COLLECT

If you are using multiple record processing only to create new instances, skip the collection
phase and proceed directly to the display phase. The following MATCH statement adds a new
employee ID to the data source. It then branches to the case NEWADDRESS where the display
phase prompts the user for all the employees' addresses:

1. Modifying Data Sources With MODIFY I

MODI FY FI LE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE' S I D: <EMP_I D'
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE
ON NOVATCH GOTO NEWADDRESS

The Collection Phase: Storing Instances in a Buffer

During the collection phase, the request retrieves multiple segment instances and stores their
values in the Scratch Pad Area.

After identifying the parent instance, read the child instances into the Scratch Pad Area (if you
are modifying the root segment, reading the instances into the Area is your first step). You do
this using the REPEAT statement, which the request executes repeatedly. Each time the
request executes a REPEAT statement, the phrases in the statement retrieve one segment
instance and store its data values in the Area.

Syntax: How to Use a REPEAT Statement

The syntax of the REPEAT statement is

REPEAT {*| count}[TIMES] [MAX //mt] [NOHOLD|
ph.rases

ENDREPEAT

where:
count

Is an integer or temporary integer field determining the number of times the request
executes the REPEAT. This value can be between O and 32,767, but should be no smaller
than the number of segment instances you want to display on the FIDEL screen.

If this value is O, the request does not execute the REPEAT (this allows you to skip a
REPEAT if you are using a temporary field for this parameter). If the value is an asterisk,
the REPEAT is executed 65,535 times. Once the REPEAT begins execution, the value
cannot be changed.

TI VES

Is an optional word, which you can add to enhance readability.

Maintaining Databases 171

Multiple Record Processing

limt
Is an integer specifying the maximum number of times the request can execute the

REPEAT. Specify this parameter only if you are using a temporary field for the count
parameter.

NCHOLD

Is an option that enables you to use REPEAT as a simple loop that executes any group of
MODIFY statements repeatedly.

phrases

Are the MODIFY statements to be executed within the REPEAT statement. Each phrase
must begin on a new line.

ENDREPEAT
Ends the statement. This phrase must be on a line by itself.

There are three types of REPEAT statements:

d Stacking REPEAT statements. These statements contain HOLD phrases that stack data into
the Scratch Pad Area. They appear in the collection phase of multiple record processing.

d Retrieving REPEAT statements. These statements retrieve data placed in the Scratch Pad
Area by the stacking REPEAT statements. They usually appear in the modification phase
and in validation routines in multiple record processing.

. Simple REPEAT statements. These statements consist of any combination of MODIFY
statements to be executed repeatedly. You indicate a simple repeat statement by
specifying the NOHOLD option in the REPEAT phrase. Simple REPEAT statements neither
stack data nor retrieve data from the Scratch Pad Area.

FOCUS determines the type of REPEAT statement in the following manner:
. If the statement specifies the NOHOLD option, it is a simple REPEAT statement.
. If the statement contains a HOLD phrase, it is a stacking REPEAT statement.

d If the statement neither specifies the NOHOLD option nor contains a HOLD phrase, it is a
retrieving REPEAT statement.

The REPEAT statement can stand by itself, or it can be part of an ON MATCH, ON NOMATCH,
ON NEXT, or ON NONEXT phrase in a MATCH or NEXT statement. For example:

REPEAT 12 TI MES

ON MATCH REPEAT 6

172

1. Modifying Data Sources With MODIFY I

Syntax:

ON NEXT REPEAT BUFCOUNT NMAX 10

Note: You cannot nest REPEAT statements; one statement must end before another can
begin.

Two GOTO phrases especially apply to REPEAT statements. They are:

4 GOTO ENDREPEAT. This phrase branches processing to the end of the REPEAT statement,
increments the counter by 1, and executes the request REPEAT again.

-1 GOTO EXITREPEAT. This phrase branches processing to the first executable statement
following the REPEAT loop.

This REPEAT saves the first five pay dates and monthly pay amounts in the EMPLOYEE data
source in the Scratch Pad Area:

CASE COLLECT
REPEAT 5 TI MES
NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO EXI TREPEAT
ENDREPEAT
GOTO DI SPLAY
ENDCASE

Note the ON NONEXT GOTO EXITREPEAT phrase. This specifies that if there are less than five
employee IDs in the segment chain, the request will branch to the next statement after the
REPEAT. If the ON NONEXT phrase was not included, the request would automatically branch
back to the beginning of the request.

How to Store Instances With the HOLD Phrase

The REPEAT statement retrieves instances using MATCH and NEXT statements. Each time the
REPEAT retrieves an instance, you may store the instance values in the Scratch Pad Area. Do
this with the phrase

HOLD [SEG | field-1 field-2 ... field-n

where field-1 through field-n are the data fields whose values you want to save in the Scratch
Pad Area. The specified fields can be data source fields or temporary fields. The data source
fields must exist either in the instance or in a parent instance along the segment path (the
parent of the instance, the parent's parent, and so on to the root segment). For example, the
phrase

HOLD EMP_I D FI RST_NAME LAST_NAME CURR_SAL

Maintaining Databases 173

Multiple Record Processing

Reference:

174

stores the employee IDs, first and last names, and salaries of each retrieved instance in the
Scratch Pad Area.

If you want to save the values of all the data fields in the instance, specify just one field with
the SEG. prefix affixed to the front of the field name.

HOLD stores the fields whether they are active or inactive. To ensure that the fields placed in
the Scratch Pad Area are active, use the ACTIVATE phrase described in Active and Inactive
Fields on page 204.

The HOLD phrase can stand by itself, or it can be part of an ON MATCH, ON NOMATCH, ON
NEXT, or ON NONEXT phrase in a MATCH or NEXT statement. If you use HOLD in ON NOMATCH
and ON NONEXT phrases, you may specify only temporary fields and fields in parent instances
along the segment path. If the list of fields is too long to fit on one line, repeat the word HOLD
for each line you need. Some examples are:

HOLD EMP_I D LAST_NAME FI RST_NAMVE DEPARTMENT
HOLD CURR_JOBCODE ED_HRS

ON MATCH HOLD EMP_I D DEPARTMENT CURR_SAL

ON NONEXT HOLD DEPCCDE

When a REPEAT statement containing a HOLD phrase begins execution, FOCUS clears the
Scratch Pad Area of data stored from previous REPEATSs.

The following is a piece of a MODIFY request that executes the collection phase:

CASE COLLECT
REPEAT 5 TI MES
NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO DI SPLAY
ENDREPEAT
GOTO DI SPLAY
ENDCASE

The REPEATCOUNT and HOLDCOUNT Variables
Two variables assume values during the collection phase. These are:
.d The REPEATCOUNT variable. This variable contains the value of the REPEAT counter.

- The HOLDCOUNT variable. This variable contains the current number of instances stored in
the Scratch Pad Area.

If you design your request with Case Logic, you can test and branch on these variables. The
following IF statement branches to the TOP case if the preceding REPEAT did not retrieve any
segment instances:

1. Modifying Data Sources With MODIFY I

I F HOLDCOUNT EQ 0 GOTO TCOP

Please note the following values that the REPEATCOUNT and HOLDCOUNT variables take under
these circumstances:

.4 When a REPEAT statement begins execution, REPEATCOUNT is set to 1.
1 If a REPEAT is set to execute O times, REPEATCOUNT is set to O.

d If the REPEAT beginning execution contains HOLD phrases, the Scratch Pad Area is cleared
and HOLDCOUNT is set to 0. If the REPEAT does not contain HOLD phrases, HOLDCOUNT
is unchanged.

. At each repetition of the REPEAT, REPEATCOUNT is increased by one. After each HOLD
phrase is executed, HOLDCOUNT is increased by one.

.d The REPEATCOUNT variable maintains its value after the REPEAT completes execution until
the next REPEAT, even if the request branched from the REPEAT with a GOTO phrase.

Note: A CRTFORM displaying records in the Scratch Pad Area can change the HOLDCOUNT
value. For this reason, you may want to store the HOLDCOUNT value in a temporary field for
use later in the request. For example, this COMPUTE statement saves the value of the
HOLDCOUNT field in the temporary field BUFFNUMBER:

COVMPUTE BUFFNUMBER/ | 5 = HOLDCOUNT;

The Display Phase: Displaying Instances in One CRTFORM

After the request stores the segment instance values in the Scratch Pad Area, you display the
values on one screen using the FIDEL facility (see Designing Screens With FIDEL on page
227). Since you use the same field hames for all instances (multiple record processing can
only modify one segment at a time), you must distinguish between instances. To do this, add
subscripts to the fields using the form.

field(n)

where n (the subscript) is an integer greater than 0. The subscript indicates the instance that a
field belongs to in the order that the instances are read from the Scratch Pad Area.

For example, this CRTFORM displays the employee IDs, departments, and salaries of five
segment instances numbered 1 through 5:

Maintaining Databases 175

Multiple Record Processing

Procedure:

176

CASE DI SPLAY
I F HOLDCOUNT EQ 0 GOTO TOP;
COWPUTE
BUFFNUMBER/ | 5=HOL DCOUNT;
CRTFORM LI NE 9
" MONTHLY PAY FOR <D. FI RST_NAME <D. LAST_NAME"

' PAY DATE AMOUNT PAI D

" <D, PAY_DATE(1) <T. GROSS(1) >"
" <D. PAY_DATE(2) <T. GROSS(2) >"
" <D. PAY_DATE(3) <T. GROSS(3) >"
" <D. PAY_DATE(4) <T. GROSS(4) >"
" <D. PAY_DATE(5) <T. GROSS(5) >"
GOTO UPDATE
ENDCASE

Note the D. prefix (display) that displays protected field values, and the T. prefix (turnaround)
that displays field values to be updated. Display fields and turnaround fields are described in
Designing Screens With FIDEL on page 227. Make all turnaround fields non-conditional; that is,
end the field name with a right caret.

Once you have updated the values, you can transmit all the changes at one time by pressing
the Enter key. These changes update the appropriate instances in the Scratch Pad Area. The
request then branches to the modification phase (the UPDATE case), where your changes are
entered into the data source. The CRTFORM may then prompt you for the next parent instance
or may display the next set of multiple instances for you to change.

For example, a request that updates employee's monthly pay prompts you for an employee ID.
This employee has eight pay dates recorded. The screen displays the first five pay dates. Make
your adjustments and press Enter. The screen displays the last three pay dates. Make your
adjustments and press Enter. The request then prompts you for the next employee ID.

You may add subscripts to fields only in CRTFORMs, not in REPEATs. REPEATSs that follow the
CRTFORMSs process the fields in the order of the instances in the Scratch Pad Area, one at a
time.

How to Position the Cursor on Specific Field Values

You can design the request so that the cursor is automatically positioned on a particular field
value on the FIDEL screen. To do this, set the CURSOR variable equal to the field name, as
described in Designing Screens With FIDEL on page 227. If the fields are subscripted, set a
field called CURSORINDEX equal to the value of the subscript. For example, this COMPUTE
statement places the cursor on the field CURR_SAL(3):

1. Modifying Data Sources With MODIFY I

COVWPUTE
CURSOR/ A12 = ' CURR_SAL';
CURSORI NDEX = 3;

These cursor-positioning variables are useful when you perform validation tests on data
entered on the FIDEL screen. After the CRTFORM, write a REPEAT statement for each field you
are validating. Specify as many executions for the REPEAT as the highest subscript in the
CRTFORM.

In the REPEAT statement:
- Set the CURSOR variable equal to the name of the field you are validating.

.d Set the CURSORINDEX variable equal to the REPEATCOUNT variable. This sets the
CURSORINDEX variable to the subscript of the field being validated.

4 Validate the field.

. If a field value proves invalid, branch back to the CRTFORM using Case Logic. The CURSOR
and CURSORINDEX variables will position the cursor at the invalid value.

Note: Remember to assign the CURSOR variable a format of A12 and the CURSORINDEX
variable a format of 15.

This is a sample case validating the CURR_SAL field:

CASE DI SPLAY
CRTFORM

" EMPLOYEE SALARY DEPARTNENT"
"<D,EMP_I (1) <T.CURR SAL(1)> <T. DEPARTMENT(1)>"
"<D. EMP_I(2) <T.CURR SAL(2)> <T. DEPARTMENT(2)>"
"<D, EMP_I (3) <T.CURR SAL(3)> <T. DEPARTMENT(3)>"
"<D. EMP_I D(4) <T.CURR SAL(4)> <T. DEPARTMENT(4)>"
"<D, EMP_I(5) <T.CURR SAL(5)> <T. DEPARTMENT(5)>"

REPEAT 5 TI MES
COVPUTE
CURSOR/ A12 = ' CURR_SAL';
CURSORI NDEX/ 15 = REPEATCOUNT;
VALI DATE
SALTEST = | F CURR_SAL GI 50000 THEN O ELSE 1;
ON | NVALI D TYPE
"THI S SALARY ENTERED WAS TOO HI GH'
"PLEASE RE- ENTER'
ON | NVALI D GOTO DI SPLAY
ENDREPEAT
ENDCASE

Maintaining Databases 177

Multiple Record Processing

178

The Modjification Phase

After the user has entered changes on a FIDEL screen, the request uses the data to update
instances in the Scratch Pad Area and to add new ones. To transfer the changes from the Area
to the data source, prepare a REPEAT statement that modifies a data source instance on each
pass.

This REPEAT updates the EMPLOYEE data source using data entered on the FIDEL screen
shown in the previous section, The Display Phase: Displaying Instances in One CRTFORM on
page 175. The REPEAT should execute as many times as there are instances in the Scratch
Pad Area. This number was stored in the HOLDCOUNT variable. However, the HOLDCOUNT
value can be changed by the CRTFORMSs that display records in the Area. Therefore, you should
store the HOLDCOUNT variable in a temporary field in the display phase before the CRTFORM.
(This is shown in the example at the beginning of the section mentioned above.) This field can
then set the number of times that the REPEAT statement executes.

At each pass, the REPEAT statement retrieves one instance from the Scratch Pad Area. It can
then match on key fields in the instance to locate the corresponding instance in the data
source (or determine that such an instance does not exist), then update the data source
instance or add a new one.

In this example, the case UPDATE updates the data source instances, then branches back to
the collection phase (COLLECT case). The collection phase reads the next five employee pay
dates, which you can then change on the CRTFORM. This cycle continues until all the
employee's pay dates have been read. You then enter the ID of the next employee. The
number of instances in the Scratch Pad Area is contained in the temporary field BUFFNUMBER:

CASE UPDATE
REPEAT BUFFNUMBER
MATCH PAY_DATE
ON NOVATCH | NCLUDE
ON MATCH UPDATE GROSS
ENDREPEAT
GOTO COLLECT
ENDCASE

DATA VI A FI 3270
END

1. Modifying Data Sources With MODIFY I

Example: Using Multiple Record Processing (REPEAT Method)

The sample request on the next page updates the monthly pay of employees. The CRTFORM in
the display phase displays the data for the five months in which the employee was paid. After
you update the monthly pay of these five months, the display phase displays the next five
months. This continues until it displays all the months recorded for that employee. The request
then prompts for the next employee ID.

The request is as follows:

MODI FY FI LE EMPLOYEE
CRTFORM LI NE 2

LE S S S SRS S SRS SR REEEREEREEEEEEEEEEREEEEEEE S

"*MONTHLY PAY UPDATE*"

LE S SR SRR R SR EEEEEEEEEREEEEEEEREEEEEEEEEE S

"ENTER EMPLOYEE S | D: <EMP_I D"

MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH GOTO COLLECT

CASE COLLECT
REPEAT 5 TI MES
NEXT PAY_DATE

ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO DI SPLAY

ENDREPEAT

GOTO DI SPLAY

ENDCASE

Maintaining Databases 179

Multiple Record Processing

CASE DI SPLAY
| F HOLDCOUNT EQ O GOTO TOP;
COVPUTE
BUFFNUVBER/ | 6=HOL DCOUNT;
CRTFORM LI NE 9
" MONTHLY PAY FOR <D. FI RST_NAME <D. LAST_NAME"

"PAY DATE AMOUNT PAI D'
" <D. PAY_DATE(1) <T. GROSS(1) >"
" <D. PAY_DATE(2) <T. GROSS(2) >"
" <D, PAY_DATE(3) <T. GROSS(3) >"
" <D. PAY_DATE(4) <T. GROSS(4) >"
" <D, PAY_DATE(5) <T. GROSS(5) >"
GOTO UPDATE

ENDCASE

CASE UPDATE

REPEAT BUFFNUMBER
MATCH PAY_DATE
ON NOVATCH | NCLUDE
ON MATCH UPDATE GRCSS
ENDREPEAT
GOTrO COLLECT
ENDCASE
DATA VI A FI 3270
END

Manual Methods

180

This section discusses manual methods of multiple record processing. These methods allow
you to manipulate individual records in the Scratch Pad Area and to process instances from
multiple segments at one time.

Manual methods depend on two temporary fields:

.d The HOLDINDEX field. This field contains index values of records in the Scratch Pad Area.
When you place a record in the Area using the HOLD statement, FOCUS assigns the record
an index value equal to the value of the HOLDINDEX field. When you request a record from
the Area using the GETHOLD statement, FOCUS retrieves the record having an index value
equal to the value of the HOLDINDEX field.

When you place a record into the area using the HOLD phrase, set HOLDCOUNT equal to
HOLDINDEX, then increment HOLDINDEX by 1.

.4 The SCREENINDEX field. This field determines the group of records to appear on
subscripted CRTFORMs.

1. Modifying Data Sources With MODIFY I

There are manual methods for the collection, sorting, display, and modification phases of
multiple record processing. There are no manual methods for the first phase, the selection
phase (discussed in Multiple Record Processing on page 169). Note, however, that if you
process multiple segments that have no common parent, you must select the parent instance
of each segment chain.

Initialization

Before loading instances into the Scratch Pad Area, the request may need to perform the
following tasks:

.4 Define the following variables with a format of 15:
The HOLDCOUNT field. Set HOLDCOUNT equal to O.
The HOLDINDEX field. Set HOLDINDEX equal to 1.
The SCREENINDEX field. Set SCREENINDEX equal to O.

4 Use the REPOSITION statement to insure that the current position in each segment, from
which instances will be loaded into the Scratch Pad Area, is at the beginning of the
segment.

The following is the beginning of a MODIFY request that uses manual methods:

MODI FY FI LE EMPLOYEE

CRTFORM
"ENTER EMPLOYEE | D: <EMP_I D'
MATCH EMP_I D

ON NOVATCH REJECT
ON MATCH GOTO | NI TI AL

CASE | NI TI AL
REPEAT 1
HOLD EMP_I D
ENDREPEAT
COVPUTE
HOLDCOUNT/ | 5
HOLDI NDEX/ | 5
SCREENI NDEX/ | 5
REPCS| TI ON SALARY
REPCS| TI ON PAY_DATE
GOTO SALCOLLECT
ENDCASE

o

0;

Maintaining Databases 181

Multiple Record Processing

182

The Collection Phase: The HOLDINDEX Field

During the collection phase, the request retrieves multiple segment instances from the data
source and stores each instance as a record in the Scratch Pad Area. FOCUS assigns each
record an index value equal to the current value of the HOLDINDEX field, then increments
HOLDINDEX by 1. For example, if HOLDINDEX is equal to 5, then the request stores one
segment instance in the Area as Record 5, the next instance as Record 6, and so on.

To store instances from multiple segments, follow this procedure:

1. Assign each segment a range of index values (for example, assign one segment values 1
through 5, another 6 through 11, and so on).

2. Write the request so that a separate case loads instances from each segment. Before each
case executes, have a COMPUTE statement set HOLDINDEX to the index value of the first
record for that segment.

To assign index values to a segment, you must know the largest number of instances you will
be storing from that segment. In many applications, you will be storing an entire segment chain
at a time. You then must know the size of the largest segment chain.

Note: Be sure that you set HOLDINDEX to a value less than or equal to the current value of the
HOLDCOUNT field. A HOLDINDEX value greater than HOLDCOUNT generates an error that
terminates the request.

For example, suppose you write a request to update both employees' salary history (SALARY)
and monthly pay (GROSS), information contained in two different segments in the EMPLOYEE
data source (see the diagram that follows).

To determine the size of the largest chains in both segments, enter this procedure:

1. Modifying Data Sources With MODIFY I

TABLE FI LE EMPLOYEE

COUNT SALARY AND PAY_DATE BY EMP_I D
ON TABLE HOLD

END

TABLE FI LE HOLD
SUM MAX. SALARY AND NMAX. PAY_DATE

END
EMP_ID
PAY DATE
DAT_INC —

DED_CODE
DED_AMT

The output appears as follows:

PAGE 1
MAX MAX
SALARY PAY_DATE

The report shows that the largest salary history chain consists of two instances and the largest
monthly pay chain consists of ten instances. Therefore, you assign values 1 and 2 to the
salary history segment and values 3 through 12 to the monthly pay segment. Schematically,
the Scratch Pad Area will look like this:

1. DAT_INC(1) SALARY(1) -

2. DAT_INC(2) SALARY(2) - -

3. - - PAY_DATE(3) GROSS(3)
4. - - PAY_DATE(4) GROSS(4)
5. - - PAY_DATE(5) GROSS(5)
6 - - PAY_DATE(6) GROSS(6)
7 - - PAY_DATE(7) GROSS(7)
8. - - PAY_DATE(8) GROSS(8)
9. - - PAY_DATE(9) GROSS(9)
10. - - PAY_DATE(10) GROSS(10)
11. - - PAY_DATE(11) GROSS(11)
12. - - PAY_DATE(12) GROSS(12)

Maintaining Databases 183

Multiple Record Processing

184

To fix the index values in the request, set HOLDINDEX to the first index value assigned to a
segment before loading instances from that segment. In the example above, set HOLDINDEX
to 1 before loading the salary history instances, and set HOLDINDEX to 3 before loading the
monthly pay instances. This reserves the proper index values for each segment.

Prepare separate cases to load instances from each segment. During the modification phase,
discussed on the next page, you may plan to retrieve all records from the same segment at
one time. If so, store the index value of the last instance loaded into the Scratch Pad Area
from that segment (this is the HOLDINDEX value after the last instance is loaded minus one) in
a field. This field will help retrieve the records in the modification phase.

For example, you are loading monthly pay instances into the Scratch Pad Area. The last
monthly pay instance loaded into the Area is assigned index value 8. You then store 8 in the
field LASTPAY.

This example is a request fragment that updates employees' salary histories and monthly pay:

CASE SALCOLLECT
NEXT SALARY
ON NEXT HOLD DAT_I NC SALARY
ON NEXT GOTO SALCOLLECT
ON NONEXT COVPUTE
LASTSAL/ |5 = HOLDI NDEX- 1;
HOLDI NDEX = 3;
ON NONEXT GOTO PAYCOLLECT
ENDCASE

CASE PAYCOLLECT
NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GRCSS
ON NEXT GOTO PAYCOLLECT
ON NONEXT COVPUTE
LASTPAY/ | 5 = HOLDI NDEX- 1;
ON NONEXT GOTO DI SPLAY
ENDCASE

The three cases are:

d The TOP case. This case selects an employee and sets the HOLDINDEX field to 1 to index
the salary history instances.

4 The SALCOLLECT case. This case loads the salary history instances into the Scratch Pad
Area. After the instances are loaded, the case stores the index value of the last loaded
salary history instance in the field LASTSAL. It then sets the HOLDINDEX field to 3 to index
the monthly pay instances.

1. Modifying Data Sources With MODIFY I

-1 The PAYCOLLECT case. This case loads the monthly pay instances into the Scratch Pad
Area. After it loads the instances, it stores the index value of the last loaded monthly pay
instance in the field LASTPAY. It then proceeds to the display phase.

The Display Phase: The SCREENINDEX Field
This section shows how to display a specific group of records in the Scratch Pad Area.

The REPEAT Method on page 170 described how to display records in the Scratch Pad Area on
a CRTFORM. The CRTFORM statement specifies the field names with subscripts that refer to
the records in the Area. For example:
CRTFORM

"MONTHLY PAY FOR <D. FI RST_NAME <D. LAST_NAME"

"PAY DATE AMOUNT PAI D

" <D. PAY_DATE(1) <T. GROSS(1) >"
" <D. PAY_DATE(2) <T. GROSS(2) >"
" <D. PAY_DATE(3) <T. GROSS(3) >"
" <D. PAY_DATE(4) <T. GROSS(4) >"
" <D. PAY_DATE(5) <T. GROSS(5) >"

To display a subscripted field, FOCUS adds the field subscript to the value of a field called
SCREENINDEX, then uses the sum as an index value to locate a record in the Scratch Pad
Area. It then displays the field value in that record. For example, if the SCREENINDEX value for
the above CRTFORM is 4, FOCUS will display the PAY_DATE and GROSS values from Area
records 5 through 9.

You can use this feature to scroll back and forth through the Scratch Pad Area. To scroll
forward, increase the value of SCREENINDEX; to scroll backward, decrease the value of
SCREENINDEX.

If you update a field value on the CRTFORM, FOCUS updates the appropriate record in the
Scratch Pad Area.

Note:
d If the request does not give SCREENINDEX a value, the default value is O.

. If the sum of the SCREENINDEX value and a field subscript is less than O or more than the
current value of the HOLDCOUNT field, then the CRTFORM displays that field as blank.

- If you use the CURSORINDEX field to place the cursor on a field value (as described in The
REPEAT Method on page 170), the CURSORINDEX value refers to the field subscript, not
the index value.

Maintaining Databases 185

Multiple Record Processing

186

This sample case displays blocks of eight records stored in the Scratch Pad Area. The first
record in each block is a monthly pay instance. The remaining seven records are deductions
taken from the employee's paycheck. The case is:

CASE DI SPLAY

I F HOLDCOUNT EQ 0 THEN GOTO TOP;
COWPUTE

PFKEY/ A4 B

EMPI D/ A9 = EVP_ID;

DED _AMI/ D12. 2M = DED_AM;
CRTFORM LI NE 1
" DEDUCTI ON RECORD SCREEN'

" EMPLOYEE: <D. EMPI D PAY DATE: <D.PAY DATE(1)"
"1. <D. DED_CODE(2) <T. DED_AMT(2) >"
"2. <D. DED_CODE(3) <T. DED_AMT(3) >"
"3. <D. DED_CODE(4) <T. DED_AMT(4) >"
"4. <D. DED_CODE(5) <T. DED_AMT(5) >"
"5. <D. DED_CODE(6) <T. DED_AMT(6) >"
"6. <D. DED_CODE(7) <T. DED_AMT(7) >"
"7. <D. DED_CODE(8) <T. DED_AMT(8) >"

"PRESS PF4 TO DI SPLAY THE NEXT EMPLOYEE"

"PRESS PF5 TO DI SPLAY THE LAST PAY DATE"

"PRESS PF6 TO DI SPLAY THE NEXT PAY DATE"

COWPUTE

SCREENI NDEX/ 15 = | F PFKEY IS ' PFO4' THEN O

ELSE | F PFKEY IS ' PFO5' THEN SCREENI NDEX - 8
ELSE | F PFKEY IS ' PFO6' THEN SCREENI NDEX + 8
ELSE SCREEN NDEX;

I F PFKEY IS ' PFO4' THEN GOTO TOP ELSE GOTO DI SPLAY;

Pressing one of the PF keys gives the variable PFKEY a value that the request tests to adjust
SCREENINDEX. By adding eight to SCREENINDEX, the request displays the next block of
records. By subtracting eight from SCREENINDEX, the request displays the previous block of
records.

The Modification Phase: The GETHOLD Statement

During the modification phase, the request retrieves records from the Scratch Pad Area and
uses them to modify the data source. It retrieves records using the GETHOLD statement. The
syntax is

GETHOLD

without any parameters. The GETHOLD statement retrieves the record whose index value is the
value of the HOLDINDEX field. The HOLDINDEX field is then incremented by 1. For example, if
the current value of HOLDINDEX is 5, the GETHOLD statement retrieves Record 5 from the
Scratch Pad Area. HOLDINDEX is then increased to 6.

1. Modifying Data Sources With MODIFY I

After the record is retrieved, all fields in the record become available for processing: matching,
adding new segment instances, updating, deleting, and computations. Note that you may need
to activate these fields before processing. For example, these statements update an
employee's monthly pay using Record 5 in the Scratch Pad Area. Record 5 contains two fields:
PAY_DATE and GROSS:

COVPUTE HOLDI NDEX = 5;

GETHOLD

ACTI VATE PAY_DATE GROSS

MATCH PAY_DATE

ON NOVATCH REJECT
ON MATCH UPDATE GRCSS

You may use the GETHOLD statement to process all the records in the Scratch Pad Area. If the
records contain data loaded from different segments, use separate cases to process records
from each segment. First, set the HOLDINDEX field to the index value of the first record from
the segment. As the request retrieves each record, HOLDINDEX increases by 1. When
HOLDINDEX is greater than the index value of the last record from the segment (which you
stored earlier in a field), you can branch to another case.

For example, this request fragment updates employees' salary history and monthly pay. The
Scratch Pad Area consists of the following records:

4 The first two records contain the fields DAT_INC and SALARY to update the salary history.

.4 The next ten records contain the fields PAY_DATE and GROSS to update monthly pay.

The fragment is:

Maintaining Databases 187

Multiple Record Processing

188

CASE SALSET

COVWPUTE HOLDI NDEX = 1;
GOTO SALUPDATE
ENDCASE

CASE SALUPDATE
GETHCOLD
MATCH DAT_I NC
ON MATCH UPDATE SALARY
ON NATCH | F HOLDI NDEX GI' LASTSAL GOTO PAYSET
ELSE GOTO SALUPDATE;
ON NOVATCH REJECT
ENDCASE

CASE PAYSET

COVPUTE HOLDI NDEX = 3;
GOTO PAYUPDATE
ENDCASE

CASE PAYUPDATE
GETHCOLD
MATCH PAY_DATE
ON MATCH UPDATE GRCSS
ON MATCH | F HOLDI NDEX GI' LASTPAY GOTO TOP
ELSE GOTO PAYUPDATE;
ON NOVATCH REJECT
ENDCASE

DATA VI A FI DEL
END

The cases are as follows:
.d The SALSET case sets HOLDINDEX to 1, the index value of the first salary history record.

.d The SALUPDATE case updates the salary history using the records in the Scratch Pad Area.
Each time the case retrieves a record, HOLDINDEX is incremented by 1. When HOLDINDEX
is greater than the index value of the last salary history record (the value of field LASTSAL),
the case branches to the PAYSET case.

d The PAYSET case sets HOLDINDEX to 3, the index value of the first monthly pay record in
the Scratch Pad Area.

-1 The PAYUPDATE case updates monthly pay using the records in the Scratch Pad Area.
When HOLDINDEX is greater than the index value of the last monthly pay record in the Area
(the value of field LASTPAY), the case branches back to the top.

You can also use the GETHOLD statement to retrieve and process a single record from the
Scratch Pad Area. This request fragment allows the user to delete a single monthly pay
instance:

1. Modifying Data Sources With MODIFY I

Reference:

CASE DI SPLAY
CRTFORM
COWPUTE LN 11 = 0;
"MONTHLY PAY FOR <D. FI RST_NAME <D. LAST_NAME"

"PAY DATE AMOUNT PAI D'

"1. <D. PAY_DATE(1) <T.GROSS(1)>"

"2. <D.PAY_DATE(2) <T.GROSS(2)>"

"3. <D. PAY_DATE(3) <T.GROSS(3)>"

"4. <D.PAY_DATE(4) <T.GROSS(4)>"

"5. <D. PAY_DATE(5) <T.GROSS(5)>"

"TO DELETE AN | NSTANCE, ENTER LI NE NUMBER HERE: <LN'
I'F (LN LT 1) OR (LN GT 5) GOTO DI SPLAY ELSE GOTO DELETE;
ENDCASE

CASE DELETE
COWPUTE
HOLDI NDEX = LN,
GETHCOLD
MATCH PAY_DATE
ON NOVATCH REJECT
ON NOVATCH GOTO TOP
ON MATCH DELETE
ON MATCH GOTO TOP
ENDCASE

Note: Be sure that you set HOLDINDEX to a value less than or equal to the current value of the
HOLDCOUNT field. A HOLDINDEX value greater than HOLDCOUNT generates an error that
terminates the request.

Manual Methods: Two Examples

This section shows two examples that illustrate manual methods in multiple record processing:

.4 The first example updates employees' salary history and monthly pay. This is data
contained in segments on two different paths.

-l The second example deletes records of employee deductions. This is data contained in
segments on one path (a parent and its child).

A diagram showing the place of salary history (SALARY), monthly pay (GROSS), and pay
deductions (DED_AMT) in the EMPLOYEE data source structure appears at the beginning of The
Collection Phase: The HOLDINDEX Field on page 182 in this section.

Maintaining Databases 189

Multiple Record Processing

Example:

190

First Example: Processing Segments on Two Different Paths

This request is an example of a procedure that processes segments lying on different paths.
The example updates employees' salary history and monthly pay. The salary history segment
and monthly pay segment are both children of the employee segment, and they are on two
separate paths.

This request also demonstrates the use of the GETHOLD statement to retrieve segment chains
from the Scratch Pad Area. Explanatory comments are embedded in the request.

MODI FY FI LE EMPLOYEE
-* First, select the parent enpl oyee instance.

CRTFORM

"ENTER EMPLOYEE | D <EWP_| D'
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH GOTO | NI TI AL

CASE | NI TI AL
-* Flush the Scratch Pad Area, then initialize fields
-* and segnent chains.

REPEAT 1

HOLD EMP_I D
ENDREPEAT
COVPUTE

HOLDCOUNT/ | 5 = 0;

HOLDI NDEX/ 15 = 1;
REPGCSI TI ON SALARY
REPGCSI TI ON PAY_DATE
GOTO SALCOLLECT
ENDCASE

1. Modifying Data Sources With MODIFY I

CASE SALCOLLECT

-* Place the enployees' salary history in the Scratch
-* Pad Area. Afterwards, store the index value of the
-* last loaded instance in the field LASTSAL. Then

-* set HOLDINDEX to 3, which is the index of the

-* first nonthly pay instance.

NEXT SALARY
ON NEXT HOLD DAT_I NC SALARY
ON NEXT GOTO SALCOLLECT
ON NONEXT COVPUTE
LASTSAL/ |5 = HOLDI NDEX- 1;
HOLDI NDEX = 3;
ON NONEXT GOTO PAYCCOLLECT
ENDCASE

CASE PAYCOLLECT

-* Place the monthly pay instances in the Scratch Pad
-* Area. Afterwards, store the index value of the |ast
-* | oaded instance in the field LASTPAY.

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GRCSS
ON NEXT GOTO PAYCOLLECT
ON NONEXT COVPUTE
LASTPAY/ 15 = HOLDI NDEX- 1;
ON NONEXT GOTO DI SPLAY
ENDCASE

CASE DI SPLAY

-* |f nothing was collected, go back to TOP.
-* Otherwi se, display the two segnent chains
-* side by side. Then reset HOLDI NDEX to 1
-* to prepare for updating.

| F HOLDCOUNT EQ 0 GOTO TOR,
CRTFORM LI NE 3
" SALARY HI STORY AND MONTHLY PAY RECORD'

"

" SALARY HI STORY <40 MONTHLY PAY"

______________ ChQ cmmmmmmem
<D. DAT_INC(1) <T.SAL(1> <40 <D.PD(3) <T.GROSS(3)>"
<D. DAT_I NC(2) <T. SAL(2> <40 <D.PD(4) <T.GROSS(4)>"

<40 <D.PD(5) <T.GROSS(5)>"

" <40 <D. PD(6) <T.CGROSS(6)>"
" <40 <D.PD(7) <T.GROSS(7)>"
" <40 <D.PD(8) <T.GROSS(8)>"
" <40 <D.PD(9) <T.GROSS(9)>"
" <40 <D. PD(10) <T.GROSS(10)>"
" <40 <D.PD(11) <T.GROSS(11)>"
" <40 <D.PD(12) <T.GROSS(12)>"

COVPUTE HOLDI NDEX=1;

GOTO SALUPDATE

ENDCASE

CASE SALUPDATE
-* Update the salary history instances.

Maintaining Databesg$SAL contai ns the index value of the 191
-* |ast salary history record.

GETHOLD

MATCH DAT | NC
N\ MATCUH | IDNDATE CAI ADV

Multiple Record Processing

Example:

192

Second Example: Modifying Segments on the Same Path

This is a sample request that processes segments lying on the same path. The request
deletes employee pay deductions. To do so, it displays a pay date on the top of the screen;
below, it shows the deductions taken from the employee's pay check that date. The user can
scroll back and forth between pay dates and may choose particular deductions to delete. The
pay date is a field in the monthly pay segment; the deductions are fields in the child deduction
segment, as shown in the diagram in The Collection Phase: The HOLDINDEX Field on page 182.

The request also demonstrates the use of the SCREENINDEX field to display different groups
of records on subscripted CRTFORMs, and the use of the GETHOLD statement to retrieve
specific records. Explanatory comments are embedded in the request.

MODI FY FI LE EMPLOYEE

-* First, select the parent enpl oyee instance.

CRTFORM
"ENTER EMPLOYEE | D. <EMP_I D'
MATCH EMP_I D

ON NOVATCH REJECT
ON MATCH GOTO I NI TI AL

CASE | NI TI AL
-* Flush the Scratch Pad Area, then initialize fields
-* and segnent chai ns.

REPEAT 1
HOLD EMP_I D
ENDREPEAT
COVPUTE
HOLDCOUNT/ | 5 :
HOLDI NDEX/ | 5 :

SCREENI NDEX/ | 5
BLOCKCOUNT/ | 5
REPCSI TI ON PAY_DATE
GOTO PAYCOLLECT
ENDCASE

o n
eere

1. Modifying Data Sources With MODIFY I

CASE PAYCOLLECT

The next two cases create bl ocks of eight

instances within the Scratch Pad Area. Each bl ock
consi sts of a nonthly pay instance foll owed

by seven descendant instances in the

deduction segnment. The field BLOCKCOUNT counts

t he nunber of blocks in the Scratch Pad Area so far.
The field BLOCKNUM contains the total number of

bl ocks in the Area after all instances have

been | oaded.

L R N S

NEXT PAY_DATE
ON NEXT COVPUTE
HOLDI NDEX = 8 * BLOCKCOUNT + 1;
BLOCKCOUNT = BLOCKCOUNT + 1;
NEXT ACTI VATE PAY_DATE
NEXT HOLD PAY_DATE
NEXT GOTO DEDCOLLECT
NONEXT COVPUTE
BLOCKNUM | 5 = BLOCKCOUNT;
ON NONEXT GOTO DI SPLAY
ENDCASE

2229

CASE DEDCOLLECT
NEXT DED_CODE
ON NEXT ACTI VATE DED_CODE DED AMI
ON NEXT HOLD DED_CODE DED_AMI
ON NEXT GOTO DEDCOLLECT
ON NONEXT GOTO PAYCOLLECT
ENDCASE

CASE DI SPLAY

-* |f nothing was collected, go back to TOP.
-* Oherwise, initialize the PFKEY and LI NENO
fields. The EMPID field is for display
purposes. Then, display the current bl ock.

At the bottom of the screen is a nenu to offer
users the choice of processing the records

of another enployee, displaying the previous

bl ock or displaying the next block. the field
PFKEY reads the PF key that the user presses
(see Chapter 16). The field LINENO contains the
Iine nunber of the deduction instance that the
user wants to del ete.

EE I R N S

| F HOLDCOUNT EQ O THEN GOTO TOP;

COVPUTE
PFKEY/ A4 ="'
LI NENO | 1 = 0;
EMPI D/ A9 = EMP_I D

CRTFORM LI NE 1
" DEDUCT!I ON RECORD DELETI ON SCREEN'

"

"EMPLOYEE: <D. EMPI D PAY DATE: <D. PAY_DATE(1)"
"1. <D. DED CODE(2) <D. DED AMI(2)"
"2. <D. DED_CODE(3) <D. DED AMI(3)"

Maintaining DatabasesD. DED_CODE(4) <D. DED_AMT(4)" 193
"4. <D.DED_CODE(5) <D.DED AMT(5)"
"5, <D. DED_CODE(6) <D. DED_AMI(6)"
"6. <D. DED CODE(7) <D.DED AMI(7)"
"7. <D. DED_CODE(8) <D. DED AMI(8)"

noon

Multiple Record Processing

Procedure: How to Sort the Scratch Pad Area With SORTHOLD

194

You can sort the contents of the Scratch Pad Area using any field or combination of fields in
the Scratch Pad Area; you can then display them in any convenient order. The command uses
syntax similar to the sorting specifications in the TABLE command.

The MODIFY subcommand that sorts the Scratch Pad Area is
SORTHOLD BY [HI GHEST] f/el/dl [BY [H GHEST] field2. ..]

where field1 is the primary sort field, and field2 to field8 are optional secondary sort fields.

Note:

.d The SORTHOLD statement cannot span more than one line. The default sort order is from
low-to-high, but a high-to-low sort can be specified with the keyword HIGHEST. You can sort
the Scratch Pad Area by up to eight fields.

. If you sort the Scratch Pad Area before display, always sort by the data source key fields
before entering a MATCH... UPDATE loop, to be sure the transactions are in sequence with
the data source. Otherwise you increase execution time substantially. This procedure

SORTHOLD BY | TEM
performs this sort. It is issued after the records are displayed but before they are updated
in the data source.

Consider the following Master File:

FI LENAME=PRODUCT, SUFFI X=FCC
SEGNAME=SEGONE, SEGTYPE=S1

FI ELD=ORDERNQ, ALI AS=0ONO, FORVAT=1 4, $
SEGNAME=SEGTWO, SEGTYPE=S1, PARENT=SEGONE

FI ELD=I TEM ALI AS=I TEMNO, FORVAT=A3, $

FI EL D=PRODUCT, ALI AS=PRD, FORVAT=A12, $

FI ELD=QTY, ALI AS=QUANTI TY, FORVAT=I 4S, $

The following procedure will display all of the ITEM instances for a specified ORDERNO, in
order of the PRODUCT name and highest QTY sequence. The command

SORTHOLD BY PRODUCT BY QTY

performs the sort.

1. Modifying Data Sources With MODIFY I

MODI FY FI LE PRODUCT
CRTFORM LINE 1
"ENTER ORDER NUMBER <ORDERNO'
MATCH ORDERNO
ON NOVATCH GOTO TOP
ON MATCH REPEAT 12
NEXT | TEM
ON NEXT HCOLD | TEM PRODUCT QrY
ON NONEXT GOTO SCREEN
ENDREPEAT
GOTO SCREEN
CASE SCREEN
I F HOLDCOUNT EQ O GOTO TOP;

SORTHCLD BY PRCODUCT BY HI GHEST QrY

CRTFORM LI NE 1
" ORDER NUMBER | S <D. ORDERNO

| TEM PRODUCT QUANTI TY "

iTENy b PRIy T a1 ¢
"<D. I TEM 2) <D.PRODUCT(2) <T.QrY(2)> "

"<D. 1 TEM 12) <D. PRODUCT(12) <T.QTY(12)>"
SORTHOLD BY | TEM

REPEAT HOLDCOUNT
MATCH | TEM

ON MATCH UPDATE
qQry
ON NOVATCH GOTO
ENDREPEAT
ENDREPEAT
GOTO TOP
ENDCASE
DATA VI A FI DEL
END
Advanced Facilities

The following facilities can assist you in using the MODIFY command:

[d The COMBINE command, for modifying multiple FOCUS data sources in one MODIFY
request.

I The COMPILE command, for translating MODIFY requests into compiled code ready for
execution.

I The ACTIVATE and DEACTIVATE statements, for activating and deactivating fields.

Maintaining Databases 195

Advanced Facilities

-1 The Checkpoint and Absolute File Integrity facilities, for protecting FOCUS data sources
from system failures.

.4 The ECHO facility, for displaying the logical structure of MODIFY requests.

- Dialogue Manager system variables, which record execution statistics every time a MODIFY
request is run.

d FOCUS query commands, which display statistical information on MODIFY request
executions and FOCUS data sources.

.4 COMMIT and ROLLBACK subcommands, for controlling changes made to FOCUS data
sources, and for protecting FOCUS data sources from system failures.

All these facilities are described in the sections that follow.

If you are operating in Simultaneous Usage mode (SU), please refer to the appropriate
Simultaneous Usage manual.

Modifying Multiple Data Sources in One Request: The COMBINE Command

196

The COMBINE command allows you to modify two or more FOCUS, relational, or Adabas data
sources in the same MODIFY request. The command combines the logical structures of the
FOCUS data sources into one structure while leaving the physical structures of the data
sources untouched. This combined structure lasts for the duration of the FOCUS session, until
you enter another COMBINE command, or it is cleared with the AS CLEAR option. Only one
combined structure can exist at a time.

Note the following:

.4 The combined structure can contain up to 63 segments from up to 63 data sources with
one additional reserved for BINS.

4 You can COMBINE data sources that come from different applications and have different
DBA passwords. The only requirement is a valid password for each data source. For more
information, refer to the Describing Data manual.

.4 Only the MODIFY and CHECK commands can process combined structures.

. If you are using Simultaneous Usage mode, all the data sources in the combined structure
must either be all on the same FOCUS Database Server or all in local mode.

.4 All MODIFY code compiled in releases prior to 5.2.0 must be re-compiled.

- The differences between JOIN and COMBINE commands are discussed in Differences
Between COMBINE and JOIN Commands on page 203.

1. Modifying Data Sources With MODIFY I

Syntax:

How to Combine Data Sources

Enter the COMBINE command at the FOCUS command level (at the FOCUS prompt).

COMBI NE FI LES fi/el [PREFI X prefll TAG tagl] [AND|

filen [PREFI X prefn| TAG tagn) AS asname

where:
filel... filen

Are the Master File names for the data sources you want to modify. You can specify up to
63 data sources (you will be limited to fewer data sources if any of these data sources
have more than one segment).

prefl... prefn

Are prefix strings for each data source; up to four characters. They provide uniqueness for
field names. You cannot mix TAG and PREFIX in a COMBINE structure. See Referring to
Fields in Combined Structures: The PREFIX Parameter on page 200 later in this section.

tagl... tagn

Are aliases for the Master File names; up to eight characters. FOCUS uses the tag name
as the qualifier for fields that refer to that data source in the combined structure. You
cannot mix TAG and PREFIX in a COMBINE, and you can only use TAG if FIELDNAME is set
to NEW or NOTRUNC. See Referring to Fields in Combined Structures: The TAG Parameter
on page 199 later in this section.

AND
Is an optional word to enhance readability.
asnamne

Is the required name of the combined structure to use in MODIFY procedures and CHECK
FILE commands. For example, if you name the combined structure EDJOB, begin the
request with:

MODI FY FI LE EDIOB
AS CLEAR
Is the command that clears the combined structure which is currently in effect.

Note: The AS CLEAR option must be issued with no file name:

COMBI NE FI LE AS CLEAR

Maintaining Databases 197

Advanced Facilities

Example:

Syntax:

198

Once you enter the COMBINE command, you can modify the combined structure.

Note:
. TAG and PREFIX may not be used together in a COMBINE.

4 You can type the command on one line or on as many lines as you need.

COMBINE Command

For example, to combine data sources EDUCFILE and JOBFILE, enter:

COMVBI NE FI LES EDUCFI LE AND JOBFI LE AS EDJICB

After entering this command, you can run the following request. Notice that the statements
pertaining to each data source are placed in different cases (Case Logic is discussed in Case
Logic on page 145). This clarifies the request logic, and makes it easier to understand and
clarify the request. The first case modifies the EDUCFILE data source, and the second case
modifies the JOBFILE data source.

MODI FY FI LE EDIOB
PROVPT COURSE_CODE COURSE_NAME JOBCODE JOB_DESC
GOTO EDUCFI LE

CASE EDUCFI LE
MATCH COURSE_CODE
ON MATCH REJECT
ON MATCH GOTO JOBFI LE
ON NOVATCH | NCLUDE
ON NOVATCH GOTO JOBFI LE
ENDCASE

CASE JOBFI LE
MATCH JOBCODE
ON MATCH REJECT
ON NOVATCH | NCLUDE
ENDCASE
DATA

How to Support Long and Qualified Field Names

If you are using tag names, you must also set the command SET FIELDNAME to NEW or
NOTRUNC. The SET FIELDNAME command enables you to activate long (up to 66 characters)
and qualified field names. The syntax for this SET command is

SET FI ELDNAME = ¢ ype

1. Modifying Data Sources With MODIFY I

Reference:

where:

type
Is one of the following:

QLD specifies that 66-character and qualified field names are not supported; the maximum
length is 12 characters.

NEW specifies that 66-character and qualified field names are supported; the maximum
length is 66 characters. NEW is the default value.

NOTRUNC prevents unique truncations of field names and supports the 66-character
maximum.

When the value of FIELDNAME is changed within a FOCUS session, COMBINE commands are
affected as follows:

d When you change from a value of OLD to a value of NEW, all COMBINE commands are
cleared.

-1 When you change from a value of OLD to NOTRUNC, all COMBINE commands are cleared.
.4 When you change from a value of NEW to OLD, all COMBINE commands are cleared.

4 When you change from a value of NOTRUNC to OLD, all COMBINE commands are cleared.
Other changes to the FIELDNAME value do not affect COMBINE commands.

Note: For more information on the SET FIELDNAME command, refer to the Developing
Applications manual.

Referring to Fields in Combined Structures: The TAG Parameter

For a MODIFY request to refer to transaction fields in a combined structure by their transaction
field names, the field names must be unique; that is, the transaction field names in one data
source cannot appear in other data sources. Refer to any transaction field names that are not
unique by their aliases, or use the TAG parameter in the COMBINE command to assign a tag
name to the data sources that share the transaction field names.

When a data source has a tag, refer to its transaction field names by affixing the tag name to
the beginning of each field name.

For example, this COMBINE command combines data sources EDUCFILE and JOBFILE into the
structure EDJOB, and assigns the tag AAA to all the transaction fields in the EDUCFILE data
source:

COMBI NE FI LES EDUCFI LE TAG AAA AND JOBFI LE AS EDJCB

Maintaining Databases 199

Advanced Facilities

Reference:

200

When you create a request that modifies this structure, type the EDUCFILE field names with
the AAA prefix in front:

COMBI NE FI LES EDUCFI LE TAG AAA AND JOBFI LE AS EDJOB
MODI FY FI LE EDJOB

PROVPT AAA. COURSE_CODE AAA. COURSE_NAVE JOBCODE JOB_DESC
GOTO EDUCFI LE

CASE EDUCFI LE

MATCH AAA. COURSE_CODE

ON MATCH REJECT

ON NOVATCH | NCLUDE

GOTO JOBFI LE

ENDCASE

CASE JOBFI LE

MATCH JOBCODE

ON MATCH REJECT

ON NOVATCH | NCLUDE

ENDCASE

DATA

In this request, the tag AAA has been attached to the two transaction field names in the
EDUCFILE data source: COURSE_CODE and COURSE_NAME, making the new field names
AAA.COURSE_CODE and AAA.COURSE_NAME. Use these tagged field names only in MODIFY
requests that modify the combined structure.

Referring to Fields in Combined Structures: The PREFIX Parameter

For a MODIFY request to refer to fields in a combined structure by their field names, the field
names must be unique so that there is no ambiguity in the request. That is, the field names in
one data source cannot appear in other data sources. If there are field names that are not
unique, refer to the fields by their aliases or use the PREFIX parameter in the COMBINE
command to assign a prefix of up to four characters to the data sources sharing the field
names.

When a data source has a prefix, refer to its field names with the prefix affixed to the
beginning of each field name. The field name can be up to 66 characters in length. For
example, this COMBINE command combines data sources EDUCFILE and JOBFILE into the
structure EDJOB, and assigns the prefix ED to all the fields in the EDUCFILE data source:

COMBI NE FI LES EDUCFI LE PREFI X ED JOBFI LE AS EDJOB

When you enter a request modifying the structure, type the EDUCFILE field names with the ED
prefix in front:

COMVBI NE FI LES EDUCFI LE PREFI X ED JOBFI LE AS EDJOB
MODI FY FI LE EDJOB

PROVPT EDCOURSE_CODE EDCOURSE_NANME JOBCCDE JOB_DESC
GOTO EDUCFI LE

1. Modifying Data Sources With MODIFY I

Procedure:

CASE EDUCFI LE

MATCH EDCOURSE_COD
ON MATCH REJECT
ON NOVATCH | NCLUDE

GOTO JOBFI LE

ENDCASE

CASE JOBFI LE
MATCH JOBCODE
ON MATCH REJECT
ON NOVATCH | NCLUDE
ENDCASE
DATA

In this request, the prefix ED has been attached to the two field names in the EDUCFILE data
source: COURSE_CODE and COURSE_NAME. The new field names are EDCOURSE_CODE and
EDCOURSE_NAME.

You use these prefixed field names only in MODIFY requests modifying the combined structure.
These prefixed field names are not displayed by either the ?F query or the CHECK command.

Note: A MODIFY COMBINE with prefixes cannot be loaded through the LOAD facility. However,
the unloaded versions will run.

For more information on compiling MODIFY requests see Compiling MODIFY Requests: The
COMPILE Command. For more information on loading data sources, see the Developing
Applications manual.

How to How Data Source Structures Are Combined

Combined structures start with a dummy root segment called SYSTEM, which becomes the
parent of the root segments of the individual data sources. The SYSTEM segment contains no
data. This is not an alternate view; the relationships between segments in each data source
remain the same.

Maintaining Databases 201

Advanced Facilities

The following figure shows how two data sources, EDUCFILE and JOBFILE, are combined into
one structure. The first two diagrams represent the EDUCFILE and JOBFILE structures; the third
diagram represents the combined structure. Note that the relationship between the two
segments in each data source does not change.

COURSE_ CODE EME ID
COURSE _HAME i

SEC_CLEAR I SKILLS
SKILL DESC

EMP_ID

DATE ATTEND

JOBFILE Struchure
EDUCFILE Struchure
SYSTEM
COURSE CODE EMP ID

COURSE_MAME

EMP_ID ‘
DATE_ATTEMD SEC CLEAR SKILLS
SKILL_DESC

Combined Structure

Field names are considered duplicates when two or more fields are referenced with the same
field name or alias. Duplication can occur if a COMBINE is done without a prefix or a tag.
Duplicate fields are not allowed in the same segment. The second occurrence is never
accessed by FOCUS and the following warning message is generated when CHECK and
CREATE FILE are issued:

(FOC1829) WARNI NG FI ELDNAME |'S NOT UNI QUE W THI N A SEGVENT: 7/ el dname

202

1. Modifying Data Sources With MODIFY I

Differences Between COMBINE and JOIN Commands

Syntax:

The COMBINE command differs from the JOIN command in the following ways:

1 The JOIN command is effective for TABLE, TABLEF, MATCH, GRAPH, and CHECK
commands, but is not effective for MODIFY requests (except for the LOOKUP function). The
COMBINE command is effective only for MODIFY requests and CHECK commands.

4 The JOIN command joins a variety of FOCUS and non-FOCUS data sources. The COMBINE
command combines FOCUS data sources only.

.4 The JOIN command can only join data sources with common fields. The COMBINE
command can combine all FOCUS data sources.

4 The JOIN command joins data source structures together at segments with a common field.
This can invert some of the segment relationships in the cross-referenced data source (see
alternate file view in the Describing Data and Creating Reports manuals). The COMBINE
command combines the data source structures under a dummy root segment. Segment
relationships remain intact.

How to Use the ? COMBINE Query

To display information on the combined structure currently in effect, enter:
? COVBI NE

FOCUS responds

FI LE=name TAG PREFI X
file-1 tag-1 prefix-1
file-2 tag-2 prefix-2
file-3 tag-3 prefix-3

'f/'./e'-n tag-n prefix-n

where:
nanme

Is the name of the combined structure.
file-1 ... file-n

Are the names of the data sources that make up the combined structure.

Maintaining Databases 203

Advanced Facilities

Reference:

tag-1 ... tag-n

Are the tags attached to the field names in the data source. These tags correspond to the
aliases given to the data source(s) in the combined structure.

prefix-1 ... prefix-n
Are the prefixes attached to the field names in the data source.
The ? COMBINE query shows up to 63 entries.

For example, when data source EDUCFILE is combined with data source JOBFILE, enter the
command

? COVBI NE

to display the following information:

COMBINE EDUCFILE AND JOBFILE AS EDJOB
>
7 COMBINE
FILE=ED.JOB TAG PREFIX
EDUCFILE
JOBFILE
>

Note: TAG and PREFIX may not be mixed in a COMBINE.
Error Messages for COMBINE
(FOC???) NMAXI MUM NUMBER OF ' COMBI NES' EXCEEDED. CLEAR SOVE AND RE- ENTER:

The number of separate COMBINE commands exceeds the current limit of 63.

Active and Inactive Fields

204

This section discusses active and inactive fields. When you run a request, FOCUS keeps track
of which transaction fields are active or inactive during execution:

- Active fields have incoming data for them. You may use active fields to add, update, and
delete segment instances.

- Inactive fields do not have incoming data for them. You can use inactive fields in
calculations only.

When a MATCH statement matches on an inactive field, the request returns to the beginning
(the TOP case in case requests) to avoid modifying segments for which data is not present.

1. Modifying Data Sources With MODIFY I

Reference:

If a MATCH or NEXT statement executes an INCLUDE action, all segment instances having
active fields are added to the data source.

If a MATCH or NEXT statement executes an UPDATE action, only active fields update the data
source. Data source fields corresponding to the inactive incoming fields remain unchanged.

This section covers the following:
.4 When fields are active and inactive.
d Activating fields with the ACTIVATE statement.

. Deactivating fields with the DEACTIVATE statement.

When Fields Are Active and Inactive

A data field becomes active when:

d It is described in the Master File and it is read in by a FIXFORM, FREEFORM, PROMPT, or
CRTFORM statement. Note that if the field is declared a conditional field, the following rules

apply:

d In a FIXFORM statement, a conditional field is active when it has a value present in a
record.

4 In a CRTFORM, a conditional entry field is active when you enter data for it. A conditional
turnaround field is active when you change its value (see Designing Screens With FIDEL
on page 227).

d The field is assigned a value by a COMPUTE or VALIDATE statement.
- The field is activated by the ACTIVATE statement.
A data field becomes inactive when:

. Execution branches to the top of the request, whether this is done implicitly or by a GOTO
statement.

d It modifies a segment instance because of an INCLUDE, UPDATE, or DELETE action.
-l It has been made available to the request through the LOOKUP function.

d It is deactivated by the DEACTIVATE statement.

Maintaining Databases 205

Advanced Facilities

Procedure: How to Activate Fields With the ACTIVATE Statement

206

To activate an inactive field, use the ACTIVATE statement. the ACTIVATE statement performs
two tasks:

. It declares a transaction field to be present (considered part of the current transaction).
The field can then be used for matching, including, and updating.

d It equates the value of the transaction field to the corresponding data source field. This
occurs when both of the following conditions are true:

.4 The ACTIVATE statement either appears within or it follows a MATCH or NEXT statement
that modifies the segment containing the corresponding data source field.

.d The ACTIVATE statement converts the field from being inactive to active. Included are
fields for which the request has not read any data or assigned a value with a compute
statement. Fields already active are excluded.

If one of these conditions is not true, the activate statement does not change the value of the
field. If the field has no data, FOCUS sets the value of the field to blank if alphanumeric, zero if
numeric, and the missing data symbol if the field is described by the MISSING=O0N attribute in
the Master File (discussed in the Describing Data manual).

The syntax of the ACTIVATE statement is

ACTI VATE [RETAIN| MOVE] [SEG] fieldl field2 ... fieldn

where:
RETAI N

Is an option that activates the field but leaves its value unchanged, even if the ACTIVATE
statement converts the field from being inactive to active.

MOVE

Is an option that activates the field and equates its value to the corresponding data source
field, even if the field was already active before the ACTIVATE statement.

field1l ...

Are the names of the fields you want to activate. To activate all the fields in one segment,
specify any segment field with the prefix SEG. affixed in front of the field name. For
example:

ACTI VATE SEG SKI LLS

This sample request illustrates how ACTIVATE statements affect the fields they specify. The
numbers on the margin refer to the notes below. The request is:

1. Modifying Data Sources With MODIFY I

10.
11.
12.

13.

14.

MODI FY FI LE EMPLOYEE
FREEFORM EMP_I D CURR_SAL ED_HRS

ACTI VATE DEPARTMENT
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE
GOTO NEXT_EMP1

CASE NEXT_EMP1
NEXT EMP_I D
ON NONEXT GOTO EXI'T
ON NEXT ACTI VATE RETAI N CURR_SAL DEPARTMENT
ON NEXT UPDATE DEPARTMENT ED_HRS
ON NEXT GOTO NEXT_EMP2
ENDCASE

CASE NEXT_EMP2
NEXT EMP_I D
ON NONEXT GOTO EXI'T
ON NEXT ACTI VATE CURR_SAL DEPARTMENT ED_HRS
ON NEXT ACTI VATE MOVE CURR_SAL
ON NEXT GOTO NEXT_EMP3
ENDCASE

CASE NEXT_EMP3
NEXT EMP_I D

ON NONEXT GOTO EXI'T

ON NEXT UPDATE CURR_SAL DEPARTMENT ED_HRS
ENDCASE

DATA
EMP_| D=222333444, CURR SAL=50000, ED HRS=40, $
END

When you run the request, the following happens:

1.

The request reads the record:
EMP_| D=222333444, CURR_SAL=50000, ED HRS=40, $

The statement
ACTI VATE DEPARTNENT

activates the DEPARTMENT field. Since the request did not read any data for this field and
the statement precedes the MATCH and NEXT statements, FOCUS equates the field value
to blank.

The transaction record is as follows:

Maintaining Databases 207

Advanced Facilities

208

Transacti on Record:

EMP_I D: 22223333444 (active)
CURR_SAL: 50000 (active)

ED HRS: 40 (active)
DEPARTMENT: bl ank (active)

The MATCH statement does not find the EMP_ID value in the data source. It therefore
includes the record in the data source as a new segment instance. All fields included in
the instance, EMP_ID, CURR_SAL, DEPARTMENT and ED_HRS, become inactive.

The request branches to the NEXT_EMP1 case.

The request moves the current position in the data source to the next segment instance
after EMP_ID 444. This instance contains the following fields:

Dat abase Segnent | nstance:

EMP_ I D 326179357
CURR SAL: 21780.00
ED_HRS: 75.00
DEPARTMENT: M S

The statement
ACTI VATE RETAI N CURR_SAL DEPARTMENT

activates the CURR_SAL and DEPARTMENT fields. The RETAIN keyword prevents their
values from changing. The transaction record is now:

Transacti on Record:

EMP_ID: 326179357 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT: bl ank (active)
ED HRS: 40 (inactive)

The statement
UPDATE DEPARTMENT ED HRS

changes the DEPARTMENT field value in the segment instance to blank and deactivates
the DEPARTMENT field on the transaction record. Since the ED_HRS transaction field is
inactive, it does not change the data source ED_HRS value. The segment instance is now:

Dat abase Segnent | nstance:

EMP_ I D 326179357
CURR SAL: 21780. 00
DEPARTMVENT: bl ank
ED_HRS: 75.00

1. Modifying Data Sources With MODIFY I

The request did not use the CURR_SAL transaction field to update the instance, so the
CURR_SAL field remains active. The transaction record is as follows:

Transacti on Record:

EMP_ID: 326179357 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT: BLANK (i nactive)
ED HRS: 40 (inactive)

The request branches to the NEXT_EMP2 case.

The request moves the current position to the next current instance after EMP_ID
326179357. This instance contains the following fields:

Dat abase Segnent | nstance:

EMP I D 451123478
CURR SAL: 16100. 00
DEPARTMVENT: PRODUCTI ON
ED_HRS: 50. 00

10. The statement
ACTI VATE CURR_SAL DEPARTMENT ED_HRS

declares the CURR_SAL, DEPARTMENT, and ED_HRS transaction fields to be active. Since
CURR_SAL was already active, its value does not change. DEPARTMENT and ED_HRS are
converted into active fields, and their values change to that of the DEPARTMENT and
ED_HRS fields in the segment instance. The transaction record is now:

Transacti on Record:

EMP_I D. 451123478 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT: PRODUCTI ON (acti ve)
ED HRS: 50 (active)

11. The statement
ACTI VATE MOVE CURR_SAL

declares the CURR_SAL transaction field to be active. The MOVE keyword changes the
value of CURR_SAL to that of the CURR_SAL field in the segment instance, even though
the CURR_SAL field was already active. The transaction record is now:

Transacti on Record:

EMP_ID: 451123478 (inactive)
CURR_SAL: 16100.00 (active)
DEPARTMENT: PRODUCTI ON (acti ve)
ED HRS: 50 (active)

Maintaining Databases 209

Advanced Facilities

Syntax:

210

12. The request branches to the NEXT_EMP3 case.

13. The request moves the current position to the next current instance after EMP_ID
451123478. This instance contains the following fields:

Dat abase Segment | nstance:

EMP I D 543729165
CURR_SAL: 9000. 00
DEPARTMENT: M S
ED_HRS: 25.00

14. The request updates the data source CURR_SAL, DEPARTMENT, and ED_HRS fields using
the transaction record, causing the CURR_SAL, DEPARTMENT, and ED_HRS transaction
fields to become inactive. The segment instance is now:

Dat abase Segnent | nstance:

EMP I D 543729165
CURR SAL: 16100. 00
DEPARTMVENT: PRODUCTI ON
ED_HRS: 50. 00

The transaction record is now:

Transacti on Record:

EMP_I D. 543729165 (inactive)
CURR_SAL: 16100.00 (inactive)
DEPARTMENT: PRODUCTI ON (i nactive)
ED HRS: 50 (inactive)

How to Deactivate Fields With the DEACTIVATE Statement

To deactivate a field, use the DEACTIVATE statement. If the field is a transaction field, the
DEACTIVATE statement changes its value to blank if alphanumeric, zero if numeric, or the
MISSING symbol for fields described by the MISSING=0N attribute (discussed in the Describing
Data manual). It also deactivates the corresponding data source field. The RETAIN option
leaves the transaction value unchanged.

The syntax is

DEACTI VATE [RETAIN] [SEG] field-1 field-2 ... field-n
DEACTI VATE [RETAIN] ALL

DEACTI VATE COVPUTES

DEACTI VATE | NVALI D

1. Modifying Data Sources With MODIFY I

where:
RETAI N

Is an option that deactivates data source fields but does not change the value of the
corresponding transaction fields to blank or O.

field-1 ...

Are the fields you want to deactivate. To deactivate all the fields in one segment, specify
any segment field with the prefix seg. affixed in front of the field name. For example:

DEACTI VATE SEG SKI LLS

ALL

Is an option that deactivates all fields (including temporary fields) and automatically
invokes the INVALID option if the request contains CRTFORM statements (see below).

COWPUTES
Is an option that deactivates all temporary fields.
| NVALI D

Is an option that causes the following: if the user enters a value on a CRTFORM screen
and the value fails a validation test, FIDEL does not redisplay the CRTFORM screen to
reprompt the user for a valid value. Rather, it displays the next screen.

Use the INVALID option only with requests containing CRTFORM statements.

The ACTIVATE and DEACTIVATE statements can stand by themselves or they can form part of
an ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT phrase in a MATCH or NEXT
statement. These are some sample statements:

ACTI VATE RETAIN SKI LLS
ON MATCH DEACTI VATE ALL

ON NONEXT ACTI VATE FULL_NAME SEG SKI LLS JOBS_DONE

Protecting Against System Failures

FOCUS provides three ways to protect your data if your system experiences hardware or
software failure while you are executing a MODIFY request. They are:

.4 The Checkpoint facility.

. The Absolute File Integrity feature.

Maintaining Databases 211

Advanced Facilities

Syntax:

212

- The COMMIT and ROLLBACK subcommands.

How to Safeguard Transactions With the Checkpoint Facility

The Checkpoint facility limits the number of transactions lost if the system fails when you are
modifying a data source. You can set checkpoints for transactions that are being read from a
data source, or from the terminal.

When a MODIFY request is executed, it does not write transactions to the data source
immediately, instead it collects them in a buffer. When the buffer is full, FOCUS writes all
transactions in the buffer to the data source at one time. This cuts down on the input/output
operations that FOCUS must perform. If, however, the system crashes, the transactions
collected in the buffer may be lost.

You may cause FOCUS to write more frequently to the data source by using the checkpoint
facility. When you activate the Checkpoint facility, FOCUS writes to the data source whenever a
specified number of transactions accumulates in the buffer. The point at which FOCUS writes
the transactions is called the checkpoint.

You control the Checkpoint facility with the following MODIFY statement
CHECK { ON| OFF| 7}

where:
ON

Activates the Checkpoint facility. FOCUS writes to the data source when the buffer
accumulates 100,000 transactions.

OFF

Deactivates the Checkpoint facility.

Activates the Checkpoint facility. FOCUS writes to the data source when the buffer
accumulates n transactions.

Note that if you set n to a smaller number, fewer transactions are processed between
checkpoints. This causes FOCUS to perform more input/output operations, thereby
decreasing efficiency.

1. Modifying Data Sources With MODIFY I

Reference:

Reference:

If the system does fail while you are modifying a FOCUS data source, enter the ? FILE query
when the system comes back. Look at the number in the bottom row in the right-most column.
This is the number of transactions written to the data source by the MODIFY request that was
executing when the system came down. You can have the request start processing the
transaction data source at the next transaction by using the START command, described in
Reading Selected Portions of Transaction Data Sources: The START and STOP Statements on
page 73.

The following MODIFY request sets the checkpoint at every tenth transaction:

MODI FY FI LE EMPLOYEE
CHECK 10
MATCH EMP_I D
PROVPT EMP_I D CURR SAL
ON MATCH UPDATE CURR SAL
ON NOVATCH REJECT
DATA

Safeguarding FOCUS Data Sources: Absolute File Integrity

The Absolute File Integrity feature completely safeguards the integrity of a FOCUS data source
that you are modifying, even if the system experiences hardware or software failure. When you
are using this feature, FOCUS does not overwrite the data source on disk, instead it writes the
changes to another section of the disk. If the request finishes normally, the new section of the
disk becomes part of the data source. If the system fails, the original data source is
preserved.

Safeguarding Transactions: COMMIT and ROLLBACK Subcommands

To use COMMIT and ROLLBACK you must use Absolute File Integrity (see Managing MODIFY
Transactions: COMMIT and ROLLBACK on page 218). Unlike the CHECK statement, COMMIT
gives you control over the content of data source changes and ROLLBACK enables you to
cancel changes before they have been written to the data source. In case of system failure,
COMMIT and ROLLBACK ensure that either all or no transactions are processed.

You can use either COMMIT and ROLLBACK, or the CHECK statement in your MODIFY
procedures. If the MODIFY procedure uses COMMIT and ROLLBACK, CHECK processing is not
used (see Managing MODIFY Transactions: COMMIT and ROLLBACK on page 218).

Displaying MODIFY Request Logic: The ECHO Facility

The ECHO facility displays the logical structure of MODIFY requests. This is a good debugging
tool for analyzing a MODIFY request, especially if the logic is complex and MATCH and NEXT
defaults are being used.

Maintaining Databases 213

Advanced Facilities

214

Each ECHO display lists:

4 The cases, if case logic is used.

4 The MODIFY statements used, such as COMPUTE, VALIDATE, TYPE, GOTO, and IF.
4 Each segment modified or used to establish a current position.
1

The actions the request takes for ON MATCH, ON NOMATCH, ON NEXT, and ON NONEXT
conditions when it is modifying the segment, whether these actions are specified by the
request or are by default. Default actions are discussed in The MATCH Statement on page
75.

4 The number of data source fields, the total number of fields (including internal fields), and
the total size of the field areas.

To use the ECHO facility, first allocate the ECHO terminal output to ddname HLIPRINT. Then,
begin the MODIFY command this way

MODI FY FILE f//e ECHO

where file is the name of the data source. When you run the request, the request does not
modify the data source; rather, the ECHO facility displays the listing at the terminal.

The ECHO facility can store the listing in a file rather than display it on the screen. To do this,
allocate the file to ddname HLIPRINT. A record length of 80 bytes is sufficient.

The listing has the form

MODI FY ECHO FACI LI TY
ECHO OF PROCEDURE: focexec

mat ch-acti ons nomat ch-acti ons0

NUVBER OF DATABASE FIELDS : n
TOTAL NUMBER OF FI ELDS n
TOTAL SIZE OF FIELD AREAS : n

1. Modifying Data Sources With MODIFY I

where:
focexec

Is the name of the procedure that the request is stored in. If you entered the request from
a terminal, this line is omitted.

casenane

Is the name of the case, if the request uses Case Logic.
statenents

Are the MODIFY statements used. (Note: MATCH statements are shown separately.)
segnane

Is the name of the segment being modified or used to establish a current position.
mat ch- acti ons

Are actions taken on an ON MATCH or ON NEXT condition, including default actions.
nonat ch- acti ons

Are actions taken on an ON NOMARCH or ON NONEXT condition, including default actions.

Is an integer.
NUVBER OF DATABASE FI ELDS

Is the number of fields described by the Master File, including fields in cross-referenced
segments.

TOTAL NUMBER OF FI ELDS

Is the sum of the number of data source fields in the Master File and temporary fields in
the MODIFY request. This includes fields automatically created by FOCUS (these fields are
listed in Computing Values: The COMPUTE Statement on page 106).

TOTAL SI ZE OF FI ELD AREAS

Is the sum of the sizes of data source fields in the Master File and temporary fields in the
MODIFY request, measured in bytes.

If you are executing a no-case procedure, the ECHO display lists the names of all segments in
the data source. Those segments that you did not use in your request are listed with both
MATCH and NOMATCH conditions as REJECT.

A sample request running the ECHO facility is shown below:

Maintaining Databases 215

Advanced Facilities

MODI FY FI LE EMPLOYEE ECHO
PROVPT EMP_I D
GOTO SALENTRY

CASE SALENTRY
MATCH EMP_I D
ON MATCH PROVPT CURR_SAL
ON MATCH VALI DATE
SALTEST = | F CURR_SAL GT 50000 THEN O ELSE 1;
ON | NVALI D TYPE
"SALARY TQOO HI GH. PLEASE REENTER THE SALARY"
ON | NVALI D GOTO SALENTRY
ON MATCH UPDATE CURR_SAL
ENDCASE
DATA

When you run this request, the following display appears. Note that although the request did
not specify an ON NOMATCH phrase in the SALENTRY case, the ECHO display lists the REJECT
action under the ON NOMATCH column for the SALENTRY case, because REJECT is the default
action for an ON NOMATCH condition.

EMPLOYEE FOCUS Al ON 07/18/2003 AT 10.48. 21

MODI FY ECHO FACI LI TY
ECHO OF PROCEDURE: MOD76

PROVPT

PROVPT REJECT
VALI DATE

I NVALI D TYPE

| NVALI D GOTO SALENTRY

UPDATE

END OF ECHO
NUMBER OF DATABASE FI ELDS : 34

TOTAL NUMBER OF FI ELDS . 36
TOTAL SI ZE OF FIELD AREAS : 371

216

1. Modifying Data Sources With MODIFY I

Dialogue Manager Statistical Variables

After you run a FOCUS request, FOCUS automatically records statistics about the execution in
specially designated Dialogue Manager variables. Since these variables do not receive values
until after execution is completed, they are not useful in the requests themselves. However,
you may use them in procedures after execution (that is, after the Dialogue Manager -RUN
control statement).

The variables that pertain to MODIFY requests are:

&TRANS

Number of transactions processed.

&ACCEPTS

Number of transactions accepted into the data source.

&l NPUT

Number of segment instances added to the data source.

&CHNGD

Number of segment instances updated.

&DELTD

Number of segment instances deleted.

&DUPLS

Number of transactions rejected because of an ON MATCH REJECT
condition.

&NOVATCH

Number of transactions rejected because of an ON NOMATCH REJECT
condition.

& NVALI D

Number of transactions rejected because transaction values failed
validation tests.

&FORVAT

Number of transactions rejected because of format errors.

&REJECT

Number of transactions rejected for other reasons.

For instructions on how to use Dialogue Manager variables to build procedures, see the
Developing Applications manual.

MODIFY Query Commands

Four query commands display information regarding the MODIFY command and the
maintenance of FOCUS data sources. These are:

Maintaining Databases

217

Advanced Facilities

? COVBI NE Displays information on combined structures (see Modifying Multiple Data
Sources in One Request: The COMBINE Command on page 196).

? FDT Displays information regarding the physical attributes of FOCUS data
sources (see the Developing Applications manual).

? FILE Displays information regarding the number of segment instances in FOCUS
data sources and the dates and times the data sources were last modified
(see the Developing Applications manual).

? STAT Displays statistics regarding the last execution of a request (see the
Developing Applications manual).

Managing MODIFY Transactions: COMMIT and ROLLBACK

218

COMMIT and ROLLBACK are two MODIFY subcommands. COMMIT gives you control over the
content of data source changes and ROLLBACK enables you to undo changes before they
become permanent.

The COMMIT subcommand safeguards transactions in case of a system failure and provides
greater control (than the MODIFY Checkpoint facility) over which transactions are written to the
data source.

The MODIFY CHECK statement only enables you to control the number of transactions that
must occur before changes are written to the data source. When using CHECK, you cannot
change the checkpoint setting once the MODIFY request begins execution. Similarly, changes
cannot be canceled (see How to Safeguard Transactions With the Checkpoint Facility on page
212 for more information on the CHECK statement).

COMMIT enables you to make changes based on the content of the transactions as well as the
number. Changes you do not want to make can be canceled with ROLLBACK, unless a COMMIT
has been issued for those changes. Should the system fail, either all or none of your
transactions will be processed.

Absolute File Integrity is required in order to use COMMIT and ROLLBACK. Absolute File
Integrity is provided by the FOCUS Shadow Writing Facility.

Note: Absolute File Integrity is not supported for XFOCUS data sources and is not required for
COMMIT and ROLLBACK.

1. Modifying Data Sources With MODIFY I

Reference: The COMMIT and ROLLBACK Subcommands

The COMMIT and ROLLBACK subcommands are automatically activated in FOCUS and cannot
be deactivated. Therefore, unless you omit these subcommands from your code, COMMIT and
ROLLBACK processing takes place. If you would rather use CHECK processing, make sure you
do not include COMMIT and ROLLBACK subcommands, as they will take precedence over
CHECK processing.

Reference: Coding With COMMIT and ROLLBACK

COMMIT and ROLLBACK each process a logical transaction. A logical transaction is a group of
data source changes in the MODIFY environment that you want to treat as one. For example,
you can handle multiple records displayed on a CRTFORM and then processed using the
REPEAT command as a single transaction. A logical transaction is terminated by either
COMMIT or ROLLBACK. COMMIT and ROLLBACK also can be used for single-record processing.

When COMMIT ends a logical transaction, it writes all changes to the data source. COMMIT
can be coded as a global subcommand or as part of MATCH or NEXT logic. The possible
MATCH and NEXT statements are:

COW T

ON MATCH COWM T

ON NOVATCH COW T

ON MATCH NOVATCH COWM T
ON NEXT COW T

ON NONEXT COWM T

When ROLLBACK ends a logical transaction, it does not write changes to the data source. The
ROLLBACK subcommand cancels changes made since the last COMMIT. ROLLBACK cannot
cancel changes once a COMMIT has been issued for them.

ROLLBACK can also be coded as a global subcommand or as part of MATCH or NEXT logic.
Possible MATCH and NEXT statements are:

ROLLBACK

ON MATCH ROLLBACK

ON NOVATCH ROLLBACK

ON NMATCH NOVATCH ROLLBACK

ON NEXT ROLLBACK
ON NONEXT ROLLBACK

If the COMMIT fails for any reason (for example, system failure, lack of disk space), no
changes are made to the data source. In this way, COMMIT is an all-or-nothing feature that
ensures data source integrity.

Maintaining Databases 219

Advanced Facilities

220

In the following example, a user may COMMIT or ROLLBACK changes after each group of three
records has been processed, or delay the COMMIT subcommand until later by selecting the
option to add more records. Changes are stored permanently in the data source when the user
chooses to commit the changes or when the procedure is terminated without issuing a

ROLLBACK subcommand.

Note: In the following example the COMMIT and ROLLBACK subcommands are included in
Case COMM and Case ROLL, respectively.

MODI FY FI LE EMPLOYEE

COVPUTE ANSVER/ Al=;

CRTFORM LI NE 1

"ENTER UP TO 3 NEW EMPLOYEES"
" EMPLOYEE ID LAST NAME
"1, <EMP_ID(1) <LAST_NAME(1)
"2, <EMP_ID(2) <LAST_NAME(2)
"3. <EMP_ID(3) <LAST_NAME(3)
GOTO MATCHI T

CASE MATCH T
REPEAT 3
MATCH EMP_I D
ON NOVATCH | NCLUDE
ON MATCH REJECT
ENDREPEAT
GOTO DECI DE
ENDCASE

FI RST NAMVE"

<FI RST_NAME(1) "
<FI RST_NAME(2) "
<FI RST_NAME(3) "

1. Modifying Data Sources With MODIFY I

CASE DECI DE

CRTFORM LI NE 10

"WHAT WOULD YOU LI KE TO DO NOW? <ANSVER'

" C TO COW T CHANGES SO FAR'

" R TO ROLLBACK CHANGES"

" A TO ADD MORE EMPLOYEES"

I F ANSVER EQ ' C PERFORM COWM
ELSE | F ANSWER EQ ' R PERFORM ROLL
ELSE | F ANSWER EQ " A' GOTO TCP
ELSE PERFORM BADCHO CE;

GOTO TOP

ENDCASE

CASE COVM
COW T
ENDCASE
CASE ROLL
ROLLBACK
ENDCASE
CASE BADCHOI CE
TYPE "PLEASE ENTER C, R, OR A"
GOTO DECI DE
ENDCASE
DATA
END
MODIFY Syntax Summary

This section presents a summary of MODIFY command syntax. The syntax of each statement
is shown as part of a MODIFY request. The rest of the summary shows:

d The syntax of the transaction statements FIXFORM, FREEFORM, and PROMPT. The syntax of
the CRTFORM statement is shown in Designing Screens With FIDEL on page 227.

.4 The actions you can use in MATCH and NEXT statements.

MODIFY Request Syntax
The following is the syntax of MODIFY requests:

Maintaining Databases 221

MODIFY Syntax Summary

MODI FY FI LE 7/ /enane [ECHO TRACE]
TYPE [ON ddname] [AT START| AT END]
"text"

COWPUTE
field format=;

*x&%kFx transaction subconmand *FrEEFxx

VAL| DATE

fi el d=expressi on,
ON INVALI D {GOTO ... |PERFORM ... | TYPE [ON ddnane]}
"text"

COVPUTE
field/format = expression,

222

1. Modifying Data Sources With MODIFY I

MATCH {* [KEYS] [SEG n]|[W TH UNI QUES] keyfiel d(s) [field ... field}
ON MATCH act/ on
ON MATCH act/ on

ON NOVATCH action
ON NOVATCH action

ON NATCH NOVATCH act/ on

REPEAT [*| number] [TINES] [MAX nmaxi num [NOHOLD]

statenents

HOLD [SEG. | field [field ... field)
ENDREPEAT
ACTI VATE [RETAIN| MOVE] [SEG |field ... field
DEACTI VATE {[RETAIN] [SEG.] field ... field |[RETAIN

ALL| COVPUTES| | NVALI D}

CASE casenarne

GOTO { TOP| ENDCASE| ENDREPEAT| casenane| vari abl e| EXI T}

PERFORM { TOP| ENDCASE| ENDREPEAT| casenamne| vari abl e| EXI T}

| F expression

[THEN] {GOTQ PERFORMy { TOP| ENDCASE| ENDREPEAT| casenarne| vari abl e| EXI T}
[ELSE { GOTQ PERFORM} { TOP| ENDCASE| ENDREPEAT| casenane| vari abl e| EXI T}]
HOLD [SEG | field [field ... field

GETHOLD

NEXT f/ield

ON NEXT action
ON NEXT action

ON NONEXT action
ON NONEXT action
ENDCASE

COW T
ROLLBACK

LOG { TRANS| ACCEPTS| DUPL| NOVATCH| | NVALI D| FORVAT} [ON ddnane]
[MSG { ON| OFF}]

CHECK { ON| OFF| 17}
START n

Maintaining Databasfs 223
DATA {ON ddnane| VI A prognane}

[ENDJ

MODIFY Syntax Summary

Transaction Statement Syntax

The following is the syntax for three transaction statements: FIXFORM, FREEFORM, and
PROMPT. For CRTFORM syntax, see Designing Screens With FIDEL on page 227.

The syntax of the FIXFORM statement:

FI XFORM { FROM nast er |
[ON ddnanel field |[C|format field |[C|format ... [Xn] [X-n]}

The syntax of the FREEFORM statement:
FREEFORM [ON ddnane] field field field ...
The syntax of the PROMPT statement:

PROVPT {*| fieldl .text.] field, text,] . . .}

MATCH and NEXT Statement Actions

224

This section lists the actions that can be taken by MATCH and NEXT statements. They are
placed in ON MATCH, ON NOMATCH, ON NEXT, and ON NONEXT phrases. These actions are:

4 ACTI VATE

4 cowm T

4 COWPUTE

.l CONTI NUE (ON MATCH and ON NEXT only)

1 CONTI NUE TO(ON MATCH and ON NEXT only)

4 CRTFORM

- DEACTI VATE

4 DELETE (ON MATCH and ON NEXT only)

d FI XFORM

4 FREEFORM

d4 Goro

1. Modifying Data Sources With MODIFY I

d HOLD

dIF

4 | NCLUDE

4 PERFORM

4 PROWPT

1 REJECT

1 REPEAT (ON MATCH and ON NEXT only)

' ROLLBACK

1 TED (ON MATCH and ON NOMATCH ON NEXT and ON NONEXT
1 TYPE

1 UPDATE (ON MATCH and ON NEXT only)

1 VALI DATE

The following actions can be used in ON MATCH/NOMATCH phrases:
ACTI VATE

The following actions can be used in ON INVALID phrases:

GOoro
PERFORM
TYPE

Maintaining Databases 225

MODIFY Syntax Summary

226

Chapter
Designing Screens With FIDEL

FIDEL, the FOCUS Interactive Data Entry Language, enables you to design full-screen
forms for data entry and application development. You use FIDEL both with MODIFY for
building data maintenance and inquiry screens, and with Dialogue Manager for building
applications that accept values for variables at run time.

In this chapter:

. Introduction

Describing the CRT Screen
Using FIDEL in MODIFY

Using FIDEL in Dialogue Manager

L U o U

Using the FOCUS Screen Painter

Introduction

Describing the CRT Screen on page 232 describes the facilities of FIDEL that are common to
both MODIFY and Dialogue Manager. This introduction explains how MODIFY facilities and
FIDEL interact, and describes the FIDEL facilities that are specific to MODIFY. Using FIDEL in
Dialogue Manager on page 297 describes the interaction between Dialogue Manager and
FIDEL.

From the FOCUS TED editor, you can also use the FOCUS Screen Painter with both MODIFY and
Dialogue Manager to interactively build and view screens online. With the Screen Painter, you
design the layout of the form and the Screen Painter automatically generates the FIDEL code to
build it. The FOCUS Screen Painter is described in Using the FOCUS Screen Painter on page
302.

The two simple examples on the following pages demonstrate how to generate a screen form
by using the CRTFORM and -CRTFORM syntax. Note how closely FIDEL syntax resembles TABLE
syntax for creating headings.

Note: FIDEL only supports fixed format records with LRECL=80.

Maintaining Databases 227

Introduction

Using FIDEL With MODIFY

The following example of a simple MODIFY CRTFORM illustrates the use of FIDEL with the
resulting screen (the numbers refer to the explanation and are not part of the code):

228

P WNPR

MODI FY FI LE EMPLOYEE

CRTFORM
"EMPLOYEE UPDATE"
"EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST_NAME"
" DEPARTMENT: <DEPARTMENT SALARY: <CURR_SAL"

MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
DATA
END

This request sets up a form to update the last name, department and current salary.
Processing is as follows:

1.

CRTFORM generates the visual form and invokes FIDEL. The form begins on line one of the
screen unless specified otherwise with the LINE option (see Using Multiple CRTFORMSs: LINE
on page 274).

Each line on the screen begins and ends with double quotation marks. This is a line of text
that serves as a title. Note the close correspondence to the syntax used to create headings
in a TABLE request.

The second screen line specifies two data fields: EMP_ID and LAST_NAME. A data entry
field is indicated by a left caret, followed by the field name or alias from the Master File.
The text, EMPLOYEE ID #: and LAST NAME: identifies each field on the screen. This informs
the operator where to enter the data.

. This is the last line within double quotation marks. It signals the end of the CRTFORM. In

this case it identifies and defines two more data fields: DEPARTMENT and CURR_SAL.
When you run the MODIFY request, the form instantly appears on the screen:

EVPLOYEE UPDATE
EVMPLOYEE I D #: LAST NAME:
DEPARTMENT: SALARY:

The number of characters allotted for each data entry field on the screen defaults to the
display format for that particular field in the Master File. You can optionally specify a format
for screen display that is shorter than the default.

The operator can now fill in the data entry areas with the appropriate information.

. The request continues with MODIFY MATCH logic.

2. Designing Screens With FIDEL I

6. This line tells FOCUS that the incoming data is from the terminal. In conjunction with
CRTFORM, it implies full-screen data input. You can also use DATA VIA FIDEL.

When you use FIDEL with MODIFY, you are setting up full-screen forms for the maintenance of
data source fields. Most MODIFY features, such as conditional and non-conditional fields,
automatic application generation, Case Logic, multiple record processing, error handling,
validation tests, logging transactions, and typing messages to the terminal, work with FIDEL.

With MODIFY you also have access to additional screen control options such as clearing the
screen, specifying and changing the size of the screen, and designating the particular line on
which the form starts.

Using FIDEL With Dialogue Manager

The following example of a simple -CRTFORM illustrates the use of FIDEL in Dialogue Manager
and the resulting screen (the numbers refer to the explanation and are not part of the code):

1. - CRTFORM

. -"MONTHLY SALES REPORT FOR <&CI TY/ 10"

3. -"BEG NNI NG PRODUCT CCDE I S: <&CODE1/ 3"
- " ENDI NG PRODUCT CODE | S: <&CODE2/ 3"

4. -"REG ONAL SUPERVI SOR | S: <® ONMCGR/ 5"
TABLE FI LE SALES
HEADI NG CENTER
"MONTHLY REPORT FOR &CI TY"
" PRODUCT CODES FROM &CODE1 TO &CCDE2"

N

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ' D5.2 = 100 * RETURNS/ UNI T_SOLD;
BY PROD_CCDE

| F PROD_CODE | S- FROM &CODE1 TO &CODE2
FOOTI NG CENTER

"REG ONAL SUPERVI SOR: ® ONMGR'

END

The procedure sets up a form for gathering run-time variables for a TABLE request: &CITY, the
city for the report; &CODE1 and &CODE2, a range of product codes; and ®IONMGR, the
regional supervisor. Processing is as follows:

1. -CRTFORM generates the visual form, invokes FIDEL, and clears the screen.

2. Each line on the screen begins with a dash and double quotation marks (-"), and ends with
double quotation marks. Note this first line of the screen form contains text and a variable
field, &CITY, which has a length of 10. This specifies ten spaces on the screen for entering
the value. The data entry field is indicated by the left caret.

3. The next few lines of the screen form contain both text and variable fields with formats.

Maintaining Databases 229

Introduction

4. The last line within double quotation marks signals the end of the -CRTFORM. When the
FOCEXEC executes, the screen displays the following form:

MONTHLY SALES REPORT FOR
BEG NNI NG PRODUCT CODE | S:
ENDI NG PRODUCT CODE | S:
REG ONAL SUPERVI SOR | S:

The operator can now fill in values for the run-time variables. After the operator transmits
the screen by pressing Enter, the values entered on the screen are sent to the variables.
The regular FOCUS commands are stacked and executed when the end of the procedure is
reached.

When you use FIDEL with Dialogue Manager, you can define input fields as amper variables
that receive values at run time to adjust to specific processing requirements. Because they are
not data fields and are not part of the Master File, they do not automatically have a format.
You must allocate space for them on the screen. You can do this directly on the -CRTFORM as
in the previous example, or through a -SET statement.

Dialogue Manager supports two additional control statements: -CRTFORM BEGIN and -
CRTFORM END. The statement -CRTFORM BEGIN signals the beginning of the screen form. You
can then enter screen lines as well as other Dialogue Manager control statements. You then
signal the end of the screen form with the statement -CRTFORM END. This allows you to use
Dialogue Manager statements between screen lines while building the form.

Screen Management Concepts and Facilities

230

The following briefly outlines the FIDEL capabilities that are common to both MODIFY and
Dialogue Manager and defines the common terminology:

4 The MODIFY CRTFORM statement and the Dialogue Manager -CRTFORM control statement
both automatically invoke FIDEL. All succeeding lines placed within double quotations make
up the actual screen form. Note the common syntax between TABLE headings (see the
Creating Reports manual) and CRTFORM screen lines.

.4 You can combine a CRTFORM and a -CRTFORM in one procedure. However, they must
remain within their own environments. The MODIFY CRTFORM contains data source fields,
whereas the Dialogue Manager -CRTFORM contains amper variables.

.4 The term field in this chapter refers to either a data source field name in conjunction with
MODIFY or an amper variable in conjunction with Dialogue Manager.

.4 You can define a CRTFORM in MODIFY or a -CRTFORM in Dialogue Manager that has more
lines than on your CRT screen. FIDEL provides scrolling capabilities.

2. Designing Screens With FIDEL I

- It is important to note the difference between the physical screen on the terminal and the

logical CRTFORM or form. A form generated by one CRTFORM or -CRTFORM statement can
take up many screens or less than one screen.

You can specify three types of fields on the screen: input, display only, and turnaround
(both display and update). Data entry and turnaround fields are considered unprotected
areas on the screen because you may input values or replace what is there. Display values
are considered protected areas on the screen because you cannot alter what is there (see
Data Entry, Display and Turnaround Fields on page 239).

You can set PF key controls and specify cursor positioning. You can specify screen
attributes such as background effects, highlighting, and color to enhance readability of the
screen. You can also change screen attributes depending on the outcome of various tests
(see Controlling the Use of PF Keys on page 244, Specifying Screen Attributes on page
248, and Using Labeled Fields on page 252).

Note: This chapter is written specifically for the IBM 3270 terminal, which supports PF key and
cursor control, scrolling and screen attributes.

Using FIDEL Screens: Operating Conventions

The following procedures apply for filling in all FIDEL screens:

_I

_I

To move from field to field, press the Tab key. You can also move the cursor around the
screen using the arrow keys.

When filling in values on the screen, you may use any of the keys on the keyboard. Some
terminals automatically prevent the entry of a non-numeric character in a field identified as
computational.

To scroll forward or backward through a long CRTFORM (from screen to screen) press the
PF8 or PF7 key, respectively (or PF20, PF19).

To transmit the screen, press the Enter key.

If you make an error, the transaction may not be transmitted and an error message may
appear at the bottom of the screen. You can correct the error and retransmit the screen.

To signal the end of data entry, press the PF3 or PF15 key or type END in an unprotected
area. In MODIFY, this terminates the request. In Dialogue Manager, this terminates the
FOCEXEC procedure.

The following operating procedures are specific to MODIFY:

_I

To return to the first screen without transmitting the current screen, press the PF2 key or
the key set to QUIT.

Maintaining Databases 231

Describing the CRT Screen

- If the screen clears at any time, press the Enter key to bring it back.

Note: The PF key settings referred to here are the default settings. Any PF key can be
redefined using the SET statement.

Describing the CRT Screen

232

The MODIFY statement CRTFORM or the Dialogue Manager control statement -CRTFORM,
followed by the screen layout, generates a form. Within one MODIFY procedure, you can use an
unlimited number of screen lines (within memory constraints). Each screen line can contain a
maximum of 78 characters of text and data.

In MODIFY, you can use up to 255 CRTFORM statements in a procedure. In Dialogue Manager,
there is no limit to the number of -CRTFORM statements that you may use in one procedure.

All the basic options described here can be used with both MODIFY and Dialogue Manager.
Options that are specific to MODIFY are discussed in Using FIDEL in MODIFY on page 264 and
those specific to Dialogue Manager are discussed in Using FIDEL in Dialogue Manager on page
297.

The following example shows the syntax of a simple MODIFY CRTFORM using the LOWER case
option, followed by two screen lines containing various screen elements: text, a spot marker,
and a field (numbers refer to the explanation; they are not part of the code):

1. CRTFORM LOVER
2. "PLEASE FILL IN THE EMPLOYEE ID # </ 1"
3. "EMPLOYEE I D #: <EMP_I D'

MATCH EMP_I D

Processing is as follows:

1. CRTFORM invokes FIDEL and generates the form. The LOWER case option specifies that
what is entered from the terminal in lowercase will remain in lowercase.

2. The first line of the screen contains descriptive text.
</1 is a spot marker which skips one blank line.

3. The last line of the screen contains two screen elements: descriptive text that identifies the
field and the data source field EMP_ID. The last line between quotation marks signals the
end of the CRTFORM.

The form generated appears as follows:

PLEASE FILL IN THE EMPLOYEE ID #

2. Designing Screens With FIDEL I

EVMPLOYEE | D #:

Specifying Elements of the CRTFORM

To create the visual form, you enter the screen lines one after the other within double
quotation marks. For each screen line, you can specify various screen elements such as
descriptive text and fields. A left caret (<) followed by the name of the field generates the
position where data is to be entered onto the screen.

You may need to use two FOCEXEC lines to describe one physical CRTFORM line. Simply omit
the double quotation marks (") at the end of the first line and omit them at the beginning of
the next line as well. Everything between the set of double quotation marks will read as one
screen line on the CRTFORM.

Syntax: How to Invoking FIDEL: CRTFORM and -CRTFORM

The following is a summary of the complete syntax for generating a CRTFORM in MODIFY or a -
CRTFORM in Dialogue Manager. The individual options and screen elements are described in
detail in specific sections later in the chapter. The syntax is

[-1CRTFORM [option option...]

[-1"screen el enent [screen elenent....]"
where:

[-] CRTFORM

Automatically invokes FIDEL and sets up the visual form. Subsequent lines describe the
screen.

option option...

Refers to screen control options. (See Using FIDEL in MODIFY on page 264 and Using
FIDEL in Dialogue Manager on page 297.)

[-1"screen el enent.."

Can be user-defined text, fields, or spot markers. Spot markers define the next place on
the screen where a screen element will appear. Both spot markers and fields are preceded
by a left caret and optionally closed by a right caret (see Specifying Elements of the
CRTFORM on page 233).

Note:

.4 You can create simple screen forms by typing the FIDEL code into your procedures with your
text editor. However, it is easier to build more complex forms using many screen attributes
and field labels using the FOCUS Screen Painter.

Maintaining Databases 233

Describing the CRT Screen

-l You can use the asterisk (*) with CRTFORM in FIDEL to generate a CRTFORM containing all
of the data source's fields automatically (that is, without specifying individual fields). See
Generating Automatic CRTFORMs on page 270 for information on CRTFORM *, its syntax
and variations.

.d Do not begin any field used in a CRTFORM or FIXFORM statement with Xn, where n is any
numeric value. This applies to fields in the Master File and computed fields.

Defining a Field

Syntax:

234

Labels, prefixes, attributes, and formats are parts of the definition of a particular field. In
Dialogue Manager, the first character is an ampersand, which signals an amper variable. (The
entire definition is preceded by a left caret and optionally closed by a right caret.)

Note: Fields with a text (TX) format cannot be used in CRTFORM or -CRTFORM. However, they
can be entered interactively using TED (see Entering Text Data Using TED on page 69, for using
text fields in MODIFY).

How to Define a Field in FIDEL

The syntax for defining a field is as follows.

In MODIFY:
<[:label.][prefix.[attribute.] field!/length][>]

In Dialogue Manager:

<[& label . \[prefix.][attribute.]&variable[llengthl>]

where:
. label .| & | abel .

Is a user-defined label of up to 12 characters associated with a field. It may not contain
embedded blanks (see Using Labeled Fields on page 252).

prefix.

Refers to D. or T., which designate a display or turnaround field, respectively (see Data
Entry, Display and Turnaround Fields on page 239).

attri bute.

Is the abbreviation or full name of a screen attribute (see Specifying Screen Attributes on
page 248).

2. Designing Screens With FIDEL I

field

Is the name of the field or variable being defined.

&vari abl e

Is for data entry. Can be a data source field or a temporary field.

| I ength
Is the length of the field as it appears on the screen. In MODIFY, you need to define a
length only if you want the screen length to be different from the format length that is

defined in the MASTER or COMPUTE. In Dialogue Manager, you need to define a length
only if not previously defined.

Note: When you use the abbreviations for attributes, you do not need to use the dot separator
between attributes or between a prefix and an attribute (see Specifying Screen Attributes on
page 248).

Example: Defining a Field
The following is an example of the syntax of a Dialogue Manager screen line defining the

variable field &CITY:

- CRTFORM
-"<& LOL. T.H GH &I TY/ 7"

The elements on the second line which define the variable field &CITY are:

1. The left caret generates a place for the variable on the screen.
2. &:LO1 is a label that identifies the data entry area on the screen (see Using Labeled Fields
on page 252).

3. T. is a prefix that defines the variable as a turnaround field. If the variable has been given a
value within the FOCEXEC, it is displayed. Otherwise a default value is displayed. The
operator can then change the value.

4. .HIGH. is a screen attribute specifying that the contents of the field will be highlighted.

5. &CITY/7 is the name of the variable field with a length specification. The specified length is
seven characters. That is, the space that will be allotted on the screen for input of data is
seven characters long.

Prefixes, labels, and screen attributes are explained fully in Data Entry, Display and Turnaround
Fields on page 239, Specifying Screen Attributes on page 248, and Using Labeled Fields on
page 252.

Maintaining Databases 235

Describing the CRT Screen

Reference: Difference in FIDEL When Used With MODIFY and Dialogue Manager

The following chart outlines the similarities and differences of FIDEL when used with MODIFY

and Dialogue Manager:

MODIFY

Dialogue Manager

CRTFORM [opt i ons]

- CRTFORM [opt i ons]

UPPER/ LOVER
CLEAR/ NOCLEAR
W DTH HEI GHT
TYPE

LI NE

UPPER/ LOVNER
BEG N END
TYPE

"screen el enents"
text

<spot mnarker[>]**
<field length >]*
prefix.(D. or T.)***

"“screen el enents"
text

<spot marker[>]**
<field |ength]>]**
prefix.(D. or T.)***

attribute. attri bute
. [abel . & [abel .

* The right caret denotes a non-conditional field.
** The right caret has no meaning, but may be used for increased clarity.

*** Prefixes, attributes and labels are part of the definition of the field on the screen. They do
not stand alone.

Using Spot Markers for Text and Field Positioning

Because the lengths of fields vary, text does not automatically align uniformly on the screen.
Spot markers are available to help you position both text and fields. Please note that a spot
marker is essential to eliminate trailing blanks at the end of the first line, if your screen line
description takes up two FOCEXEC lines.

The syntax and usage of the different spot markers are shown in the following chart:

Marker Exampl Usage
e
<n or <m> <50 Positions the next character in column 50.

236

2. Designing Screens With FIDEL I

Marker Exampl Usage
e
<+n or <+4 Positions the next character four columns from the last non-
st blank character.
<-n or <-1 Positions the next character one column to the left of the last
<= character. This marker's function is to suppress or write over
the attribute byte at the beginning and the end of a field.
</nor </ </2 Positions the next character at the beginning of the line that is
= two lines from the last (skips two lines). Note: The last line is
blank and is created when a double quotation mark (") is
encountered.
<0X or <0X Positions the next character immediately to the right of the last
<0X>

character (skip zero columns). This is used to help position
data on a FIDEL screen when a single screen line is coded as
two lines in a FOCEXEC. No spaces are inserted between the
spot marker and the start of a continuation line (see Note 3 in
the following example).

Note: You can optionally use the right caret >. This is useful when the next character in the
line is a left caret. It also enhances readability.

Suppose you want the various input data fields arranged across the screen in vertical sections,
left justified, and in horizontal segments marked off with lines. Using spot markers, you can
create the desired screen as shown in the following example:

Maintaining Databases

237

Describing the CRT Screen

MODI FY FI LE EMPLOYEE
CRTFORM
"EMPLOYEE UPDATE"

"EMPLOYEE I D #: <EMP_ID LAST NAME: <LAST_NAME"

1. "</1"
2. "DEPARTMENT: <DEPARTMENT <+3 CURRENT SALARY: <O0X>

<CURR_SAL"

"BANK: <BANK_NAME"

MATCH EMP_I D

DATA
END

The spot markers in the example perform the following functions:
1. </1 generates a blank line.

2. <+3 moves the word CURRENT three spaces to the right of the last letter in the word
DEPARTMENT. <OX> skips no spaces. No extra spaces are inserted between this and the
next word (<CURR_SAL) on the continuation line. There is, in fact, one space before the
field which is an attribute byte that marks the start of a field.

The screen appears as:

EVMPLOYEE UPDATE

EMPLOYEE I D #: LAST NAME:

DEPARTMENT: CURRENT SALARY:

Specifying Lowercase Entry: UPPER/LOWER

All text that is entered from the terminal is normally translated to uppercase letters. You can
override this default and preserve both uppercase and lowercase text by using the lowercase
option. The syntax is

[-] CRTFORM [UPPER| LOVER]

238

2. Designing Screens With FIDEL I

where:
UPPER

Translates all characters to uppercase. This is the default.
LOVNER

Reads lowercase data from the screen. Once you specify LOWER, every screen thereafter
is a lowercase screen until you specify UPPER.

Note: In MODIFY, when you use multiple CRTFORMs on the same screen (using LINE n), you
can mix UPPER and LOWER among the forms.

Data Entry, Display and Turnaround Fields

Syntax:

There are three types of data or variable fields that can be specified on the CRTFORM: data
entry, display, and turnaround.

You can also compute data fields (see Computing Values: The COMPUTE Statement on page
106, for rules about computing data fields) and specify them as entry, display, or turnaround
on the CRTFORM. You can convert a turnaround field to a display field dynamically.

In MODIFY, fields can also be designated as conditional or unconditional (see Conditional and
Non-Conditional Fields on page 264). We recommend that for data entry, you use conditional
fields (left caret only) so that the values in your data source are not replaced by a blank or a
zero if you do not enter data for the field.

For most turnaround fields, we recommend that you use non-conditional fields (both carets). A
non-conditional turnaround field remains active whether you enter data or not. Because the
value in the data source is displayed in the field, that value remains in the data source if you
do not change it. Because the field remains active, the values for your VALIDATEs and
COMPUTESs are then accurate (see Conditional and Non-Conditional Fields on page 264 for a
complete explanation of the use of conditional and non-conditional fields in MODIFY).

The following outlines the rules for specification of different types of fields.

How to Use Data Entry Fields (for Data Entry Only)
In MODIFY, the syntax is

<fieldl/length)|>

where:
<field>]

Is the name of the field. Reserves space on the screen for data entry into that field and
does not display the current value of the field.

Maintaining Databases 239

Describing the CRT Screen

Syntax:

Syntax:

240

In MODIFY, if only the left caret is used, data entry is conditional. If both carets are used, the
field is non-conditional (see Conditional and Non-Conditional Fields on page 264).

In Dialogue Manager the syntax is

<&vari abl e[l engt h [>]

where:
<&vari abl € >]

Is the name of the variable field. Reserves space on the screen for data entry into that
field and does not display the current value of the field.

In Dialogue Manager, the option of the right caret is meaningless. Usually for the FOCEXEC to
run, you must supply a value for each variable. If you do not, FOCUS assumes a blank ora O
for that value.

How to Use Display Fields (for Information Only)
Data is displayed in a protected area and cannot be altered.

In MODIFY, the syntax is
<D. field/ength]

In Dialogue Manager, the syntax is

<D. &vari abl e[| | engt h]

where:
D.

Is the prefix placed in front of a field, indicating that the data or value is to be displayed.
The current value of the field appears on the screen, but in a protected area which cannot
be changed.

Note that the right caret is meaningless for display fields.

How to Use Turnaround Fields (for Display and Change)
Data is displayed in an unprotected area and can be altered.

In MODIFY, the syntax is:
<T.field!/lengthl[>]

In Dialogue Manager, the syntax is:

2. Designing Screens With FIDEL I

<T. &vari abl e[| | engt h [>]

where:
T.

Is the prefix placed in front of a field to indicate that it is a turnaround field. The current
value of the field is displayed on the screen. However, the operator may change the value,
as it is not in a protected area.

In MODIFY, if only the left caret is present, the T. field is treated as conditional. If the right
caret is used, the field is non-conditional, and the value is treated as present, even if
unchanged (see Conditional and Non-Conditional Fields on page 264).

In Dialogue Manager, the changed value for the turnaround variable field will substitute
everywhere in the FOCEXEC where it is subsequently encountered.

Note: In MODIFY, in order to display data from a data source field or present it for turnaround,
a position in the data source must first be established through the use of a MATCH or NEXT
statement, or value must be assigned in a COMPUTE. A computed field cannot be set and
displayed in the TOP case, where data entry is processed prior to computations. For example,
one of the phrases

ON MATCH CRTFORM
ON NEXT CRTFORM

must be used. A position is thus established in the data source, and the values of the fields in
existing records are now available for display as protected or unprotected fields.

You can also match on a key field and go to a case (see CRTFORMs and Case Logic on page
279) in which you display a CRTFORM using display and turnaround fields.

Using Data Entry, Display, and Turnaround Fields

Example:

This section will show how to use Date Entry, Display, and Turnaround Fields with MODIFY and
Dialogue Manager.

Using Data Entry, Display, and Turnaround Fields With MODIFY

The following example combines two CRTFORMs in a single MODIFY request and shows the
use of entry, display and turnaround fields (numbers refer to the explanation below; they are
not part of the code):

Maintaining Databases 241

Describing the CRT Screen

242

MODI FY FI LE EMPLOYEE

1. CRTFORM

"ENTER EMPLOYEE | D#: <EMP_I D'

"PRESS ENTER"

"l o
2. MATCH EMP_ID

ON NOVATCH REJECT

ON MATCH CRTFORM

"REVI SE DATA FOR SALARY AND DEPARTMENT"

"ENTER NEW DATA FOR EDUCATI ON HOURS"

3. "EMPLOYEE I D #: <D.EMP_ID LAST_NAME: <D. LAST_NAME"
4. " SALARY: <T. CURR_SAL>"
" DEPARTMENT: <T. DEPARTNENT>"
5. " EDUCATI ON HOURS: <ED HRS>"
ON MATCH UPDATE CURR_SAL DEPARTMENT ED HRS
DATA
END

The procedure matches the employee ID, displays both the ID and the last name, and then
displays the current salary and department for turnaround. Education hours is a data entry
field.

Note that when the procedure executes, both CRTFORMs are displayed immediately. However,
the display and turnaround fields in the second CRTFORM do not display data until the
operator fills in the first form and presses Enter. We therefore recommend you use the LINE
option.

When a FORMAT ERROR occurs, all data entered up to that point is processed and cannot be
changed in the course of your transaction.

The processing is as follows:

1. CRTFORM generates the first form which begins on line 1 (the second CRTFORM is
displayed, but without values):

ENTER EMPLOYEE | D #:
PRESS ENTER

REVI SE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATI ON HOURS

EMPLOYEE | D #: LAST NAME:
SALARY:

DEPARTMENT:

EDUCATI ON HOURS:

2. Designing Screens With FIDEL I

Example:

2. The procedure continues with the MATCH logic. If the ID number that is input matches an
ID in the data source, the display and turnaround fields on the second CRTFORM display
the data. Assume the operator enters 818692173 and presses Enter.

The following is displayed:

ENTER EMPLOYEE | D #: 818692173
PRESS ENTER

REVI SE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATI ON HOURS

EMPLOYEE I D #: 818692173 LAST NAME: CROCSS
SALARY: 27062. 00

DEPARTMENT: M S

EDUCATI ON HOURS:

3. This screen line contains two display fields.
4. The next two screen lines contain turnaround fields.

5. The last line is a data entry field.

Note: To display fields from a unique segment, the ON MATCH CONTINUE TO, ON NEXT, or
MATCH WITH-UNIQUES phrase must have been executed (see Modifying Data: MATCH and
NEXT on page 75).

In Dialogue Manager, in order to display values with D. or T., a value must have been supplied
for the variable prior to the initiation of the -CRTFORM. System variables are an exception to
this rule, as the system automatically supplies their values.

Computed fields in both MODIFY and Dialogue Manager can be displayed in any kind of
CRTFORM.

Using Data Entry, Display, and Turnaround Fields With Dialogue Manager

The following example illustrates the use of D. fields and system variables in a Dialogue
Manager -CRTFORM:

1. -SET &I TY = STAMFORD;

2. -CRTFORM
3. -"YEARLY SALES REPORT FOR <T. &CI TY/ 10"

4. -"DATE: <D &DATE TIME: <D. &DATEMDYY"

-"ENTER BEG NNI NG PRODUCT CODE RANGE: <&BEGCODE/ 3"
-"ENTER ENDI NG PRODUCT CODE RANGE: <&ENDCODE/ 3"
-"ENTER NAME OF REG ONAL SUPERVI SOR: <® ONMGR/ 15"

Maintaining Databases 243

Describing the CRT Screen

TABLE FI LE SALES

HEADI NG CENTER
"YEARLY REPORT FOR &CI TY"
" PRODUCT CCODES FROM &BEGCODE TO &ENDCCDE"

SUM UNI T_SOLD AND RETURNS AND COMPUTE
RATI Q' D5.2 = 100 * RETURNS/ UNI T_SOLD;

BY PROD_CODE

| F PROD_CODE | S- FROM &BEGCODE TO &ENDCODE
IE CITY EQ &CI TY

FOOTI NG CENTER

"REG ON MANAGER ® ONMGR!

" CALCULATED AS OF &DATE"

END

The example processes as follows:

1. The -SET sets a default value for &CITY:

FOR WHICH CI TY DO YOU WANT A REPORT?

2. -CRTFORM generates the screen form:

YEARLY SALES REPORT FOR STAMFCRD
DATE: 02/22/2003 TIME: 13.42.38

ENTER BEG NNI NG PRODUCT CODE RANGE:
ENTER ENDI NG PRODUCT CCDE RANGE:
ENTER NAME OF REG ONAL SUPERVI SOR:

3. The transaction value for &CITY is Stamford, the value that was previously supplied in the -
SET statement.

4. Note that the variables &DATE and &DATEMDYY are system variables. The values are
supplied by the system and displayed on the form.

Controlling the Use of PF Keys

244

The terminal operator can use certain PF keys to control the execution of a FIDEL application.
Normally, the following keys are used:

- PF3 and PF15 mean END and terminate execution.
. PF2 means Cancel and cancels the transaction in MODIFY.

.4 PF7 and PF8 page Backward and Forward respectively.

2. Designing Screens With FIDEL I

Note: All other keys return the value of the PF key when pressed.

Several facilities are available to assist you in controlling various screen operations:

. You can reset PF key functions. You can also set PF keys to branch to particular cases in
MODIFY or labels in Dialogue Manager.

. You can set the cursor on a specified position on the screen (see Specifying Cursor Position
on page 256).

.4 You can use the cursor position on the screen to perform a branch or action based on a

test (see Determining Current Cursor Position for Branching Purposes on page 258).

Reference: Default Settings for PF Keys

The default PF key settings are as follows:

PF Key Function
PFO1 HX

PFO2 CANCEL
PFO3, PF15 END
PFO4, PF16 RETURN
PFO5, PF17 RETURN
PF0O6, PF18 RETURN
PFO7, PF19 BACKWARD
PFO8, PF20 FORWARD
PFO9, PF21 RETURN
PF10, PF22 RETURN
PF11, PF23 RETURN
PF13 RETURN
PF12, PF24 UNDO

Maintaining Databases 245

Describing the CRT Screen

246

PF Key Function

PF14 RETURN

You can display the current PF key settings by issuing the FOCUS query command:
? PFKEY
This displays a formatted table of all the current values.

Resetting PF Key Controls

You can reset PF key functions in FIDEL for both CRTFORMs and -CRTFORMSs using the FOCUS
SET command with the following syntax

SET PFxx = function

where:
XX

Is a one or two-digit PF key number.
function

Is one of the following;:

END in MODIFY, exits the procedure; in Dialogue Manager, is equivalent to QUIT. That is,
END exits the procedure.

CANCEL in MODIFY, cancels the transaction and returns to the TOP case. Do not use the
CANCEL setting in Dialogue Manager.

FORWARD pages forward.
BACKWARD pages backward.

RETURN has no specific screen action. Returns the PF key name in the PFKEY field
because it is not yet defined. To set the PFKEY field, use COMPUTE in MODIFY or -SET in
Dialogue Manager.

HELP displays text supplied with the HELPMESSAGE attribute for any field on the MODIFY
CRTFORM. Position the cursor on the data entry area of the desired field, and press the PF
key you have defined for HELP. If no help message exists for that field, the following
message is displayed:

NO HELP AVAI LABLE FOR THI S FI ELD.

2. Designing Screens With FIDEL I

The following example sets the PFO3 key for paging backward and the PFO4 key for paging
forward:

SET PFO03=BACKWARD, PFO04=FORWARD

Note: When changing PF key settings, make sure that at least one key is set to END. If you set
a PF key to FORWARD, you should also set one to BACKWARD.
Setting PF Key Fields for Branching Purposes

You can create a menu of processing options. The operator can then indicate a choice by
pressing a particular PF key. To assign a specific processing function to a PF key, you must
specify a field named PFKEY. Which PF key the operator presses determines the value of the
PFKEY field.

You can use the PF keys designated as Return keys, as well as the Enter key. You define a
variable called PFKEY (in MODIFY) or &PFKEY (in Dialogue Manager) and then test its value
after the CRTFORM is displayed. Which branch takes place depends on which PFKEY the
operator presses.

In MODIFY, the syntax is

COWPUTE
PFKEY/ Ad=;

where:
PFKEY/ A4

Is a four-character field, whose value is determined by which key the operator presses at
run time.

In Dialogue Manager, the syntax is

- SET &PFKEY='

where:
&PFKEY

Is a four-character field, whose value is determined by which key the operator presses at
run time.

Is the allocation of four character spaces for the field.

The following example shows how PF keys can be tested in MODIFY:

Maintaining Databases 247

Describing the CRT Screen

1. COWUTE
PFKEY/ Ad=;
2. CRTFORM

" SELECT OPTI ON'
"I NPUT PRESS PF4"
"UPDATE PRESS PF5"
"DELETE PRESS PF6"
3. | F PFKEY EQ ' PFO4' GOTO | NCASE
ELSE | F PFKEY EQ ' PFO5' GOTO UPCASE
ELSE | F PFKEY EQ ' PFO6' GOTO DELCASE
ELSE GOTO TOP;

The example processes as follows:
1. The COMPUTE statement specifies a four-character field PFKEY.
2. CRTFORM generates the form which supplies the operator with three options:

SELECT COPTI ON

I NPUT PRESS PF4
UPDATE PRESS PF5
DELETE PRESS PF6

3. The IF test determines what case to branch to depending on the value of the PFKEY field.
For example, if the operator presses PF4, the value for PFKEY is PFO4, and the request
branches to an input case INCASE.

Specifying Screen Attributes

Screen attributes (such as highlighting, colors, and so on) can be applied to the fields on the
CRTFORM and the -CRTFORM. They can also be used as background effects and can be
applied to the fields depending on the result of tests.

The following attributes are available on 3270 IBM terminals:

Function Abbreviation Short Name
Flash or Blink F FLAS or BLIN
Underline u UNDE

Invert or Reverse Video | INVE or REVV

248

2. Designing Screens With FIDEL I

Function Abbreviation Short Name

Clear* C CLEA

Blue B BLUE

Red R RED

Pink P PINK

Green G GREE

Aqua A AQUA

Turquoise T TURQ

Yellow Y YELL

White W WHIT

Nodisplay* N NODI

Return to default $ $

Highlight or Intensify* H HIGH or INTE
Note:

.4 *Clear, Nodisplay, and Highlight or Intensify can be used on all terminals. Clear also sets
the highlight off for entry and turnaround fields. Nodisplay is not supported for D. or T.
fields. The remaining attributes are also known in the FOCUS community as extended
attributes.

4 Use of abbreviations is recommended, except for TURQ.

When an attribute is unsupported on a particular terminal or is specific to a version of FOCUS
under another operating system, the attribute is ignored. Therefore, there is no need for code
changes between terminals and/or operating systems.

To use the screen attributes other than C, N, and H you must notify FOCUS that your terminal
is equipped to display them. Issue the FOCUS SET command:

SET EXTTERM=ON

This allows a procedure to be operated on a variety of terminals. FOCUS automatically detects
a 3279 model terminal and sets EXTTERM to ON by default.

Maintaining Databases 249

Describing the CRT Screen

250

If your terminal does not properly recognize extended attributes, due to a "terminfo"
compatibility problem, stray characters will appear on your screen. You may turn off extended
attribute recognition with the command:

SET EXTTERM=OFF
Programs with extended attributes and EXTTERM=O0FF will run as if extended attributes had not
been coded in the program.

Make sure that your terminal has the extended attribute options needed before you turn
EXTTERM on. There are many different IBM 3270 models. Generally, the color terminals in the
3279 series have most of the options. However, even if a terminal has the physical capability
to support all of the attributes, it may be defined to the operating system as a lower grade
terminal. In such cases, you must ascertain whether or not all the attributes can be used.

The syntax for defining screen attributes in MODIFY is
<[:labell[.attribute.]field>

The syntax for defining screen attributes in Dialogue Manager is
<[& labell[.attribute.] &ari abl e[>]

where:
.attribute.

Is one or more of the attributes. Note the dots (periods) before and after each attribute or
entry in an attribute list.

field
Names the field to which the attributes apply.
&vari abl e
Names the variable field to which the attributes apply.
Note: Labels and their use are discussed in Using Labeled Fields on page 252.

The following chart shows you how to use these attributes in conjunction with prefixes (D. and
T.), where X is the name of a field or variable:

HT. X Highlighted T.

. CT. &X Unhighlighted T.

2. Designing Screens With FIDEL I

N. X Nodisplay entry, (for example, for passwords)
H. &X Highlighted entry

.C. X Unhighlighted entry

. HD. X

Highlighted D.

The following usage considerations apply when using screen attributes:

4 An attribute stays in effect until another attribute changes it.

-1 A list of attributes may be composed entirely of abbreviations in any order. If abbreviations
only are used, you do not need the dot separator between attributes.

. The last mentioned option in a group of mutually exclusive attributes will be taken.

.4 A color or flash overrides a highlight, clear, or Nodisplay.

d If short names are used, the first four letters identify the attribute. Each name must be
separated by a dot. Either abbreviations or short names can be used, but they cannot be
mixed without a dot separator.

. Full names may be used as well. Each must be delimited by a dot.

4 You can change screen attributes during the course of a terminal session by using labeled

fields.

Note the following examples:

. Al D. Aqua inverted display field.

<. RED. FLASH. Red flashing field.

<. RED. FLAS. Red flashing field.

<. PIN Inverted pink field (color overrides).
<l . YELL.

Inverted yellow field.

Maintaining Databases

251

Describing the CRT Screen

Using Background Effects

If a field is absent, the attribute affects the protected portion of the screen; that is, the text.
Both a beginning and ending dot as well as a space between the attribute and the text are
needed. For example:

"<.RED. ENTER EMP_I D: "

This will print the words ENTER EMP_ID: in red. Note the space between .RED. and ENTER
EMP_ID:. A right caret may also be inserted for clarity.

The line:

" <. | NVE. RED. <. CLEAR EMP_I D'

will turn the background color to red. CLEAR changes the background for the input field EMP_ID
back to black.

An attribute stays in effect until another attribute changes it on a physical screen. Therefore, if
<.INVE.RED. is in the upper left corner, the entire screen will be in inverse red unless some
other background attribute is provided later. In the example above, the <.CLEAR is used to
limit the effect to one area.

Note: .CLEAR. and .HIGH. only work when they are used in conjunction with a field. They do not
work alone or simply with text.

Using Labeled Fields

252

You can use labels to identify a specific field on the screen. They are necessary to perform the
following functions:

.4 Dynamically change screen attributes during processing depending on the results of tests.

.4 Position the cursor on the screen, or read the position of the cursor on the screen, where
there is no pre-existing field.

The syntax for a labeled field in MODIFY is
<:label.field

The syntax for a labeled field in Dialogue Manager is
<& [abel . &vari abl e

where:

<[&]:/abel.

Is a user-defined label. It starts with a colon (:) and may be up to 66 characters long
including the colon. You may not use embedded blanks.

2. Designing Screens With FIDEL I

Example:

Example:

field
Is any field on the CRTFORM. It can be a field created specifically for appending a label.
&vari abl e

Is any variable field on the CRTFORM. It can be a field created specifically for appending a
label.

The following rules apply:
4 A label cannot occur by itself. It must be used with a field.
4 A label must be declared using a COMPUTE, -SET, or -DEFAULTS statement.

1 Setting a label to $ returns its field to the default attribute.

Using a Labeled Field With MODIFY
For example, in MODIFY:

COVPUTE

: ONE/ A6="
CRTFORM

"<: ONE. EMP_| D"

The label :ONE is set to a format of A6 and is the identifier of the field EMP_ID.

Using a Labeled Field With Dialogue Manager
For example, in Dialogue Manager:

- SET & ONE='
- CRTFORM
-"<& ONE. &CI TY/ 10"

In this Dialogue Manager example, the label &:ONE is set to a format of A4 and is the
identifier of the field &CITY.

Note: When you are dealing with many complex labels and attributes, we advise you to use the
FOCUS Screen Painter which allows you to do everything without learning the detailed syntax
(see Using the FOCUS Screen Painter on page 302).

Dynamically Changing Screen Attributes

The screen attributes in a FIDEL form can be changed during the course of the terminal
session in which they are defined. This allows you to design easy-to-read and easy-to-use
procedures. For instance, after an error occurs, you can turn a specific field into flashing red to
alert the operator.

Maintaining Databases 253

Describing the CRT Screen

254

The mechanism for changing the attribute is to put a label before the field. Then, issue a
COMPUTE in MODIFY, or a -SET in Dialogue Manager, to assign the label new attribute values.
When the screen is next displayed, it takes on the characteristics of the provided attributes.

The following example shows how to use a COMPUTE in MODIFY to dynamically change an
attribute value:
COVWPUTE
. ATTRI B/ A12=I F CURR_SAL GT 50000 THEN ' FLASH ELSE '$';
CRTFORM

"AMOUNT <: ATTRI B. T. CURR_SAL>"
I F CURR_SAL GI' 50000 GOTO TOP ELSE GOTO OTHER,

This generates an attribute value for the label ATTRIB. If the CURR_SAL is greater than
50,000, the field will flash; otherwise, it observes the default setting.

The following example shows the use of a -SET statement to assign an attribute value in
Dialogue Manager:

- SET &AMOUNT=0;

-SET & ATTRI B=' "

-TOP

- CRTFORM

-"AMOUNT: <& ATTRI B. T. &AMOUNT>"

-SET & ATTRI B=I F &AMOUNT GT 100 THEN ' FLASH ELSE '$';
-1 F &AMOUNT GT 100 GOTO TOPR;

This generates an attribute value for the label &:ATTRIB, changing &AMOUNT to flashing if the
value is greater than 100. Be sure to use -SET to establish the label in the beginning of the
procedure.

Note: When you use CRTFORMs in either MODIFY or Dialogue Manager, the labels you assign
must precede the fields with which they are associated; labels cannot occur by themselves.
Use COMPUTE statements to dynamically change screen text attributes, setting the label equal
to the COMPUTE (see previous example).

You can convert a T. field to a D. field dynamically; however, you cannot convert a D. field to a
T. field. The method for changing turnaround fields to display fields is the same as that for
changing screen attributes dynamically.

2. Designing Screens With FIDEL I

MODI FY FI LE EMPLOYEE

1. CRTFORM
2. "SALARY UPDATE"
2. " "
3. "EMPLOYEE ID #: <.INVE.EMP_I D LAST NAMVE: <O0X
<. CLEAR. D. LAST_NAME"
4. MATCH EMP_ID
ON NOVATCH REJECT
5. ON MATCH CRTFORM LI NE 10
6. ENTER SALARY"

"SALARY: <:HERE. T. CURR_SAL>"
7. COWUTE
:HERE/ A12=I F CURR_SAL GTI 100000 THEN 'D ELSE 'T';
I F CURR_SAL GI' 100000 GOTO TOP;
ON MATCH UPDATE CURR_SAL
DATA
END

This procedure constructs a form to update salaries. It processes as follows:
1. CRTFORM generates the screen form and invokes FIDEL.
2. Provide text for the CRTFORM; empty quotation marks indicate a blank line on the form.
3. The next two lines contain the following screen elements:
EMPLOYEE | D #:
Is text describing the conditional data field EMP_ID.
. I NVE.
Is a screen attribute that displays the field EMP_ID in reverse video.
LAST NANME:
Is text describing the field LAST_NAME.
. CLEAR.

Is a screen attribute that clears the .INVE. attribute, returning the D. (display-only) field
LAST_NAME to the default display.

4. The request continues with MODIFY MATCH logic.
5. If EMP_ID matches, another CRTFORM is generated on line 10 of the same screen.
6. The next three lines contain the following screen elements:

ENTER SALARY:

Is text describing the CURR_SAL field.

Generates a blank line.

Maintaining Databases 255

Describing the CRT Screen

- HERE

Is a label identifying the CURR_SAL field.

7. This COMPUTE evaluates the field CURR_SAL and defines it as a turnaround (T.) field or a
display (D.) field, depending on the value of CURR_SAL. If the salary is greater than
100,000, the field is a display field (and cannot be updated); if the salary is less than
100,000, the field is a turnaround field (and can be updated).

The resulting CRTFORM is as follows:

SALARY UPDATE

EVMPLOYEE | D #: LAST NAME:

ENTER SALARY

SALARY:

Specifying Cursor Position

256

To specify cursor position, simply choose the field where you want the cursor positioned. You
may specify the field by its field name or by its label. You can set the cursor at a specific place
on the screen by computing or setting the value of the field CURSOR (in MODIFY) or & CURSOR
(in Dialogue Manager).

The syntax for the field which controls the cursor position in MODIFY is

COVPUTE

CURSOR/ A66= expr essi om;

where:

CURSOR/ A66

Is a 66-character alphanumeric field.

expressi on

Is terminated with a semicolon and can be anything, including the full field name, its full
alias, or a unique truncation of either, or the label itself. This determines the position of
the cursor.

For example:

2. Designing Screens With FIDEL I

COVWPUTE
CURSCOR/ A66=I F TESTNAME GT 100 THEN ' EMP_| D
ELSE ' LAST_NAME' ;

The position of the cursor will be on the field EMP_ID if the value of test name is greater than
100, or it will be on the field LAST_NAME if test name is less than or equal to 100.

You may also position the cursor using a field label. For example:

COVWPUTE
CURSCOR/ A66=I F TESTNAME GT 100 THEN ' : ONE'
ELSE ': TWO ;

Note: If the field name is not unique, FIDEL uses the first occurrence of the field name (going
from left to right across each line and then down to the next line) to set or test the cursor
position.

In MODIFY, the variable CURSORINDEX can also be used to compute the position of the cursor
at a particular record when there are multiple indexed records displayed in a single CRTFORM.
This feature is commonly used for placing the cursor on invalid fields after VALIDATE
statements. The syntax is

COVPUTE
CURSORI NDEX/ | 5=expr essi on;

where:
CURSORI NDEX/ | 5

Is a five-digit integer field. Refers to the current value of the subscript being processed
from the CRTFORM.

expressi on
May be any expression, but in most applications will be set equal to REPEATCOUNT.

Note: See Case Logic, Groups, CURSORINDEX and VALIDATE for a full example of the use of
CURSORINDEX using Case Logic, multiple fields and the VALIDATE subcommand. Also,
multiple record processing is discussed in full in Multiple Record Processing on page 169.

In Dialogue Manager, the syntax for positioning the cursor is

- SET &CURSOR=expressi on,

where:
&CURSOR

Is a variable specifically referring to the position of the cursor.

Maintaining Databases 257

Describing the CRT Screen

expressi on

Is terminated with a semicolon and can be any valid expression including the field name or
label itself. It determines the position of the cursor.

The following example illustrates the positioning of the cursor on the screen in Dialogue
Manager using labeled fields:

1. -SET & AAA =" "
-SET & BBB ="' "

2. -PROWT &YR PLEASE ENTER YEAR NEEDED.

3. -SET & CURSOR = | F &YR GTI 1984 THEN ':AAA'" ELSE ':BBB';
*

4. -CRTFORM
-"MONTHLY REPORT FOR THE CI TY <& AAA. &CI TY/ 10"
-"YEARLY REPORT FOR THE AREA <& BBB. &AREA/ 1"

This processes as follows:
1. Two -SET statements declare the labels, which are themselves variables.
2. The -PROMPT statement prompts the operator for a value for &YR.

3. The -SET statement sets an IF test as the value for the variable & CURSOR. If the value of
&YR is greater than 1984, the position of the cursor is set to the label :AAA; otherwise, it
is set to the label :BBB.

4. If the operator supplies the value 85 for &YR, the visual form generated is as follows, and
the cursor is positioned at the variable &CITY:

MONTHLY REPORT FOR THE CITY
YEARLY REPORT FOR THE AREA

The remainder of the FOCEXEC might then branch to a TABLE request for a monthly report for
that city. Had the year been earlier than 84, the cursor would have been positioned on AREA.
The branch might then be to a TABLE request for a yearly report for that area.

Caution: In Dialogue Manager, be sure to set &CURSOR to the label name without the &
(ampersand). Use :AAA, not &:AAA.

Determining Current Cursor Position for Branching Purposes

Rather than having the operator type a response, you can create a menu on which you list
options. To select an option, the operator moves the cursor to the correct line on the screen
and presses the Enter key. FOCUS senses the cursor position and takes action based upon it
(such as branching to a particular case or field).

258

2. Designing Screens With FIDEL I

To do this, you must specify a 66 character field that contains the current cursor position,
CURSORAT. You may identify a field on the screen by a label or by its field name.

The syntax that defines the field used to read the cursor position in MODIFY is

COWPUTE
CURSORAT/ A66=;

where:
CURSORAT/ A66

Is the field whose value is determined by the field name, or label of the field, on which the
cursor is positioned when the operator presses Enter.

In Dialogue Manager, the syntax is

- SET &CURSCRAT='

where:
&CURSORAT

Is a variable whose value is determined by the field name, or label of the field, on which
the cursor is positioned when the operator presses Enter.

If the actual cursor position is not on any field, the value of CURSORAT is the nearest
preceding field. If there are no preceding fields, the value of CURSORAT is the TOP of the
CRTFORM. That is, the value is at the very beginning of the CRTFORM.

In the following example, field XYZ is a computed field for the purpose of creating a labeled
field wherever necessary on the CRTFORM:

Maintaining Databases 259

Describing the CRT Screen

MODI FY FI LE EMPLOYEE

1. COWUTE
CURSORAT/ A66=;
2. :ADD Al=
. UPP/ Al=;
3. XYZ/ Al=;
4. CRTFORM

"PCSI TI ON CURSOR NEXT TO OPTI ON DESI RED'
"THEN PRESS ENTER'
"<:ADD. XYZ ADD RECORDS"
"< UPP. XYZ UPDATE RECORDS"
5. | F CURSCRAT EQ ': ADD GOTO ADD ELSE
I F CURSCRAT EQ ': UPP' GOTO UPP ELSE GOTO TOP;

CASE ADD
CRTFORM LINE 1
"TH S CRTFORM ADDS RECORDS'

"EMPLOYEE | D #: <EMP_ID'

"LAST NAME: <LAST_NAME"

"FI RST NAME: <FI RST_NAME"

"H RE DATE: <Hl RE_DATE"

" DEPARTMENT: <DEPARTMENT"
MATCH EMP_I D

ON MATCH REJECT
ON NOVATCH | NCLUDE
ENDCASE

CASE UPP
CRTFORM LINE 1
"TH S CRTFORM UPDATES RECORDS'

"EMPLOYEE I D #: <EMP_I D'

" DEPARTIVENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
" SALARY: <CURR_SAL"

MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL
ENDCASE
DATA
END

This example processes as follows:

1. The COMPUTE establishes the field CURSORAT.

2. The second and third COMPUTEs declare the labels :ADD and :UPP.

3. The third COMPUTE establishes a field XYZ for the purpose of using labels.

260

2. Designing Screens With FIDEL I

4. CRTFORM generates the following visual form beginning on the first line of the screen:

PCSI TI ON CURSOR NEXT TO OPTI ON DESI RED
THEN PRESS ENTER

ADD RECORDS
UPDATE RECORDS

5. An IF phrase tests the value of the field CURSORAT. If the operator places the cursor next
to ADD RECORDS, the value of CURSORAT is :ADD and a branch to Case ADD will be
performed. If the operator places the cursor next to UPDATE RECORDS, the value of
CURSORAT is :UPP and Case UPP will be performed.

Annotated Example: MODIFY

The following example illustrates the syntax for a MODIFY CRTFORM using dynamically
changing attributes:

MODI FY FI LE EMPLOYEE

1. CRTFORM

2. "EMPLOYEE UPDATE"

3, "</1"

4. "EMPLOYEE ID # <.INVE.EMP_ID'
GOTO UPDATE

CASE UPDATE

5. MATCH EMP_ID

ON NOVATCH REJECT

6. ON MATCH CRTFORM LI NE 1

7. "LAST NAME: <.|NVE.T.LAST_NAVE"

" DEPARTMENT: <. CLEAR. T. DEPARTMENT>"

"SALARY: <:ATTRI B. T. CURR_SAL>"

8. ON MATCH COVPUTE

ATTRIB/ A12 = | F CURR_SAL GT 50000 THEN ' FLASH. | NVE' ;
MSG A60 = | F CURR_SAL GT 50000 THEN ' PLEASE REENTER ELSE ' ';
ON MATCH TYPE " <MsG'

ON MATCH | F CURR_SAL GI 50000 GOTO UPDATE;

ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL

ENDCASE

DATA

END

This procedure sets up a form to update the department and current salary. It processes as
follows:

1. CRTFORM generates the visual form and invokes FIDEL.

2. This line contains a screen element set between double quotations marks. It is a line of
descriptive text.

3. This line contains another screen element, a spot marker that skips one line.

Maintaining Databases 261

Describing the CRT Screen

. These lines contain four screen elements—'EMPLOYEE ID #:' is text describing the field;

the field EMP_ID is described as a conditional data entry field. The contents will be
displayed in reverse video because .INVE. is a screen attribute defining the field.

The visual form generated is as follows:

EMPLOYEE UPDATE
EMPLOYEE I D #: (reverse video)

Enter Employee ID # 818692173.

. The request continues with MODIFY MATCH logic.
6. If the EMP_ID matches, another CRTFORM is generated. It is placed on LINE 1 and thus

replaces the previous CRTFORM on the screen.

. The CRTFORM defines three turnaround fields:

The LAST_NAME field. The .INVE. attribute displays the field in reverse video.
The DEPARTMENT field. The .CLEAR. attribute displays the field in regular video.

The CURR_SAL field. The appearance of the field value depends on the value of

the :ATTRIB field. When the CURR_SAL value first appears, the :ATTRIB field is empty and
the value appears in regular video. If you enter a CURR_SAL value greater than 50,000,
the :ATTRIB field receives the attribute FLASH.INVE, displaying the CURR_SAL value in
flashing inverse (or reverse) video. The CRTFORM appears as follows:

LAST NAME: CRGSS
DEPARTMENT: M S
SALARY: 27062. 00

. If the CURR_SAL field value is greater than 50,000 when you press Enter, the COMPUTE

statement assigns the :ATTRIB label the FLASH.INVE attribute.

. If the CURR_SAL field value is greater than 50,000 when you press Enter, the IF statement

branches back to the CASE UPDATE statement. This displays the second CRTFORM with
the CURR_SAL value in reverse video.

Note: If you are using a terminal emulator you may not be able to view the attribute
FLASH.INVE.

Annotated Example: Dialogue Manager

262

The following sample -CRTFORM illustrates the syntax for dynamic control of attributes in
Dialogue Manager:

2. Designing Screens With FIDEL I

1. -PROWT &CITY. FOR VHICH CI TY DO YOU WANT A REPORT?.
2. -SET & ATTRIB = IF &I TY EQ STAMFORD THEN ' I NVE' ELSE ' CLEAR ;
*
3. -CRTFORM
4. -"MONTHLY SALES REPCRT"
5. -"Date: <D. &DATE Time: <D. &TOD"
6. -"Beginning Code is: <& ATTRI B. &BEGCODE/ 3"
-"Endi ng Code is: <& ATTRI B. &ENDCODE/ 3"
-"Regi onal Supervisor is: <& ATTRI B. ® ONMGR/ 15"
TABLE FI LE SALES
HEADI NG CENTER
"MONTHLY REPORT FOR &CI TY"
" PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
SUM UNI T_SOLD AND RETURNS AND COWPUTE
RATI Q' D5.2 = 100 * RETURNS/ UNI T_SCLD;
BY PROD_CODE
I F PROD_CODE | S- FROM &BEGCODE TO &ENDCODE
IF CITY EQ &I TY
FOOTI NG CENTER
"REG ON MANAGER: ® ONMGR'
" CALCULATED AS OF &DATE"
7. END

The example processes as follows:
1. The -PROMPT prompts the operator for a value for &CITY.

2. The -SET statement sets the label :ATTRIB to INVE if the city is Stamford, causing each field
labeled :ATTRIB in the remainder of the -CRTFORM to be displayed in reverse video.

3. -CRTFORM generates the visual form and invokes FIDEL.
4. The first line of the screen form contains text.

5. The second line contains the current date and time as display fields. Since they are in
protected areas of the screen, they cannot be altered.

6. Each of the next three lines contains descriptive text and one field. Each field has a label
which displays the field in reverse video if the city is Stamford.

The screen displays the following -CRTFORM:

MONTHLY SALES REPORT

Date: 01/08/97 Time: 10:50:16
Begi nni ng Code is:

Endi ng Code is:

Regi onal Supervisor is:

7. After the operator presses Enter, the values entered in the screen form are sent to the
variables. The TABLE request executes when END is encountered.

Maintaining Databases 263

Using FIDEL in MODIFY

Using FIDEL in MODIFY

The following standard MODIFY functions and concepts work with FIDEL in the building of
CRTFORMSs (for additional information on these functions):

. Conditional and non-conditional field specification (see Conditional and Non-Conditional
Fields on page 264).

4 The FIXFORM statement which can be used before the first CRTFORM. This enables you to
mix data sources (see Using FIXFORM and FIDEL in a Single MODIFY on page 268).

.4 Automatic application generation, which enables you to use several simple statements to
generate automatic data management procedures and CRTFORMs (see Generating
Automatic CRTFORMSs on page 270).

.4 Multiple CRTFORMSs for different processing options. The additional FIDEL facility of the
LINE option helps you organize the use of multiple CRTFORMs (see Using Multiple
CRTFORMs: LINE on page 274).

. Case Logic, which enables you to divide the processing into logical subdivisions for
particular sets of circumstances (see Case Logic on page 145, and CRTFORMs and Case
Logic on page 279).

.4 Groups of fields (see Specifying Groups of Fields on page 281).
.d VALIDATES and various error handling formats (see Handling Errors on page 289).

- Log files that preserve a record of all data that is entered onto the screen (see Logging
Transactions on page 293).

MODIFY also has additional screen control options such as clearing the screen, setting the
height and width parameters, and changing the default size of the TYPE message area in order
to enlarge the CRTFORM (see Additional Screen Control Options on page 293).

Conditional and Non-Conditional Fields

264

When you run a MODIFY request, FOCUS keeps track of which transaction fields are active or
inactive during execution. In order to add, update, and delete segment instances, the fields
must be active (see Active and Inactive Fields on page 204, for a full discussion of active and
inactive fields).

You can define data entry and turnaround fields as either conditional or non-conditional. A
conditional field is conditionally active. That is, it becomes active only if there is incoming data
present for the field. Otherwise, it remains inactive. A non-conditional field is always active
whether there is incoming data present or not.

2. Designing Screens With FIDEL I

When you are performing update operations, there are several important points to keep in
mind when you choose whether to specify a field as conditional or non-conditional:

. If data is entered or changed, the data source value is always updated and the field always
becomes active. This is true whether the field is conditional or non-conditional.

. If data is not entered or changed, what happens to the data source value is dependent on
whether the field is conditional or non-conditional as well as program logic. The following
table outlines this.

Type of Field Active/Inactive Data Source Value

Conditional Entry Inactive Remains. Display value ignored.
Conditional Turnaround Inactive Remains. Display value ignored.
Non-Conditional Entry Active Displayed value replaces data

source value (blank or 0).

Non-Conditional Turnaround Active Displayed value replaces data
source value (same value).

d If a field is active, the displayed value always becomes the new data source value. In
turnaround fields, this is by definition the same value.

d If a field is inactive, the displayed value is always ignored.

4 If you compute a data source field and then display it on the CRTFORM with a D. ora T.,
the field must still be active to get the computed value displayed on the screen. Otherwise,
you get a blank or O.

4 When you use a VALIDATE for a field, the field must be active. Otherwise you do not get the
accurate data source value validated; instead, you get a blank or O.

Note: You can make a field active or inactive by using the ACTIVATE or DEACTIVATE
statement respectively.

Example: Conditional and Non-Conditional Display and Turnaround Fields

The following example illustrates the display and turnaround field features as well as the use
of a non-conditional turnaround field (both carets). The first CRTFORM asks for a key field
value, in this case EMP_ID. If a matching record is obtained, then some data source values
are displayed and others are shown for turnaround update.

Maintaining Databases 265

Using FIDEL in MODIFY

Note how the non-conditional turnaround field functions in the following example. Whether the
displayed value is changed or not, the value in the data source is active. The VALIDATE uses
the display value, whether it was changed or not.

MODI FY FI LE EMPLOYEE
1. CRTFORM
"ENTER EMPLOYEE | D#: <EMP_I D'
" PRESS ENTER BEFORE CONTI NUI NG'
MATCH EMP_I D
ON NOVATCH TYPE
"EMPLOYEE | D NOT | N DATABASE. PLEASE REENTER "
ON NOVATCH REJECT
2. ON MATCH CRTFORM LI NE 4
"EMPLOYEE ID #: <D EMP_ID"
"LAST NAME: <D. LAST_ NAVE"
"H RE DATE: <D. Hl RE_DATE"
"SALARY: <T. CURR SAL>"
" DEPARTMENT: <T. DEPARTNMENT>"
3. ON MATCH VALI DATE
SALTEST = IF CURR SAL GT 0 THEN 1 ELSE 0;
ON | NVALI D TYPE
"SALARY MUST BE GREATER THAN 0"
" CORRECT SALARY AND PRESS ENTER TW CE"
ON MATCH UPDATE CURR SAL DEPARTMENT
DATA
END

The example processes as follows:

1. When the procedure executes, the top part of the CRTFORM appears as follows:

ENTER EMPLOYEE | D #:
PRESS ENTER BEFORE CONTI NUI NG

If the employee ID entered does not match an ID in the data source, the transaction is
rejected and a TYPE statement appears at the bottom of the screen.

Assume the operator enters the following employee ID:

ENTER EMPLOYEE | D #: 818692173
PRESS ENTER BEFORE CONTI NUI NG

266

2. Designing Screens With FIDEL I

2. If the ID entered matches an ID in the data source, FOCUS successfully retrieves a record.
The ON MATCH CRTFORM causes a second CRTFORM to be displayed on line 4. This
CRTFORM contains both display and turnaround fields. The data source values of the fields
appear on the second CRTFORM, and the cursor is positioned at the start of the CURR_SAL
field which is the first unprotected field. Note that both CURR_SAL and DEPARTMENT are
automatically highlighted for turnaround:

ENTER EMPLOYEE | D #: 818692173
PRESS ENTER BEFORE CONTI NUI NG

EMPLOYEE | D #: 818692173

LAST NAME: CRCSS

H RE DATE: 811102
SALARY: 27062. 00
DEPARTMENT: M S

Assume the operator updates DEPARTMENT, does not change CURR_SAL, and transmits
the CRTFORM:

ENTER EMPLOYEE | D #: 818692173
PRESS ENTER BEFORE CONTI NUI NG

EVMPLOYEE | D #: 818692173

LAST NAME: CROSS

H RE DATE 811102
SALARY: 27062. 00
DEPARTIVENT: oi s

3. When the operator presses Enter, the transaction is processed. If the value of CURR_SAL
is greater than O, the VALIDATE will evaluate as 1 (true) and processing continues.
Although a value was not entered for CURR_SAL, the field is active because it is specified
as a non-conditional field. Thus, the VALIDATE reads the current value in the T. field
(27062.00), and validates the field. The transaction is then processed.

Maintaining Databases 267

Using FIDEL in MODIFY

If you specify the turnaround field as conditional (only the left caret), the field is inactive if no
data is entered. Assume the same transaction as above. The operator updates the
DEPARTMENT and does not enter new data for the CURR_SAL field. The VALIDATE does not
read the T. value because the field is inactive and instead reads a O. The field is invalidated
and the following error message occurs:

ENTER EMPLOYEE | D #: 818692173
PRESS ENTER BEFORE CONTI NUI NG

EMPLOYEE | D #: 818692173

LAST NAME: CROSS

Hl RE DATE: 811102
SALARY: 27062. 00
DEPARTIVENT: oi s

(FOC421) TRANS 1 REJECTED | NVALI D SALTEST
I NVALI D SALARY
SALARY MUST BE GREATER THAN O

Using FIXFORM and FIDEL in a Single MODIFY

268

A MODIFY procedure can mix data sources from CRTFORMs and FIXFORMs.

The rules are:

. You can have only one FIXFORM statement and you must specify the name of the
transaction data source. For example:

FI XFORM ON £/ / enane

-1 The FIXFORM statement must precede the CRTFORM statement.

.4 START and STOP do not apply (see Reading Selected Portions of Transaction Data Sources:
The START and STOP Statements on page 73).

This feature is useful in situations where a known set of records is wanted and the keys for
these records reside on an external fixed format data source. (The data source may have been
produced by a prior TABLE and SAVE or HOLD command.) The procedure first reads a key,
fetches the matching record, and displays it on the CRTFORM specified.

This is also convenient when the FIXFORM is included in a START case.

In the following example, FIXFORM is used with FIDEL. To run this example on your machine,
you must first create a sequential data source with data. To do so, run this TABLE request:

2. Designing Screens With FIDEL I

TABLE FI LE EMPLOYEE

PRI NT EMP_I D PAY_DATE

I F PAY_DATE CE 820730

ON TABLE SAVE AS PAYTRANS
END

This creates the transaction data source PAYTRANS. Then run the following MODIFY request:

MODI FY FI LE EMPLOYEE
1. FI XFORM ON PAYTRANS EVP_| D/ 9 PAY_DATE/ 6
2. MATCH EMP_ID
ON NOVATCH REJECT
ON MATCH CONTI NUE
MATCH PAY_DATE
3. ON MATCH NOVATCH CRTFORM
"EMPLOYEE | D #: <D. EMP_| D"
" PAY DATE: <D. PAY_DATE"
" MONTHLY GROSS: <T. GROSS>"
ON NOVATCH | NCLUDE
ON MATCH UPDATE GROSS
DATA
END

The example processes as follows:
1. First the data is read in from the sequential data source PAYTRANS.

2. The EMP_ID from PAYTRANS is matched against EMP_IDs in the EMPLOYEE data source. If
the EMP_IDs match, PAY_DATE is matched.

3. The CRTFORM shows display values for EMP_ID and PAY_DATE. If there is a match on
PAY_DATE, GROSS is displayed as a turnaround field and the operator can update it. If
there is no match on PAY_DATE, both PAY_DATE and GROSS are included:

EVPLOYEE | D #: 071382660
PAY_DATE: 820831
MONTHLY GRCSS: 916. 67

The procedure ends when there are no more transactions to read on the external data source.
It can also be terminated by the operator by pressing the PF1 or PF3 key.

Maintaining Databases 269

Using FIDEL in MODIFY

Generating Automatic CRTFORMs

270

You can use several simple but powerful statements with the FOCUS MODIFY facility to allow
immediate generation of data management requests. You do not need to learn the complete
FOCUS MODIFY language. Without using field names, you can write general-purpose requests
and customize them for more detailed situations.

The statements can be used with multi-segment data sources as well as simple data sources.
They can also be used from the Screen Painter (see Generating CRTFORMSs Automatically on
page 312). These statements automatically specify conditional fields. They include:

CRTFORM * [SEG n] Design screen for all real data fields in segment n,
where n is either the segment name or number.
CRTFORM * KEYS [SEG n] Design screen for all key fields in segment n.
CRTFORM * NONKEYS [SEG n] Design screen for all non-key fields in segment n.
CRTFORM T. * [SEG n] Design screen using T.fields in segment n
CRTFORM D. * [SEG n] Design screen using D.fields in segment n.

Note: The use of CRTFORM * on a COMBINE data source name is illogical and may produce
unpredictable results.

Note that you can optionally specify the segment name or number for each of the CRTFORMs.
To obtain the segment names and numbers, enter the following command where file is the
name of the data source:

CHECK FILE f//e PICTURE

The names and humbers appear on the top of each segment in the diagram. You may also list
segment names and numbers by entering the command:

? FDT fi/enane

See the Describing Data manual and the Developing Applications manual for more information
on the CHECK FILE command and ? FDT query.

2. Designing Screens With FIDEL I

If you are modifying all of the segments in the data source (except for unique segments), you
can write the request without using Case Logic. The following example adds and maintains
data for the EMPLOYEE data source. The segments are as follows:

Segment 1 contains basic employee data (names, jobs, salaries, and so on).
Segment 3 contains employee salary histories.

Segment 7 stores employees' home addresses and information on their bank accounts.

U U o o

Segment 8 stores employee monthly pay.

Id Segment 9 stores monthly deductions.

(Segment 2 is a unique segment. Segments 4, 5, and 6 are cross-referenced segments that
are not part of the EMPLOYEE data source.)

The request is:

MODI FY FI LE EMPLOYEE
CRTFORM
"TH S PROCEDURE ADDS NEW RECORDS AND UPDATES EXI STI NG RECORDS </ 1"
"I NSTRUCTI ONS"
"1. ENTER DATA FOR EACH FI ELD'
"2. USE TAB KEY TO MOVE CURSOR'
"3. PRESS ENTER WHEN FI NI SHED'
"4. WHEN YOQU FI Nl SH ALL RECORDS, PRESS PF1 </ 1"
CRTFORM * KEYS
MATCH * KEYS SEG 01
ON MATCH NOVATCH CRTFORM T.* NONKEYS SEG 01
ON MATCH UPDATE * SEG 01
ON NOVATCH | NCLUDE
MATCH * KEYS SEG 03
ON MATCH NOVATCH CRTFORM T.* NONKEYS SEG 03
ON MATCH UPDATE * SEG 03
ON NOVATCH | NCLUDE
MATCH * KEYS SEG 07
ON MATCH NOVATCH CRTFORM T.* NONKEYS SEG 07
ON MATCH UPDATE * SEG 07
ON NOVATCH | NCLUDE
MATCH * KEYS SEG 08
ON MATCH NOVATCH CRTFORM T.* NONKEYS SEG 08
ON MATCH UPDATE * SEG 08
ON NOVATCH | NCLUDE
MATCH * KEYS SEG 09
ON MATCH NOVATCH CRTFORM T.* NONKEYS SEG 09
ON MATCH UPDATE * SEG 09
ON NOVATCH | NCLUDE
DATA
END

Maintaining Databases 271

Using FIDEL in MODIFY

272

When the procedure executes, the screen appears as follows:

THI S PROCEDURE ADDS NEW RECCRDS AND UPDATES EXI STI NG RECORDS

I NSTRUCTI ONS

1. ENTER DATA FOR EACH FI ELD

2. USE TAB KEY TO MOVE CURSOR

3. PRESS ENTER VWHEN FI NI SHED

4. VWHEN YQU FI NI SH ALL RECORDS, PRESS PF1

EMP_I D:
DAT_I NC;
TYPE: :
PAY_DATE:
DED_CODE:

LAST_NAME: : FI RST_NAME:
HI RE_DATE: : DEPARTVENT:
CURR_SAL: : CURR_J OBCODE:
ED_HRS: :

PCT_I NC: : SALARY:
JOBCODE: :

ADDRESS_LN1:
ADDRESS_LN2:
ADDRESS_LN3:

ACCTNUMBER:

GROSS:

Notice that the fields are divided into five groups. The first group consists of all the key fields
in the data source. Each subsequent group consists of all non-key fields in a particular
segment. Fill in each group from top to bottom and press Enter before filling in the next group.
When you do this, the request uses the values to match on the segments specified later in the
request.

The first CRTFORM statement generates the first group of fields, which are all the key fields in
the data source:

CRTFORM * KEYS

The MATCH statements in the request modify each of the segments in the data source. Each
statement contains a CRTFORM phrase that prompts for all non-key fields in the segment:

CRTFORM T. * NONKEYS SEG xx

2. Designing Screens With FIDEL I

Note that the CRTFORM phrase displays the fields as turnaround fields. After you fill in the
fields in the group and press Enter, FOCUS uses the field values to update the segment.

You can add the following enhancements to the request:
[The LINE option on each CRTFORM statement.
[d Explanatory text after each CRTFORM statement.

I A separate CRTFORM containing explanatory text at the beginning of the request.

If you want to modify some but not all segments in the data source, use Case Logic to write
the request. Place each MATCH statement in a separate case. For example, this request
modifies data in Segments 1, 3, and 7:

MODI FY FI LE EMPLOYEE
CRTFORM
"TH S PROCEDURE MAI NTAI NS EMPLOYEE"
"JOB DATA, SALARY HI STORIES, AND ADDRESSES"

CRTFORM * KEYS
"FILL IN EMP_I D, DAT_INC, AND TYPE FI ELDS"
"THEN PRESS ENTER'

GOTO EMPLOYEE

CASE EMPLOYEE
MATCH * KEYS SEG 01
ON NOVATCH REJECT
ON MATCH CRTFORM T.* NONKEYS SEG 01 LINE 10
ON MATCH UPDATE * SEG 01
ON MATCH GOTO MONTHPAY
ENDCASE

CASE MONTHPAY
MATCH * KEYS SEG 03
ON MATCH NOVATCH CRTFORM T.* NONKEYS SEG 03 LINE 10
ON MATCH UPDATE * SEG 03
ON MATCH GOTO DEDUCT
ON NOVATCH | NCLUDE
ON NOVATCH GOTO DEDUCT
ENDCASE

CASE DEDUCT

MATCH * KEYS SEG 07
ON MATCH NOVATCH CRTFORM T.* NONKEYS SEG 07 LINE 10
ON MATCH UPDATE * SEG 07
ON NOVATCH | NCLUDE

ENDCASE

DATA

END

Maintaining Databases 273

Using FIDEL in MODIFY

Using Multiple CRTFORMs: LINE

274

You can choose which screen line the CRTFORM will begin on by using the LINE option. By
default, the first CRTFORM begins on line 1. The next CRTFORM in the procedure begins on the
line following the end of the previous CRTFORM. For example, if one screen uses 12 lines, the
next CRTFORM automatically begins on the 13th line.

In the following example, there are two logical forms: EMPLOYEE UPDATE and FUND TRANSFER
INFORMATION UPDATE. It illustrates the placement of CRTFORMs when the default is in effect
(that is, the LINE option is not used):

1.

DATA
END

MODI FY FI LE EMPLOYEE
CRTFORM

"EMPLOYEE UPDATE"

"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"

" DEPARTIVENT: <DEPARTMENT <28 SALARY: <CURR_SAL"

" BANK: <BANK_NAME"

"FILL I N THE ABOVE FORM AND PRESS ENTER"

MATCH EMP_I D

ON NOVATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTI NUE TO BANK_NAME
ON NOVATCH | NCLUDE
ON MATCH NOVATCH CRTFORM
T
"FUND TRANSFER | NFORVATI ON UPDATE"

"BANK CODE: <T.BC <30 START DATE: <T. EDATE"

ON MATCH UPDATE BA BC EDATE

2. Designing Screens With FIDEL I

This produces the following screen when the request is executed:

EMPLOYEE UPDATE

EMPLOYEE | D #: LAST_NANME:
DEPARTMENT: SALARY:
BANK:

FILL I N THE ABOVE FORM AND PRESS ENTER

Note that when the default is in effect, each logical form is displayed one after the other on
the screen, the instant the MODIFY procedure is executed. That is, all the distinct CRTFORMs
are concatenated into one visual form.

The LINE option enables you to control both the placement of a CRTFORM on the screen and
the timing with which it appears on the screen. Using LINE gives you the following options:

.4 You can have one logical form replace another after each transaction by having subsequent
CRTFORMSs begin on the same line.

.4 You can build mixed screens by saving lines from a previous CRTFORM on the screen while
executing a subsequent CRTFORM. In other words, the first CRTFORM is displayed, the
operator transmits the data, and the next CRTFORM is displayed while the previous one
remains on the screen.

The syntax is
CRTFORM [LI NE 71177

where:
nn

Is the starting line number for the CRTFORM.

Maintaining Databases 275

Using FIDEL in MODIFY

To completely replace one screen with the next, both CRTFORMs must start on the same line.
Note the following change in the previous example:

MODI FY FI LE EMPLOYEE
1. CRTFORM
" EMPLOYEE UPDATE"

"EVPLOYEE | D #: <EMP_I D LAST_NAME: <LAST_NAME"

" DEPARTIVENT: <DEPARTMENT <30 SALARY: <CURR_SAL"

" BANK: <BANK_NAME"

"FILL IN THE ABOVE FORM AND PRESS ENTER'
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE LAST NAME DEPARTMENT CURR SAL

ON MATCH CONTI NUE TO BANK_NAVE

ON NOVATCH | NCLUDE

2. ON MATCH NOVATCH CRTFORM LI NE 1
L
"FUND TRANSFER | NFORVATI ON UPDATE"

"BANK: <D. BN ACCT #: <T.BA"

"BANK CODE: <T.BC <30 START DATE: <T.EDATE"

ON MATCH UPDATE BA BC EDATE
DATA
END

1. When the MODIFY procedure is executed, the following screen is displayed:

EMPLOYEE UFDATE

EMPLOYEE ID §- LAST MAME :
CDEPARTHENT : SALARY :
BANE :

FILL IN THE ARBOVE FOEM AND PRESS ENTEER

276

2. Designing Screens With FIDEL I

2. After the operator enters and transmits the data, the next CRTFORM replaces the previous
one on the screen:

FIIMNLD» THEAMNSFER INFORMATICN TEDATE

Generally, it is a good practice to put LINE 1 on all CRTFORMSs that start a new case (see
CRTFORMs and Case Logic on page 279) unless a specific screen pattern is wanted.

A combination of two or more individual CRTFORMs can occupy specific lines on one screen.
To obtain a mixed screen, place the desired starting line number with the CRTFORM
statement. For instance:

MODI FY FI LE EMPLOYEE
1. CRTFORM
"EMPLOYEE UPDATE"

"EMPLOYEE | D #: <EMP_I D LAST_NAME: <LAST_NAME"
" DEPARTMENT: <DEPARTMENT <30 SALARY: <CURR_SAL"

" BANK: <BANK_NAME"

"FILL IN THE ABOVE FORM AND PRESS ENTER"

MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE LAST NAME DEPARTMENT CURR SAL
ON MATCH CONTI NUE TO BANK_NANE
ON NOVATCH | NCLUDE

2. ON MATCH NOVATCH CRTFORM LI NE 12

we 1n
" FUND TRANSFER | NFORVATI ON UPDATE"

"BANK: <D. BN ACCT #: <T.BA"

"BANK CODE: <T.BC <30 START DATE: <T. EDATE"

ON MATCH UPDATE BA BC EDATE
DATA
END

Maintaining Databases 277

Using FIDEL in MODIFY

Processing occurs as follows:

1. Like the preceding examples, this produces the first screen. Assume the operator enters
and transmits the following data:

EMPLOYEE UPDATE

EMPLOYEE | D #: 117593129 LAST_NAME: JONES
DEPARTMENT: M S SALARY: 18480
BANK: STATE

FILL I N THE ABOVE FORM AND PRESS ENTER

2. The first CRTFORM remains on the screen while the next CRTFORM is displayed on line 12:

EMPLOYEE UPDATE

EMPLOYEE | D #: 117593129 LAST_NAME: JONES
DEPARTMENT: M S CURRENT SALARY: 18480
BANK: STATE

FILL I N THE ABOVE FORM AND PRESS ENTER

BANK: STATE ACCT #: 40950036

BANK CODE: 510271 START DATE: 821101

You can save certain lines from the preceding CRTFORM while you discard others. In the
previous example, if you begin the second CRTFORM on line 6, the EMP_ID and the
LAST_NAME remain and the next line is the beginning of the FUND TRANSFER INFORMATION
AND UPDATE.

278

2. Designing Screens With FIDEL I

Assume the operator enters and transmits data on the first CRTFORM. Part of the first logical
form disappears and the second form is displayed. Thus, a new visual form is created:

EVMPLOYEE UPDATE

EVMPLOYEE | D #: 117593129 LAST_NAME: JONES

BANK: STATE ACCT #: 40950036

BANK CODE: 510271 START DATE: 821101

You can create mixed screens using the LINE option, in a variety of ways, depending on the
need of the application.
CRTFORMs and Case Logic

Case Logic, described in Case Logic on page 145, enables you to perform separate complete
MODIFY processes in one procedure. Each of these is a case, and the procedure contains
directions about which case to execute under various circumstances.

When you use the Case Logic option of the MODIFY command, you can create a pattern of
many CRTFORMs.

When there are multiple CRTFORMSs in a single MODIFY request, use the LINE option to specify
where each CRTFORM will be displayed. With Case Logic, generally, we recommend that you
use LINE 1 to replace one screen with another.

The following example illustrates the use of Case Logic with the CRTFORM:

Maintaining Databases 279

Using FIDEL in MODIFY

MODI FY FI LE EMPLOYEE
COWPUTE
PFKEY/ Ad= ;
CRTFORM
"TO I NPUT A NEW RECORD, PRESS PF4"
"TO UPDATE AN EXI STI NG RECORD, PRESS PF5"
| F PFKEY EQ ' PFO4' GOTO ADD ELSE
| F PFKEY EQ ' PFO5' GOTO UPP ELSE GOTO TOP;

CASE ADD
CRTFORM LI NE 1
"EMPLOYEE | D #: <EMP_I D'
"LAST NAME: <LAST NAME FI RST NAME: <FI RST_NAME"
"HI RE DATE: <H RE_DATE"
" DEPARTMENT: <DEPARTMENT"
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH | NCLUDE

ENDCASE
CASE UPP
CRTFORM LINE 1
"EMPLOYEE | D #: <EMP_I D"
" DEPARTMENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
" SALARY: <CURR_SAL"
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL
ENDCASE
DATA
END

The first CRTFORM appears as:

TO I NPUT A NEW RECORD, PRESS PF4
TO UPDATE AN EXI STI NG RECORD, PRESS PF5

If the operator presses PF4, the following is displayed:

EVMPLOYEE | D #:

LAST NAME: FI RST NAME:
HI RE DATE:

DEPARTMENT:

280

2. Designing Screens With FIDEL I

If the operator presses PF5, the following is displayed:

EMPLOYEE | D #:
DEPARTMENT:
JOB CODE:
SALARY:

Note: At the end of a MODIFY procedure, control defaults to the TOP Case.

Specifying Groups of Fields

Groups of fields (that is, more than one occurrence of the same field) can be specified on the
CRTFORM in two ways:

.4 Specifying a field more than once on a CRTFORM.

. Using REPEAT syntax.

You can use Case Logic to process groups of fields.

Specifying Groups of Fields for Input
A group of fields may repeat on the form. For example:

"EMPLOYEE ID DEPARTMENT SALARY"

"<EMP_I D <DPT <CURR_SAL"
"<EMP_I D <DPT <CURR_SAL"
"<EMP_I D <DPT <CURR_SAL"

This reads the same data as the FIXFORM statement:
FI XFORM 3(EMP_I D/ C9 DPT/ C10 CURR_SAL/ Cl4)

The following example shows the use of repeating groups for a single employee ID:

Maintaining Databases 281

Using FIDEL in MODIFY

MODI FY FI LE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE | D #: <EMP_I D'

"ENTER PAY DATE AND GROSS PAY FOR ABOVE EMPLOYEE"

"PAY DATE: <PAY_DATE GROSS: <GROSS!
"PAY DATE: <PAY_DATE GROSS: <GROSS!
"PAY DATE: <PAY_DATE GROSS: <GROSS!

MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE

MATCH PAY_ DATE
ON MATCH REJECT
ON NOVATCH | NCLUDE

DATA

END

Note: A group of repeated data fields cannot be specified on a MATCH or NOMATCH CRTFORM.
They must be presented on a primary CRTFORM (that is, one not generated as a result of a
MATCH or NOMATCH command).

This procedure processes as follows:

ENTER EMPLOYEE I D #: 818692173

ENTER PAY DATE AND GROSS AMOUNT FOR ABOVE EMPLOYEE

PAY DATE: 850405 GROSS: 3000. 00
PAY DATE: 850412 GROSS: 4000. 00
PAY DATE: 850418 GROSS: 2500. 00

When the operator presses £nt er, the transaction processes. Processing continues until a
line with no data is found or all lines are completed (whichever occurs first).

Using REPEAT to Display Multiple Records

You can display multiple segment instances on the screen by directing FIDEL to read and
display the contents of a HOLD buffer. You can use a subscript value to identify a particular
instance in the HOLD buffer with the following syntax

fieldn)

where:
field

Is the name of a previously held field.

282

2. Designing Screens With FIDEL I

(n)

Is the integer subscript that identifies the number of the instance in the HOLD buffer
containing the field to be displayed. n must be in integer format or the report group will be
ignored.

The variable SCREENINDEX allows you to display and modify selected groups of records from
the HOLD buffer.

Consider the following example, which uses the REPEAT statement to retrieve up to a set
number (in this case, six) of multiple instances, saves them in the HOLD buffer, and then
displays the instances on the CRTFORM:

MODI FY FI LE EMPLOYEE
1. CRTFORM
"PAY H STORY UPDATE"
"ENTER EMPLOYEE | D#: <EMP_I D'
MATCH EMP_I D
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

CASE COLLECT

2. REPEAT 6 TI MES
2. NEXT PAY_DATE
2. ON NEXT HOLD PAY_DATE GRCSS
3. ON NONEXT GOTO DI SPLAY
3. ENDREPEAT
GOTO DI SPLAY
ENDCASE

Maintaining Databases 283

Using FIDEL in MODIFY

CASE DI SPLAY
I F HOLDCOUNT EQ 0 GOTO TOP;
4. COWUTE
BUFFNUMBER/ | 5 = HOLDCOUNT;
5. CRTFORM LI NE 5
"FILL I N GROSS AMOUNT FOR EACH PAY DATE"

"PAY DATE GROSS AMOUNT"
" <D. PAY_DATE(1) <T. GROSS(1) >"
" <D. PAY_DATE(2) <T. GROSS(2) >"
" <D. PAY_DATE(3) <T. GROSS(3) >"
" <D. PAY_DATE(4) <T. GROSS(4) >"
" <D. PAY_DATE(5) <T. GROSS(5) >"
" <D. PAY_DATE(6) <T. GROSS(6) >"

GOTO UPDATE

ENDCASE

CASE UPDATE
6. REPEAT BUFFNUVBER
MATCH PAY_DATE
ON NOVATCH REJECT
ON MATCH UPDATE GRCSS
ENDREPEAT
GOTO COLLECT
ENDCASE
DATA
END

The procedure processes as follows:

1. When the procedure is executed, the first CRTFORM is displayed:

PAY HI STORY UPDATE

ENTER EMPLOYEE | D #:

2. Assume the operator enters the following ID and transmits the data:

ENTER EMPLOYEE | D #: 071382660

If there is a match, the instruction is to REPEAT the logic six times. That is, up until six
times, find a PAY_DATE and hold the PAY_DATE and the GROSS in the HOLD buffer.

3. When there are no more PAY_DATE fields or six of them have been held, the procedure
branches to CASE DISPLAY.

4, The procedure stores the number of records that are in the HOLD buffer in the variable
BUFFNUMBER.

284

2. Designing Screens With FIDEL I

5. The procedure displays the following CRTFORM:

PAY HI STORY UPDATE

ENTER EMPLOYEE | D #: 071382660

FI'LL I N GROSS AMOUNT FOR EACH PAY DATE

PAY DATE
820831
820730
820630
820528
820430
820331

The operator makes changes to the fields in the GROSS AMOUNT column and presses
Enter. All changes for all records are transmitted simultaneously as shown:

PAY HI STORY UPDATE

ENTER EMPLOYEE I D #: 071382660

FI'LL I N GROSS AMOUNT FOR EACH PAY DATE

PAY DATE
820831
820730
820630
820528
820430
820331

GROSS AMOUNT
816.
816.
816.
916.
916.
916.

6. The REPEAT statement instructs FOCUS to perform the MODIFY logic on all segment

instances.

Note: If a CRTFORM screen with subscripted variables is rejected with a FORMAT ERROR, you
may not alter any records on the screen prior to the record rejected, as FOCUS has already

held them.

Using Groups of Fields With Case Logic

When you use Case Logic to process a group of fields, some important rules apply:

. Each time the procedure enters the case, the next group of fields is processed. FOCUS
keeps track internally of which groups have been processed.

Maintaining Databases

285

Using FIDEL in MODIFY

Example:

286

- If the CRTFORM with the group of fields is not in the TOP case, you must create your own
branching logic to process all the groups before going back to the TOP. This normally
requires some kind of counting mechanism. Once the procedure goes back to the TOP
case, all unprocessed data on the CRTFORM or in a lowercase is lost.

Case Logic, Groups, CURSORINDEX and VALIDATE

In the following example, Case Logic is used with groups of fields. The CURSORINDEX (see
Specifying Cursor Position on page 256) is used in conjunction with a VALIDATE:

MODI FY FI LE EMPLOYEE
1. CRTFORM
"EMPLOYEE SALARY AND DEPARTMENT UPDATE"

"PRESS ENTER"
GOTO COLLECT

CASE COLLECT
2. REPEAT 6 TIMES
NEXT EMP_I D
ON NEXT HOLD EMP_I D CURR SAL DEPARTMENT
ON NONEXT GOTO DI SPLAY
ENDREPEAT
GOTO DI SPLAY
ENDCASE

CASE DI SPLAY
3. | F HOLDCOUNT EQ O GOTO EXIT;
4. COWUTE
BUFFNUMBER/ | 5 = HOLDCOUNT;
5. CRTFORM LI NE 7

" EMPLOYEE SALARY DEPARTNMENT"
"<D, EMP_I I(1) <: AAA. T. CSAL(1) > <:BBB. T. DPT(1) >"
"<D. EMP_I I 2) <: AAA. T. CSAL(2) > <: BBB. T. DPT(2) >"
"<D, EMP_I I)(3) <: AAA. T. CSAL(3) > <: BBB. T. DPT(3) >"
" <D, EMP_I I(4) <: AAA. T. CSAL(4) > <: BBB. T. DPT(4) >"
" <D, EMP_I I(5) <: AAA. T. CSAL(5) > <: BBB. T. DPT(5) >"
" <D, EMP_I I(6) <: AAA. T. CSAL(6) > <: BBB. T. DPT(6) >"

2. Designing Screens With FIDEL I

6. REPEAT 6 TI MES

COWPUTE
CURSCR/ A66 = ': AAA';
CURSCORI NDEX/ | 5=REPEATCOUNT;
VALI DATE

SALTEST = I F CSAL GI' 50000 THEN O ELSE 1,
ON I NVALI D TYPE "SALARY MJUST BE LESS THAN $50, 000"
ON | NVALI D GOTO DI SPLAY

ENDREPEAT

GOTO UPDATE

ENDCASE

CASE UPDATE
7. REPEAT BUFFNUMBER
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH UPDATE CURR_SAL DEPARTMENT
ENDREPEAT
GOro COLLECT
ENDCASE
DATA
END

The example processes as follows:

1. The first CRTFORM requests the operator to press Enter without typing anything.

2. The REPEAT statement retrieves six employee IDs, salaries, and department assignments
and places them in a buffer.

3. If there are no records in the buffer, the procedure terminates.

4. The COMPUTE statement stores the number of records in the buffer in the variable
BUFFNUMBER.

5. The second CRTFORM retrieves the IDs, salaries, and department assignments from the
buffer and displays them together on the screen. Note the field labels:

d The label :AAA on the CURR_SAL (CSAL) field.

. The label :BBB on the DEPARTMENT (DPT) field.

Maintaining Databases 287

Using FIDEL in MODIFY

288

Assume that the operator changes the values to the following:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
071382660 35000. 00 PRCDUCTI ON
112847612 23200. 00 M S
117593129 75480. 00 M S
119265415 19500. 00 PRODUCTI ON
119329144 39700. 00 PRODUCTI ON
123764317 36862. 00 PRODUCTI ON

6. The second REPEAT statement operates on each of the six records displayed by the second

CRTFORM, in order of display, performing the following tasks:
d Sets the CURSOR variable to the label :AAA.

- Sets the CURSORINDEX variable to the number of the record it's processing (1 through
6).

d Validates the CURR_SAL field value. If the CURR_SAL value is $50,000 or more, the
procedure branches back to the beginning of Case DISPLAY. The procedure displays the
second CRTFORM again, with the CURSOR and CURSORINDEX variables positioning the
cursor on the invalid salary.

In the example, the procedure positions the cursor on the third CURR_SAL value:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
071382660 35000. 00 PRODUCTI ON
112847612 23200. 00 M S
117593129 75480. 00 M S
119265415 19500. 00 PRODUCTI ON
119329144 39700. 00 PRODUCTI ON
123764317 36862. 00 PRODUCTI ON

(FOC421) TRANS 2 REJECTED | NVALI D SALTEST
SALARY MUST BE LESS THAN $50, 000

2. Designing Screens With FIDEL I

7. If all values are valid, the third REPEAT statement updates the employee's salary and
department for each record in the buffer. The procedure then branches to Case COLLECT to
update six more records in the data source.

Handling Errors

It is important to know how various errors are handled by FIDEL so that proper instructions can
be given to terminal operators. The following errors can cause a transaction or screen of data
to be rejected:

.4 A format error, caused by entering non-numeric data for a numeric field.

- A validation error, caused by entering an incoming value that failed a VALIDATE test coded
in the MODIFY.

.4 A NOMATCH condition, caused by entering data for a key field that did not match any record
in the data source.

d A DUPLICATE condition, caused by key field values that matched records on a data source.

-1 An ACCEPT error, caused by entering a value for a data source field that failed the ACCEPT
test.

Note: Error messages are discussed in detail in Messages: TYPE, LOG, and HELPMESSAGE on
page 130.

Handling Format Errors

If the operator enters a non-numeric character into a field defined as numeric, an error
message is displayed and the screen is not processed (processing stops). The error message
indicates the line number and field name in error and the cursor is automatically positioned on
that field. Additionally, if the operator enters a value that fails an ACCEPT test for a field an
error message is displayed and the screen is not processed. Any message specified for that
field with the HELPMESSAGE attribute will also be displayed.

The operator can retype the data and press the Enter key to retransmit the screen.
Alternatively, the operator may press the PF2 key to cancel the transaction. The error prevents
anything on the screen from being processed. When the operator corrects the error and
transmits the screen, processing resumes.

There are two exceptions to this rule. When there are repeating groups, all complete
transactions up to the error will be processed. Also, in REPEAT/HOLD loops, the data prior to
the format error may not be altered.

Maintaining Databases 289

Using FIDEL in MODIFY

290

VALIDATE and CRTFORM Display Logic

When the operator enters a value that is invalid, the transaction is rejected and an error
message is displayed. By default, control returns to the first CRTFORM in the TOP case.
However, you can use an ON INVALID GOTO statement to transfer control to any other case in
the request.

If the NOCLEAR or blank option in the CRTFORM statement (see Additional Screen Control
Options on page 293) is in effect, the screen will not be cleared. The operator can change the
data in the offending transaction and retransmit the screen.

When you use validations, you can divide the tests into different cases and repeat a case if it
fails the test. The advantage of this is that the operator can change the invalid data and
retransmit the screen before other sections are processed. An ON INVALID TYPE phrase can
be used to send an informative message to the operator on the screen. The following example
shows the use of these options:
CASE TRY
CRTFORM

EMPLOYEE | D #: <EMP_I D NAME: <LAST_NAME"

" CURRENT SALARY: <CURR_SAL"
VALI DATE

GOODSAL= CURR_SAL GTI 10000 AND CURR_SAL LT 1000000

ON | NVALI D TYPE

THE CURRENT SALARY CANNOT BE LARGER THAN 1000000 OR

"LESS THAN 10000"
ON | NVALI D GOTO TRY

All messages appear on the bottom four lines of the screen, unless you specify the TYPE
option on the CRTFORM statement (see Additional Screen Control Options on page 293).

Handling Errors With Repeating Groups

If old style repeating groups (those without subscripts) are present and there is an error,
processing continues to the next transaction on the screen. This means that if the operator
changes the offending transaction and retransmits the screen, the other transactions on the
screen become duplicates. It is important when using repeating groups to reject duplicates and
turn the duplicate message off (LOG DUPL MSG OFF).

Alternatively, avoid using VALIDATE with repeating groups. Use COMPUTE instead and branch
to a case that displays the erroneous data in a lower portion of the screen.

2. Designing Screens With FIDEL I

The following is an example of this technique. A test field is computed in Case TEST, using
DECODE. This test field checks that the department value is a valid one. If the operator inputs
a department value that is invalid, control branches to a case that displays the erroneous data
(CASE BADDPT).

MODI FY FI LE EMPLOYEE
1. CRTFORM

"FILL IN THE FOLLON NG CHART W TH THE SALARI ES"
" AND DEPARTMENT ASSI GNVENTS OF FOUR NEW EMPLOYEES'

" EMPLOYEE | D DEPARTMENT SALARY"
"PERSON 1 <EVP_I D <DEPARTMENT <CURR_SAL"
"PERSON 2 <EVP_I D <DEPARTMENT <CURR_SAL"
"PERSON 3 <EVP_I D <DEPARTMENT <CURR_SAL"
"PERSON 4 <EVP_I D <DEPARTMENT <CURR_SAL"
GOTTO TEST
2. CASE TEST
IF EMP_IDIS "' ' GOTO TOP;

COWPUTE

TEST/ 11 = DECODE DEPARTMENT (M'S 1 PRODUCTION 1 ELSE 0);
IF TEST I S 0 GOTO BADDEPT ELSE GOTO ADD;
ENDCASE

3. CASE ADD
MATCH EMP_I D
ON NOVATCH | NCLUDE
ON MATCH REJECT
ENDCASE

4. CASE BADDEPT
COVPUTE
XEMP/ A9 = EMP_I D
XDEPT/ A10 = DEPARTMENT;
CRTFORM LI NE 12
"I NVALI D ENTRY: DEPARTMENT MJUST BE M S OR PRODUCTI ON'
" CORRECT THE ENTRY BELOW

"EMPLOYEE I D: <D. XEMP DEPARTMENT: <T. XDEPT"
COWPUTE

DEPARTMENT=XDEPT;
GOTO TEST
ENDCASE

DATA
END

The request processes as follows:

1. This is the first and TOP case, and contains a CRTFORM that displays four instances of
repeating groups. Assume the operator fills in values and transmits the screen. Control
transfers to Case TEST.

Maintaining Databases 291

Using FIDEL in MODIFY

292

2. Case TEST contains a computed field that uses DECODE to make sure that the values that
have been input for DEPARTMENT are either MIS or PRODUCTION. When a DEPARTMENT
value does not match this list, TEST is returned a code of O, in which case control transfers
to Case BADDEPT.

3. Case BADDEPT first computes two fields, XEMP and XDEPT, to have the values of EMP_ID
and DEPARTMENT at the time the error occurred. Next, BADDEPT displays a CRTFORM
containing a message to the operator and the two computed fields. The XDEPT field, which
contains the invalid DEPARTMENT value, is a turnaround field so that the operator can see
the invalid value and change it. Next, the COMPUTE is reversed and the new values are
returned to their respective fields. Control transfers back to Case TEST where the
DEPARTMENT values will continue to be tested until they are all valid. At that point, control
transfers to Case ADD.

4. Case ADD contains the MATCH logic necessary to include new employees into the
EMPLOYEE data source. The transaction including all the repeating groups is processed at
one time.

Rejecting NOMATCH or Duplicate Data

When the request directs that transactions be rejected, an error message is displayed on the
screen. It is a good idea, when the major keys do not repeat, to use a split CRTFORM and give
the keys in the first CRTFORM. Once the keys are accepted, the rest of the data may be
entered. For example:

MODI FY FI LE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE | D#: <EMP_| D"
"THEN PRESS ENTER'
MATCH EMP_I D
ON NOVATCH TYPE
"] D NOT | N DATABASE PLEASE REENTER'
ON NOVATCH REJECT
ON MATCH CRTFORM LI NE 4
"LAST NAME: <T.LAST_NAVE"
" DEPARTMENT: <T. DEPARTNMENT"
" SALARY: <T. CURR_SAL"
ON MATCH UPDATE LAST NAME DEPARTMENT CURR SAL
DATA
END

If the EMP_ID does not match, control returns immediately to the operator with a request to
correct the value. If a match does occur, the operator must then fill in the balance of the form
and transmit it.

If repeating groups are present and no other cases are involved, all of the groups are
processed before control returns to the screen. Thus, splitting screens in this way is
particularly useful when the second CRTFORM contains repeating groups.

2. Designing Screens With FIDEL I

Logging Transactions

You can log the data entered on the screen to any log file. Only the data is logged, not the
CRTFORM, so a compact log file is created. For example:

LOG TRANS ON ALLDATA

This will log transactions to a file allocated to the ddname ALLDATA.

The record length of the file must allow space for each field on each CRTFORM in the
procedure, plus one character at the start of each CRTFORM. The record length should not be
longer than this.

This may be an inconvenient format, since it is very long if several CRTFORMs exist. Instead
you can construct a custom log file of your own design using TYPE statements. This example
logs data collected from its preceding CRTFORM to a file allocated to ddname MYCRT,
including a COMPUTE transaction number, TNUM:

CRTFORM

"EMPLOYEE I D #: <EMP_ID NAME <LAST_NAME"
"H RE DATE: <H RE_DATE"

COWPUTE

TNUM | 4=TNUM+1;

TYPE ON MYCRT

" <TNUM><EMP_| D><LAST_NAME><HI RE_DATE"

This option is preferable to the standard LOG option whenever a procedure contains more than
two CRTFORMSs, or when text or computed fields must be captured on the log file.

Additional Screen Control Options
MODIFY CRTFORMs support several additional screen control options:
.d Clearing the screen with Clearing the Screen: CLEAR/NOCLEAR on page 293.
4 Specifying the screen size with Specifying Screen Size: WIDTH/HEIGHT on page 294.

.4 Changing the size of the message area at the bottom of the screen using Changing the Size
of the Message Area: TYPE on page 296. This increases the length of the screen that can
be used for the actual form.

Clearing the Screen: CLEAR/NOCLEAR

Data is transmitted from the CRTFORM to the data source when the operator presses the
Enter key. After each successful screen is processed, the data areas are automatically
cleared. You can override this default by using the NOCLEAR option. Then, after each data
transmission, the screen remains unchanged.

Maintaining Databases 293

Using FIDEL in MODIFY

This is a useful feature when there is a substantial amount of data that carries over from one
screen to another. The syntax is

CRTFORM act i on

where:

action
Is one of the following:

bl ank is the default. Causes the screen to clear after the data is transmitted. If a
transaction is invalid and an error message appears at the bottom of the screen, the
screen will not be cleared.

NOCLEAR causes the data values on the screen to remain as is after data is transmitted.

CLEAR causes the data values on the screen to clear after every data transmission, even if
there is an error. Thus, if CLEAR is specifically used and there is an error, data must be
reentered.

Note: The options chosen may be different from one CRTFORM to the next.

Specifying Screen Size: WIDTH/HEIGHT

FIDEL assumes a default screen size of 24 lines of 80 characters each. The WIDTH/HEIGHT
options allow you to use the full width and height of IBM terminals that are larger than the
usual 3270 screen for the display of CRTFORMs. The following syntax allows you to override
the defaults

CRTFORM [W DTH nnn] [HEI GHT nnn

where:
W DTH nnn

Is the total number of characters across the face of the screen. Acceptable values for
WIDTH are 80 and 132 and cannot exceed the true width of the terminal. FOCUS verifies
that each line of the CRTFORM can be displayed at the current WIDTH specification. If any
line of the CRTFORM exceeds it, you will receive error message FOC456, and the
procedure will not run.

294

2. Designing Screens With FIDEL I

HEI GHT nnn

Is the total number of lines that each screen supports. It bears no relation to the number
of lines in the CRTFORM. It may not exceed the true height of the terminal, but it may be

less. For example, you can specify HEIGHT 20 for a Model 2 screen instead of 24 and

write a CRTFORM of 32 lines. The first 16 lines appear on one screen and the next 16 on

the subsequent screen. Remember that by default, four lines are reserved for TYPE

messages.

The following table gives the physical screen sizes for the IBM 3270 series of terminals:

Terminal Type Model Width Height
3270 1 80 24
3277, 3278, 3279, 3178 2 80 24
3278, 3279 3 80 32
3278 4 80 43
3278 5 132 27

FOCUS senses the width and height of the terminal which you are using and attempts to

implement your CRTFORM WIDTH and HEIGHT specifications accordingly. Here are some rules

and facts that apply:

- If your WIDTH or HEIGHT specifications exceed the perceived characteristics of the
terminal, you will receive a FOC491 error message and the procedure will not run.

. FOCUS sees the terminal as it is defined to the operating system. For example, a Model 5

3278 may be defined to the operating system as a Model 2 terminal. That terminal will
appear to FOCUS as a Model 2 (24 lines deep and 80 characters wide). A WIDTH 132

specification will produce a FOC491 error message.

Maintaining Databases

295

Using FIDEL in MODIFY

296

Changing the Size of the Message Area: TYPE

By default, FOCUS reserves the last four lines of the terminal screen for TYPE messages and
text messages specified with the HELPMESSAGE attribute (see Messages: TYPE, LOG, and
HELPMESSAGE on page 130). You can override this default and determine the number of lines
each CRTFORM reserves with the keyword TYPE. This feature allows you to increase the
number of lines on the screen for CRTFORM display and reduce the number of lines reserved
for messages at the bottom of the screen. The syntax is

CRTFORM TYPE { 1| 4}

where:
n

Is a number from one to four indicating the number of message lines desired. The TYPE
value setting remains in effect for all subsequent CRTFORMs in the same procedure until
overridden by a new value.

You can expand the actual CRTFORM screen size by specifying a number less than four. For
example, a terminal with a height of 24 lines currently reserves 20 lines for the CRTFORM and
four lines for the TYPE area. If you specify a TYPE area of 2, the CRTFORM area increases to
22 lines.

If one procedure varies the size of the TYPE area from a larger to a smaller number, CRTFORM
will clear the necessary TYPE statements in order to generate the next screen. If multiple
CRTFORMs are written to the same screen, each CRTFORM should specify the same TYPE area
size. For example:

CRTFORM LINE 1 TYPE 2

CRTFG?M LINE 7 TYPE 2

Messages supplied with the HELPMESSAGE attribute in the Master File for fields on the
MODIFY CRTFORM, are displayed in the TYPE area.

This type of message consists of one line of text which is displayed when:

4 The value entered for a data source field is invalid according to the ACCEPT test for the
field, or causes a format error.

-l The user places the cursor in the data entry area for a particular field and presses a
predefined PF key. If no message has been specified for that field, the following message
will be displayed:

2. Designing Screens With FIDEL I

NO HELP AVAI LABLE FOR THI S FI ELD

Using FIDEL in Dialogue Manager

FIDEL works with all the standard Dialogue Manager facilities. However, the following
differences apply when you use FIDEL with Dialogue Manager:

4 You must allocate space for the variable field on the -CRTFORM, because variable fields in
Dialogue Manager are not related to a Master File (see Allocating Space on the Screen for
Variable Fields on page 297).

.d There are two additional control statements: -CRTFORM BEGIN and -CRTFORM END. These
give you control over when you begin and end the form (see Starting and Ending CRTFORMS:
BEGIN/END on page 298). This control allows you to make use of other Dialogue Manager
control statements as you are building your -CRTFORM.

Allocating Space on the Screen for Variable Fields

You must define the length of variable fields in -CRTFORMs. The length of Dialogue Manager
variables can be defined in one of two ways:

. Directly on the -CRTFORM using the following syntax for allocating space.
<&vari abl el | engt h
where:

/ engt h
Is a number representing the alphanumeric length of the variable.
4 By using the -SET command to pre-declare the allocation of space using the syntax

-SET &variable ="

where:

Represents the alphanumeric length of the variable.

Note:

. If the variable format has been previously defined in the FOCEXEC procedure, the length
defined directly on the -CRTFORM supersedes the previously defined format
permanently.

Maintaining Databases 297

Using FIDEL in Dialogue Manager

- Variables used as label names (&:variable) cannot be automatically defined on the -
CRTFORM. These variables must be defined with -SET statements.

Starting and Ending CRTFORMS: BEGIN/END

Example:

298

-CRTFORM BEGIN indicates that the form is being built. This Dialogue Manager control
statement enables you to use other Dialogue Manager control statements between the screen
lines without causing the CRTFORM to end. This is necessary when you are using indexed
variables in a looping procedure.

-CRTFORM END terminates the form and causes the display of the assembled form.

Using Indexed Variables With -CRTFORM BEGIN and -CRTFORM END

The following is an example of the use of indexed variables in -CRTFORM. The variable
&LINENUM is the indexed variable in the -CRTFORM. The index, &I, is set to increment by 1
each time a line is written. After the 10th line, the -CRTFORM ends. Note the use of the
Dialogue Manager label, -BUILD and the -SET statement to control the loop within the form:

1. -SET & =0
2. -CRTFORM BEG N
-"THE FOLLOW NG FORM STORES 10 LINES OF TEXT"
3. -BULD
4. -SET & = & + 1;
5. -SET &INENUM & = 'LINE "' | &l
6. -"<D. & INENUM & <&LINE. &l /60"
7. -IF & LT 10 GOTO BUI LD
8.

- CRTFORM END
_x
-TYPE LINE #2 CONTAINS THE FOLLOW NG TEXT

- TYPE
9. -TYPE &LINE2

This example processes as follows:

1. This -SET statement declares a counter, &I, and sets the counter to O.
2. The -CRTFORM BEGIN statement begins the form.

3. This statement is a Dialogue Manager label, -BUILD. Because we are using the -CRTFORM
BEGIN statement, this label does not end the CRTFORM.

4. This -SET statement sets the counter &l to increment by 1 each time a line is written. This
controls the loop within the form.

5. This -SET statement indexes the variable &LINENUM with the counter &I. Thus, each time it
is encountered in the -CRTFORM it will increment +1.

2. Designing Screens With FIDEL I

6. The -CRTFORM will appear as follows:

THE FOLLOW NG FORM STORES 10 LINES OF TEXT

LI NE
LI NE
LI NE
LI NE
LI NE
LI NE
LI NE
LI NE
LI NE
LI NE

POO~NOURAWNE

Type any text you wish onto the lines.

7. The -IF test allows the loop to process until there are 10 lines in the -CRTFORM. At that
point control transfers to the -CRTFORM END statement.

8. -CRTFORM END ends the -CRTFORM and causes it to be displayed.

9. The last TYPE statement shows the contents of line 2.

Clearing the Screen in Dialogue Manager

The statement -CRTFORM both initiates the screen form and automatically clears the screen.
The screen form begins at the top of the screen.

After the operator enters values for the variables and presses Ent er, the variables are
supplied with the values and the screen is cleared.

Changing the Size of the Message Area: -CRTFORM TYPE

By default, FOCUS reserves the last four lines of the Dialogue Manager terminal screen for
TYPE messages. You can change this by using the keyword TYPE to determine the number of
lines each CRTFORM reserves for messages. This feature allows you to increase the number of
lines on the screen for CRTFORM display and reduce the number of lines reserved for
messages at the bottom of the screen. The syntax is

- CRTFORM TYPE { 71| 4}

Maintaining Databases 299

Using FIDEL in Dialogue Manager

where:
n

Is a number from 1 to 4 indicating the number of message lines desired. The TYPE value
setting remains in effect for all subsequent CRTFORMs in the same procedure until
overridden by a new value. The default is 4.

You can expand the CRTFORM screen size by specifying a number less than 4. For example, a
terminal with a height of 24 lines reserves 20 lines for the CRTFORM and four lines for the
TYPE area. If you specify a TYPE area of 2, the CRTFORM area increases to 22 lines.

Annotated Example: -CRTFORM

The following FOCEXEC is an example of a TABLE request incorporating the use of -CRTFORM.

-* Conmponent O Retail Sales Reporting Mdule
1. SET &I ST = ' STAMFORD, UNI ONDALE, NEWARK' ;
2. PROWT &CI TY. (&LI ST). ENTER CI TY. :

_*
3. -CRTFORM

-"Monthly Sal es Report For <D. &ClI TY"

-"Date: <D. &DATE Ti me: <D. &TOD"

-"Begi nni ng Product Code is: <&BEGCODE/ 3"
-"Endi ng Product Code is: <&ENDCODE/ 3"
-"Regi onal Supervisor is: <® ONMGR/ 15"
-"Title For UNNT_SOLD i s: <&UNI T_HEAD/ 10"

4. TABLE FILE SALES
HEADI NG CENTER
MONTHLY REPORT FOR &Cl TY"
" PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
SUM UNI T_SOLD AS &UNI T_HEAD
AND RETURNS AND COVPUTE
RATI Q' D5.2 = 100 * RETURNS/ UNI T_SOLD;
BY PROD_CODE
| F PROD_CODE | S- FROM &BEGCODE TO &ENDCODE
IF O TY EQ &I TY
FOOTI NG CENTER
"REG ON MANAGER ® ONMGR'
" CALCULATED AS OF &DATE"
5. END

The following is a sample of the dialogue between the screen and the operator. Operator
entries are in lowercase.

1. The -SET statement sets a value for the variable &LIST. The value is actually a list of the
names of three cities. They are enclosed in single quotation marks because of the
embedded commas.

300

2. Designing Screens With FIDEL I

2. The -PROMPT statement prompts the operator at the terminal for a value for &CITY.
Assume the operator types a city that is not on the list:

ENTER CI TY:

bost on

PLEASE CHOOSE ONE OF THE FOLLOW NG
STAMFORD, UNI ONDALE, NEWARK

ENTER CI TY:

stanford

3. The statement -CRTFORM initiates a screen form on which you type data:

Mont hly Sal es Report for STAMFORD

Dat e: 01/08/2003 Time: 13.12.41
Begi nni ng Product Code is: b10

Endi ng Product Code is: b20

Regi onal Supervisor is: smth

Title For UNIT_SOLD i s: sal es

4. The following are the stacked FOCUS commands as they appear on the FOCSTACK after the
values have been entered from the -CRTFORM:

TABLE FI LE SALES

HEADI NG CENTER

"MONTHLY REPORT FOR STAMFORD'

" PRODUCT CODES FROM B10 TO B20"

SUM UNI T_SOLD AS SALES AND RETURNS AND COMPUTE
RATIQ'D5.2 = 100 * RETURNS/ UNI T_SOLD;

BY PROD_CODE

| F PROD_CODE | S- FROM B10 TO B20

IF CITY EQ STAMFORD

FOOTI NG CENTER

"REG ON MANAGER SM TH'

" CALCULATED AS OF 01/08/2003"

END

5. The report is as follows:

Maintaining Databases 301

Using the FOCUS Screen Painter

PAGE 1

MONTHLY REPORT FOR STAMFORD
PRODUCT CODES FROM B10 TO B20

PROD CODE SALES RETURNS RATIO

B10 60 10 16.67
B12 40 3 7.50
B17 29 2 6.90

REG ON MANAGER: SM TH
CALCULATED AS OF 11/04/03

Using the FOCUS Screen Painter

The FOCUS Screen Painter allows you to design a FIDEL full-screen layout by placing literal text
and areas for fields on the screen in any position that you desire. You then assign these field
areas of the screen to a data source or computed fields, and FOCUS automatically codes the
CRTFORM. You can also color, highlight, and/or assign screen attributes to sections of the
screen (text, fields, background or any combination).

The FOCUS Screen Painter also allows you to generate CRTFORMs automatically without
specifying field names (see Generating Automatic CRTFORMs on page 270).

The Screen Painter operates within TED, the FOCUS editor (see the Overview and Operating
Environments manual for more details on TED), and can be used to create both MODIFY
CRTFORMSs and Dialogue Manager -CRTFORMS. It is easy to use and makes the creating of
forms simple and visual.

Entering Screen Painter

302

To create a CRTFORM using the Screen Painter, you first enter the PAINT command from within
TED. You can set up the PAINT screen as follows:
1. Enter TED by typing TED followed by the name of the file:

TED FOCEXEC(CRTEMP

This opens the FOCEXEC called CRTEMP. The FOCEXEC may or may not already exist.
2. Place a CRTFORM or -CRTFORM statement in the FOCEXEC if it is not already there. For
example:

MODI FY FI LE EMPLOYEE
CRTFORM

2. Designing Screens With FIDEL I

3. When a FOCEXEC is on the screen, enter the PAINT command in the command area or
press PF4. TED searches from the current line down the file until it finds a CRTFORM
statement and makes the following line the current line. (If you use more than one
CRTFORM in the FOCEXEC and you want to create the second CRTFORM, enter the
command PAINT 2.)

Note: A Master File must be active for the Screen Painter to set the default field lengths for
data source fields.

The following PAINT screen is displayed on your terminal:

Lot A 20+ 3 A+ BB T
COWWAND: _

01=HELP 03=END 07=BACKWARD 08=FCRWARD 09=ASG\- FLD 10=ASSI GN 11=FI DEL 17=BOX

Between the two scale lines are 20 blank lines in which to enter the screen layout. The
cursor is positioned in the command zone in the lower left portion of the screen. The codes
at the bottom of the screen identify some of the PF keys that you can use.

These perform the following functions:

PF Key Function

01=HELP Lists all the PF key functions.

03=END Transfers you from the PAINT screen back into TED, within your
file.

07=BACKWARD Scrolls back to the previous screen of the CRTFORM. When used

with ASSIGN, moves the cursor back to the first field.

08=FORWARD Scrolls forward to the next screen of the CRTFORM. When used
with ASSIGN, moves the cursor to the next field.

Maintaining Databases 303

Using the FOCUS Screen Painter

304

PF Key Function

09=ASGN-FLD Use on the ASSIGN screen. Transfers you to the particular field
that the cursor is placed on. You can then immediately assign or
change attributes for that field.

10=ASSIGN Transfers you from the PAINT screen to the ASSIGN screen (see
Identifying Fields: ASSIGN on page 310).

11=FIDEL Shows you the CRTFORM as it will appear on the screen.

17=BOX Enables you to define a box of text. Move the cursor to the upper-

left corner and press PF17. Select features from the box menu
and then move the cursor to the bottom-right corner and press
PF17.

Note: With the exception of FORWARD, BACKWARD and ASGN-FLD, you can also
accomplish these functions by typing the command name in the command zone.

4. If the CRTFORM already includes fields, and one or more fields are not declared in the
Master File, you may see this message:

(FOC532) LENGTHS OF FIELDS IN THI S CRTFORM CANNOT BE DETERM NED

To continue type IGNore and provide the lengths explicitly, or type ?F filename to activate
the appropriate master. After you follow the message instructions, the PAINT screen

appears.

PF Keys in PAINT

You can alter the values of PF keys in PAINT with the command

SET PFnnword

where:

nn

Is a number from 1 to 24 specifying the PF key to be set.

wor d

Is the new value for the key.

2. Designing Screens With FIDEL I

The initial PF key settings in PAINT are:

PF Key Setting

PF1, PF13 : HELP

PF2, PF14 : INSERT

PF3, PF15 : END

PF4 : PAINT

PF5 : TOP

PF6 : BOTTOM

PF7, PF19 : BACKWARD PAGE
PF8, PF20 : FORWARD PAGE
PF9 : ASSIGN FIELD
PF10 : ASSIGN

PF11 : FIDEL

PF12 : DUPLICATE

PF16 D QUIT

PF17 : BOX

PF18 : (currently not used)
PF21 : CRTFORM

PF22 : SET OUTPUT FIDEL
PF23 : SET OUTPUT DIALOGUE
PF24 : (currently not used)

Maintaining Databases 305

Using the FOCUS Screen Painter

Entering Data Onto the Screen

306

In PAINT, you may enter text, and specify field dimensions. Always use the arrow keys to
designate text and field areas on this screen. Generally, text is entered by positioning the
cursor and typing, but fields require type and width specifications.

To create a field, type

<XX...X

where the total number of x's equals the width of the field desired. If you do not specify a
width, or if the command you entered is not syntactically correct, or active, PAINT will
automatically default to a width defined in the Master File.

Fields are conditional by default. To specify non-conditional fields, enter

<XX. .. X>

where the total number of x's equals the width of the field.

You may enter text descriptions of each field, but do not type the field name after the left or
right caret. Later you will learn how to assign each field a field name. You may designate the
field as Entry, Turnaround or Display with the ASSIGN command (see Identifying Fields: ASSIGN
on page 310). By default, the fields are conditional. To specify non-conditional, type a right
caret (>) after the x's that indicate the field. We recommend that turnaround fields be non-
conditional. (See Conditional and Non-Conditional Fields on page 264 for information on
conditional and non-conditional fields.)

Editing Functions

When you are designing your screen, you have editing functions available to you. To use them,
you must enter the command name on the COMMAND line on your PAINT screen or use the
appropriate PF key:

. Inserting Lines: INSERT, PF2, PF14. You can insert lines by moving the cursor to any
character on a line. Press PF2 or PF14 and the new line will be inserted immediately
following the line where the cursor is positioned. If you want to insert more than one line,
type the command (do not press Ent er)

| [NSERT] n
where n is the number of new lines to be inserted. Next, move the cursor to the line where

you want the lines inserted. Press £nt er and n lines will be inserted beneath the line
where the cursor is currently positioned.

If the insert causes the screen to exceed 20 lines, the message

2. Designing Screens With FIDEL I

1,40

will be displayed, indicating that the display starts at line 1 out of a total of 40.

.4 Deleting Lines: DELETE. You can similarly delete lines by typing;:
D[ELETE] n

on the command line, where n is the number of lines you want deleted. Next, move the
cursor to the first line you want deleted and press Ent er.

.4 Duplicating Lines: DUPLICATE, PF12. You can duplicate lines by placing the cursor on the
line that you want to duplicate. Press PF12. If you want to duplicate more than one line,
type the command

DU[PLI CATE] n

where n is the number of copies you want; position the cursor on the line you want to
duplicate and press Ent er.

If the line that you are copying contains subscripted fields (for example, "SALES (1)"), the
subscripts will be incremented by one automatically (see Specifying Groups of Fields on
page 281). If you want an increment other than 1, enter the command

DUPLI CATE n m

where m is the increment number.

Sample PAINT Screen
In the following example, assume that the following FOCEXEC exists:

MODI FY FI LE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE I D #: <EWMP_I D"
MATCH EMP_I D

ON NOVATCH REJECT

ON MATCH CRTFORM

Maintaining Databases 307

Using the FOCUS Screen Painter

To use the Screen Painter to create the second CRTFORM, specify PAINT 2 at the TED
command line (2 indicates second CRTFORM). Then type the following text and fields on the
PAINT screen to create the CRTFORM that will be displayed if there is a match on EMP_ID.

EVMPLOYEE UPDATE
EMPLOYEE | D #: <XXXXXXXXX LAST NAME: <XXOOXXXXXXXXX
DEPARTMENT: < XXXXXXXXXX> CURRENT SALARY: <XXXXXXXX

BANK: < XOKKKXXXXXXXXX

o+ L+ 2.0+ 3+ 4+ BB T+
COWAND:
01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN\- FLD 10=ASS| GN 11=FI DEL 17=BOX

When you finish entering text and indicating areas for fields (the number of X's corresponds to
the field length), press Enter. The following screen results:

EVMPLOYEE UPDATE
EMPLOYEE I D #: <111111111 LAST NAMVE: <22222222222222
DEPARTMENT: <1111111111> CURRENT SALARY: <22222222

BANK: <11111111111111111111

Lot o+ 20+ 3k A+ BB T
COWWAND: _
01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN- FLD 10=ASSI GN 11=FI DEL 17=BOX

Note that the X's are replaced with numbers indicating the relative position of each field on a
line. On the second line, EMPLOYEE ID is number 1 and LAST NAME is number 2.

Note: Labels created in Screen Painter cannot exceed 12 characters.

308

2. Designing Screens With FIDEL I

Defining a Box on the Screen

You can define a boxed area of the screen, have it flash, or underline it. Text within the box
assumes the attributes of the box, but fields within the box do not change their appearance.

To define a box, place the cursor in the upper-left corner of the area you want to enclose in a
box, and press PF17. The following screen and menu appear:

EVMPLOYEE UPDATE
EMPLOYEE I D #: <111111111 LAST NAMVE: <22222222222222
DEPARTMENT: <1111111111> CURRENT SALARY: <22222222

BANK: <11111111111111111111

B S P ST JEVIC TRV T SN SUPTPc TP N SV TP SR S
Color (WB,RP,GAY): Flash /Under/Inv/Of (F, U l,O:
Pl ease position the cursor at other end of box and hit the key again

Fill in the color and/or attributes that you desire, position the cursor at the lower-right corner of
the area you want to enclose in a box, and press PF17.

To delete the box, move the cursor to the upper-left corner of the box and type O in the
attribute area. Then move the cursor to the lower-right corner of the box and press PF17. The
letter O stands for OFF and deletes the box. Note that you must position the cursor exactly at
the corners.

The BOX feature of Screen Painter will not generate a proper box if the fields cross or touch
the boundary of the box itself. Boxes may not extend past column 77.

If you try to generate a box, but fail, the following message appears:

command. box
(FOC694) | NVALI D BOX REG ON OR CURSOR POCsI TI ON DEFI NED.

When this happens, press Ent er to clear the message, move the cursor to the upper-left
corner, and press PF17to start over.

If you press PF17to begin a box and then decide not to define a box, press PF3 to cancel.

Maintaining Databases 309

Using the FOCUS Screen Painter

Identifying Fields: ASSIGN

Until now, you have simply laid out text that describes the fields, designated a display length
(X's) within the left caret (<), and possibly indicated non-conditional (>) fields. Now you can
assign field names and attributes for the fields. Enter the command ASSIGN in the command
zone or press PF10. Your ASSIGN screen displays the following:

EVMPLOYEE UPDATE

EMPLOYEE | D #; ****%*x%x LAST NAME: EEEEEEEEEEEEEEE

DEPARTMENT: EEEEEEEEEE CURRENT SALARY: EEEEEEEE

BANK: EEEEEEEEEEEEEEEEEEEE

B T P TITITTNE JUVIC TRV T SN SUPTPc TP R FPEE SUPTP SR S
Fi el d: Entry/ Turn Disp (E T,D): Col (WB,RP,GAY):
Field Length: 9(D12.2M High/Nodis/Inv (H N 1): Label :

The first field following the descriptive text EMPLOYEE ID #: is highlighted and replaced by
asterisks. All other fields are displayed in low intensity with E's denoting the length of the

fields. The cursor is positioned in the status entry area at the bottom of the screen next to
FIELD.

Now you can enter and assign field names and attributes for the field appearing in asterisks.
Fill in the appropriate values in the status entry area at the bottom of the screen. To move
from one status area to the next, press 7AB. You may leave a blank where you do not want to
use a particular attribute.

FI ELD:

Enter the field name for the first field. In this case, enter EMP_ID, which is the name of the
field in the Master File.

ENTRY/ TURN DI SP (E, T, D) :

You may designate the field as Entry, Turnaround, or Display by specifying E, T, or D,
respectively. The default is Entry. (See Data Entry, Display and Turnaround Fields on page
239 for more information on Entry, Turnaround, and Display fields.) You specify whether a
field is conditional or non-conditional when you enter the field on the PAINT screen (see
Entering Data Onto the Screen on page 306).

310

2. Designing Screens With FIDEL I

COL (WB,RP,GAY):
You may designate the field with a color by entering one of the color abbreviations in the

COL area. You may choose W, white; B, blue; R, red; P, pink; G, green; A, aqua; Y, yellow.
If you do not wish to assign a color, leave this area blank.

FIELD LENGTH 9 (A9):

In MODIFY, if a Master File is active while you are assigning attributes, the LENGTH status
will contain two values: the first value is the number of X's from the PAINT screen, which is
the display value; the value in parentheses is the format value from the Master File. The
display value must be equal to or less than the format value.

If you want to change the display value on the screen, put a new number in the FIELD
LENGTH area or return to PAINT (PF3) and enter the correct number of characters following
the <.

H GH/ NODI SP/INV (H, N, 1):
You can choose highlight, nodisplay or inverse video as an attribute for the field by filling in
the appropriate abbreviation.

LABEL:
If you want to enter a label, simply enter its name. The colon and period are automatically

provided on the screen.

In the following example, the current field is LAST_NAME. It is designated a display field. The
remaining attributes are left blank. After you press Ent er and move to the next field, the
asterisks turn to D's (display) as did the EMP_ID field.

EMPLOYEE UPDATE

EVMPLOYEE | D #: DDDDDDDDD LAST NAME: **x %k kokokoskodkokox ko o

DEPARTMENT: EEEEEEEEEE CURRENT SALARY: EEEEEEEEEEEEEEE

BANK: EEEEEEEEEEEEEEEEEEEE

S R PR SUPTTID~ NN JEN: FENRD SUUSUY SRV U SRR RN o RN Y SRR JU
FIELD: |ast_name ENTRY/ TURNDISP (E,T,D): d COL (B,RP,GAY):
FIELD LENGTH 15 (A, 15) HI GH NODI SP/INV (H N, 1): LABEL:

Maintaining Databases 311

Using the FOCUS Screen Painter

To move to the next field, press PF8. You may assign a field name, prefix, color, attribute or
label to the remaining fields on the screen. If you need to move to a previous field to change
something, press PF7. This will return you to the first field. From there you can use the TAB
key to move to the field that you need.

To move to a specific field directly from PAINT or from within ASSIGN, place the cursor on that
field and press PF9, ASGN-FLD.

Viewing the Screen: FIDEL

From the PAINT or ASSIGN screen, you can view the exact FIDEL screen that you have created.
Press PF11 or type FIDEL in the command zone. As the following screen shows, all entry fields
are blank and ready to receive data; all turnaround fields contain T's and may be typed over;
all display fields contain D's and are protected:

EVMPLOYEE UPDATE
EMPLOYEE | D #: DDDDDDDDD LAST NAME: DDDDDDDDDDDDDDD

DEPARTMENT: TTTTTTTTTT CURRENT SALARY:

FIDEL: Press PF3 or PF15 to return to the PAINT screen.

As indicated on the FIDEL screen, to return to the PAINT screen press PF3 or PF15.

Generating CRTFORMs Automatically

312

To generate CRTFORMs automatically (that is, without specifying individual fields) from the
FOCUS Screen Painter, use the asterisk (*) with CRTFORM in the PAINT screen command zone.
(See Generating Automatic CRTFORMSs on page 270 for information on CRTFORM * variations
and syntax.)

The text description identifying field is the field name from the Master File. Key fields
automatically become entry fields, and all other fields become turnaround fields. With multi-
segment data sources, the CRTFORM * command ignores all segments following the first
cross-reference (segment type KU or KM) described in the Master File.

2. Designing Screens With FIDEL I

For example, to generate a CRTFORM containing all fields in the EMPLOYEE Master File, do the
following:

1. Type a MODIFY and a CRTFORM statement in a FOCEXEC.
2. Enter PAINT on the TED command line to invoke the Screen Painter.
3. Type CRTFORM * in the Screen Painter command zone.

The following PAINT screen results:

A Lo+ 20+ 3 A+ B B T

EVP_I D $<111111111> :

LAST_NAME ©<111111111111111 : FI RST NAME :<2222222222:
HI RE_DATE 1 <111111 : DEPARTMENT @ <2222222222:
CURR_SAL ©<111111111111 CUR_JOBCODE : <222 :
ED_HRS 1 <111111 :

BANK_NAME $<11111111111111111111

BANK_CODE 1 <111111 : BANK_ACCT 1<222222222:
EFFECT_DATE $<111111 :

DAT_I NC 1 <111111> :

PCT_I NC 1 <111111 : SALARY 1<222222222222:
JOBCCDE 1 <111 :

TYPE 1 <1111> :

ADDRESS_LN1 $<11111111111111111111

ADDRESS_LN2 ©<11111111111111111111

ADDRESS_LN3 $<11111111111111111111

ACCTNUMBER $<111111111

PAY_DATE 1 <111111> :

GROSS ©<111111111111

DED CODE 1 <1111>

PF8=NEXT SCREEN PF7=PREVI CJS SCREEN PF1=0UT

Lot L 20+ 3 A+ B BT
COMVAND: 1, 40
01=HELP 03=END 07=BACKWARD 08=FCRWARD 09=ASGN- FLD 10=ASSI GN 11=FI DEL 17=BOX

CRTFORM * creates labels (that is, text describing each field) on the CRTFORM of up to 12
characters. If the field name is shorter than 12 characters, the label is the field name. If the
field name exceeds 12 characters, a caret (>) in the 12th position indicates a longer field
name.

Maintaining Databases 313

Using the FOCUS Screen Painter

Terminating Screen Painter

314

To return to TED from the PAINT screen, enter the command END in the command zone or
press PF3 until the prompt for TED appears. TED displays the lines as they have been
generated, beginning at the current line, which is ON MATCH CRTFORM:

" <. C EMPLOYEE UPDATE <0X
" <. C <0X
<.C"
<.C. EMPLOYEE ID #: <D. EMP_ID/ 09 LAST NAME: <0X
<LAST_NAME/ 15 <.C"
"< C <0X
<.C.*"
<. C. DEPARTMENT: <T.DEPARTMENT/ 10> CURRENT SALARY: <0X
<T. CURR_SAL/ 08 <.C"
" < C <0X
<.C*"
<. C. BANK <T. BANK_NAME/ 20 <.C"
<. C <0X
DATA
END

The generated code for the CRTFORM is in the file. Notice that each field is named and has its
length appended to it. Any attributes or labels requested during the ASSIGN process are also
present. If you want to change the layout, you can use the TED editor or you can return to the
PAINT and/or ASSIGN screen to make the changes.

You can add further MATCH logic to the FOCEXEC by using TED. For example:

MODI FY FI LE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE | D #: <EMP_I D'
VMATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CRTFORM
" EVMPLOYEE UPDATE"

" EMPLOYEE I D #: <D.EWP_I D/ 09 LAST NAME: <D. LAST_NAME/ 15"

" DEPARTMENT: <:Fl RST. H. T. DEPARTMENT/ 10> CURRENT SALARY: <0X
<. C. CURR_SAL/ 08"

" BANK : <BANK_NANE/ 20"
ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH CONTI NUE TO BANK_NAME
ON NOVATCH | NCLUDE
ON MATCH REJECT
DATA
END

2. Designing Screens With FIDEL I

If you want to add another CRTFORM screen at this point, make sure you are on the current
line, type the CRTFORM or -CRTFORM statement, and reenter PAINT to design the next screen.
Finally, you can exit the PAINT screen, return to TED, and add or change further logic.

Alternatively, all of the logic of the request could have been entered first and then the Screen
Painter used to create all the FIDEL screens. To create the first screen, enter the command
PAINT or PAINT 1; to create the second screen, enter the command PAINT 2. PAINT 2 locates
the second CRTFORM statement starting from the current line. You can continue with PAINT 3,
and so on, for all subsequent CRTFORM statements in the procedure.

Maintaining Databases 315

Using the FOCUS Screen Painter

316

Chapter

Creating and Rebuilding a Data Source

You can create a new data source, or re-initialize an existing data source, using the
CREATE command.

After a data source exists, you may find it necessary to reorganize it in order to use disk
space more effectively, to change the contents, index, or structure of the data source, or
to change legacy date fields to smart date fields. You can do all of this and more using
the REBUILD command.

You can use the CREATE and REBUILD commands with FOCUS and XFOCUS data
sources. You can also use the CREATE command to create relational tables for which
you have the appropriate data adapter.

In the remainder of this chapter, all references to FOCUS data sources apply to FOCUS
and XFOCUS data sources.

In this chapter:

4 Creating a New Data Source: The CREATE Command

Rebuilding a Data Source: The REBUILD Command

Optimizing File Size: The REBUILD Subcommand

Changing Data Source Structure: The REORG Subcommand

Indexing Fields: The INDEX Subcommand

Creating an External Index: The EXTERNAL INDEX Subcommand

Checking Data Source Integrity: The CHECK Subcommand

Changing the Data Source Creation Date and Time: The TIMESTAMP Subcommand

Converting Legacy Dates: The DATE NEW Subcommand

L U U U U uJ od oo

Creating a Multi-Dimensional Index: The MDINDEX Subcommand

Maintaining Databases 317

Creating a New Data Source: The CREATE Command

Creating a New Data Source: The CREATE Command

Syntax:

318

You can create a new, empty FOCUS data source for a Master File using the CREATE
command. You can also use the CREATE command to erase the data in an existing FOCUS
data source.

The CREATE command also works, with the appropriate data adapter installed, for a relational
table (such as a DB2 or Teradata table). For information, see the documentation for the
relevant data adapter.

If you issue the CREATE FILE command when the data source already exists, the following
message appears for a FOCUS or XFOCUS data source:

(FOC441) WARNI NG THE FI LE EXI STS ALREADY. CREATE WLL WRITE OVER IT.
REPLY:

The DROP option on the CREATE FILE command prevents the display of the message and
creates the data source, dropping the existing table first, if necessary, and re-parsing the
Master File if it changed.

Note that you must issue either an allocation or a CREATE command for a new data source.
For all other platforms, if the data source has not been initialized, a CREATE is automatically
issued on the first MODIFY or Maintain Data request made against the data source.

How to Use the CREATE Command
CREATE FI LE nast ernane [DROP]

where:
nast er nane

Is the name of the Master File that describes the data source.
DROP

Drops an existing file before performing the CREATE and re-parses the Master File, if
necessary. No warning messages are generated.

If you issue the CREATE FILE filename DROP command for a FOCUS or XFOCUS data
source that has an external index or MDI, you must REBUILD the index after creating the
data source.

Note the following when issuing CREATE:

d If you do not allocate the data source prior to issuing the CREATE command, the data
source is created as a temporary data set. To retain the data source, copy it to a
permanent data set with the DYNAM COPY command.

3. Creating and Rebuilding a Data Source I

Example:

-1 The CREATE command preformats the primary space allocation and initializes the data
source entry in the File Directory Table. A Master File must exist for the data source in a
PDS allocated to ddname MASTER.

.d Issuing MODIFY or Maintain commands against data sources for which no CREATE or
allocation was issued results in a read error.

After you enter the CREATE command, the following appears:
NEW FI LE name ON date AT tine

where:

namne

Is the complete name of the new data source.
ON date AT tine

Is the date and time at which the data source was created or recreated.

When you issue the CREATE command without the DROP option, if the data source already
exists, the following message appears:

(FOC441) WARNING. THE FI LE EXI STS ALREADY. CREATE WLL WRI TE OVER IT.
REPLY:

To erase the data source and create a new, empty data source, enter Y. To cancel the
command and leave the data source intact, enter END, QUIT, or N.

If you wish to give the data source absolute File Integrity protection, issue the following
command prior to the CREATE command:

SET SHADOW-ON

Creating a FOCUS Data Source

To create the ADDRESS data source, allocate the data source and then issue the CREATE
command:

DYNAM ALLOC F(ADDRESS) DA(ADDRESS. FOCUS) NEW SPACE(5, 5) CYL
CREATE FI LE ADDRESS

The following message displays:

NEW FI LE ADDRESS ON 03/ 02/ 1999 AT 15.16.59

This creates the new FOCUS data source ADDRESS.FOCUS allocated to ddname ADDRESS.

Maintaining Databases 319

Rebuilding a Data Source: The REBUILD Command

Rebuilding a Data Source: The REBUILD Command

Reference:

320

You can make a structural change to a FOCUS data source after it has been created using the
REBUILD command. Using REBUILD and one of its subcommands REBUILD, REORG, INDEX,
EXTERNAL INDEX, CHECK, TIMESTAMP, DATE NEW, and MDINDEX, you can:

d Rebuild a disorganized data source (REBUILD).
- Delete instances according to a set of screening conditions (REBUILD or REORG).

d Redesign an existing data source. This includes adding and removing segments, adding
and removing data fields, indexing different fields, changing the size of alphanumeric data
fields and more (REORG).

d Index new fields after rebuilding or creating the data source (INDEX).

- Create an external index database that facilitates indexed retrieval when joining or locating
records (EXTERNAL INDEX).

- Check the structural integrity of the data source (CHECK). Check when the FOCUS data
source was last changed (TIMESTAMP).

- Convert legacy date formats to smart date formats (DATE NEW).

- Build or modify a multi-dimensional index (MDINDEX).

You can use the REBUILD facility:

- Interactively at the screen, by issuing the REBUILD command at the FOCUS command
prompt.

- As a batch procedure, by entering the REBUILD command, the desired subcommand, and
any responses to subcommand prompts on separate lines of a procedure.

Before using the REBUILD facility, you should be aware of several required and recommended
prerequisites regarding file allocation, security authorization, and backup.

Before You Use REBUILD: Prerequisites

Before you use the REBUILD facility, there are several prerequisites that you must consider:

- Partitioning. You can only REBUILD one partition of a partitioned FOCUS data source at one
time. You must explicitly allocate the partition you want to REBUILD. Alternatively, you can
create separate Master Files for each partition.

3. Creating and Rebuilding a Data Source I

- Size. To REBUILD a FOCUS data source that is larger than one-gigabyte you must explicitly
allocate ddname REBUILD to a temporary file with enough space to contain the data. It is
strongly recommended that you REBUILD/REORG to a new file, in sections, to avoid the
need to allocate large amounts of space to REBUILD. In the DUMP phase, use selection
criteria to dump a section of the data source. In the LOAD phase, make sure to add each
new section after the first. To add to a data source you must issue the LOAD command
with the following syntax:

LOAD NOCREATE

.4 Allocation. Usually, you do not have to allocate workspace prior to using a REBUILD
command. It is automatically allocated. However, adequate workspace must be available.
As a rule of thumb, have space 10 to 20% larger than the size of the existing file available
for the REBUILD and REORG options.

The file name REBUILD is always assigned to the workspace. In the DUMP phase of the
REORG command, the allocation statement appears in case you want to perform the LOAD
phase at a different time.

d Security authorization. If the data source you are rebuilding is protected by a database
administrator, you must be authorized for read and write access in order to perform any
REBUILD activity.

-1 Backup. Although it is not a requirement, we recommend that you create a backup copy of
the original Master File and data source before using any of the REBUILD subcommands.

Procedure: How to Use the REBUILD Facility
The following steps describe how to use the REBUILD facility:
1. |Initiate the REBUILD facility by entering:
REBUI LD

2. Select a subcommand by supplying its name or its number. The following list shows the
subcommand names and their corresponding numbers:

1. REBU LD (Optimze the database structure)

2. REORG (Alter the database structure)

3. | NDEX (Build/modify the database index)

4. EXTERNAL | NDEX (Build/ nodify an external index database)

5. CHECK (Check the database structure)

6. TI MESTAWP (Change the database tinestanp)

7. DATE NEW (Convert old date formats to smart date formats)
8. MDI NDEX (Buil d/ nodi fy a mul tidi mensional index)

Your subsequent responses depend on the subcommand you select. Generally, you will only
need to give the name of the data source and possibly one or two other items of information.

Maintaining Databases 321

Rebuilding a Data Source: The REBUILD Command

If you are using the REBUILD facility interactively, you must allocate SYSPRINT to the terminal
in order to view the menu. For more information on using SYSPRINT, see the Overview and
Operating Environments manual.

Note: If you select the wrong subcommand interactively, you can enter QUIT to exit.

Controlling the Frequency of REBUILD Messages

Syntax:

Example:

322

When REBUILD processes a data source, it displays status messages periodically (for
example, REFERENCE..AT SEGMENT 1000) to inform you of the progress of the rebuild. The
default display interval is every 1000 segment instances processed during REBUILD retrieval
and load phases. The number of messages that appear is determined by the number of
segment instances in the FOCUS data source being rebuilt, divided by the display interval.

How to Control the Frequency of REBUILD Messages

REBUILD displays a message (REFERENCE..AT SEGMENT segnum) at periodic intervals to
inform you of its progress as it processes a data source. You can control the frequency with
which REBUILD displays this message by issuing the command

SET REBUI LDVSG = {n| 1000}

where:

n
Is any integer from 1,000 to 99,999,999 or O (to disable the messages).
A setting of less than 1000:

d Generates a warning message that describes the valid values (O or greater than 999).

. Keeps the current setting. The current setting will either be the default of 1000, or the last
valid integer greater than 999 to which REBUILDMSG was set.

Controlling the Display of REBUILD Messages

The following messages are generated for a REBUILD CHECK where REBUILDMSG has been
set to 4000, and the data source contains 19,753 records.

STARTI NG. .

REFERENCE. . AT SEGVENT 4000
REFERENCE. . AT SEGVENT 8000
REFERENCE. . AT SEGVENT 12000
REFERENCE. . AT SEGVENT 16000

NUMBER OF SEGVENTS RETRI EVED= 19753
CHECK COVPLETED. . .

3. Creating and Rebuilding a Data Source I

Optimizing File Size: The REBUILD Subcommand

Procedure:

You use the REBUILD subcommand for one of two reasons. Primarily, you use it to improve
data access time and storage efficiency. After many deletions, the physical structure of your
data does not match the logical structure. REBUILD REBUILD dumps data into a temporary
work space and then reloads it, putting instances back in their proper logical order. A second
use of REBUILD REBUILD is to delete segment instances according to a set of screening
conditions.

Normally, you use the REBUILD subcommand as a way of maintaining a clean data source. To
check if you need to rebuild your data source, enter the ? FILE command (described in
Confirming Structural Integrity Using ? FILE and TABLEF on page 340):

? FILE f//enane

If your data source is disorganized, the following message appears:

FI LE APPEARS TO NEED THE - REBUI LD- UTI LI TY

REORG PERCENT IS A MEASURE OF FI LE DI SORGANI ZATI ON
0 PCT IS PERFECT -- 100 PCT IS BAD

REORG PERCENT x%

This message appears whenever the REORG PERCENT measure is more than 30%. The REORG
PERCENT measure indicates the degree to which the physical placement of data in the data
source differs from its logical, or apparent, placement.

The &FOCDISORG variable can be used immediately after the ? FILE command and also shows
the percentage of disorganization in a data source. &FOCDISORG will show a data source
percentage of disorganization even if it is below 30% (see the Developing Applications manual).

How to Use the REBUILD Subcommand
The following steps describe how to use the REBUILD subcommand:

1. |Initiate the REBUILD facility by entering:
REBUI LD

The following options are available:

1. REBU LD (Optimze the database structure)

2. REORG (Al'ter the database structure)

3. | NDEX (Bui l d/ nodi fy the database index)

4. EXTERNAL | NDEX (Build/nodify an external index database)

5. CHECK (Check the database structure)

6. TI MESTAWP (Change the database tinestanp)

7. DATE NEW (Convert old date formats to snartdate formats)
8. DI NDEX (Buil d/ nodi fy a nul tidimensional index)

Maintaining Databases 323

Optimizing File Size: The REBUILD Subcommand

Select the REBUILD subcommand by entering:
REBUI LD or 1

Enter the name of the data source to be rebuilt.
On z/0S, enter Enter the ddname.

If you are simply rebuilding the data source and require no selection tests, enter:

NO

The REBUILD procedure will begin immediately.

On the other hand, if you wish to place screening conditions on the REBUILD
subcommand, enter:

YES

Then enter the necessary selection tests, ending the last line with ,$.

Test relations of EQ, NE, LE, GE, LT, GT, CO (contains), and OM (omits) are permitted.
Tests are connected with the word AND, and lists of literals may be connected with the OR
operator. A comma followed by a dollar sign (,$) is required to terminate any test.

For example, you might enter the following:

A EQ A1 OR A2 AND B LT 100 AND
C GT 400 AND D CO 'CUR , $

Statistics appear when the REBUILD REBUILD procedure is complete, including the number of
segments retrieved and the number of segments included in the rebuilt data source.

Using the REBUILD Subcommand

324

The following examples illustrate how to use the REBUILD subcommand.

3. Creating and Rebuilding a Data Source I

Example: Using the REBUILD Subcommand

The following example illustrates using the REBUILD subcommand interactively.

rebuild

Enter option

1. REBUI LD (Optimze the database structure)

2. RECRG (Alter the database structure)

3. | NDEX (Bui I d/ nodi fy the database index)

4. EXTERNAL | NDEX(Buil d/ nodify an external index database)
5. CHECK (Check the database structure)

6. TI MESTAMP (Change the database tinestanp)

7. DATE NEW (Convert old date formats to smartdate formats)
8. DI NDEX (Buil d/nodi fy a nul tidi nensional index)
rebuild

ENTER NAME OF FOCUS/ FUSI ON FI LE
> enpl oyee

ANY RECORD SELECTI ON TESTS? (YES/ NO)

> no
STARTI NG. .
DCB USED W TH FI LE REBUI LD | S DCB=(RECFM=VB, LRECL=00088, BLKSI ZE=23940)
NUMBER OF SEGVENTS RETRI EVED= 576
NEW FI LE EMPLOYEE ON 05/ 14/ 1999 AT 09.31. 26
NUMBER COF SEGVENTS | NPUT= 576

FI LE HAS BEEN REBUI LT

Changing Data Source Structure: The REORG Subcommand

The REORG subcommand enables you to make a variety of changes to the Master File after
data has been entered in the FOCUS data source. REBUILD REORG is a two-step procedure
that first dumps the data into a temporary workspace and then reloads it under a new Master
File.

You can use REBUILD REORG to:
d Add new segments as descendants of existing segments.
d Remove segments.

-l Add new data fields as descendants to an existing segment.

Note: The fields must be added after the key fields.
d Remove data fields.
.4 Change the order of non-key data fields within a segment. Key fields may not be changed.

d Promote fields from unique segments to parent segments.

Maintaining Databases 325

Changing Data Source Structure: The REORG Subcommand

Procedure:

326

-1 Demote fields from parent segments to descendant unique segments.
d Index different fields or remove indexes.

.d Increase or decrease the size of an alphanumeric data field.

REBUILD REORG will not enable you to:

4 Change field format types (alphanumeric to numeric and vice versa, changing numeric
format types).

. Change the value for SEGNAME attributes.
.4 Change the value for SEGTYPE attributes.

.4 Change field names that are indexed.

To accomplish these tasks you must use FIXFORM. See your MODIFY, documentation for more
information.

How to Use the REORG Subcommand

The following steps describe how to use the REORG subcommand:

1. Before making any changes to the original Master File, make a copy of it with another
name.

Using an editor, make the desired edits to the copy of the Master File.

3. Initiate the REBUILD facility by entering:
REBUI LD

The following options are available:

1. REBU LD (Optimze the database structure)

2. REORG (Al'ter the database structure)

3. I NDEX (Bui Il d/ modi fy the database index)

4. EXTERNAL | NDEX (Build/nodify an external index database)

5. CHECK (Check the database structure)

6. TI MESTAWP (Change the database tinestanp)

7. DATE NEW (Convert old date formats to smartdate fornats)
8. MDI NDEX (Buil d/ nodify a mul tidi nensional index)

4. Select the REORG subcommand by entering:
REORG or 2

The options are:

1. DUWP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

3. Creating and Rebuilding a Data Source I

If you want to mount a scratch tape for work space during the DUMP phase, you can type
the name of the tape after the word REORG.

5. Initiate the DUMP phase of the procedure by entering:
DUWP or 1

6. Enter the name of the data source you wish to dump from. Be sure to use the name of the
original Master File for this phase.

On z/0S, enter Enter the ddname.

7. You can specify selection tests by entering YES. Only data that meets your specifications
will be dumped. It is more likely, however, that you will want to dump the entire data
source. To do so, enter:

NO

Statistics appear during the DUMP procedure, including the number of segments dumped
and the name and statistics for the temporary file used to hold the data.

8. After the DUMP phase is complete, you are ready to begin the second phase of REBUILD
REORG: LOAD. Enter:

REBUI LD

9. Select the REORG subcommand by entering:
RECRG or 2

The options are:

1. DUw (DUWP contents of the database)
2. LOAD (LOAD data into the database)

10. Initiate the LOAD phase of the procedure by entering:
LOAD or 2
11. Enter the name of the data source you wish to load from the temporary file created during

the dump phase. In most cases, this will be the new data source name.

At this stage, you have loaded the specified data from the original Master File into a new data
source with the name you specified. It is important to remember that both the Master File and
data source for the original Master File remain. You have three choices:

.4 You may want to rename the original Master File and data source to prevent possible
confusion.

4 You may rename the new Master File and data source to the original name. As a result, any
existing FOCEXECs referencing the original name will run against the new data source.

Maintaining Databases 327

Changing Data Source Structure: The REORG Subcommand

-l You may delete the original Master File and data source after you verify that the new
Master File and data source are correct and complete.

If you enter the name of a data source that already exists, (the original Master File) you are
prompted that you will be appending data to a preexisting data source and asked if you wish to
continue.

You are not asked if you want to append to an existing data source. The data source is
created. If you want to append, when you issue the LOAD command, enter LOAD NOCREATE.

Enter N to terminate REBUILD execution. Enter Y to add the records in the temporary REBUILD
file to the original FOCUS data source.

If duplicate field names occur in a Master File, REBUILD REORG is not supported.

You must issue either an allocation or a CREATE for a new data source being loaded.

Using the REORG Subcommand

Example:

328

The following examples illustrate how to use the REORG subcommand.

Using the REORG Subcommand
First make a copy of the data source:

dynam copy enpl oyee. f ocus ol denp. f ocus

Now start the DUMP phase:
rebuil d

3. Creating and Rebuilding a Data Source I

Enter option

1. REBUI LD (Optimze the database structure)

2. RECRG (Al ter the database structure)

3. | NDEX (Buil d/ nodi fy the database index)

4., EXTERNAL | NDEX (Build/nodify an external index database)
5. CHECK (Check the database structure)

6. TI MESTAWVP (Change the database tinestanp)

7. DATE NEW (Convert old date fornats to snartdate formats)
8. MDI NDEX (Bui Il d/ modi fy a mul tidinmensional index)

reorg

Enter option

1. DuwP (DUWP contents of the database)

2. LOAD (LOAD data into the database)

dunp

DUMP

ENTER NAME OF FOCUS/ FUSI ON FI LE

> enpl oyee

ANY RECORD SELECTI ON TESTS? (YES/ NO)

> no

STARTI NG. .
DCB USED W TH FI LE REBU LD | S DCB=(RECFM=VB, LRECL=00088, BLKSI ZE=23940)
NUVBER OF SEGMVENTS RETRI EVED= 576

Now start the LOAD phase:

> > rebuild
Enter option

1. REBU LD (Optinize the database structure)
2. REORG (Al'ter the database structure)
3. | NDEX (Buil d/ nodi fy the database index)
4. EXTERNAL | NDEX (Build/ nodi fy an external index database)
5. CHECK (Check the database structure)
6. TI MESTAWP (Change the dat abase tinestanp)
7. DATE NEW (Convert old date formats to snmartdate formats)
8. MDI NDEX (Buil d/ nodi fy a nultidi mensi onal index)
> reorg|
Enter option
1. DUWP (DUWP contents of the database)
2. LOAD (LOAD data into the database)
LOAD
ENTER NAME OF FOCUS/ FUSI ON FI LE
> enpl oyee
STARTI NG. .
NEW FI LE EMPLOYEE ON 05/ 14/1999 AT 09.41. 37
NUVBER OF SEGMVENTS | NPUT= 576
> >

Maintaining Databases 329

Indexing Fields: The INDEX Subcommand

Indexing Fields: The INDEX Subcommand

330

To index a field after you have entered data into the data source, use the INDEX subcommand.
You can index fields in addition to those previously specified in the Master File or since the
last REBUILD or CREATE command. The only requirement is that each field specified must be
described with the FIELDTYPE=I (or INDEX=I) attribute in the Master File.

The INDEX option uses the operating system sort program. You must have disk space to which
you can write. To calculate the amount of space needed, add 8 to the length of the index field
in bytes and multiply the sum by twice the number of segment instances

(LENGTH + 8) * 2n

where:
n
Is the number of segment instances.

You may decide to wait until after loading data to add the FIELDTYPE=I attribute and index the
field. This is because the separate processes of loading data and indexing can be faster than
performing both processes at the same time when creating the data source. This is especially
true for large data sources.

Sort libraries and workspace must be available. The REBUILD allocates default sort work space
if you have not already. DDNAMEs SORTIN and SORTOUT must be allocated prior to issuing a
REBUILD INDEX.

3. Creating and Rebuilding a Data Source I

Procedure: How to Use the INDEX Subcommand
The following steps describe how to use the INDEX subcommand:
1. Add the FIELDTYPE=I attribute to the field or fields you are indexing in the Master File.

2. Initiate the REBUILD facility by entering:
REBUI LD

The following options are available:

1. REBUI LD (Optimze the database structure)

2. REORG (Alter the database structure)

3. | NDEX (Buil d/ modi fy the database index)

4. EXTERNAL | NDEX (Build/nodify an external index database)

5. CHECK (Check the database structure)

6. TI MESTAWP (Change the database tinestanp)

7. DATE NEW (Convert old date formats to smartdate fornats)
8. DI NDEX (Build/modify a nultidimensional index)

3. Select the INDEX subcommand by entering;:
| NDEX or 3

4. Enter the name of the Master File in which you will add the FIELDTYPE=I or INDEX=I
attribute.

5. Enter the name of the field to index. If you are indexing all the fields that have
FIELDTYPE=I, enter an asterisk (*).

Statistics appear when the REBUILD INDEX procedure is complete, including the field names
that were indexed and the number of index values included.

Using the INDEX Subcommand

The following examples illustrate how to use the INDEX subcommand.

Maintaining Databases 331

Creating an External Index: The EXTERNAL INDEX Subcommand

Example:

Using the INDEX Subcommand

REBUILD INDEX uses an external sort. FOCUS searches for the system-installed sort product
using its normal search path.

> > tso alloc f(sortin) sp(l1 1) tracks
> > tso alloc f(sortout) sp(l 1) tracks
> > tso alloc f(sysout) da(*)

> > rebuild

Enter option

1. REBUI LD (Optimze the database structure)
2. RECRG (Al'ter the database structure)
3. | NDEX (Buil d/ nodi fy the database index)
4. EXTERNAL | NDEX (Buil d/nodi fy an external index database)
5. CHECK (Check the database structure)
6. TI MESTAWP (Change the database tinmestanp)
7. DATE NEW (Convert old date fornmats to snartdate formats)
8. MDI NDEX (Buil d/modi fy a mul tidimensional index)
> 3
I NDEX

ENTER THE NAVE OF THE MASTER

> enpl oyee

ENTER NAME OF FI ELD TO I NDEX (OR * FOR ALL)

> enp_id

STARTI NG. .

(FOC319) WARNING. THE FI ELD I'S | NDEXED AFTER THE FI LE WAS CREATED:
EMP_I D

| NDEX VALUES RETRI EVED= 12
SORT COWPLETE .. RET CODE 0
I NDEX I NI TI ALI ZED FOR: EMP_I D

| NDEX VALUES | NCLUDED= 12

Creating an External Index: The EXTERNAL INDEX Subcommand

332

Users with READ access to a local FOCUS data source can create an index database that
facilitates indexed retrieval when joining or locating records. An external index is a FOCUS data
source that contains index, field, and segment information for one or more specified FOCUS
data sources. The external index is independent of its associated FOCUS data source. External
indexes offer equivalent performance to permanent indexes for retrieval and analysis
operations.

External indexes enable indexing on concatenated FOCUS data sources, indexing on real and
defined fields, and indexing selected records from WHERE/IF tests. External indexes are
created as temporary data sets unless preallocated to a permanent data set. They are not
updated as the indexed data changes.

3. Creating and Rebuilding a Data Source I

You create an external index with the REBUILD command. Internally, REBUILD begins a
process which reads the databases that make up the index, gathers the index information, and
creates an index database containing all field, format, segment, and location information.

You provide information about:

_I

L U U o U

Whether you want to add new records from a concatenated database to the index
database.

The name of the external index database that you want to build.

The name of the data source from which the index information is obtained.
The name of the field from which the index is to be created.

Whether you want to position the index field within a particular segment.

Any valid WHERE or IF record selection tests.

Sort libraries and work space must be available. The REBUILD allocates default sort work
space if you have not already. DDNAMEs SORTIN and SORTOUT must be allocated prior to
issuing a REBUILD.

Procedure: How to Use the EXTERNAL INDEX Subcommand

To create an external index from a concatenated database, follow these steps:

1.

Assume that you have the following USE in effect:

USE CLEAR *

USE

EVPLOYEE

EMP2 AS EMPLOYEE
JOBFI LE
EDUCFI LE

END

Note that EMPLOYEE and EMP2 are concatenated and can be described by the EMPLOYEE
Master File.

Initiate the REBUILD facility by entering:
REBUI LD

Maintaining Databases 333

Creating an External Index: The EXTERNAL INDEX Subcommand

334

The following options are available:

1. REBU LD (Optimze the database structure)

2. REORG (Al'ter the database structure)

3. | NDEX (Bui l d/ nodi fy the database index)

4. EXTERNAL | NDEX (Build/ nodify an external index database)

5. CHECK (Check the database structure)

6. TI MESTAWP (Change the database tinestanp)

7. DATE NEW (Convert old date formats to snmartdate formats)
8. DI NDEX (Buil d/nodi fy a nmul tidinmensional index)

Select the EXTERNAL INDEX subcommand by entering;:

EXTERNAL | NDEX or 4

Specify whether to create a new index data source or add to an existing one by entering
one of the following choices:

NEW

ADD

For this example, assume you are creating a new index database and respond by entering:

NEW

Specify the name of the external index database:
EMPI DX

Specify the name of the data source from which the index records are obtained:
EMPLOYEE

Specify the name of the field to index:
CURR_J OBCODE

Specify whether the index should be associated with a particular field by entering YES or
NO. For this example, enter:

NO

Indicate whether you require any record selection tests by entering YES or NO.
For this example, enter:

NO

3. Creating and Rebuilding a Data Source I

Example:

Reference:

If you responded YES, you would next enter the record selection tests, ending them with
the END command on a separate line.

For example:

| F DEPARTMENT EQ 'M S

END

You will see statistics (output of the ? FDT query) about the index data source when the
REBUILD EXTERNAL INDEX procedure is complete. This query is automatically issued at the
end of the REBUILD EXTERNAL INDEX process in order to validate the contents of the index
database.

External Index Statistics

The following illustrates external index statistics.

EXTERNAL | NDEX FI LE: EMPI DX

FULL NAME: EMPI DX. FOCUS

VERSI ON :

DATE/ TI ME OF LAST CHANGE: 05/ 13/ 99 15. 40. 46
EXTERNAL | NDEX DATABASE PACES: 00000001
DATABASE | NDEXED: EVPLOYEE
FI ELD NAME: EVPI NFO. CURR
FI ELD FORVAT: A3
SEGVENT NAME: EMPI NFO
SEGVENT LOCATI ON: EVPLOYEE

EXTERNAL | NDEX DATA COVPONENTS:
EMPLOYEE. FOCUS
EMP2. FOCUS

Special Considerations for REBUILD EXTERNAL INDEX

Consider the following when working with external indexes:

4 Up to eight indexes can be activated at one time in a USE list using the WITH statement.
More than eight indexes may be activated in a session if you issue the USE CLEAR
command and issue new USE statements.

.d Up to 256 concatenated files may be indexed. However, only eight indexes may be
activated at one time.

Maintaining Databases 335

Creating an External Index: The EXTERNAL INDEX Subcommand

- Verification of the component files is now done for both the date and time stamp of file
creation. Files with the same date and time stamp that are copied display the following
message:

(FOC995) ERROR EXTERNAL | NDEX DUPLI CATE COVPONENT: fn REBU LD ABORTED

d MODIFY may only use the external index with the FIND or LOOKUP functions. The external
index cannot be used as an entry point, such as:

MODI FY FI LE 7/ /enane. i ndexf| d

4 Indexes may not be created on field names longer than twelve characters.
- Text fields may not be used as indexed fields.

.d The USE options NEW, READ, ON, LOCAL, and AS master ON userid READ are not
supported for the external index database.

d The external index database need not be allocated since CREATE FILE automatically
performs a temporary allocation. If a permanent database is required, then an allocation for
the index database must be in place prior to the REBUILD EXTERNAL INDEX command.

.d SORTIN and SORTOUT, work files that the REBUILD EXTERNAL INDEX process creates,
must be allocated with adequate space. In order to estimate the space needed, the
following formula may be used:

bytes = (field_length + 20) * nunber_of_occurrences

Concatenating Index Databases

336

The external index feature enables indexed retrieval from concatenated FOCUS data sources. If
you wish to concatenate databases that comprise the index, you must issue the appropriate
USE command prior to the REBUILD. The USE must include all cross-referenced and LOCATION
files. REBUILD EXTERNAL INDEX contains an add function that enables you to append only hew
index records from a concatenated database to the index database, eliminating the need to
recreate the index database.

The original data source from which the index was built may not be in the USE list when you
add index records. If it is, REBUILD EXTERNAL INDEX generates the following message:

(FOC999) WARNI NG EXTERNAL | NDEX COVPONENT REUSED: ddnamne

3. Creating and Rebuilding a Data Source I

Positioning Indexed Fields

The external index feature is useful for positioning retrieval of indexed values for defined fields
within a particular segment in order to enhance retrieval performance. By entering at a lower
segment within the hierarchy, data retrieved for the indexed field is affected, as the index field
is associated with data outside its source segment. This enables the creation of a relationship
between the source and target segments. The source segment is defined as the segment that
contains the indexed field. The target segment is defined as any segment above or below the
source segment within its path.

If the target segment is not within the same path, the following message is generated:

(FOC974) EXTERNAL | NDEX ERROR. | NVALI D TARGET SEGVENT

A defined field may not be positioned at a higher segment.

While the source segment can be a cross-referenced or LOCATION segment, the target
segment cannot be a cross-referenced segment. If an attempt is made to place the target on a
cross-referenced segment, the following message is generated:

(FOC1000) | NVALI D USE OF CROSS REFERENCE FI ELD

If you choose not to associate your index with a particular field, the source and target
segments will be the same.

Activating an External Index

Syntax:

After building an external index database, you must associate it with the data sources from
which it was created. This is accomplished with the USE command. The syntax is the same as
when USE is issued prior to building the external index database, except the WITH or INDEX
option is required.

How to Activate an External Index

USE [ADD| REPLACE]
dat abase_nane [AS naster nane)
I ndex_dat abase_name [WTH| | NDEX] rnasternane

END

where:
ADD

Appends one or more new databases to the present USE list. Without the ADD option, the
existing USE list is cleared and replaced by the current list of USE databases.

Maintaining Databases 337

Checking Data Source Integrity: The CHECK Subcommand

REPLACE

Replaces an existing database_name in the USE list.
dat abase_namne

Is the name of the data source.

On z/0S, enter Enter the ddname.

You must include a data source name in the USE list for all cross-referenced and
LOCATION files that are specified in the Master File.

AS
Is used with a Master File name to concatenate data sources.
nast er nane
Specifies the Master File.
/ ndex_dat abase_nane
Is the name of the external index database.
On z/0S, enter Enter the ddname.
W TH| | NDEX

Is a keyword that creates the relationship between the component data sources and the

index database. INDEX is a synonym for WITH.

Checking Data Source Integrity: The CHECK Subcommand

338

It is rare for the structural integrity of a FOCUS data source to be damaged. Structural damage
will occasionally occur, however, during a drive failure or if an incorrect Master File is used. In

this situation, the REBUILD CHECK command performs two essential tasks:

. It checks pointers in the data source.

. Should it encounter an error, it displays a message and attempts to branch around the

offending segment or instance.

Although CHECK is able to report on a good deal of data that would otherwise be lost, it is
important to remember that frequently backing up your FOCUS data sources is the best

method of preventing data loss.

3. Creating and Rebuilding a Data Source I

Procedure:

CHECK will occasionally fail to uncover structural damage. If you have reason to believe that
there is damage to your data source, though CHECK reports otherwise, there is a second
method of checking data source integrity. This method entails using the ? FILE and TABLEF
commands. Though this is not a REBUILD function, it is included at the end of this section
because of its relevancy to CHECK.

How to Use the CHECK Subcommand

The following steps describe how to use the CHECK subcommand:

1.

Initiate the REBUILD facility by entering:
REBUI LD

The following options are available:

REBUI LD (Optimze the database structure)

REORG (Al ter the database structure)

| NDEX (Bui l d/ nodi fy the database index)

EXTERNAL | NDEX (Buil d/ nodi fy an external index database)

CHECK (Check the database structure)

TI MESTAWP (Change the database tinestanp)

DATE NEW (Convert old date formats to snartdate formats)
VDI NDEX (Buil d/ nodi fy a nul tidinmensional index)

ONoOR~WONE

Select the CHECK subcommand by entering:
CHECK or 5

Enter the name of the data source to be checked.

On z/0S, enter Enter the ddname.

Statistics appear during the REBUILD CHECK procedure:

. If no errors are found, the statistics indicate the number of segments retrieved.

d If errors are found, the statistics indicate the type and location of each error:

DELETE indicates that the data has been deleted and should not have been retrieved.
OFFPAGE indicates that the address of the data is not on a page owned by this segment.

INVALID indicates that the type of linkage cannot be identified. It may be a destroyed
portion of the data source.

Using the CHECK Option

The following examples illustrate how to use the CHECK option.

Maintaining Databases 339

Checking Data Source Integrity: The CHECK Subcommand

Example:

Using the Check Option (File Undamaged)

The following example illustrates using the CHECK option interactively.

rebuild

Enter option

1. REBUI LD (Optimze the database structure)

2. REORG (Al'ter the database structure)

3. | NDEX (Buil d/ nodi fy the database index)

4. EXTERNAL | NDEX (Buil d/nodi fy an external index database)
5. CHECK (Check the database structure)

6. TI MESTAWP (Change the dat abase tinmestanp)

7. DATE NEW (Convert old date formats to smartdate formats)
8. MDI NDEX (Buil d/modi fy a mul tidi nensional index)
> 5
CHECK

ENTER NAME OF FOCUS/ FUSI ON FI LE

>

> enpl oyee

STARTI NG. .

NUMBER OF SEGVENTS RETRI EVED= 576
CHECK COWPLETED. . .

> >

Confirming Structural Integrity Using ? FILE and TABLEF

When you believe that there is damage to your data source, though REBUILD CHECK reports
there is not, use the ? FILE and TABLEF commands to compare the number of segment
instances reported after invoking each command. A disparity indicates a structural problem.

Procedure: How to Verify REBUILD CHECK Using ? FILE and TABLEF

340

1. Issue the following command:

? FILE fi//lenane

where:
filenane

Is the name of the FOCUS data source you are examining.

A report displays information on the status of the data source. The number of instances

for each segment is listed in the ACTIVE COUNT column.

2. To ensure that the TABLEF command in the next step counts all segment instances,

including those in the short paths, issue the command:
SET ALL = ON

3. Creating and Rebuilding a Data Source I

Example:

Enter:
TABLEF FI LE f//enanmeCOUNT f/eldl fiel dZEND

where:
filenanme

Is the name of the Master File of the FOCUS data source.
fieldi...

Are the names of fields in the data source. Name one field from each segment. It
does not matter which field is named in the segment.

The report produced shows the number of field occurrences for those fields named and
thus the number of segment instances for each segment. These numbers should match
their respective segment instance numbers shown in the ? FILE command (except for
unique segments which the TABLEF command shows to have as many instances in the
parent segment). If the numbers do not match, or if either the ? FILE command or TABLEF
command ends abnormally, the data source is probably damaged.

Checking the Integrity of the EMPLOYEE Data Source

User input is shown in bold. Computer responses are in uppercase:

? FILE
STATUS OF FOCUS FI LE: EMPLOYEE ON 01/31/2003 AT 16.17.32

ACTI VE DELETED DATE OF TIME OF LAST TRANS

SEGNAME COUNT COUNT LAST CHG LAST CHG NUMBER
EMPI NFO 12 05/ 13/ 1999 16.17. 22 448
FUNDTRAN 6 05/ 13/ 1999 16.17. 22 12
PAYI NFO 19 05/ 13/ 1999 16.17. 22 19
ADDRESS 21 05/ 13/ 1999 16.17. 22 21
SALI NFO 70 05/ 13/ 1999 16.17. 22 448
DEDUCT 448 05/ 13/ 1999 16.17. 22 448
TOTAL SEGS 576

TOTAL CHAR 8984

TOTAL PAGES 8

LAST CHANGE 05/ 13/ 1999 16.17. 22 448
SET ALL = ON

TABLEF FILE EMPLOYEE
COUNT EMP_ID BANK NAME DAT INC TYPE PAY DATE DED_CODE

END

PAGE 1

EMP_ID BANK NAVE DAT_INC TYPE PAY DATE DED CODE
COUNT ~ COUNT COUNT ~ COUNT COUNT COUNT

12 12 19 21 70 448

NUMBER OF RECORDS | N TABLE= 488 LINES= 1

Maintaining Databases 341

Changing the Data Source Creation Date and Time: The TIMESTAMP Subcommand

Note that the BANK_NAME count in the TABLEF report is different than the number of

FUNDTRAN instances reported by the ? FILE query. This is because FUNDTRAN is a unique

segment and is always considered present as an extension of its parent.

Cha