
FOCUS for Mainframe
Using Functions
Version 7.3

DN1001140.1003

EDA, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information Builders logo,
Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are registered trademarks,
and iWay and iWay Software are trademarks of Information Builders, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trademarks. In most, if not
all cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s
intent to use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any
of these names other than to refer to the product described.

Copyright © 2003, by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed in the U.S.A.

Preface
This documentation describes how to use functions to perform certain calculations and
manipulations. It is intended for application developers. This manual is part of the FOCUS
documentation set.

The documentation set consists of the following components:

• The Creating Reports manual describes FOCUS Reporting environments and features.

• The Describing Data manual explains how to create the metadata for the data sources
that your FOCUS procedures will access.

• The Developing Applications manual describes FOCUS application development tools
and environments.

• The Maintaining Databases manual describes FOCUS data management facilities and
environments.

• The Using Functions manual describes internal functions and user written subroutines.

• The Overview and Operating Environments manual contains an introduction to FOCUS
and FOCUS tools and describes how to use FOCUS in the VM/CMS and MVS (OS/390)
environments.

The users' documentation for FOCUS Version 7.3 is organized to provide you with a useful,
comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities and
concepts are related, each chapter fully covers its respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and conventions.
Using Functions iii

How This Manual Is Organized
How This Manual Is Organized
This manual includes the following chapters:

Chapter/Appendix Contents

1 How to Use This
Manual

Describes how to use the information in the FOCUS Using
Functions manual.

2 Introducing
Functions

Offers an introduction to functions and explains the
different types of functions available.

3 Accessing and
Calling a Function

Describes the considerations for supplying arguments in
a function, explains how to use a function in a command,
and how to access externally-stored functions.

4 Character Functions Describes the available character functions, which enable
you to manipulate alphanumeric fields and character
strings.

5 Maintain-specific
Character Functions

Describes Maintain-specific character functions which
manipulate alphanumeric fields and character strings.

6 Data Source and
Decoding Functions

Describes the available data source functions, which
enable you to search for or retrieve data source records or
values.

7 Date and Time
Functions

Describes the available date and time functions, which
enable you to manipulate date and time values.

8 Maintain-specific
Date and Time
Functions

Describes Maintain-specific date and time functions
which manipulate date and time values.

9 Format Conversion
Functions

Describes the available format conversion functions,
which convert fields from one format to another.

10 Numeric Functions Describes the available numeric functions, which enable
you to perform calculations on numeric constants and
fields.

11 System Functions Describes the available system functions, which enable
you to make calls to the operating system to obtain
information about the operating environment or to use a
system service.
iv Information Builders

Preface
Summary of New Features
The FOCUS for Mainframe documentation describes the following new features and
enhancements:

A Creating a
Subroutine

Describes how to create and store site-specific functions.

Chapter/Appendix Contents

New Feature Manual Chapter

Increased ACROSS
values (from 95)

Creating Reports Chapter 4, Sorting Tabular Reports

IN-RANGES-OF Creating Reports Chapter 4, Sorting Tabular Reports

SET BYDISPLAY Creating Reports Chapter 4, Sorting Tabular Reports

Extensions to FORECAST Creating Reports Chapter 6, Creating Temporary Fields

Multivariate Regress Creating Reports Chapter 6, Creating Temporary Fields

Summary Prefix
Operators

Creating Reports Chapter 7, Including Totals and
Subtotals

AnV (VARCHAR) support Creating Reports Chapter 8, Using Expressions

Describing Data Chapter 4, Describing an Individual
Field

Using Functions Chapter 4, Character Functions

Increased IF-THEN-ELSE Creating Reports Chapter 8, Using Expressions

FOCFIRSTPAGE/
&FOCNEXTPAGE

Creating Reports Chapter 9, Customizing Tabular
Reports

Increased Number of
sort headings/footings

Creating Reports Chapter 9, Customizing Tabular
Reports

Increased column title
space

Creating Reports Chapter 9, Customizing Tabular
Reports

Multiple FOLD-LINE Creating Reports Chapter 9, Customizing Tabular
Reports
Using Functions v

Summary of New Features
NEWPAGE Creating Reports Chapter 9, Customizing Tabular
Reports

TABLASTPAGE Creating Reports Chapter 10, Styling Reports

Stylesheet
enhancements

Creating Reports Chapter 10, Styling Reports

Multiple reports in one
PDF file

Creating Reports Chapter 10, Styling Reports

Decimal Alignment of
Headings

Creating Reports Chapter 10, Styling Reports

Cascading Stylesheets Creating Reports Chapter 11, Cascading Stylesheets

Excel 2000 Creating Reports Chapter 12, Saving and Reusing
Report Output
Chapter 10, Styling Reports

SET HOLDFORMAT Creating Reports Chapter 12, Saving and Reusing
Report Output

Excel 97 Creating Reports Chapter 12, Saving and Reusing
Report Output
Chapter 10, Styling Reports

Holding Missing values Creating Reports Chapter 13, Handling Records With
Missing Field Values

Compiled Defines Creating Reports Chapter 16, Improving Report
Processing

FML Hierarchy Creating Reports Chapter 17, Creating Financial
Reports

FORMULTIPLE Creating Reports Chapter 17, Creating Financial
Reports

Indenting FML Reports Creating Reports Chapter 17, Creating Financial
Reports

SET BLANKINDENT Creating Reports Chapter 17, Creating Financial
Reports

New Feature Manual Chapter
vi Information Builders

Preface
FML Hierarchy Describing Data Chapter 4, Describing an Individual
Field

Long qualified field
names

Describing Data Chapter 4, Describing an Individual
Field

Minus edit format
option

Describing Data Chapter 4, Describing an Individual
Field

SUFFIX=TAB Describing Data Chapter 5, Describing a Sequential,
VSAM, or ISAM Data Source

MDI Describing Data Chapter 6, Describing a FOCUS Data
Source

GROUPS in FOCUS Files Describing Data Chapter 6, Describing a FOCUS Data
Source

DATASET for a segment
in MFD

Describing Data Chapter 6, Describing a FOCUS Data
Source

XFOCUS Database Describing Data Chapter 6, Describing a FOCUS Data
Source

Long Segment Names,
Long Index Names

Describing Data Chapter 6, Describing a FOCUS Data
Source

SET HNODATA Developing
Applications

Chapter 1, Customizing Your
Environment

SET HOLDMISS Developing
Applications

Chapter 1, Customizing Your
Environment

SET NULL=ON Developing
Applications

Chapter 1, Customizing Your
Environment

SET SAVEDMASTERS Developing
Applications

Chapter 5, Enhancing Application
Performance

Wide lines Developing
Applications

Chapter 3, Managing Flow of Control
in an Application

Overview and
Operating
Environments

Chapter 5, CMS Guide to Operations
Chapter 6, OS/390 and MVS Guide to
Operations

New Feature Manual Chapter
Using Functions vii

Summary of New Features
&FOCUSER Developing
Applications

Chapter 3, Managing Flow of Control
in an Application

Long Amper variables Developing
Applications

Chapter 3, Managing Flow of Control
in an Application

MAINTAIN FILETYPE
Extension

Maintaining
Databases

Chapter 2, Maintain Concepts

Enhanced screening
conditions for Maintain

Maintaining
Databases

Chapter 7, Command Reference

COMBINE 63 files Maintaining
Databases

Chapter 9, Modifying Data Sources
With MODIFY

FOCUS SETs from
Maintain

Maintaining
Databases

Chapter 9, Modifying Data Sources
With MODIFY

Raised Number of
Partitions for External
Index

Maintaining
Databases

Chapter 11, Creating and Rebuilding
Databases

IEDIT Overview and
Operating
Environments

Chapter 3, Invoking Your System
Editor With IEDIT

Relative GDG Number
+1

Overview and
Operating
Environments

Chapter 6, OS/390 and MVS Guide to
Operations

SET USERFCHK and SET
USERFNS

Using Functions Chapter 3, Accessing and Calling a
Function

FMLINFO Using Functions Chapter 10, Numeric Functions

Subroutine NORMSINV
and NORMSDST

Using Functions Chapter 10, Numeric Functions

New Feature Manual Chapter
viii Information Builders

Preface
Documentation Conventions
This manual describes the following conventions apply throughout this manual:

Related Publications
To view a current listing of our publications and to place an order, visit our World Wide Web
site, http://www.informationbuilders.com. You can also contact the Publications Order
Department at (800) 969-4636.

Convention Description

THIS TYPEFACE or
this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or
dialog box option you can click or select.

this typeface Highlights a file name or command.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices; type one of them, not the
braces.

[] Indicates a group of optional parameters. None are required,
but you may select one of them. Type only the parameter in
the brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one of
them, not the symbol.

... Indicates that you can enter a parameter multiple times. Type
only the parameter, not the ellipsis points (…).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.
Using Functions ix

http://www.informationbuilders.com

Customer Support
Customer Support
Do you have questions about FOCUS?

Call Information Builders Customer Support Service (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 a.m. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities and
documentation. Please be ready to provide your six-digit site code (xxxx.xx) when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update,
and view the status of cases in the tracking system and read descriptions of reported
software issues. New users can register immediately for this service. The technical support
section of www.informationbuilders.com also provides usage techniques, diagnostic tips,
and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code (xxxx.xx).

• The FOCEXEC procedure (preferably with line numbers).

• Master file with picture (provided by CHECK FILE).

• Run sheet (beginning at login, including call to FOCUS), containing the following
information:

• ? RELEASE

• ? FDT

• ? LET

• ? LOAD

• ? COMBINE

• ? JOIN

• ? DEFINE
x Information Builders

http://www.informationbuilders.com
http://www.informationbuilders.com

Preface
• ? STAT

• ? SET/? SET GRAPH

• ? USE

• ? TSO DDNAME OR CMS FILEDEF

• The exact nature of the problem:

• Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

• The error message and code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, FOCUS, your security
system, or an interface system changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For example,
if you are having problems joining two data sources, have you tried executing a query
containing just the code to access the data source?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or production?
Do you just have questions about functionality or documentation?

User Feedback
In an effort to produce effective documentation, the Documentation Services staff
welcomes your opinions regarding this manual. Please use the Reader Comments form at
the end of this manual to relay suggestions for improving the publication or to alert us to
corrections. You can also use the Documentation Feedback form on our Web site, http://
www.informationbuilders.com.

Thank you, in advance, for your comments.
Using Functions xi

https://wwws.ibi.com/bookstore/contact.asp
https://wwws.ibi.com/bookstore/contact.asp

Information Builders Consulting and Training
Information Builders Consulting and Training
Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our World Wide Web site (http://www.informationbuilders.com) or call (800) 969-INFO to
speak to an Education Representative.
xii Information Builders

http://www.informationbuilders.com

Contents
1. How to Use This Manual .1-1

Available Languages .1-2
Operating Systems .1-2

2. Introducing Functions .2-1
Using Functions .2-2
Types of Functions .2-3

Character Functions .2-3
Maintain-specific Character Functions .2-7
Data Source and Decoding Functions . 2-10
Date and Time Functions . 2-11
Maintain-specific Date and Time Functions . 2-16
Format Conversion Functions . 2-18
Numeric Functions . 2-19
System Functions . 2-21

3. Accessing and Calling a Function .3-1
Calling a Function .3-2
Supplying an Argument in a Function .3-4

Argument Types .3-4
Argument Formats .3-5
Argument Length .3-6
Number and Order of Arguments .3-6
Verifying Function Parameters .3-7

Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command . 3-10
Calling a Function From a Dialogue Manager Command . 3-11

Assigning the Result of a Function to a Variable . 3-11
Branching Based on a Function’s Result . 3-13
Calling a Function From an Operating System RUN Command . 3-15

Calling a Function From Another Function . 3-16
Calling a Function in WHERE or IF Criteria . 3-17

Using a Calculation or Compound IF Command . 3-18
Calling a Function in WHEN Criteria . 3-19
Calling a Function From a RECAP Command . 3-20
Storing and Accessing an External Function . 3-22

Storing and Accessing a Function on OS/390 . 3-22
Storing and Accessing a Function on UNIX . 3-24
Storing and Accessing a Function on VM/CMS . 3-24

Dynamic Language Environment Support . 3-27
Using Functions xiii

Contents
4. Character Functions .4-1
ARGLEN: Measuring the Length of a Character String .4-2
ASIS: Distinguishing Between a Space and a Zero .4-3
BITSON: Determining If a Bit Is On or Off .4-5
BITVAL: Evaluating a Bit String as a Binary Integer .4-6
BYTVAL: Translating a Character to a Decimal Value .4-8
CHKFMT: Checking the Format of a Character String . 4-10
CTRAN: Translating One Character to Another . 4-14
CTRFLD: Centering a Character String . 4-19
EDIT: Extracting or Adding Characters . 4-21
GETTOK: Extracting a Substring (Token) . 4-22
LCWORD: Converting a Character String to Mixed Case . 4-24
LJUST: Left-Justifying a Character String . 4-26
LOCASE: Converting Text to Lowercase . 4-28
OVRLAY: Overlaying a Character String . 4-29
PARAG: Dividing Text Into Smaller Lines . 4-33
POSIT: Finding the Beginning of a Substring . 4-35
RJUST: Right-Justifying a Character String . 4-37
SOUNDEX: Comparing Character Strings Phonetically . 4-39
SQUEEZ: Reducing Multiple Spaces to a Single Space . 4-40
STRIP: Removing a Character From a String . 4-42
SUBSTR: Extracting a Substring . 4-44
TRIM: Removing Leading and Trailing Occurrences . 4-46
UPCASE: Converting Text to Uppercase . 4-49
Character Functions for AnV Fields . 4-52

LENV: Returning the Length of an Alphanumeric Field . 4-53
LOCASV: Creating a Variable Length Lowercase String . 4-54
POSITV: Finding the Beginning of a Variable Length Substring . 4-56
SUBSTV: Extracting a Variable Length Substring . 4-57
TRIMV: Removing Characters From a String . 4-60
UPCASV: Creating a Variable Length Uppercase String . 4-61

5. Maintain-specific Character Functions .5-1
CHAR2INT: Translating a Character to an Integer Value .5-2
INT2CHAR: Translating an Integer Value to a Character .5-3
LCWORD and LCWORD2: Converting a Character String to Mixed Case .5-4
LENGTH: Determining the Length of a Character String .5-5
LJUST: Left-Justifying a Character String (Maintain) .5-6
LOWER: Converting a Character String to Lowercase .5-6
MASK: Extracting or Adding Characters .5-7
NLSCHR: Converting Characters From the Native English Code Page .5-8
OVRLAY: Overlaying a Character String (Maintain) .5-9
POSIT: Finding the Beginning of a Substring (Maintain) . 5-11
xiv Information Builders

Contents
RJUST: Right-Justifying a Character String (Maintain) . 5-13
SELECTS: Decoding a Value From a Stack . 5-14
STRAN: Substituting One Substring for Another . 5-16
STRCMP: Comparing Character Strings . 5-18
STRICMP: Comparing Character Strings and Ignoring Case . 5-20
STRNCMP: Comparing Character Substrings . 5-21
STRTOKEN: Extracting a Substrings Based on Delimiters . 5-22
SUBSTR: Extracting a Substring (Maintain) . 5-24
TRIM: Removing Trailing Occurrences (Maintain) . 5-25
TRIMLEN: Determining the Length of a String Excluding Trailing Spaces . 5-26
UPCASE: Converting Text to Uppercase (Maintain) . 5-27

6. Data Source and Decoding Functions .6-1
DECODE: Decoding Values .6-2
FIND: Verifying the Existence of a Value in an Indexed Field .6-6
LAST: Retrieving the Preceding Value .6-9
LOOKUP: Retrieving a Value From a Cross-referenced Data Source . 6-11

Using the Extended LOOKUP Function . 6-17

7. Date and Time Functions .7-1
Date and Time Function Terminology .7-2
Using Standard Date and Time Functions .7-2

Specifying Work Days .7-3
Enabling Leading Zeros For Date and Time Functions in Dialogue Manager 7-5
Using Date and Time Formats .7-7
Assigning Date-Time Values .7-9
DATEADD: Adding or Subtracting a Date Unit to or From a Date . 7-13
DATECVT: Converting the Format of a Date . 7-16
DATEDIF: Finding the Difference Between Two Dates . 7-18
DATEMOV: Moving a Date to a Significant Point . 7-21
HADD: Incrementing a Date-Time Value . 7-25
HCNVRT: Converting a Date-Time Value to Alphanumeric Format . 7-27
HDATE: Converting the Date Portion of a Date-Time Value to a Date Format 7-28
HDIFF: Finding the Number of Units Between Two Date-Time Values . 7-30
HDTTM: Converting a Date Value to a Date-Time Value . 7-32
HGETC: Storing the Current Date and Time in a Date-Time Field . 7-33
HHMMSS: Retrieving the Current Time . 7-34
HINPUT: Converting an Alphanumeric String to a Date-Time Value . 7-36
HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight . 7-38
HNAME: Retrieving a Date-Time Component in Alphanumeric Format 7-39
HPART: Retrieving a Date-Time Component in Numeric Format . 7-41
HSETPT: Inserting a Component Into a Date-Time Value . 7-42
HTIME: Converting the Time Portion of a Date-Time Value to a Number 7-45
Using Functions xv

Contents
TODAY: Returning the Current Date . 7-46
Using Legacy Date Functions . 7-47

Using Old Versions of Legacy Date Functions . 7-47
Using Dates With Two- and Four-Digit Years . 7-48
AYM: Adding or Subtracting Months to or From Dates . 7-50
AYMD: Adding or Subtracting Days to or From a Date . 7-51
CHGDAT: Changing Format of a Date . 7-53
DA Functions: Converting a Date to an Integer . 7-56
DMY, MDY, YMD: Calculating the Difference Between Two Dates . 7-58
DOWK and DOWKL: Finding the Day of the Week . 7-60
DT Functions: Converting an Integer to a Date . 7-61
GREGDT: Converting From Julian to Gregorian Format . 7-63
JULDAT: Converting From Gregorian to Julian Format . 7-65
YM: Calculating Elapsed Months . 7-67

8. Maintain-specific Date and Time Functions .8-1
Maintain-specific Standard Date and Time Functions .8-2

HHMMSS: Retrieving the Current Time (Maintain) .8-2
Initial_HHMMSS: Returning the Time the Application Was Started .8-3
Initial_TODAY: Returning the Date the Application Was Started .8-3
TODAY: Retrieving the Current Date (Maintain) .8-3
TODAY2: Returning the Current Date .8-4

Maintain-specific Legacy Date Functions .8-5
ADD: Adding Days to a Date .8-5
DAY: Extracting the Day of the Month From a Date .8-6
JULIAN: Determining How Many Days Have Elapsed in the Year .8-6
MONTH: Extracting the Month From a Date .8-7
QUARTER: Determining the Quarter .8-8
SETMDY: Setting the Value to a Date .8-8
SUB: Subtracting a Value From a Date . 8-10
WEEKDAY: Determining the Day of the Week for a Date . 8-11
YEAR: Extracting the Year From a Date . 8-12

9. Format Conversion Functions .9-1
ATODBL: Converting an Alphanumeric String to Double-Precision Format .9-2
EDIT: Converting the Format of a Field .9-5
FTOA: Converting a Number to Alphanumeric Format .9-7
HEXBYT: Converting a Decimal Integer to a Character .9-8
ITONUM: Converting a Large Binary Integer to Double-Precision Format . 9-11
ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format . 9-12
ITOZ: Converting a Number to Zoned Format . 9-14
PCKOUT: Writing a Packed Number of Variable Length . 9-16
UFMT: Converting an Alphanumeric String to Hexadecimal . 9-18
xvi Information Builders

Contents
10. Numeric Functions . 10-1
ABS: Calculating Absolute Value . 10-2
ASIS: Distinguishing Between a Blank and a Zero . 10-3
BAR: Producing a Bar Chart . 10-3
CHKPCK: Validating a Packed Field . 10-6
DMOD, FMOD, and IMOD: Calculating the Remainder From a Division . 10-9
EXP: Raising “e” to the Nth Power . 10-11
EXPN: Evaluating a Number in Scientific Notation . 10-13
FMLINFO: Returning FOR Values . 10-14
INT: Finding the Greatest Integer . 10-16
LOG: Calculating the Natural Logarithm . 10-17
MAX and MIN: Finding the Maximum or Minimum Value . 10-18
NORMSDST and NORMSINV: Calculating Cumulative Normal Distribution . 10-19
PRDNOR and PRDUNI: Generating Reproducible Random Numbers . 10-23
RDNORM and RDUNIF: Generating Random Numbers . 10-26
SQRT: Calculating the Square Root . 10-28

11. System Functions . 11-1
FEXERR: Retrieving an Error Message . 11-2
FGETENV: Retrieving the Value of an Environment Variable . 11-3
FINDMEM: Finding a Member of a Partitioned Data Set . 11-4
FPUTENV: Assigning a Value to an Environment Variable . 11-6
GETPDS: Determining If a Member of a Partitioned Data Set Exists . 11-7
GETUSER: Retrieving a User ID . 11-12
HHMMSS: Retrieving the Current Time . 11-13
MVSDYNAM: Passing a DYNAM Command to the Command Processor . 11-14
TODAY: Returning the Current Date . 11-17
Using Functions xvii

Contents
A. Creating a Subroutine . A-1
Writing a Subroutine . A-2

Naming a Subroutine . A-3
Creating Arguments . A-3
Language Considerations . A-4
Programming a Subroutine . A-6

Compiling and Storing a Subroutine . A-11
Compiling and Storing a Subroutine on VM/CMS . A-11
Compiling and Storing a Subroutine on OS/390 . A-12
Compiling and Storing a Subroutine on UNIX . A-12

Testing the Subroutine . A-12
Using a Custom Subroutine: The MTHNAM Subroutine . A-13

Writing the MTHNAM Subroutine . A-13
Calling the MTHNAM Subroutine From a Request . A-19

Subroutines Written in REXX . A-20
Formats and REXX Subroutines . A-25
Compiling FUSREXX Macros in VM/CMS . A-31
xviii Information Builders

CHAPTER 1

How to Use This Manual

Topics:

• Available Languages

• Operating Systems

This manual describes the functions supplied with your
Information Builders product. It is intended for application
developers who call these functions from their programs to
perform calculations or manipulate data. Other users who
access corporate data to produce reports can call these
functions.

This manual also explains how to create functions tailored
to individual needs (called subroutines) for use with your
Information Builders product.

In this manual, the description of each function identifies
the language and operating system for which it is valid.
Using Functions 1-1

Available Languages
Available Languages
A function is available in the reporting language, the Maintain language, or both:

• The reporting language includes all commands used to create a report. It is available to
users of any Information Builders product.

• The Maintain language includes all commands used to maintain data sources with the
Maintain product. It is available only to those who purchased Maintain.

Look in the description of an individual function for the available language, or in the
categorized list of functions in Chapter 2, Introducing Functions.

Operating Systems
A function can be available on the following operating systems: AS/400, HP, OpenVMS, z/OS
OS/390, VM/ESA, and UNIX.

Look in the description of an individual function for the available operating system, or in
the categorized list of functions in Chapter 2, Introducing Functions.

The description “All” applies to all operating systems named here.
1-2 Information Builders

CHAPTER 2

Introducing Functions

Topics:

• Using Functions

• Types of Functions

The following topics offer an introduction to
functions and explain the different types of functions
available.
Using Functions 2-1

Using Functions
Using Functions
Functions operate on one or more arguments and return a single value. The returned value
can be stored in a field, assigned to a Dialogue Manager variable, used in a calculation or
other processing, or used in a selection or validation test. Functions provide a convenient
way to perform certain calculations and manipulations.

There are three types of functions:

• Internal functions. Built into the FOCUS language, requiring no extra work to access or
use. The following reporting and Maintain functions are internal functions. You can not
replace any of these internal functions with your own functions of the same name. All
other functions are external.

• ABS

• ASIS

• DMY, MDY, and YMD

• DECODE

• EDIT

• FIND

• LAST

• LOG

• LOOKUP

• MAX and MIN

• SQRT

• All Maintain-specific functions

• External functions. Stored in an external library that must be accessed. When invoking
these functions, an argument specifying the output field or format of the result is
required. External functions are distributed with FOCUS. You can replace these
functions with your own functions of the same name. However, in this case, you must
set USERFNS=LOCAL.

• Subroutines. Written by the user and stored externally. For details, see Appendix A,
Creating a Subroutine.

For information on how to use an internal or external function, see Chapter 3, Accessing and
Calling a Function.
2-2 Information Builders

Introducing Functions
Types of Functions
You can access any of the following types of functions:

• Character functions. Manipulate alphanumeric fields or character strings. For details,
see Character Functions on page 2-3.

• Maintain-specific character functions. Manipulate alphanumeric fields or character
strings. These functions are available only in Maintain. For details, see Maintain-specific
Character Functions on page 2-7.

• Data source and decoding functions. Search for or retrieve data source records or
values, and assign values. For details, see Data Source and Decoding Functions on
page 2-10.

• Date and time functions. Manipulate dates and times. For details, see Date and Time
Functions on page 2-11.

• Maintain-specific date and time functions. Manipulate dates and times. These
functions are available only in Maintain. For details, see Maintain-specific Date and Time
Functions on page 2-16.

• Format conversion functions. Convert fields from one format to another.

• For details, see Format Conversion Functions on page 2-18.

• Numeric functions. Perform calculations on numeric constants and fields. For details,
see Numeric Functions on page 2-19.

• System functions. Call the operating system to obtain information about the
operating environment or to use a system service. For details, see System Functions on
page 2-21.

Character Functions
The following functions manipulate alphanumeric fields or character strings. For details, see
Chapter 4, Character Functions.

ARGLEN

Measures the length of a character string within a field, excluding trailing blanks.

Available Operating Systems: All

Available Languages: reporting, Maintain

ASIS

Distinguishes between a blank and a zero in Dialogue Manager.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX

Available Languages: reporting
Using Functions 2-3

Types of Functions
BITSON

Evaluates an individual bit within a character string to determine whether it is on or off.

Available Operating Systems: All

Available Languages: reporting, Maintain

BITVAL

Evaluates a string of bits within a character string and returns its value.

Available Operating Systems: All

Available Languages: reporting, Maintain

BYTVAL

Translates a character to its corresponding ASCII or EBCDIC decimal value.

Available Operating Systems: All

Available Languages: reporting, Maintain

CHKFMT

Checks a character string for incorrect characters or character types.

Available Operating Systems: All

Available Languages: reporting, Maintain

CTRAN

Translates a character within a character string to another character based on its
decimal value.

Available Operating Systems: All

Available Languages: reporting, Maintain

CTRFLD

Centers a character string within a field.

Available Operating Systems: All

Available Languages: reporting, Maintain

EDIT

Extracts characters from or adds characters to a character string.

Available Operating Systems: All

Available Languages: reporting

GETTOK

Divides a character string into substrings, called tokens, where a specific character,
called a delimiter, occurs in the string.

Available Operating Systems: All

Available Languages: reporting, Maintain
2-4 Information Builders

Introducing Functions
LCWORD

Converts the letters in a character string to mixed case.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

LJUST

Left-justifies a character string within a field.

Available Operating Systems: All

Available Languages: reporting

LOCASE

Converts alphanumeric text to lowercase.

Available Operating Systems: All

Available Languages: reporting, Maintain

OVRLAY

Overlays a base character string with a substring.

Available Operating Systems: All

Available Languages: reporting

PARAG

Divides a line of text into smaller lines by marking them with a delimiter.

Available Operating Systems: All

Available Languages: reporting, Maintain

POSIT

Finds the starting position of a substring within a larger string.

Available Operating Systems: All

Available Languages: reporting

RJUST

Right-justifies a character string.

Available Operating Systems: All

Available Languages: reporting

SOUNDEX

Searches for a character string phonetically without regard to spelling.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 2-5

Types of Functions
SQUEEZ

Reduces multiple contiguous spaces within a character string to a single space.

Available Operating Systems: All

Available Languages: reporting, Maintain

STRIP

Removes all occurrences of a specific character from a string.

Available Operating Systems: All

Available Languages: reporting, Maintain

SUBSTR

Extracts a substring based on where it begins and its length in the parent string.

Available Operating Systems: All

Available Languages: reporting

TRIM

Removes leading and/or trailing occurrences of a pattern within a character string.

Available Operating Systems: All

Available Languages: reporting

UPCASE

Converts a character string to uppercase.

Available Operating Systems: All

Available Languages: reporting

Character Functions for AnV Fields

LENV

Returns the actual length of an AnV field or the size of an An field.

Available Operating Systems: All

Available Languages: reporting

LOCASV

Converts alphanumeric text to lowercase in an AnV field.

Available Operating Systems: All

Available Languages: reporting

POSITV

Finds the starting position of a substring in an AnV field.

Available Operating Systems: All

Available Languages: reporting
2-6 Information Builders

Introducing Functions
SUBSTV

Extracts a substring based on where it begins and its length in the parent string in an
AnV field.

Available Operating Systems: All

Available Languages: reporting

TRIMV

Removes leading and/or trailing occurrences of a pattern within a character string in an
AnV field.

Available Operating Systems: All

Available Languages: reporting

UPCASV

Converts a character string to uppercase in an AnV field.

Available Operating Systems: All

Available Languages: reporting

Maintain-specific Character Functions
The following functions manipulate alphanumeric fields or character strings. They are
available only in the Maintain language. For details, see Chapter 5, Maintain-specific
Character Functions.

CHAR2INT

Translates an ASCII or EBCDIC character to the integer value it represents, depending
on the operating system.

Available Operating Systems: All

Available Languages: Maintain

INT2CHAR

Translates an integer into the equivalent ASCII or EBCDIC character, depending on the
operating system.

Available Operating Systems: All

Available Languages: Maintain

LCWORD and LCWORD2

Converts the letters in a character string to mixed case.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 2-7

Types of Functions
LENGTH

Measures the length of a character string, including trailing blanks.

Available Operating Systems: All

Available Languages: Maintain

LJUST

Left-justifies a character string within a field.

Available Operating Systems: All

Available Languages: Maintain

LOWER

Converts a character string to lowercase.

Available Operating Systems: All

Available Languages: Maintain

MASK

Extracts characters from or adds characters to a character string.

Available Operating Systems: All

Available Languages: Maintain

NLSCHR

Converts a character from the native English code page to the running code page.

Available Operating Systems: All

Available Languages: Maintain

OVRLAY

Overlays a base character string with a substring.

Available Operating Systems: All

Available Languages: Maintain

POSIT

Finds the starting position of a substring within a larger string.

Available Operating Systems: All

Available Languages: Maintain

RJUST

Right-justifies a character string.

Available Operating Systems: All

Available Languages: Maintain
2-8 Information Builders

Introducing Functions
SELECTS

Decodes a value from a stack.

Available Operating Systems: All

Available Languages: Maintain

STRAN

Substitutes a substring for another substring in a character string.

Available Operating Systems: All

Available Languages: Maintain

STRCMP

Compares two alphanumeric strings using the ASCII or EBCDIC collating sequence.

Available Operating Systems: All

Available Languages: Maintain

STRICMP

Compares two alphanumeric strings using the ASCII or EBCDIC collating sequence, but
ignoring case differences.

Available Operating Systems: All

Available Languages: Maintain

STRNCMP

Compares a specified number of characters in two character strings starting at the
beginning of the strings using the EBCDIC or ASCII collating sequence.

Available Operating Systems: All

Available Languages: Maintain

SUBSTR

Extracts a substring based on where it begins and its length in the parent string.

Available Operating Systems: All

Available Languages: Maintain

TRIM

Removes trailing occurrences of a pattern within a character string.

Available Operating Systems: All

Available Languages: Maintain

TRIMLEN

Determines the length of a character string excluding trailing spaces.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 2-9

Types of Functions
UPCASE

Converts a character string to uppercase.

Available Operating Systems: All

Available Languages: Maintain

Data Source and Decoding Functions
The following functions search for data source records, retrieve data source records or
values, and assign values. For details, see Chapter 6, Data Source and Decoding Functions.

DECODE

Assigns values based on the coded value of an input field.

Available Operating Systems: All

Available Languages: reporting, Maintain

FIND

Determines if an incoming data value is in an indexed FOCUS data source field.

Available Operating Systems: All

Available Languages: reporting

LAST

Retrieves the preceding value for a field.

Available Operating Systems: All

Available Languages: reporting

LOOKUP

Retrieves a data value from a cross-referenced FOCUS data source in a MODIFY request.

Available Operating Systems: All

Available Languages: reporting
2-10 Information Builders

Introducing Functions
Date and Time Functions

Standard Date and Time Functions

DATEADD

Adds a unit to or subtracts a unit from a date format.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

DATECVT

Converts date formats.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

DATEDIF

Returns the difference between two dates in units.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

DATEMOV

Moves a date to a significant point on the calendar.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

HADD

Increments a date-time field by a given number of units.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HCNVRT

Converts a date-time field to a character string.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HDATE

Extracts the date portion of a date-time field, converts it to a date format, and returns
the result in the format YYMD.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

The following functions manipulate dates and times. For details see Chapter 7, Date and
Time Functions.
Using Functions 2-11

Types of Functions
HDIFF

Calculates the number of units between two date-time values.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HDTTM

Converts a date field to a date-time field. The time portion is set to midnight.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HGETC

Stores the current date and time in a date-time field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HHMMSS

Retrieves the current time from the system.

Available Operating Systems: All

Available Languages: reporting

HINPUT

Converts an alphanumeric string to a date-time value.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HMIDNT

Changes the time portion of a date-time field to midnight (all zeroes).

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HNAME

Extracts a specified component from a date-time field and returns it in alphanumeric
format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HPART

Extracts a specified component from a date-time field and returns it in numeric format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
2-12 Information Builders

Introducing Functions
HSETPT

Inserts the numeric value of a specified component into a date-time field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

HTIME

Converts the time portion of a date-time field to the number of milliseconds or
microseconds.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

TIMETOTS

Converts a time to a timestamp.

Available Operating Systems: All

Available Languages: reporting, Maintain

TODAY

Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 2-13

Types of Functions
Legacy Date Functions

AYM

Adds or subtracts months from dates that are in year-month format.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

AYMD

Adds or subtracts days from dates that are in year-month-day format.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

CHGDAT

Rearranges the year, month, and day portions of alphanumeric dates, and converts
dates between long and short date formats.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

DA

Convert dates to the corresponding number of days elapsed since December 31, 1899.

DADMY converts dates in day-month-year format.

DADYM converts dates in day-year-month format.

DAMDY converts dates in month-day-year format.

DAMYD converts dates in month-year-day format.

DAYDM converts dates in year-day-month format.

DAYMD converts dates in year-month-day format.

Available Operating Systems: All

Available Languages: reporting, Maintain

DMY, MDY, and YMD

Calculate the difference between two dates.

Available Operating Systems: All

Available Languages: reporting, Maintain

DOWK and DOWKL

Find the day of the week that corresponds to a date.

Available Operating Systems: All

Available Languages: reporting, Maintain
2-14 Information Builders

Introducing Functions
DT

Convert the number of days elapsed since December 31, 1899 to the corresponding
date.

DTDMY converts numbers to day-month-year dates.

DTDYM converts numbers to day-year-month dates.

DTMDY converts numbers to month-day-year dates.

DTMYD converts numbers to month-year-day dates.

DTYDM converts numbers to year-day-month dates.

DTYMD converts numbers to year-month-day dates.

Available Operating Systems: All

Available Languages: reporting, Maintain

GREGDT

Converts dates in Julian format to year-month-day format.

Available Operating Systems: All

Available Languages: reporting, Maintain

JULDAT

Converts dates from year-month-day format to Julian (year-day format).

Available Operating Systems: All

Available Languages: reporting, Maintain

YM

Calculates the number of months that elapse between two dates. The dates must be in
year-month format.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 2-15

Types of Functions
Maintain-specific Date and Time Functions

Maintain-specific Standard Date and Time Functions

HHMMSS

Retrieves the current time from the system.

Available Operating Systems: All

Available Languages: Maintain

Initial_HHMMSS

Retrieves the time that the Maintain module was started.

Available Operating Systems: All

Available Languages: Maintain

Initial_TODAY

Retrieves the date that the Maintain module was started.

Available Operating Systems: All

Available Languages: Maintain

TODAY

Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: Maintain

TODAY2

Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: Maintain

The following functions manipulate dates and times. They are available only in the Maintain
language. For details, see Chapter 8, Maintain-specific Date and Time Functions.
2-16 Information Builders

Introducing Functions
Maintain-specific Legacy Date Functions

ADD

Adds a given number of days to a date.

Available Operating Systems: All

Available Languages: Maintain

DAY

Extracts the day of the month from a date.

Available Operating Systems: All

Available Languages: Maintain

JULIAN

Determines the number of days that have elapsed so far in the year up to a given date.

Available Operating Systems: All

Available Languages: Maintain

MONTH

Extracts the month from a date.

Available Operating Systems: All

Available Languages: Maintain

QUARTER

Determines the quarter of the year in which a date resides.

Available Operating Systems: All

Available Languages: Maintain

SETMDY

Sets a value to a date.

Available Operating Systems: All

Available Languages: Maintain

SUB

Subtracts a given number of days from a date.

Available Operating Systems: All

Available Languages: Maintain

WEEKDAY

Determines the day of the week for a date.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 2-17

Types of Functions
YEAR

Extracts the year from a date.

Available Operating Systems: All

Available Languages: Maintain

Format Conversion Functions
The following functions convert fields from one format to another. For details, see Chapter
9, Format Conversion Functions.

ATODBL

Converts a number in alphanumeric format to double-precision format.

Available Operating Systems: All

Available Languages: reporting, Maintain

EDIT

Converts an alphanumeric field that contains numeric characters to numeric format or
converts a numeric field to alphanumeric format.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting

FTOA

Converts a number in a numeric format to alphanumeric format.

Available Operating Systems: All

Available Languages: reporting, Maintain

HEXBYT

Obtains the ASCII or EBCDIC character equivalent of a decimal integer value.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

ITONUM

Converts a large binary integer in a non-FOCUS data source to double-precision format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

ITOPACK

Converts a large binary integer in a non-FOCUS data source to packed-decimal format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
2-18 Information Builders

Introducing Functions
ITOZ

Converts a number in numeric format to zoned format.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

PCKOUT

Writes a packed number of variable length to an extract file.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

UFMT

Converts characters in alphanumeric field values to hexadecimal representation.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

Numeric Functions
The following functions perform calculations on numeric constants or fields. For details, see
Chapter 10, Numeric Functions.

ABS

Returns the absolute value of a number.

Available Operating Systems: All

Available Languages: reporting, Maintain

ASIS

Distinguishes between a blank and a zero in Dialogue Manager.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX

Available Languages: reporting

BAR

Produces a horizontal bar chart.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

CHKPCK

Validates the data in a field described as packed format.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 2-19

Types of Functions
DMOD, FMOD, and IMOD

Calculate the remainder from a division.

Available Operating Systems: All

Available Languages: reporting, Maintain

EXP

Raises the number “e” to a specified power.

Available Operating Systems: All

Available Languages: reporting, Maintain

EXPN

Evaluates a number expressed in scientific notation.

Available Operating Systems: AS/400, OS/390

Available Languages: reporting

FMLINFO

Returns the FOR value associated with each row in an FML report.

Available Operating Systems: All

Available Languages: reporting

INT

Returns the integer component of a number.

Available Operating Systems: All

Available Languages: reporting, Maintain

LOG

Returns the natural logarithm of a number.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

MAX and MIN

Return the maximum or minimum value, respectively, from a list of values.

Available Operating Systems: All

Available Languages: reporting, Maintain

NORMSDST and NORMSINV

Perform calculations on a standard normal distribution curve.

Available Operating Systems: All

Available Languages: reporting
2-20 Information Builders

Introducing Functions
PRDNOR and PRDUNI

Generate reproducible random numbers.

Available Operating Systems: All

Available Languages: reporting, Maintain

RDNORM, and RDUNIF

Generate random numbers.

Available Operating Systems: All

Available Languages: reporting, Maintain

SQRT

Calculates the square root of a number.

Available Operating Systems: All

Available Languages: reporting, Maintain

System Functions
The following functions call the operating system to obtain information about the
operating environment or to use a system service. For details, see Chapter 11, System
Functions.

FEXERR

Retrieves an Information Builders error message.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

FINDMEM

Determines if a specific member of a partitioned data set (PDS) exists in batch
processing.

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

GETPDS

Determines if a specific member of a partitioned data set (PDS) exists, and if it does,
returns the PDS name.

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

GETUSER

Retrieves the ID of the connected user.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 2-21

Types of Functions
HHMMSS

Retrieves the current time from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain

MVSDYNAM

Transfers a FOCUS DYNAM command to the DYNAM command processor.

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

TODAY

Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain
2-22 Information Builders

CHAPTER 3

Accessing and Calling a Function

Topics:

• Calling a Function

• Supplying an Argument in a
Function

• Calling a Function From a DEFINE,
COMPUTE, or VALIDATE Command

• Calling a Function From a Dialogue
Manager Command

• Calling a Function From Another
Function

• Calling a Function in WHERE or IF
Criteria

• Calling a Function in WHEN Criteria

• Calling a Function From a RECAP
Command

• Storing and Accessing an External
Function

• Dynamic Language Environment
Support

The following topics describe the considerations for
supplying arguments in a function, and explain how to use
a function in a command and access functions stored
externally.
Using Functions 3-1

Calling a Function
Calling a Function

For details on external functions see Types of Functions in Chapter 2.

Some Maintain-specific functions require that the MNTUWS function library be retrieved
when calling the function. For functions that require this, it is specified in the detailed
information for that function. For details on retrieving the MNTUWS library, see How to
Access the Maintain MNTUWS Function Library on page 3-4.

Syntax How to Call a Function

function(arg1, arg2, ... [outfield])

where:

function

Is the name of the function.

arg1, arg2, ...

Are the arguments.

outfield

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This argument is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

You can call a function from a COMPUTE, DEFINE, or VALIDATE command; a Dialogue
Manager command; a Financial Modeling Language (FML) command; or a Maintain
command. A function is called with the function name, arguments, and, for external
functions, an output field.
3-2 Information Builders

Accessing and Calling a Function
Syntax How to Store Output in a Field

COMPUTE field/fmt = function(input1, input2,... [outfield]);

or

DEFINE FILE file
field/fmt = function(input1, input2,... [outfield]);

or

-SET &var = function(input1, input2,... [outfield]);

where:

DEFINE

Creates a virtual field that may be used in a request as though it is a real data source
field.

COMPUTE

Calculates one or more temporary fields in a request. The field is calculated after all
records have been selected, sorted, and summed.

field

Is the field that contains the result.

file

Is the file in which the virtual field is created.

var

Is the variable that contains the result.

fmt

Is the format of the field that contains the result.

function

Is the name of the function, up to eight characters long.

input1, input2,...

Are the input arguments, which are data values or fields used in function processing.
For more information about arguments, see Supplying an Argument in a Function on
page 3-4.

outfield

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This argument is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions 3-3

Supplying an Argument in a Function
Syntax How to Access the Maintain MNTUWS Function Library

Place the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

Supplying an Argument in a Function

Argument Types
The following are acceptable arguments for a function:

• Numeric constant, such as 6 or 15.

• Date constant, such as 022802.

• Date in alphanumeric, numeric, date, or AnV format format.

• Alphanumeric literal, such as STEVENS or NEW YORK NY. A literal must be enclosed in
single quotation marks.

• Number in alphanumeric format.

• Field name, such as FIRST_NAME or HIRE_DATE. A field can be a data source field or
temporary field. The field name can be up to 66 characters long or a qualified field
name, unique truncation, or alias.

• Expression, such as a numeric, date, or alphanumeric expression. An expression can use
arithmetic operators and the concatenation sign (|). For example, the following are
valid expressions:

CURR_SAL * 1.03

and

FN || LN

• Dialogue Manager variable, such as &CODE or &DDNAME.

• Format of the output value enclosed in single quotation marks.

• Another function.

• Label or other row or column reference (such as R or E), or name of another RECAP
calculation, when the function is called in an FML RECAP command.

When supplying an argument in a function, you must understand which types of
arguments are acceptable, the formats and lengths for these arguments, and the number
and order of these arguments.
3-4 Information Builders

Accessing and Calling a Function
Argument Formats
Depending on the function, an argument can be in alphanumeric, numeric, or date format.
If you supply an argument in the wrong format, you will cause an error or the function will
not return correct data. The following are the types of argument formats:

• Alphanumeric argument. An alphanumeric argument is stored internally as one
character per byte. An alphanumeric argument can be a literal, an alphanumeric field, a
number or date stored in alphanumeric format, an alphanumeric expression, or the
format of an alphanumeric field. A literal is enclosed in single quotation marks, except
when specified in operating systems that support Dialogue Manager RUN commands
(for example, -MVS RUN).

• Numeric argument. A numeric argument is stored internally as a binary or packed
number. A numeric argument includes integer (I), floating-point single-precision (F),
floating-point double-precision (D), and packed decimal (P) formats. A numeric
argument can be a numeric constant, field, or expression, or the format of a numeric
field.

All numeric arguments are converted to floating-point double-precision format when
used with a function, but results are returned in the format specified for the output
field.

• Date argument. A date argument can be in either alphanumeric, numeric, or date
format. The list of arguments for the individual function will specify what type of format
the function accepts. A date argument can be a date in alphanumeric, numeric, or date
format; a date field or expression; or the format of a date field.

If you supply an argument with a two-digit year, the function assigns a century based
on the DATEFNS, YRTHRESH, and DEFCENT parameter settings.
Using Functions 3-5

Supplying an Argument in a Function
Argument Length
An argument is passed to a function by reference, meaning that the memory location of the
argument is passed. No indication of the length of the argument is given.

You must supply the argument length for alphanumeric strings. Some functions require a
length for the input and output arguments (for example, SUBSTR), and others use one
length for both arguments (for example, UPCASE).

Be careful to ensure that all lengths are correct. Providing an incorrect length can cause
incorrect results:

• If the specified length is shorter than the actual length, a subset of the string is used.
For example, passing the argument 'ABCDEF' and specifying a length of 3 causes the
function to process a string of 'ABC'.

• If the specified length is too long, whatever is in memory up to that length is included.
For example, passing an argument of 'ABC' and specifying a length of 6 causes the
function to process a string beginning with 'ABC' plus the three characters in the next
three positions of memory. Depending on memory utilization, the extra three
characters could be anything.

Some operating system routines are very sensitive to incorrectly specified lengths and read
them into incorrectly formatted memory areas.

Number and Order of Arguments
The number of arguments required varies according to each function. Functions supplied
by Information Builders may require up to six arguments. User-written subroutines may
require a maximum of 28 arguments including the output argument. If a function requires
more than 28 arguments, you must use two or more calls to pass the arguments to the
function.

Arguments must be specified in the order shown in the syntax of each function. The
required order varies according to the function.
3-6 Information Builders

Accessing and Calling a Function
Verifying Function Parameters

USERFCHK is not supported from Maintain.

Functions typically expect parameters to be a specific type or have a length that depends
on the value of another parameter. It is possible in some situations to enforce these rules by
truncating the length of a parameter and, therefore, avoid generating an error at run-time.

The level of verification and possible conversion to a valid format performed depends on
the specific function. The following two situations can usually be converted satisfactorily:

• If a numeric parameter specifies a maximum size for an alphanumeric parameter, but
the alphanumeric string supplied is longer than the specified size, the string can be
truncated.

• If a parameter supplied as a numeric literal specifies a value larger than the maximum
size for a parameter, it can be reduced to the proper value.

Syntax How to Enable Parameter Verification

Parameter verification can be enabled only for DEFINE FUNCTIONs and functions supplied
by Information Builders. If your site has a locally written function with the same name as an
Information-Builders-supplied function, the USERFNS setting determines which function
will be used:

SET USERFNS= {SYSTEM|LOCAL}

where:

SYSTEM

Gives precedence to functions supplied by Information Builders. SYSTEM is the default
setting. This setting is required in order to enable parameter verification.

LOCAL

Gives precedence to locally written functions. Parameter verification is not performed
with this setting in effect.

The USERFCHK setting controls the level of verification applied to DEFINE FUNCTION and
Information-Builders-supplied function arguments. It does not affect verification of the
number of parameters; the correct number must always be supplied.
Using Functions 3-7

Supplying an Argument in a Function
Syntax How to Control Function Parameter Verification

Issue the following command in FOCPARM, FOCPROF, on the command line, in a FOCEXEC,
or in an ON TABLE command. Note that the USERFNS=SYSTEM setting must be in effect

SET USERFCHK = setting

where:

setting

Can be one of the following:

ON is the default value. Verifies parameters in requests, but does not verify parameters
for functions used in Master File DEFINEs. If a parameter has an incorrect length, an
attempt is made to fix the problem. If such a problem cannot be fixed, an error message
is generated and the evaluation of the affected expression is terminated.

Note that if a parameter provided is the incorrect type, verification fails and processing
terminates.

Because parameters are not verified for functions specified in a Master File, no errors
are reported for those functions until the DEFINE field is used in a subsequent request
when, if a problem occurs, the following message is generated:

(FOC003) THE FIELDNAME IS NOT RECOGNIZED

OFF does not verify parameters except in the following cases:

• If a parameter that is too long would overwrite the memory area in which the
computational code is stored, the size is automatically reduced without issuing a
message.

• If an alphanumeric parameter is too short, it is padded with blanks to the correct
length.

FULL is the same as ON, but also verifies parameters for functions used in Master File
DEFINEs.

Note that if a parameter provided is the incorrect type, verification fails and processing
terminates.

ALERT verifies parameters in a request without halting execution when a problem is
detected. It does not verify parameters for functions used in Master File DEFINEs. If a
parameter has an incorrect length and an attempt is made to fix the problem behind
the scenes, the problem is corrected with no message. If such a problem cannot be
fixed, a warning message is generated. Execution then continues as though the setting
were OFF, but the results may be incorrect.

Note that if a parameter provided is the incorrect type, verification fails and processing
terminates.
3-8 Information Builders

Accessing and Calling a Function
Example Verifying Parameters With Correctable Errors

The following request uses SUBSTR to extract the substring that starts in position 6 and
ends in position 14 of the TITLE field. The fifth argument specifies a substring length (500)
that is too long (it should be no longer than 9):

SET USERFCHK = ON
TABLE FILE MOVIES
PRINT TITLE
COMPUTE
 NEWTITLE/A9 = SUBSTR(39, TITLE, 6 ,14, 500, NEWTITLE);
WHERE CATEGORY EQ 'CHILDREN'
END

When the request is executed with USERFCHK=ON or OFF, the incorrect length is corrected
and the request continues processing:

TITLE NEWTITLE
----- --------
SMURFS, THE S, THE
SHAGGY DOG, THE Y DOG, TH
SCOOBY-DOO-A DOG IN THE RUFF Y-DOO-A D
ALICE IN WONDERLAND IN WONDE
SESAME STREET-BEDTIME STORIES AND SONGS E STREET-
ROMPER ROOM-ASK MISS MOLLY R ROOM-AS
SLEEPING BEAUTY ING BEAUT
BAMBI

Example Verifying Parameters With Uncorrectable Errors

The following request has an incorrect data type in the last argument to SUBSTR. This
parameter should specify an alphanumeric field or format for the extracted substring:

SET USERFCHK = ON
TABLE FILE MOVIES
PRINT TITLE
COMPUTE
 NEWTITLE/F9 = SUBSTR(39, TITLE, 6 ,14, 500, 'F9');
WHERE CATEGORY EQ 'CHILDREN'
END

• When the request is executed with USERFCHK=ON, a message is produced and the
request terminates:

ERROR AT OR NEAR LINE 5 IN PROCEDURE USERFC3 FOCEXEC
(FOC279) NUMERIC ARGUMENTS IN PLACE WHERE ALPHA ARE CALLED FOR
(FOC009) INCOMPLETE REQUEST STATEMENT
UNKNOWN FOCUS COMMAND WHERE
 BYPASSING TO END OF COMMAND
Using Functions 3-9

Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command
• When the request is executed with USERFCHK=OFF, no verification is done and no
message is produced. The request executes and produces incorrect results. In some
environments, this type of error may cause abnormal termination of the application:

DIRECTOR TITLE NEWTITLE
-------- ----- --------
 SMURFS, THE *********
BARTON C. SHAGGY DOG, THE *********
 SCOOBY-DOO-A DOG IN THE RUFF *********
GEROMINI ALICE IN WONDERLAND 1
 SESAME STREET-BEDTIME STORIES AND SONGS -265774
 ROMPER ROOM-ASK MISS MOLLY *********
DISNEY W. SLEEPING BEAUTY *********
DISNEY W. BAMBI 0

Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command
You can call a function from a DEFINE command or Master File attribute, a COMPUTE
command, or a VALIDATE command.

Syntax How to Call a Function From a COMPUTE, DEFINE, or VALIDATE Command

DEFINE [FILE filename]

tempfield[/format] = function(input1, input2, input3, ... [outfield]);

COMPUTE
tempfield[/format] = function(input1, input2, input3, ... [outfield]);

VALIDATE
tempfield[/format] = function(input1, input2, input3, ... [outfield]);

where:

filename

Is the data source being used.

tempfield

Is the temporary field created by the DEFINE or COMPUTE command. This is the same
field specified in outfield. If the function call supplies the format of the output value in
outfield, the format of the temporary field must match the outfield argument.

format

Is the format of the temporary field. The format is required if it is the first time the field
is created; otherwise, it is optional. The default value is D12.2.

function

Is the name of the function.
3-10 Information Builders

Accessing and Calling a Function
input1, input2, input3...

Are the arguments.

outfield

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Calling a Function From a Dialogue Manager Command

• From an -IF command. For details, see Calling a Function in WHERE or IF Criteria on
page 3-17.

• From an operating system -RUN command. For details, see Calling a Function From an
Operating System RUN Command on page 3-15.

Dialogue Manager converts a numeric argument to double-precision format. This occurs
when the value of the argument is numeric; this is not affected by the format expected by
the function. This means you must be careful when supplying arguments for a function in
Dialogue Manager.

If the function expects an alphanumeric string and the input is a numeric string, incorrect
results will occur because of conversion to floating-point double-precision. To resolve this
problem, append a non-numeric character to the end of the string, but do not count this
extra character in the length of the argument.

Assigning the Result of a Function to a Variable

A Dialogue Manager variable contains only alphanumeric data. If a function returns a
numeric value to a Dialogue Manager variable, the value is truncated to an integer and
converted to alphanumeric format before being stored in the variable.

You can call a function with Dialogue Manager in the following ways:

• From a -SET command, storing the result of a function in a variable. For details, see
Assigning the Result of a Function to a Variable on page 3-11.

You can store the result of a function in a variable with the -SET command.
Using Functions 3-11

Calling a Function From a Dialogue Manager Command
Syntax How to Assign the Result of a Function to a Variable

-SET &variable = function(arg1, arg2[.LENGTH],..., 'format');

where:

variable

Is the variable to which the result will be assigned.

function

Is the function.

arg1, arg2

Are the function’s arguments.

.LENGTH

Returns the length of the variable. If a function requires the length of a character string
as an input argument, you can prompt for the character string and determine the
length with the .LENGTH suffix.

format

Is the format of the result enclosed in single quotation marks. You cannot specify a
Dialogue Manager variable for the output argument unless you use the .EVAL suffix;
however, you can specify a variable for an input argument.

Example Calling a Function From a -SET Command

AYMD adds 14 days to the value of &INDATE. The &INDATE variable is previously set in the
procedure in the six-digit year-month-day format.

-SET &OUTDATE = AYMD(&INDATE, 14, 'I6');

The format of the output date is a six-digit integer (I6). Although the format indicates that
the output is an integer, it is stored in the &OUTDATE variable as a character string. For this
reason, if you display the value of &OUTDATE, you will not see slashes separating the year,
month, and day.
3-12 Information Builders

Accessing and Calling a Function
Branching Based on a Function’s Result

If a branching command spans more than one line, continue it on the next line by placing a
dash (-) in the first column.

Syntax How to Branch Based on a Function’s Result

-IF function(args) relation expression GOTO label1 [ELSE GOTO label2];

where:

function

Is the function.

args

Are the arguments.

relation

Is an operator that determines the relationship between the function and expression,
for example, EQ or LE.

expression

Is a value, logical expression, or function. Do not enclose a literal in single quotation
marks unless it contains a comma or embedded blank.

label1, label2

Are user-defined names up to 12 characters long. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use a
word that can be confused with a function, or an arithmetic or logical operation.

The label text can precede or follow the -IF criteria in the procedure.

ELSE GOTO

Passes control to label2 when the -IF test fails.

You can branch based on a function’s result by calling a function from a Dialogue Manager
-IF command.
Using Functions 3-13

Calling a Function From a Dialogue Manager Command
Example Branching Based on a Function’s Result

The result of the AYMD function provides a condition for a -IF test. One of two requests is
executed, depending on the function’s result :

 -LOOP
1. -PROMPT &INDATE.ENTER START DATE IN YEAR-MONTH-DAY FORMAT OR ZERO TO
 EXIT:.
2. IF &INDATE EQ 0 GOTO EXIT;
3. SET &WEEKDAY = DOWK(&INDATE, 'A4');
4. -TYPE START DATE IS &WEEKDAY &INDATE
5. -PROMPT &DAYS.ENTER ESTIMATED PROJECT LENGTH IN DAYS:.
6. -IF AYMD(&INDATE, &DAYS, 'I6YMD') LT 960101 GOTO EARLY;
7. -TYPE LONG PROJECT
 -*EX LONGPROJ
 -RUN
 -GOTO EXIT
8. -EARLY
 -TYPE SHORT PROJECT
 -*EX SHRTPROJ
 -RUN
 -GOTO EXIT
 -EXIT

The procedure processes as follows:

1. It prompts for the start date of a project in YYMMDD format.

2. If you enter a 0, it passes control to -EXIT which terminates execution.

3. The DOWK function obtains the day of the week for the start date.

4. The -TYPE command displays the day of the week and start date of the project.

5. The procedure prompts for the estimated length of the project in days.

6. The AYMD function calculates the date that the project will finish. If this date is before
January 1, 1996, the -IF command branches to the label EARLY.

7. If the project will finish on or after January 1, 1996, the TYPE command displays the
words LONG PROJECT and exits.

8. If the procedure branches to the label EARLY, the TYPE command displays the words
SHORT PROJECT and exits.
3-14 Information Builders

Accessing and Calling a Function
Calling a Function From an Operating System RUN Command

If a function requires an argument in numeric format, you must first convert it to
floating-point double-precision format using the ATODBL function because, unlike the -SET
command, an operating system RUN command does not automatically convert a numeric
argument to double-precision.

Syntax How to Call a Function From an Operating System -RUN Command

{-CMS|-TSO|-MVS} RUN function, input1, input2, ... [,&output]

where:

-CMS|-TSO|-MVS

Is the operating system.

function

Is the name of the function.

input1, input2,...

Are the arguments. Separate the function name and each argument with a comma. Do
not enclose an alphanumeric literal in single quotation marks. If a function requires the
length of a character string as an argument, you can prompt for the character string,
then use the .LENGTH suffix to test the length.

&output

Is a Dialogue Manager variable. Include this argument if the function returns a value;
otherwise, omit it. If you specify an output variable, you must pre-define its length
using a -SET command.

For example, if the function returns a value that is eight bytes long, define the variable
with eight characters enclosed in single quotation marks before the function call:

-SET &output = '12345678';

Example Calling a Function From an Operating System -RUN Command

The following calls the CHGDAT function from a -CMS RUN command:

-SET &RESULT = '12345678901234567';
-CMS RUN CHGDAT, YYMD., MXDYY, &YYMD, &RESULT
-TYPE &RESULT

You can call a function that contains only alphanumeric arguments from a Dialogue
Manager -CMS RUN, -TSO RUN, or -MVS RUN command. This type of function performs a
specific task but typically does not return a value.
Using Functions 3-15

Calling a Function From Another Function
Calling a Function From Another Function

Syntax How to Call a Function From Another Function

field = function([arguments,] function2[arguments2,] arguments);

where:

field

Is the field that contains the result of the function.

function

Is a function.

arguments

Are arguments for function.

function2

Is the function that is an argument for function.

arguments2

Are arguments for function2.

Example Calling a Function From Another Function

In the following, the AYMD function is an argument for the YMD function:

-SET &DIFF = YMD(&YYMD, AYMD(&YYMD, 4, ‘I8’));

A function can be an argument for another function.
3-16 Information Builders

Accessing and Calling a Function
Calling a Function in WHERE or IF Criteria

Syntax How to Call a Function in WHERE Criteria

WHERE function relation expression

where:

function

Is a function.

relation

Is an operator that determines the relationship between the function and expression,
for example, EQ or LE.

expression

Is a constant, field, or function. A literal must be enclosed in single quotation marks.

Syntax How to Call a Function in IF Criteria

WHERE function relation value

where:

function

Is a function.

relation

Is an operator that determines the relationship between the function and expression,
for example, EQ or LE.

value

Is a constant. In a DEFINE or COMPUTE command, the value must be enclosed in single
quotation marks.

You can call a function in WHERE or IF criteria. When you do this, the output value of the
function is compared against a test value.
Using Functions 3-17

Calling a Function in WHERE or IF Criteria
Example Calling a Function in WHERE Criteria

The SUBSTR function extracts the first two characters of LAST_NAME as a substring, and the
request prints an employee’s name and salary if the substring is MC.

TABLE FILE EMPLOYEE
PRINT FIRST_NAME LAST_NAME CURR_SAL
WHERE SUBSTR(15, LAST_NAME, 1, 2, 2, 'A2') IS 'MC';
END

The output is:

FIRST_NAME LAST_NAME CURR_SAL
---------- --------- --------
JOHN MCCOY $18,480.00
ROGER MCKNIGHT $16,100.00

Using a Calculation or Compound IF Command
You must specify the format of the output value in a calculation or compound IF command.
There are two ways to do this:

• Pre-define the format within a separate command. In the following example, the
AMOUNT field is pre-defined with the format D8.2 and the function returns a value to
the output field AMOUNT. The IF command tests the value of AMOUNT and stores the
result in the calculated value, AMOUNT_FLAG.

COMPUTE
AMOUNT/D8.2 =;
AMOUNT_FLAG/A5 = IF function(input1, input2, AMOUNT) GE 500
 THEN 'LARGE' ELSE 'SMALL';

• Supply the format as the last argument in the function call. In the following example,
the command tests the returned value directly. This is possible because the function
defines the format of the returned value (D8.2).

DEFINE
AMOUNT_FLAG/A5 = IF function(input1, input2, 'D8.2') GE 500
 THEN 'LARGE' ELSE 'SMALL';
3-18 Information Builders

Accessing and Calling a Function
Calling a Function in WHEN Criteria

Syntax How to Call a Function in WHEN Criteria

WHEN({function|value} relation {function|value});

or

WHEN NOT(function)

where:

function

Is a function.

value

Is a value or logical expression.

relation

Is an operator that determines the relationship between the value and function, for
example, LE or GT.

Example Calling a Function in WHEN Criteria

This request checks the values in LAST_NAME against the result of the CHKFMT function.
When a match occurs, the request prints a sort footing.

TABLE FILE EMPLOYEE
PRINT DEPARTMENT BY LAST_NAME
ON LAST_NAME SUBFOOT
"*** LAST NAME <LAST_NAME DOES MATCH MASK"
WHEN NOT CHKFMT(15, LAST_NAME, 'SMITH ', 'I6');
END

You can call a function in WHEN criteria as part of a Boolean expression.
Using Functions 3-19

Calling a Function From a RECAP Command
The output is:

LAST_NAME DEPARTMENT
--------- ----------
BANNING PRODUCTION
BLACKWOOD MIS
CROSS MIS
GREENSPAN MIS
IRVING PRODUCTION
JONES MIS
MCCOY MIS
MCKNIGHT PRODUCTION
ROMANS PRODUCTION
SMITH MIS
 PRODUCTION
*** LAST NAME SMITH DOES MATCH MASK
STEVENS PRODUCTION

Calling a Function From a RECAP Command

Syntax How to Call a Function From a RECAP Command

RECAP name[(n)|(n,m)|(n,m,i)][/format1] =
function(input1,...,['format2']);

where:

name

Is the name of the calculation.

n

Displays the value in the column number specified by n. If you omit the column
number, the value appears in all columns.

n,m

Displays the value in all columns beginning with the column number specified by n and
ending with the column number specified by m.

n,m,i

Displays the value in the columns beginning with the column number specified by n
and ending with the column number specified by m by the interval specified by i. For
example, if n is 1, m is 5, and i is 2, the value displays in columns 1, 3, and 5.

format1

Is the format of the calculation. The default value is the format of the report column.

You can call a function in an FML RECAP command.
3-20 Information Builders

Accessing and Calling a Function
function

Is the function.

input1,...

Are the input arguments, which can include numeric constants, alphanumeric literals,
row and column references (R notation, E notation, or labels), and names of other
RECAP calculations.

format2

Is the format of the output value enclosed in single quotation marks. If the calculation’s
format is larger than the column width, the value displays in that column as asterisks.

Example Calling a Function in a RECAP Command

This request sums the AMOUNT field for account 1010 using the label CASH, account 1020
using the label DEMAND, and account 1030 using the label TIME. The MAX function
displays the maximum value of these accounts.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' LABEL CASH OVER
1020 AS 'DEMAND DEPOSITS' LABEL DEMAND OVER
1030 AS 'TIME DEPOSITS' LABEL TIME OVER
BAR OVER
RECAP MAXCASH = MAX(CASH, DEMAND, TIME); AS 'MAX CASH'
END

The output is:

 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

MAX CASH 8,784
Using Functions 3-21

Storing and Accessing an External Function
Storing and Accessing an External Function

You can also access private user-written subroutines. If you have a private collection of
subroutines (that is, you created your own or use customized subroutines), do not store
them in the function library. Store them separately to avoid overwriting them whenever
your site installs a new release. For details on creating a subroutine, see Appendix A,
Creating a Subroutine.

Storing and Accessing a Function on OS/390

Procedure How to Allocate a Load Library in OS/390 Batch

To use a function stored as a load library, allocate the load library to ddname USERLIB in
your JCL or CLIST.

The search order is USERLIB, STEPLIB, JOBLIB, link pack area, and linklist.

Example Allocating the Load Library BIGLIB.LOAD in OS/390 Batch (JCL)

//USERLIB DD DISP=SHR,DSN=BIGLIB.LOAD

Procedure How to Allocate a Load Library in TSO

Allocate the load library to ddname USERLIB using the ALLOCATE command. You can issue
the ALLOCATE command:

• In TSO before entering a FOCUS session.

• Before executing a request in a FOCUS session.

• In your PROFILE FOCEXEC.

If you are in a FOCUS session, you can also use the DYNAM ALLOCATE command.

Internal functions are built in and do not require additional work to access. External
functions are stored in load libraries from which they must be retrieved. The way these
external functions are accessed is determined by your platform. These techniques may not
have to be used every time a function is accessed. Access to a load library may be set only
once at the time of installation.

On OS/390, load libraries are partitioned data sets containing link-edited modules. These
libraries are stored as EDALIB.LOAD or FUSELIB.LOAD. In addition, your site may have
private subroutine collections stored in separate load libraries. If so, you need to allocate
those libraries.
3-22 Information Builders

Accessing and Calling a Function
Syntax How to Allocate a Load Library

{MVS|TSO} ALLOCATE FILE(USERLIB) DSN(lib1 lib2 lib3 ...) SHR

or

DYNAM ALLOC FILE USERLIB DA lib SHR

where:

MVS|TSO

Is the prefix if you issue the ALLOCATE command from your application or include it in
your PROFILE FOCEXEC.

USERLIB

Is the ddname to which you allocate a load library.

lib1 lib2 lib3...

Are the names of the load libraries, concatenated to ddname USERLIB.

Example Allocating the FUSELIB.LOAD Load Library

TSO ALLOC FILE(USERLIB) DSN('MVS.FUSELIB.LOAD') SHR

or

DYNAM ALLOC FILE USERLIB DA MVS.FUSELIB.LOAD SHR

Example Concatenating a Load Library to USERLIB in TSO

Suppose a report request calls two functions: BENEFIT stored in library SUBLIB.LOAD, and
EXCHANGE stored in library BIGLIB.LOAD. To concatenate the BIGLIB and SUBLIB load
libraries in the allocation for ddname USERLIB, issue the following commands:

DYNAM ALLOC FILE USERLIB DA SUBLIB.LOAD SHR
DYNAM ALLOC FILE BIGLIB DA BIGLIB.LOAD SHR
DYNAM CONCAT FILE USERLIB BIGLIB

The load libraries are searched in the order in which they are specified in the ALLOCATE
command.

Example Concatenating a Load Library to SETPLIB in Batch (JCL)

Concatenate the load library to the ddname STEPLIB in your JCL:

//FOCUS EXEC PGM=FOCUS
//STEPLIB DD DSN=FOCUS.FOCLIB.LOAD,DISP=SHR
// DD DSN=FOCUS.FUSELIB.LOAD,DISP=SHR
 .
 .
 .
Using Functions 3-23

Storing and Accessing an External Function
Storing and Accessing a Function on UNIX
No extra work is required.

Storing and Accessing a Function on VM/CMS

• Text files. For a function stored as a text file in VM/CMS, the access method is automatic.
When your request calls the function, the attached disks are searched in alphabetical
order, provided that you have proper authorization.

The name of a text file must match the function name. The file type is TEXT. For
example, the EXCHANGE function stored as a text file has the file identifier:

EXCHANGE TEXT

In addition to the preceding libraries and files, your site may have private collections of
subroutines stored in separate libraries or text files.

Reference Search Sequence on VM/CMS

The standard VM/CMS search sequence applies to functions:

1. Load libraries, searched in the order that you specified them in the GLOBAL LOADLIB
command.

2. Text files, searched on attached disks in alphabetical order.

3. Text libraries, searched in the order that you specified them in the GLOBAL TXTLIB
command.

Searching a Function Library in VM/CMS

To search for a function stored in a load or text library, issue the CMS GLOBAL command.
You can issue the GLOBAL command:

• Before entering FOCUS.

• In a profile.

• From a procedure.

You must also specify a system library for a function written in a language such as COBOL or
PL/I, and for a function that calls a system function. FUSELIB functions do not require any
other system libraries.

On VM/CMS, supplied functions are stored as one of the following:

• Load library FUSELIB LOADLIB.

• Text library FUSELIB TXTLIB. A text library is composed of multiple text files called
members. Functions can be stored as members of one or more text libraries. The file
type for text libraries is TXTLIB.
3-24 Information Builders

Accessing and Calling a Function
If you issue two GLOBAL commands of the same type, the second command replaces the
first. Once a library is opened (as a result of referencing one of its members), the library
cannot be changed until you exit.

If you have a private subroutine collection, specify the function library or libraries in the
GLOBAL command in addition to the FUSELIB library.

Note: FUSELIB functions now reside in FUSELIB LOADLIB (rather than in a TXTLIB). Issuing
GLOBAL TXTLIB FUSELIB still works because the TXTLIB still exists. However, VM/CMS loads
supplied functions from the LOADLIB before searching the TXTLIB.

Syntax How to Search a Function Library

CMS GLOBAL {LOADLIB|TXTLIB} library1 library2 library3 ...

where:

CMS

Is required if you issue the GLOBAL command from a procedure.

LOADLIB

Indicates the library is a load library.

TXTLIB

Indicates the library is a text library.

library1 library2 library3...

Are the names of the libraries containing the functions. The maximum number of
libraries is 63.

Syntax How to List Function Libraries Specified by the GLOBAL Command

CMS QUERY {LOADLIB|TXTLIB}

where:

LOADLIB

Indicates the library is a load library.

TXTLIB

Indicates the library is a text library.

Example Searching a Function Library

The following command, issued in the global profile, accesses the FUSELIB load library:

CMS GLOBAL LOADLIB FUSELIB
Using Functions 3-25

Storing and Accessing an External Function
Example Searching Multiple Function Libraries

The following command, issued in a procedure, accesses the SUBLIB and BIGLIB libraries:

CMS GLOBAL TXTLIB SUBLIB BIGLIB

Adding or Deleting a Function Library

The GLOBAL library list automatically contains the FUSELIB function library. To add or delete
private subroutine libraries, use two CMS EXECs, FOCADLIB or FOCDELIB.

Before you add LOADLIBs to the GLOBAL library list, the existing list is saved. Then the
required and optional LOADLIBs are added in front of any libraries you may have specified.
After a request, the prior GLOBAL environment is restored.

Prior entries can be retained in the GLOBAL library list and new entries added by using the
FOCADLIB EXEC. To delete entries while maintaining others in the list, use the FOCDELIB
EXEC. For both FOCADLIB and FOCDELIB, the output from the EXEC is the return code of the
GLOBAL command. FOCADLIB and FOCDELIB must be found in the VM/CMS search
sequence (A–Z).

Syntax How to Add or Delete a Function Library

CMS EX {FOCADLIB|FOCDELIB} libtype lib1 [lib2 lib3...] [(QUIET]
where:

FOCADLIB

Adds libraries to the beginning of the GLOBAL library list.

FOCDELIB

Deletes libraries from the GLOBAL library list.

libtype

Is the library type, for example, LOADLIB or TXTLIB.

lib1 lib2 lib3...

Are the names of the libraries to be added or deleted.

QUIET

Suppresses messages from the GLOBAL command. The open parenthesis is required.
3-26 Information Builders

Accessing and Calling a Function
Dynamic Language Environment Support

Loading extra libraries uses some additional memory below the line. Once this memory has
been used, it cannot be released during the FOCUS session. Therefore, you can control this
memory use by waiting to issue the SET IBMLE command until you need to execute a
FOCEXEC that makes a call to an LE-compliant PL/I or FORTRAN function.

Syntax How to Control the LE Run-Time Environment

SET IBMLE = {OFF|ON|ALL}

where:

OFF

Loads the libraries for LE-compiled C and COBOL functions. This value is the default.

ON

Adds the libraries for LE-compiled PL/I subroutines to the C and COBOL libraries. Once
the ON setting has been established, you cannot issue the OFF setting. You can issue
the ALL setting to add libraries for LE-compiled FORTRAN functions.

ALL

Adds the libraries for LE-compliant FORTRAN and PL/I functions (if they are not already
loaded) to the C and COBOL libraries. Once the ALL setting has been established, you
cannot issue the OFF or ON setting.

The IBMLE parameter setting controls the LE run-time environment by identifying which LE
libraries to load. By default, the C and COBOL libraries are loaded. On OS/390, issue the SET
IBMLE command in order to access LE-compiled PL/I or FORTRAN user-written subroutines.
On VM/CMS, the setting has no effect; LE and non-LE versions of functions in all HLLs work
properly regardless of the IBMLE setting. On OS/390, non-LE versions of functions work
properly regardless of the IBMLE setting.
Using Functions 3-27

Dynamic Language Environment Support
3-28 Information Builders

CHAPTER 4

Character Functions
Character functions manipulate alphanumeric fields and character strings.

In addition to the functions discussed in this topic, there are character functions that are available only in
the Maintain language. For information on these functions, see Chapter 5, Maintain-specific Character
Functions.

Topics:

• ARGLEN: Measuring the Length of a Character
String

• ASIS: Distinguishing Between a Space and a
Zero

• BITSON: Determining If a Bit Is On or Off

• BITVAL: Evaluating a Bit String as a Binary
Integer

• BYTVAL: Translating a Character to a Decimal
Value

• CHKFMT: Checking the Format of a Character
String

• CTRAN: Translating One Character to Another

• CTRFLD: Centering a Character String

• EDIT: Extracting or Adding Characters

• GETTOK: Extracting a Substring (Token)

• LCWORD: Converting a Character String to
Mixed Case

• LJUST: Left-Justifying a Character String

• LOCASE: Converting Text to Lowercase

• OVRLAY: Overlaying a Character String

• PARAG: Dividing Text Into Smaller Lines

• POSIT: Finding the Beginning of a Substring

• RJUST: Right-Justifying a Character String

• SOUNDEX: Comparing Character Strings
Phonetically

• SQUEEZ: Reducing Multiple Spaces to a Single
Space

• STRIP: Removing a Character From a String

• SUBSTR: Extracting a Substring

• TRIM: Removing Leading and Trailing
Occurrences

• UPCASE: Converting Text to Uppercase

• Character Functions for AnV Fields
Using Functions 4-1

ARGLEN: Measuring the Length of a Character String
ARGLEN: Measuring the Length of a Character String

The ARGLEN function measures the length of a character string within a field, excluding
trailing spaces. The field format in a Master File specifies the length of a field, including
trailing spaces.

In Dialogue Manager, you can measure the length of a supplied character string using the
.LENGTH suffix.

Syntax How to Measure the Length of a Character String

ARGLEN(inlength, infield, outfield)

where:

inlength

Integer

Is the length of the field containing the character string, or a field that contains the
length.

infield

Alphanumeric

Is the name of the field containing the character string.

outfield

Integer

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-2 Information Builders

Character Functions
Example Measuring the Length of a Character String

ARGLEN determines the length of the character string in LAST_NAME and stores the result
in NAME_LEN:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
NAME_LEN/I3 = ARGLEN(15, LAST_NAME, NAME_LEN);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME NAME_LEN
--------- --------
SMITH 5
JONES 5
MCCOY 5
BLACKWOOD 9
GREENSPAN 9
CROSS 5

ASIS: Distinguishing Between a Space and a Zero

The ASIS function distinguishes between a space and a zero in Dialogue Manager. It
differentiates between a numeric string, constant or variable defined as a numeric string
(number within single quotation marks) and a field defined simply as numeric. ASIS forces a
variable to be evaluated as it is entered rather than be converted to a number. It is used in
Dialogue Manager equality expressions only.

Syntax How to Distinguish Between a Space and a Zero

ASIS(argument)

where:

argument

Alphanumeric

Is the value to be evaluated. Supply the actual value, the name of a field that contains
the value, or an expression that returns the value. An expression can call a function.

If you specify an alphanumeric literal, enclose it in single quotation marks. If you specify
an expression, use parentheses as needed to ensure the correct order of evaluation.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX

Available Languages: reporting
Using Functions 4-3

ASIS: Distinguishing Between a Space and a Zero
Example Distinguishing Between a Space and a Zero

The first request does not use ASIS. No difference is detected between variables defined as
a space and 0.

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ &VAR1 GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 TRUE

The next request uses ASIS to distinguish between the two variables.

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ ASIS(&VAR1) GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 NOT TRUE
4-4 Information Builders

Character Functions
BITSON: Determining If a Bit Is On or Off

The BITSON function evaluates an individual bit within a character string to determine
whether it is on or off. If the bit is on, BITSON returns a value of 1; if the bit is off, it returns a
value of 0. This function is useful in interpreting multi-punch data, where each punch
conveys an item of information.

Syntax How to Determine If a Bit Is On or Off

BITSON(bitnumber, string, outfield)

where:

bitnumber

Integer

Is the number of the bit to be evaluated, counted from the left-most bit in the character
string.

string

Alphanumeric

Is the character string enclosed in single quotation marks, or a field or variable that
contains the character string. The character string is in multiple eight bit blocks.

outfield

Integer or Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 4-5

BITVAL: Evaluating a Bit String as a Binary Integer
Example Evaluating a Bit in a Field

BITSON evaluates the 24th bit of LAST_NAME and stores the result in BIT_24:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
BIT_24/I1 = BITSON(24, LAST_NAME, BIT_24);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME BIT_24
--------- ------
SMITH 1
JONES 1
MCCOY 1
BLACKWOOD 1
GREENSPAN 1
CROSS 0

BITVAL: Evaluating a Bit String as a Binary Integer

The BITVAL function evaluates a string of bits within a character string. The bit string can be
any group of bits within the character string and can cross byte and word boundaries. The
function evaluates the bit string as a binary integer and returns the corresponding value.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-6 Information Builders

Character Functions
Syntax How to Evaluate a Bit String

BITVAL(string, startbit, number, outfield)

where:

string

Alphanumeric

Is the character string enclosed in single quotation marks, or a field or variable that
contains the character string.

startbit

Integer

Is the number of the first bit in the bit string, counting from the left-most bit in the
character string. If this argument is less than or equal to 0, the function returns a value
of zero.

number

Integer

Is the number of bits in the bit string. If this argument is less than or equal to 0, the
function returns a value of zero.

outfield

Integer

Is the name of the field that contains the binary integer equivalent, or the format of the
output value enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions 4-7

BYTVAL: Translating a Character to a Decimal Value
Example Evaluating a Bit String

BITVAL evaluates the bits 12 through 20 of LAST_NAME and stores the result in a field with
the format I5:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
STRING_VAL/I5 = BITVAL(LAST_NAME, 12, 9, 'I5');
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME STRING_VAL
--------- ----------
SMITH 332
JONES 365
MCCOY 60
BLACKWOOD 316
GREENSPAN 412
CROSS 413

BYTVAL: Translating a Character to a Decimal Value

The BYTVAL function translates a character to the ASCII or EBCDIC decimal value that
represents it, depending on the operating system.

Syntax How to Translate a Character

BYTVAL(character, outfield)

where:

character

Alphanumeric

Is the character to be translated. You can specify a field or variable that contains the
character, or the character itself enclosed in single quotation marks. If you supply more
than one character, the function evaluates the first.

outfield

Integer

Is the name of the field that contains the corresponding decimal value, or the format of
the output value enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-8 Information Builders

Character Functions
Example Translating the First Character of a Field

BYTVAL translates the first character of LAST_NAME into its ASCII or EBCDIC decimal value
and stores the result in LAST_INIT_CODE. Since the input string has more than one
character, BYTVAL evaluates the first one.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');
WHERE DEPARTMENT EQ 'MIS';
END

The output on an ASCII platform is:

LAST_NAME LAST_INIT_CODE
--------- --------------
SMITH 83
JONES 74
MCCOY 77
BLACKWOOD 66
GREENSPAN 71
CROSS 67

The output on an EBCDIC platform is:

LAST_NAME LAST_INIT_CODE
--------- --------------
SMITH 226
JONES 209
MCCOY 212
BLACKWOOD 194
GREENSPAN 199
CROSS 195
Using Functions 4-9

CHKFMT: Checking the Format of a Character String
Example Returning the EBCDIC Value With Dialogue Manager

This Dialogue Manager request prompts for a character, then returns the corresponding
number. The following reflects the results on the OS/390 platform.

-PROMPT &CHAR.ENTER THE CHARACTER TO BE DECODED.
-SET &CODE = BYTVAL(&CHAR, 'I3');
-TYPE
-TYPE THE EQUIVALENT VALUE IS &CODE

Suppose you want to know the equivalent value of the exclamation point (!). A sample
execution is:

ENTER THE CHARACTER TO BE DECODED
!

THE EQUIVALENT VALUE IS 90
>

CHKFMT: Checking the Format of a Character String

The CHKFMT function checks a character string for incorrect characters or character types.
It compares each character string to a second string, called a mask, comparing each
character in the first string to the corresponding character in the mask. If all characters in
the character string match the characters or character types in the mask, CHKFMT returns
the value 0. Otherwise, CHKFMT returns a value equal to the position of the first character in
the character string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the
character string corresponding to the mask. For example, if you are using a four-character
mask to test a nine-character string, only the first four characters in the string are checked;
the rest are returned as a no match with CHKFMT giving the first non-matching position as
the result.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-10 Information Builders

Character Functions
Syntax How to Check the Format of a Character String

CHKFMT(numchar, string, 'mask', outfield)

where:

numchar

Integer

Is the number of characters being compared to the mask.

string

Alphanumeric

Is the character string to be checked enclosed in single quotation marks, or a field or
variable that contains the character string.

'mask'

Alphanumeric

Is the mask, which contains the comparison characters enclosed in single quotation
marks.

Some characters in the mask are generic and represent character types. If a character in
the string is compared to one of these characters and is the same type, it matches.
Generic characters are:

A is any letter between A and Z (uppercase or lowercase).

9 is any digit between 0–9.

X is any letter between A–Z or any digit between 0-9.

$ is any character.

Any other character in the mask represents only that character. For example, if the third
character in the mask is B, the third character in the string must be B to match.

outfield

Integer

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions 4-11

CHKFMT: Checking the Format of a Character String
Example Checking the Format of a Field

CHKFMT examines EMP_ID for nine numeric characters starting with 11 and stores the
result in CHK_ID:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND
COMPUTE CHK_ID/I3 = CHKFMT(9, EMP_ID, '119999999', CHK_ID);
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

EMP_ID LAST_NAME CHK_ID
------ --------- ------
071382660 STEVENS 1
119265415 SMITH 0
119329144 BANNING 0
123764317 IRVING 2
126724188 ROMANS 2
451123478 MCKNIGHT 1

Example Checking the Format of a Field With MODIFY on OS/390

The following MODIFY procedure adds records of new employees to the EMPLOYEE data
source. Each transaction begins as an employee ID that is alphanumeric with the first five
characters as digits. The procedure rejects records with other characters in the employee ID.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 BAD_CHAR/I3 = CHKFMT(5, EMP_ID, '99999', BAD_CHAR);
 ON NOMATCH VALIDATE
 ID_TEST = IF BAD_CHAR EQ 0 THEN 1 ELSE 0;
 ON INVALID TYPE
 "BAD EMPLOYEE ID: <EMP_ID"
 "INVALID CHARACTER IN POSITION <BAD_CHAR"
 ON NOMATCH INCLUDE
 LOG INVALID MSG OFF
DATA
4-12 Information Builders

Character Functions
A sample execution is:

>
 EMPLOYEEFOCUS A ON 12/05/96 AT 15.42.03
 DATA FOR TRANSACTION 1

 EMP_ID =
111w2
 LAST_NAME =
johnson
 FIRST_NAME =
greg
 DEPARTMENT =
production
 BAD EMPLOYEE ID: 111W2
 INVALID CHARACTER IN POSITION 4
 DATA FOR TRANSACTION 2

 EMP_ID =
end
 TRANSACTIONS: TOTAL = 1 ACCEPTED= 0 REJECTED= 1
 SEGMENTS: INPUT = 0 UPDATED = 0 DELETED = 0
>

The procedure processes as follows:

1. The procedure searches the data source for the ID 111w2. If it does not find this ID, it
continues processing the transaction.

2. CHKFMT checks the ID against the mask 99999, which represents five digits.

3. The fourth character in the ID, the letter w, is not a digit. The function returns the value
4 to the BAD_CHAR field.

4. The VALIDATE command tests the BAD_CHAR field. Since BAD_CHAR is not equal to 0,
the procedure rejects the transaction and displays a message indicating the position of
the invalid character in the ID.
Using Functions 4-13

CTRAN: Translating One Character to Another
CTRAN: Translating One Character to Another

The CTRAN function translates a character within a character string to another character
based on its decimal value. This function is especially useful for changing replacement
characters to unavailable characters, or to characters that are difficult to input or
unavailable on your keyboard. It can also be used for inputting characters that are difficult
to enter when responding to a Dialogue Manager -PROMPT command, such as a comma or
apostrophe. It eliminates the need to enclose entries in single quotation marks.

To use CTRAN, you need to know the decimal equivalent of the characters in internal
machine representation. Printable EBCDIC or ASCII characters and the decimal equivalents
are listed in character charts.

Syntax How to Translate One Character to Another

CTRAN(charlen, string, decimal, decvalue, outfield)

where:

charlen

Integer

Is the length in characters of the character string, or a field that contains the length.

string

Alphanumeric

Is the character string enclosed in single quotation marks, or the field or variable that
contains the character string.

decimal

Integer

Is the ASCII or EBCDIC decimal value of the character to be translated.

decvalue

Integer

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
decimal.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-14 Information Builders

Character Functions
Example Translating Spaces to Underscores on an ASCII Platform

CTRAN translates the spaces in ADDRESS_LN3 (ASCII decimal value 32) to underscores
(ASCII decimal value 95), and stores the result in ALT_ADDR:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 32, 95, ALT_ADDR);
BY EMP_ID
WHERE TYPE EQ 'HSM';
END

The output is:

EMP_ID ADDRESS_LN3 ALT_ADDR
------ ----------- --------
117593129 RUTHERFORD NJ 07073 RUTHERFORD_NJ_07073_
119265415 NEW YORK NY 10039 NEW_YORK_NY_10039___
119329144 FREEPORT NY 11520 FREEPORT_NY_11520___
123764317 NEW YORK NY 10001 NEW_YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY_11520___
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CITY NJ 07300 JERSEY_CITY_NJ_07300
818692173 FLUSHING NY 11354 FLUSHING_NY_11354___

Example Translating Spaces to Underscores on an EBCDIC Platform

CTRAN translates the spaces in ADDRESS_LN3 (EBCDIC decimal value 64) to underscores
(EBCDIC decimal value 109) and stores the result in ALT_ADDR:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 64, 109, ALT_ADDR);
BY EMP_ID
WHERE TYPE EQ 'HSM'
END

The output is:

EMP_ID ADDRESS_LN3 ALT_ADDR
------ ----------- --------
117593129 RUTHERFORD NJ 07073 RUTHERFORD_NJ_07073_
119265415 NEW YORK NY 10039 NEW_YORK_NY_10039___
119329144 FREEPORT NY 11520 FREEPORT_NY_11520___
123764317 NEW YORK NY 10001 NEW_YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY_11520___
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CITY NJ 07300 JERSEY_CITY_NJ_07300
818692173 FLUSHING NY 11354 FLUSHING_NY_11354___
Using Functions 4-15

CTRAN: Translating One Character to Another
Example Inserting Accented Letter E’s With MODIFY

This MODIFY request enables you to enter the names of new employees containing the
accented letter È, as in the name Adèle Molière. The equivalent EBCDIC decimal value for an
asterisk is 92, for an È, 159.

If you are using the Hot Screen facility, some characters cannot be displayed. If Hot Screen
does not support the character you need, disable Hot Screen with SET SCREEN=OFF and
issue the RETYPE command. If your terminal can display the character, the character
appears. The display of special characters depends upon your software and hardware; not
all special characters may display.

The request is:

MODIFY FILE EMPLOYEE
CRTFORM
"***** NEW EMPLOYEE ENTRY SCREEN *****"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"
" "
"ENTER EMPLOYEE'S FIRST AND LAST NAME"
"SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS"
" "
"FIRST_NAME: <FIRST_NAME LAST_NAME: <LAST_NAME"
" "
"ENTER THE DEPARTMENT ASSIGNMENT: <DEPARTMENT"
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 FIRST_NAME/A10 = CTRAN(10, FIRST_NAME, 92, 159, 'A10');
 LAST_NAME/A15 = CTRAN(15, LAST_NAME, 92, 159, 'A15');
 ON NOMATCH TYPE "FIRST_NAME: <FIRST_NAME LAST_NAME:<LAST_NAME"
 ON NOMATCH INCLUDE
DATA
END

A sample execution follows:

***** NEW EMPLOYEE ENTRY SCREEN *****

ENTER EMPLOYEE'S ID: 999888777

ENTER EMPLOYEE'S FIRST AND LAST NAME
SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS

FIRST_NAME: AD*LE LAST_NAME: MOLI*RE

ENTER THE DEPARTMENT ASSIGNMENT: SALES
4-16 Information Builders

Character Functions
The request processes as:

1. The CRTFORM screen prompts you for an employee ID, first name, last name, and
department assignment. It requests that you substitute an asterisk (*) whenever the
accented letter È appears in a name.

2. Enter the following data:

EMPLOYEE ID: 999888777

FIRST_NAME: AD*LE

LAST_NAME: MOLI*RE

DEPARTMENT: SALES

3. The procedure searches the data source for the employee ID. If it does not find it, it
continues processing the request.

4. CTRAN converts the asterisks into È’s in both the first and last names (ADÈLE MOLIÈRE).

***** NEW EMPLOYEE ENTRY SCREEN *****

ENTER EMPLOYEE'S ID:

ENTER EMPLOYEE'S FIRST AND LAST NAME
SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS

FIRST_NAME: LAST_NAME:

ENTER THE DEPARTMENT ASSIGNMENT:

FIRST_NAME: ADÈLE LAST_NAME: MOLIÈRE

5. The procedure stores the data in the data source.
Using Functions 4-17

CTRAN: Translating One Character to Another
Example Inserting Commas With MODIFY

This MODIFY request adds records of new employees to the EMPLOYEE data source. The
PROMPT command prompts you for data one field at a time. CTRAN enables you to enter
commas in names without having to enclose the names in single quotation marks. Instead
of typing the comma, you type a semicolon, which is converted by CTRAN into a comma.
The equivalent EBCDIC decimal value for a semicolon is 94; for a comma, 107.

The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 LAST_NAME/A15 = CTRAN(15, LAST_NAME, 94, 107, 'A15');
 ON NOMATCH INCLUDE
DATA

A sample execution follows:

>
 EMPLOYEEFOCUS A ON 04/19/96 AT 16.07.29
 DATA FOR TRANSACTION 1

 EMP_ID =
224466880
 LAST_NAME =
BRADLEY; JR.
 FIRST_NAME =
JOHN
 DEPARTMENT =
MIS
 DATA FOR TRANSACTION 2

 EMP_ID =
end
 TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
 SEGMENTS: INPUT = 1 UPDATED = 0 DELETED = 0
>

4-18 Information Builders

Character Functions
The request processes as:

1. The request prompts you for an employee ID, last name, first name, and department
assignment. Enter the following data:

EMP_ID: 224466880

LAST_NAME: BRADLEY; JR.

FIRST_NAME: JOHN

DEPARTMENT: MIS

2. The request searches the data source for the ID 224466880. If it does not find the ID, it
continues processing the transaction.

3. CTRAN converts the semicolon in “BRADLEY; JR.” to a comma. The last name is now
“BRADLEY, JR.”

4. The request adds the transaction to the data source.

5. This request displays the semicolon converted to a comma:

TABLE FILE EMPLOYEE
PRINT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
IF EMP_ID IS 224466880
END

The output is:

EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
------ --------- ---------- ----------
224466880 BRADLEY, JR. JOHN MIS

CTRFLD: Centering a Character String

The CTRFLD function centers a character string within a field. The number of leading spaces
is equal to or one less than the number of trailing spaces.

CTRFLD is useful for centering the contents of a field and its report column, or a heading
that consists only of an embedded field. HEADING CENTER centers each field value
including trailing spaces. To center the field value without the trailing spaces, first center
the value within the field using CTRFLD.

Limit: Using CTRFLD in a styled report (StyleSheets feature) generally negates the effect of
CTRFLD unless the item is also styled as a centered element. Also, if you are using CTRFLD
on a platform for which the default font is proportional, either use a non-proportional font,
or issue SET STYLE=OFF before running the request.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 4-19

CTRFLD: Centering a Character String
Syntax How to Center a Character String

CTRFLD(string, length, outfield)

where:

string

Alphanumeric

Is the character string enclosed in single quotation marks, or a field or variable that
contains the character string.

length

Integer

Is the length of string and outfield in characters, or a field that contains the length. This
argument must be greater than 0. A length less than 0 can cause unpredictable results.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Centering a Field

CTRFLD centers LAST_NAME and stores the result in CENTER_NAME:

SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
CENTER_NAME/A15 = CTRFLD(LAST_NAME, 15, 'A15');
WHERE DEPARTMENT EQ 'MIS'
END

The output is:

LAST_NAME CENTER_NAME
--------- -----------
SMITH SMITH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOOD
GREENSPAN GREENSPAN
CROSS CROSS
4-20 Information Builders

Character Functions
EDIT: Extracting or Adding Characters

The EDIT function extracts characters from or adds characters to an alphanumeric string. It
can extract a substring from different parts of the parent string, and can also insert
characters from a parent string into another substring. For example, it can extract the first
two characters and the last two characters of a string to form a single substring.

EDIT works by comparing the characters in a mask to the characters in a source field. When
it encounters a nine in the mask, EDIT copies the corresponding character from the source
field to the new field. When it encounters a dollar sign in the mask, EDIT ignores the
corresponding character in the source field. When it encounters any other character in the
mask, EDIT copies that character to the corresponding position in the new field.

EDIT can also convert the format of a field. For more information on converting a field with
EDIT, see EDIT: Converting the Format of a Field in Chapter 9.

Syntax How to Extract or Add Characters

EDIT(fieldname, 'mask');

where:

fieldname

Alphanumeric

Is the source field.

mask

Alphanumeric

Is a character string enclosed in single quotation marks.

The length of the mask, excluding any characters other than nine and $, should be the
length of the source field.

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-21

GETTOK: Extracting a Substring (Token)
Example Extracting and Adding a Character to a Field

EDIT extracts the first initial from the FIRST_NAME field and stores the result in FIRST_INIT.
EDIT also adds dashes to the EMP_ID field and stores the result in EMPIDEDIT:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
FIRST_INIT/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$');
EMPIDEDIT/A11 = EDIT(EMP_ID, '999-99-9999');
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_INIT EMPIDEDIT
--------- ---------- ---------
SMITH M 112-84-7612
JONES D 117-59-3129
MCCOY J 219-98-4371
BLACKWOOD R 326-17-9357
GREENSPAN M 543-72-9165
CROSS B 818-69-2173

GETTOK: Extracting a Substring (Token)

The GETTOK function divides a character string into substrings, called tokens, where a
specific character, called a delimiter, occurs in the string. It then returns one of the tokens.
GETTOK ignores leading and trailing blanks in the parent character string.

For example, suppose you want to extract the fourth word from a sentence. GETTOK divides
the sentence into words using spaces as delimiters, then extracts the fourth word. If the
string is not divided by a delimiter, use the PARAG function for this purpose.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-22 Information Builders

Character Functions
Syntax How to Extract a Substring (Token)

GETTOK(infield, inlen, token, 'delim', outlen, outfield)

where:

infield

Alphanumeric

Is the field containing the parent character string.

inlen

Integer

Is the length of the parent string in characters. If this argument is less than or equal to 0,
the function returns spaces.

token

Integer

Is the number of the token to extract. If this argument is positive, the tokens are
counted from left to right. If this argument is negative, the tokens are counted from
right to left. For example -2 extracts the second token from the right. If this argument is
0, the function returns spaces. Leading and trailing null tokens are ignored.

'delim'

Alphanumeric

Is the delimiter in the parent string enclosed in single quotation marks. If you specify
more than one character, only the first character is used.

Note: In Dialogue Manager, to prevent the conversion of a delimiter space character (' ')
to a double precision zero, include a non-numeric character after the space (for
example, ' %'). GETTOK uses only the first character (the space) as a delimiter, while the
extra character (%) prevents conversion to double precision.

outlen

Integer

Is the maximum size of the token. If this argument is less than or equal to 0, the
function returns spaces. If the token is longer than this argument, it is truncated; if it is
shorter, it is padded with trailing spaces.

outfield

Alphanumeric

Is the name of the field that contains the token, or the format of the output value
enclosed in single quotation marks. The delimiter is not included in the token.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions 4-23

LCWORD: Converting a Character String to Mixed Case
Example Extracting a Token From a Field

GETTOK extracts the last token from ADDRESS_LN3 and stores the result in LAST_TOKEN:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
LAST_TOKEN/A10 = GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, LAST_TOKEN);
AS 'LAST TOKEN,(ZIP CODE)'
WHERE TYPE EQ 'HSM';
END

The output is:

 LAST TOKEN
ADDRESS_LN3 (ZIP CODE)
----------- ----------
RUTHERFORD NJ 07073 07073
NEW YORK NY 10039 10039
FREEPORT NY 11520 11520
NEW YORK NY 10001 10001
FREEPORT NY 11520 11520
ROSELAND NJ 07068 07068
JERSEY CITY NJ 07300 07300
FLUSHING NY 11354 11354

LCWORD: Converting a Character String to Mixed Case

The LCWORD function converts the letters in a character string to mixed case. It converts
every alphanumeric character to lowercase except the first letter of each new word and the
first letter after a single or double quotation mark. For example, O’CONNOR is converted to
O’Connor and JACK’S to Jack’S.

If LCWORD encounters a number in the character string, it treats it as an uppercase
character and continues to convert the following alphabetic characters to lowercase. The
result of LCWORD is a word with an initial uppercase character followed by lowercase
characters.

There is a version of the LCWORD function that is available only in the Maintain language.
For information on this function, see LCWORD and LCWORD2: Converting a Character String
to Mixed Case in Chapter 5.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,

Available Languages: reporting, Maintain
4-24 Information Builders

Character Functions
Syntax How to Convert a Character String to Mixed Case

LCWORD(length, string, outfield)

where:

length

Integer

Is the length in characters of the character string or field to be converted, or a field that
contains the length.

string

Alphanumeric

Is the character string to be converted enclosed in single quotation marks, or a field or
variable containing the character string.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The length must be greater than or equal to the
length of length.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Converting a Character String to Mixed Case

LCWORD converts the LAST_NAME field to mixed case and stores the result in MIXED_CASE:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
MIXED_CASE/A15 = LCWORD(15, LAST_NAME, MIXED_CASE);
WHERE DEPARTMENT EQ 'PRODUCTION'
END

The output is:

LAST_NAME MIXED_CASE
--------- ----------
STEVENS Stevens
SMITH Smith
BANNING Banning
IRVING Irving
ROMANS Romans
MCKNIGHT Mcknight
Using Functions 4-25

LJUST: Left-Justifying a Character String
LJUST: Left-Justifying a Character String

The LJUST function left-justifies a character string within a field. All leading spaces become
trailing spaces.

LJUST will not have any visible effect in a report that uses StyleSheets (SET STYLE=ON)
unless you center the item.

There is a version of the LJUST function that is available only in the Maintain language. For
information on this function, see LJUST: Left-Justifying a Character String (Maintain) in
Chapter 5.

Syntax How to Left-Justify a Character String

LJUST(length, string, outfield)

where:

length

Integer

Is the length in characters of string and outfield, or a field that contains the length.

string

Alphanumeric

Is the character string to be justified, or a field or variable that contains the string.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format.

Available Operating Systems: All

Available Languages: reporting
4-26 Information Builders

Character Functions
Example Left-Justifying a Field

LJUST left-justifies the XNAME field and stores the result in YNAME:

SET STYLE=OFF

DEFINE FILE EMPLOYEE
XNAME/A25=IF LAST_NAME EQ 'BLACKWOOD' THEN ' '|LAST_NAME ELSE
''|LAST_NAME;
YNAME/A25=LJUST(15, XNAME, 'A25');
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME XNAME YNAME
END

The output is:

LAST_NAME XNAME YNAME
--------- ----- -----
STEVENS STEVENS STEVENS
SMITH SMITH SMITH
JONES JONES JONES
SMITH SMITH SMITH
BANNING BANNING BANNING
IRVING IRVING IRVING
ROMANS ROMANS ROMANS
MCCOY MCCOY MCCOY
BLACKWOOD BLACKWOOD BLACKWOOD
MCKNIGHT MCKNIGHT MCKNIGHT
GREENSPAN GREENSPAN GREENSPAN
CROSS CROSS CROSS
Using Functions 4-27

LOCASE: Converting Text to Lowercase
LOCASE: Converting Text to Lowercase

The LOCASE function converts alphanumeric text to lowercase. It is useful for converting
input fields from FIDEL CRTFORMs and non-FOCUS applications to lowercase.

Syntax How to Convert Text to Lowercase

LOCASE(length, string, outfield)

where:

length

Integer

Is the length in characters of string and outfield, or a field that contains the length. The
length must be greater than 0 and the same for both arguments; otherwise, an error
occurs.

string

Alphanumeric

Is the character string to be converted in single quotation marks, or a field or variable
that contains the string.

outfield

Alphanumeric

Is the name of the field in which to store the result, or the format of the output value
enclosed in single quotation marks. The field name can be the same as string.

In Dialogue Manager, the format must be specified. In Maintain, the name of the field
must be specified.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-28 Information Builders

Character Functions
Example Converting a Field to Lowercase

LOCASE converts the LAST_NAME field to lowercase and stores the result in LOWER_NAME:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWER_NAME/A15 = LOCASE(15, LAST_NAME, LOWER_NAME);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME LOWER_NAME
--------- ----------
SMITH smith
JONES jones
MCCOY mccoy
BLACKWOOD blackwood
GREENSPAN greenspan
CROSS cross

OVRLAY: Overlaying a Character String

The OVRLAY function overlays a base character string with a substring. When specified in a
MODIFY procedure, the function enables you to edit part of an alphanumeric field without
replacing the entire field.

There is a version of the OVRLAY function that is available only in the Maintain language.
For information on this function, see OVRLAY: Overlaying a Character String (Maintain) in
Chapter 5.

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-29

OVRLAY: Overlaying a Character String
Syntax How to Overlay a Character String

OVRLAY(string1, stringlen, string2, sublen, position, outfield)

where:

string1

Alphanumeric

Is the base character string.

stringlen

Integer

Is the length in characters of string1 and outfield, or a field that contains the length. If
this argument is less than or equal to 0, unpredictable results occur.

string2

Alphanumeric

Is the substring that will overlay string1.

sublen

Integer

Is the length of string2, or a field that contains the length. If this argument is less than or
equal to 0, the function returns spaces.

position

Integer

Is the position in the base string at which the overlay begins. If this argument is less
than or equal to 0, the function returns spaces. If this argument is larger than stringlen,
the function returns the base string.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. If the overlaid string is longer than the output field,
the string is truncated to fit the field.

In Dialogue Manager, you must specify the format.
4-30 Information Builders

Character Functions
Example Replacing Characters in a Character String

OVRLAY replaces the last three characters of EMP_ID with CURR_JOBCODE to create a new
security identification code and stores the result in NEW_ID:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND CURR_JOBCODE AND COMPUTE
NEW_ID/A9 = OVRLAY(EMP_ID, 9, CURR_JOBCODE, 3, 7, NEW_ID);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME EMP_ID CURR_JOBCODE NEW_ID
--------- ---------- ------ ------------ ------
BLACKWOOD ROSEMARIE 326179357 B04 326179B04
CROSS BARBARA 818692173 A17 818692A17
GREENSPAN MARY 543729165 A07 543729A07
JONES DIANE 117593129 B03 117593B03
MCCOY JOHN 219984371 B02 219984B02
SMITH MARY 112847612 B14 112847B14

Example Overlaying a Character in a String With MODIFY

This MODIFY procedure prompts for input using a CRTFORM screen and updates first
names in the EMPLOYEE data source. The CRTFORM LOWER option enables you to update
the names in lowercase, but the procedure ensures that the first letter of each name is
capitalized.

MODIFY FILE EMPLOYEE
CRTFORM LOWER
 "ENTER EMPLOYEE'S ID: <EMP_ID"
 "ENTER FIRST_NAME IN LOWER CASE: <FIRST_NAME"
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH COMPUTE
 F_UP/A1 = UPCASE(1, FIRST_NAME, 'A1');
 FIRST_NAME/A10 = OVRLAY(FIRST_NAME, 10, F_UP, 1, 1, 'A10');
 ON MATCH TYPE "CHANGING FIRST NAME TO <FIRST_NAME "
 ON MATCH UPDATE FIRST_NAME
DATA
END
Using Functions 4-31

OVRLAY: Overlaying a Character String
The COMPUTE command invokes two functions:

• UPCASE extracts the first letter and converts it to uppercase.

• OVRLAY replaces the original first letter in the name with the uppercase initial.

The procedure processes as:

1. The procedure prompts you from a CRTFORM screen for an employee ID and a first
name. Type the following data and press Enter:

Enter the employee’s ID: 071382660

Enter the first name in lowercase: alfred

2. The procedure searches the data source for the ID 071382660. If it finds the ID, it
continues processing the transaction. In this case, the ID exists and belongs to
Alfred Stevens.

3. UPCASE extracts the letter a from alfred and converts it to the letter A.

4. OVRLAY overlays the letter A on alfred. The first name is now Alfred.

ENTER EMPLOYEE'S ID:
ENTER FIRST_NAME IN LOWER CASE:

CHANGING FIRST NAME TO Alfred

5. The procedure updates the first name in the data source.

6. When you exit the procedure with PF3, the transaction message indicates that one
update occurred:

TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT = 0 UPDATED = 1 DELETED = 0
4-32 Information Builders

Character Functions
PARAG: Dividing Text Into Smaller Lines

The PARAG function divides a line of text into smaller lines by marking them with a
delimiter. It scans a specific number of characters from the beginning of the line and
replaces the last space in the group scanned with the delimiter. It then scans the next group
of characters in the line, starting from the delimiter, and replaces the last space in this
group with a second delimiter. It repeats this process until reaching the end of the line.

Each group of characters marked off by the delimiter becomes a sub-line. The GETTOK
function can then place the sub-lines into different fields. If the function does not find any
spaces in the group it scans, it replaces the first character after the group with the delimiter.
Therefore, make sure that no word of text is longer than the number of characters scanned
(the maximum sub-line length).

If the input lines of text are roughly equal in length, you can keep the sub-lines equal by
specifying a sub-line length that evenly divides into the length of the text lines. For
example, if the text lines are 120 characters long, divide each of them into two sub-lines of
60 characters or three sub-lines of 40 characters. This technique enables you to print lines
of text in paragraph form.

However, if you divide the lines evenly, you may create more sub-lines than you intend. For
example, suppose you divide 120-character text lines into two lines of 60 characters
maximum, but one line is divided so that the first sub-line is 50 characters and the second is
55. This leaves room for a third sub-line of 15 characters. To correct this, insert a space
(using weak concatenation) at the beginning of the extra sub-line, then append this
sub-line (using strong concatenation) to the end of the one before it.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 4-33

PARAG: Dividing Text Into Smaller Lines
Syntax How to Divide Text Into Smaller Lines

PARAG(length, string, 'delim', subsize, outfield)

where:

length

Integer

Is the length in characters of string and outfield, or a field that contains the length.

string

Alphanumeric

Is the text enclosed in single quotation marks, or a field or variable that contains the
text.

delim

Alphanumeric

Is the delimiter enclosed in single quotation marks. Choose a character that does not
appear in the text.

subsize

Integer

Is the maximum length of each sub-line.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
4-34 Information Builders

Character Functions
Example Dividing Text Into Smaller Lines

PARAG divides ADDRESS_LN2 into smaller lines of not more than ten characters using a
comma as the delimiter. It then stores the result in PARA_ADDR:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN2 AND COMPUTE
PARA_ADDR/A20 = PARAG(20, ADDRESS_LN2, ',', 10, PARA_ADDR);
BY LAST_NAME
WHERE TYPE EQ 'HSM';
END

The output is:

LAST_NAME ADDRESS_LN2 PARA_ADDR
--------- ----------- ---------
BANNING APT 4C APT 4C ,
CROSS 147-15 NORTHERN BLD 147-15,NORTHERN,BLD
GREENSPAN 13 LINDEN AVE. 13 LINDEN,AVE.
IRVING 123 E 32 ST. 123 E 32,ST. ,
JONES 235 MURRAY HIL PKWY 235 MURRAY,HIL PKWY
MCKNIGHT 117 HARRISON AVE. 117,HARRISON,AVE.
ROMANS 271 PRESIDENT ST. 271,PRESIDENT,ST.
SMITH 136 E 161 ST. 136 E 161,ST.

POSIT: Finding the Beginning of a Substring

The POSIT function finds the starting position of a substring within a larger string. For
example, the starting position of the substring DUCT in the string PRODUCTION is four. If
the substring is not in the parent string, the function returns the value 0.

There is a version of the POSIT function that is available only in the Maintain language. For
information on this function, see POSIT: Finding the Beginning of a Substring (Maintain) in
Chapter 5.

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-35

POSIT: Finding the Beginning of a Substring
Syntax How to Find the Beginning of a Substring

POSIT(parent, inlength, substring, sublength, outfield)

where:

parent

Alphanumeric

Is the parent character string enclosed in single quotation marks, or a field or variable
that contains the parent character string.

inlength

Integer

Is the length of the parent character string in characters, or a field that contains the
length. If this argument is less than or equal to 0, the function returns a 0.

substring

Alphanumeric

Is the substring whose position you want to find. This can be the substring enclosed in
single quotation marks, or the field that contains the string.

sublength

Integer

Is the length of substring. If this argument is less than or equal to 0, or if it is greater than
inlength, the function returns a 0.

outfield

Integer

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format.
4-36 Information Builders

Character Functions
Example Finding the Position of a Letter

POSIT determines the position of the first capital letter I in LAST_NAME and stores the result
in I_IN_NAME:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2');
WHERE DEPARTMENT EQ 'PRODUCTION'
END

The output is:

LAST_NAME I_IN_NAME
--------- ---------
STEVENS 0
SMITH 3
BANNING 5
IRVING 1
ROMANS 0
MCKNIGHT 5

RJUST: Right-Justifying a Character String

The RJUST function right-justifies a character string. All trailing blacks become leading
blanks. This is useful when you display alphanumeric fields containing numbers.

RJUST does not have any visible effect in a report that uses StyleSheets (SET STYLE=ON)
unless you center the item. Also, if you use RJUST on a platform on which StyleSheets are
turned on by default, issue SET STYLE=OFF before running the request.

There is a version of the RJUST function that is available only in the Maintain language. For
information on this function, see RJUST: Right-Justifying a Character String (Maintain) in
Chapter 5.

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-37

RJUST: Right-Justifying a Character String
Syntax How to Right-Justify a Character String

RJUST(length, string, outfield)

where:

length

Integer

Is the length in characters of string and outfield, or a field that contains the length. The
lengths must be the same to avoid justification problems.

string

Alphanumeric

Is the character string, or a field or variable that contains the character string enclosed
in single quotation marks.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format.

Example Right-Justifying a Field

RJUST right-justifies the LAST_NAME field and stores the result in RIGHT_NAME:

SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
RIGHT_NAME/A15 = RJUST(15, LAST_NAME, RIGHT_NAME);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME RIGHT_NAME
--------- ----------
SMITH SMITH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOOD
GREENSPAN GREENSPAN
CROSS CROSS
4-38 Information Builders

Character Functions
SOUNDEX: Comparing Character Strings Phonetically

The SOUNDEX function searches for a character string phonetically without regard to
spelling. It converts character strings to four character codes. The first character must be
the first character in the string. The last three characters represent the next three significant
sounds in the character string.

To conduct a phonetic search, do the following:

1. Use SOUNDEX to translate data values from the field you are searching for to the
phonetic codes.

2. Use SOUNDEX to translate your best guess target string to a phonetic code. Remember
that the spelling of your target string need be only approximate; however, the first
letter must be correct.

3. Use WHERE or IF criteria to compare the temporary fields created in step 1 to the
temporary field created in Step 2.

Syntax How to Compare Character Strings Phonetically

SOUNDEX(inlength, string, outfield)

where:

inlength

A2

Is the length in characters of string, or a field that contains the length. It can be a
number enclosed in single quotation marks, or a field containing the number. The
number must be from 1 to 99; a number larger than 99 causes the function to return
asterisks (*) as output.

string

Alphanumeric

Is the character string enclosed in single quotation marks, or a field or variable that
contains the character string.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 4-39

SQUEEZ: Reducing Multiple Spaces to a Single Space
Example Comparing Character Strings Phonetically

The following request creates three fields:

• PHON_NAME contains the phonetic code of employee last names.

• PHON_COY contains the phonetic code of your guess, MICOY.

• PHON_MATCH contains YES if the phonetic codes match, NO if they do not.

The WHERE criteria selects the last name that matches your best guess.

DEFINE FILE EMPLOYEE
PHON_NAME/A4 = SOUNDEX('15', LAST_NAME, PHON_NAME);
PHON_COY/A4 WITH LAST_NAME = SOUNDEX('15', 'MICOY', PHON_COY);
PHON_MATCH/A3 = IF PHON_NAME IS PHON_COY THEN 'YES' ELSE 'NO';
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME
IF PHON_MATCH IS 'YES'
END

The output is:

LAST_NAME

MCCOY

SQUEEZ: Reducing Multiple Spaces to a Single Space

The SQUEEZ function reduces multiple contiguous spaces within a character string to a
single space. The resulting character string has the same length as the original string but is
padded on the right with spaces.

Available Operating Systems: All

Available Languages: reporting, Maintain
4-40 Information Builders

Character Functions
Syntax How to Reduce Multiple Spaces to a Single Space

SQUEEZ(length, string, outfield)

where:

length

Integer

Is the length in characters of string and outfield, or a field that contains the length.

string

Alphanumeric

Is the character string enclosed in single quotation marks, or the field that contains the
character string.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Reducing Multiple Spaces to a Single Space

SQUEEZ reduces multiple spaces in the NAME field to a single blank and stores the result in
a field with the format A30:

DEFINE FILE EMPLOYEE
NAME/A30 = FIRST_NAME | LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT NAME AND COMPUTE
SQNAME/A30 = SQUEEZ(30, NAME, 'A30');
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

NAME SQNAME
---- ------
MARY SMITH MARY SMITH
DIANE JONES DIANE JONES
JOHN MCCOY JOHN MCCOY
ROSEMARIE BLACKWOOD ROSEMARIE BLACKWOOD
MARY GREENSPAN MARY GREENSPAN
BARBARA CROSS BARBARA CROSS
Using Functions 4-41

STRIP: Removing a Character From a String
STRIP: Removing a Character From a String

Syntax How to Remove a Character From a String

STRIP(length, string, char, outfield)

where:

length

Integer

Is the length in characters of string and outfield, or a field that contains the length.

string

Alphanumeric

Is an alphanumeric string, or the field from which the character will be removed.

char

Alphanumeric

Is the character to be removed from the string. This can be an alphanumeric literal
enclosed in single quotation marks, or a field that contains the character. If it is a field,
the left-most character in the field will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You
must then enclose this character combination in single quotation marks.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

In Dialogue Manager, you must specify the format.

Available Operating Systems: All

Available Languages: reporting, Maintain

The STRIP function removes all occurrences of a specific character from a string. The
resulting character string has the same length as the original string but is padded on the
right with spaces.
4-42 Information Builders

Character Functions
Example Removing Occurrences of a Character From a String (Reporting)

STRIP removes all occurrences of a period (.) from the DIRECTOR field and stores the result
in a field with the format A17:

TABLE FILE MOVIES
PRINT DIRECTOR AND COMPUTE
SDIR/A17 = STRIP(17, DIRECTOR, '.', 'A17');
WHERE CATEGORY EQ ‘COMEDY’
END

The output is:

DIRECTORS DIR
--------- ---
ZEMECKIS R. ZEMECKIS R
ABRAHAMS J. ABRAHAMS J
ALLEN W. ALLEN W
HALLSTROM L. HALLSTROM L
MARSHALL P. MARSHALL P
BROOKS J.L. BROOKS JL

Example Removing Single Quotation Marks From a String (Reporting)

STRIP removes all occurrences of a single quotation mark (‘) from the TITLE field and stores
the result in a field with the format A17:

TABLE FILE MOVIES
PRINT TITLE AND COMPUTE
STITLE/A39 = STRIP(39, TITLE, '''', 'A39');
WHERE TITLE CONTAINS ''''
END

The output is:

TITLE STITLE
----- ------
BABETTE’S FEAST BABETTES FEAST
JANE FONDA’S COMPLETE WORKOUT JANE FONDAS COMPLETE WORKOUT
JANE FONDA’S NEW WORKOUT JANE FONDAS NEW WORKOUT
MICKEY MANTLE’S BASEBALLTIPS MICKEY MANTLES BASEBALL TIPS
Using Functions 4-43

SUBSTR: Extracting a Substring
Example Removing Commas From a String (Maintain)

STRIP removes all occurrences of a comma from the TITLE field:

MAINTAIN FILE MOVIES
FOR 10 NEXT MOVIECODE INTO MOVSTK
 WHERE TITLE CONTAINS ',';
COMPUTE I/I2=1;
REPEAT MOVSTK.FOCINDEX
TYPE "TITLE IS: <MOVSTK(I).TITLE"
COMPUTE NOCOMMA/A39=STRIP(39,MOVSTK().TITLE, ',',NOCOMMA);
TYPE "NEW TITLE IS: <NOCOMMA";
COMPUTE I=I+1
ENDREPEAT
END

The output is:

TITLE IS: SMURFS, THE

NEW TITLE IS: SMURFS THE

SUBSTR: Extracting a Substring

The SUBSTR function extracts a substring based on where it begins and its length in the
parent string. SUBSTR can vary the position of the substring depending on the values of
other fields.

There is a version of the SUBSTR function that is available only in the Maintain language. For
information on this function, see SUBSTR: Extracting a Substring (Maintain) in Chapter 5.

Available Operating Systems: All

Available Languages: reporting
4-44 Information Builders

Character Functions
Syntax How to Extract a Substring

SUBSTR(inlength, parent, start, end, sublength, outfield)

where:

inlength

Integer

Is the length of the parent string in characters, or a field that contains the length.

parent

Alphanumeric

Is the parent string enclosed in single quotation marks, or the field containing the
parent string.

start

Integer

Is the starting position of the substring in the parent string. If this argument is less than
one, the function returns spaces.

end

Integer

Is the ending position of the substring. If this argument is less than start or greater than
inlength, the function returns spaces.

sublength

Integer

Is the length in characters of the substring (normally end - start + 1). If sublength is
longer than end - start +1, the substring is padded with trailing spaces. If it is shorter,
the substring is truncated. This value should be the declared length of outfield. Only
sublength characters will be processed.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks.

In Dialogue Manager, the format must be specified.
Using Functions 4-45

TRIM: Removing Leading and Trailing Occurrences
Example Extracting a String

POSIT determines the position of the first letter I in LAST_NAME and stores the result in
I_IN_NAME. SUBSTR then extracts three characters beginning with the letter I from
LAST_NAME, and stores the results in I_SUBSTR.

TABLE FILE EMPLOYEE
PRINT
COMPUTE
 I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2'); AND
COMPUTE
 I_SUBSTR/A3 =
 SUBSTR(15, LAST_NAME, I_IN_NAME, I_IN_NAME+2, 3, I_SUBSTR);
BY LAST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION'
END

The output is:

LAST_NAME I_IN_NAME I_SUBSTR
--------- --------- --------
BANNING 5 ING
IRVING 1 IRV
MCKNIGHT 5 IGH
ROMANS 0
SMITH 3 ITH
STEVENS 0

Since Romans and Stevens have no I in their names, SUBSTR extracts a blank string.

TRIM: Removing Leading and Trailing Occurrences

The TRIM function removes leading and/or trailing occurrences of a pattern within a
character string.

There is a version of the TRIM function that is available only in the Maintain language.
For information on this function, see TRIM: Removing Trailing Occurrences (Maintain) in
Chapter 5.

Available Operating Systems: All

Available Languages: reporting
4-46 Information Builders

Character Functions
Syntax How to Remove Leading and Trailing Occurrences

TRIM(trim_where, string, string_length, pattern, pattern_length,
outfield)

where:

trim_where

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

string

Alphanumeric

Is the source character string enclosed in single quotation marks, or the field
containing the string.

string_length

Integer

Is the length of the string in characters.

pattern

Alphanumeric

Is the pattern to remove enclosed in single quotation marks.

pattern_length

Integer

Is the number of characters in the pattern.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks.

In Dialogue Manager, the format must be specified.
Using Functions 4-47

TRIM: Removing Leading and Trailing Occurrences
Example Removing Leading Occurrences

TRIM removes leading occurrences of the characters BR from the DIRECTOR field and stores
the result in a field with the format A17:

TABLE FILE MOVIES
PRINT DIRECTOR AND
COMPUTE
 TRIMDIR/A17 = TRIM('L', DIRECTOR, 17, 'BR', 2, 'A17');
 WHERE DIRECTOR CONTAINS 'BR'
END

The output is:

DIRECTOR TRIMDIR
-------- -------
ABRAHAMS J. ABRAHAMS J.
BROOKS R. OOKS R.
BROOKS J.L. OOKS J.L.

Example Removing Trailing Occurrences

TRIM removes trailing occurrences of the characters ER from the TITLE. In order to remove
trailing non-blank characters, trailing spaces must be removed first. The TITLE field has
trailing spaces. Therefore, TRIM does not remove the characters ER when creating field
TRIMT. The SHORT field does not have trailing spaces. Therefore, TRIM removes the trailing
ER characters when creating field TRIMS:

DEFINE FILE MOVIES
SHORT/A19 = SUBSTR(19, TITLE, 1, 19, 19, SHORT);
END

TABLE FILE MOVIES
PRINT TITLE IN 1 AS 'TITLE: '
 SHORT IN 40 AS 'SHORT: ' OVER
COMPUTE
 TRIMT/A39 = TRIM('T', TITLE, 39, 'ER', 2, 'A39'); IN 1 AS 'TRIMT: '
COMPUTE
 TRIMS/A19 = TRIM('T', SHORT, 19, 'ER', 2, 'A19'); IN 40 AS 'TRIMS: '
WHERE TITLE LIKE '%ER'
END

The output is:

TITLE: LEARN TO SKI BETTER SHORT: LEARN TO SKI BETTER
TRIMT: LEARN TO SKI BETTER TRIMS: LEARN TO SKI BETT
TITLE: FANNY AND ALEXANDER SHORT: FANNY AND ALEXANDER
TRIMT: FANNY AND ALEXANDER TRIMS: FANNY AND ALEXAND
4-48 Information Builders

Character Functions
UPCASE: Converting Text to Uppercase

The UPCASE function converts a character string to uppercase. It is useful for sorting on a
field that contains both mixed case and uppercase values. Sorting on a mixed case field
produces incorrect results because the sorting sequence in EBCDIC always places lowercase
letters before uppercase letters, while the ASCII sorting sequence always places uppercase
letters before lowercase. To obtain correct results, define a new field with all of the values in
uppercase, and sort on that.

In FIDEL, CRTFORM LOWER retains the case of entries exactly as they were typed. Use
UPCASE to convert entries for particular fields to uppercase.

There is a version of the UPCASE function that is available only in the Maintain language.
For information on this function, see UPCASE: Converting Text to Uppercase (Maintain) in
Chapter 5.

Syntax How to Convert Text to Uppercase

UPCASE(length, input, outfield)

where:

length

Integer

Is the length in characters of input and outfield.

input

Alphanumeric

Is the character string enclosed in single quotation marks, or the field containing the
character string.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks.

In Dialogue Manager, the format must be specified.

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-49

UPCASE: Converting Text to Uppercase
Example Converting a Mixed Case Field to Uppercase

UPCASE converts the LAST_NAME_MIXED field to uppercase:

DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE
 LCWORD(15, LAST_NAME, 'A15');
LAST_NAME_UPPER/A15=UPCASE(15, LAST_NAME_MIXED, 'A15') ;
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME_MIXED AND FIRST_NAME BY LAST_NAME_UPPER
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

Now, when you execute the request, the names are sorted correctly.

The output is:

LAST_NAME_UPPER LAST_NAME_MIXED FIRST_NAME
--------------- --------------- ----------
BANNING Banning JOHN
BLACKWOOD BLACKWOOD ROSEMARIE
CROSS CROSS BARBARA
MCCOY MCCOY JOHN
MCKNIGHT Mcknight ROGER
ROMANS Romans ANTHONY

If you don’t want to see the field with all uppercase values, you can NOPRINT it.
4-50 Information Builders

Character Functions
Example Converting a Lowercase Field to Uppercase With MODIFY

Suppose your company decides to store employee names in mixed case and the
department assignments in uppercase.

To enter records for new employees, execute this MODIFY procedure:

MODIFY FILE EMPLOYEE
CRTFORM LOWER
 "ENTER EMPLOYEE'S ID : <EMP_ID"
 "ENTER LAST_NAME: <LAST_NAME FIRST_NAME: <FIRST_NAME"
 "TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET"
 " "
 "ENTER DEPARTMENT ASSIGNMENT: <DEPARTMENT"
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 DEPARTMENT = UPCASE(10, DEPARTMENT, 'A10');
 ON NOMATCH INCLUDE
 ON NOMATCH TYPE "DEPARTMENT VALUE CHANGED TO UPPERCASE: <DEPARTMENT"
DATA
END

The procedure processes as:

1. The procedure prompts you for an employee ID, last name, first name, and department
on a CRTFORM screen. The CRTFORM LOWER option retains the case of entries exactly
as typed.

2. You type the following data and press Enter:

ENTER EMPLOYEE'S ID : 444555666
ENTER LAST_NAME: Cutter FIRST_NAME: Alan
TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET

ENTER DEPARTMENT ASSIGNMENT: sales

3. The procedure searches the data source for the ID 444555666. If it does not find the ID,
it continues processing the transaction.

4. UPCASE converts the DEPARTMENT entry sales to SALES.

ENTER EMPLOYEE'S ID :
ENTER LAST_NAME: FIRST_NAME:
TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET

ENTER DEPARTMENT ASSIGNMENT:

DEPARTMENT VALUE CHANGED TO UPPERCASE: SALES

5. The procedure adds the transaction to the data source.
Using Functions 4-51

Character Functions for AnV Fields
6. When you exit the procedure with PF3, the transaction message indicates the number
of transactions accepted or rejected:

TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0

SEGMENTS: INPUT = 1 UPDATED = 0 DELETED = 0

Character Functions for AnV Fields
AnV fields, which represent variable length data types supported by relational database
management systems, can be used as arguments in any function that requires an
alphanumeric argument. There are also character functions created specifically for use with
AnV fields. These are:

• LENV

• LOCASV

• POSITV

• SUBSTV

• TRIMV

• UPCASV

Reference Usage Notes for Using an AnV Field in a Function

The following affect the use of an AnV field in a function:

• When using an AnV argument in a function, the input parameter is treated as an An
parameter and is padded with blanks to its declared size (n). If the last parameter
specifies an AnV format, the function result is converted to type AnV with actual length
set equal to its size.

• Many functions require both an alphanumeric string and its length as input arguments.
If the supplied string is stored in an AnV field, you still must supply a length argument
to satisfy the requirements of the function. However, the length that will be used in the
function’s calculations is the actual length stored as the first two bytes of the AnV field.

• In general, any input argument can be a field or a literal. In most cases, numeric input
arguments are supplied to these functions as literals, and there is no reason not to
supply an integer value. However, if the value is not an integer, it is truncated to an
integer value regardless of whether it was supplied as a field or a literal.
4-52 Information Builders

Character Functions
LENV: Returning the Length of an Alphanumeric Field

LENV returns the actual length of an AnV field or the size of an An field.

Syntax How to Find the Length of an Alphanumeric Field

LENV(string, outfield)

where:

string

Alphanumeric

Is the source field or an alphanumeric constant enclosed in single quotation marks. If it
is a field, it can have An or AnV format. If it is a field of type AnV, its length is taken from
the length bytes stored in the field.

outfield

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Example Finding the Length of an AnV Field

LENV creates an AnV field named TITLEV by removing trailing blanks from the TITLE value
and returns the actual length of each instance of TITLEV to the ALEN field:

TABLE FILE MOVIES
PRINT
COMPUTE TITLEV/A39V = TRIMV('T', TITLE, 39, ' ', 1, TITLEV);
 ALEN/I2 = LENV(TITLEV,ALEN);
BY CATEGORY NOPRINT
WHERE CATEGORY EQ 'CHILDREN'
END

The output is:

TITLEV ALEN
------ ----
SMURFS, THE 11
SHAGGY DOG, THE 15
SCOOBY-DOO-A DOG IN THE RUFF 28
ALICE IN WONDERLAND 19
SESAME STREET-BEDTIME STORIES AND SONGS 39
ROMPER ROOM-ASK MISS MOLLY 26
SLEEPING BEAUTY 15
BAMBI 5

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-53

Character Functions for AnV Fields
LOCASV: Creating a Variable Length Lowercase String

LOCASV converts alphabetic characters to lowercase. This is similar to LOCASE, but LOCASV
can return AnV output whose actual length is the lesser of the actual length of the AnV
input field and an input parameter that specifies the length limit.

Syntax How to Create a Variable Length Lowercase String

LOCASV(length_limit, string, outfield)

where:

length_limit

Numeric

Is the maximum length of the input string.

string

Alphanumeric

Is the character string to be converted in single quotation marks, or a field or variable
that contains the string. If it is a field, it can have An or AnV format. If it is a field of type
AnV, its length is taken from the length bytes stored in the field. If length_limit is smaller
than the actual length, the source string is truncated to this upper limit.

outfield

Alphanumeric

Is the name of the field in which to store the result, or the format of the output value
enclosed in single quotation marks. This value can be for a field that is AnV or An
format. Is the field has AnV or An format for the returned lowercase string or the format
of the output value enclosed in single quotation marks.

Available Operating Systems: All

Available Languages: reporting
4-54 Information Builders

Character Functions
Example Creating a Variable Length Lowercase String

In this example, LOCASV converts the LAST_NAME field to lowercase and specifies a length
limit of five characters. The results are stored in the LOWCV_NAME field:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWCV_NAME/A15 = LOCASV(5, LAST_NAME, LOWCV_NAME);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME LOWCV_NAME
--------- ----------
SMITH smith
JONES jones
MCCOY mccoy
BLACKWOOD black
GREENSPAN green
CROSS cross
Using Functions 4-55

Character Functions for AnV Fields
POSITV: Finding the Beginning of a Variable Length Substring

The POSITV function finds the starting position of a substring within a larger string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value 0. This is similar to POSIT;
however, the lengths of its AnV parameters are based on the actual lengths of those
parameters in comparison with two other parameters that specify their sizes.

Syntax How to Find the Beginning of a Variable Length Substring

POSITV(parent, in_limit, substring, sub_limit, outfield)

where:

parent

Alphanumeric

Is the parent character string enclosed in single quotation marks, or a field or variable
that contains the parent character string. If it is a field, it can have An or AnV format. If it
is a field of type AnV, its length is taken from the length bytes stored in the field. If
in_limit is smaller than the actual length, the source string is truncated to this upper
limit.

in_limit

Integer

Is the maximum length of the input field.

substring

Alphanumeric

Is the substring whose position you want to find. This can be the substring enclosed in
single quotation marks, or the field that contains the string. If it is a field, it can have An
or AnV format. If it is a field of type AnV, its length is taken from the length bytes stored
in the field. If sub_limit is smaller than the actual length, the source string is truncated
to this upper limit.

sub_limit

Numeric

Is the maximum length of the substring.

outfield

Integer

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Available Operating Systems: All

Available Languages: reporting
4-56 Information Builders

Character Functions
Example Finding the Starting Position of a Variable Length Pattern

POSITV finds the starting position of a trailing definite or indefinite article in a movie title
(such as ", THE" in SMURFS, THE). First TRIMV removes the trailing blanks from the title so
that the article will be the trailing pattern:

DEFINE FILE MOVIES
 TITLEV/A39V = TRIMV('T',TITLE, 39,' ', 1, TITLEV);
 PSTART/I4 = POSITV(TITLEV,LENV(TITLEV,'I4'), ',', 1,'I4');
 PLEN/I4 = IF PSTART NE 0 THEN LENV(TITLEV,'I4') - PSTART +1
 ELSE 0;
END
TABLE FILE MOVIES
 PRINT TITLE
 PSTART AS 'Pattern,Start' IN 25
 PLEN AS 'Pattern,Length'
BY CATEGORY NOPRINT
WHERE PLEN NE 0
END

The output is:

 Pattern Pattern
 TITLE Start Length
 ----- ------- -------
 SMURFS, THE 7 5
 SHAGGY DOG, THE 11 5
 MALTESE FALCON, THE 15 5
 PHILADELPHIA STORY, THE 19 5
 TIN DRUM, THE 9 5
 FAMILY, THE 7 5
 CHORUS LINE, A 12 3
 MORNING AFTER, THE 14 5
 BIRDS, THE 6 5
 BOY AND HIS DOG, A 16 3

SUBSTV: Extracting a Variable Length Substring

The SUBSTV function extracts a substring based on where it begins and its length in the
parent string. This is similar to SUBSTR; however, the end position for the string is calculated
from the starting position and the substring length. Therefore, it has fewer parameters than
SUBSTR. Also, the actual length of the output field if it is an AnV field is determined based
on the substring length.

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-57

Character Functions for AnV Fields
Syntax How to Extract a Variable Length Substring

SUBSTV(in_limit, parent, start, sublength, outfield)

where:

in_limit

Numeric

Is the maximum length of the input string.

parent

Alphanumeric

Is the parent string enclosed in single quotation marks, or the field containing the
parent string. If it is a field, it can have An or AnV format. If it is a field of type AnV, its
length is taken from the length bytes stored in the field. If in_limit is smaller than the
actual length, the source string is truncated to this size. The final length value
determined by this comparison will be referred to as p_length (see the description of
the outfield parameter).

start

Integer

Is the starting position of the substring in the parent string. The starting position can
exceed the input string length.

sublength

Integer

Is the length in characters of the substring (normally end - start + 1). The end position of
the substring is end =start + sublength -1. Note that the ending position can exceed the
input string length depending on the provided values for start and sublength provided.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks. This field can be in An or AnV format.

If the format of outfield is AnV, the actual length, outlen, is computed as follows from the
values for end, start, and p_length (see the parent parameter):

If end > p_length or end < start, then outlen = 0 otherwise, outlen = end - start + 1.
4-58 Information Builders

Character Functions
Example Extracting a Variable Length Substring

The following request extracts a trailing definite or indefinite article from a movie title (such
as ", THE" in "SMURFS, THE"). First it trims the trailing blanks so that the article is the trailing
pattern. Next it finds the starting position and length of the pattern. Then SUBSTV extracts
the pattern and TRIMV trims the pattern from the title:

DEFINE FILE MOVIES
 TITLEV/A39V = TRIMV('T',TITLE, 39,' ', 1, TITLEV);
 PSTART/I4 = POSITV(TITLEV,LENV(TITLEV,'I4'), ',', 1,'I4');
 PLEN/I4 = IF PSTART NE 0 THEN LENV(TITLEV,'I4') - PSTART +1
 ELSE 0;
 PATTERN/A20V= SUBSTV(39, TITLEV, PSTART, PLEN, PATTERN);
 NEWTIT/A39V = TRIMV('T',TITLEV,39,PATTERN,LENV(PATTERN,'I4'), NEWTIT);
END
TABLE FILE MOVIES
 PRINT TITLE
 PSTART AS 'Pattern,Start' IN 25
 PLEN AS 'Pattern,Length'
 NEWTIT AS 'Trimmed,Title' IN 55
BY CATEGORY NOPRINT
WHERE PLEN NE 0
END

The output is:

 Pattern Pattern Trimmed
TITLE Start Length Title
----- ------ ---- -------
SMURFS, THE 7 5 SMURFS
SHAGGY DOG, THE 11 5 SHAGGY DOG
MALTESE FALCON, THE 15 5 MALTESE FALCON
PHILADELPHIA STORY, THE 19 5 PHILADELPHIA STORY
TIN DRUM, THE 9 5 TIN DRUM
FAMILY, THE 7 5 FAMILY
CHORUS LINE, A 12 3 CHORUS LINE
MORNING AFTER, THE 14 5 MORNING AFTER
BIRDS, THE 6 5 BIRDS
BOY AND HIS DOG, A 16 3 BOY AND HIS DOG
Using Functions 4-59

Character Functions for AnV Fields
TRIMV: Removing Characters From a String

The TRIMV function removes leading and/or trailing occurrences of a pattern within a
character string. TRIMV is similar to TRIM; however, TRIMV allows the input string and the
pattern to be in AnV format.

TRIMV is useful for converting an An field to an AnV field (with the length bytes containing
the actual length of the data up to the last non-blank character).

Syntax How to Remove Characters From a String

TRIMV(trim_where, string, slength_limit, pattern, plength_limit,
outfield)

where:

trim_where

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

string

Alphanumeric

Is the source character string enclosed in single quotation marks, or the field
containing the string. If it is a field, it can have An or AnV format. If it is a field of type
AnV, its length is taken from the length bytes stored in the field. If slength_limit is
smaller than the actual length, the source string is truncated to this upper limit.

slength_limit

Integer

Is the maximum length of the input string.

pattern

Alphanumeric

Is the pattern to remove enclosed in single quotation marks. If it is a field, it can have An
or AnV format. If it is a field of type AnV, its length is taken from the length bytes stored
in the field. If plength_limit is smaller than the actual length, the pattern is truncated to
this limit.

Available Operating Systems: All

Available Languages: reporting
4-60 Information Builders

Character Functions
plength_limit

Integer

Is the maximum length of the pattern.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks. The field can be in AnV or An format.

If the format of outfield is AnV, the actual length is equal to the number of characters
left after trimming.

Example Creating an AnV Field by Removing Trailing Blanks

TRIMV creates an AnV field named TITLEV by removing trailing blanks from the TITLE value:

TABLE FILE MOVIES
PRINT DIRECTOR
COMPUTE TITLEV/A39V = TRIMV('T', TITLE, 39, ' ', 1, TITLEV);
BY CATEGORY
END

Here are the first 10 lines of the output:

CATEGORY DIRECTOR TITLEV

ACTION SPIELBERG S. JAWS
 VERHOVEN P. ROBOCOP
 VERHOVEN P. TOTAL RECALL
 SCOTT T. TOP GUN
 MCDONALD P. RAMBO III
CHILDREN SMURFS, THE
 BARTON C. SHAGGY DOG, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 GEROMINI ALICE IN WONDERLAND
 SESAME STREET-BEDTIME STORIES AND SONGS
 ...

UPCASV: Creating a Variable Length Uppercase String

UPCASV converts alphabetic characters to uppercase like UPCASE. However, UPCASV can
return AnV output whose actual length is the lesser of the actual length of the AnV input
field and an input parameter that specifies the size.

Available Operating Systems: All

Available Languages: reporting
Using Functions 4-61

Character Functions for AnV Fields
Syntax How to Create a Variable Length Uppercase String

UPCASV(length_limit, string, outfield)

where:

length_limit

Numeric

Is a positive constant or a field whose integer portion represents the size and, therefore,
the upper limit for the length of the input string.

string

Alphanumeric

Is the character string enclosed in single quotation marks, or the field containing the
character string. If it is a field, it can have An or AnV format. If it is a field of type AnV, its
length is taken from the length bytes stored in the field. If length_limit is smaller than
the actual length, the source string is truncated to this size.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks. This can be a field with AnV or An format.

If the format of outfield is AnV, then the actual length returned is equal to the smaller of
the input string length and length_limit.

Example Creating a Variable Length Uppercase String

Suppose you are sorting on a field that contains both uppercase and mixed case values. The
following request defines a field called LAST_NAME_MIXED that contains both uppercase
and mixed case values:

DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE
LCWORD(15, LAST_NAME, 'A15');
LAST_NAME_UPCASV/A15=UPCASV(5, LAST_NAME_MIXED, 'A15') ;
END

Suppose you execute a request that sorts by this field:

TABLE FILE EMPLOYEE
PRINT LAST_NAME_MIXED AND FIRST_NAME BY LAST_NAME_UPCASV
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

-RUN
4-62 Information Builders

Character Functions
The output is:

LAST_NAME_UPCASV LAST_NAME_MIXED FIRST_NAME
---------------- --------------- ----------
BANNI Banning JOHN
BLACK BLACKWOOD ROSEMARIE
CROSS CROSS BARBARA
MCCOY MCCOY JOHN
MCKNI Mcknight ROGER
ROMAN Romans ANTHONY
Using Functions 4-63

Character Functions for AnV Fields
4-64 Information Builders

CHAPTER 5

Maintain-specific Character Functions
Character functions manipulate alphanumeric fields or character strings. The functions in this topic are
available only in the Maintain language.

There are additional character functions that are available in both the reporting and Maintain languages.
For information on these functions, see Chapter 4, Character Functions.

Topics:

• CHAR2INT: Translating a Character to an
Integer Value

• INT2CHAR: Translating an Integer Value to a
Character

• LCWORD and LCWORD2: Converting a
Character String to Mixed Case

• LENGTH: Determining the Length of a
Character String

• LJUST: Left-Justifying a Character String
(Maintain)

• LOWER: Converting a Character String to
Lowercase

• MASK: Extracting or Adding Characters

• NLSCHR: Converting Characters From the
Native English Code Page

• OVRLAY: Overlaying a Character String
(Maintain)

• POSIT: Finding the Beginning of a Substring
(Maintain)

• RJUST: Right-Justifying a Character String
(Maintain)

• SELECTS: Decoding a Value From a Stack

• STRAN: Substituting One Substring for
Another

• STRCMP: Comparing Character Strings

• STRICMP: Comparing Character Strings and
Ignoring Case

• STRNCMP: Comparing Character Substrings

• STRTOKEN: Extracting a Substrings Based on
Delimiters

• SUBSTR: Extracting a Substring (Maintain)

• TRIM: Removing Trailing Occurrences
(Maintain)

• TRIMLEN: Determining the Length of a String
Excluding Trailing Spaces

• UPCASE: Converting Text to Uppercase
(Maintain)
Using Functions 5-1

CHAR2INT: Translating a Character to an Integer Value
CHAR2INT: Translating a Character to an Integer Value

The CHAR2INT function translates an ASCII or EBCDIC character to the integer value it
represents, depending on the operating system.

Syntax How to Translate a Character Into an Integer Value

CHAR2INT("character")

where:

character

Is the ASCII or EBCDIC character to translate into its integer value.

Example Translating a Character Into an Integer Value

CHAR2INT translates the character X into its integer equivalent.

MAINTAIN
INT/I3=CHAR2INT("X");
type "INT IS <INT";
END

On an ASCII platform, the integer value would be 120.

On an EBCDIC platform, the integer value would be 231.

Available Operating Systems: All

Available Languages: Maintain
5-2 Information Builders

Maintain-specific Character Functions
INT2CHAR: Translating an Integer Value to a Character

The INT2CHAR function translates an integer into the equivalent ASCII or EBCDIC character,
depending on the operating system.

Syntax How to Translate an Integer Value Into a Character

INT2CHAR(value)

where:

value

Is the integer to translate into its equivalent ASCII or EBCDIC character.

Example Translating an Integer Value Into a Character

INT2CHAR translates the integer value 93 into its character equivalent.

MAINTAIN
CHAR/A1=INT2CHAR(93);
TYPE "CHAR IS <CHAR";
END

On an ASCII or EBCDIC platform, the result would be a right bracket (]).

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-3

LCWORD and LCWORD2: Converting a Character String to Mixed Case
LCWORD and LCWORD2: Converting a Character String to Mixed Case

The LCWORDand LCWORD2 functions convert the letters in a character string to mixed
case. These functions convert character strings in the following way:

• LCWORD. Converts every alphanumeric character to lowercase except the first letter of
each new word and the first letter after a single or double quotation mark. For example,
O’CONNOR is converted to O’Connor and JACK’S to Jack’S.

If LCWORD encounters a number in the character string, it treats it as an uppercase
character and continues to convert the following alphabetic characters to lowercase.

• LCWORD2. Converts every alphanumeric character to lowercase except the first letter
of each new word. If LCWORD2 encounters a lone single quotation mark, the next letter
is converted to lowercase. For example, ‘SMITH’ would be changed to ‘Smith,’ and
JACK’S would be changed to Jack’s.

To use these functions, you must import the function library MNTUWS. For information on
importing this library, see How to Access the Maintain MNTUWS Function Library in Chapter 3.

There is also an LCWORD function available for both the reporting and Maintain languages.
For information on this function, see LCWORD: Converting a Character String to Mixed Case in
Chapter 4.

Syntax How to Convert a Character String to Mixed Case

{LCWORD|LCWORD2}(string)

where:

string

Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

Available Operating Systems: All

Available Languages: Maintain
5-4 Information Builders

Maintain-specific Character Functions
Example Converting a Character String to Mixed Case

LCWORD and LCWORD2 convert the string O’CONNOR to mixed case:

MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS)
COMPUTE MYVAL1/A10="O'CONNOR";
 COMPUTE LC1/A10 = LCWORD(MYVAL1);
 COMPUTE LC2/A10 = LCWORD2(MYVAL1);
 TYPE "<<MYVAL1 <<LC1 <<LC2"
END

The output is:

MYVAL1 LC1 LC2
O'CONNOR O'Connor O'connor

LENGTH: Determining the Length of a Character String

The LENGTH function determines the length of a character string, including trailing spaces.

Syntax How to Determine the Length of a Character String

LENGTH(string)

where:

string

Alphanumeric

Is the character string whose length is to be found, or a temporary field that contains
the string.

Example Determining the Length of a Character String

LENGTH determines the length of a variable in COUNTRY:

MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS)
NEXT COUNTRY INTO STK1
COMPUTE LEN/I3 = LENGTH(STK1(1).COUNTRY);
TYPE "<STK1(1).COUNTRY HAS A LENGTH OF <<LEN"
END

The result is:

ENGLAND HAS A LENGTH OF 10

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-5

LJUST: Left-Justifying a Character String (Maintain)
LJUST: Left-Justifying a Character String (Maintain)

LJUST will not have any visible effect in a report that uses StyleSheets (SET STYLE=ON)
unless you center the item.

To use this function, you must import the function library MNTUWS. For information on
importing this library see How to Access the Maintain MNTUWS Function Library in Chapter 3.

There is also an LJUST function available for the reporting language. For information on this
function, see LJUST: Left-Justifying a Character String in Chapter 4.

Syntax How to Left-Justify a Character String

LJUST(string)

where:

string

Alphanumeric

Is the character string to be justified, or a temporary field that contains the string.

LOWER: Converting a Character String to Lowercase

The LOWER function converts a character string to lowercase.

To use this function, you must import the function library MNTUWS. For details on
importing this library see How to Access the Maintain MNTUWS Function Library in Chapter 3.

Syntax How to Convert a Character String to Lowercase

LOWER(string)

where:

string

Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

Available Operating Systems: All

Available Languages: Maintain

The LJUST function left-justifies a character string within a field. All leading spaces are
removed.

Available Operating Systems: All

Available Languages: Maintain
5-6 Information Builders

Maintain-specific Character Functions
MASK: Extracting or Adding Characters

The MASK function extracts characters from or adds characters to an alphanumeric string. It
can extract a substring from different parts of the parent string, and can insert characters
from a parent string into another substring. For example, it can extract the first two
characters and the last two characters of a string to form a single substring.

MASK works by comparing the characters in a mask to the characters in a source field.
When it encounters a 9 in the mask, MASK copies the corresponding character from the
source field to the new field. When it encounters a dollar sign in the mask, MASK ignores
the corresponding character in the source field. When it encounters any other character in
the mask, MASK copies that character to the corresponding position in the new field.

MASK replaces the masking functionality of the EDIT function that is available in the
reporting language.

Syntax How to Extract or Add Characters

MASK(fieldname, 'mask')

where:

fieldname

Is the source field.

mask

Is a character string enclosed in single quotation marks, or a temporary field that
contains the string.

Example Extracting a Character From a Field

MASK extracts the first initial from the FIRST_NAME field:

MASK(FIRST_NAME, '9$$$$$$$$$')

The following are sample values for FIRST_NAME and the values for the result of the MASK
function:

FIRST_NAME MASK(FIRST_NAME, '9$$$$$$$$$')
---------- ------------------------------
MARY M
DIANE D
JOHN J
ROSEMARIE R
MARY M
BARBARA B

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-7

NLSCHR: Converting Characters From the Native English Code Page
Example Adding Dashes to a Field

MASK adds dashes to the EMP_ID field:

MASK(EMP_ID, '999-99-9999')

The following are sample values for EMP_ID and the values for the result of the MASK
function:

EMP_ID MASK(EMP_ID, '999-99-9999')
------ ---------------------------
112847612 112-84-7612
117593129 117-59-3129
219984371 219-98-4371
326179357 326-17-9357
543729165 543-72-9165
818692173 818-69-2173

NLSCHR: Converting Characters From the Native English Code Page

NLSCHR converts a character from the native English code page to the running code page.
This is useful when hosting Web applications on an EBCDIC host with non-English code
pages.

Syntax How to Convert Characters From the Native English Code Page

NLSCHR("character")

where:

character

Is the character being converted from the native English code page.

Example Converting Characters From the Native English Code Page

NLSCHR forces the dollar sign to display whenever the variable ADOLLAR is used regardless
of the code page being run.

MAINTAIN
ADOLLAR/A1=NLSCHR("$");
.
.
.
END

Available Operating Systems: All

Available Languages: Maintain
5-8 Information Builders

Maintain-specific Character Functions
OVRLAY: Overlaying a Character String (Maintain)

The OVRLAY function overlays a base character string with a substring.

To use this function, you must import the function library MNTUWS. For information on
importing this library, see How to Access the Maintain MNTUWS Function Library in Chapter 3.

There is also an OVRLAY function available for the reporting language. For information on
this function, see OVRLAY: Overlaying a Character String in Chapter 4.

Syntax How to Overlay a Character String

OVRLAY(string1, string2, position)

where:

string1

Alphanumeric

Is the base character string.

string2

Alphanumeric

Is the substring that will overlay string1.

position

Integer

Is the position in the base string at which the overlay begins.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-9

OVRLAY: Overlaying a Character String (Maintain)
Example Overlaying a Character String

OVRLAY replaces the letters MCA in the MOVIECODE field with MHD:

MAINTAIN FILE movies
Module Import (mntuws);

Case Top
Infer moviecode into MCASTK
Compute MCASTK.NEWCODE/A6;
For all next Moviecode into stk1
Stack copy from stk1 into MCASTK
 where moviecode contains ’MCA’;
Compute i/i2=1;
Type "Original Code New Code"
repeat mcastk.Foccount
 Compute MCASTK(i).Newcode = OVRLAY(MCASTK(I).MOVIECODE, ’MHD’, 4);
 Type " <<MCASTK(i).moviecode <<MCASTK(I).NEWCODE"
 Compute i=i+1;
endrepeat
EndCase
END

The following are sample values for MOVIECODE and the values for the result of the OVRLAY
function:

 Original Code New Code
 001MCA 001MHD
 081MCA 081MHD
 082MCA 082MHD
 161MCA 161MHD
 196MCA 196MHD
 530MCA 530MHD
 550MCA 550MHD
 883MCA 883MHD
5-10 Information Builders

Maintain-specific Character Functions
POSIT: Finding the Beginning of a Substring (Maintain)

The POSIT function finds the starting position of a substring within a larger string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value 0.

To use this function, you must import the function library MNTUWS. For information on
importing this library see How to Access the Maintain MNTUWS Function Library in Chapter 3.

There is also a POSIT function available for the reporting language. For information on this
function, see POSIT: Finding the Beginning of a Substring in Chapter 4.

Syntax How to Find the Beginning of a Substring

POSIT(parent, substring)

where:

parent

Alphanumeric

Is the parent string.

substring

Alphanumeric

Is the substring for which to find the position.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-11

POSIT: Finding the Beginning of a Substring (Maintain)
Example Finding the Beginning of a Substring

POSIT displays all movie titles containing the word ROOF and the starting position of the
ROOF string:

MAINTAIN FILE movies

Module Import (mntuws);

Case Top
For all next Moviecode into stk1
 Where Title Contains ’ROOF’;
Compute i/i2=1;
type " Title Start Position of word ROOF"
repeat stk1.Foccount
 Compute STK1(i).POS/I3 = POSIT(STK1(I).TITLE, ’ROOF’);
 Type " <STK1(i).Title <<STK1(I).pos"
 Compute i=i+1;
endrepeat
EndCase
END

The following are sample values for MOVIECODE and values for the result of the POSIT
function:

Title Start Position of word ROOF
FIDDLER ON THE ROOF 16
CAT ON A HOT TIN ROOF 18
5-12 Information Builders

Maintain-specific Character Functions
RJUST: Right-Justifying a Character String (Maintain)

The RJUST function right-justifies a character string. All trailing blanks become leading
blanks. This is useful when you display alphanumeric fields containing numbers.

RJUST does not have any visible effect in a report that uses StyleSheets (SET STYLE=ON)
unless you center the item. Also, if you use RJUST on a platform on which StyleSheets are
turned on by default, issue SET STYLE=OFF before running the request.

There is also an RJUST function available for the reporting language. For information on this
function, see RJUST: Right-Justifying a Character String in Chapter 4.

Syntax How to Right-Justify a Character String

RJUST(string, length, char)

where:

string

Is the character string, or a temporary field that contains the string.

length

Is the length in characters of the result. If this argument is less than the length of string,
RJUST trims string from right to left. If this argument is zero, RJUST returns a variable
length string of length zero.

char

Is the character to pad the character string with and right-justify it. RJUST uses char
only when length is greater than the length of string.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-13

SELECTS: Decoding a Value From a Stack
SELECTS: Decoding a Value From a Stack

The SELECTS function decodes a value from a stack.

Syntax How to Decode a Value From a Stack

target SELECTS (code result, code result, ... [ELSE default])

where:

target

Is a valid expression. It can be either a field name or a variable that resolves to a single
stack cell.

code

Is the value SELECTS searches for. Once the value is found, the input expression is
assigned the corresponding result. The comma between the code and result is
optional.

result

Is the value assigned when the input expression has the corresponding code.

default

Is the value to be assigned if the code is not found among the list of codes. If the default
is omitted, a space or zero is assigned to non-matching codes.

Example Decoding Values With SELECTS

The following computes a user-defined field based on the values in a stack:

COMPUTE Square = Stk(Cnt).Number SELECTS (1 1, 2 4, 3 9);

Because SELECTS is a binary operator, it can also be used in an expression:

COMPUTE Square_Plus = Stk(Cnt).Number SELECTS (1 1, 2 4, 3 9) +1;

Available Operating Systems: All

Available Languages: Maintain
5-14 Information Builders

Maintain-specific Character Functions
Example Decoding a Value From a Stack

The following example uses MASK extracts the first character of the field CURR_JOBCODE in
the EMPLOYEE file. Then SELECTS creates a value for the field JOB_CATEGORY:

MAINTAIN FILE Employee

Case Top
 FOR ALL NEXT EMPINFO.EMP_ID INTO EmpStack;
 COMPUTE
 DEPX_CODE/A1 = MASK(EmpStack().CURR_JOBCODE,'9$$');
 JOB_CATEGORY/A15 = DEPX_CODE SELECTS (A 'ADMINISTRATIVE' B 'DATA
PROCESSING') ;
EndCase
END

The following table shows sample values for CURR_JOBCODE and the corresponding values
for JOB_CATEGORY:

CURR_JOBCODE JOB_CATEGORY
------------ ------------
A01 ADMINISTRATIVE
A07 ADMINISTRATIVE
A15 ADMINISTRATIVE
A17 ADMINISTRATIVE
B02 DATA PROCESSING
B03 DATA PROCESSING
B04 DATA PROCESSING
B14 DATA PROCESSING
Using Functions 5-15

STRAN: Substituting One Substring for Another
STRAN: Substituting One Substring for Another

The STRAN function substitutes a substring for another substring in a character string.
STRAN enables you to edit part of a character string without replacing the field entirely.

To use this function, you must import the function library MNTUWS. For details on
importing this library see How to Access the Maintain MNTUWS Function Library in Chapter 3.

Syntax How to Substitute a Substring

STRAN(string, substr1, substr2)

where:

string

Alphanumeric

Is the character string into which you want to substitute one substring for another, or a
temporary field that contains the string.

substr1

Alphanumeric

Is the substring to replace.

substr2

Alphanumeric

Is the substring to insert in place of substr1.

Available Operating Systems: All

Available Languages: Maintain
5-16 Information Builders

Maintain-specific Character Functions
Example Substituting One String for Another

STRAN replaces the word DOOR with the word Seater in the MODEL field:

MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS);
FOR ALL NEXT COUNTRY CAR MODEL INTO XSTK
 WHERE MODEL CONTAINS ’DOOR’
COMPUTE XSTK.NEWMOD/A24;
COMPUTE I/I2=1;
REPEAT XSTK.FOCCOUNT
 COMPUTE XSTK(I).NEWMOD=STRAN(XSTK(I).MODEL,’DOOR’,’SEATER’);
 TYPE "<<XSTK(I).CAR <<XSTK(I).MODEL <<XSTK(I).NEWMOD"
 COMPUTE I=I+1;
ENDREPEAT
END

The following are sample values for MODEL and values for the result of the STRAN function:

CAR MODEL STRAN
--- ----- -----
PEUGEOT 504 4 DOOR 504 4 SEATER
ALFA ROMEO 2000 4 DOOR BERLINA 2000 4 SEATER BERLINA
MASERATI DORA 2 DOOR DORA 2 SEATER
DATSUN B210 2 DOOR AUTO B210 2 SEATER AUTO
TOYOTA COROLLA 4 DOOR DIX AUTO COROLLA 4 SEATER DIX AUT
AUDI 100 LS 2 DOOR AUTO 100 LS 2 SEATER AUTO
BMW 2002 2 DOOR 2002 2 SEATER
BMW 2002 2 DOOR AUTO 2002 2 SEATER AUTO
BMW 3.0 SI 4 DOOR 3.0 SI 4 SEATER
BMW 3.0 SI 4 DOOR AUTO 3.0 SI 4 SEATER AUTO
BMW 530I 4 DOOR 530I 4 SEATER
BMW 530I 4 DOOR AUTO 530I 4 SEATER AUTO
Using Functions 5-17

STRCMP: Comparing Character Strings
STRCMP: Comparing Character Strings

The STRCMP function compares two character strings using the EBCDIC or ASCII collating
sequence.

• If the first string is less than the second string, STRCMP returns a negative value.

• If the first string is greater than the second string, STRCMP returns a positive value.

• If the first string is equal to the second string, STRCMP returns zero.

Syntax How to Compare Character Strings

STRCMP(string1, string2)

where:

string1, string2

Alphanumeric

Are the strings to compare, or temporary fields that contain the strings.

Available Operating Systems: All

Available Languages: Maintain
5-18 Information Builders

Maintain-specific Character Functions
Example Comparing Character Strings

STRCMP compares the length of two fields:

MAINTAIN
COMPUTE STR1/A20 = ’STRING IS LONG’;
 STR2/A20 = ’STRING IS LONGER’;
COMPUTE DIF/I3= STRCMP(STR1, STR2);
TYPE "STR1 = <<STR1"
TYPE "STR2 = <<STR2"
IF DIF LT 0 THEN TYPE "STR2 IS GREATER THAN STR1"
ELSE IF DIF GT 0 THEN TYPE "STR2 IS LESS THAN STR1"
ELSE IF DIF EQ 0 THEN TYPE "STR2 EQUALS STR1"
TYPE " "
COMPUTE STR3/A20 = ’STRING IS LONGEST’;
 STR4/A20 = ’STRING IS LONG’;
TYPE "STR3 = <<STR3"
TYPE "STR4 = <<STR4"
COMPUTE DIF= STRCMP(STR3, STR4);
IF DIF LT 0 THEN TYPE "STR4 IS GREATER THAN STR3"
ELSE IF DIF GT 0 THEN TYPE "STR4 IS LESS THAN STR3"
ELSE IF DIF EQ 0 THEN TYPE "STR4 EQUALS STR3"
TYPE " "
COMPUTE DIF= STRCMP(STR1, STR4);
IF DIF LT 0 THEN TYPE "STR1 IS GREATER THAN STR4"
ELSE IF DIF GT 0 THEN TYPE "STR1 IS LESS THAN STR4"
ELSE IF DIF EQ 0 THEN TYPE "STR1 EQUALS STR4"
END

The result is:

STR1 = STRING IS LONG
STR2 = STRING IS LONGER
STR2 IS GREATER THAN STR1

STR3 = STRING IS LONGEST
STR4 = STRING IS LONG
STR4 IS LESS THAN STR3

STR1 EQUALS STR4
Using Functions 5-19

STRICMP: Comparing Character Strings and Ignoring Case
STRICMP: Comparing Character Strings and Ignoring Case

The STRICMP function compares two character strings using the EBCDIC or ASCII collating
sequence, but ignores case differences.

• If the first string is less than the second string, STRICMP returns a negative value.

• If the first string is greater than the second string, STRICMP returns a positive value.

• If the first string is equal to the second string, STRICMP returns zero.

Syntax How to Compare Character Strings and Ignore Case

STRICMP(string1, string2)

where:

string1, string2

Alphanumeric

Are the strings to compare, or temporary fields that contain the strings.

Available Operating Systems: All

Available Languages: Maintain
5-20 Information Builders

Maintain-specific Character Functions
STRNCMP: Comparing Character Substrings

The STRNCMP function compares a specified number of characters in two character strings
starting at the beginning of the strings using the EBCDIC or ASCII collating sequence.

• If the first string is less than the second string, STRNCMP returns a negative value.

• If the first string is greater than the second string, STRNCMP returns a positive value.

• If the first string is equal to the second string, STRNCMP returns zero.

Syntax How to Compare Character Substrings

STRNCMP(string1, string2, number)

where:

string1, string2

Alphanumeric

Are the strings that contain the substrings to compare.

number

Integer

Is the number of characters to compare in string1 and string2 you want to compare.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-21

STRTOKEN: Extracting a Substrings Based on Delimiters
STRTOKEN: Extracting a Substrings Based on Delimiters

The STROKEN function returns a substring, that consists of a string’s characters from the
beginning of a string to a specified character, called a delimiter.

To use this function, you must import the function library MNTUWS. For details on
importing this library see How to Access the Maintain MNTUWS Function Library in Chapter 3.

Syntax How to Extract a Substring

STRTOKEN(string, delimiters)

where:

string

Alphanumeric

Is the character string, or a variable that contains the string enclosed in double
quotation marks.

delimiters

Alphanumeric

Is a character string, or variable enclosed in double quotation marks that contains a list
of delimiters. Separate the delimiters with semicolons.

Available Operating Systems: All

Available Languages: Maintain
5-22 Information Builders

Maintain-specific Character Functions
Example Extracting a Substring

STRTOKEN returns a substring of the first five STREET values in the VIDEOTRK data source
based on the delimiters period, space, or asterisk.

MAINTAIN FILE VIDEOTRK
MODULE IMPORT (MNTUWS);
FOR ALL NEXT CUSTID INTO CSTACK ;
COMPUTE CNT/I5 = 1;
TYPE " ";
REPEAT WHILE CNT LE 5;
COMPUTE SUBSTREET/A20 = STRTOKEN(CSTACK(CNT).STREET,".; ,*");
TYPE " STREET = <CSTACK(CNT).STREET"
TYPE " SUBSTREET = <SUBSTREET "
COMPUTE CNT = CNT +1;
ENDREPEAT
END

The output is:

STREET = 86 ELLIOTT AVE.
SUBSTREET = 86
STREET = 7 DAVENPORT LA.
SUBSTREET = 7
STREET = 8 MAGNOLIA LA.
SUBSTREET = 8
STREET = 35 POWELL ST.
SUBSTREET = 35
STREET = 10 COW LA.
SUBSTREET = 10
Using Functions 5-23

SUBSTR: Extracting a Substring (Maintain)
SUBSTR: Extracting a Substring (Maintain)

The SUBSTR function extracts a substring based on where it begins and its length in the
parent string. SUBSTR can vary the position of the substring depending on the values of
other fields.

There is also a SUBSTR function available for the reporting language. For information on
this function, see SUBSTR: Extracting a Substring in Chapter 4.

Syntax How to Extract a Substring

SUBSTR(string, start, length)

where:

string

Alphanumeric

Is the parent string enclosed in single quotation marks, or a field or variable containing
the character string.

start

Integer

Is the starting position of the substring in the parent string.

length

Integer

Is the length in characters of the substring.

Available Operating Systems: All

Available Languages: Maintain
5-24 Information Builders

Maintain-specific Character Functions
Example Extracting the First Character of a String in Maintain

SUBSTR extracts the first letter of FIRST_NAME, combines it with LAST_NAME, and stores
the result in UID:

MAINTAIN FILE EMPLOYEE
CASE TOP
INFER EMP_ID FIRST_NAME LAST_NAME INTO ADDSTACK
COMPUTE UID/A9 = SUBSTR(ADDSTACK().FIRST_NAME,1,1) ||
 ADDSTACK().LAST_NAME;
ENDCASE
END

The following table shows sample values for FIRST_NAME and LAST_NAME, and the
corresponding values for UID:

FIRST_NAME LAST_NAME UID
JOE SMITH JSMITH
SAM JONES SJONES
TERRI WHITE TWHITE

TRIM: Removing Trailing Occurrences (Maintain)

The TRIM function removes trailing occurrences of a pattern within a character string.

There is also a TRIM function available for the reporting language. For information on this
function, see TRIM: Removing Leading and Trailing Occurrences in Chapter 4.

Syntax How to Remove Trailing Occurrences

TRIM(string)

where:

string

Alphanumeric

Is the character string enclosed in single quotation marks, or the field containing the
string.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-25

TRIMLEN: Determining the Length of a String Excluding Trailing Spaces
TRIMLEN: Determining the Length of a String Excluding Trailing Spaces

The TRIMLEN function determines the length of a character string excluding trailing spaces.

Syntax How to Determine the Length of a String Excluding Trailing Spaces

TRIMLEN (string)

where:

string

Alphanumeric

Is the string to be measured.

Example Determining the Length of a String Excluding Trailing Spaces

TRIMLEN determines the length of a field in COUNTRY excluding trailing blanks:

MAINTAIN FILE CAR
MODULE IMPORT (MNTUWS)
NEXT COUNTRY INTO STK1
COMPUTE LEN/I3 = LENGTH(STK1(1).COUNTRY);
COMPUTE LEN2/I3 = TRIMLEN(STK1(1).COUNTRY);
TYPE "<STK1(1).COUNTRY HAS A LENGTH OF <LEN2 WITHOUT TRAILING BLANKS"
END

The result is:

ENGLAND HAS A LENGTH OF 7 WITHOUT TRAILING BLANKS

Available Operating Systems: All

Available Languages: Maintain
5-26 Information Builders

Maintain-specific Character Functions
UPCASE: Converting Text to Uppercase (Maintain)

The UPCASE function converts a character string to uppercase. It is useful for sorting on a
field that contains both mixed case and uppercase values. Sorting on a mixed case field
produces incorrect results because the sorting sequence in EBCDIC always places lowercase
letters before uppercase letters, while the ASCII sorting sequence always places uppercase
letters before lowercase. To obtain correct results, define a new field with all of the values in
uppercase, and sort on that.

To use this function, you must import the function library MNTUWS. For information on
importing this library see How to Access the Maintain MNTUWS Function Library in Chapter 3.

There is also an UPCASE function available for the reporting language. For information on
this function, see UPCASE: Converting Text to Uppercase in Chapter 4.

Syntax How to Convert Text to Uppercase

UPCASE(string)

where:

string

Alphanumeric

Is the character string to be converted to uppercase.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 5-27

UPCASE: Converting Text to Uppercase (Maintain)
5-28 Information Builders

CHAPTER 6

Data Source and Decoding Functions

Topics:

• DECODE: Decoding Values

• FIND: Verifying the Existence of a
Value in an Indexed Field

• LAST: Retrieving the Preceding
Value

• LOOKUP: Retrieving a Value From a
Cross-referenced Data Source

Data source and decoding functions search for data source
records, retrieve data source records or values, and assign
values based on the value of an input field.

The result of a data source function must be stored in a
field. The result cannot be stored in a Dialogue Manager
variable.
Using Functions 6-1

DECODE: Decoding Values
DECODE: Decoding Values

The DECODE function assigns values based on the coded value of an input field. DECODE is
useful for giving a coded value in a field a more meaningful value. For example, the field
GENDER may have the code F for female employees and M for male employees for efficient
storage (for example, one character instead of six for female). DECODE expands (decodes)
these values to ensure correct interpretation on a report.

You can use DECODE by supplying values directly in the function or by reading values from
a separate file.

The use of DECODE with Maintain is limited. For information on decoding values with
subscripted stack values, see SELECTS: Decoding a Value From a Stack in Chapter 5.

Syntax How to Supply Values in the Function

DECODE fieldname(code1 result1 code2 result2...[ELSE default]);

where:

fieldname

Alphanumeric or Numeric

Is the name of the input field.

code

Any Supported Format

Is the coded value DECODE searches for. If the value has embedded blanks, commas, or
other special characters, enclose it in single quotation marks. When DECODE finds the
specified value, it assigns the corresponding result.

result

Any Supported Format

Is the value assigned to a code. If the value has embedded blanks or commas or
contains a negative number, enclose it in single quotation marks.

default

Any Supported Format

Is the value assigned if the code is not found. If you omit a default value, DECODE
assigns a blank or zero to non-matching codes.

You can use up to 40 lines to define the code and result pairs for any given DECODE
function, or 39 lines if you also use an ELSE phrase. Use either a comma or blank to separate
the code from the result, or one pair from another.

Available Operating Systems: All

Available Languages: reporting, Maintain
6-2 Information Builders

Data Source and Decoding Functions
Example Supplying Values in the Function

EDIT extracts the first character of the CURR_JOBCODE field, then DECODE returns either
ADMINISTRATIVE or DATA PROCESSING depending on the value extracted.

TABLE FILE EMPLOYEE
PRINT CURR_JOBCODE AND COMPUTE
DEPX_CODE/A1 = EDIT(CURR_JOBCODE, '9$$'); NOPRINT AND COMPUTE
JOB_CATEGORY/A15 = DECODE DEPX_CODE(A 'ADMINISTRATIVE' B 'DATA
PROCESSING') ;
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME CURR_JOBCODE JOB_CATEGORY
--------- ------------ ------------
BLACKWOOD B04 DATA PROCESSING
CROSS A17 ADMINISTRATIVE
GREENSPAN A07 ADMINISTRATIVE
JONES B03 DATA PROCESSING
MCCOY B02 DATA PROCESSING
SMITH B14 DATA PROCESSING

Syntax How to Read Values From a File

DECODE fieldname(ddname [ELSE default]);

where:

fieldname

Alphanumeric or Numeric

Is the name of the input field.

ddname

Is a logical name or a shorthand name that points to the physical file containing the
decoded values.

default

Any Supported Format

Is the value assigned if the code is not found. If you omit a default, DECODE assigns a
blank or zero to non-matching codes.
Using Functions 6-3

DECODE: Decoding Values
Reference Guidelines for Reading Values From a File

• Each record in the file is expected to contain pairs of elements separated by a comma
or blank.

• If each record in the file consists of only one element, this element is interpreted as the
code, and the result becomes either a blank or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the
screening condition

IF field IS (filename)

and as a file of literals for an IF criteria specified in a computational expression. For
example:

TAKE = DECODE SELECT (filename ELSE 1);
VALUE = IF TAKE IS 0 THEN... ELSE...;

TAKE is 0 for SELECT values found in the literal file and 1 in all other cases. The VALUE
computation is carried out as if the expression had been:

IF SELECT (filename) THEN... ELSE...;

• The file can contain up to 32,767 characters in the file.

• All data is interpreted in ASCII format on UNIX, or in EBCDIC format on OS/390 or VM/
CMS, and converted to the USAGE format of the DECODE pairs.

• Leading and trailing blanks are ignored.

• The remainder of each record is ignored and can be used for comments or other data.
This convention is followed in all cases, except when the file name is HOLD. In that case,
the file is presumed to have been created by the HOLD command, which writes fields in
the internal format, and the DECODE pairs are interpreted accordingly. In this case,
extraneous data in the record is ignored.
6-4 Information Builders

Data Source and Decoding Functions
Example Reading Values From a File

The following example has two parts. The first part creates a file with a list of IDs and reads
the EDUCFILE data source. The second part reads the EMPLOYEE data source and assigns 0
to those employees who have taken classes and 1 to those employees who have not. Notice
that the HOLD file contains only one column of values; therefore, DECODE assigns the value
0 to an employee whose EMP_ID appears in the file and 1 when EMP_ID does not appear in
the file.

TABLE FILE EDUCFILE
PRINT EMP_ID
ON TABLE HOLD
END

TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND FIRST_NAME AND COMPUTE
NOT_IN_LIST/I1 = DECODE EMP_ID(HOLD ELSE 1);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

EMP_ID LAST_NAME FIRST_NAME NOT_IN_LIST
------ --------- ---------- -----------
112847612 SMITH MARY 0
117593129 JONES DIANE 0
219984371 MCCOY JOHN 1
326179357 BLACKWOOD ROSEMARIE 0
543729165 GREENSPAN MARY 1
818692173 CROSS BARBARA 0
Using Functions 6-5

FIND: Verifying the Existence of a Value in an Indexed Field
FIND: Verifying the Existence of a Value in an Indexed Field

The FIND function determines if an incoming data value is in an indexed FOCUS data source
field. The function sets a temporary field to a non-zero value if the incoming value is in the
data source field, and to 0 if it is not. A value greater than zero confirms the presence of the
data value, not the number of instances in the data source field.

You can also use FIND in a VALIDATE command to determine if a transaction field value
exists in another FOCUS data source. If the field value is not in that data source, the function
returns a value of 0, causing the validation test to fail and the request to reject the
transaction.

You can use any number of FINDs in a COMPUTE or VALIDATE command. However, more
FINDs increase processing time and require more buffer space in memory.

Limit: FIND does not work on files with different DBA passwords.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1 if the
incoming value is not in the data source and 0 if the incoming value is in the data source.

Syntax How to Verify the Existence of an Indexed Field

FIND(fieldname [AS dbfield] IN file);

where:

fieldname

Is the name of the field that contains the incoming data value.

AS dbfield

Is the name of the data source field whose values are compared to the values in the
incoming field. This field must be indexed. If the incoming field and the data source
field have the same name, omit this phrase.

file

Is the name of the indexed FOCUS data source.

Do not include a space between FIND and the left parenthesis.

Available Operating Systems: All

Available Languages: MODIFY, Maintain
6-6 Information Builders

Data Source and Decoding Functions
Example Verifying the Existence of a Value in an Indexed Field

FIND determines if a supplied value in the EMP_ID field is in the EDUCFILE data source. The
procedure then displays a message indicating the result of the search.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
COMPUTE
 EDTEST = FIND(EMP_ID IN EDUCFILE);
 MSG/A40 = IF EDTEST NE 0 THEN
 'STUDENT LISTED IN EDUCATION FILE' ELSE
 'STUDENT NOT LISTED IN EDUCATION FILE';
MATCH EMP_ID
 ON NOMATCH TYPE "<MSG"
 ON MATCH TYPE "<MSG"
DATA

A sample execution is:

>
 EMPLOYEE ON 12/04/2001 AT 12.09.03
 DATA FOR TRANSACTION 1

 EMP_ID =
112847612
 STUDENT LISTED IN EDUCATION FILE
 DATA FOR TRANSACTION 2

 EMP_ID =
219984371
 STUDENT NOT LISTED IN EDUCATION FILE
 DATA FOR TRANSACTION 3

The procedure processes as follows:

1. The procedure prompts you for an employee ID. You enter 112847612.

2. The procedure searches the EDUCFILE data source for the employee ID 112847612. It
finds the ID so prints STUDENT LISTED IN EDUCATION FILE.

3. The procedure prompts you for an employee ID. You enter 219984371.

4. The procedure searches the EDUCFILE data source for the employee ID 219984371. It
does not find the ID so prints STUDENT NOT LISTED IN EDUCATION FILE.
Using Functions 6-7

FIND: Verifying the Existence of a Value in an Indexed Field
Example Rejecting a Transaction When a Value Is Not Found

The following updates the number of hours an employee spent in class. The VALIDATE
command rejects a transaction for an employee whose ID is not found in the EDUCFILE data
source, which records class attendance.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE
 EDTEST = FIND(EMP_ID IN EDUCFILE);
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH UPDATE ED_HRS
DATA

A sample execution is:

>
 EMPLOYEE ON 12/04/2001 AT 12/26/08
 DATA FOR TRANSACTION 1

 EMP_ID =
112847612
 ED_HRS =
7
 DATA FOR TRANSACTION 2

 EMP_ID =
219984371
 ED_HRS =
0
 (FOC421) TRANS 2 REJECTED INVALID EDTEST
 219984371, 0, $
 DATA FOR TRANSACTION 3
6-8 Information Builders

Data Source and Decoding Functions
The procedure processes as follows:

1. The procedure prompts you for an employee ID and the number of hours the employee
spent in class. You enter the following data:

EMP_ID: 112847612

ED_HRS: 7

2. The procedure updates the number of hours for the ID 112847612.

3. The procedure prompts you for an employee ID and the number of hours the employee
spent in class. You enter the following data:

EMP_ID: 219984371

ED_HRS: 0

4. The procedure rejects the record for the ID 219984371 because it does not exist in the
EDUCFILE data source, and an error message is returned.

LAST: Retrieving the Preceding Value

The LAST function retrieves the preceding value for a field.

The effect of LAST depends on whether it appears in a DEFINE or COMPUTE command:

• In a DEFINE command, the LAST value applies to the previous record retrieved from the
data source before sorting takes place.

• In a COMPUTE command, the LAST value applies to the record in the previous line of
the internal matrix.

Do not use LAST with the -SET command in Dialogue Manager.

Syntax How to Retrieve the Preceding Value

LAST fieldname

where:

fieldname

Alphanumeric or Numeric

Is the field name.

Available Operating Systems: All

Available Languages: reporting
Using Functions 6-9

LAST: Retrieving the Preceding Value
Example Retrieving the Preceding Value

LAST retrieves the previous value of the DEPARTMENT field to determine whether to restart
the running total of salaries by department. If the previous value equals the current value,
CURR_SAL is added to RUN_TOT to generate a running total of salaries within each
department.

TABLE FILE EMPLOYEE
PRINT LAST_NAME CURR_SAL AND COMPUTE
RUN_TOT/D12.2M = IF DEPARTMENT EQ LAST DEPARTMENT THEN
 (RUN_TOT + CURR_SAL) ELSE CURR_SAL ;
AS 'RUNNING,TOTAL,SALARY'
BY DEPARTMENT SKIP-LINE
END

The output is:

 RUNNING
 TOTAL
DEPARTMENT LAST_NAME CURR_SAL SALARY
---------- --------- -------- -------

MIS SMITH $13,200.00 $13,200.00
 JONES $18,480.00 $31,680.00
 MCCOY $18,480.00 $50,160.00
 BLACKWOOD $21,780.00 $71,940.00
 GREENSPAN $9,000.00 $80,940.00
 CROSS $27,062.00 $108,002.00

PRODUCTION STEVENS $11,000.00 $11,000.00
 SMITH $9,500.00 $20,500.00
 BANNING $29,700.00 $50,200.00
 IRVING $26,862.00 $77,062.00
 ROMANS $21,120.00 $98,182.00
 MCKNIGHT $16,100.00 $114,282.00
6-10 Information Builders

Data Source and Decoding Functions
LOOKUP: Retrieving a Value From a Cross-referenced Data Source

The LOOKUP function retrieves a data value from a cross-referenced FOCUS data source in a
MODIFY request. You can retrieve data from a data source cross-referenced statically in a
Master File or a data source joined dynamically to another by the JOIN command. LOOKUP
retrieves a value, but does not activate the field. LOOKUP is required because a MODIFY
request, unlike a TABLE request, cannot read cross-referenced data sources freely.

LOOKUP allows a request to use the retrieved data in a computation or message, but it does
not allow you to modify a cross-referenced data source. To modify more than one data
source in one request, use the COMBINE command or the Maintain facility.

LOOKUP can read a cross-referenced segment that is linked directly to a segment in the
host data source (the host segment). This means that the cross-referenced segment must
have a segment type of KU, KM, DKU, or DKM (but not KL or KLU) or must contain the cross-
referenced field specified by the JOIN command. Because LOOKUP retrieves a single cross-
referenced value, it is best used with unique cross-referenced segments.

The cross-referenced segment contains two fields used by LOOKUP:

• The field containing the retrieved value. Alternatively, you can retrieve all the fields in a
segment at one time. The field, or your decision to retrieve all the fields, is specified in
LOOKUP.

For example, LOOKUP retrieves all the fields from the segment

RTN = LOOKUP(SEG.DATE_ATTEND);

• The cross-referenced field. This field shares values with a field in the host segment
called the host field. These two fields link the host segment to the cross-referenced
segment. LOOKUP uses the cross-referenced field, which is indexed, to locate a specific
segment instance.

When using LOOKUP, the MODIFY request reads a transaction value for the host field. It
then searches the cross-referenced segment for an instance containing this value in the
cross-referenced field:

• If there are no instances of the value, the function sets a return variable to 0. If you use
the field specified by LOOKUP in the request, the field assumes a value of blank if
alphanumeric and 0 if numeric.

• If there are instances of the value, the function sets the return variable to 1 and
retrieves the value of the specified field from the first instance it finds. There can be
more than one if the cross-referenced segment type is KM or DKM, or if you specified
the ALL keyword in the JOIN command.

Available Operating Systems: All

Available Languages: MODIFY
Using Functions 6-11

LOOKUP: Retrieving a Value From a Cross-referenced Data Source
Syntax How to Retrieve a Value From a Cross-referenced Data Source

LOOKUP(field);

where:

field

Is the name of the field to retrieve in the cross-referenced file. If the field name also
exists in the host data source, you must qualify it here.

Do not include a space between LOOKUP and the left parenthesis.

Example Reading a Value From a Cross-referenced Data Source

You may need to determine if employees were hired before or after a specific date, for
example, January 1, 1982. The employee IDs (EMP_ID) and hire date (HIRE_DATE) are
located in the host segment. The file structure is shown in this diagram:

EMP_ID
ED_HRS

BANK_NAME DAT_INC EMP_ID
DATE_ATTEND

TYPE PAY_DATE

COURSE_CODE
COURSE_NAME DED_CODE
6-12 Information Builders

Data Source and Decoding Functions
The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
COMPUTE
 EDTEST = LOOKUP(HIRE_DATE);
 COMPUTE
 ED_HRS = IF DATE_ENROLL GE 820101 THEN ED_HRS * 1.1
 ELSE ED_HRS;
MATCH EMP_ID
 ON MATCH UPDATE ED_HRS
 ON NOMATCH REJECT
DATA

A sample execution is:

1. The request prompts you for the employee ID and number of class hours. Enter the ID
117593129 and 10 class hours.

2. LOOKUP locates the first instance in the cross-referenced segment containing the
employee ID 117593129. Since the instance exists, the function returns a 1 to the
EDTEST variable. This instance lists the enroll date as 821028 (October 28, 1982).

3. LOOKUP retrieves the value 821028 for the DATE_ENROLL field.

4. The COMPUTE command tests the value of DATE_ENROLL. Since October 28, 1982 is
after January 1, 1982, the ED_HRS are increased from 10 to 11.

5. The request updates the classroom hours for employee 117593129 with the new value.
Using Functions 6-13

LOOKUP: Retrieving a Value From a Cross-referenced Data Source
Example Using a Value in a Host Segment to Search a Data Source

You can use a field value in a host segment instance to search a cross-referenced segment.
Do the following:

• In the MATCH command that selects the host segment instance, activate the host field
with the ACTIVATE command.

• In the same MATCH command, code LOOKUP after the ACTIVATE command.

This request displays the employee ID, date of salary increase, employee name, and the
employee position after the raise was granted:

• The employee ID and name (EMP_ID) are in the root segment.

• The date of increase (DAT_INC) is in the descendant host segment.

• The job position is in the cross-referenced segment.

• The shared field is JOBCODE. You never enter a job code; the values are stored in the
data source.

The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DAT_INC
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH CONTINUE
MATCH DAT_INC
 ON NOMATCH REJECT
 ON MATCH ACTIVATE JOBCODE
 ON MATCH COMPUTE
 RTN = LOOKUP(JOB_DESC);
 ON MATCH TYPE
 "EMPLOYEE ID: <EMP_ID"
 "DATE INCREASE: <DAT_INC"
 "NAME: <D.FIRST_NAME <D.LAST_NAME"
 "POSITION: <JOB_DESC"
DATA
6-14 Information Builders

Data Source and Decoding Functions
A sample execution is:

1. The request prompts you for the employee ID and date of pay increase. Enter the
employee ID 071382660 and the date 820101 (January 1, 1982).

2. The request locates the instance containing the ID 071382660, then locates the child
instance containing the date of increase 820101.

3. This child instance contains the job code A07. The ACTIVATE command makes this
value available to LOOKUP.

4. LOOKUP locates the job code A07 in the cross-referenced segment. It returns a 1 the
RTN variable and retrieves the corresponding job description SECRETARY.

5. The TYPE command displays the values:

EMPLOYEE ID: 071382660
DATE INCREASE: 82/01/01
NAME: ALFRED STEVENS
POSITION: SECRETARY

Fields retrieved by LOOKUP do not require the D. prefix. FOCUS treats the field values as
transaction values.

You may also need to activate the host field if you are using LOOKUP within a NEXT
command. This request displays the latest position held by an employee:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH CONTINUE
NEXT DAT_INC
 ON NONEXT REJECT
 ON NEXT ACTIVATE JOBCODE
 ON NEXT COMPUTE
 RTN = LOOKUP(JOB_DESC);
 ON MATCH TYPE
 "EMPLOYEE ID: <EMP_ID"
 "DATE OF POSITION: <DAT_INC"
 "NAME: <D.FIRST_NAME <D.LAST_NAME"
 "POSITION: <JOB_DESC"
DATA
Using Functions 6-15

LOOKUP: Retrieving a Value From a Cross-referenced Data Source
Example Using the LOOKUP Function With a VALIDATE Command

When you use LOOKUP, reject transactions containing values for which there is no
corresponding instance in the cross-reference segment. To do this, place the function in a
VALIDATE command. If the function cannot locate the instance in the cross-referenced
segment, it sets the value of the return variable to 0, causing the request to reject the
transaction.

The following request updates an employee’s classroom hours (ED_HRS). If the employee
enrolled in classes on or after January 1, 1982, the request increases the number of
classroom hours by 10%. The enrollment dates are stored in a cross-referenced segment
(field DATE_ATTEND). The shared field is the employee ID.

The request is as follows:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE
 TEST_DATE = LOOKUP(DATE_ENROLL);
COMPUTE
 ED_HRS = IF DATE_ENROLL GE 820101 THEN ED_HRS * 1.1
 ELSE ED_HRS;
MATCH EMP_ID
 ON MATCH UPDATE ED_HRS
 ON NOMATCH REJECT
DATA

If an employee record is not found in the cross-referenced segment, that employee never
enrolled in a class. A transaction is an error and is rejected.
6-16 Information Builders

Data Source and Decoding Functions
Using the Extended LOOKUP Function
If the LOOKUP function cannot locate a value of the host field in the cross-referenced
segment, use extended syntax to locate the next highest or lowest cross-referenced field
value in the cross-referenced segment.

To use this feature, create the index with the INDEX parameter set to NEW (the binary tree
scheme). To determine the type of index used by a data source, enter the? FDT command.

Syntax How to Use the Extended LOOKUP Function

COMPUTE
LOOKUP(field action);

where:

field

Is the name of the field in the cross-referenced data source, used in a MODIFY
computation. If the field name also exists in the host data source, you must qualify it
here.

action

Specifies the action the request takes. Valid values are:

EQ causes LOOKUP to take no further action if an exact match is not found. If a match is
found, the value of rcode is set to 1; otherwise, it is set to 0. This is the default.

GE causes LOOKUP to locate the instance with the next highest value of the cross-
referenced field. The value of rcode is set to 2.

LE causes LOOKUP to locate the instance with the next lowest value of the cross-
referenced field. The value of rcode is set to -2.

Do not include a space between LOOKUP and the left parenthesis.

The following table shows the value of rcode, depending on which instance LOOKUP
locates:

Value Action

1 Exact cross-referenced value located.

2 Next highest cross-referenced value located.

-2 Next lowest cross-referenced value located.

0 Cross-referenced value not located.
Using Functions 6-17

LOOKUP: Retrieving a Value From a Cross-referenced Data Source
6-18 Information Builders

CHAPTER 7

Date and Time Functions

Topics:

• Date and Time Function
Terminology

• Using Standard Date and Time
Functions

• Using Legacy Date Functions

Date and time functions manipulate date and time values.
There are two types of date and time functions:

• Standard date and time functions for use with non-
legacy dates. For details, see Using Standard Date and
Time Functions on page 7-2.

• Legacy date functions for use with legacy dates. For
more information, see Using Legacy Date Functions on
page 7-47.

If a date is in an alphanumeric or numeric field that
contains date display options (for example, I6YMD),
you must use the legacy date functions.

In addition to the functions discussed in this topic, there
are date and time functions that are available only in the
Maintain language. For information on these functions, see
Chapter 8, Maintain-specific Date and Time Functions.
Using Functions 7-1

Date and Time Function Terminology
Date and Time Function Terminology
Date and time functions are created for use with a date format date, or a legacy date. The
following is the difference between a non-legacy date, also called a date format, and a
legacy date:

• Standard functions. Standard date and time functions are for use with date format. A
date format refers to an internally stored integer that represents the number of days
between a real date value and a base date (either December 31, 1900, for dates with
YMD or YYMD format; or January 1901, for dates with YM, YYM, YQ, or YYQ format). A
Master File does not specify a data type or length for a date format; instead, it specifies
display options such as D (day), M (month), Y (2-digit year), or YY (4-digit year). For
example, MDYY in the USAGE attribute of a Master File is a date format. A real date
value such as March 5, 1999, displays as 03/05/1999, and is internally stored as the
offset from December 31, 1900.

A date format was formerly called a smart date.

• Legacy functions. Legacy date functions are for use with legacy dates. A legacy date
refers to an integer, packed decimal, or alphanumeric format with date edit options,
such as I6YMD, A6MDY, I8YYMD, or A8MDYY. For example, A6MDY is a 6-byte
alphanumeric string; the suffix MDY indicates how Information Builders returns the
data in the field. The sample value 030599 displays as 03/05/99.

Using Standard Date and Time Functions
When using standard date and time functions, you need to understand the settings that
alter the behavior of these functions, as well as the acceptable formats and how to supply
values in these formats.

You can affect the behavior of date and time functions in the following ways:

• Defining which days of the week are work days and which are not. Then, when you use
a date function involving work days, dates that are not work days are ignored. For
details, see Specifying Work Days on page 7-3.

• Determining whether to display leading zeros when a date function in Dialogue
Manager returns a date. For details, see Enabling Leading Zeros For Date and Time
Functions in Dialogue Manager on page 7-5.
7-2 Information Builders

Date and Time Functions
Specifying Work Days

Specifying Business Days

Business days are traditionally Monday through Friday, but not every business has this
schedule. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday, and Saturday, you can tailor business day units to reflect that schedule.

Syntax How to Set Business Days

SET BUSDAYS = smtwtfs

where:

smtwtfs

Is the seven character list of days that represents your business week. The list has a
position for each day from Sunday to Saturday:

• To identify a day of the week as a business day, enter the first letter of that day in
that day’s position.

• To identify a non-business day, enter an underscore (_) in that day’s position.

If a letter is not in its correct position, or if you replace a letter with a character other
than an underscore, you receive an error message.

Example Setting Business Days to Reflect Your Work Week

The following designates work days as Sunday, Tuesday, Wednesday, Friday, and Saturday:

SET BUSDAYS = S_TW_FS

You can determine which days are work days and which are not. Work days affect the
DATEADD, DATEDIF, and DATEMOV functions. You identify work days in the following ways:

• Specify business days. See Specifying Business Days on page 7-3.

• Specify holidays. See Specifying Holidays on page 7-4.
Using Functions 7-3

Using Standard Date and Time Functions
Syntax How to View the Current Setting of Business Days

? SET BUSDAYS

Specifying Holidays

You can specify a list of dates that are designated as holidays in your company. These dates
are excluded when using functions that perform calculations based on working days. For
example, if Thursday in a given week is designated as a holiday, the next working day after
Wednesday is Friday.

To define a list of holidays, you must:

1. Create a holiday file using a standard text editor.

2. Select the holiday file by issuing the SET command with the HDAY parameter.

Reference Rules for Creating a Holiday File

• Dates must be in YYMD format.

• Dates must be in ascending order.

• Each date must be on its own line.

• Each year for which data exists must be included. Calling a date function with a date
value outside the range of the holiday file returns a zero for business day requests.

• You may include an optional description of the holiday, separated from the date by a
space.

Procedure How to Create a Holiday File

1. In a text editor, create a list of dates designated as holidays using the Rules for Creating a
Holiday File on page 7-4.

2. Save the file:

• In OS/390, the file must be a member of ERRORS named HDAYxxxx.

• In VM/CMS, the file must be HDAYxxxx ERRORS.

where:

xxxx

Is a string of text four characters long.
7-4 Information Builders

Date and Time Functions
Syntax How to Select a Holiday File

SET HDAY = xxxx

where:

xxxx

Is the part of the name of the holiday file after HDAY. This string must be four characters
long.

Example Creating and Selecting a Holiday File

The following is the HDAYTEST file, which establishes holidays:

19910325 TEST HOLIDAY
19911225 CHRISTMAS

This request uses HDAYTEST in its calculations:

SET BUSDAYS = SMTWTFS
SET HDAY = TEST
TABLE FILE MOVIES
PRINT TITLE RELDATE
COMPUTE NEXTDATE/YMD = DATEADD(RELDATE, 'BD', 1);
WHERE RELDATE GE '19910101';
END

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager

LEADZERO only supports an expression that makes a direct call to a function. An
expression that has nesting or another mathematical function always truncates leading
zeros. For example,

-SET &OUT = AYM(&IN, 1, 'I4')/100;

truncates leading zeros regardless of the LEADZERO parameter setting.

If you use a date and time function in Dialogue Manager that returns a numeric integer
format, Dialogue Manager truncates any leading zeros. For example, if a function returns
the value 000101 (indicating January 1, 2000), Dialogue Manager truncates the leading
zeros, producing 101, an incorrect date. To avoid this problem, use the LEADZERO
parameter.
Using Functions 7-5

Using Standard Date and Time Functions
Syntax How to Set the Display of Leading Zeros

SET LEADZERO = {ON|OFF}

where:

ON

Displays leading zeros if present.

OFF

Truncates leading zeros. This value is the default.

Example Displaying Leading Zeros

The AYM function adds one month to the input date of December 1999:

-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

Using the default LEADZERO setting, this yields:

1

This represents the date of January 2000 incorrectly. Setting the LEADZERO parameter in
the request as follows

SET LEADZERO = ON
-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

results in the following:

0001

This correctly indicates January 2000.
7-6 Information Builders

Date and Time Functions
Using Date and Time Formats

Time components are separated by colons and may be followed by A.M., P.M., a.m., or p.m.

Numeric String Format

The numeric string format is exactly two, four, six, or eight digits. Four-digit strings are
considered to be a year (century must be specified), and the month and day are set to
January 1. Six and eight-digit strings contain two or four digits for the year, followed by two
for the month, and two for the day. Because the component order is fixed with this format,
the DATEFORMAT setting is ignored.

If a numeric-string format longer than eight digits is encountered, it is treated as a
combined date-time string in the Hnn format.

Example Using Numeric String Format

The following are examples of numeric string date constants:

Formatted-string Format

The formatted-string format contains a one or two-digit day, a one or two-digit month, and
a two or four-digit year, each component separated by a space, slash, hyphen, or period. All
three components must be present and follow the DATEFORMAT setting. If any of the three
fields is four digits, it is interpreted as the year, and the other two fields must follow the
order given by the DATEFORMAT setting.

Example Using Formatted-string Format

The following are examples of formatted-string date constants and specify May 20, 1999:

1999/05/20
5 20 1999
99.05.20
1999-05-20

There are three types of date formats that are valid in date-time values: numeric string
format, formatted-string format, and translated-string format. In each format, two-digit
years are interpreted using the DEFCENT and YRTHRESH parameters.

String Date

99 January 1, 1999

1999 January 1, 1999

19990201 February 1, 1999
Using Functions 7-7

Using Standard Date and Time Functions
Translated-string Format

The translated-string format contains the full or abbreviated month name. The year must
also be present in four-digit or two-digit form. If the day is missing, day 1 of the month is
assumed; if present, it can have one or two digits. If the string contains both a two-digit year
and a two-digit day, they must be in the order given by the DATEFORMAT setting.

Example Using Translated-string Format

The following date is in translated-string format:

January 6 2000

Time Format

Time components are separated by colons and may be followed by A.M., P.M., a.m., or p.m.

Seconds can be expressed with a decimal point or be followed by a colon. If there is a colon
after seconds, the value following it represents milliseconds. There is no way to express
microseconds using this notation.

A decimal point in the seconds value indicates the decimal fraction of a second.
Microseconds can be represented using six decimal digits.

Example Using Time Components

The following are examples of acceptable time components:

14:30:20:99 (99 milliseconds)
14:30
14:30:20.99 (99/100 seconds)
14:30:20.999999 (999999 microseconds)
02:30:20:500pm
7-8 Information Builders

Date and Time Functions
Assigning Date-Time Values

Syntax How to Assign Date-Time Values

In a character file

date_string [time_string]

or

time_string [date_string]

In a COMPUTE, DEFINE, or WHERE expression

DT(date_string [time_string])

or

DT(time_string [date_string])

In an IF expression

'date_string [time_string]'

or

'time_string [date_string]'

where:

time_string

Is a time string in acceptable format. A time string cannot contain blanks.

date_string

Is a date string in either numeric string, formatted-string, or translated-string format.

In an IF criteria, if the value does not contain blanks or special characters, the single
quotation marks are not necessary.

Note: The date and time strings must be separated by at least one blank space. Blank
spaces are also permitted at the beginning and end of the date-time string.

A date-time value is a constant in character format assigned by one of the following:

• A sequential data source.

• An expression that defines WHERE or IF criteria or creates a temporary field using the
DEFINE or COMPUTE command.
Using Functions 7-9

Using Standard Date and Time Functions
Example Assigning a Date-Time Value in a COMPUTE Command

The following uses the DT function in a COMPUTE command to create a new field
containing an assigned date-time value.

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME AND COMPUTE
NEWSAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
WHERE CURR_JOBCODE LIKE 'B%'
END

The output is:

LAST_NAME FIRST_NAME NEWSAL RAISETIME
--------- ---------- ------ ---------
SMITH MARY $14,520.00 2000/01/01 9:00AM
JONES DIANE $20,328.00 2000/01/01 9:00AM
ROMANS ANTHONY $23,232.00 2000/01/01 9:00AM
MCCOY JOHN $20,328.00 2000/01/01 9:00AM
BLACKWOOD ROSEMARIE $23,958.00 2000/01/01 9:00AM
MCKNIGHT ROGER $17,710.00 2000/01/01 9:00AM

Example Assigning a Date-Time Value in WHERE Criteria

The following uses the DT function to create a new field containing an assigned date-time
value. This value is then used as a WHERE criteria.

DEFINE FILE EMPLOYEE
NEWSAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME NEWSAL RAISETIME
WHERE RAISETIME EQ DT(20000101 09:00AM)
END
7-10 Information Builders

Date and Time Functions
The output is:

LAST_NAME FIRST_NAME NEWSAL RAISETIME
--------- ---------- ------ ---------
STEVENS ALFRED $12,100.00 2000/01/01 9:00AM
SMITH MARY $14,520.00 2000/01/01 9:00AM
JONES DIANE $20,328.00 2000/01/01 9:00AM
SMITH RICHARD $10,450.00 2000/01/01 9:00AM
BANNING JOHN $32,670.00 2000/01/01 9:00AM
IRVING JOAN $29,548.20 2000/01/01 9:00AM
ROMANS ANTHONY $23,232.00 2000/01/01 9:00AM
MCCOY JOHN $20,328.00 2000/01/01 9:00AM
BLACKWOOD ROSEMARIE $23,958.00 2000/01/01 9:00AM
MCKNIGHT ROGER $17,710.00 2000/01/01 9:00AM
GREENSPAN MARY $9,900.00 2000/01/01 9:00AM
CROSS BARBARA $29,768.20 2000/01/01 9:00AM

Example Assigning a Date-Time Value in IF Criteria

The following uses the DT function to create a new field containing an assigned date-time
value. This value is then used as an IF criteria.

DEFINE FILE EMPLOYEE
NEWSAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME NEWSAL RAISETIME
IF RAISETIME EQ '20000101 09:00AM'
END

The output is:

LAST_NAME FIRST_NAME NEWSAL RAISETIME
--------- ---------- ------ ---------
STEVENS ALFRED $12,100.00 2000/01/01 9:00AM
SMITH MARY $14,520.00 2000/01/01 9:00AM
JONES DIANE $20,328.00 2000/01/01 9:00AM
SMITH RICHARD $10,450.00 2000/01/01 9:00AM
BANNING JOHN $32,670.00 2000/01/01 9:00AM
IRVING JOAN $29,548.20 2000/01/01 9:00AM
ROMANS ANTHONY $23,232.00 2000/01/01 9:00AM
MCCOY JOHN $20,328.00 2000/01/01 9:00AM
BLACKWOOD ROSEMARIE $23,958.00 2000/01/01 9:00AM
MCKNIGHT ROGER $17,710.00 2000/01/01 9:00AM
GREENSPAN MARY $9,900.00 2000/01/01 9:00AM
CROSS BARBARA $29,768.20 2000/01/01 9:00AM
Using Functions 7-11

Using Standard Date and Time Functions
Reference Arguments for Use With Date and Time Functions

The following component names and values are supported as arguments for the date-time
functions that require them:

• For an argument that specifies a length of eight or ten characters, use eight to include
milliseconds and ten to include microseconds in the returned value.

• The last argument is always a USAGE format that indicates the data type returned by
the function. The type may be A (alphanumeric), I (integer), D (floating-point double
precision), H (date-time), or a date format (for example, YYMD).

Component Name Valid Values

year 0001-9999

quarter 1-4

month 1-12

day-of-year 1-366

day or day-of-month 1-31 (The two names for the component
are equivalent.)

week 1-53

weekday 1-7 (Sunday-Saturday)

hour 0-23

minute 0-59

second 0-59

millisecond 0-999

microsecond 0-999999
7-12 Information Builders

Date and Time Functions
DATEADD: Adding or Subtracting a Date Unit to or From a Date

• Year.

• Month. If the calculation using the month unit creates an invalid date, DATEADD
corrects it to the last day of the month. For example, adding one month to October 31
yields November 30, not November 31 since November has 30 days.

• Day.

• Weekday. When using the weekday unit, DATEADD does not count Saturday or
Sunday. For example, if you add one day to Friday, the result is Monday.

• Business day. When using the business day unit, DATEADD uses the BUSDAYS
parameter setting and holiday file to determine which days are working days and
disregards the rest. If Monday is not a working day, then one business day past Sunday
is Tuesday. See Rules for Creating a Holiday File on page 7-4 for more information.

Do not use DATEADD with Dialogue Manager. DATEADD requires a date to be in date
format; Dialogue Manager interprets a date as alphanumeric or numeric.

You add or subtract non day-based dates (for example, YM or YQ) directly without using
DATEADD.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

The DATEADD function adds a unit to or subtracts a unit from a date format. A unit is one of
the following:
Using Functions 7-13

Using Standard Date and Time Functions
Syntax How to Add or Subtract a Date Unit to or From a Date

DATEADD(date, 'unit', #units[, outfield])

where:

date

Date

Is any day-based non-legacy date, for example, YYMD, MDY, or JUL.

unit

Alphanumeric

Is one of the following enclosed in single quotation marks:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

#units

Integer

Is the number of date units added to or subtracted from date. If this number is not a
whole unit, it is rounded down to the next largest integer.

outfield

Alphanumeric

Is the field that contains the result. This value is required only for Maintain.

Example Truncation With DATEADD

The number of units passed to DATEADD is always a whole unit. For example

DATEADD(DATE, 'M', 1.999)

adds one month because the number of units is less than two.

Example Using the Weekday Unit

If you use the weekday unit and a Saturday or Sunday is the input date, DATEADD changes
the input date to Monday. The function

DATEADD(910623, 'WD', 1)

in which DATE is either Saturday or Sunday yields Tuesday; Saturday and Sunday are not
weekdays, so DATEADD begins with Monday and adds one.
7-14 Information Builders

Date and Time Functions
Example Adding Weekdays to a Date (Reporting)

DATEADD adds three weekdays to NEW_DATE. In some cases, it adds more than three days
because HIRE_DATE_PLUS_THREE would otherwise be on a weekend.

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND HIRE_DATE AND COMPUTE
NEW_DATE/YYMD = HIRE_DATE;
HIRE_DATE_PLUS_THREE/YYMD = DATEADD(NEW_DATE, 'WD', 3);
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE NEW_DATE HIRE_DATE_PLUS_THREE
--------- ---------- --------- -------- --------------------
BLACKWOOD ROSEMARIE 82/04/01 1982/04/01 1982/04/06
CROSS BARBARA 81/11/02 1981/11/02 1981/11/05
GREENSPAN MARY 82/04/01 1982/04/01 1982/04/06
JONES DIANE 82/05/01 1982/05/01 1982/05/06
MCCOY JOHN 81/07/01 1981/07/01 1981/07/06
SMITH MARY 81/07/01 1981/07/01 1981/07/06

Example Determining If a Date Is a Work Day (Reporting)

DATEADD determines which values in the TRANSDATE field do not represent work days by
adding zero days to TRANSDATE using the business day unit. If TRANSDATE does not
represent a business day, DATEADD returns the next business day to DATEX, which may not
be the same as TRANSDATE. TRANSDATE is then compared to DATEX, and the day of the
week is printed for all dates that do not match between the two fields, resulting in a list of
all non-work days.

DEFINE FILE VIDEOTRK
DATEX/YMD = DATEADD(TRANSDATE, 'BD', 0);
DATEINT/I8YYMD = DATECVT(TRANSDATE, 'YMD','I8YYMD');
END

TABLE FILE VIDEOTRK
SUM TRANSDATE NOPRINT
COMPUTE DAYNAME/A8 = DOWKL(DATEINT, DAYNAME); AS 'Day of Week'
BY TRANSDATE AS 'Date'
WHERE TRANSDATE NE DATEX
END
Using Functions 7-15

Using Standard Date and Time Functions
The output is:

Date Day of Week
---- -----------
91/06/22 SATURDAY
91/06/23 SUNDAY
91/06/30 SUNDAY

Example Adding Months to a Date (Maintain)

DATEADD adds months to the DATE1 field:

MAINTAIN
compute DATE1/yymd = ’20000101’
compute DATE2/yymd=dateadd(date1, ’M’, 2, date2);
type "DATE1 = <<DATE1 + 2 MONTHS = DATE2 = <<DATE2"
END

The result is:

DATE1 = 2000/01/01+ 2 MONTHS = DATE2 = 2000/03/01

DATECVT: Converting the Format of a Date

The DATECVT function converts the format of a date in an application without requiring an
intermediate calculation. If you supply an invalid format, DATECVT returns a zero or a blank.

Syntax How to Convert a Date Format

DATECVT(date, 'infmt', 'outfmt'[, outfield])

where:

date

Date

Is the date to be converted. If you supply an invalid date, DATECVT returns zero. When
the conversion is performed, a legacy date obeys any DEFCENT and YRTHRESH
parameter settings supplied for that field.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain
7-16 Information Builders

Date and Time Functions
infmt

Alphanumeric

Is the format of the date enclosed in single quotation marks. It is one of the following:

• A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

• A legacy date format (for example, I6YMD or A8MDYY).

• A non-date format (such as I8 or A6). A non-date format in infmt functions as an
offset from the base date of a YYMD field (12/31/1900).

outfmt

Alphanumeric

Is the output format enclosed in single quotation marks. It is one of the following:

• A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

• A legacy date format (for example, I6YMD or A8MDYY).

• A non-date format (such as I8 or A6). A non-date format in infmt functions as an
offset from the base date of a YYMD field (12/31/1900).

outfield

Alphanumeric

Is the field that contains the result. This value is required only for Maintain.

Example Converting a YYMD Date to DMY

DATECVT converts 19991231 to 311299 and stores the result in CONV_FIELD:

CONV_FIELD/DMY = DATECVT(19991231, 'YYMD', 'DMY');
Using Functions 7-17

Using Standard Date and Time Functions
Example Converting a Legacy Date to Date Format (Reporting)

DATECVT converts HIRE_DATE from I6YMD legacy date format to YYMD date format:

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND HIRE_DATE AND COMPUTE
NEW_HIRE_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD');
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE NEW_HIRE_DATE
--------- ---------- --------- -------------
BLACKWOOD ROSEMARIE 82/04/01 1982/04/01
CROSS BARBARA 81/11/02 1981/11/02
GREENSPAN MARY 82/04/01 1982/04/01
JONES DIANE 82/05/01 1982/05/01
MCCOY JOHN 81/07/01 1981/07/01
SMITH MARY 81/07/01 1981/07/01

DATEDIF: Finding the Difference Between Two Dates

The DATEDIF function returns the difference between two dates in units. A unit is one of the
following:

• Year. Using the year unit with DATEDIF yields the inverse of DATEADD. If subtracting
one year from date X creates date Y, then the count of years between X and Y is one.
Subtracting one year from February 29 produces the date February 28.

• Month. Using the month unit with DATEDIF yields the inverse of DATEADD. If
subtracting one month from date X creates date Y, then the count of months between
X and Y is one. If the to-date is the end-of-month, then the month difference may be
rounded up (in absolute terms) to guarantee the inverse rule.

If one or both of the input dates is the end of the month, DATEDIF takes this into
account. This means that the difference between January 31 and April 30 is three
months, not two months.

• Day.

• Weekday. With the weekday unit, DATEDIF does not count Saturday or Sunday when
calculating days. This means that the difference between Friday and Monday is one day.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain
7-18 Information Builders

Date and Time Functions
• Business day. With the business day unit, DATEDIF uses the BUSDAYS parameter
setting and holiday file to determine which days are working days and disregards the
rest. This means that if Monday is not a working day, the difference between Friday and
Tuesday is one day. See Rules for Creating a Holiday File on page 7-4 for more
information.

DATEDIF returns a whole number. If the difference between two dates is not a whole
number, DATEDIF truncates the value to the next largest integer. For example, the number
of years between March 2, 2001, and March 1, 2002, is zero. If the end date is before the
start date, DATEDIF returns a negative number.

You can find the difference between non-day based dates (for example YM or YQ) directly
without using DATEDIF.

Syntax How to Find the Difference Between Two Dates

DATEDIF(from_date, to_date, 'unit'[, outfield])

where:

from_date

Date

Is the start date from which to calculate the difference.

to_date

Date

Is the end date from which to calculate the difference.

unit

Alphanumeric

Is one of the following enclosed in single quotation marks:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

outfield

Alphanumeric

Is the field that contains the result. This value is required only for Maintain.
Using Functions 7-19

Using Standard Date and Time Functions
Example Truncation With DATEDIF

DATEDIF calculates the difference between March 2, 1996, and March 1, 1997, and returns a
zero because the difference is less than a year:

DATEDIF(19960302, 19970301, 'Y')

Example Using Month Calculations

The following expressions return a result of minus one month:

DATEDIF(19990228, 19990128, 'M')

DATEDIF(19990228, 19990129, 'M')

DATEDIF(19990228, 19990130, 'M')

DATEDIF(19990228, 19990131, 'M')

Additional examples:

DATEDIF(March31, May31, 'M') yields 2.

DATEDIF(March31, May30, 'M') yields 1 (because May 30 is not the end of the month).

DATEDIF(March31, April30, 'M') yields 1.

Example Finding the Number of Weekdays Between Two Dates (Reporting)

DATECVT converts the legacy dates in HIRE_DATE and DAT_INC to the date format YYMD.
DATEDIF then uses those date formats to determine the number of weekdays between
NEW_HIRE_DATE and NEW_DAT_INC:

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND
COMPUTE NEW_HIRE_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AND
COMPUTE NEW_DAT_INC/YYMD = DATECVT(DAT_INC, 'I6YMD', 'YYMD'); AND
COMPUTE WDAYS_HIRED/I8 = DATEDIF(NEW_HIRE_DATE, NEW_DAT_INC, 'WD');
BY LAST_NAME
IF WDAYS_HIRED NE 0
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME NEW_HIRE_DATE NEW_DAT_INC WDAYS_HIRED
--------- ---------- ------------- ----------- -----------
IRVING JOAN 1982/01/04 1982/05/14 94
MCKNIGHT ROGER 1982/02/02 1982/05/14 73
SMITH RICHARD 1982/01/04 1982/05/14 94
STEVENS ALFRED 1980/06/02 1982/01/01 414
 ALFRED 1980/06/02 1981/01/01 153
7-20 Information Builders

Date and Time Functions
Example Finding the Number of Years Between Two Dates (Maintain)

DATEDIF determines the number of years between DATE2 and DATE1:

MAINTAIN

Case Top
compute DATE1/yymd = ’20020717’;
compute DATE2/yymd = ’19880705’;
COmpute DIFF/I3= DATEDIF(DATE2, DATE1, ’Y’, DIFF);
type "<<DATE1 - <<DATE2 = <DIFF YEARS"
ENDCASE
END

The result is:

2002/07/17 - 1988/07/05 = 14 YEARS

DATEMOV: Moving a Date to a Significant Point
Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

The DATEMOV function moves a date to a significant point on the calendar.
Using Functions 7-21

Using Standard Date and Time Functions
Syntax How to Move a Date to a Significant Point

DATEMOV(date, 'move-point'[, outfield])

where:

date

Date

Is the date to be moved. It must be date format with a day component. For example, it
can be MDYY but not MYY.

move-point

Alphanumeric

Is the significant point the date is moved to enclosed in single quotation marks. An
invalid point results in a return code of zero. Valid values are:

EOM is the end of month.

BOM is the beginning of month.

EOQ is the end of quarter.

BOQ is the beginning of quarter.

EOY is the end of year.

BOY is the beginning of year.

EOW is the end of week.

BOW is the beginning of week.

NWD is the next weekday.

NBD is the next business day.

PWD is the prior weekday.

PBD is the prior business day.

WD- is a weekday or earlier.

BD- is a business day or earlier.

WD+ is a weekday or later.

BD+ is a business day or later.

A business day calculation is affected by the BUSDAYS and HDAY parameter settings.

outfield

Alphanumeric

Is the field that contains the result. This value is required only for Maintain.
7-22 Information Builders

Date and Time Functions
Example Determining Significant Points for a Date (Reporting)

The BUSDAYS parameter sets the business days to Monday, Tuesday, Wednesday, and
Thursday. DATECVT converts the legacy date HIRE_DATE to the date format YYMD and
provides date display options. DATEMOV then determines significant points for HIRE_DATE.

SET BUSDAY = _MTWT__
TABLE FILE EMPLOYEE
PRINT
COMPUTE NEW_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AND
COMPUTE NEW_DATE/WT = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AS 'DOW' AND
COMPUTE NWD/WT = DATEMOV(NEW_DATE, 'NWD'); AND
COMPUTE PWD/WT = DATEMOV(NEW_DATE, 'PWD'); AND
COMPUTE WDP/WT = DATEMOV(NEW_DATE, 'WD+'); AS 'WD+' AND
COMPUTE WDM/WT = DATEMOV(NEW_DATE, 'WD-'); AS 'WD-' AND
COMPUTE NBD/WT = DATEMOV(NEW_DATE, 'NBD'); AND
COMPUTE PBD/WT = DATEMOV(NEW_DATE, 'PBD'); AND
COMPUTE WBP/WT = DATEMOV(NEW_DATE, 'BD+'); AS 'BD+' AND
COMPUTE WBM/WT = DATEMOV(NEW_DATE, 'BD-'); AS 'BD-' BY LAST_NAME NOPRINT
HEADING
"Examples of DATEMOV"
"Business days are Monday, Tuesday, Wednesday, + Thursday "
" "
"START DATE.. | MOVE POINTS..........................."
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

Examples of DATEMOV
Business days are Monday, Tuesday, Wednesday, + Thursday

START DATE..| MOVE POINTS............................
NEW_DATE DOW NWD PWD WD+ WD- NBD PBD BD+ BD-
-------- --- --- --- --- --- --- --- --- ---
1982/04/01 WED THU TUE WED WED SUN TUE WED WED
1981/11/02 SUN MON THU SUN SUN MON WED SUN SUN
1982/04/01 WED THU TUE WED WED SUN TUE WED WED
1982/05/01 FRI MON WED SUN THU MON TUE SUN WED
1981/07/01 TUE WED MON TUE TUE WED MON TUE TUE
1981/07/01 TUE WED MON TUE TUE WED MON TUE TUE
Using Functions 7-23

Using Standard Date and Time Functions
Example Determining the End of the Week (Reporting)

DATEMOV determines the end of the week for each date in NEW_DATE and stores the result
in EOW:

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND
COMPUTE NEW_DATE/YYMDWT = DATECVT(HIRE_DATE, 'I6YMD', 'YYMDWT'); AND
COMPUTE EOW/YYMDWT = DATEMOV(NEW_DATE, 'EOW');
BY LAST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME NEW_DATE EOW
--------- ---------- -------- ---
BANNING JOHN 1982 AUG 1, SUN 1982 AUG 6, FRI
IRVING JOAN 1982 JAN 4, MON 1982 JAN 8, FRI
MCKNIGHT ROGER 1982 FEB 2, TUE 1982 FEB 5, FRI
ROMANS ANTHONY 1982 JUL 1, THU 1982 JUL 2, FRI
SMITH RICHARD 1982 JAN 4, MON 1982 JAN 8, FRI
STEVENS ALFRED 1980 JUN 2, MON 1980 JUN 6, FRI

Example Determining the End of the Week (Maintain)

DATEMOV determines the end of the week for each date:

MAINTAIN
COMPUTE X/YYMDWT=’20020717’;
COMPUTE Y/YYMDWT=DATEMOV(X, ’EOW’, Y);
TYPE "<<X <<Y END OF WEEK "
END

The result is:

2002/07/17, WED 2002/07/19, FRI END OF WEEK
7-24 Information Builders

Date and Time Functions
HADD: Incrementing a Date-Time Value

The HADD function increments a date-time value by a given number of units.

Syntax How to Increment a Date-Time Value

HADD(value, 'component', increment, length, outfield)

where:

value

Is the date-time value to be incremented, the name of a date-time field that contains
the value, or an expression that returns the value.

component

Is the name of the component to be incremented enclosed in single quotation marks.
For a list of valid components, see Arguments for Use With Date and Time Functions on
page 7-12.

increment

Is the number of units by which to increment the component, the name of a numeric
field that contains the value, or an expression that returns the value.

length

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This field must be in date-time format (data type H).

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 7-25

Using Standard Date and Time Functions
Example Incrementing the Month Component of a Date-Time Field (Reporting)

HADD adds two months to each value in TRANSDATE and stores the result in ADD_MONTH.
If necessary, the day is adjusted so that it is valid for the resulting month.

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME ADD_MONTH
------ --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00

Example Incrementing the Month Component of a Date-Time Field (Maintain)

HADD adds two months to the DT1 field:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID DT1 INTO DTSTK
COMPUTE
NEW_DATE/HYYMDS = HADD(DTSTK.DT1, 'MONTH', 2,10, NEW_DATE);
TYPE "DT1 IS: <DTSTK(1).DT1 "
TYPE "NEW_DATE IS: <NEW_DATE "

The result is:

DT1 IS: 2000/1/1 02:57:25
NEW_DATE IS: 2000/3/1 02:57:25
TRANSACTIONS: COMMITS = 1 ROLLBACKS = 0
SEGMENTS : INCLUDED = 0 UPDATED = 0 DELETED = 0
7-26 Information Builders

Date and Time Functions
HCNVRT: Converting a Date-Time Value to Alphanumeric Format

The HCNVRT function converts a date-time value to alphanumeric format for use with
operators such as EDIT, CONTAINS, and LIKE.

Syntax How to Convert a Date-Time Value to Alphanumeric Format

HCNVRT(value, '(fmt)', length, outfield)

where:

value

Is the date-time value to be converted, the name of a date-time field that contains the
value, or an expression that returns the value.

fmt

Is the format of the date-time field enclosed in parentheses and single quotation marks.
It must be a date-time format (data type H).

length

Is the length of the alphanumeric field that is returned. You can supply the actual value,
the name of a numeric field that contains the value, or an expression that returns the
value. If length is smaller than the number of characters needed to display the
alphanumeric field, the function returns a blank.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This field must be in alphanumeric format.

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 7-27

Using Standard Date and Time Functions
Example Converting a Date-Time Field to Alphanumeric Format (Reporting)

HCNVRT converts the TRANSDATE field to alphanumeric format. The first function does not
include date-time display options for the field; the second function does for readability. It
also specifies the display of seconds in the input field.

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ALPHA_DATE_TIME1/A20 = HCNVRT(TRANSDATE, '(H17)', 17, 'A20');
ALPHA_DATE_TIME2/A20 = HCNVRT(TRANSDATE, '(HYYMDS)', 20, 'A20');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME ALPHA_DATE_TIME1 ALPHA_DATE_TIME2
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

Example Converting a Date-Time Field to Alphanumeric Format (Maintain)

HCNVRT converts the DT1 field to alphanumeric format:

MAINTAIN FILE DATETIME
FOR ALL NEXT ID INTO STK;
COMPUTE
RESULT_HCNVRT/A20 = HCNVRT(STK.DT1,'(HYYMDH)',20, RESULT_HCNVRT);
TYPE "STK(1).DT1 = "STK(1).DT1;
TYPE "RESULT_HCNVRT = " RESULT_HCNVRT;
END

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

The HDATE function converts the date portion of a date-time value to the date format
YYMD. You can then convert the result to other date formats.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
7-28 Information Builders

Date and Time Functions
Syntax How to Convert the Date Portion of a Date-Time Value to a Date Format

HDATE(value, 'YYMD'[, outfield])

where:

value

Is the date-time value to be converted, the name of a date-time field that contains the
value, or an expression that returns the value.

YYMD

Is the output format. The value must be YYMD.

outfield

Alphanumeric

Is the field that contains the result. This value is required only for Maintain.

Example Converting the Date Portion of a Date-Time Field to a Date Format (Reporting)

HDATE converts the date portion of the TRANSDATE field to the date format YYMD:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME TRANSDATE_DATE
------ --------- --------------
1118 2000/06/26 05:45 2000/06/26
1237 2000/02/05 03:30 2000/02/05

Example Converting the Date Portion of a Date-Time Field to a Date Format (Maintain)

HDATE converts the date portion of DT1 to date format YYMD:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DT1_DATE/YYMD = HDATE(STK.DT1, DT1_DATE);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "DT1_DATE = <DT1_DATE";
END

The output is:

STK(1).DT1 = 2000/1/1 02:57:25

DT1_DATE = 2000/01/01
Using Functions 7-29

Using Standard Date and Time Functions
HDIFF: Finding the Number of Units Between Two Date-Time Values

The HDIFF function calculates the number of units between two date-time values.

Syntax How to Find the Number of Units Between Two Date-Time Values

HDIFF(value1, value2, 'component', outfield)

where:

value1

Is the end date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

value2

Is the start date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

component

Is the name of the component to be used in the calculation enclosed in single
quotation marks. If the component is a week, the WEEKFIRST parameter setting is used
in the calculation.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be floating-point double-precision.

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
7-30 Information Builders

Date and Time Functions
Example Finding the Number of Days Between Two Date-Time Fields (Reporting)

HDIFF calculates the number of days between the TRANSDATE and ADD_MONTH fields and
stores the result in DIFF_PAYS, which has the format D12.2:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
DIFF_DAYS/D12.2 = HDIFF(ADD_MONTH, TRANSDATE, 'DAY', 'D12.2');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME ADD_MONTH DIFF_DAYS
------ --------- --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00 61.00
1237 2000/02/05 03:30 2000/04/05 03:30:00 60.00

Example Finding the Number of Days Between Two Date-Time Fields (Maintain)

HDIFF calculates the number of days between ADD_MONTH and DT1:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
NEW_DATE/HYYMDS = HADD(STK.DT1, 'MONTH', 2,10, NEW_DATE);
DIFF_DAYS/D12.2 = HDIFF(NEW_DATE,STK.DT1,'DAY', DIFF_DAYS);
TYPE "STK(1).DT1 = "STK(1).DT1;
TYPE "NEW_DATE = "NEW_DATE;
TYPE "DIFF_DAYS = "DIFF_DAYS
END
Using Functions 7-31

Using Standard Date and Time Functions
HDTTM: Converting a Date Value to a Date-Time Value

The HDTTM function converts a date value to a date-time field. The time portion is set to
midnight.

Syntax How to Convert a Date Value to a Date-Time Value

HDTTM(date, length, outfield)

where:

date

Is the date value to be converted, the name of a date field that contains the value, or an
expression that returns the value.

length

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in date-time format (data type H).

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Example Converting a Date Field to a Date-Time Field (Reporting)

HDTTM converts the date field TRANSDATE_DATE to a date-time field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
DT2/HYYMDIA = HDTTM(TRANSDATE_DATE, 8, 'HYYMDIA');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME TRANSDATE_DATE DT2
------ --------- -------------- ---
1118 2000/06/26 05:45 2000/06/26 2000/06/26 12:00AM
1237 2000/02/05 03:30 2000/02/05 2000/02/05 12:00AM

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
7-32 Information Builders

Date and Time Functions
Example Converting a Date Field to a Date-Time Field (Maintain)

HDTTM converts the date field DT1_DATE to a date-time field:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DT1_DATE/YYMD = HDATE(DT1, DT1_DATE);
DT2/HYYMDIA = HDTTM(DT1_DATE, 8, DT2);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "DT1_DATE = <DT1_DATE";
TYPE "DT2 = <DT2";
END

HGETC: Storing the Current Date and Time in a Date-Time Field

The HGETC function stores the current date and time in a date-time field. If millisecond or
microsecond values are not available in your operating environment, the function retrieves
the value zero for these components.

Syntax How to Store the Current Date and Time in a Date-Time Field

HGETC(length, outfield)

where:

length

Is the length of the returned date-time value. A valid values is:

8 indicates a time value that includes milliseconds.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in date-time format (data type H).

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 7-33

Using Standard Date and Time Functions
Example Storing the Current Date and Time in a Date-Time Field (Reporting)

HGETC stores the current date and time in DT2:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DT2/HYYMDm = HGETC(10, 'HYYMDm');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME DT2
------ --------- ---
1118 2000/06/26 05:45 2000/10/03 15:34:24.000000
1237 2000/02/05 03:30 2000/10/03 15:34:24.000000

Example Storing the Current Date and Time in a Date-Time Field (Maintain)

HGETC stores the current date and time in DT2:

MAINTAIN
COMPUTE DT2/HYYMDm = HGETC(10, DT2);
TYPE "DT2 = <DT2";
END

HHMMSS: Retrieving the Current Time

The HHMMSS function retrieves the current time from the operating system as an eight
character string, separating the hours, minutes, and seconds with periods.

A compiled MODIFY procedure must use HHMMSS to obtain the time; it cannot use the
&TOD variable, which also returns the time. The &TOD variable is made current only when
you execute a MODIFY, SCAN, or FSCAN procedure.

There is also an HHMMSS function available in the Maintain language. For information on
this function, see HHMMSS: Retrieving the Current Time (Maintain) in Chapter 8.

Available Operating Systems: All

Available Languages: reporting
7-34 Information Builders

Date and Time Functions
Syntax How to Retrieve the Current Time

HHMMSS(outfield)

where:

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Retrieving the Current Time

HHMMSS retrieves the current time and displays it in the page footing:

TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES' AND COMPUTE
NOWTIME/A8 = HHMMSS(NOWTIME); NOPRINT
BY DEPARTMENT
FOOTING
"SALARY REPORT RUN AT TIME <NOWTIME"
END

The output is:

DEPARTMENT TOTAL SALARIES
---------- --------------
MIS $108,002.00
PRODUCTION $114,282.00

SALARY REPORT RUN AT TIME 15.21.14
Using Functions 7-35

Using Standard Date and Time Functions
HINPUT: Converting an Alphanumeric String to a Date-Time Value

Syntax How to Convert an Alphanumeric String to a Date-Time Value

HINPUT(inputlength, 'inputstring', length, outfield)

where:

inputlength

Is the length of the alphanumeric string to be converted. You can supply the actual
value, the name of a numeric field that contains the value, or an expression that returns
the value.

inputstring

Is the alphanumeric string to be converted enclosed in single quotation marks, the
name of an alphanumeric field that contains the string, or an expression that returns
the string. The string can consist of any valid date-time input value as described in
Describing Data.

length

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in date-time format (data type H).

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

The HINPUT function converts an alphanumeric string to a date-time value.
7-36 Information Builders

Date and Time Functions
Example Converting an Alphanumeric String to a Date-Time Value (Reporting)

HCNVRT converts the TRANSDATE field to alphanumeric format, then HINPUT converts the
alphanumeric string to a date-time value:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ALPHA_DATE_TIME/A20 = HCNVRT(TRANSDATE, '(H17)', 17, 'A20');
DT_FROM_ALPHA/HYYMDS = HINPUT(14, ALPHA_DATE_TIME, 8, 'HYYMDS');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME ALPHA_DATE_TIME DT_FROM_ALPHA
------ --------- --------------- -------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

Example Converting an Alphanumeric String to a Date-Time Value (Maintain)

HINPUT converts the DT1 field to alphanumeric format:

MAINTAIN FILE DATETIME
COMPUTE
RESULT/HMtDYYmA = HINPUT(20,'19971029133059888999',10,RESULT);
TYPE RESULT;
END
Using Functions 7-37

Using Standard Date and Time Functions
HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight

The HMIDNT function changes the time portion of a date-time value to midnight (all zeroes
by default). This allows you to compare a date field with a date-time field.

Syntax How to Set the Time Portion of a Date-Time Value to Midnight

HMIDNT(value, length, outfield)

where:

value

Is the date-time value whose time is to be set to midnight, the name of a date-time field
that contains the value, or an expression that returns the value.

length

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in date-time format (data type H).

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Example Setting the Time to Midnight (Reporting)

HMIDNT sets the time portion of the TRANSDATE field to midnight first in the 24-hour
system and then in the 12-hour system:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_MID_24/HYYMDS = HMIDNT(TRANSDATE, 8, 'HYYMDS');
TRANSDATE_MID_12/HYYMDSA = HMIDNT(TRANSDATE, 8, 'HYYMDSA');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME TRANSDATE_MID_24 TRANSDATE_MID_12
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 2000/06/26 00:00:00 2000/06/26 12:00:00AM
1237 2000/02/05 03:30 2000/02/05 00:00:00 2000/02/05 12:00:00AM

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
7-38 Information Builders

Date and Time Functions
Example Setting the Time to Midnight (Maintain)

HMIDNT sets the time portion of DT1 to midnight in both the 24- and 12-hour systems:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DT_MID_24/HYYMDS = HMIDNT(STK(1).DT1, 8, DT_MID_24);
DT_MID_12/HYYMDSA= HMIDNT(STK(1).DT1, 8, DT_MID_12);
TYPE "STK(1).DT1 = "STK(1).DT1;
TYPE "DT_MID_24 = <DT_MID_24";
TYPE "DT_MID_12 = <DT_MID_12";
END

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

Syntax How to Retrieve a Date-Time Component in Alphanumeric Format

HNAME(value, 'component', outfield)

where:

value

Is the date-time value from which a component is to be extracted, the name of a
date-time field containing the value that contains the value, or an expression that
returns the value.

component

Is the name of the component to be retrieved enclosed in single quotation marks. See
Arguments for Use With Date and Time Functions on page 7-12 for a list of valid
components.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in alphanumeric format.

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

The function converts all other components to strings of digits only. The year is always
four digits, and the hour assumes the 24-hour system.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

The HNAME function extracts a specified component from a date-time value in
alphanumeric format.
Using Functions 7-39

Using Standard Date and Time Functions
Example Retrieving the Week Component in Alphanumeric Format (Reporting)

HNAME returns the week in alphanumeric format from the TRANSDATE field. Changing the
WEEKFIRST parameter setting changes the value of the component.

SET WEEKFIRST = 7
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
WEEK_COMPONENT/A10 = HNAME(TRANSDATE, 'WEEK', 'A10');
WHERE DATE EQ 2000;
END

When WEEKFIRST is set to seven, the output is:

CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 06

When WEEKFIRST is set to three, the output is:

CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 25
1237 2000/02/05 03:30 05

For details on WEEKFIRST, see the Developing Applications manual.

Example Retrieving the Day Component in Alphanumeric Format (Reporting)

HNAME retrieves the day in alphanumeric format from the TRANSDATE field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/A2 = HNAME(TRANSDATE, 'DAY', 'A2');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 05
7-40 Information Builders

Date and Time Functions
Example Retrieving the Day Component in Alphanumeric Format (Maintain)

HNAME extracts the day in alphanumeric format from DT1:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DAY_COMPONENT/A2=HNAME(STK.DT1,'DAY',DAY_COMPONENT);
TYPE "STK(1).DT1 = "STK(1).DT1;
TYPE "DAY_COMPONENT = <DAY_COMPONENT"
END

HPART: Retrieving a Date-Time Component in Numeric Format

The HPART function extracts a specified component from a date-time value and returns it in
numeric format.

Syntax How to Retrieve a Date-Time Component in Numeric Format

HPART(value, 'component', outfield)

where:

value

Is a date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

component

Is the name of the component to be retrieved enclosed in single quotation marks. See
Arguments for Use With Date and Time Functions on page 7-12 for a list of valid
components.

outfield

Numeric

Is the field that contains the result, or the integer format of the output value enclosed in
single quotation marks.

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 7-41

Using Standard Date and Time Functions
Example Retrieving the Day Component in Numeric Format (Reporting)

HPART retrieves the day in integer format from the TRANSDATE field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/I2 = HPART(TRANSDATE, 'DAY', 'I2');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 5

Example Retrieving the Day Component in Numeric Format (Maintain)

HPART extracts the day in integer format from DT1:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
DAY_COMPONENT/I2 = HPART(STK.DT1,'DAY',DAY_COMPONENT);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "DAY_COMPONENT = <DAY_COMPONENT";
END

HSETPT: Inserting a Component Into a Date-Time Value
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

The HSETPT function inserts the numeric value of a specified component into a date-time
value.
7-42 Information Builders

Date and Time Functions
Syntax How to Insert a Component Into a Date-Time Value

HSETPT(dtfield, 'component', value, length, outfield)

where:

dtfield

Is a date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

component

Is the name of the component to be inserted enclosed in single quotation marks. See
Arguments for Use With Date and Time Functions on page 7-12 for a list of valid
components.

value

Is the numeric value to be inserted for the requested component, the name of a
numeric field that contains the value, or an expression that returns the value.

length

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield

Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in date-time format (data type H).

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.
Using Functions 7-43

Using Standard Date and Time Functions
Example Inserting the Day Component Into a Date-Time Field (Reporting)

HSETPT inserts the day as 28 into the ADD_MONTH field and stores the result in
INSERT_DAY:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH, 'DAY', 28, 8, 'HYYMDS');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME ADD_MONTH INSERT_DAY
------ --------- --------- ----------
1118 2000/06/26 05:45 2000/08/26 05:45:00 2000/08/28 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00 2000/04/28 03:30:00

Example Inserting the Day Component Into a Date-Time Field (Maintain)

HSETPT inserts the day into ADD_MONTH:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE
ADD_MONTH/HYYMDS = HADD(STK.DT1,'MONTH', 2, 8, ADD_MONTH);
INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH,'DAY', 28, 8, INSERT_DAY);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "ADD_MONTH = <ADD_MONTH";
TYPE "INSERT_DAY = <INSERT_DAY";
END
7-44 Information Builders

Date and Time Functions
HTIME: Converting the Time Portion of a Date-Time Value to a Number

The HTIME function converts the time portion of a date-time value to the number of
milliseconds if the first argument is eight, or microseconds if the first argument is ten. To
include microseconds, the input date-time value must be 10-bytes.

Syntax How to Convert the Time Portion of a Date-Time Field to a Number

HTIME(length, value, outfield)

where:

length

Is the length of the input date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

value

Is the date-time value from which to convert the time, the name of a date-time field
that contains the value, or an expression that returns the value.

outfield

Numeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be floating-point double-precision.

In FOCUS, you must specify the format. In Maintain, you must specify the name of the
field.

Example Converting the Time Portion of a Date-Time Field to a Number (Reporting)

HTIME converts the time portion of the TRANSDATE field to the number of milliseconds:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
MILLISEC/D12.2 = HTIME(8, TRANSDATE, 'D12.2');
WHERE DATE EQ 2000;
END

The output is:

CUSTID DATE-TIME MILLISEC
------ --------- --------
1118 2000/06/26 05:45 20,700,000.00
1237 2000/02/05 03:30 12,600,000.00

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 7-45

Using Standard Date and Time Functions
Example Converting the Time Portion of a Date-Time Field to a Number (Maintain)

HTIME converts the time portion of the DT1 field to the number of milliseconds:

MAINTAIN FILE DATETIME
FOR 1 NEXT ID INTO STK;
COMPUTE MILLISEC/D12.2 = HTIME(8, STK.DT1, MILLISEC);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE "MILLISEC = <MILLISEC";
END

TODAY: Returning the Current Date

The TODAY function retrieves the current date from the operating system in the format
MM/DD/YY or MM/DD/YYYY. It always returns a date that is current. Therefore, if you are
running an application late at night, use TODAY. You can remove the default embedded
slashes with the EDIT function.

You can also retrieve the date in the same format (separated by slashes) using the Dialogue
Manager system variable &DATE. You can retrieve the date without the slashes using the
system variables &YMD, &MDY, and &DMY. The system variable &DATEfmt retrieves the date
in a specified format.

A compiled MODIFY procedure must use TODAY to obtain the date. It cannot use the
system variables.

Syntax How to Retrieve the Current Date

TODAY(outfield)

where:

outfield

Alphanumeric, at least A8

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The following apply:

• If DATEFNS=ON and the format is A8 or A9, TODAY returns the 2-digit year.

• If DATEFNS=ON and the format is A10 or greater, TODAY returns the 4-digit year.

• If DATEFNS=OFF, TODAY returns the 2-digit year, regardless of the format of
outfield.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting
7-46 Information Builders

Date and Time Functions
Example Retrieving the Current Date

TODAY retrieves the current date and stores it in the DATE field. The request then displays
the date in the page heading.

DEFINE FILE EMPLOYEE
DATE/A10 WITH EMP_ID = TODAY(DATE);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL BY DEPARTMENT
HEADING
"PAGE <TABPAGENO "
"SALARY REPORT RUN ON <DATE "
END

The output is:

SALARY REPORT RUN ON 12/13/1999
DEPARTMENT CURR_SAL
---------- --------
MIS $108,002.00
PRODUCTION $114,282.00

Using Legacy Date Functions

Using Old Versions of Legacy Date Functions
All legacy date functions support dates for the year 2000 and later. The old versions of these
functions may not work correctly with dates after December 31, 1999. However, in some
cases you may want to use the old version of a function, for example, if you do not use year
2000 dates. You can “turn off” the current version with the DATEFNS parameter.

Syntax How to Activate an Old Legacy Date Functions

SET DATEFNS = {ON|OFF}

where:

ON

Activates the function that supports dates for the year 2000 and later. This value is the
default.

OFF

Deactivates a function that supports dates for the year 2000 and later.

The functions listed in this topic are legacy date functions. They were created for use with
dates in integer, packed decimal, or alphanumeric format.
Using Functions 7-47

Using Legacy Date Functions
Using Dates With Two- and Four-Digit Years

Example Using Four-Digit Years

The EDIT function creates dates with four-digit years. The functions JULDAT and GREGDAT
then convert these dates to Julian and Gregorian formats.

DEFINE FILE EMPLOYEE
DATE/I8YYMD = EDIT('19'|EDIT(HIRE_DATE));
JDATE/I7 = JULDAT(DATE, 'I7');
GDATE/I8 = GREGDT(JDATE, 'I8');
END

TABLE FILE EMPLOYEE
PRINT DATE JDATE GDATE
END

The output is:

 DATE JDATE GDATE
 ---- ----- -----
1996/01/01 1996001 19960101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
1999/12/31 1999365 19991231

Legacy date functions accept dates with two- or four-digit years. Four-digit years that
display the century, such as 2000 or 1900, can be used if their formats are specified as
I8YYMD, P8YYMD, D8YYMD, F8YYMD, or A8YYMD. Two-digit years can use the DEFCENT
and YRTHRESH parameters to assign century values if the field has a length of six (for
example, I6YMD). For information on these parameters, see Customizing Your Environment
in Developing Applications.
7-48 Information Builders

Date and Time Functions
Example Using Two-Digit Years

The AYMD function returns an eight-digit date when the input argument has a six-digit
legacy date format. Since DEFCENT is 19 and YRTHRESH is 83, year values from 83 through
99 are interpreted as 1983 through 1999, and year values from 00 through 82 are
interpreted as 2000 through 2082.

SET DEFCENT=19, YRTHRESH=83

DEFINE FILE EMPLOYEE
NEW_DATE/I8YYMD = AYMD(EFFECT_DATE, 30, 'I8');
END

TABLE FILE EMPLOYEE
PRINT EFFECT_DATE NEW_DATE BY EMP_ID
END

The output is:

EMP_ID EFFECT_DATE NEW_DATE
------ ----------- --------
071382660
112847612
117593129 82/11/01 2082/12/01
119265415
119329144 83/01/01 1983/01/31
123764317 83/03/01 1983/03/31
126724188
219984371
326179357 82/12/01 2082/12/31
451123478 84/09/01 1984/10/01
543729165
818692173 83/05/01 1983/05/31
Using Functions 7-49

Using Legacy Date Functions
AYM: Adding or Subtracting Months to or From Dates

The AYM function adds months to or subtracts months from a date in year-month format.
You can convert a date to this format using the CHGDAT or EDIT function.

Syntax How to Add or Subtract Months to or From a Date

AYM(indate, months, outfield)

where:

indate

Numeric

Is the original date in year-month format, the name of a field that contains the date, or
an expression that returns the date. If the date is not valid, the function returns a 0.

months

Integer

Is the number of months you are adding to or subtracting from the date. To subtract
months, use a negative number.

outfield

Integer

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Tip: If the input date is in integer year-month-day format (I6YMD or I8YYMD), divide
the date by 100 to convert to year-month format and set the result to an integer. This
drops the day portion of the date, which is now after the decimal point.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
7-50 Information Builders

Date and Time Functions
Example Adding Months to a Date

The COMPUTE command converts the dates in HIRE_DATE from year-month-day to
year-month format and stores the result in HIRE_MONTH. AYM then adds six months to
HIRE_MONTH and stores the result in AFTER6MONTHS.

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100 ;
AFTER6MONTHS/I4YM = AYM(HIRE_MONTH, 6, AFTER6MONTHS);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE HIRE_MONTH AFTER6MONTHS
--------- ---------- --------- ---------- ------------
BLACKWOOD ROSEMARIE 82/04/01 82/04 82/10
CROSS BARBARA 81/11/02 81/11 82/05
GREENSPAN MARY 82/04/01 82/04 82/10
JONES DIANE 82/05/01 82/05 82/11
MCCOY JOHN 81/07/01 81/07 82/01
SMITH MARY 81/07/01 81/07 82/01

AYMD: Adding or Subtracting Days to or From a Date

The AYMD function adds days to or subtracts days from a date in year-month-day format.
You can convert a date to this format using the CHGDAT or EDIT function.

If the addition or subtraction of days crosses forward or backward into another century, the
century digits of the output year are adjusted.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 7-51

Using Legacy Date Functions
Syntax How to Add or Subtract Days to or From a Date

AYMD(indate, days, outfield)

where:

indate

Numeric

Is the original date in year-month-day format, the name of a field that contains the
date, or an expression that returns the date. If indate is a field name, the field format
must be I6, I6YMD, I8, I8YYMD, P6, P6YMD, F6, F6YMD, D6, or D6YMD. If the date is not
valid, the function returns a 0.

days

Integer

Is the number of days you are adding to or subtracting from indate. To subtract days,
use a negative number.

outfield

I6, I6YMD, I8, or I8YYMD

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. If indate is a field, outfield must have the same
format.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Adding Days to a Date

AYMD adds 35 days to each value in the HIRE_DATE field, and stores the result in
AFTER35DAYS:

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
AFTER35DAYS/I6YMD = AYMD(HIRE_DATE, 35, AFTER35DAYS);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE AFTER35DAYS
--------- ---------- --------- -----------
BANNING JOHN 82/08/01 82/09/05
IRVING JOAN 82/01/04 82/02/08
MCKNIGHT ROGER 82/02/02 82/03/09
ROMANS ANTHONY 82/07/01 82/08/05
SMITH RICHARD 82/01/04 82/02/08
STEVENS ALFRED 80/06/02 80/07/07
7-52 Information Builders

Date and Time Functions
CHGDAT: Changing Format of a Date

The CHGDAT function rearranges the year, month, and day portions of a date and converts
a date between long and short date format. Long format contains the year, month, and day;
short format contains one or two of these elements, such as year and month, or just day. A
format can specify either two digits for the year (for example, 97), or four digits (for
example, 1997).

Note: Since CHGDAT returns the date in alphanumeric format with 17 characters, use the
EDIT function to truncate this field or convert the date to numeric format.

The format of the date to be converted and the resulting date contain the following
characters in any combination:

To spell out the month rather than use a number, append one of the following to the format
of the resulting date:

The function ignores any other character in the format.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain

D Day of the month (01 through 31).

M Month of the year (01 through 12).

Y[Y] Year. Y indicates a two-digit year (such as 94); YY indicates a four-digit year (such
as 1994).

T Displays the month as a three-letter abbreviation.

X Displays the full name of the month.
Using Functions 7-53

Using Legacy Date Functions
Reference Short to Long Format Conversion

If you are converting a date from short to long format (for example, from year-month to
year-month-day), the function supplies the portion of the date missing in the short format,
as shown in the following table:

Portion of Date Missing Portion Supplied by Function

Day (for example, from YM to YMD) Last day of the month.

Month (for example, from Y to YM) Last month of the year (December).

Year (for example, from MD to YMD) The year 99.

Converting year from two-digit to
four-digit (for example, from YMD to
YYMD)

If DATEFNS=ON, the century will be determined
by the 100-year window defined by DEFCENT
and YRTHRESH. See Customizing Your
Environment in Developing Applications or
Working With Cross-Century Dates in the iBase
archive for details on DEFCENT and YRTHRESH.

If DATEFNS=OFF, the year 19xx is supplied,
where xx is the last two digits in the year.
7-54 Information Builders

Date and Time Functions
Syntax How to Change the Format of a Date

CHGDAT('oldformat', 'newformat', indate, outfield)

where:

'oldformat'

A5

Is the format of the original date enclosed in single quotation marks.

'newformat'

A5

Is the format of the converted date enclosed in single quotation marks.

indate

Alphanumeric

Is the original date. If the date is in numeric format, change it to alphanumeric format
using the EDIT function. If the input date is invalid, the function returns spaces.

outfield

Alphanumeric or A17

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions 7-55

Using Legacy Date Functions
Example Converting From YMD to MDYYX Format

The EDIT function changes HIRE_DATE from numeric to alphanumeric format. CHGDAT
then converts each value in ALPHA_HIRE from YMD to MDYYX format and stores the result
in HIRE_MDY, which has the format A17. The option X in the new format displays the full
name of the month.

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A17 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE HIRE_MDY
--------- ---------- --------- --------
BANNING JOHN 82/08/01 AUGUST 01 1982
IRVING JOAN 82/01/04 JANUARY 04 1982
MCKNIGHT ROGER 82/02/02 FEBRUARY 02 1982
ROMANS ANTHONY 82/07/01 JULY 01 1982
SMITH RICHARD 82/01/04 JANUARY 04 1982
STEVENS ALFRED 80/06/02 JUNE 02 1980

DA Functions: Converting a Date to an Integer

The DA functions convert a date to the number of days between December 31, 1899 and
that date. By converting a date to the number of days, you can add and subtract dates and
calculate the intervals between them. You can convert the result back to a date using the
DT functions discussed in DT Functions: Converting an Integer to a Date on page 7-61.

There are six DA functions; each one accepts a date in a different format.

Available Operating Systems: All

Available Languages: reporting, Maintain
7-56 Information Builders

Date and Time Functions
Syntax How to Convert a Date to an Integer

function(indate, outfield)

where:

function

Is one of the following:

DADMY converts a date in day-month-year format.

DADYM converts a date in day-year-month format.

DAMDY converts a date in month-day-year format.

DAMYD converts a date in month-year-day format.

DAYDM converts a date in year-day-month format.

DAYMD converts a date in year-month-day format.

indate

Numeric

Is the date to be converted, or the name of a field that contains the date. The date is
truncated to an integer before conversion. The format of the date depends on the
function.

To specify the year, enter only the last two digits; the function assumes the century
component. If the date is invalid, the function returns a 0.

outfield

Integer

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions 7-57

Using Legacy Date Functions
Example Converting Dates and Calculating the Difference Between Them

DAYMD converts the DAT_INC and HIRE_DATE fields to the number of days since December
31, 1899, and the smaller number is then subtracted from the larger number:

TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE DATE' AND COMPUTE
DAYS_HIRED/I8 = DAYMD(DAT_INC, 'I8') - DAYMD(HIRE_DATE, 'I8');
BY LAST_NAME BY FIRST_NAME
IF DAYS_HIRED NE 0
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME RAISE DATE DAYS_HIRED
--------- ---------- ---------- ----------
IRVING JOAN 82/05/14 130
MCKNIGHT ROGER 82/05/14 101
SMITH RICHARD 82/05/14 130
STEVENS ALFRED 82/01/01 578
 81/01/01 213

DMY, MDY, YMD: Calculating the Difference Between Two Dates

The DMY, MDY, and YMD functions calculate the difference between two dates in integer,
alphanumeric, or packed format.

Available Operating Systems: All

Available Languages: reporting, Maintain
7-58 Information Builders

Date and Time Functions
Syntax How to Calculate the Difference Between Two Dates

function(begin, end)

where:

function

Is one of the following:

DMY calculates the difference between two dates in day-month-year format.

MDY calculates the difference between two dates in month-day-year format.

YMD calculates the difference between two dates in year-month-day format.

begin

Numeric

Is the beginning date, or the name of a field that contains the date.

end

Numeric

Is the end date, or the name of a field that contains the date.

Example Calculating the Number of Days Between Two Dates

YMD calculates the number of days between the dates in HIRE_DATE and DAT_INC:

TABLE FILE EMPLOYEE
SUM HIRE_DATE FST.DAT_INC AS 'FIRST PAY,INCREASE' AND COMPUTE
DIFF/I4 = YMD(HIRE_DATE, FST.DAT_INC); AS 'DAYS,BETWEEN'
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

 FIRST PAY DAYS
LAST_NAME FIRST_NAME HIRE_DATE INCREASE BETWEEN
--------- ---------- --------- --------- -------
BLACKWOOD ROSEMARIE 82/04/01 82/04/01 0
CROSS BARBARA 81/11/02 82/04/09 158
GREENSPAN MARY 82/04/01 82/06/11 71
JONES DIANE 82/05/01 82/06/01 31
MCCOY JOHN 81/07/01 82/01/01 184
SMITH MARY 81/07/01 82/01/01 184
Using Functions 7-59

Using Legacy Date Functions
DOWK and DOWKL: Finding the Day of the Week

The DOWK and DOWKL functions find the day of the week that corresponds to a date. DOWK
returns the day as a three letter abbreviation; DOWKL displays the full name of the day.

Syntax How to Find the Day of the Week

{DOWK|DOWKL}(indate, outfield)

where:

indate

Numeric

Is the input date in year-month-day format. If the date is not valid, the function returns
spaces. If the date specifies a two digit year and DEFCENT and YRTHRESH values have
not been set, the function assumes the 20th century.

outfield

DOWK: A4

DOWKL: A12

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
7-60 Information Builders

Date and Time Functions
Example Finding the Day of the Week

DOWK determines the day of the week that corresponds to the value in the HIRE_DATE field
and stores the result in DATED:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND HIRE_DATE AND COMPUTE
DATED/A4 = DOWK(HIRE_DATE, DATED);
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

EMP_ID HIRE_DATE DATED
------ --------- -----
071382660 80/06/02 MON
119265415 82/01/04 MON
119329144 82/08/01 SUN
123764317 82/01/04 MON
126724188 82/07/01 THU
451123478 82/02/02 TUE

DT Functions: Converting an Integer to a Date

The DT functions convert an integer representing the number of days elapsed since
December 31, 1899 to the corresponding date. They are useful when you are performing
arithmetic on a date converted to the number of days (see DA Functions: Converting a Date
to an Integer on page 7-56). The DT functions convert the result back to a date.

There are six DT functions; each one converts a number into a date of a different format.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 7-61

Using Legacy Date Functions
Syntax How to Convert an Integer to a Date

function(number, outfield)

where:

function

Is one of the following:

DTDMY converts a number to a day-month-year date.

DTDYM converts a number to a day-year-month date.

DTMDY converts a number to a month-day-year date.

DTMYD converts a number to a month-year-day date.

DTYDM converts a number to a year-day-month date.

DTYMD converts a number to a year-month-day date.

number

Numeric

Is the number of days since December 31, 1899. The number is truncated to an integer.

outfield

Integer

Is the name of the field containing the result or the format of the output value enclosed
in single quotation marks. The output format depends on the function being used.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
7-62 Information Builders

Date and Time Functions
Example Converting an Integer to a Date

DTMDY converts the NEWF field (which was converted to the number of days by DAYMD) to
the corresponding date and stores the result in NEW_HIRE_DATE:

-* THIS PROCEDURE CONVERTS HIRE_DATE, WHICH IS IN I6YMD FORMAT,
-* TO A DATE IN I8MDYY FORMAT.
-* FIRST IT USES THE DAYMD FUNCTION TO CONVERT HIRE_DATE
-* TO A NUMBER OF DAYS.
-* THEN IT USES THE DTMDY FUNCTION TO CONVERT THIS NUMBER OF
-* DAYS TO I8MDYY FORMAT
-*
DEFINE FILE EMPLOYEE
NEWF/I8 WITH EMP_ID = DAYMD(HIRE_DATE, NEWF);
NEW_HIRE_DATE/I8MDYY WITH EMP_ID = DTMDY(NEWF, NEW_HIRE_DATE);
END
TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE
BY FN BY LN
WHERE DEPARTMENT EQ 'MIS'
END

The output is:

FIRST_NAME LAST_NAME HIRE_DATE NEW_HIRE_DATE
---------- --------- --------- -------------
BARBARA CROSS 81/11/02 11/02/1981
DIANE JONES 82/05/01 05/01/1982
JOHN MCCOY 81/07/01 07/01/1981
MARY GREENSPAN 82/04/01 04/01/1982
 SMITH 81/07/01 07/01/1981
ROSEMARIE BLACKWOOD 82/04/01 04/01/1982

GREGDT: Converting From Julian to Gregorian Format

A date in Julian format is a five- or seven-digit number. The first two or four digits are the
year; the last three digits are the number of the day, counting from January 1. For example,
January 1, 1999 in Julian format is either 99001 or 1999001.

Available Operating Systems: All

Available Languages: reporting, Maintain

The GREGDT function converts a date in Julian format to Gregorian format
(year-month-day).
Using Functions 7-63

Using Legacy Date Functions
Reference DATEFNS Settings for GREGDT

GREGDT converts a Julian date to either YMD or YYMD format using the DEFCENT and
YRTHRESH parameter settings to determine the century, if required. GREGDT returns a date
as follows:

Syntax How to Convert From Julian to Gregorian Format

GREGDT(indate, outfield)

where:

indate

Numeric

Is the Julian date, which is truncated to an integer before conversion. Each value must
be a five- or seven-digit number after truncation. If the date is invalid, the function
returns a 0.

outfield

I6 or I8

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

DATEFNS Setting I6 or I7 Format I8 Format or Greater

ON YMD YYMD

OFF YMD YMD
7-64 Information Builders

Date and Time Functions
Example Converting From Julian to Gregorian Format

GREGDT converts the JULIAN field to YYMD (Gregorian) format. It determines the century
using the default DEFCENT and YRTHRESH parameter settings.

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND
COMPUTE JULIAN/I5 = JULDAT(HIRE_DATE, JULIAN); AND
COMPUTE GREG_DATE/I8 = GREGDT(JULIAN, 'I8');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE JULIAN GREG_DATE
--------- ---------- --------- ------ ---------
BANNING JOHN 82/08/01 82213 19820801
IRVING JOAN 82/01/04 82004 19820104
MCKNIGHT ROGER 82/02/02 82033 19820202
ROMANS ANTHONY 82/07/01 82182 19820701
SMITH RICHARD 82/01/04 82004 19820104
STEVENS ALFRED 80/06/02 80154 19800602

JULDAT: Converting From Gregorian to Julian Format

The JULDAT function converts a date from Gregorian format (year-month-day) to Julian
format (year-day). A date in Julian format is a five- or seven-digit number. The first two or
four digits are the year; the last three digits are the number of the day, counting from
January 1. For example, January 1, 1999 in Julian format is either 99001 or 1999001.

Reference DATEFNS Settings for JULDAT

JULDAT converts a Gregorian date to either YYNNN or YYYYNNN format, using the
DEFCENT and YRTHRESH parameter settings to determine if the century is required.

JULDAT returns dates as follows:

Available Operating Systems: All

Available Languages: reporting, Maintain

DATEFNS Setting I5 or I6 Format I7 Format or Greater

ON YYNNN YYYYNNN

OFF YYNNN YYNNN
Using Functions 7-65

Using Legacy Date Functions
Syntax How to Convert From Gregorian to Julian Format

JULDAT(indate, outfield)

where:

indate

Numeric

Is the date or the name of the field that contains the date in year-month-day format
(YMD or YYMD).

outfield

I5 or I7

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Converting From Gregorian to Julian Format

 JULDAT converts the HIRE_DATE field to Julian format. It determines the century using the
default DEFCENT and YRTHRESH parameter settings.

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
JULIAN/I7 = JULDAT(HIRE_DATE, JULIAN);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE JULIAN
--------- ---------- --------- ------
BANNING JOHN 82/08/01 1982213
IRVING JOAN 82/01/04 1982004
MCKNIGHT ROGER 82/02/02 1982033
ROMANS ANTHONY 82/07/01 1982182
SMITH RICHARD 82/01/04 1982004
STEVENS ALFRED 80/06/02 1980154
7-66 Information Builders

Date and Time Functions
YM: Calculating Elapsed Months

The YM function calculates the number of months that elapse between two dates. The
dates must be in year-month format. You can convert a date to this format by using the
CHGDAT or EDIT function.

Syntax How to Calculate Elapsed Months

YM(fromdate, todate, outfield)

where:

fromdate

Numeric

Is the start date in year-month format (for example, I4YM). If the date is not valid, the
function returns a 0.

todate

Numeric

Is the end date in year-month format. If the date is not valid, the function returns a 0.

outfield

Integer

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Note: If fromdate or todate is in integer year-month-day format (I6YMD or I8YYMD) ,
simply divide by 100 to convert to year-month format and set the result to an integer.
This drops the day portion of the date, which is now after the decimal point.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 7-67

Using Legacy Date Functions
Example Calculating Elapsed Months

The COMPUTE commands convert the dates from year-month-day to year-month format;
then YM calculates the difference between the values in the HIRE_DATE/100 and DAT_INC/
100 fields:

TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE DATE' AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100; NOPRINT AND COMPUTE
MONTH_INC/I4YM = DAT_INC/100; NOPRINT AND COMPUTE
MONTHS_HIRED/I3 = YM(HIRE_MONTH, MONTH_INC, 'I3');
BY LAST_NAME BY FIRST_NAME BY HIRE_DATE
IF MONTHS_HIRED NE 0
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE RAISE DATE MONTHS_HIRED
--------- ---------- --------- ---------- ------------
CROSS BARBARA 81/11/02 82/04/09 5
GREENSPAN MARY 82/04/01 82/06/11 2
JONES DIANE 82/05/01 82/06/01 1
MCCOY JOHN 81/07/01 82/01/01 6
SMITH MARY 81/07/01 82/01/01 6
7-68 Information Builders

CHAPTER 8

Maintain-specific Date and Time Functions

Topics:

• Maintain-specific Standard Date
and Time Functions

• Maintain-specific Legacy Date
Functions

Maintain-specific date and time functions manipulate date
and time values. These functions are available only in
Maintain.

There are additional date and time functions available in
both the reporting and Maintain languages. For
information on these functions, see Chapter 7, Date and
Time Functions.
Using Functions 8-1

Maintain-specific Standard Date and Time Functions
Maintain-specific Standard Date and Time Functions

HHMMSS: Retrieving the Current Time (Maintain)

The HHMMSS function retrieves the current time from the operating system as an
8-character string, separating the hours, minutes, and seconds with periods.

To use this function, you must import the function library MNTUWS. For information on
importing a function library, see How to Access the Maintain MNTUWS Function Library in
Chapter 3.

There is also an HHMMSS function available in the reporting language. For information on
this function, see HHMMSS: Retrieving the Current Time in Chapter 7.

Syntax How to Retrieve the Current Time

HHMMSS()

Example Retrieving the Current Time

HHMMSS retrieves the current time from the operating system:

MAINTAIN
Module Import (mntuws);
Case Top
Compute now/a10 = hhmmss();
type "Now = <<now"
EndCase
END

The output is:

Now = 14.25.33

Standard date and time functions are for use with non-legacy dates. For a definition of
standard dates and times, see Chapter 7, Date and Time Functions.

Available Operating Systems: All

Available Languages: Maintain
8-2 Information Builders

Maintain-specific Date and Time Functions
Initial_HHMMSS: Returning the Time the Application Was Started

The Initial_HHMMSS function returns the time when the Maintain application was started
as an 8-character string, separating the hours, minutes, and seconds with periods.

To use this function, you must import the function library MNTUWS. For details on
importing this library, see How to Access the Maintain MNTUWS Function Library in Chapter 3.

Syntax How to Retrieve the Initial Time

Initial_HHMMSS()

Initial_TODAY: Returning the Date the Application Was Started

The Initial_TODAY function returns the date when the Maintain application was started as
an 8-character string with embedded colons separating the hours, minutes, and seconds
with periods.

To use this function, you must import the function library MNTUWS. For details on
importing this library, see How to Access the Maintain MNTUWS Function Library in Chapter 3.

Syntax How to Retrieve the Initial Date

Initial_TODAY()

TODAY: Retrieving the Current Date (Maintain)

The TODAY function retrieves the current date from the system in the format MM/DD/YY or
MM/DD/YYYY. TODAY always returns a date that is current. Therefore, if you are running an
application late at night, use TODAY. You can remove the embedded slashes using the EDIT
function.

To use this function, you must import the function library MNTUWS. For information on
importing this library, see How to Access the Maintain MNTUWS Function Library in Chapter 3.

There is a version of the TODAY function that is available only in the reporting language. For
information on this function, see TODAY: Returning the Current Date in Chapter 7.

Available Operating Systems: All

Available Languages: Maintain

Available Operating Systems: All

Available Languages: Maintain

Available Operating Systems: All

Available Languages: Maintain
Using Functions 8-3

Maintain-specific Standard Date and Time Functions
Syntax How to Retrieve the Current Date

TODAY()

Example Retrieving the Current Date

TODAY retrieves the current date from the system:

MAINTAIN
Module Import (mntuws);

Case Top
Compute date1/a8 = today();
type "Date1 = <<date1"
Endcase
END

The result is:

Date1 = 07/17/02

TODAY2: Returning the Current Date

The TODAY2 function retrieves the current date from the operating system in the format
MM/DD/YY or MM/DD/YYYY.

To use this function, you must import the function library MNTUWS. For information on
importing this library, see How to Access the Maintain MNTUWS Function Library in Chapter 3.

Syntax How to Retrieve the Current Date

TODAY2()

Example Retrieving the Current Date

TODAY2 retrieves the current date from the system:

MAINTAIN
Module Import (mntuws);

Case Top
Compute date2/a10 = today2();
type "Date2 = <<date2"
Endcase
END

The result is:

Date2 = 07/17/2002

Available Operating Systems: All

Available Languages: Maintain
8-4 Information Builders

Maintain-specific Date and Time Functions
Maintain-specific Legacy Date Functions

ADD: Adding Days to a Date

The ADD function adds a given number of days to a date.

Syntax How to Add Days to a Date

ADD(date,value)

or

date.ADD(value)

where:

date

Is the date to add days to, or a field containing the date.

value

Is the number of days by which to increase the date.

This function changes the value of date.

Example Adding Days to a Date

ADD adds 10 days to the each value in the DateVar field:

ADD(DateVar, 10)

The following are sample values for DateVar and the corresponding values for
ADD(DateVar, 10):

DateVar ADD(DateVar, 10);
------- -----------------
12/31/1999 01/10/2000
01/01/2000 01/11/2000
01/02/2000 01/12/2000

Legacy date functions are for use with legacy dates. For a definition of legacy dates and
times, see Using Legacy Date Functions in Chapter 7.

Available Operating Systems: All

Available Languages: Maintain
Using Functions 8-5

Maintain-specific Legacy Date Functions
DAY: Extracting the Day of the Month From a Date

The DAY function extracts the day of the month from a date and returns the result as an
integer.

Syntax How to Extract the Day of the Month From a Date

DAY(date);

where:

date

Is the date (in date format) to extract the day of the month from, or a field containing
the date.

Example Extracting the Day of the Month From a Date

DAY extracts the day of the month from the DATE field:

DAY(DATE)

The following are sample values for DATE and the corresponding values for DAY(DATE):

DATE DAY(DATE)
---- ---------
01/01/2000 1
01/02/2000 2
01/03/2000 3

JULIAN: Determining How Many Days Have Elapsed in the Year

The JULIAN function determines the number of days that have elapsed in the given year up
to a given date, and returns the result as an integer.

Syntax How to Determine How Many Days Have Elapsed in the Year

JULIAN(date);

where:

date

Is the date (in date format) for which to determine the number of days elapsed in the
given year, or a field containing the date.

Available Operating Systems: All

Available Languages: Maintain

Available Operating Systems: All

Available Languages: Maintain
8-6 Information Builders

Maintain-specific Date and Time Functions
Example Determining How Many Days Have Elapsed in the Year

JULIAN determines the number of days that have elapsed up to the date in the DATE field:

JULIAN(DATE)

The following are sample values for DATE and the corresponding values for JULIAN(DATE):

DATE JULIAN(DATE)
---- ------------
01/01/2000 1
02/01/2000 32
03/01/2000 61

MONTH: Extracting the Month From a Date

The MONTH function extracts the month from a date and returns the result as an integer.

Syntax How to Extract the Month From a Date

MONTH(date);

where:

date

Is the date (in date format) to extract the month from, or a field containing the date.

Example Extracting the Month From a Date

MONTH extracts the month from each value in the DATE field:

MONTH(DATE)

The following are sample values for DATE and the corresponding values for MONTH(DATE):

DATE MONTH(DATE)
---- -----------
01/01/2000 1
02/01/2000 2
03/01/2000 3

Available Operating Systems: All

Available Languages: Maintain
Using Functions 8-7

Maintain-specific Legacy Date Functions
QUARTER: Determining the Quarter

The QUARTER function determines the quarter of the year in which a date resides, and
returns the result as an integer.

Syntax How to Determine the Quarter for a Date

QUARTER(date);

where:

date

Is the date (in date format) to determine the quarter for, or a field containing the date.

Example Determining the Quarter for a Date

QUARTER extracts the quarter component from each value in the DATE field:

QUARTER(DATE)

The following are sample values for DATE and the corresponding values for
QUARTER(DATE):

DATE QUARTER(DATE)
---- -------------
01/01/2000 1
04/01/2000 2
07/01/2000 3

SETMDY: Setting the Value to a Date

The SETMDY function sets a value to a date based on numeric values representing a day,
month, and year. SETMDY returns a 0 if the function is successful, and a negative number if
the function fails.

Available Operating Systems: All

Available Languages: Maintain

Available Operating Systems: All

Available Languages: Maintain
8-8 Information Builders

Maintain-specific Date and Time Functions
Syntax How to Set a Value to a Date

SETMDY(date, month, day, year);

or

date.SETMDY(month, day, year);

where:

date

Is the date, in date format, or a field containing the date.

month

Is an integer value representing a month.

day

Is an integer value representing the day of the month.

year

Is an integer value representing a year.

Example Setting a Value to a Date

SETMDY sets the value of DateVar, which is formatted as a date that displays as wrMtrDYY
(for example, Saturday, January 1, 2000):

SETMDY(DateVar, month, day, year);

The following are sample values for month, day, and year, and the corresponding dates for
DateVar:

month day year DateVar
----- --- ---- -------
04 05 1965 Monday, April 5, 1965
02 01 1997 Saturday, February 1, 1997
01 01 2000 Saturday, January 1, 2000
Using Functions 8-9

Maintain-specific Legacy Date Functions
SUB: Subtracting a Value From a Date

The SUB function subtracts a given number of days from a date.

Syntax How to Subtract a Value From a Date

SUB(date,value)

or

date.SUB(value)

where:

date

Is the date to subtract the value from, or a field containing the date.

value

Is the value to subtract from the date.

Example Subtracting Days From a Date

SUB subtracts 10 days from each value in the DateVar field.

SUB(DateVar, 10)

The following are sample values for DateVar and the corresponding values for
SUB(DateVar, 10):

DateVar SUB(DateVar, 10);
------- -----------------
12/31/1999 12/21/2000
01/01/2000 12/22/2000
01/02/2000 12/23/2000

Available Operating Systems: All

Available Languages: Maintain
8-10 Information Builders

Maintain-specific Date and Time Functions
WEEKDAY: Determining the Day of the Week for a Date

The WEEKDAY function determines the day of the week for a date and returns the result as
an integer (1=Monday, 2=Tuesday, and so on).

Syntax How to Determine the Day of the Week for a Date

WEEKDAY(date);

where:

date

Is the date (in date format) to determine the weekday for, or a field containing the date.

Example Determining the Day of the Week for a Date

WEEKDAY determines the day of the week for each date in the DATE field, and stores that
day as a number corresponding to a weekday:

WEEKDAY(DATE)

The following are sample values for DATE and the corresponding values for
WEEKDAY(DATE)

DATE WEEKDAY(DATE)
---- -------------
01/01/2000 6
01/02/2000 7
01/03/2000 1

Available Operating Systems: All

Available Languages: Maintain
Using Functions 8-11

Maintain-specific Legacy Date Functions
YEAR: Extracting the Year From a Date

The YEAR function extracts the year from a date.

Syntax How to Extract the Year From a Date

YEAR(date);

where:

date

Is the date to extract the year from, or a field containing the date.

Example Extracting a Year From a Date

YEAR extracts the year from the DATE field, and stores that year in the YEAR(DATE) field:

YEAR(DATE)

The following are sample values for DATE and the corresponding values for YEAR(DATE):

DATE YEAR(DATE)
---- ----------
01/01/2000 2000
02/01/2001 2001
03/01/2002 2002

Available Operating Systems: All

Available Languages: Maintain
8-12 Information Builders

CHAPTER 9

Format Conversion Functions

Topics:

• ATODBL: Converting an
Alphanumeric String to
Double-Precision Format

• EDIT: Converting the Format of a
Field

• FTOA: Converting a Number to
Alphanumeric Format

• HEXBYT: Converting a Decimal
Integer to a Character

• ITONUM: Converting a Large Binary
Integer to Double-Precision Format

• ITOPACK: Converting a Large Binary
Integer to Packed-Decimal Format

• ITOZ: Converting a Number to
Zoned Format

• PCKOUT: Writing a Packed Number
of Variable Length

• UFMT: Converting an Alphanumeric
String to Hexadecimal

Format conversion functions convert fields from one
format to another. For information on field formats see the
Describing Data manual.
Using Functions 9-1

ATODBL: Converting an Alphanumeric String to Double-Precision Format
ATODBL: Converting an Alphanumeric String to Double-Precision Format

The ATODBL function converts a number in alphanumeric format to decimal
(double-precision) format.

Syntax How to Convert an Alphanumeric String to Double-Precision Format

ATODBL(string, length, outfield)

where:

string

Alphanumeric

Is the alphanumeric string to be converted, or a field or variable that contains the string.

length

Alphanumeric

Is the two character length of infield in bytes. This can be a numeric constant, or a field
or variable that contains the value. If you specify a numeric constant, enclose it in single
quotation marks. The maximum value is 15.

outfield

Decimal or Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
9-2 Information Builders

Format Conversion Functions
Example Converting an Alphanumeric Field to Double-Precision Format

ATODBL converts the EMP_ID field into double-precision format and stores the result in
D_EMP_ID:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME AND
EMP_ID AND
COMPUTE D_EMP_ID/D12.2 = ATODBL(EMP_ID, '09', D_EMP_ID);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME EMP_ID D_EMP_ID
--------- ---------- ------ --------
SMITH MARY 112847612 112,847,612.00
JONES DIANE 117593129 117,593,129.00
MCCOY JOHN 219984371 219,984,371.00
BLACKWOOD ROSEMARIE 326179357 326,179,357.00
GREENSPAN MARY 543729165 543,729,165.00
CROSS BARBARA 818692173 818,692,173.00

Example Converting an Alphanumeric Value to Double-Precision Format With MODIFY

In the following example, the Master File contains the MISSING attribute for the CURR_SAL
field. If you do not enter a value for this field, it is interpreted as the default value, a period.

FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID,FORMAT=A9, $
 .
 .
 .
 FIELDNAME=CURR_SAL, ALIAS=CSAL,FORMAT=D12.2M, MISSING=ON,$
 .
 .
 .
Using Functions 9-3

ATODBL: Converting an Alphanumeric String to Double-Precision Format
ATODBL converts the value supplied for TCSAL to double-precision format:

MODIFY FILE EMPLOYEE
COMPUTE TCSAL/A12=;
PROMPT EID
MATCH EID
ON NOMATCH REJECT
ON MATCH TYPE "EMPLOYEE <D.LAST_NAME <D.FIRST_NAME"
ON MATCH TYPE "ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE"
ON MATCH PROMPT TCSAL
ON MATCH COMPUTE
CSAL MISSING ON = IF TCSAL EQ 'N/A' THEN MISSING
 ELSE ATODBL(TCSAL, '12', 'D12.2');
ON MATCH TYPE "SALARY NOW <CSAL"
DATA

A sample execution on VM/CMS is:

 EMPLOYEEFOCUS A ON 11/14/96 AT 13.42.55
 DATA FOR TRANSACTION 1

 EMP_ID =
071382660
 EMPLOYEE STEVENS ALFRED
 ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE
 TCSAL =
N/A
 SALARY NOW
 DATA FOR TRANSACTION 2

 EMP_ID =
112847612
 EMPLOYEE SMITH MARY
 ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE
 TCSAL =
45000
 SALARY NOW $45,000.00
 DATA FOR TRANSACTION 3

 EMP_ID =
end
 TRANSACTIONS: TOTAL = 2 ACCEPTED= 2 REJECTED= 0
 SEGMENTS: INPUT = 0 UPDATED = 0 DELETED = 0
9-4 Information Builders

Format Conversion Functions
The procedure processes as follows:

1. For the first transaction, the procedure prompts for an employee ID. You enter
071382660.

2. The procedure displays the last and first name of the employee, STEVENS ALFRED.

3. The procedure prompts for a current salary. You enter N/A.

4. A period displays.

5. For the second transaction, the procedure prompts for an employee ID. You enter
112847612.

6. The procedure displays the last and first name of the employee, SMITH MARY.

7. Then it prompts for a current salary. Enter 45000.

8. $45,000.00 displays.

EDIT: Converting the Format of a Field

The EDIT function converts an alphanumeric field that contains numeric characters to
numeric format or converts a numeric field to alphanumeric format. It is useful when you
need to manipulate a field using a command that requires a particular format.

When EDIT assigns a converted value to a new field, the format of the new field must
correspond to the format of the returned value. For example, if EDIT converts a numeric
field to alphanumeric format, you must give the new field an alphanumeric format. For
example:

DEFINE ALPHAPRICE/A6 = EDIT(PRICE);

EDIT deals with a symbol in the following way:

• When an alphanumeric field is converted to numeric format, a sign or decimal point in
the field is acceptable and is stored in the numeric field.

• When converting a floating-point or packed-decimal field to alphanumeric format,
EDIT removes the sign, the decimal point, and any number to the right of the decimal
point. It then right-justifies the remaining digits and adds leading zeros to achieve the
specified field length. Converting a number with more than nine significant digits in
floating-point or packed-decimal format may produce an incorrect result.

EDIT also extracts characters from or add characters to an alphanumeric string. For more
information, see EDIT: Extracting or Adding Characters in Chapter 4.

Available Operating Systems: OS/390, UNIX, VM/CMS

Available Languages: reporting
Using Functions 9-5

EDIT: Converting the Format of a Field
Syntax How to Convert the Format of a Field

EDIT(fieldname);

where:

fieldname

Alphanumeric or Numeric

Is the field name.

Example Converting From Numeric to Alphanumeric Format

EDIT converts HIRE_DATE (a legacy date format) to alphanumeric format. CHGDAT is then
able to use the field, which it expects in alphanumeric format:

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A17 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE HIRE_MDY
--------- ---------- --------- --------
BLACKWOOD ROSEMARIE 82/04/01 APRIL 01 1982
CROSS BARBARA 81/11/02 NOVEMBER 02 1981
GREENSPAN MARY 82/04/01 APRIL 01 1982
JONES DIANE 82/05/01 MAY 01 1982
MCCOY JOHN 81/07/01 JULY 01 1981
SMITH MARY 81/07/01 JULY 01 1981
9-6 Information Builders

Format Conversion Functions
FTOA: Converting a Number to Alphanumeric Format

The FTOA function converts a number up to 16 digits long from numeric format to
alphanumeric format. It retains the decimal positions of a number and right-justifies it with
leading spaces. You can also add edit options to a number converted by FTOA.

When using FTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and
decimal portions of the number. For example, a D12.2 format is converted to A14. If the
output format is not large enough, decimals are truncated.

Syntax How to Convert a Number to Alphanumeric Format

FTOA(number, '(format)', outfield)

where:

number

Numeric

Is the number to be converted, or the name of the field that contains the number.

format

Alphanumeric

Is the output format of the number enclosed in both single quotation marks and
parentheses. Only floating point single-precision and double-precision formats are
supported. Include any edit options that you want to appear in the output. The D
(floating-point double-precision) format automatically supplies commas.

If you use a field name for this argument, specify the name without quotation marks or
parentheses. If you specify a format, the format must be enclosed in parentheses.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The length of this argument must be greater than
the length of number and must account for edit options and a possible negative sign.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 9-7

HEXBYT: Converting a Decimal Integer to a Character
Example Converting From Numeric to Alphanumeric Format

FTOA converts the GROSS field from floating point double-precision to alphanumeric
format and stores the result in ALPHA_GROSS:

TABLE FILE EMPLOYEE
PRINT GROSS AND COMPUTE
ALPHA_GROSS/A15 = FTOA(GROSS, '(D12.2)', ALPHA_GROSS);
BY HIGHEST 1 PAY_DATE NOPRINT
BY LAST_NAME
WHERE (GROSS GT 800) AND (GROSS LT 2300);
END

The output is:

LAST_NAME GROSS ALPHA_GROSS
--------- ----- -----------
BLACKWOOD $1,815.00 1,815.00
CROSS $2,255.00 2,255.00
IRVING $2,238.50 2,238.50
JONES $1,540.00 1,540.00
MCKNIGHT $1,342.00 1,342.00
ROMANS $1,760.00 1,760.00
SMITH $1,100.00 1,100.00
STEVENS $916.67 916.67

HEXBYT: Converting a Decimal Integer to a Character

The HEXBYT function obtains the ASCII or EBCDIC character equivalent of a decimal integer.
It returns a single alphanumeric character in the ASCII or EBCDIC character set. You can use
this function to produce characters that are not on your keyboard, similar to the CTRAN
function.

The display of special characters depends on your software and hardware; not all special
characters may display. Printable ASCII and EBCDIC characters and the integer equivalents
are listed in character charts.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
9-8 Information Builders

Format Conversion Functions
Syntax How to Convert a Decimal Integer to a Character

HEXBYT(input, output)

where:

input

Numeric

Is the decimal integer to be converted to a single character. A value greater than 255 is
treated as the remainder of input divided by 256.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Converting a Decimal Integer to a Character

HEXBYT converts LAST_INIT_CODE to its character equivalent and stores the result in
LAST_INIT:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');
COMPUTE LAST_INIT/A1 = HEXBYT(LAST_INIT_CODE, LAST_INIT);
WHERE DEPARTMENT EQ 'MIS';
END

The output for an ASCII platform is:

LAST_NAME LAST_INIT_CODE LAST_INIT
--------- -------------- ---------
SMITH 83 S
JONES 74 J
MCCOY 77 M
BLACKWOOD 66 B
GREENSPAN 71 G
CROSS 67 C
Using Functions 9-9

HEXBYT: Converting a Decimal Integer to a Character
The output for an EBCDIC platform is:

LAST_NAME LAST_INIT_CODE LAST_INIT
--------- -------------- ---------
SMITH 226 S
JONES 209 J
MCCOY 212 M
BLACKWOOD 194 B
GREENSPAN 199 G
CROSS 195 C

Example Inserting Braces for Mainframe

HEXBYT converts the decimal integer 192 to its EBCDIC character equivalent, which is a left
brace; and the decimal integer 208 to its character equivalent, which is a right brace. If the
value of CURR_SAL is less than 12000, the value of LAST_NAME is enclosed in braces.

DEFINE FILE EMPLOYEE
BRACE/A17 = HEXBYT(192, 'A1') | LAST_NAME | HEXBYT(208, 'A1');
BNAME/A17 = IF CURR_SAL LT 12000 THEN BRACE
ELSE LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT BNAME CURR_SAL BY EMP_ID
END

The output is:

EMP_ID BNAME CURR_SAL
------ ----- --------
071382660 {STEVENS } $11,000.00
112847612 SMITH $13,200.00
117593129 JONES $18,480.00
119265415 {SMITH } $9,500.00
119329144 BANNING $29,700.00
123764317 IRVING $26,862.00
126724188 ROMANS $21,120.00
219984371 MCCOY $18,480.00
326179357 BLACKWOOD $21,780.00
451123478 MCKNIGHT $16,100.00
543729165 {GREENSPAN } $9,000.00
818692173 CROSS $27,062.00
9-10 Information Builders

Format Conversion Functions
ITONUM: Converting a Large Binary Integer to Double-Precision Format

The ITONUM function converts a large binary integer in a non-FOCUS data source to
double-precision format. Some programming languages and some non-FOCUS data
storage systems use large binary integer formats. However, large binary integers (more
than 4 bytes in length) are not supported in the Master File so they require conversion to
double-precision format.

You must specify how many of the right-most bytes in the input field are significant. The
result is an 8-byte double-precision field.

Syntax How to Convert a Large Binary Integer to Double-Precision Format

ITONUM(maxbytes, infield, outfield)

where:

maxbytes

Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes.

6 ignores the left-most 2 bytes.

7 ignores the left-most byte.

infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of
the field must be A8.

outfield

Numeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The format must be Dn or Dn.d.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 9-11

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format
Example Converting a Large Binary Integer to Double-Precision Format

Suppose a binary number in an external file has the following COBOL format:

PIC 9(8)V9(4) COMP

It is defined in the EUROCAR Master File as a field named BINARYFLD. Its field formats are
USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.

The following request converts the field to double-precision format:

DEFINE FILE EUROCAR
MYFLD/D14 = ITONUM(6, BINARYFLD, MYFLD);
END
TABLE FILE EUROCAR
PRINT MYFLD BY CAR
END

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

The ITOPACK function converts a large binary integer in a non-FOCUS data source to
packed-decimal format. Some programming languages and some non-FOCUS data storage
systems use double-word binary integer formats. These are similar to the single-word
binary integers used by FOCUS, but they allow larger numbers. However, large binary
integers (more than 4 bytes in length) are not supported in the Master File so they require
conversion to packed decimal format.

You must specify how many of the right-most bytes in the input field are significant. The
result is an 8-byte packed-decimal field of up to 15 significant numeric positions (for
example, P15 or P16.2).

Limit: For a field defined as ‘PIC 9(15) COMP’ or the equivalent (15 significant digits), the
maximum number that can be converted is 167,744,242,712,576.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
9-12 Information Builders

Format Conversion Functions
Syntax How to Convert a Large Binary Integer to Packed-Decimal Format

ITOPACK(maxbytes, infield, outfield)

where:

maxbytes

Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes (up to 11 significant positions).

6 ignores the left-most 2 bytes (up to 14 significant positions).

7 ignores the left-most byte (up to 15 significant positions).

infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of
the field must be A8.

outfield

Numeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The format must be Pn or Pn.d.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Converting a Large Binary Integer to Packed-Decimal Format

Suppose a binary number in an external file has the following COBOL format:

PIC 9(8)V9(4) COMP

It is defined in the EUROCAR Master File as a field named BINARYFLD. Its field formats are
USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.

The following request converts the field to packed-decimal format:

DEFINE FILE EUROCAR
PACKFLD/P14.4 = ITOPACK(6, BINARYFLD, PACKFLD);
END
TABLE FILE EUROCAR
PRINT PACKFLD BY CAR
END
Using Functions 9-13

ITOZ: Converting a Number to Zoned Format
ITOZ: Converting a Number to Zoned Format

The ITOZ function converts a number in numeric format to zoned format. Although a
request cannot process zoned numbers, it can write zoned fields to an extract file for use by
an external program.

Syntax How to Convert to a Zoned Format

ITOZ(outlength, number, outfield)

where:

outlength

Numeric

Is the length of number in bytes. The maximum number of bytes is 15. The last byte
includes the sign.

number

Numeric

Is the number to be converted, or the field that contains the number. The number is
truncated to an integer before it is converted.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
9-14 Information Builders

Format Conversion Functions
Example Converting a Number to Zoned Format

The following request creates an extract file containing employee IDs and salaries in zoned
format for a COBOL program:

DEFINE FILE EMPLOYEE
ZONE_SAL/A8 = ITOZ(8, CURR_SAL, ZONE_SAL);
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL ZONE_SAL BY EMP_ID
ON TABLE SAVE AS SALARIES
END

The resulting extract file is:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

[EBCDIC|ALPHANUMERIC] RECORD NAMED SALARIES
FIELDNAME ALIAS FORMAT LENGTH

EMP_ID EID A9 9
CURR_SAL CSAL D12.2M 12
ZONE_SAL A8 8

TOTAL 29

DCB USED WITH FILE SALARIES IS DCB=(RECFM=FB,LRECL=00029,BLKSIZE=00580)

If you remove the SAVE command and run the request, the output for an EBCDIC platform
follows. The left brace in EBCDIC is hexadecimal C0; this indicates a positive sign and a final
digit of 0. The capital B in EBCDIC is hexadecimal C2; this indicates a positive sign and a final
digit of 2.

EMP_ID CURR_SAL ZONE_SAL
------ -------- --------
071382660 $11,000.00 0001100{
112847612 $13,200.00 0001320{
117593129 $18,480.00 0001848{
119265415 $9,500.00 0000950{
119329144 $29,700.00 0002970{
123764317 $26,862.00 0002686B
126724188 $21,120.00 0002112{
219984371 $18,480.00 0001848{
326179357 $21,780.00 0002178{
451123478 $16,100.00 0001610{
543729165 $9,000.00 0000900{
818692173 $27,062.00 0002706B
Using Functions 9-15

PCKOUT: Writing a Packed Number of Variable Length
PCKOUT: Writing a Packed Number of Variable Length

The PCKOUT function writes a packed number of variable length to an extract file. When a
request saves a packed number to an extract file, it typically writes it as an 8- or 16-byte field
regardless of its format specification. With PCKOUT, you can vary the field’s length between
1 to 16 bytes.

Syntax How to Write a Packed Number of Variable Length

PCKOUT(infield, outlength, outfield)

where:

infield

Numeric

Is the input field that contains the values. The field can be in packed, integer,
floating-point, or double-precision format. If the field is not in integer format, its values
are rounded to the nearest integer.

outlength

Numeric

Is the length of outfield from 1 to 16 bytes.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The function returns the field as alphanumeric
although it contains packed data.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
9-16 Information Builders

Format Conversion Functions
Example Writing a Packed Number of Variable Length

PCKOUT converts the CURR_SAL field to a 5-byte packed field and stores the result in
SHORT_SAL:

DEFINE FILE EMPLOYEE
SHORT_SAL/A5 = PCKOUT(CURR_SAL, 5, SHORT_SAL);
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME SHORT_SAL HIRE_DATE
ON TABLE SAVE
END

The resulting extract file is:

>
 NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 [EBCDIC|ALPHANUMERIC] RECORD NAMED SAVE
 FIELDNAME ALIAS FORMAT LENGTH

 LAST_NAME LN A15 15
 SHORT_SAL A5 5
 HIRE_DATE HDT I6YMD 6

 TOTAL 26
 DCB USED WITH FILE SAVE IS DCB=(RECFM=FB,LRECL=00026,BLKSIZE=00520)
Using Functions 9-17

UFMT: Converting an Alphanumeric String to Hexadecimal
UFMT: Converting an Alphanumeric String to Hexadecimal

The UFMT function converts characters in an alphanumeric field to the hexadecimal
representation. This function is useful for examining data of unknown format. As long as
you know the length of the data, you can examine its content.

Syntax How to Convert an Alphanumeric String to Hexadecimal

UFMT(string, inlength, outfield)

where:

string

Alphanumeric

Is the alphanumeric string to be converted enclosed in single quotation marks, or the
field that contains the string.

inlength

Numeric

Is the length in characters of string.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The format of outfield must be alphanumeric and
its length must be twice that of inlength.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain
9-18 Information Builders

Format Conversion Functions
Example Converting an Alphanumeric String to Hexadecimal

UFMT converts each value in JOBCODE to its hexadecimal representation and stores the
result in HEXCODE:

DEFINE FILE JOBFILE
HEXCODE/A6 = UFMT(JOBCODE, 3, HEXCODE);
END
TABLE FILE JOBFILE
PRINT JOBCODE HEXCODE
END

The output is:

JOBCODE HEXCODE
------- -------
A01 C1F0F1
A02 C1F0F2
A07 C1F0F7
A12 C1F1F2
A14 C1F1F4
A15 C1F1F5
A16 C1F1F6
A17 C1F1F7
B01 C2F0F1
B02 C2F0F2
B03 C2F0F3
B04 C2F0F4
B14 C2F1F4
Using Functions 9-19

UFMT: Converting an Alphanumeric String to Hexadecimal
9-20 Information Builders

CHAPTER 10

Numeric Functions

Topics:

• ABS: Calculating Absolute Value

• ASIS: Distinguishing Between a
Blank and a Zero

• BAR: Producing a Bar Chart

• CHKPCK: Validating a Packed Field

• DMOD, FMOD, and IMOD:
Calculating the Remainder From a
Division

• EXP: Raising “e” to the Nth Power

• EXPN: Evaluating a Number in
Scientific Notation

• FMLINFO: Returning FOR Values

• INT: Finding the Greatest Integer

• LOG: Calculating the Natural
Logarithm

• MAX and MIN: Finding the
Maximum or Minimum Value

• NORMSDST and NORMSINV:
Calculating Cumulative Normal
Distribution

• PRDNOR and PRDUNI: Generating
Reproducible Random Numbers

• RDNORM and RDUNIF: Generating
Random Numbers

• SQRT: Calculating the Square Root

Numeric functions perform calculations on numeric
constants and fields.
Using Functions 10-1

ABS: Calculating Absolute Value
ABS: Calculating Absolute Value

The ABS function returns the absolute value of a number.

Syntax How to Calculate Absolute Value

ABS(argument)

where:

argument

Numeric

Is the value for which the absolute value is returned, the name of a field that contains
the value, or an expression that returns the value. If you use an expression, use
parentheses as needed to ensure the correct order of evaluation.

Example Calculating Absolute Value

The COMPUTE command creates the DIFF field, then ABS calculates the absolute value of
DIFF:

TABLE FILE SALES
PRINT UNIT_SOLD AND DELIVER_AMT AND
COMPUTE DIFF/I5 = DELIVER_AMT - UNIT_SOLD; AND
COMPUTE ABS_DIFF/I5 = ABS(DIFF);
BY PROD_CODE
WHERE DATE LE '1017';
END

The output is:

PROD_CODE UNIT_SOLD DELIVER_AMT DIFF ABS_DIFF
--------- --------- ----------- ---- --------
B10 30 30 0 0
B17 20 40 20 20
B20 15 30 15 15
C17 12 10 -2 2
D12 20 30 10 10
E1 30 25 -5 5
E3 35 25 -10 10

Available Operating Systems: All

Available Languages: reporting, Maintain
10-2 Information Builders

Numeric Functions
ASIS: Distinguishing Between a Blank and a Zero
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX

Available Languages: reporting

The ASIS function distinguishes between a blank and a zero in Dialogue Manager. It
differentiates between a numeric string constant or variable defined as a numeric string,
and a field defined simply as numeric.

For details on ASIS, see ASIS: Distinguishing Between a Space and a Zero in Chapter 4.

BAR: Producing a Bar Chart

The BAR function produces a horizontal bar chart using repeating characters to form each
bar. Optionally, you can create a scale to clarify the meaning of a bar chart. Do this by
replacing the title of the column containing the bar with a scale.

Syntax How to Produce a Bar Chart

BAR(barlength, infield, maxvalue, 'char', outfield)

where:

barlength

Numeric

Is the maximum length of the bar in characters. If this value is less than or equal to 0,
the function does not return a bar.

infield

Numeric

Is the data field plotted as a bar chart.

maxvalue

Numeric

Is the maximum value of a bar. This value must be greater than the maximum value
stored in infield. If infield is larger than maxvalue, the function uses maxvalue and
returns a bar of maximum length.

Available Operating Systems: AS/400, OpenVMS, S/390, UNIX, VM/CMS

Available Languages: reporting, Maintain
Using Functions 10-3

BAR: Producing a Bar Chart
'char'

Alphanumeric

Is the repeating character that creates the bars enclosed in single quotation marks. If
you specify more than one character, only the first character is used.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The output field must be large enough to contain a
bar of maximum length as defined by barlength.

In Dialogue Manager, you must specify the format.

Example Producing a Bar Chart

BAR creates a bar chart for the CURR_SAL field, and stores the output in SAL_BAR. The bar
created can be no longer than 30 characters long, and the value it represents can be no
greater than 30,000.

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME CURR_SAL SAL_BAR
--------- ---------- -------- -------
BANNING JOHN $29,700.00 ===========================
IRVING JOAN $26,862.00 ==========================
MCKNIGHT ROGER $16,100.00 ================
ROMANS ANTHONY $21,120.00 =====================
SMITH RICHARD $9,500.00 =========
STEVENS ALFRED $11,000.00 ===========
10-4 Information Builders

Numeric Functions
Example Creating a Bar Chart With a Scale

BAR creates a bar chart for the CURR_SAL field. The request then replaces the field name
SAL_BAR with a scale using the AS phrase.

To run this request on a platform for which the default font is proportional, use a
non-proportional font or issue SET STYLE=OFF.

SET STYLE=OFF

TABLE FILE EMPLOYEE
HEADING
"CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT"
"GRAPHED IN THOUSANDS OF DOLLARS"
" "
PRINT CURR_SAL AS 'CURRENT SALARY'
AND COMPUTE
 SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);
 AS
' 5 10 15 20 25 30,----+----+----+----+----+----+'
BY LAST_NAME AS 'LAST NAME'
BY FIRST_NAME AS 'FIRST NAME'
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT
GRAPHED IN THOUSANDS OF DOLLARS

 5 10 15 20 25
30
LAST NAME FIRST NAME CURRENT SALARY ----+----+----+----+----+----+
--------- ---------- -------------- ------------------------------
BANNING JOHN $29,700.00 =============================
IRVING JOAN $26,862.00 ===========================
MCKNIGHT ROGER $16,100.00 ================
ROMANS ANTHONY $21,120.00 =====================
SMITH RICHARD $9,500.00 ==========
STEVENS ALFRED $11,000.00 ===========
Using Functions 10-5

CHKPCK: Validating a Packed Field
CHKPCK: Validating a Packed Field

The CHKPCK function validates the data in a field described as packed format (if available
on your platform). The function prevents a data exception from occurring when a request
reads a field that is expected to contain a valid packed number but does not.

To use CHKPCK:

1. Ensure that the Master File (USAGE and ACTUAL attributes) or the MODIFY FIXFORM
command defines the field as alphanumeric, not packed. This does not change the field
data, which remains packed, but it enables the request to read the data without a data
exception.

2. Call CHKPCK to examine the field. The function returns the output to a field defined as
packed. If the value it examines is a valid packed number, the function returns the
value; if the value is not packed, the function returns an error code.

Available Operating Systems: All

Available Languages: reporting, Maintain
10-6 Information Builders

Numeric Functions
Syntax How to Validate a Packed Field

CHKPCK(inlength, infield, error, outfield)

where:

inlength

Numeric

Is the length of the packed field. It can be between 1 and 16 bytes.

infield

Alphanumeric

Is the name of the packed field. The field is described as alphanumeric, not packed.

error

Numeric

Is the error code that the function returns if a value is not packed. Choose an error code
outside the range of data. The error code is first truncated to an integer, then converted
to packed format. However, it may appear on a report with a decimal point because of
the format of the output field.

outfield

Packed

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions 10-7

CHKPCK: Validating a Packed Field
Example Validating Packed Data

1. Prepare a data source that includes invalid packed data. The following creates
TESTPACK, which contains the PACK_SAL field. PACK_SAL is defined as alphanumeric
but actually contains packed data. The invalid packed data is stored as AAA.

DEFINE FILE EMPLOYEE
PACK_SAL/A8 = IF EMP_ID CONTAINS '123'
 THEN 'AAA' ELSE PCKOUT(CURR_SAL, 8, 'A8');
END

TABLE FILE EMPLOYEE
PRINT DEPARTMENT PACK_SAL BY EMP_ID
ON TABLE SAVE AS TESTPACK
END

The following is the result of the preceding request.

>
 NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 [EBCDIC|ALPHANUMERIC] RECORD NAMED TESTPACK
 FIELDNAME ALIAS FORMAT LENGTH

 EMP_ID EID A9 9
 DEPARTMENT DPT A10 10
 PACK_SAL A8 8

TOTAL 27
[DCB USED WITH FILE TESTPACK IS
DCB=(RECFM=FB,LRECL=00027,BLKSIZE=00540)]
SAVED...
>

2. Create a Master File for the TESTPACK data source. Define the PACK_SAL field as
alphanumeric in the USAGE and ACTUAL attributes.

FILE = TESTPACK, SUFFIX = FIX
FIELD = EMP_ID ,ALIAS = EID,USAGE = A9 ,ACTUAL = A9 ,$
FIELD = DEPARTMENT,ALIAS = DPT,USAGE = A10,ACTUAL = A10,$
FIELD = PACK_SAL ,ALIAS = PS ,USAGE = A8 ,ACTUAL = A8 ,$
10-8 Information Builders

Numeric Functions
3. Create a request that uses CHKPCK to validate the values in the PACK_SAL field, and
store the result in the GOOD_PACK field. Values not in packed format return the error
code -999. Values in packed format display accurately.

DEFINE FILE TESTPACK
GOOD_PACK/P8CM = CHKPCK(8, PACK_SAL, -999, GOOD_PACK);
END

TABLE FILE TESTPACK
PRINT DEPARTMENT GOOD_PACK BY EMP_ID
END

The output is:

EMP_ID DEPARTMENT GOOD_PACK
------ ---------- ---------
071382660 PRODUCTION $11,000
112847612 MIS $13,200
117593129 MIS $18,480
119265415 PRODUCTION $9,500
119329144 PRODUCTION $29,700
123764317 PRODUCTION -$999
126724188 PRODUCTION $21,120
219984371 MIS $18,480
326179357 MIS $21,780
451123478 PRODUCTION -$999
543729165 MIS $9,000
818692173 MIS $27,062

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

The MOD functions calculate the remainder from a division. Each function returns the
remainder in a different format.

The functions use the following formula.

remainder = dividend - INT(dividend/divisor) * divisor

• DMOD returns the remainder as a decimal number.

• FMOD returns the remainder as a floating-point number.

• IMOD returns the remainder as an integer.

For information on the INT function see INT: Finding the Greatest Integer on page 10-16.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 10-9

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
Syntax How to Calculate the Remainder From a Division

function(dividend, divisor, outfield)

where:

function

Is one of the following:

DMOD returns the remainder as a decimal number.

FMOD returns the remainder as a floating-point number.

IMOD returns the remainder as an integer.

dividend

Numeric

Is the number being divided.

divisor

Numeric

Is the number dividing the dividend.

outfield

Numeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The format is determined by the result returned by
the specific function.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
10-10 Information Builders

Numeric Functions
Example Calculating the Remainder From a Division

IMOD divides ACCTNUMBER by 1000 and returns the remainder to LAST3_ACCT:

TABLE FILE EMPLOYEE
PRINT ACCTNUMBER AND COMPUTE
LAST3_ACCT/I3L = IMOD(ACCTNUMBER, 1000, LAST3_ACCT);
BY LAST_NAME BY FIRST_NAME
WHERE (ACCTNUMBER NE 000000000) AND (DEPARTMENT EQ 'MIS');
END

The output is:

LAST_NAME FIRST_NAME ACCTNUMBER LAST3_ACCT
--------- ---------- ---------- ----------
BLACKWOOD ROSEMARIE 122850108 108
CROSS BARBARA 163800144 144
GREENSPAN MARY 150150302 302
JONES DIANE 040950036 036
MCCOY JOHN 109200096 096
SMITH MARY 027300024 024

EXP: Raising “e” to the Nth Power

The EXP function raises the value “e” (approximately 2.72) to a specified power. This
function is the inverse of the LOG function, which returns an argument’s logarithm.

EXP calculates the result by adding terms of an infinite series. If a term adds less than
.000001 percent to the sum, the function ends the calculation and returns the result as a
double-precision number.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 10-11

EXP: Raising “e” to the Nth Power
Syntax How to Raise “e” to the Nth Power

EXP(power, outfield)

where:

power

Numeric

Is the power that “e” is raised to.

outfield

Double-precision

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Raising “e” to the Nth Power

EXP raises “e” to the power designated by the &POW variable, specified here as 3. The result
is then rounded to the nearest integer with the .5 rounding constant and returned to the
variable &RESULT. The format of the output value is D15.3.

-SET &POW = '3';
-SET &RESULT = EXP(&POW, 'D15.3') + 0.5;
-TYPE E TO THE &POW POWER IS APPROXIMATELY &RESULT

The output is:

E TO THE 3 POWER IS APPROXIMATELY 20
10-12 Information Builders

Numeric Functions
EXPN: Evaluating a Number in Scientific Notation

The EXPN function evaluates a number expressed in scientific notation.

Syntax How to Evaluate a Number in Scientific Notation

EXPN(n.nn {E|D} {+|-} p)

where:

n.nn

Is a numeric constant that consists of a whole number component, followed by a
decimal point, followed by a fractional component.

E, D

Denotes scientific notation. E and D are interchangeable.

+, -

Indicates if p is positive or negative.

p

Is the power of 10 to which to raise the number. Supply the actual value, the name of a
field that contains the value, or an expression that returns the value. The expression can
also call a function.

Example Evaluating a Number in Scientific Notation

You can use scientific notation to express 103 as:

1.03E+2

Then

EXPN(1.03E+2)

returns 103 as the result.

Available Operating Systems: AS/400, OpenVMS, OS/390

Available Languages: reporting
Using Functions 10-13

FMLINFO: Returning FOR Values
FMLINFO: Returning FOR Values

The FMLINFO function returns the FOR value associated with each row in an FML report.
With FMLINFO, you can use the appropriate FOR value in a COMPUTE command to do drill-
downs and sign changes for each row in the report, even when the row is a summary row
created using an OR list or a Financial Modeling Language (FML) Hierarchy ADD command.

Note: The FORMULTIPLE SET parameter FORMULTIPLE must be set to ON in order to use the
FMLINFO function. This enables an incoming record to be used on more than one line in an
FML report.

Syntax How to Retain FOR Values in an FML Request

FMLINFO('FORVALUE',outfield)

where:

'FORVALUE'

Alphanumeric

Returns the FOR value associated with each row in an FML report. If the FML row was
generated as a sum of data records using the OR phrase, FMLINFO returns the first FOR
value specified in the list of values. If the OR phrase was generated by an FML Hierarchy
ADD command, FMLINFO returns the FOR value associated with the parent specified in
the ADD command.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Available Operating Systems: All

Available Languages: reporting
10-14 Information Builders

Numeric Functions
Example Retrieving FOR Values for FML Hierarchy Rows

The following request creates a field called PRINT_AMT that is the negative of the
NAT_AMOUNT field for account numbers less than 2500 in the CENTSYSF data source. The
CENTGL data source contains the hierarchy information for CENTSYSF. Therefore, CENTGL is
joined to CENTSYSF for the request:

SET FORMULTIPLE = ON
JOIN SYS_ACCOUNT IN CENTGL TO ALL SYS_ACCOUNT IN CENTSYSF
TABLE FILE CENTGL
SUM NAT_AMOUNT/D10 IN 30
COMPUTE PRINT_AMT/D10 = IF FMLINFO('FORVALUE','A7') LT '2500'
 THEN 0-NAT_AMOUNT ELSE NAT_AMOUNT;
COMPUTE FORV/A4 = FMLINFO('FORVALUE', 'A4');
COMPUTE ACTION/A9 = IF FORV LT '2500'
 THEN 'CHANGED' ELSE 'UNCHANGED';
FOR GL_ACCOUNT
2000 WITH CHILDREN 2 ADD AS CAPTION
END

Note that the parent value specified in the WITH CHILDREN ADD command (2000) is
returned for the first row on the report. Each subsequent row is also a consolidated
subsection of the hierarchy with a parent value that is returned by FMLINFO:

 Month
 Actual PRINT_AMT FORV ACTION
 ------ --------- ---- ------
Gross Margin -25,639,223 25,639,223 2000 CHANGED
 Sales Revenue -62,362,490 62,362,490 2100 CHANGED
 Retail Sales -49,355,184 49,355,184 2200 CHANGED
 Mail Order Sales -6,899,416 6,899,416 2300 CHANGED
 Internet Sales -6,107,890 6,107,890 2400 CHANGED
 Cost Of Goods Sold 36,723,267 36,723,267 2500 UNCHANGED
 Variable Material Costs 27,438,625 27,438,625 2600 UNCHANGED
 Direct Labor 6,176,900 6,176,900 2700 UNCHANGED
 Fixed Costs 3,107,742 3,107,742 2800 UNCHANGED
Using Functions 10-15

INT: Finding the Greatest Integer
Example Using FMLINFO With an OR Phrase

The FOR value printed for the summary line is 1010, but FMLINFO returns the first value
specified on the OR list, 1030:

SET FORMULTIPLE = ON
TABLE FILE LEDGER
SUM AMOUNT
COMPUTE RETURNEDFOR/A8 = FMLINFO('FORVALUE','A8');
FOR ACCOUNT
1010 OVER
1020 OVER
1030 OVER
BAR OVER
1030 OR 1020 OR 1010
END

The output is:

 AMOUNT RETURNEDFOR
 ------ -----------
1010 8,784 1010
1020 4,494 1020
1030 7,961 1030
 ------ --------
1010 21,239 1030

INT: Finding the Greatest Integer

The INT function returns the integer component of a number.

Syntax How to Find the Greatest Integer

INT(argument)

where:

argument

Numeric

Is the value for which the integer component is returned, the name of a field that
contains the value, or an expression that returns the value. If you supply an expression,
use parentheses as needed to ensure the correct order of evaluation.

Available Operating Systems: All

Available Languages: reporting, Maintain
10-16 Information Builders

Numeric Functions
Example Finding the Greatest Integer

INT finds the greatest integer in the DED_AMT field and stores it in INT_DED_AMT:

TABLE FILE EMPLOYEE
SUM DED_AMT AND COMPUTE
INT_DED_AMT/I9 = INT(DED_AMT);
BY LAST_NAME BY FIRST_NAME
WHERE (DEPARTMENT EQ 'MIS') AND (PAY_DATE EQ 820730);
END

The output is:

LAST_NAME FIRST_NAME DED_AMT INT_DED_AMT
--------- ---------- ------- -----------
BLACKWOOD ROSEMARIE $1,261.40 1261
CROSS BARBARA $1,668.69 1668
GREENSPAN MARY $127.50 127
JONES DIANE $725.34 725
SMITH MARY $334.10 334

LOG: Calculating the Natural Logarithm

The LOG function returns the natural logarithm of a number.

Syntax How to Calculate the Natural Logarithm

LOG(argument)

where:

argument

Numeric

Is the value for which the natural logarithm is calculated, the name of a field that
contains the value, or an expression that returns the value. If you supply an expression,
use parentheses as needed to ensure the correct order of evaluation. If argument is less
than or equal to 0, LOG returns 0.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, VM/CMS,

Available Languages: reporting, Maintain
Using Functions 10-17

MAX and MIN: Finding the Maximum or Minimum Value
Example Calculating the Natural Logarithm

LOG calculates the logarithm of the CURR_SAL field:

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
LOG_CURR_SAL/D12.2 = LOG(CURR_SAL);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:

LAST_NAME FIRST_NAME CURR_SAL LOG_CURR_SAL
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 10.30
IRVING JOAN $26,862.00 10.20
MCKNIGHT ROGER $16,100.00 9.69
ROMANS ANTHONY $21,120.00 9.96
SMITH RICHARD $9,500.00 9.16
STEVENS ALFRED $11,000.00 9.31

MAX and MIN: Finding the Maximum or Minimum Value

The MAX and MIN functions return the maximum or minimum value, respectively, from a
list of values.

Syntax How to Find the Maximum or Minimum Value

{MAX|MIN}(argument1, argument2, ...)

where:

MAX

Returns the maximum value.

MIN

Returns the minimum value.

argument1, argument2

Numeric

Are the values of which the maximum or minimum value is returned, the name of a
field that contains the values, or an expression that returns the values. If you supply an
expression, use parentheses as needed to ensure the correct order of evaluation.

Available Operating Systems: All

Available Languages: reporting, Maintain
10-18 Information Builders

Numeric Functions
Example Determining the Minimum Value

MIN returns either the value of the ED_HRS field or the constant 30, whichever is lower:

TABLE FILE EMPLOYEE
PRINT ED_HRS AND COMPUTE
MIN_EDHRS_30/D12.2 = MIN(ED_HRS, 30);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:

LAST_NAME FIRST_NAME ED_HRS MIN_EDHRS_30
--------- ---------- ------ ------------
BLACKWOOD ROSEMARIE 75.00 30.00
CROSS BARBARA 45.00 30.00
GREENSPAN MARY 25.00 25.00
JONES DIANE 50.00 30.00
MCCOY JOHN .00 .00
SMITH MARY 36.00 30.00

NORMSDST and NORMSINV: Calculating Cumulative Normal Distribution

The NORMSDST and NORMSINV functions perform calculations on a standard normal
distribution curve:

• The NORMSDST function calculates the percentage of data values that are less than or
equal to a normalized value. A normalized value is a point on the x-axis of a standard
normal distribution curve in standard deviations from the mean. This is useful for
determining percentiles in normally distributed data.

• The NORMSINV function finds the normalized value that forms the upper boundary of a
percentile in a standard normal distribution curve. This is the inverse of NORMSDST.

The results of NORMSDST and NORMSINV are returned as double-precision and are
accurate to 6 significant digits.

A standard normal distribution curve is a normal distribution that has a mean of 0 and a
standard deviation of 1. The total area under this curve is 1. A point on the x-axis of the
standard normal distribution is called normalized value. Assuming that your data is
normally distributed, you can convert a data point to a normalized value in order to find the
percentage of scores that are less than or equal to the raw score.

Available Operating Systems: All

Available Languages: reporting
Using Functions 10-19

NORMSDST and NORMSINV: Calculating Cumulative Normal Distribution
You can convert a value (raw score) from your normally distributed data to the equivalent
normalized value (z-score) as follows:

z = (raw_score - mean)/standard_deviation

To convert from a z-score back to a raw score, use the following formula:

raw_score = z * standard_deviation + mean

The mean of data points xi, where i is from 1 to n is:

(∑xi)/n

The standard deviation of data points xi, where i is from 1 to n is:

SQRT(((∑xi² - (∑xi)²/n)/(n - 1)))

The result of the NORMSDST and NORMSINV functions are illustrated by the following
diagram:

Reference Characteristics of the Normal Distribution

Many common measurements tend to be normally distributed. A plot of normally
distributed data values approximates a bell-shaped curve. The two measures needed to
describe any normal distribution are the mean and the standard deviation:

• The mean is the point at the center of the curve.

• The standard deviation describes the spread of the curve. It is the distance from the
mean to the point of inflection (point where the curve changes direction).
10-20 Information Builders

Numeric Functions
Syntax How to Calculate the Cumulative Standard Normal Distribution Function

NORMSDST(value, 'D8');

where:

value

Is a normalized value.

D8

Is the required format for the result. The value returned by the function is double
precision. You can assign it to a field with any valid numeric format.

Syntax How to Calculate the Inverse Cumulative Standard Normal Distribution Function

NORMSINV(value, 'D8');

where:

value

Is a number between 0 and 1 which represents the a percentile in a standard normal
distribution).

D8

Is the required format for the result. The value returned by the function is double
precision. You can assign it to a field with any valid numeric format.
Using Functions 10-21

NORMSDST and NORMSINV: Calculating Cumulative Normal Distribution
Example Using the NORMSDST and NORMSINV Functions

NORMSDST finds the percentile for the Z field. NORMSINV then returns this percentile to a
normalized value.

DEFINE FILE GGPRODS
-* CONVERT SIZE FIELD TO DOUBLE PRECISION
X/D12.5 = SIZE;
END

TABLE FILE GGPRODS
SUM X NOPRINT CNT.X NOPRINT
-* CALCULATE MEAN AND STANDARD DEVIATION
COMPUTE NUM/D12.5 = CNT.X; NOPRINT
COMPUTE MEAN/D12.5 = AVE.X; NOPRINT
COMPUTE VARIANCE/D12.5 = ((NUM*ASQ.X) - (X*X/NUM))/(NUM-1); NOPRINT
COMPUTE STDEV/D12.5 = SQRT(VARIANCE); NOPRINT

PRINT SIZE X NOPRINT
-* COMPUTE NORMALIZED VALUES AND USE AS INPUT TO NORMSDST FUNCTION
-* THEN USE RETURNED VALUES AS INPUT TO NORMSINV FUNCTION
-* AND CONVERT BACK TO DATA VALUES
COMPUTE Z/D12.5 = (X - MEAN)/STDEV;
COMPUTE NORMSD/D12.5 = NORMSDST(Z, 'D8');
COMPUTE NORMSI/D12.5 = NORMSINV(NORMSD, 'D8');
COMPUTE DSIZE/D12 = NORMSI * STDEV + MEAN;
BY PRODUCT_ID NOPRINT
END

The output is:

Size Z NORMSD NORMSI DSIZE
---- - ------ ------ -----
12 -.80273 .21106 -.80273 12
12 -.80273 .21106 -.80273 12
16 -.07298 .47091 -.07298 16
20 .65678 .74434 .65678 20
24 1.38654 .91721 1.38654 24
20 .65678 .74434 .65678 20
24 1.38654 .91721 1.38654 24
16 -.07298 .47091 -.07298 16
12 -.80273 .21106 -.80273 12
8 -1.53249 .06270 -1.53249 8
10-22 Information Builders

Numeric Functions
PRDNOR and PRDUNI: Generating Reproducible Random Numbers

The PRDNOR and PRDUNI functions generate reproducible random numbers:

• PRDNOR generates reproducible double-precision random numbers normally
distributed with an arithmetic mean of 0 and a standard deviation of 1. If PRDNOR
generates a large set of numbers, they have the following properties:

• The numbers lie roughly on a bell curve, as shown in the following figure. The bell
curve is highest at the 0 mark, meaning that there are more numbers closer to 0
than farther away.

• The average of the numbers is close to 0.

• The numbers can be any size, but most are between 3 and -3.

• PRDUNI generates reproducible double-precision random numbers uniformly
distributed between 0 and 1 (that is, any random number it generates has an equal
probability of being anywhere between 0 and 1).

VM/CMS behavior differs from OS/390 behavior. In VM/CMS, the seed changes upon
multiple executions as the function is reloaded unless you reissue the DEFINE for each
execution. In OS/390, the numbers do not reproduce.

Available Operating Systems: All

Available Languages: reporting, Maintain
Using Functions 10-23

PRDNOR and PRDUNI: Generating Reproducible Random Numbers
Syntax How to Generate Reproducible Random Numbers

{PRDNOR|PRDUNI}(seed, outfield)

where:

PRDNOR

Generates reproducible double-precision random numbers normally distributed with
an arithmetic mean of 0 and a standard deviation of 1.

PRDUNI

Generates reproducible double-precision random numbers uniformly distributed
between 0 and 1.

seed

Numeric

Is the seed or the field that contains the seed, up to 9 digits. The seed is truncated to an
integer.

On MVS, the numbers do not reproduce.

On CMS, the numbers reproduce only if the DEFINE that calls the function is reissued
each time you run the request.

outfield

Double-precision

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
10-24 Information Builders

Numeric Functions
Example Generating Reproducible Random Numbers

PRDNOR assigns random numbers and stores them in RAND. These values are then used to
randomly pick five employee records identified by the values in the LAST NAME and FIRST
NAME fields. The seed is 40. To produce a different set of numbers, change the seed.

DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = PRDNOR(40, RAND);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END

The output is:

RAND LAST_NAME FIRST_NAME
---- --------- ----------
1.38 STEVENS ALFRED
1.12 MCCOY JOHN
 .55 SMITH RICHARD
 .21 JONES DIANE
 .01 IRVING JOAN
Using Functions 10-25

RDNORM and RDUNIF: Generating Random Numbers
RDNORM and RDUNIF: Generating Random Numbers

The RDNORM and RDUNIF functions generate random numbers:

• RDNORM generates double-precision random numbers normally distributed with an
arithmetic mean of 0 and a standard deviation of 1. If RDNORM generates a large set of
numbers (between 1 and 32768), they have the following properties:

• The numbers lie roughly on a bell curve, as shown in the following figure. The bell
curve is highest at the 0 mark, meaning that there are more numbers closer to 0
than farther away.

• The average of the numbers is close to 0.

• The numbers can be any size, but most are between 3 and -3.

• RDUNIF generates double-precision random numbers uniformly distributed between 0
and 1 (that is, any random number it generates has an equal probability of being
anywhere between 0 and 1).

Available Operating Systems: All

Available Languages: reporting, Maintain
10-26 Information Builders

Numeric Functions
Syntax How to Generate Random Numbers

{RDNORM|RDUNIF}(outfield)

where:

RDNORM

Generates double-precision random numbers normally distributed with an arithmetic
mean of 0 and a standard deviation of 1.

RDUNIF

Generates double-precision random numbers uniformly distributed between 0 and 1.

outfield

Double-precision

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Generating Random Numbers

RDNORM assigns random numbers and stores them in RAND. These numbers are then used
to randomly choose five employee records identified by the values in the LAST NAME and
FIRST NAME fields.

DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = RDNORM(RAND);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END

The request produces output similar to the following:

RAND LAST_NAME FIRST_NAME
---- --------- ----------
 .65 CROSS BARBARA
 .20 BANNING JOHN
 .19 IRVING JOAN
 .00 BLACKWOOD ROSEMARIE
-.14 GREENSPAN MARY
Using Functions 10-27

SQRT: Calculating the Square Root
SQRT: Calculating the Square Root

The SQRT function calculates the square root of a number.

Syntax How to Calculate the Square Root

SQRT(argument)

where:

argument

Numeric

Is the value for which the square root is calculated, the name of a field that contains the
value, or an expression that returns the value. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If you supply a
negative number, the result is zero.

Example Calculating the Square Root

SQRT calculates the square root of LISTPR:

TABLE FILE MOVIES
PRINT LISTPR AND COMPUTE
SQRT_LISTPR/D12.2 = SQRT(LISTPR);
BY TITLE
WHERE CATEGORY EQ 'MUSICALS';
END

The output is:

TITLE LISTPR SQRT_LISTPR
----- ------ -----------
ALL THAT JAZZ 19.98 4.47
CABARET 19.98 4.47
CHORUS LINE, A 14.98 3.87
FIDDLER ON THE ROOF 29.95 5.47

Available Operating Systems: All

Available Languages: reporting, Maintain
10-28 Information Builders

CHAPTER 11

System Functions

Topics:

• FEXERR: Retrieving an Error
Message

• FGETENV: Retrieving the Value of an
Environment Variable

• FINDMEM: Finding a Member of a
Partitioned Data Set

• FPUTENV: Assigning a Value to an
Environment Variable

• GETPDS: Determining If a Member
of a Partitioned Data Set Exists

• GETUSER: Retrieving a User ID

• HHMMSS: Retrieving the Current
Time

• MVSDYNAM: Passing a DYNAM
Command to the Command
Processor

• TODAY: Returning the Current Date

System functions call the operating system to obtain
information about the operating environment or to use a
system service.
Using Functions 11-1

FEXERR: Retrieving an Error Message
FEXERR: Retrieving an Error Message

The FEXERR function retrieves an Information Builders error message. It is especially useful
in a procedure using a command that suppresses the display of output messages.

An error message consists of up to four lines of text; the first line contains the message and
the remaining three contain a detailed explanation if one exists. FEXERR retrieves the first
line of the error message.

Syntax How to Retrieve an Error Message

FEXERR(error, 'A72')

where:

error

Numeric

Is the error number, up to 5 digits long.

'A72'

Is the format of the output value enclosed in single quotation marks. The format is A72
because the maximum length of an Information Builders error message is 72
characters.

In Maintain, you must supply the field name instead.

Example Retrieving an Error Message

FEXERR retrieves the error message whose number is contained in the &ERR variable, in this
case 650. The result is returned to the variable &&MSGVAR and has the format A72.

-SET &ERR = 650;
-SET &&MSGVAR = FEXERR(&ERR, 'A72');
-TYPE &&MSGVAR

The output is:

(FOC650) THE DISK IS NOT ACCESSED

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,

Available Languages: reporting, Maintain
11-2 Information Builders

System Functions
FGETENV: Retrieving the Value of an Environment Variable

The FGETENV function retrieves the value of an environment variable and returns it as an
alphanumeric string.

Syntax How to Retrieve the Value of an Environment Variable

FGETENV(varlength, 'varname', outfieldlen, outfldformat)

where:

varlength

Integer

Is the length of the environment variable name.

varname

Alphanumeric

Is the name of the environment variable.

outfieldlen

Integer

Is the length of the field in which the environment variable’s value is stored.

outfldformat

Alphanumeric

Is the format of the field in which the environment variable’s value is stored.

Available Operating Systems: AS/400, OpenVMS, UNIX

Available Languages: reporting
Using Functions 11-3

FINDMEM: Finding a Member of a Partitioned Data Set
FINDMEM: Finding a Member of a Partitioned Data Set

The FINDMEM function, used on OS/390, determines if a specific member of a partitioned
data set (PDS) exists. This function is used primarily in Dialogue Manager procedures.

To use this function, allocate the PDS to a ddname because the ddname is required in the
function call. You can search multiple PDSs with one function call if they are concatenated
to one ddname.

Syntax How to Find a Member of a Partitioned Data Set

FINDMEM(ddname, member, outfield)

where:

ddname

A8

Is the ddname to which the PDS is allocated. This value must be an 8-character literal
enclosed in single quotation marks, or a variable that contains the ddname. If you
supply a literal less than 8 characters long, pad it with trailing spaces.

member

A8

Is the member you are searching for. This value must be 8 characters long. If you supply
a literal that has less than 8 characters, pad it with trailing spaces.

outfield

A1

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The result is one of the following:

Y indicates the member exists in the PDS.

N indicates the member does not exist in the PDS.

E indicates an error occurred. Either the data set is not allocated to the ddname, or the
data set allocated to the ddname is not a PDS (and may be a sequential file).

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: OS/390

Available Languages: reporting, Maintain
11-4 Information Builders

System Functions
Example Finding a Member of a Partitioned Data Set

FINDMEM searches for the EMPLOYEE Master File in the PDS allocated to ddname MASTER,
and returns the result to the variable &FINDCODE. The result has the format A1:

-SET &FINDCODE = FINDMEM('MASTER ', 'EMPLOYEE', 'A1');
-IF &FINDCODE EQ 'N' GOTO NOMEM;
-IF &FINDCODE EQ 'E' GOTO NOPDS;
-TYPE MEMBER EXISTS, RETURN CODE = &FINDCODE
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME BY FIRST_NAME
WHERE RECORDLIMIT EQ 4;
END
-EXIT
-NOMEM
-TYPE EMPLOYEE NOT FOUND IN MASTER FILE PDS
-EXIT
-NOPDS
-TYPE ERROR OCCURRED IN SEARCH
-TYPE CHECK IF FILE IS A PDS ALLOCATED TO DDNAME MASTER
-EXIT

The output is:

MEMBER EXISTS, RETURN CODE = Y
> NUMBER OF RECORDS IN TABLE= 4 LINES= 4

LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------
JONES DIANE $18,480.00
SMITH MARY $13,200.00
 RICHARD $9,500.00
STEVENS ALFRED $11,000.00
Using Functions 11-5

FPUTENV: Assigning a Value to an Environment Variable
FPUTENV: Assigning a Value to an Environment Variable

The FPUTENV function assigns a character string to an environment variable. Use FPUTENV
to set values that are used elsewhere in the system.

Limit: You cannot use FPUTENV to set or change FOCPRINT, FOCPATH, or USERPATH; once
started, these variables are held in memory and not reread from the environment.

Syntax How to Assign a Value to an Environment Variable

FPUTENV (namelength,'name',valuelength, 'value', outfield)

where:

namelength

Integer

Is the maximum length of the name of the environment variable.

name

Alphanumeric

Is the name of the environment variable enclosed in single quotation marks. The name
must be right-justified and padded with blanks to the maximum length specified by
namelength.

valuelength

Is the maximum length of the environment variable value.

Note: The sum of namelength and valuelength cannot exceed 64.

value

Is the value you wish to assign to the environment variable. The string must be
right-justified and contain no embedded blanks. Strings that contain embedded blanks
are truncated at the first blank.

outfield

Integer

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. If the variable is set successfully, the return code is
0; any other value indicates a failure occurred.

In Dialogue Manager, you must specify the format.

Available Operating Systems: AS/400, OpenVMS, Tandem, UNIX

Available Languages: reporting
11-6 Information Builders

System Functions
Example Assigning a Value to an Environment Variable

FPUTENV assigns the value FOCUS/Shell to the PS1 variable and stores it in a field with the
format A12:

-SET &RC = FPUTENV(3,'PS1', 12 'FOCUS/Shell:', 'A12');

The request displays the following prompt when the user issues the UNIX shell command
SH:

FOCUS/Shell:

GETPDS: Determining If a Member of a Partitioned Data Set Exists

The GETPDS function determines if a specific member of a partitioned data set (PDS) exists,
and if it does, returns the PDS name. This function is used primarily in Dialogue Manager
procedures.

To use this function, allocate the PDS to a ddname because the ddname is required in the
function call. You can search multiple PDSs with one function call if they are concatenated
to one ddname.

GETPDS is almost identical to FINDMEM, except that GETPDS provides either the PDS name
or returns a different set of status codes.

Available Operating Systems: OS/390

Available Languages: reporting, Maintain
Using Functions 11-7

GETPDS: Determining If a Member of a Partitioned Data Set Exists
Syntax How to Determine if a PDS Member Exists

GETPDS(ddname, member, outfield)

where:

ddname

A8

Is the ddname to which the PDS is allocated. This value must be an 8-character literal
enclosed in single quotation marks, or a variable that contains the ddname. If you
supply a literal less than 8 characters long, pad it with trailing spaces.

member

A8

Is the member the function searches for. This value must be 8 characters long. If you
supply a literal with less than 8 characters, pad it with trailing spaces.

outfield

A44

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The maximum length of a PDS name is 44. The
result is one of the following:

PDS name is the name of the PDS that contains the member, if it exists.

*D indicates the ddname is not allocated to a data set.

*M indicates the member does not exist in the PDS.

*E indicates an error occurred. For example, the data set allocated to the ddname is not
a PDS (and may be a sequential file).

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
11-8 Information Builders

System Functions
Example Determining if a PDS Member Exists

GETPDS searches for the member specified by &MEMBER in the PDS allocated to
&DDNAME, and returns the result to &PNAME. The result has the format A44.

-SET &DDNAME = 'MASTER ';
-SET &MEMBER = 'EMPLOYEE';
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME, &MEMBER, 'A44');
-IF &PNAME EQ '*D' THEN GOTO DDNOAL;
-IF &PNAME EQ '*M' THEN GOTO MEMNOF;
-IF &PNAME EQ '*E' THEN GOTO DDERROR;
-*
-TYPE MEMBER &MEMBER IS FOUND IN
-TYPE THE PDS &PNAME
-TYPE ALLOCATED TO &DDNAME
-*
-EXIT
-DDNOAL
-*
-TYPE DDNAME &DDNAME NOT ALLOCATED
-*
-EXIT
-MEMNOF
-*
-TYPE MEMBER &MEMBER NOT FOUND UNDER DDNAME &DDNAME
-*
-EXIT
-DDERROR
-*
-TYPE ERROR IN GETPDS; DATA SET PROBABLY NOT A PDS.
-*
-EXIT

Output similar to the following is produced:

MEMBER EMPLOYEE IS FOUND IN
THE PDS USER1.MASTER.DATA
ALLOCATED TO MASTER
Using Functions 11-9

GETPDS: Determining If a Member of a Partitioned Data Set Exists
Example Copying a Member for Editing in TED

GETPDS searches for the member specified by &MEMBER in the PDS allocated to
&DDNAME, and returns the result to &PNAME. The DYNAM commands copy the member
from the production PDS to the local PDS. Then the TED editor enables you to edit the
member. The ddnames are allocated earlier in the session: the production PDS is allocated
to the ddname MASTER; the local PDS to ddname MYMASTER. 05sub12.fex.

-* If the Master File in question is in the production PDS, it must
-* be copied to a local PDS, which has been allocated previously to the
-* ddname MYMASTER before any changes can be made.
-* Assume the Master File in question is supplied via a -CRTFORM, with
-* a length of 8 characters, as &MEMBER.
-*

-SET &DDNAME = 'MASTER ';
-SET &MEMBER = &MEMBER;

-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME, &MEMBER, 'A44');
-IF &PNAME EQ '*D' OR '*M' OR '*E' THEN GOTO DDERROR;
-*
DYNAM ALLOC FILE XXXX DA -
 &PNAME MEMBER &MEMBER SHR
DYNAM COPY XXXX MYMASTER MEMBER &MEMBER
-RUN
TED MYMASTER(&MEMBER)
-EXIT
-*
-DDERROR
-*
-TYPE Error in GETPDS; Check allocation for &DDNAME for
-TYPE proper allocation.
-*
-EXIT

Earlier in the session, allocate the ddnames:

> > tso alloc f(master) da('prod720.master.data') shr
> > tso alloc f(mymaster) da('user1.master.data') shr
11-10 Information Builders

System Functions
Run the procedure, and specify the EMPLOYEE member. It is copied to your local PDS, and
you access TED.

PLEASE SUPPLY VALUES REQUESTED

MEMBER= > EMPLOYEE

MYMASTER(EMPLOYEE) SIZE=37 LINE=0

00000 * * * TOP OF FILE * * *
00001 FILENAME=EMPLOYEE, SUFFIX=FOC
00002 SEGNAME=EMPINFO, SEGTYPE=S1
00003 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
00004 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
00005 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
00006 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
00007 FIELDNAME=DEPARTMENT, ALIAS=DPT, FORMAT=A10, $

Example Displaying the Attributes of a PDS

To view the attributes of the PDS that contains a specific member, this Dialogue Manager
procedure can search for the EMPLOYEE member in the PDS allocated to the ddname
MASTER and, based on its existence, allocate the PDS to the ddname TEMPMAST. Dialogue
Manager system variables are used to display the attributes.

-SET &DDNAME = 'MASTER ';
-SET &MEMBER = 'EMPLOYEE';
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME, &MEMBER, 'A44');
-IF &PNAME EQ '*D' OR '*M' OR '*E' THEN GOTO DDERROR;
-*
DYNAM ALLOC FILE TEMPMAST DA -
 &PNAME SHR
-RUN
-? MVS DDNAME TEMPMAST
-TYPE The data set attributes include:
-TYPE Data set name is: &DSNAME
-TYPE Volume is: &VOLSER
-TYPE Disposition is: &DISP
-EXIT
-*
-DDERROR
-TYPE Error in GETPDS; Check allocation for &DDNAME for
-TYPE proper allocation.
-*
-EXIT
Using Functions 11-11

GETUSER: Retrieving a User ID
Sample output is:

> THE DATA SET ATTRIBUTES INCLUDE:
DATA SET NAME IS: USER1.MASTER.DATA
VOLUME IS: USERMO
DISPOSITION IS: SHR
>

GETUSER: Retrieving a User ID

The GETUSER function retrieves the ID of the connected user. GETUSER can also retrieve the
name of an S/390 batch job if you run the function from the batch job. To retrieve a logon ID
for MSO, use the MSOINFO function described in the FOCUS for IBM Mainframe Multi-Session
Option Installation and Technical Reference Guide.

Syntax How to Retrieve a User ID

GETUSER(outfield)

where:

outfield

A8

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks. The field must be 8 bytes long.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Available Operating Systems: All

Available Languages: reporting, Maintain
11-12 Information Builders

System Functions
Example Retrieving a User ID

GETUSER retrieves the user ID of the person running the request:

DEFINE FILE EMPLOYEE
USERID/A8 WITH EMP_ID = GETUSER(USERID);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES'
BY DEPARTMENT
HEADING
"SALARY REPORT RUN FROM USERID: <USERID"
" "
END

The output is:

SALARY REPORT RUN FROM USERID: USER1

DEPARTMENT TOTAL SALARIES
---------- --------------
MIS $108,002.00
PRODUCTION $114,282.00

HHMMSS: Retrieving the Current Time
Available Operating Systems: All

Available Languages: reporting, Maintain

The HHMMSS function retrieves the current time from the operating system as an
8-character string, separating the hours, minutes, and seconds with periods for reporting
and colons for Maintain.

For details on how to use HHMMSS in reporting, see HHMMSS: Retrieving the Current Time in
Chapter 7. For details on how to use HHMMSS in Maintain, see HHMMSS: Retrieving the
Current Time (Maintain) in Chapter 8.
Using Functions 11-13

MVSDYNAM: Passing a DYNAM Command to the Command Processor
MVSDYNAM: Passing a DYNAM Command to the Command Processor

Syntax How to Pass a DYNAM Command to the Command Processor

MVSDYNAM(command, length, outfield)

where:

command

Alphanumeric

Is the DYNAM command enclosed in single quotation marks, or a field or variable that
contains the command. The function converts lowercase input to uppercase.

length

Numeric

Is the maximum length of the command in characters, between 1 and 256.

outfield

I4

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

MVSDYNAM returns one of the following codes:

0 indicates the DYNAM command transferred and executed successfully.

positive number is the error number corresponding to a FOCUS error.

negative number is the FOCUS error number corresponding to a DYNAM failure.

In Dialogue Manager, you must specify the format.

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

The MVSDYNAM function transfers a FOCUS DYNAM command to the DYNAM command
processor. It is useful in passing allocation commands to the processor in a compiled
MODIFY procedure after the CASE AT START command.
11-14 Information Builders

System Functions
Example Passing a DYNAM Command to the Command Processor

MVSDYNAM passes the DYNAM command contained in LINE to the processor. The return
code is stored in RES.

-* THE RESULT OF ? TSO DDNAME CAR WILL BE BLANK AFTER ENTERING
-* 'FREE FILE CAR' AS YOUR COMMAND
DYNAM ALLOC FILE CAR DS USER1.CAR.FOCUS SHR REUSE
? TSO DDNAME CAR
-RUN
-PROMPT &XX.ENTER A SPACE TO CONTINUE.
MODIFY FILE CAR
COMPUTE LINE/A60=;
 RES/I4 = 0;
CRTFORM
" ENTER DYNAM COMMAND BELOW:"
" <LINE>"
COMPUTE
RES = MVSDYNAM(LINE, 60, RES);
GOTO DISPLAY

 CASE DISPLAY
 CRTFORM LINE 1
" THE RESULT OF DYNAM WAS <D.RES"
GOTO EXIT
ENDCASE
DATA
END
? TSO DDNAME CAR
Using Functions 11-15

MVSDYNAM: Passing a DYNAM Command to the Command Processor
The first query command displays the allocation that results from the DYNAM ALLOC
command:

DDNAME = CAR
DSNAME = USER1.CAR.FOCUS
DISP = SHR
DEVICE = DISK
VOLSER = USERMN
DSORG = PS
RECFM = F
SECONDARY = 100
ALLOCATION = BLOCKS
BLKSIZE = 4096
LRECL = 4096
TRKTOT = 8
EXTENTSUSED = 1
BLKSPERTRK = 12
TRKSPERCYL = 15
CYLSPERDISK = 2227
BLKSWRITTEN = 96
FOCUSPAGES = 8
ENTER A SPACE TO CONTINUE >

Type one space and press Enter to continue. Then enter the DYNAM FREE command (the
DYNAM keyword is assumed):

ENTER DYNAM COMMAND BELOW:
 free file car

The function successfully passes the DYNAM FREE command to the processor and the
return code displays:

THE RESULT OF DYNAM WAS 0
11-16 Information Builders

System Functions
Press Enter to continue. The second query command indicates that the allocation was freed:

DDNAME = CAR
DSNAME =
DISP =
DEVICE =
VOLSER =
DSORG =
RECFM =
SECONDARY = ****
ALLOCATION =
BLKSIZE = 0
LRECL = 0
TRKTOT = 0
EXTENTSUSED = 0
BLKSPERTRK = 0
TRKSPERCYL = 0
CYLSPERDISK = 0
BLKSWRITTEN = 0
>

TODAY: Returning the Current Date
Available Operating Systems: All

Available Languages: reporting, Maintain

The TODAY function retrieves the current date from the system.

For details on using TODAY in reporting, see TODAY: Returning the Current Date in Chapter 7.
For details on using TODAY in Maintain, see TODAY: Retrieving the Current Date (Maintain) in
Chapter 8.
Using Functions 11-17

TODAY: Returning the Current Date
11-18 Information Builders

APPENDIX A

Creating a Subroutine

Topics:

• Writing a Subroutine

• Compiling and Storing a
Subroutine

• Testing the Subroutine

• Using a Custom Subroutine: The
MTHNAM Subroutine

• Subroutines Written in REXX

You can create custom subroutines to use in addition to the
functions provided by Information Builders. The process of
creating a subroutine consists of the following steps:

• Writing a subroutine using any language that supports
subroutine calls. Some of the most common languages
are FORTRAN, COBOL, PL/I, Assembler, and C. For
details, see Writing a Subroutine on page A-2.

• Compiling the subroutine. For details, see Compiling
and Storing a Subroutine on page A-11.

• Storing the subroutine in a separate file; do not include
it in the main program. For details, Compiling and
Storing a Subroutine on page A-11.

• Testing the subroutine. For details, see Testing the
Subroutine on page A-12.
Using Functions A-1

Writing a Subroutine
Writing a Subroutine

When you write a subroutine you need to consider the requirements and limits that affect
it. These are:

• Naming conventions. For details, see Naming a Subroutine on page A-3.

• Argument considerations. For details, see Creating Arguments on page A-3.

• Language considerations. For details, see Language Considerations on page A-4.

• Programming considerations. For details, see Programming a Subroutine on page A-6.

If you write a program named INTCOMP that calculates the amount of money in an account
earning simple interest, the program reads a record, tests if the data is acceptable, and then
calls a subroutine called SIMPLE that computes the amount of money. The program and the
subroutine are stored together in the same file.

The program and the subroutine shown here are written in pseudocode (a method of
representing computer code in a general way):

Begin program INTCOMP.
Execute this loop until end-of-file.
 Read next record, fields: PRINCPAL, DATE_PUT, YRRATE.
 If PRINCPAL is negative or greater than 100,000,
 reject record.
 If DATE_PUT is before January 1, 1975, reject record.
 If YRRATE is negative or greater than 20%, reject record.
 Call subroutine SIMPLE (PRINCPAL, DATE_PUT, YRRATE, TOTAL).
 Print PRINCPAL, YEARRATE, TOTAL.
End of loop.
End of program.

Subroutine SIMPLE (AMOUNT, DATE, RATE, RESULT).
Retrieve today's date from the system.
Let NO_DAYS = Days from DATE until today's date.
Let DAY_RATE = RATE / 365 days in a year.
Let RESULT = AMOUNT * (NO_DAYS * DAY_RATE + 1).
End of subroutine.

You can write a subroutine in any language that supports subroutines. If you intend to
make your subroutine available to other users, be sure to document what your subroutine
does, what the arguments are, what formats they have, and in what order they must appear
in the subroutine call.
A-2 Information Builders

Creating a Subroutine
If you move the SIMPLE subroutine into a file separate from the main program and compile
it, you can call the subroutine. The following report request shows how much money
employees would accrue if they invested salaries in accounts paying 12%:

TABLE FILE EMPLOYEE
PRINT LAST_NAME DAT_INC SALARY AND COMPUTE
 INVESTED/D10.2 = SIMPLE (SALARY, DAT_INC, 0.12, INVESTED);
BY EMP_ID
END

Note: The subroutine is designed to return only the amount of the investment, not the
current date because a subroutine can return only a single value each time it is called.

Naming a Subroutine
A subroutine name can be up to eight characters long unless the language you are using to
write the subroutine requires a shorter name. A name must start with a letter and can
consist of a combination of letters and/or numbers. Special symbols are not permitted.

Creating Arguments
When you create arguments for a subroutine, you must consider the following issues:

• Maximum number of arguments. A subroutine may contain up to 28 arguments. You
can bypass this restriction by creating a subroutine that accepts multiple calls as
described in Including More Than 28 Arguments in a Subroutine Call on page A-8.

• Argument types. You can use the same types of arguments in a subroutine as in a
function. For details on these argument types, see Argument Types in Chapter 3.

• Input arguments. Input arguments are passed to a subroutine using standard
conventions. Register one point to the list of argument addresses. Each address is a full
word.

• Output arguments. A subroutine returns only one output argument. This argument
must be the last in the subroutine. You can choose any format for the output argument
except in Dialogue Manager which requires the argument to have the format of the
output field.

• Internal processing. A subroutine’s arguments are processed as follows:

• An alphanumeric argument is not changed.

• A numeric argument is converted to floating-point double-precision format except
in an operating system RUN command or when storing the output in a variable.

• Dialogue Manager requirements. If you are writing a subroutine specifically for
Dialogue Manager, the subroutine may need to perform a conversion. For details on
using a subroutine with Dialogue Manager, see Calling a Function From a Dialogue
Manager Command in Chapter 3.
Using Functions A-3

Writing a Subroutine
Language Considerations
When writing a subroutine, you must consider the following language issues:

Language and memory. If you write a subroutine in a language that brings libraries into
memory (for example, FORTRAN and COBOL), the libraries reduce the amount of memory
available to the subroutine.

FORTRAN. In VM/CMS, FORTRAN input/output operations are not supported. If a
subroutine written in FORTRAN must read or write data, write the I/O portions in a separate
subroutine in another language. However, TSO supports FORTRAN input/output
operations.

PL/I. When writing a subroutine in PL/I:

• The RETURNS attribute cannot be used.

• The following attribute must be in the procedure (PROC) statement:

OPTIONS (COBOL)

• Alphanumeric arguments received from a request must be declared as

CHARACTER (n)

where:

n

Is the field length as defined by the request. Do not use the VARYING attribute.

• Numeric arguments received from a request must be declared as

DECIMAL FLOAT (16)

or

BINARY FLOAT (53)
A-4 Information Builders

Creating a Subroutine
• The format described in the DEFINE or COMPUTE command determines the format of
the output argument:

• Variables that are not arguments with the STATIC attribute must be declared. This
avoids dynamically allocating these variables every time the subroutine is executed.

C language. When writing a subroutine in C:

• Do not return a value with the return statement.

• Declare double-precision fields as Double.

• The format defined in the DEFINE or COMPUTE command determines the format of the
output argument:

FOCUS Format PL/I Declaration for Output

An CHARACTER (n)

I BINARY FIXED (31)

F DECIMAL FLOAT (6) or BINARY FLOAT (21)

D DECIMAL FLOAT (16) or BINARY FLOAT (53)

P DECIMAL FIXED (15) (for small packed numbers, 8
bytes)

DECIMAL FIXED (31) (for large packed numbers, 16
bytes)

FOCUS Format C Declaration for Output

An char *xxx n

Alphanumeric fields are not terminated with a null
byte and cannot be processed by many of the string
manipulation subroutines in the run-time library.

I long *xxx

F float *xxx

D double *xxx

P No equivalent in C.
Using Functions A-5

Writing a Subroutine
Programming a Subroutine

• Since a single request may execute a subroutine numerous times, code the subroutine
as efficiently as possible.

• If you create your subroutine in a text file or text library, the subroutine must be 31-bit
addressable.

• The last argument, normally used for returning the result of the subroutine to FOCUS,
can also be used to provide input from FOCUS to the subroutine.

You can add flexibility to your subroutine by using a programming technique. A
programming technique can be one of the following:

• Executing a subroutine at an entry point. An entry point enables you to use one
algorithm to produce different results. For details, see Executing a Subroutine at an Entry
Point on page A-6.

• Creating a subroutine with multiple subroutine calls. Multiple calls enable the
subroutine to process more than 28 arguments. For details, see Including More Than 28
Arguments in a Subroutine Call on page A-8.

Executing a Subroutine at an Entry Point

A subroutine is usually executed starting from the first statement. However, a subroutine
can be executed starting from any place in the code designated as an entry point. This
enables a subroutine to use one basic algorithm to produce different results. For example,
the DOWK subroutine calculates the day of the week on which a date falls. By specifying the
subroutine name DOWK, you obtain a 3-letter abbreviation of the day. If you specify the
entry name DOWKL, you obtain the full name. The calculation, however, is the same.

Each entry point has a name. To execute a subroutine at an entry point, specify the entry
point name in the subroutine call instead of the subroutine name. How you designate an
entry point depends on the language you are using.

In VM/CMS, a subroutine can be executed from its entry points only if the subroutine is
stored in a library.

Consider the following when planning your programming requirements:

• Write the subroutine to include an argument that specifies the output field.

• If the subroutine initializes a variable, it must initialize it each time it is executed (serial
reusability).
A-6 Information Builders

Creating a Subroutine
Syntax How to Execute a Subroutine at an Entry Point

{subroutine|entrypoint} (input1, input2,...outfield)

where:

subroutine

Is the name of the subroutine.

entrypoint

Is the name of the entry point to execute the subroutine at.

input1, input2,...

Are the subroutine’s arguments.

outfield

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.

Example Executing a Subroutine at an Entry Point

The FTOC subroutine, written in pseudocode below, converts Fahrenheit temperature to
Centigrade. The entry point FTOK (designated by the Entry command) sets a flag that
causes 273 to be subtracted from the Centigrade temperature to find the Kelvin
temperature. The subroutine is:

Subroutine FTOC (FAREN, CENTI).
Let FLAG = 0.
Go to label X.
Entry FTOK (FAREN, CENTI).
Let FLAG = 1.
Label X.
Let CENTI = (5/9) * (FAREN - 32).
If FLAG = 1 then CENTI = CENTI - 273.
Return.
End of subroutine.

The following is a shorter way to write the subroutine. Notice that the kelv output argument
listed for the entry point is different from the centi output argument listed at the beginning
of the subroutine:

Subroutine FTOC (FAREN, CENTI).
Entry FTOK (FAREN, KELV).
Let CENTI = (5/9) * (FAREN - 32).
KELV = CENTI - 273.
Return.
End of Subroutine.
Using Functions A-7

Writing a Subroutine
To obtain the Centigrade temperature, specify the subroutine name FTOC in the subroutine
call. The subroutine processes as:

CENTIGRADE/D6.2 = FTOC (TEMPERATURE, CENTIGRADE);

To obtain the Kelvin temperature, specify the entry name FTOK in the subroutine call. The
subroutine processes as:

KELVIN/D6.2 = FTOK (TEMPERATURE, KELVIN);

Including More Than 28 Arguments in a Subroutine Call

A subroutine can specify a maximum of 28 arguments including the output argument. To
process more than 28 arguments, the subroutine must specify two or more call statements
to pass the arguments to the subroutine.

Use the following technique for writing a subroutine with multiple calls:

1. Divide the subroutine into segments. Each segment receives the arguments passed by
one corresponding subroutine call.

The argument list in the beginning of your subroutine must represent the same
number of arguments in the subroutine call, including a call number argument and an
output argument.

Each call contains the same number of arguments. This is because the argument list in
each call must correspond to the argument list in the beginning of the subroutine. You
may process some of the arguments as dummy arguments if you have an unequal
number of arguments. For example, if you divide 32 arguments among six segments,
each segment processes six arguments; the sixth segment processes two arguments
and four dummy arguments.

Subroutines may require additional arguments as determined by the programmer who
creates the subroutine.

2. Include a statement at the beginning of the subroutine that reads the call number (first
argument) and branches to a corresponding segment. Each segment processes the
arguments from one call. For example, number one branches to the first segment,
number two to the second segment, and so on.

3. Have each segment store the arguments it receives in other variables (which can be
processed by the last segment) or accumulate them in a running total.

End each segment with a command returning control back to the request (RETURN
command).

4. The last segment returns the final output value to the request.

You can also use the entry point technique to write subroutines that process more than 28
arguments. For details, see Executing a Subroutine at an Entry Point on page A-6.
A-8 Information Builders

Creating a Subroutine
Syntax How to Create a Subroutine With Multiple Call Statements

field = subroutine (1, group1, field);
field = subroutine (2, group2, field);
 .
 .
 .
outfield = subroutine (n, groupn, outfield);

where:

field

Is the name of the field that contains the result of the segment or the format of the field
enclosed in single quotation marks. This field must have the same format as outfield.

Do not specify field for the last call statement; use outfield.

subroutine

Is the name of the subroutine up to eight characters long.

n

Is a number that identifies each subroutine call. It must be the first argument in each
subroutine call. The subroutine uses this call number to branch to segments of code.

group1, group2,...

Are lists of input arguments passed by each subroutine call. Each group contains the
same number of arguments, and no more than 26 arguments each.

The final group may contain dummy arguments.

outfield

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

In Dialogue Manager, you must specify the format. In Maintain, you must specify the
name of the field.
Using Functions A-9

Writing a Subroutine
Example Creating a Subroutine With 32 Arguments

The ADD32 subroutine, written in pseudocode, sums 32 numbers. It is divided into six
segments, each of which adds six numbers from a subroutine call. (The total number of
input arguments is 36 but the last four are dummy arguments.) The sixth segment adds two
arguments to the SUM variable and returns the result. The sixth segment does not process
any values supplied for the four dummy arguments.

The subroutine is:

Subroutine ADD32 (NUM, A, B, C, D, E, F, TOTAL).
If NUM is 1 then goto label ONE
else if NUM is 2 then goto label TWO
else if NUM is 3 then goto label THREE
else if NUM is 4 then goto label FOUR
else if NUM is 5 then goto label FIVE
else goto label SIX.

Label ONE.
Let SUM = A + B + C + D + E + F.
Return.

Label TWO
Let SUM = SUM + A + B + C + D + E + F
Return

Label THREE
Let SUM = SUM + A + B + C + D + E + F
Return

Label FOUR
Let SUM = SUM + A + B + C + D + E + F
Return

Label FIVE
Let SUM = SUM + A + B + C + D + E + F
Return

Label SIX
LET TOTAL = SUM + A + B
Return
End of subroutine
A-10 Information Builders

Creating a Subroutine
To use the ADD32 subroutine, list all six call statements, each call specifying six numbers.
The last four numbers, represented by zeroes, are dummy arguments. The DEFINE
command stores the total of the 32 numbers in the SUM32 field.

DEFINE FILE EMPLOYEE
DUMMY/D10 = ADD32 (1, 5, 7, 13, 9, 4, 2, DUMMY);
DUMMY/D10 = ADD32 (2, 5, 16, 2, 9, 28, 3, DUMMY);
DUMMY/D10 = ADD32 (3, 17, 12, 8, 4, 29, 6, DUMMY);
DUMMY/D10 = ADD32 (4, 28, 3, 22, 7, 18, 1, DUMMY);
DUMMY/D10 = ADD32 (5, 8, 19, 7, 25, 15, 4, DUMMY);
SUM32/D10 = ADD32 (6, 3, 27, 0, 0, 0, 0, SUM32);
END

Compiling and Storing a Subroutine

Compiling and Storing a Subroutine on VM/CMS
Compile the subroutine, then use the GENSUBLL command to add the compiled object
code to a load library (file type LOADLIB). Do not store the subroutine in the FUSELIB load
library (FUSELIB LOADLIB), as it may be overwritten when you install the next release of
your application. You may also store the compiled object code either as a text file (file type
TEXT), or as a member in a text library (file type TXTLIB).

Reference Storing a Subroutine in a Text File or Library

You can store a subroutine in two types of text files, a text file or a text library. Individual
text files are easier to maintain and control, but text libraries enable you to build different
entry points into the subroutine. For details, see Executing a Subroutine at an Entry Point on
page A-6.

There are two VM/CMS commands for use with a text library:

• The TXTLIB command allows you to create, add to, and delete text libraries.

• The GLOBAL TXTLIB command allows you to specify text libraries to gain access to your
subroutines.

If the subroutine is written in PL/I, append this line at the end of the text file

ENTRY subroutine

where:

subroutine

Is the name of the subroutine. You can do this using your system editor.

After you write a subroutine, you need to compile and store it. This topic discusses
compiling and storing your subroutine for VM/CMS, and OS/390.
Using Functions A-11

Testing the Subroutine
Make sure that any subroutine that your subroutine calls is also compiled and placed in text
file or library.

Syntax How to Query the Location of a Compiled Object

GENSUBLL ?

displays online information about the GENSUBLL command.

Compiling and Storing a Subroutine on OS/390
Compile the subroutine, then link-edit it and store the module in a load library. If your
subroutine calls other subroutines, compile and link-edit all the subroutines together in a
single module. Do not store the subroutine in the FUSELIB load library (FUSELIB.LOAD), as it
may be overwritten when your site installs the next release of your application.

If the subroutine is written in PL/I, include the following when link-editing the subroutine

ENTRY subroutine

where:

subroutine

Is the name of the subroutine.

Compiling and Storing a Subroutine on UNIX
Run the program GENCPCM, which creates a .DLL file. Then check the location of your
dynamic link functions library file as specified by the IBICPG environment variable, and save
the .DLL file to this location.

Testing the Subroutine
After compiling and storing a subroutine, you can test it in a report request. In order to
access the subroutine, you need to issue the GLOBAL command for VM/CMS or the
ALLOCATE command for OS/390.

If an error occurs during testing, check to see if the error is in the request or in the
subroutine.

Procedure How to Determine the Location of Error

You can determine the location of an error with the following:

1. Write a dummy subroutine that has the same arguments but returns a constant.

2. Execute the request with the dummy subroutine.

If the request executes the dummy subroutine normally, the error is in your subroutine. If
the request still generates an error, the error is in the request.
A-12 Information Builders

Creating a Subroutine
Using a Custom Subroutine: The MTHNAM Subroutine

1. Receives the input argument from the request as a double-precision number.

2. Adds .000001 to the number which compensates for rounding errors. Rounding errors
can occur since floating-point numbers are approximations and may be inaccurate in
the last significant digit.

3. Moves the number into an integer field.

4. If the number is less than one or greater than 12, it changes the number to 13.

5. Defines a list containing the names of months and an error message for the number 13.

6. Sets the index of the list equal to the number in the integer field. It then places the
corresponding array element into the output argument. If the number is 13, the
argument contains the error message.

7. Returns the result as an output field.

Writing the MTHNAM Subroutine
The MTHNAM subroutine can be written in FORTRAN, COBOL, PL/I, BAL Assembler, and C.

Reference MTHNAM Subroutine Written in FORTRAN

This is a FORTRAN version of the MTHNAM subroutine where:

MTH

Is the double-precision number in the input argument.

MONTH

Is the name of the month. Since the character string ‘September’ contains nine letters,
MONTH is a three element array. The subroutine passes the three elements back to your
application which concatenates them into one field.

A

Is a two dimensional, 13 by three array containing the names of the months. The last
three elements contain the error message.

IMTH

Is the integer representing the month.

This topic discusses the MTHNAM subroutine as an example. The MTHNAM subroutine
converts a number representing a month to the full name of that month. The subroutine
processes as follows:
Using Functions A-13

Using a Custom Subroutine: The MTHNAM Subroutine
The subroutine is:

 SUBROUTINE MTHNAM (MTH,MONTH)
 REAL*8 MTH
 INTEGER*4 MONTH(3),A(13,3),IMTH
 DATA
 + A(1,1)/'JANU'/, A(1,2)/'ARY '/, A(1,3)/' '/,
 + A(2,1)/'FEBR'/, A(2,2)/'UARY'/, A(2,3)/' '/,
 + A(3,1)/'MARC'/, A(3,2)/'H '/, A(3,3)/' '/,
 + A(4,1)/'APRI'/, A(4,2)/'L '/, A(4,3)/' '/,
 + A(5,1)/'MAY '/, A(5,2)/' '/, A(5,3)/' '/,
 + A(6,1)/'JUNE'/, A(6,2)/' '/, A(6,3)/' '/,
 + A(7,1)/'JULY'/, A(7,2)/' '/, A(7,3)/' '/,
 + A(8,1)/'AUGU'/, A(8,2)/'ST '/, A(8,3)/' '/,
 + A(9,1)/'SEPT'/, A(9,2)/'EMBE'/, A(9,3)/'R '/,
 + A(10,1)/'OCTO'/, A(10,2)/'BER '/, A(10,3)/' '/,
 + A(11,1)/'NOVE'/, A(11,2)/'MBER'/, A(11,3)/' '/,
 + A(12,1)/'DECE'/, A(12,2)/'MBER'/, A(12,3)/' '/,
 + A(13,1)/'**ER'/, A(13,2)/'ROR*'/, A(13,3)/'* '/
 IMTH=MTH+0.000001
 IF (IMTH .LT. 1 .OR. IMTH .GT. 12) IMTH=13
 DO 1 I=1,3
1 MONTH(I)=A(IMTH,I)
 RETURN
 END

Reference MTHNAM Subroutine Written in COBOL

This is a COBOL version of the MTHNAM subroutine where:

MONTH-TABLE

Is a field containing the names of the months and the error message.

MLINE

Is a 13-element array that redefines the MONTH-TABLE field. Each element (called A)
contains the name of a month; the last element contains the error message.

A

Is one element in the MLINE array.

IX

Is an integer field that indexes MLINE.

IMTH

Is the integer representing the month.

MTH

Is the double-precision number in the input argument.
A-14 Information Builders

Creating a Subroutine
MONTH

Is the name of the month corresponding to the integer in IMTH.

The subroutine is:

IDENTIFICATION DIVISION.
PROGRAM-ID. MTHNAM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
 01 MONTH-TABLE.
 05 FILLER PIC X(9) VALUE 'JANUARY '.
 05 FILLER PIC X(9) VALUE 'FEBRUARY '.
 05 FILLER PIC X(9) VALUE 'MARCH '.
 05 FILLER PIC X(9) VALUE 'APRIL '.
 05 FILLER PIC X(9) VALUE 'MAY '.
 05 FILLER PIC X(9) VALUE 'JUNE '.
 05 FILLER PIC X(9) VALUE 'JULY '.
 05 FILLER PIC X(9) VALUE 'AUGUST '.
 05 FILLER PIC X(9) VALUE 'SEPTEMBER'.
 05 FILLER PIC X(9) VALUE 'OCTOBER '.
 05 FILLER PIC X(9) VALUE 'NOVEMBER '.
 05 FILLER PIC X(9) VALUE 'DECEMBER '.
 05 FILLER PIC X(9) VALUE '**ERROR**'.
 01 MLIST REDEFINES MONTH-TABLE.
 05 MLINE OCCURS 13 TIMES INDEXED BY IX.
 10 A PIC X(9).
 01 IMTH PIC S9(5) COMP.
LINKAGE SECTION.
 01 MTH COMP-2.
 01 MONTH PIC X(9).
PROCEDURE DIVISION USING MTH, MONTH.
BEG-1.
 ADD 0.000001 TO MTH.
 MOVE MTH TO IMTH.
 IF IMTH < +1 OR > 12
 SET IX TO +13
 ELSE
 SET IX TO IMTH.
 MOVE A (IX) TO MONTH.
 GOBACK.
Using Functions A-15

Using a Custom Subroutine: The MTHNAM Subroutine
Reference MTHNAM Subroutine Written in PL/I

This is a PL/I version of the MTHNAM subroutine where:

MTHNUM

Is the double-precision number in the input argument.

FULLMTH

Is the name of the month corresponding to the integer in MONTHNUM.

MONTHNUM

Is the integer representing the month.

MONTH_TABLE

Is a 13-element array containing the names of the months. The last element contains
the error message.

The subroutine is:

MTHNAM: PROC(MTHNUM,FULLMTH) OPTIONS(COBOL);
DECLARE MTHNUM DECIMAL FLOAT (16) ;
DECLARE FULLMTH CHARACTER (9) ;
DECLARE MONTHNUM FIXED BIN (15,0) STATIC ;
DECLARE MONTH_TABLE(13) CHARACTER (9) STATIC
 INIT ('JANUARY',
 'FEBRUARY',
 'MARCH',
 'APRIL',
 'MAY',
 'JUNE',
 'JULY',
 'AUGUST',
 'SEPTEMBER',
 'OCTOBER',
 'NOVEMBER',
 'DECEMBER',
 '**ERROR**') ;
 MONTHNUM = MTHNUM + 0.00001 ;
 IF MONTHNUM < 1 MONTHNUM > 12 THEN
 MONTHNUM = 13 ;
 FULLMTH = MONTH_TABLE(MONTHNUM) ;
RETURN;
END MTHNAM;
A-16 Information Builders

Creating a Subroutine
Reference MTHNAM Subroutine Written in BAL Assembler

This is a BAL Assembler version of the MTHNAM subroutine:

 START 0
 STM 14,12,12(13) save registers
 BALR 12,0 load base reg
 USING *,12
 *
 L 3,0(0,1) load addr of first arg into R3
 LD 4,=D'0.0' clear out FPR4 and FPR5
 LE 6,0(0,3) FP number in FPR6
 LPER 4,6 abs value in FPR4
 AW 4,=D'0.00001' add rounding constant
 AW 4,DZERO shift out fraction
 STD 4,FPNUM move to memory
 L 2,FPNUM+4 integer part in R2
 TM 0(3),B'10000000' check sign of original no
 BNO POS branch if positive
 LCR 2,2 complement if negative
 *
 POS LR 3,2 copy month number into R3
 C 2,=F'0' is it zero or less?
 BNP INVALID yes. so invalid
 C 2,=F'12' is it greater than 12?
 BNP VALID no. so valid
 INVALID LA 3,13(0,0) set R3 to point to item @13 (error)
 *
 VALID SR 2,2 clear out R2
 M 2,=F'9' multiply by shift in table
 *
 LA 6,MTH(3) get addr of item in R6
 L 4,4(0,1) get addr of second arg in R4
 MVC 0(9,4),0(6) move in text
 *
 LM 14,12,12(13) recover regs
 BR 14 return
 *
Using Functions A-17

Using a Custom Subroutine: The MTHNAM Subroutine
 DS 0D alignment
 FPNUM DS D floating point number
 DZERO DC X'4E00000000000000' shift constant
 MTH DC CL9'dummyitem' month table
 DC CL9'JANUARY'
 DC CL9'FEBRUARY'
 DC CL9'MARCH'
 DC CL9'APRIL'
 DC CL9'MAY'
 DC CL9'JUNE'
 DC CL9'JULY'
 DC CL9'AUGUST'
 DC CL9'SEPTEMBER'
 DC CL9'OCTOBER'
 DC CL9'NOVEMBER'
 DC CL9'DECEMBER'
 DC CL9'**ERROR**'
 END MTHNAM

Reference MTHNAM Subroutine Written in C

This is a C language version of the MTHNAM subroutine:

void mthnam(double *,char *);
void mthnam(mth,month)
double *mth;
char *month;
{
char *nmonth[13] = {"January ",
 "February ",
 "March ",
 "April ",
 "May ",
 "June ",
 "July ",
 "August ",
 "September",
 "October ",
 "November ",
 "December ",
 "**Error**"};
int imth, loop;
imth = *mth + .00001;
imth = (imth < 1 ¦¦ imth > 12 ? 13 : imth);
for (loop=0;loop < 9;loop++)
 month[loop] = nmonth[imth-1][loop];
}
A-18 Information Builders

Creating a Subroutine
Calling the MTHNAM Subroutine From a Request
You can call the MTHNAM subroutine from a report request.

Example Calling the MTHNAM Subroutine

The DEFINE command extracts the month portion of the pay date. The MTHNAM
subroutine then converts it into the full name of the month, and stores the name in the
PAY_MONTH field. The report request prints the monthly pay of Alfred Stevens.

DEFINE FILE EMPLOYEE
MONTH_NUM/M = PAY_DATE;
PAY_MONTH/A12 = MTHNAM (MONTH_NUM, PAY_MONTH);
END
TABLE FILE EMPLOYEE
PRINT PAY_MONTH GROSS
BY EMP_ID BY FIRST NAME BY LAST_NAME
BY PAY_DATE
IF LN IS STEVENS
END

The output is:

EMP_ID FIRST NAME LAST_NAME PAY_DATE PAY_MONTH GROSS
------- ---------- --------- -------- --------- -----
071382660 ALFRED STEVENS 81/11/30 NOVEMBER $833.33
 81/12/31 DECEMBER $833.33
 82/01/29 JANUARY $916.67
 82/02/26 FEBRUARY $916.67
 82/03/31 MARCH $916.67
 82/04/30 APRIL $916.67
 82/05/28 MAY $916.67
 82/06/30 JUNE $916.67
 82/07/30 JULY $916.67
 82/08/31 AUGUST $916.67
Using Functions A-19

Subroutines Written in REXX
Subroutines Written in REXX

• In VM/CMS, a REXX subroutine can contain either REXX source code or compiled REXX
code created by running the source code through the REXX compiler. In addition, you
can load either type of REXX subroutine into memory using the EXECLOAD command.
The compilation and load process reduces the CPU requirements and increases speed.
Compilation is also a security tool, making private information difficult to read.

REXX subroutines are not supported in the -CMS RUN command.

• In OS/390, a REXX subroutine contains REXX source code. Compiled REXX code is not
supported.

REXX subroutines are not necessarily the same in all operating environments. Therefore,
some of the examples may use REXX functions that are not available in your environment.

Because of CPU requirements, the use of REXX subroutines in large production jobs should
be monitored carefully.

For more information on REXX subroutines, see your REXX documentation.

Reference Storing and Searching for a REXX Subroutine

Store a REXX subroutine as follows:

• On VM/CMS, the FILETYPE of a REXX subroutine is FUSREXX; it can be stored on any
accessed disk.

• On OS/390, DDNAME FUSREXX must be allocated to a PDS. This library is searched
before other OS/390 libraries.

The search order for a REXX subroutine is:

1. FUSREXX

2. Standard VM/CMS or OS/390 search order.

A request can call a subroutine coded in REXX. These subroutines, also called FUSREXX
macros, provide a 4GL option to the languages supported for user-written subroutines.

REXX subroutines are supported in the VM/CMS and OS/390 environments:
A-20 Information Builders

Creating a Subroutine
Syntax How to Call a REXX Subroutine

DEFINE FILE filename
fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);
END

or

{DEFINE|COMPUTE} fieldname/{An|In} = subname(inlen1, inparm1, ...,
outlen, outparm);

or

-SET &var = subname(inlen1, inparm1, ..., outlen, outparm);

where:

fieldname

Is the field that contains the result.

An, In

Is the format of the field that contains the result.

subname

Is the name of the REXX subroutine.

inlen1, inparm1 ...

Are the input parameters. Each parameter consists of a length and an alphanumeric
parameter value. You can supply the value, the name of an alphanumeric field that
contains the value, or an expression that returns the value. Up to 13 input parameter
pairs are supported. Each parameter value can be up to 256 bytes long.

Dialogue Manager converts numeric arguments to floating-point double-precision
format. Therefore, you can only pass alphanumeric input parameters to a REXX
subroutine using -SET.

outlen, outparm

Is the output parameter pair, consisting of a length and a result. In most cases, the
result should be alphanumeric, but integer results are also supported. The result can be
a field or a Dialogue Manager variable that contains the value, or the format of the
value enclosed in single quotation marks. The return value can be a minimum of one
byte long and a maximum (for an alphanumeric value) of 256 bytes.

Note: If the value returned is an integer, outlen must be 4 because FOCUS reserves four
bytes for integer fields.

&var

Is the name of the Dialogue Manager variable that contains the result.
Using Functions A-21

Subroutines Written in REXX
Example Returning the Day of the Week

The REXX subroutine DOW returns the day of the week corresponding to the date an
employee was hired. The routine contains one input parameter pair and one return field pair.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. DAY_OF_WEEK/A9 WITH AHDT = DOW(6, AHDT, 9, DAY_OF_WEEK);
 END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAY_OF_WEEK
END

The procedure processes as follows:

1. The EDIT function converts HIRE_DATE to alphanumeric format and stores the result in
a field with the format A6.

2. The result is stored in the DAY_OF_THE_WEEK field, and can be up to nine bytes long.

The output is:

LAST_NAME HIRE_DATE DAY_OF_WEEK
--------- --------- -----------
STEVENS 80/06/02 Monday
SMITH 81/07/01 Wednesday
JONES 82/05/01 Saturday
SMITH 82/01/04 Monday
BANNING 82/08/01 Sunday
IRVING 82/01/04 Monday
ROMANS 82/07/01 Thursday
MCCOY 81/07/01 Wednesday
BLACKWOOD 82/04/01 Thursday
MCKNIGHT 82/02/02 Tuesday
GREENSPAN 82/04/01 Thursday
CROSS 81/11/02 Monday

The REXX subroutine is displayed below. It reads the input date, reformats it to MM/DD/YY
format, and returns the day of the week using a REXX DATE call.

/* DOW routine. Return WEEKDAY from YYMMDD format date */
Arg ymd .
Return Date('W',Translate('34/56/12',ymd,'123456'),'U')
A-22 Information Builders

Creating a Subroutine
Example Passing Multiple Arguments to a REXX Subroutine

The REXX subroutine INTEREST contains four input parameters.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE);
2. ACSAL/A12 = EDIT(CURR_SAL);
3. DCSAL/D12.2 = CURR_SAL;
4. PV/A12 = INTEREST(6, AHDT, 6, '&YMD', 3, '6.5', 12, ACSAL, 12, PV);
 END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
END

The procedure processes as follows:

1. EDIT converts HIRE_DATE to alphanumeric format and stores the result in AHDT.

2. EDIT converts CURR_SAL to alphanumeric format and stores the result in ACSAL.

3. CURR_SAL is converted to a floating-point double-precision field that includes
commas, and the result is stored in DCSAL.

4. The second input field is six bytes long. Data is passed as a character variable &YMD in
YYMMDD format.

The third input field is a character value of 6.5, which is three bytes long to account for
the decimal point in the character string.

The fourth input field is 12 bytes long. This passes the character field ACSAL.

The return field is up to 12 bytes long and is named PV.

The output is:

LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
--------- ---------- --------- ----- --
STEVENS ALFRED 80/06/02 11,000.00 14055.14
SMITH MARY 81/07/01 13,200.00 15939.99
JONES DIANE 82/05/01 18,480.00 21315.54
SMITH RICHARD 82/01/04 9,500.00 11155.60
BANNING JOHN 82/08/01 29,700.00 33770.53
IRVING JOAN 82/01/04 26,862.00 31543.35
ROMANS ANTHONY 82/07/01 21,120.00 24131.19
MCCOY JOHN 81/07/01 18,480.00 22315.99
BLACKWOOD ROSEMARIE 82/04/01 21,780.00 25238.25
MCKNIGHT ROGER 82/02/02 16,100.00 18822.66
GREENSPAN MARY 82/04/01 9,000.00 10429.03
CROSS BARBARA 81/11/02 27,062.00 32081.82
Using Functions A-23

Subroutines Written in REXX
The REXX subroutine is displayed below. The REXX format command is used to format the
return value.

/* Simple INTEREST program. dates are yymmdd format */
Arg start_date,now_date,percent,open_balance, .

begin = Date('B',Translate('34/56/12',start_date,'123456'),'U')
stop = Date('B',Translate('34/56/12',now_date,'123456'),'U')
valnow = open_balance * (((stop - begin) * (percent / 100)) / 365)

Return Format(valnow,9,2)

Example Accepting Multiple Tokens in a Parameter

A REXX subroutine can accept multiple tokens in a parameter. The following procedure
passes employee information (PAY_DATE and MO_PAY) as separate tokens in the first
parameter. It passes three input parameters and one return field.

DEFINE FILE EMPLOYEE
1. COMPID/A256 = FN | ' ' | LN | ' ' | DPT | ' ' | EID ;
2. APD/A6 = EDIT(PAY_DATE);
3. APAY/A12 = EDIT(MO_PAY);
4. OK4RAISE/A1 = OK4RAISE(256, COMPID, 6, APD, 12, APAY, 1, OK4RAISE);
 END

TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
IF OK4RAISE EQ '1'
END

The procedure processes as follows:

1. COMPID is the concatenation of several character fields passed as the first parameter
and stored in a field with the format A256. Each of the other parameters is a single
argument.

2. EDIT converts PAY_DATE to alphanumeric format.

3. EDIT converts MO_PAY to alphanumeric format.

4. OK4RAISE executes, and the result is stored in OK4RAISE.

The output is:

EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
------ ---------- --------- ----------
071382660 ALFRED STEVENS PRODUCTION
A-24 Information Builders

Creating a Subroutine
The REXX subroutine is displayed below. Commas separate FUSREXX parameters. The ARG
command specifies multiple variable names before the first comma and, therefore,
separates the first FUSREXX parameter into separate REXX variables, using blanks as
delimiters between the variables.

/* OK4RAISE routine. Parse separate tokens in the 1st parm, then more
parms */

Arg fname lname dept empid, pay_date, gross_pay, .

If dept = 'PRODUCTION' & pay_date < '820000'
Then retvalue = '1'
Else retvalue = '0'

Return retvalue

REXX subroutines should use the REXX RETURN subroutine to return data. REXX EXIT is
acceptable, but is generally used to end an EXEC, not a FUNCTION.

Formats and REXX Subroutines

The output length in the subroutine call must be four. Character variables cannot be more
than 256 bytes. This limit also applies to REXX subroutines. FUSREXX routines return
variable length data. For this reason, you must supply the length of the input arguments
and the maximum length of the output data.

A REXX subroutine does not require any input parameters, but requires one return
parameter, which must return at least one byte of data. It is possible for a REXX subroutine
not to need input, such as a function that returns USERID.

Correct
/* Some FUSREXX function */
Arg input
some rexx process ...
Return data_to_FOCUS

Not as Clear
/* Another FUSREXX function */
Arg input
some rexx process ...
Exit 0

A REXX subroutine requires input data to be in alphanumeric format. Most output is
returned in alphanumeric format. If the format of an input argument is numeric, use the
EDIT or FTOA functions to convert the argument to alphanumeric. You can then use the
EDIT or ATODBL functions to convert the output back to numeric.
Using Functions A-25

Subroutines Written in REXX
A REXX subroutine does not support FOCUS date input arguments. When working with
dates you can do one of the following:

• Pass an alphanumeric field with date display options and have the subroutine return a
date value.

Date fields contain the integer number of days since the base date 12/31/1900. REXX
has a date function that can accept and return several types of date formats, including
one called Base format (‘B’) that contains the number of days since the REXX base date
01/01/0001. You must account for the number of days difference between the FOCUS
base date and the REXX base date and convert the result to integer.

• Pass a date value converted to alphanumeric format. You must account for the
difference in base dates for both the input and output arguments.

Example Returning the Result in Alphanumeric Format

The NUMCNT subroutine returns the number of copies of each classic movie in
alphanumeric format. It passes one input parameter and one return field.

TABLE FILE MOVIES
 PRINT TITLE AND COMPUTE
1. ACOPIES/A3 = EDIT(COPIES); AS 'COPIES'
 AND COMPUTE
2. TXTCOPIES/A8 = NUMCNT(3, ACOPIES, 8, TXTCOPIES);
 WHERE CATEGORY EQ 'CLASSIC'
 END

The procedure processes as follows:

1. The EDIT field converts COPIES to alphanumeric format, and stores the result in
ACOPIES.

2. The result is stored in an 8-byte alphanumeric field TXTCOPIES.

The output is:

TITLE COPIES TXTCOPIES
----- ------ ---------
EAST OF EDEN 001 One
CITIZEN KANE 003 Three
CYRANO DE BERGERAC 001 One
MARTY 001 One
MALTESE FALCON, THE 002 Two
GONE WITH THE WIND 003 Three
ON THE WATERFRONT 002 Two
MUTINY ON THE BOUNTY 002 Two
PHILADELPHIA STORY, THE 002 Two
CAT ON A HOT TIN ROOF 002 Two
CASABLANCA 002 Two
A-26 Information Builders

Creating a Subroutine
The subroutine is:

/* NUMCNT routine. Pass a number from 0 to 10 and return a character
value */
Arg numbr .
data = 'Zero One Two Three Four Five Six Seven Eight Nine Ten'
numbr = numbr + 1 /* so 0 equals 1 element in array */
Return Word(data,numbr)

Example Returning a Result in Integer Format

In the following example, the NUMDAYS subroutine finds the number of days between
HIRE_DATE and DAT_INC and returns the result in integer format.

 DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE);
2. ADI/A6 = EDIT(DAT_INC);
3. BETWEEN/I6 = NUMDAYS(6, AHDT, 6, ADI, 4, 'I6') ;
 END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAT_INC BETWEEN
IF BETWEEN NE 0
END

The procedure processes as follows:

1. EDIT converts HIRE_DATE to alphanumeric format and stores the result in AHDT.

2. EDIT converts DAT_INC to alphanumeric format and stores the result in ADI.

3. NUMDAYS finds the number of days between AHDT and ADI and stores the result in
integer format.

The output is:

LAST_NAME HIRE_DATE DAT_INC BETWEEN
--------- --------- ------- -------
STEVENS 80/06/02 82/01/01 578
STEVENS 80/06/02 81/01/01 213
SMITH 81/07/01 82/01/01 184
JONES 82/05/01 82/06/01 31
SMITH 82/01/04 82/05/14 130
IRVING 82/01/04 82/05/14 130
MCCOY 81/07/01 82/01/01 184
MCKNIGHT 82/02/02 82/05/14 101
GREENSPAN 82/04/01 82/06/11 71
CROSS 81/11/02 82/04/09 158
Using Functions A-27

Subroutines Written in REXX
The subroutine is displayed below. The return value is converted from REXX character to
HEX and formatted to be four bytes long.

/* NUMDAYS routine. Return number of days between 2 dates in yymmdd
format */
/* The value returned will be in hex format */

Arg first,second .

base1 = Date('B',Translate('34/56/12',first,'123456'),'U')
base2 = Date('B',Translate('34/56/12',second,'123456'),'U')

Return D2C(base2 - base1,4)

Example Passing a Date Value as an Alphanumeric Field With Date Options

In the following example, a date is used by passing an alphanumeric field with date options
to the DATEREX1 subroutine. DATEREX1 takes two input arguments: an alphanumeric date
in A8YYMD format and a number of days in character format. It returns a smart date in
YYMD format that represents the input date plus the number of days. The format A8YYMD
corresponds to the REXX Standard format (‘S’).

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX1 routine. Add indate (format A8YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate,'S')+ days - 693959, 4)

The following request uses the DATEREX1 macro to calculate the date that is 365 days from
the hire date of each employee. The input arguments are the hire date and the number of
days to add. Because HIRE_DATE is in I6YMD format, it must be converted to A8YYMD
before being passed to the macro:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8YYMD= ADATE; NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX1(8, INDATE, 3, '365', 4, NEXT_DATE);
BY LAST_NAME NOPRINT
END
A-28 Information Builders

Creating a Subroutine
The output is:

LAST_NAME FIRST_NAME HIRE_DATE NEXT_DATE
--------- ---------- --------- ---------
BANNING JOHN 82/08/01 1983/08/01
BLACKWOOD ROSEMARIE 82/04/01 1983/04/01
CROSS BARBARA 81/11/02 1982/11/02
GREENSPAN MARY 82/04/01 1983/04/01
IRVING JOAN 82/01/04 1983/01/04
JONES DIANE 82/05/01 1983/05/01
MCCOY JOHN 81/07/01 1982/07/01
MCKNIGHT ROGER 82/02/02 1983/02/02
ROMANS ANTHONY 82/07/01 1983/07/01
SMITH MARY 81/07/01 1982/07/01
SMITH RICHARD 82/01/04 1983/01/04
STEVENS ALFRED 80/06/02 1981/06/02

Example Passing a Date as a Date Converted to Alphanumeric Format

In the following example, a date is passed to the subroutine as a smart date converted to
alphanumeric format. The DATEREX2 subroutine takes two input arguments: an
alphanumeric number of days that represents a smart date, and a number of days to add. It
returns a smart date in YYMD format that represents the input date plus the number of
days. Both the input date and output date are in REXX base date (‘B’) format.

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX2 routine. Add indate (original format YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate+693959,'B') + days - 693959, 4)
Using Functions A-29

Subroutines Written in REXX
The following request uses DATEREX2 to calculate the date that is 365 days from the hire
date of each employee. The input arguments are the hire date and the number of days to
add. Because HIRE_DATE is in I6YMD format, it must be converted to an alphanumeric
number of days before being passed to the macro:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8 = EDIT(ADATE); NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX2(8,INDATE,3,'365',4,NEXT_DATE);
BY LAST_NAME NOPRINT
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE NEXT_DATE
--------- ---------- --------- ---------
BANNING JOHN 82/08/01 1983/08/01
BLACKWOOD ROSEMARIE 82/04/01 1983/04/01
CROSS BARBARA 81/11/02 1982/11/02
GREENSPAN MARY 82/04/01 1983/04/01
IRVING JOAN 82/01/04 1983/01/04
JONES DIANE 82/05/01 1983/05/01
MCCOY JOHN 81/07/01 1982/07/01
MCKNIGHT ROGER 82/02/02 1983/02/02
ROMANS ANTHONY 82/07/01 1983/07/01
SMITH MARY 81/07/01 1982/07/01
SMITH RICHARD 82/01/04 1983/01/04
STEVENS ALFRED 80/06/02 1981/06/02
A-30 Information Builders

Creating a Subroutine
Compiling FUSREXX Macros in VM/CMS
The SUM2 FUSREXX macro takes two amounts as input and returns the sum in integer
format:

/* SUM2 routine. Add amount1 to amount2 and return as integer */
Arg amt1, amt2 .
Return D2C(amt1 + amt2,4)

To compile and compress this FUSREXX macro in VM/CMS, issue the following command.
Note that the file identifier must be in uppercase:

rexxcomp SUM2 FUSREXX A (condense

A FILELIST of SUM2 * A lists the following files:

SUM2 CFUSREXX A1 F 1024 2 1 1/31/00 12:07:19
SUM2 LISTING A1 V 121 42 1 1/31/00 12:07:19
SUM2 FUSREXX A1 F 80 3 1 1/31/00 12:04:19

The file SUM2 FUSREXX is the original source file. The file SUM2 CFUSREXX is the compiled
version. To call the compiled version in a request, you must rename it to have the file type
FUSREXX. The file SUM2 LISTING details the results of the compilation.

To use the compiled version in a request, issue the following commands. The EXECLOAD
command, which loads the routine into memory and improves performance, is optional:

rename sum2 fusrexx a ssum2 fusrexx a
rename sum2 cfusrexx a sum2 fusrexx a
execload sum2 fusrexx a

Then issue the request:

TABLE FILE EMPLOYEE
PRINT CSAL AND COMPUTE
ASAL/A12 = EDIT(CSAL);
AMOUNT/A4 = '1000';
TOTSAL/I6 = SUM2(12, ASAL, 4, AMOUNT, 4, TOTSAL);
END
Using Functions A-31

Subroutines Written in REXX
The output is:

 CURR_SAL ASAL AMOUNT TOTSAL
 -------- ---- ------ ------
$11,000.00 000000011000 1000 12000
$13,200.00 000000013200 1000 14200
$18,480.00 000000018480 1000 19480
$ 9,500.00 000000009500 1000 10500
$29,700.00 000000029700 1000 30700
$26,862.00 000000026862 1000 27862
$21,120.00 000000021120 1000 22120
$18,480.00 000000018480 1000 19480
$21,780.00 000000021780 1000 22780
$16,100.00 000000016100 1000 17100
$ 9,000.00 000000009000 1000 10000
$27,062.00 000000027062 1000 28062
A-32 Information Builders

Index

A

ABS function 10-2

accessing external functions 3-22
Developer Studio 3-27
OS/390 3-22
UNIX 3-24
VM/CMS 3-24

accessing functions 3-1, 3-3 to 3-4
OS/390 3-23

ADD function 8-5

alphanumeric strings 9-2

ARGLEN function 4-2 to 4-3

arguments 3-4

ASIS function 4-3 to 4-4, 10-3

assigning date-time values 7-9
COMPUTE command 7-9 to 7-10
DEFINE command 7-9
IF criteria 7-9, 7-11
WHERE criteria 7-9 to 7-10

ATODBL function 9-2 to 9-3

AYM function 7-50 to 7-51

AYMD function 7-51 to 7-52

B

bar charts 10-3
scales 10-3

BAR function 10-3 to 10-5

batch allocation 3-22

bit strings 4-6 to 4-8

BITSON function 4-5 to 4-6

BITVAL function 4-6 to 4-8

branching in procedures 3-13
functions and 3-13, 3-15

BUSDAYS parameter 7-3 to 7-4

business days 7-3 to 7-4
BUSDAYS parameter 7-3

BYTVAL function 4-8 to 4-10

C

calling functions 3-1 to 3-4
Dialogue Manager and 3-11
FOCUS commands and 3-10
from another function 3-16
IF criteria 3-17 to 3-18
in Maintain 3-4
RECAP command and 3-20 to 3-21
WHEN criteria 3-19
WHERE criteria 3-17 to 3-18

CHAR2INT function 5-2

character functions 2-3, 4-1
ARGLEN 4-2 to 4-3
ASIS 4-3 to 4-4
BITSON 4-5 to 4-6
BITVAL 4-6 to 4-8
BYTVAL 4-8 to 4-10
CHKFMT 4-10 to 4-12
CTRAN 4-14 to 4-15
CTRFLD 4-20
EDIT 4-21 to 4-22
GETTOK 4-22 to 4-24
LCWORD 4-24 to 4-25, 4-53, 5-4 to 5-5
LJUST 4-26 to 4-27
LOCASE 4-28 to 4-29
Maintain-specific 2-7, 5-1
OVRLAY 4-29 to 4-31
PARAG 4-33 to 4-35
POSIT 4-35 to 4-37
RJUST 4-37 to 4-38
Using Functions I-1

Index
character functions (continued)
SOUNDEX 4-39 to 4-40
SQUEEZ 4-40 to 4-41
STRIP 4-42 to 4-44
SUBSTR 4-44 to 4-46, 4-57
TRIM 4-46 to 4-48
TRIMV 4-60
UPCASE 4-49 to 4-50

character strings 4-1 to 4-2, 4-26
adding 5-7
bits 4-5 to 4-6
centering 4-19 to 4-20
comparing 4-39, 5-18, 5-20
converting case 4-24, 4-28, 4-49, 4-53, 5-4, 5-6,

5-27
determining length 5-26
Dialogue Manager 4-3
dividing 4-33
extracting 5-7, 5-22
extracting characters 4-21
extracting substrings 4-22, 4-44, 4-46, 4-57,

5-24
finding substrings 4-35, 5-11
format 4-10
justifying 4-26, 4-37, 5-6, 5-13
measuring length 4-2, 5-5
overlaying 4-29, 5-9
reducing spaces 4-40
removing characters 4-42
removing occurrences 4-46, 5-25
right-justifying 4-37, 5-13
substrings 5-16, 5-21
translating characters 4-8, 4-14, 5-2 to 5-3

CHGDAT function 7-53 to 7-56

CHKFMT function 4-10 to 4-12

CHKPCK function 10-6 to 10-8

commands 11-14
passing 11-14

compiling subroutines A-11
OS/390 A-12
UNIX A-12
VM/CMS A-11

components 7-12

COMPUTE command
assigning date-time values 7-10
COMPUTE command 3-10

converting formats 9-1 to 9-2

creating subroutines A-1 to A-2

cross-referenced data sources 6-11

CTRAN function 4-14 to 4-15

CTRFLD function 4-19 to 4-20

custom subroutines A-13 to A-14, A-16 to A-19

D

DA functions 7-56 to 7-57

DADMY function 7-56 to 7-57

DADYM function 7-56 to 7-57

DAMDY function 7-56 to 7-57

DAMYD function 7-56 to 7-57

data sets 11-4, 11-7

data source functions 2-10, 6-1
FIND 6-6 to 6-8
LAST 6-9 to 6-10
LOOKUP 6-11 to 6-12, 6-14, 6-16 to 6-17

data source values 6-1
decoding 6-2
retrieving 6-9 to 6-10
verifying 6-6 to 6-8
I-2 Information Builders

Index
data sources 6-1
cross-referenced 6-11, 6-17
retrieving values 6-9 to 6-11, 6-17
values 6-1
verifying values 6-6

date and time functions 2-11, 7-1
arguments and 7-12
AYM 7-50 to 7-51
AYMD 7-51 to 7-52
CHGDAT 7-53 to 7-56
DA 7-56 to 7-57
DADMY 7-56 to 7-57
DADYM 7-56 to 7-57
DAMDY 7-56 to 7-57
DAMYD 7-56 to 7-57
DATEADD 7-13 to 7-16
DATECVT 7-16 to 7-18
DATEDIF 7-18 to 7-20
DATEMOV 7-21 to 7-24
DAYDM 7-56 to 7-57
DAYMD 7-56 to 7-58
Dialogue Manager and 7-5
DOWK 7-60 to 7-61
DOWKL 7-60
DTDMY 7-61 to 7-62
DTDYM 7-61 to 7-62
DTMDY 7-61 to 7-63
DTMYD 7-61 to 7-62
DTYDM 7-61 to 7-62
DTYMD 7-61 to 7-62
GREGDT 7-63 to 7-64
HADD 7-25 to 7-26
HCNVRT 7-27 to 7-28
HDATE 7-28 to 7-29
HDIFF 7-30 to 7-31
HDTTM 7-32 to 7-33
HGETC 7-33 to 7-34
HHMMSS 7-34 to 7-35
HINPUT 7-36 to 7-37
HMIDNT 7-38 to 7-39
HNAME 7-39 to 7-41
HPART 7-41 to 7-42

date and time functions (continued)
HSETPT 7-42 to 7-44
HTIME 7-45 to 7-46
JULDAT 7-65 to 7-66
legacy 2-11, 2-14, 2-16, 7-1 to 7-2, 7-47
Maintain-specific 2-16, 8-1
standard 2-11, 2-16, 7-1 to 7-2
terminology 7-2
TODAY 7-46 to 7-47
work days 7-3
YM 7-67 to 7-68
YMD 7-59

date formats 7-7
formatted-string format 7-7
numeric string format 7-7
translated-string format 7-8

DATEADD function 7-13 to 7-16

DATECVT function 7-16 to 7-18

DATEDIF function 7-18 to 7-21

DATEFNS parameter 7-47
GREGDT 7-64
JULDAT function 7-65

DATEMOV function 7-21 to 7-24

date-time values 7-7, 8-1
adding 7-13, 7-50 to 7-51, 8-5
assigning 7-9
converting 7-45
converting formats 7-16, 7-27 to 7-28, 7-32,

7-36, 7-53, 7-56, 7-61, 7-63, 7-65
determining day of week 8-11
determining quarter 8-8
elapsed time 7-67, 8-6
extracting 8-6 to 8-7, 8-12
finding day of week 7-60
finding difference 7-18, 7-30, 7-58
formats 7-7
incrementing 7-25
inserting components 7-42
moving dates 7-21
Using Functions I-3

Index
date-time values (continued)
retrieving 8-2 to 8-4
retrieving components 7-39, 7-41
retrieving time 7-34
returning dates 7-46
setting 8-8
setting time 7-38
storing 7-33
subtracting 7-13, 7-50 to 7-51, 8-10

DAY function 8-6

DAYDM function 7-56 to 7-57

DAYMD function 7-56 to 7-58

DECODE function 6-2 to 6-5

decoding functions 2-10, 6-1
DECODE function 6-2 to 6-5

decoding values 6-2
from files 6-2 to 6-5
in a function 6-2
in functions 6-3

DEFINE command 3-10
functions and 3-10

deleting function libraries 3-24

Dialogue Manager 3-11
date and time functions 7-5
functions and 3-11
LEADZERO parameter 7-5

Dialogue Manager commands 3-11
-IF 3-13
-RUN 3-15
-SET 3-11 to 3-12

DMOD function 10-9 to 10-11

DMY function 7-58 to 7-59

DOWK function 7-60 to 7-61

DOWKL function 7-60

DTDMY function 7-61 to 7-62

DTDYM function 7-61 to 7-62

DTMDY function 7-61 to 7-63

DTMYD function 7-61 to 7-62

DTYDM function 7-61 to 7-62

DTYMD function 7-61 to 7-62

Dynamic Language Environment (LE) 3-27

E

EDIT function 4-21 to 4-22, 9-5 to 9-6

entry points A-6 to A-7

environment variables 11-3
assigning values 11-6
retrieving values 11-3

error messages 11-2

EXP function 10-11 to 10-12

EXPN function 10-13

external functions 2-2
accessing 3-22
storing 3-22

F

FEXERR function 11-2

FGETENV function 11-3

FIND function 6-6 to 6-8

FINDMEM function 11-4 to 11-5

FMLINFO function 10-14 to 10-16

FMOD function 10-9 to 10-11

FOCUS commands 3-10
I-4 Information Builders

Index
format conversion functions 2-18, 9-1
ATODBL 9-2 to 9-3
EDIT 9-5 to 9-6
FTOA 9-7 to 9-8
HEXBYT 9-8 to 9-9
ITONUM 9-11 to 9-12
ITOPACK 9-12 to 9-13
ITOZ 9-14 to 9-15
PCKOUT 9-16 to 9-17
UFMT 9-18 to 9-19

format conversions 9-5
packed numbers 9-16
to alphanumeric 9-7
to characters 9-8
to double-precision 9-11
to hexadecimal 9-18
to packed decimal 9-12
to zoned format 9-14

formats 9-2
alphanumeric 9-6
converting 9-2

formatted-string format 7-7

FPUTENV function 11-6 to 11-7

FTOA function 9-7 to 9-8

function arguments 3-4
formats 3-5
functions as 3-16
in subroutines A-3
length 3-6
number 3-6
supplying 3-4
types 3-4

function libraries 3-4, 3-24
adding 3-24
deleting 3-24

function types 2-3
character 2-3, 4-1, 5-1
data source 2-10, 6-1
date and time 2-11, 2-16, 7-1
decoding 2-10, 6-1
format conversion 2-18, 9-1
Maintain-specific character 2-7
numeric 2-19, 10-1
system 2-21, 11-1

functions 1-1, 2-1 to 2-2, 3-1 to 3-2
accessing 3-1
accessing external 3-22
arguments 3-4
branching in procedures 3-13, 3-18
calling 3-1 to 3-4, 3-10, 3-16
COMPUTE command and 3-10
DEFINE command and 3-10
Dialogue Manager and 3-11
external 2-2
FOCUS commands and 3-10
-IF command and 3-13
internal 2-2
invoking 3-3
languages 1-2
operating system commands and 3-15
operating systems 1-2
-RUN command and 3-15
storing external 3-22
subroutines 2-2, A-1
types 2-3
VALIDATE command and 3-10
variables and 3-11 to 3-12
VM/CMS 3-24

G

GETPDS function 11-7 to 11-9, 11-11

GETTOK function 4-22 to 4-24

GETUSER function 11-12

GREGDT function 7-63 to 7-65
DATEFNS parameter 7-64
Using Functions I-5

Index
H

HADD function 7-25 to 7-26

HCNVRT function 7-27 to 7-28

HDATE function 7-28 to 7-29

HDAY parameter 7-4 to 7-5

HDIFF function 7-30 to 7-31

HDTTM function 7-32 to 7-33

HEXBYT function 9-8 to 9-9

HGETC function 7-33 to 7-34

HHMMSS function 7-34 to 7-35, 8-2, 11-13

HINPUT function 7-36 to 7-37

HMIDNT function 7-38 to 7-39

HNAME function 7-39 to 7-41

holidays 7-3 to 7-5
HDAY parameter 7-5
holiday files 7-4

HPART function 7-41 to 7-42

HSETPT function 7-42 to 7-44

HTIME function 7-45 to 7-46

I

-IF command 3-13

IF criteria 3-17
assigning date-time values 7-11
functions and 3-17 to 3-18

IMOD function 10-9 to 10-11

Initial_HHMMSS function 8-3

Initial_TODAY function 8-3

INT function 10-16 to 10-17

INT2CHAR function 5-3

internal functions 2-2

invoking functions 3-2 to 3-3

ITONUM function 9-11 to 9-12

ITOPACK function 9-12 to 9-13

ITOZ function 9-14 to 9-15

J

JULDAT function 7-65 to 7-66
DATEFNS parameter 7-65

JULIAN function 8-6 to 8-7

L

languages 1-2

LAST function 6-9 to 6-10

LCWORD function 4-24 to 4-25, 4-53, 5-4 to 5-5

LCWORD2 function 5-4 to 5-5

LEADZERO parameter 7-5 to 7-6

legacy date functions 2-11, 2-16, 7-2, 7-47, 8-5
DATEFNS parameter 7-47
DMY 7-58 to 7-59
legacy dates 7-48 to 7-49
legacy versions 7-47
MDY 7-58 to 7-59
YMD 7-58 to 7-59

legacy dates 7-48 to 7-49

LENGTH function 5-5

LJUST function 4-26 to 4-27, 5-6

load libraries 3-22

LOCASE function 4-28 to 4-29

LOG function 10-17 to 10-18

LOOKUP function 6-11 to 6-12, 6-14, 6-16 to 6-17
extended function 6-17

LOWER function 5-6
I-6 Information Builders

Index
M

Maintain-specific character functions 2-7, 5-1
CHAR2INT 5-2
INT2CHAR 5-3
LCWORD 5-4
LCWORD2 5-4 to 5-5
LENGTH 5-5
LJUST 5-6
LOWER 5-6
MASK 5-7 to 5-8
NLSCHR 5-8
OVRLAY 5-9 to 5-10
POSIT 5-11 to 5-12
RJUST 5-13
SELECTS 5-14 to 5-15
STRAN 5-16 to 5-17
STRCMP 5-18 to 5-19
STRICMP 5-20
STRTOKEN 5-22 to 5-23
SUBSTR 5-24 to 5-25
TRIM 5-25
TRIMLEN 5-26
UPCASE 5-27

Maintain-specific date and time functions 2-16, 8-1
ADD 8-5
DATEDIF 7-21
DATEMOV 7-24
DAY 8-6
HHMMSS 8-2
Initial_HHMMSS 8-3
Initial_TODAY 8-3
JULIAN 8-6 to 8-7
legacy 2-16, 8-1, 8-5
MONTH 8-7
QUARTER 8-8
SETMDY 8-8 to 8-9
standard 2-16, 8-1
SUB 8-10
TODAY 8-3 to 8-4
TODAY2 8-4
WEEKDAY 8-11
YEAR 8-12

Maintain-specific functions 3-4
MNTUWS function library 3-4
SELECTS 5-14
STRNCMP 5-21
STRTOKEN 5-22

MASK function 5-7 to 5-8

MAX function 10-18

MDY function 7-58 to 7-59

MIN function 10-18 to 10-19

MNTUWS function library 3-4

MONTH built-in function 8-7

MONTH function 8-7

MTHNAM subroutine A-13 to A-14, A-16 to A-19

MVSDYNAM function 11-14

N

naming subroutines A-3

National Language Support (NLS) 5-8

NLSCHR function 5-8

NORMSDST function 10-19, 10-21 to 10-22

NORMSINV function 10-19, 10-21 to 10-22

numbers 10-2
absolute value 10-2
bar charts 10-3
calculating remainders 10-9
generating random 10-23, 10-26
greatest integer 10-16
logarithms 10-17
maximum 10-18
minimum 10-18
raising to a power 10-11
scientific notation 10-13
square root 10-28
standard normal deviation 10-19 to 10-20
validating packed fields 10-6
Using Functions I-7

Index
numeric functions 2-19, 10-1
ABS 10-2
ASIS 10-3
BAR 10-3 to 10-5
CHKPCK 10-6 to 10-8
DMOD 10-9 to 10-11
EXP 10-11 to 10-12
EXPN 10-13
FMLINFO 10-14 to 10-16
FMOD 10-9 to 10-11
IMOD 10-9 to 10-11
INT 10-16 to 10-17
LOG 10-17 to 10-18
MAX 10-18
MIN 10-18 to 10-19
NORMSDST 10-19, 10-21 to 10-22
NORMSINV 10-19, 10-21 to 10-22
PRDNOR 10-23 to 10-25
PRDUNI 10-23 to 10-24
RDNORM 10-26 to 10-27
RDUNIF 10-26 to 10-27
SQRT 10-28

numeric string format 7-7

numeric values 10-1

O

operating system commands 3-15
functions 3-15

operating systems 1-2

OS/390 3-22
accessing functions 3-22
compiling subroutines A-12
storing functions 3-22 to 3-23
storing subroutines A-12

OVRLAY function 4-29 to 4-31, 5-9 to 5-10

P

PARAG function 4-33 to 4-35

PCKOUT function 9-16 to 9-17

POSIT function 4-35 to 4-37, 5-11 to 5-12

PRDNOR function 10-23 to 10-25

PRDUNI function 10-23 to 10-24

programming subroutines A-6
arguments A-8 to A-10

Q

QUARTER function 8-8

R

RDNORM function 10-26 to 10-27

RDUNIF function 10-26 to 10-27

RECAP command 3-20 to 3-21

REXX subroutines A-20 to A-29
formats A-25

RJUST function 4-37 to 4-38, 5-13

-RUN command 3-15

S

SELECTS function 5-14 to 5-15

-SET command 3-11 to 3-12

SET parameters 7-3
BUSDAYS 7-3 to 7-4
DATEFNS 7-47
HDAY 7-4 to 7-5
LEADZERO 7-5 to 7-6

SETMDY function 8-8 to 8-9

SOUNDEX function 4-39 to 4-40

SQRT function 10-28

SQUEEZ function 4-40 to 4-41
I-8 Information Builders

Index
standard date and time functions 2-11, 2-16, 7-2

standard normal deviation 10-19 to 10-20

storing external functions 3-22
OS/390 3-22 to 3-23
UNIX 3-24
VM/CMS 3-24

storing subroutines A-11 to A-12
libraries A-11
OS/390 A-12
text files A-11
UNIX A-12
VM/CMS A-11

STRAN function 5-16 to 5-17

STRCMP function 5-18 to 5-19

STRICMP function 5-20

STRIP function 4-42 to 4-44

STRNCMP function 5-21

STRTOKEN function 5-22 to 5-23

SUB function 8-10

subroutines 2-2, A-1
compiling A-11
creating A-1
custom A-13 to A-14, A-16 to A-19
entry points A-6 to A-7
MTHNAM A-13 to A-14, A-16 to A-19
naming A-3
programming A-6
REXX A-20 to A-29
storing A-11
testing A-12
writing A-2

SUBSTR function 4-44 to 4-46, 4-57, 5-24 to 5-25

substrings 4-21
comparing 5-21
extracting 4-21 to 4-22, 4-44, 4-46, 4-57, 5-24
finding 4-35, 5-11
overlaying character strings 4-29, 5-9
substituting 5-16

system functions 2-21, 11-1
FEXERR 11-2
FGETENV 11-3
FINDMEM 11-4 to 11-5
FPUTENV 11-6 to 11-7
GETPDS 11-7 to 11-9, 11-11
GETUSER 11-12
HHMMSS 11-13
MVSDYNAM 11-14
TODAY 11-17

T

testing subroutines A-12

time formats 7-7 to 7-8

TODAY function 7-46 to 7-47, 8-3 to 8-4, 11-17

TODAY2 function 8-4

translated-string format 7-8

TRIM function 4-46 to 4-48, 5-25

TRIMLEN function 5-26

TRIMV function 4-60

U

UFMT function 9-18 to 9-19

UNIX 3-24
accessing functions 3-24
compiling subroutines A-12
storing functions 3-24
storing subroutines A-12

UPCASE function 4-49 to 4-50, 5-27

user IDs 11-12
Using Functions I-9

Index
V

VALIDATE command 3-10

values 6-2
decoding 6-2
verifying 6-6 to 6-8

VM/CMS 3-24, A-11
accessing external functions 3-24
compiling subroutines A-11
storing external functions 3-24
storing subroutines A-11

W

WEEKDAY function 8-11

WHEN criteria 3-19

WHERE criteria 3-17
assigning date-time values 7-10
functions and 3-17 to 3-18

work days 7-3
business days 7-3
holidays 7-3 to 7-4

writing subroutines A-2
creating arguments A-3
entry points A-6 to A-7
languages A-4
naming subroutines A-3
programming A-6, A-8 to A-10

Y

YEAR function 8-12

YM function 7-67 to 7-68

YMD function 7-58 to 7-59
I-10 Information Builders

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections.
Identify specific pages where applicable. You can contact us through the following methods:

Name:___

Company:__

Address:___

Telephone:____________________________________Date:_____________________________________

E-mail:___

Comments:

Mail: Documentation Services - Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

FOCUS for Mainframe Using Functions DN1001140.1003
Version 7.3

Reader Comments
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

FOCUS for Mainframe Using Functions DN1001140.1003
Version 7.3

	Preface
	Contents
	1. How to Use This Manual
	Available Languages
	Operating Systems

	2. Introducing Functions
	Using Functions
	Types of Functions
	Character Functions
	Maintain-specific Character Functions
	Data Source and Decoding Functions
	Date and Time Functions
	Maintain-specific Date and Time Functions
	Format Conversion Functions
	Numeric Functions
	System Functions

	3. Accessing and Calling a Function
	Calling a Function
	Supplying an Argument in a Function
	Argument Types
	Argument Formats
	Argument Length
	Number and Order of Arguments
	Verifying Function Parameters

	Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command
	Calling a Function From a Dialogue Manager Command
	Assigning the Result of a Function to a Variable
	Branching Based on a Function’s Result
	Calling a Function From an Operating System RUN Command

	Calling a Function From Another Function
	Calling a Function in WHERE or IF Criteria
	Using a Calculation or Compound IF Command

	Calling a Function in WHEN Criteria
	Calling a Function From a RECAP Command
	Storing and Accessing an External Function
	Storing and Accessing a Function on OS/390
	Storing and Accessing a Function on UNIX
	Storing and Accessing a Function on VM/CMS

	Dynamic Language Environment Support

	4. Character Functions
	ARGLEN: Measuring the Length of a Character String
	ASIS: Distinguishing Between a Space and a Zero
	BITSON: Determining If a Bit Is On or Off
	BITVAL: Evaluating a Bit String as a Binary Integer
	BYTVAL: Translating a Character to a Decimal Value
	CHKFMT: Checking the Format of a Character String
	CTRAN: Translating One Character to Another
	CTRFLD: Centering a Character String
	EDIT: Extracting or Adding Characters
	GETTOK: Extracting a Substring (Token)
	LCWORD: Converting a Character String to Mixed Case
	LJUST: Left-Justifying a Character String
	LOCASE: Converting Text to Lowercase
	OVRLAY: Overlaying a Character String
	PARAG: Dividing Text Into Smaller Lines
	POSIT: Finding the Beginning of a Substring
	RJUST: Right�Justifying a Character String
	SOUNDEX: Comparing Character Strings Phonetically
	SQUEEZ: Reducing Multiple Spaces to a Single Space
	STRIP: Removing a Character From a String
	SUBSTR: Extracting a Substring
	TRIM: Removing Leading and Trailing Occurrences
	UPCASE: Converting Text to Uppercase
	Character Functions for AnV Fields
	LENV: Returning the Length of an Alphanumeric Field
	LOCASV: Creating a Variable Length Lowercase String
	POSITV: Finding the Beginning of a Variable Length Substring
	SUBSTV: Extracting a Variable Length Substring
	TRIMV: Removing Characters From a String
	UPCASV: Creating a Variable Length Uppercase String

	5. Maintain-specific Character Functions
	CHAR2INT: Translating a Character to an Integer Value
	INT2CHAR: Translating an Integer Value to a Character
	LCWORD and LCWORD2: Converting a Character String to Mixed Case
	LENGTH: Determining the Length of a Character String
	LJUST: Left�Justifying a Character String (Maintain)
	LOWER: Converting a Character String to Lowercase
	MASK: Extracting or Adding Characters
	NLSCHR: Converting Characters From the Native English Code Page
	OVRLAY: Overlaying a Character String (Maintain)
	POSIT: Finding the Beginning of a Substring (Maintain)
	RJUST: Right�Justifying a Character String (Maintain)
	SELECTS: Decoding a Value From a Stack
	STRAN: Substituting One Substring for Another
	STRCMP: Comparing Character Strings
	STRICMP: Comparing Character Strings and Ignoring Case
	STRNCMP: Comparing Character Substrings
	STRTOKEN: Extracting a Substrings Based on Delimiters
	SUBSTR: Extracting a Substring (Maintain)
	TRIM: Removing Trailing Occurrences (Maintain)
	TRIMLEN: Determining the Length of a String Excluding Trailing Spaces
	UPCASE: Converting Text to Uppercase (Maintain)

	6. Data Source and Decoding Functions
	DECODE: Decoding Values
	FIND: Verifying the Existence of a Value in an Indexed Field
	LAST: Retrieving the Preceding Value
	LOOKUP: Retrieving a Value From a Cross-referenced Data Source
	Using the Extended LOOKUP Function

	7. Date and Time Functions
	Date and Time Function Terminology
	Using Standard Date and Time Functions
	Specifying Work Days
	Enabling Leading Zeros For Date and Time Functions in Dialogue Manager
	Using Date and Time Formats
	Assigning Date-Time Values
	DATEADD: Adding or Subtracting a Date Unit to or From a Date
	DATECVT: Converting the Format of a Date
	DATEDIF: Finding the Difference Between Two Dates
	DATEMOV: Moving a Date to a Significant Point
	HADD: Incrementing a Date�Time Value
	HCNVRT: Converting a Date�Time Value to Alphanumeric Format
	HDATE: Converting the Date Portion of a Date�Time Value to a Date Format
	HDIFF: Finding the Number of Units Between Two Date�Time Values
	HDTTM: Converting a Date Value to a Date�Time Value
	HGETC: Storing the Current Date and Time in a Date�Time Field
	HHMMSS: Retrieving the Current Time
	HINPUT: Converting an Alphanumeric String to a Date�Time Value
	HMIDNT: Setting the Time Portion of a Date�Time Value to Midnight
	HNAME: Retrieving a Date�Time Component in Alphanumeric Format
	HPART: Retrieving a Date�Time Component in Numeric Format
	HSETPT: Inserting a Component Into a Date�Time Value
	HTIME: Converting the Time Portion of a Date�Time Value to a Number
	TODAY: Returning the Current Date

	Using Legacy Date Functions
	Using Old Versions of Legacy Date Functions
	Using Dates With Two- and Four-Digit Years
	AYM: Adding or Subtracting Months to or From Dates
	AYMD: Adding or Subtracting Days to or From a Date
	CHGDAT: Changing Format of a Date
	DA Functions: Converting a Date to an Integer
	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	DOWK and DOWKL: Finding the Day of the Week
	DT Functions: Converting an Integer to a Date
	GREGDT: Converting From Julian to Gregorian Format
	JULDAT: Converting From Gregorian to Julian Format
	YM: Calculating Elapsed Months

	8. Maintain-specific Date and Time Functions
	Maintain-specific Standard Date and Time Functions
	HHMMSS: Retrieving the Current Time (Maintain)
	Initial_HHMMSS: Returning the Time the Application Was Started
	Initial_TODAY: Returning the Date the Application Was Started
	TODAY: Retrieving the Current Date (Maintain)
	TODAY2: Returning the Current Date

	Maintain-specific Legacy Date Functions
	ADD: Adding Days to a Date
	DAY: Extracting the Day of the Month From a Date
	JULIAN: Determining How Many Days Have Elapsed in the Year
	MONTH: Extracting the Month From a Date
	QUARTER: Determining the Quarter
	SETMDY: Setting the Value to a Date
	SUB: Subtracting a Value From a Date
	WEEKDAY: Determining the Day of the Week for a Date
	YEAR: Extracting the Year From a Date

	9. Format Conversion Functions
	ATODBL: Converting an Alphanumeric String to Double�Precision Format
	EDIT: Converting the Format of a Field
	FTOA: Converting a Number to Alphanumeric Format
	HEXBYT: Converting a Decimal Integer to a Character
	ITONUM: Converting a Large Binary Integer to Double�Precision Format
	ITOPACK: Converting a Large Binary Integer to Packed�Decimal Format
	ITOZ: Converting a Number to Zoned Format
	PCKOUT: Writing a Packed Number of Variable Length
	UFMT: Converting an Alphanumeric String to Hexadecimal

	10. Numeric Functions
	ABS: Calculating Absolute Value
	ASIS: Distinguishing Between a Blank and a Zero
	BAR: Producing a Bar Chart
	CHKPCK: Validating a Packed Field
	DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
	EXP: Raising “e” to the Nth Power
	EXPN: Evaluating a Number in Scientific Notation
	FMLINFO: Returning FOR Values
	INT: Finding the Greatest Integer
	LOG: Calculating the Natural Logarithm
	MAX and MIN: Finding the Maximum or Minimum Value
	NORMSDST and NORMSINV: Calculating Cumulative Normal Distribution
	PRDNOR and PRDUNI: Generating Reproducible Random Numbers
	RDNORM and RDUNIF: Generating Random Numbers
	SQRT: Calculating the Square Root

	11. System Functions
	FEXERR: Retrieving an Error Message
	FGETENV: Retrieving the Value of an Environment Variable
	FINDMEM: Finding a Member of a Partitioned Data Set
	FPUTENV: Assigning a Value to an Environment Variable
	GETPDS: Determining If a Member of a Partitioned Data Set Exists
	GETUSER: Retrieving a User ID
	HHMMSS: Retrieving the Current Time
	MVSDYNAM: Passing a DYNAM Command to the Command Processor
	TODAY: Returning the Current Date

	A. Creating a Subroutine
	Writing a Subroutine
	Naming a Subroutine
	Creating Arguments
	Language Considerations
	Programming a Subroutine

	Compiling and Storing a Subroutine
	Compiling and Storing a Subroutine on VM/CMS
	Compiling and Storing a Subroutine on OS/390
	Compiling and Storing a Subroutine on UNIX

	Testing the Subroutine
	Using a Custom Subroutine: The MTHNAM Subroutine
	Writing the MTHNAM Subroutine
	Calling the MTHNAM Subroutine From a Request

	Subroutines Written in REXX
	Formats and REXX Subroutines
	Compiling FUSREXX Macros in VM/CMS

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

