
 FOCUS for S/390
Version 7.2

 JOIN WHERE, Field-Based Reformatting,

 Forecast, and Tiles

Introducing ...

 Builders
 Information

Extended Currency Symbol Support,

���������	�

7.2 New Features Page 1 of 12

Contents

7.2 New Features

 NF551: AUTOIMS
 AUTOIMS Prerequisites
 Installing AUTOIMS
 Invoking AUTOIMS

AUTOIMS Master File Generation Window
COBOL FD Translator Options Window
Completing AUTOIMS Processing
Accessing the Generated Master File and FOCPSB
Generated Master File

 NF646: WHERE-Based JOIN
 Conditional JOIN Processing
 Preserving Virtual Fields During Join Parsing

Preserving Virtual Fields Using the KEEPDEFINES Parameter
Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN

 Clearing Joins
 Listing JOIN Structures: The ? JOIN Query

 NF767: Long Alphanumeric Fields

 NF787: Increased Report Width

 NF788: Tiles
 Grouping Data in Tiles

Contents

7.2 New Features Page 2 of 12

 NF789: FORECAST
 FORECAST Processing
 Forecasting Methods

Using a Simple Moving Average
Using an Exponential Moving Average
Using a Linear Regression Equation

 FORECAST Reporting Techniques

 NF790: ACROSS-TOTAL

 NF792: SET CDN Command Enhancement

 NF793: Displaying Fractions

 NF796: Unlimited Nested -INCLUDE Commands

 NF797: Field-Based Reformatting
 Using Field-Based Formatting

 NF801: DB2 Data Adapter SET SSID Command for MSO

 NF802: Long Master File Names
 Using Long Names on OS/390

Member Names for Long Master File Names in OS/390
Creating a HOLD Master File With a Long Name on OS/390
Creating RDBMS Tables With Long Master File Names

 NF817: Creating Comma-Delimited Files
 Types of Comma-Delimited Output Files

 NF824: STRIP Subroutine

 NF825: SET PCOMMA

Contents

7.2 New Features Page 3 of 12

 NF826: SQUEEZ Subroutine

 NF827: TRIM Subroutine

 NF828: SUFFIX = COM/COMT/TABT
 Accessing SUFFIX=COM Data Sources
 Accessing SUFFIX=COMT Data Sources
 Accessing SUFFIX=TABT Data Sources

 NF829: AUTODATE for FOCUS Data Sources
 Creating and Using the AUTODATE Field

 NF833: Creating Tab-Delimited Files

 NF880: Exit on Error
 Controlling Batch Error Processing

 NF849: Extended Currency Symbol Support
 Extended Currency Symbol Format Options

 NF886: Reusable MSO/CICS Control Blocks

 NF898: SQL Support for Date-Time Formats
 Date-Time Support for the Relational Data Adapters
 AUTODB2 Support for DDF
 AUTODB2/SQL Support for TIME and TIMESTAMP

AUTODB2/SQL Screens That Support DDF and Date-Time Formats
Executing AUTODB2 in Batch

 SQL Translator Support for Date-Time Fields
Operations on Date-Time Data Supported by the SQL Translator
Extracting Date-Time Components Using the SQL Translator

 NF914: LMF Site Code Warning Message

Contents

7.1 New Features Page 4 of 12

7.1 New Features

 NF692: Aggregating and Sorting Report Columns

 NF696: Calling Subroutines Written in REXX
 Using REXX Subroutines
 Compiling FUSREXX Macros in CMS

 NF731: Reporting From Independent Paths
 Retrieving Data From Multiple Paths
 MULTIPATH and SET ALL Combinations

Determining if a Segment Is Required

 NF749: HOLD FORMAT INTERNAL

 NF750: DATASET in a Master File
 DATASET Behavior in FOCUS Data Sources
 DATASET Behavior in Fixed-Format Sequential Data Sources
 DATASET Behavior in VSAM Data Sources

 NF751: Date-Time Data Type
 Describing Date-Time Values

Date-Time Display Formats
Specifying Date-Time Values
ACTUAL Formats for Date-Time Values

 Setting Date-Time Options
 Manipulating Date-Time Values

Comparison and Assignment
Date-Time Functions

 NF755: Using FILEDEF for Creating Extract Files

Contents

7.1 New Features Page 5 of 12

 NF759: Increased Number of Display Fields

 NF761: Comma Suppress Edit Format Option

 NF762: Percent Edit Format Option

 NF766: DEFINE Functions
 Using DEFINE Functions

 NF773: Token Delimited Files

 NF777: Two-Gigabyte FOCUS Database Support
 Enabling Two-Gigabyte Support

 NF777: Partitioned FOCUS Data Sources
 Partitioning

Intelligent Partitioning
 Specifying an Access File in a FOCUS Master File
 The FOCUS Access File

FOCUS Access File Attributes
 Describing Joined Files

 NF778: Dialogue Manager TRUNCATE Function
 Using the Dialogue Manager TRUNCATE Function

 NF779: FOCUS CRTFORM HTML Translation

 NF781: Embedding Text Fields in Headings

 NF782: Oracle Data Adapter IXSPACE Setting
 Specifying Oracle Index Space Parameters

Contents

7.1 New Features Page 6 of 12

 NF785: The Adabas Write Data Adapter for FOCUS
 Activating the Adabas Write Data Adapter

Limitations on Options Described for the Adabas Data Adapter
Fields That Cannot be Updated
Checking Adabas Return Codes and FOCUS Error Message Numbers

 Adabas Write Examples
 Types of Transaction Processing
 Descriptor Considerations
 Modifying Data

The MATCH Command
The NEXT Command
INCLUDE, UPDATE, and DELETE Processing
Adabas Transaction Control Within MODIFY
Using the Return Code Variable: FOCERROR
Using the Data Adapter SET ERRORRUN Command
Modifying Data sources Without Unique Keys

 Referential Integrity
 The MODIFY COMBINE Facility
 The LOOKUP Function
 The FIND Function
 Data Adapter Error Messages and Adabas Response Codes

Adabas Write Data Adapter Error Messages
Adabas Response Codes

 Common User Errors

Contents

7.0.9 New Features Page 7 of 12

7.0.9 New Features

 NF575: Fusion

 NF716: Euro Currency Support
 Converting Currencies
 Preparing FOCUS to Process Currency Conversions

Creating the Currency Database
Identifying Fields That Contain Currency Data

 Activating the Currency Database
 Processing Currency Data

 NF744: HOLD FORMAT EXCEL

 NF730: Hold Format PDF
 Required Software Configuration

Downloading PDF Output

 NF654: HOLD From External Sort
 Conditions for Using External Sort to Create a HOLD File

 NF597: Aggregation by External Sort
 Conditions for Aggregating with an External Sort

 NF728: Changing Retrieval Order with Aggregation

 NF655: FOCPROF - The System Wide Profile
 FOCUS Profiles

 NF660: Multi-volume Support in MVS FOCUS
 Advantages of Multi-volume Data Sources
 Allocating Multi-volume Data Sources
 Choosing Default Sizes for FOCUS-created Files

Contents

7.0.9 New Features Page 8 of 12

 NF584: Dynamically Setting the IDMS DBNAME and DICTNAME

 NF673: Model 204 Interface Account Split

 NF720: SQLJOIN OUTER Setting for Relational Interfaces

 NF652: Teradata Interface Kanji Support

 NF722: FOCUS Client DNS Names Support

 NF656: Controlling REBUILD Messages

 NF670: DYNAM Support for Unit Count
 Advantages of Multi-volume Data Sources

 NF684: PCHOLD for Non-Html Files
 Using PCHOLD for Formats LOTUS, DIF, EXCEL, or PDF

 NF683: Web Interface Support for Maintain Winforms
 Prerequisites

 NF691: Escape Character for LIKE Predicate
 Escape Character Capabilities

 NF718: DYNAM Support for Existing Relative GDG Numbers
 Using DYNAM With Relative GDG Numbers

 NF735: Enhancement to ? SET

 NF740: Changes to the REBUILD Prompt

 NF745: ? PTF Enhancements

 NF746: Leading Zeros

 NF748: HOLD FORMAT WP With Carriage Control

Contents

7.0.8R New Features Page 9 of 12

7.0.8R New Features

 NF557: REBUILD - Legacy Date Conversion
 How the REBUILD Utility Converts Legacy Dates
 Updated Master File Created by REBUILD/DATE NEW
 Action Taken on a Date Field During REBUILD/DATE NEW

 NF653: Displaying Base Dates in FOCUS Reports

 NF659: CHECK FILE HOLD ALL

 NF700: New Date Math Functions for the Year 2000
 New Date Function Capabilities

Weekday Units
Business Day Units
Holidays

 New Date Math Functions in MAINTAIN

 NF703: Displaying Invalid Smart Dates in Reports

 NF705: Enhancement to the YRTHRESH Command

 NF708: Enhancement to the TODAY Subroutine

 NF709: Displaying a Date Variable Without Separators

 NF710: Field FORMAT=YYJUL

 NF711: Altering Your System Date for Testing Purposes

 NF713: MSO Log Changes

 NF714: LE Support
 Recommended IBMLE Settings

Contents

7.0.8 New Features Page 10 of 12

7.0.8 New Features

 NF550: EDA/MSO Console Display for IMS PSB

 NF564: Pooled Tables
 Overview

Memory Needs
Report Size Estimates

 FOCPOOLT
 Reporting statistics
 Sort Selection
 Managing Memory
 Common Selection Criteria
 Reporting from non-Relational Databases
 Reporting from Relational Databases
 Pooled Tables in Batch Mode
 Trace Facility
 Tuning Applications
 Pooled Tables Example

Single TABLE Clusters
Subpool Boundary Conditions

 Pooled Tables Installation Instructions
Commands for the FOCPARM file

 Frequently Asked Questions

Contents

7.0.8 New Features Page 11 of 12

 NF566: MSO/CICS Cooperative Processing
 MSO FOCEXEC Cooperative Processing Service
 MSO/CICS Cooperative Processing Services
 CMSORCV Function Codes
 Reconnection Capability

Suspend key
Previous API

 NF568: DB2 Interface IF-THEN-ELSE Optimization

 NF571: DB2 Interface SET ISOLATION Command

 NF572: Invisible Ordered Character and Ordered Numeric Data Type Key
Support

 NF574: System 2000 Interface Trace Facility

 NF579: Assigning Screening Conditions to a File for Reporting Purposes
 Using Filters
 Filters and JOINs

 NF583: Teradata Outer Join Optimization

 NF586: Expanding Byte Precision for COUNT and LIST

 NF593: IUCV CMS SU

 NF594: JAVA Report Assist

 NF605: Date Handling for the Year 2000 in FOCUS
 Date Literals Interpretation Table

 NF607: TABLA Enhancements

Contents

7.0.8 New Features Page 12 of 12

 NF609: Sink Validation of Userids in CMS

 NF617: Automatic Allocation of FOCUS Files

 NF619: -HTMLFORM SAVE

 NF620: Year 2000 Subroutines
 Date Literals Interpretation Table

 NF623: Increasing the Number of Verbs in a Report Request

 NF626: JAVA Graph Wizard

 NF628: Automatic Activation of Web Interface for Web Browser Users

 NF630: Querying Which PTFs Have Been Applied for a Specific Release

 NF631: Extended Plists

 NF640: Dynamic Language Environment (LE) Support

 NF642: Increased DEFINE Limitation

 NF645: WEBHOME

 NF647: Extended Support for Scandinavian External Sort

 Project 2000 - Phase III

Index

Page 1 of 2

7.2 New Features

General Enhancements
NF796: Unlimited Nested -INCLUDE Commands
NF802: Long Master File Names
NF824: STRIP Subroutine
NF825: SET PCOMMA
NF826: SQUEEZ Subroutine
NF827: TRIM Subroutine
NF828: SUFFIX = COM/COMT/TABT
NF829: AUTODATE for FOCUS Data Sources
NF880: Exit on Error
NF886: Reusable MSO/CICS Control Blocks
NF914: LMF Site Code Warning Message

Raised Limits
NF767: Long Alphanumeric Fields
NF787: Increased Report Width
NF796: Unlimited Nested -INCLUDE Commands
NF802: Long Master File Names

7.2 New Features

Page 2 of 2

Reporting Enhancements
NF646: WHERE-Based JOIN
NF788: Tiles
NF789: FORECAST
NF790: ACROSS-TOTAL
NF792: SET CDN Command Enhancement
NF793: Displaying Fractions
NF797: Field-Based Reformatting
NF817: Creating Comma-Delimited Files
NF833: Creating Tab-Delimited Files
NF849: Extended Currency Symbol Support

Data Adapter Enhancements
NF551: AUTOIMS
NF801: DB2 Data Adapter SET SSID Command for MSO
NF898: SQL Support for Date-Time Formats

Version 7.2 Page 1 of 20

NF551: AUTOIMS

AUTOIMS is an automated procedure that creates a Master File and FOCPSB
for an IMS data source. This procedure operates in three phases:
• In the first phase, AUTOIMS extracts segment and key field information

from an IMS DBD and PSB you use to access the data source. This phase
creates a basic Master File that contains segment information and
descriptions of key fields and search fields.

• In the next phase, AUTOIMS extracts detailed field information from a
COBOL FD for each segment. The accuracy of the Master File created by
the AUTOIMS procedure depends on having a working, syntactically
correct COBOL FD for every segment listed in the DBD of the IMS data
source.

• In the last phase, AUTOIMS merges the results from the first two phases to
create the final Master File and the FOCPSB.

For a detailed description of the Master File and FOCPSB, see your
documentation on the IMS/DB Data Adapter. For detailed information about the
COBOL FD Translator, see the COBOL FD Translator for S/390 User’s Manual
and Installation Guide.

AUTOIMS Prerequisites
Before you can execute the AUTOIMS procedure, the following prerequisites
must be met:
• The COBOL FD Translator, Release 3.0 or higher must be installed and

operational.

NF551: AUTOIMS

Version 7.2 Page 2 of 20

• IMS Version 6 or higher must be installed and operational, and the DBDLIB
and PSBLIB must contain appropriate DBDs and PSBs for the IMS data
sources.

• Any supported release of FOCUS for S/390 on MVS or OS/390 must be
installed and operational.

• You must have MASTER and FOCPSB data sets to receive the created
Master File and FOCPSB members.

Installing AUTOIMS
AUTOIMS is installed during FOCUS installation. No additional installation
steps are needed.

Invoking AUTOIMS
AUTOIMS can only be invoked interactively in a FOCUS session. The CLIST
that starts the session must allocate the following ddnames:

DDNAME Allocated to the...

FOCLIB FOCUS product load library.

USERLIB COBOL FD Translator load library.

MASTER PDS that contains Master Files.

FOCEXEC PDS that contains stored procedures.

ERRORS PDS that contains Information Builders error messages.

NF551: AUTOIMS

Version 7.2 Page 3 of 20

Example Editing the Sample CLIST for AUTOIMS

Edit the following CLIST to conform to your site’s standards before executing it:
PROC 0 CONTROL NOLIST NOMSG NOFLUSH NOSYM END(ENDO)
ALLOC F(FOCLIB) DA(’prefix.FOCLIB.LOAD’) SHR REUSE
ALLOC F(USERLIB) DA(’prefix.CTF30.LOAD’ +
 ’prefix.FUSELIB.LOAD’) SHR REUSE
ALLOC F(MASTER) DA(’prefix.MASTER.DATA’) SHR REUSE
ALLOC F(FOCEXEC) DA(’prefix.FOCEXEC.DATA’) SHR REUSE
ALLOC F(ERRORS) DA(’prefix.ERRORS.DATA’) SHR REUSE
ALLOC F(TRF) DA(’prefix.FOCEXEC.DATA’) SHR REUSE
ALLOC F(HOLDMAST) DA(’user.HOLDMAST.DATA’) SHR REUSE
CALL ’prefix.FOCLIB.LOAD(FOCUS)’
EXIT

where:
prefix

Is the high-level qualifier for your site’s FOCUS production data sets.
user

Is the high-level qualifier for the HOLDMAST data set. You must have
authority to create new members in this data set.

Note: You are also required to have authority to create members in the data
sets that will receive the Master Files and FOCPSBs created by AUTOIMS. You
enter the names of these data sets on the first window displayed by AUTOIMS.

TRF PDS that contains windows displayed by AUTOIMS that list
and let you select members to use in the AUTOIMS
procedure.

HOLDMAST PDS that contains HOLD Master Files.

NF551: AUTOIMS

Version 7.2 Page 4 of 20

Procedure How to Start the AUTOIMS Procedure and Log the
 Parameters

1. From the FOCUS prompt, issue the following command:
EX AUTOIMS

The AUTOIMS Main Menu displays:

2. In this window, supply the name of the PSB and data sets AUTOIMS
requires.

NF551: AUTOIMS

Version 7.2 Page 5 of 20

Once the correct information is entered, you can log it to a file so that it will
display automatically in subsequent executions of AUTOIMS.

3. Press Enter to proceed. AUTOIMS displays a message to indicate that it is
processing your menu selections.

Reference Required Data Set Names for AUTOIMS

AUTOIMS requires the following data sets:

• The PSBLIB. By default, AUTOIMS supplies the name
userid.PSBLIB.DATA, where userid is your user ID.

• The DBDLIB. By default, AUTOIMS supplies the name
userid.DBDLIB.DATA, where userid is your user ID.

• The data set that contains the COBOL FDs. Each COBOL FD that will be
used in generating a Master File must be stored as a member in this PDS.
Each COBOL FD can have only one 01 level entry.

• The data set that will contain the FOCPSBs created by AUTOIMS. By
default, AUTOIMS supplies the name userid.FOCPSB.DATA, where userid
is your user ID. You must have authority to create new members in this
data set.

• The data set that will contain the Master Files created by AUTOIMS. By
default, AUTOIMS supplies the name userid.MASTER.DATA, where userid
is your user ID. You must have authority to create new members in this
data set.

• The preliminary Master File library. This transitional work library receives
the output of phase one of AUTOIMS processing and is useful for
troubleshooting.

NF551: AUTOIMS

Version 7.2 Page 6 of 20

• The Translator library. This transitional work library receives the output of
phase two of AUTOIMS processing and is useful for troubleshooting.

If the default data set names are not the ones you need, type the correct names
over them.

Procedure How to Select the PSB Name

If you know the PSB name you want AUTOIMS to use, you can enter it directly
in the window.

You can also select the PSB name from the PSBLIB:

1. With the cursor on the PSB name line of the AUTOIMS Main Menu, press
PF5. The Member List window displays:

NF551: AUTOIMS

Version 7.2 Page 7 of 20

2. Page down until the cursor is under the PSB you need, and press Enter.

The PSB is entered on the PSB name line:

You can view the member list for any of the data sets listed on the Main Menu
by placing the cursor under the data set name and pressing PF5. You can then:

• Select a member and open it for editing in TED by pressing PF6.

• Close the Member List window without making a selection by pressing PF3.

NF551: AUTOIMS

Version 7.2 Page 8 of 20

Procedure How to Save Default AUTOIMS Parameters

AUTOIMS can save the data set names and the PSB name you enter on the
Main Menu. In future executions these values will display as the default values
on the AUTOIMS Main Menu.
• When the information you want to log is displayed on the main window,

press PF4. The parameters are saved in the Parameter Log file, which is
member IMS$PRM in the FOCPSB data set. The first time you press PF4,
AUTOIMS creates the log file. If you press PF4 again, AUTOIMS updates
the file with the values currently displayed:

NF551: AUTOIMS

Version 7.2 Page 9 of 20

AUTOIMS Master File Generation Window

When all of the necessary information is displayed on the Main Menu window,
press Enter. The Master File Generation window displays:

Note that the FOCPSB name is the name from the last time you logged
parameters. The FOCPSB created at the end of AUTOIMS processing will have
the correct name for the IMS PSB referenced.

Procedure How to Enter Information on the AUTOIMS Master
 File Generation Window

1. Enter a name for the new Master File in the MFD NAME column.

NF551: AUTOIMS

Version 7.2 Page 10 of 20

2. Enter the name of the COBOL FD for each segment listed. On the following
screen, the Master File name is DI210307 and the COBOL FD names are
the same as the segment names. Note that it is a requirement of the
COBOL FD Translator that each segment in the DBD have a separate
COBOL FD:

3. Press Enter.

NF551: AUTOIMS

Version 7.2 Page 11 of 20

If AUTOIMS detects a problem, such as a Master File name that already
exists, it places a message in the ERROR/WARNING column. In the
following example, the Master File name already exists:

• To ignore the warning and overwrite the existing Master File, Press
PF5.

• To supply a new name, type over the Master File name and press
Enter.

If the PSB has more than one PCB, you must enter a Master File name for each
PCB and supply COBOL FD names for each segment in all of the PCBs. If the
PSB contains non-database PCBs, they will be handled automatically by
AUTOIMS.

NF551: AUTOIMS

Version 7.2 Page 12 of 20

The following is an example of a PSB that contains two database PCBs:

Two Master File names are entered, and a COBOL FD name is supplied for
each segment in both PCBs. Note that AUTOIMS processing time increases as
the number of PCBs increases.

NF551: AUTOIMS

Version 7.2 Page 13 of 20

COBOL FD Translator Options Window

Next AUTOIMS displays the COBOL FD Translator Options window:

In many cases the default options are sufficient. However, some situations
require changes to these defaults. For a detailed discussion of the options,
refer to the COBOL FD Translator for S/390 User’s Manual and Installation
Guide.

When you press Enter, AUTOIMS displays a message indicating that it is
processing your request.

NF551: AUTOIMS

Version 7.2 Page 14 of 20

Completing AUTOIMS Processing

The Main Menu displays with a completion message when AUTOIMS finishes
processing:

NF551: AUTOIMS

Version 7.2 Page 15 of 20

Reference AUTOIMS Main Menu PF Keys

Several PF key actions are available from the Main Menu:

Note that PF10 and PF11 are used by the COBOL FD Translator and do not
supply useful information regarding AUTOIMS.

Accessing the Generated Master File and FOCPSB

You can list data set members and open them in TED directly from the
AUTOIMS Main Menu.

PF Key Action

PF1 Displays a help file.

PF3 Exits from the active window.

PF4 Updates the parameter log file with the names entered on the
Main Menu.

PF5 Opens a Member List window for the selected data set.

PF6 Opens a member from the Member List window for editing or
viewing in TED.

PF9 Opens the file that contains the parameter list passed by
AUTOIMS to the COBOL FD Translator.

PF12 Displays a report about the Master File creation process,
including detailed descriptions of the fields inserted.

NF551: AUTOIMS

Version 7.2 Page 16 of 20

Procedure How to Access the Generated Master File and
 FOCPSB

1. Place the cursor under the name of the data set whose members you want
to list and press PF5. The Member List window displays. It lists the
members of the Master Target data set:

NF551: AUTOIMS

Version 7.2 Page 17 of 20

2. To open a member in TED, place the cursor under the member name and
press PF6.

The following example shows the Master File just created by AUTOIMS,
member DI210307 in the Master Target PDS:
$$$ CREATED BY AUTOIMS ON 03/07/01 AT 15.29.22 BY PMSSAE
$$$ FROM PSB : DI21PSB DBD: DI21PART GEN DATE: 12/09/98 08.36610
$$$ IN PSBLIB: IMS.V6R1M0.DBT.PSBLIB
$$$ IN DBDLIB: IMS.V6R1M0.DBT.DBDLIB
FILENAME=DI211229,SUFFIX=IMS,$
 SEGNAME=PARTROOT,SEGTYPE=S2,PARENT= ,$
 GROUP=PARTROOT_IO ,ALIAS= ,A50
,A050,$
 FIELD=PARTKEY ,ALIAS=PARTKEY.KEY ,A17
,A017,$
 FIELD=FILLER ,ALIAS= ,A33
,A033,$
 SEGNAME=STANINFO,SEGTYPE=S2,PARENT=PARTROOT,$
 GROUP=STANINFO_IO ,ALIAS= ,A85
,A085,$
 FIELD=STANKEY ,ALIAS=STANKEY.KEY ,A2
,A002,$
 FIELD=FILLER ,ALIAS= ,A83
,A083,$
 SEGNAME=STOKSTAT,SEGTYPE=S2,PARENT=PARTROOT,$

NF551: AUTOIMS

Version 7.2 Page 18 of 20

 GROUP=STOKSTAT_IO ,ALIAS= ,A140
,A140,$
 FIELD=STOCKEY ,ALIAS=STOCKEY.KEY ,A16
,A016,$
 FIELD=FILLER ,ALIAS= ,A124
,A124,$
 SEGNAME=CYCCOUNT,SEGTYPE=S2,PARENT=STOKSTAT,$
 GROUP=CYCCOUNT_IO ,ALIAS= ,A25
,A025,$
 FIELD=CYCCKEY ,ALIAS=CYCLKEY.KEY ,A2
,A002,$
 FIELD=FILLER ,ALIAS= ,A23
,A023,$
 SEGNAME=BACKORDR,SEGTYPE=S2,PARENT=STOKSTAT,$
 GROUP=BACKORDR_IO ,ALIAS= ,A75
,A075,$
 FIELD=BACKKEY ,ALIAS=BACKKEY.KEY ,A10
,A010,$
 FIELD=FILLER ,ALIAS= ,A65
,A065,$

The following example shows the FOCPSB just created by AUTOIMS,
member DI21PSB in the FOCPSB Target PDS. Note that the name of the
FOCPSB is the same as the name of the PSB, and the PCBNAME attribute
supplies the name of the Master File:
FOCPSB=EXTENDED,$ PSBNAME=DI21PSB
PCBNAME=DI210307,PCBTYPE=DB ,$ 0001 DI21PART

Warning: Comments (lines starting with the dollar sign) are not supported
in the FOCPSB.

You can edit the file if necessary:

• To close it without editing, press PF3.

NF551: AUTOIMS

Version 7.2 Page 19 of 20

• To close it and save any edits you made, type FILE on the command line
and press Enter.

To close the Member List window, press PF3.

Procedure How to Create a New Member from the AUTOIMS
 Main Menu

1. With the member list for one of the main menu data sets open, press PF9.
The following window displays:

2. Enter a name for the new member and press Enter.

NF551: AUTOIMS

Version 7.2 Page 20 of 20

Generated Master File

In the generated Master File:

• The FILENAME value is the name of the Master File.

• The SUFFIX is IMS.

• The segment names are the segment names from the IMS PSB.

• The group names are the level 01 names from the COBOL FD.

• Key field and search field names are taken from the IMS PSB; these are
the only fields that have ALIAS values in the generated Master File. Names
for other fields are taken from the COBOL FD.

• Format conversions are described in the COBOL FD Translator for S/390
User’s Manual and Installation Guide.

Reference Using the Generated Master File

You may need to manually edit the generated Master File in the following
situations:

• There are more than 64 segments (because of REDEFINES and OCCURS
segments).

• There are multiple record types. You need to identify the RECTYPE field
and the associated values.

• There are OCCURS segments and you want to add the ORDER field to the
description.

• You want to add ALIAS values to fields that are not key or search fields.

• There are embedded REDEFINES declarations.

• To edit date formats and format options.

Version 7.2 Page 1 of 21

NF646: WHERE-Based JOIN

The WHERE-based (conditional) join facility gives you the flexibility to define a
join based on any condition, not just equality between field values. In addition,
the host and cross-referenced join fields do not require matching formats and
the cross-referenced field does not need to be indexed.

Note: If your join is based on equality, it is more efficient to use the traditional
equi-join.

You can specify a conditional JOIN at the command level, in a procedure, or in
a Master File. If you define the join in a Master File, only the specific segment
named in the Master File participates in the join, but if you issue a dynamic
JOIN command, the entire cross-referenced data source participates in the join.

The conditional JOIN command supports FOCUS data sources and relational,
VSAM, fixed-format sequential, relational, Adabas, and IMS data sources.
Because each data source differs in its ability to handle complex WHERE
criteria, the optimization of the WHERE-based JOIN syntax differs depending
on the specific data sources involved in the join and the complexity of the
WHERE criteria.

Conditional joins in the Master File are supported for relational data sources
only. The conditions are considered virtual fields in the Master File.

NF646: WHERE-Based JOIN

Version 7.2 Page 2 of 21

Syntax How to Issue a Conditional JOIN Command
JOIN FILE from_file AT from_field [TAG from_tag] [WITH fieldname]
 TO [ALL|ONE]
 FILE to_file AT to_field [TAG to_tag]
 [AS as_name]
 [WHERE expression1 ;
 WHERE expression2 ;
 ... ;]
END

where:
from_file

Is the host Master File.
from_field

Is the field name in the host Master File whose segment will be joined to the
cross-referenced data source. It can be any field in the segment. It must
reside in the lowest level segment that will be referenced.

from_tag

Is the optional tag name that is used as a unique qualifier for fields and
aliases in the host data source.

fieldname

Is a real field name used to assign a segment location for a virtual field.
Required when issuing a DEFINE field-based WHERE-based JOIN.

ALL

Describes a one-to-many relationship between the from_file and to_file.

NF646: WHERE-Based JOIN

Version 7.2 Page 3 of 21

ONE

Describes a one-to-one relationship between the from_file and to_file. Note:
If you specify a unique join when the relationship between the host and
cross-referenced files is one-to-many, the results will be unpredictable.

to_file

Is the cross-referenced Master File.
to_field

Is the join field name in the cross-referenced Master File. It can be any field
in the segment.

to_tag

Is the optional tag name that is used as a unique qualifier for fields and
aliases in the cross-referenced data source.

as_name

Is the name associated with the JOIN.
expression1, expression2

Are any expressions valid in a DEFINE FILE command. All of the fields
used in all of the expressions the expressions must lie on a single path.

Note: Single line JOIN syntax is not supported. The END command is required.

Example Using the WHERE-based JOIN Command

The following example joins the MOVIES and VIDEOTRK data sources on the
conditions that:

• The transaction date (in VIDEOTRK) is more than ten years after the
release date (in MOVIES).

• The movie codes match in both data sources.

NF646: WHERE-Based JOIN

Version 7.2 Page 4 of 21

The join is performed at the segment that contains MOVIECODE in the
VIDEOTRK data source because the join must occur at the lowest segment
referenced.

The following request displays the title, most recent transaction date, and
release date for each movie in the join and computes the number of years
between this transaction date and the release date:
JOIN FILE VIDEOTRK AT FEE TAG V1 TO ALL
 FILE MOVIES AT RELDATE TAG M1 AS JW1
 WHERE DATEDIF(RELDATE , TRANSDATE,’Y’) GT 10 ;
 WHERE V1.MOVIECODE EQ M1.MOVIECODE;
END
TABLE FILE VIDEOTRK
 SUM TITLE/A25 AS ’Title’
 TRANSDATE AS ’Last,Transaction’
 RELDATE AS ’Release,Date’
 COMPUTE YEARS/I5 = (TRANSDATE - RELDATE)/365; AS ’Years,Difference’
 BY TITLE NOPRINT
 BY HIGHEST 1 TRANSDATE NOPRINT
END

NF646: WHERE-Based JOIN

Version 7.2 Page 5 of 21

The output is:
 Last Release Years
Title Transaction Date Difference
----- ----------- ------- ----------
ALICE IN WONDERLAND 91/06/22 51/07/21 39
ALIEN 91/06/18 80/04/04 11
ALL THAT JAZZ 91/06/25 80/05/11 11
ANNIE HALL 91/06/24 78/04/16 13
BAMBI 91/06/22 42/07/03 49
BIRDS, THE 91/06/23 63/09/27 27
CABARET 91/06/25 73/07/14 17
CASABLANCA 91/06/27 42/03/28 49
CITIZEN KANE 91/06/22 41/08/11 49
CYRANO DE BERGERAC 91/06/20 50/11/09 40
DEATH IN VENICE 91/06/26 73/07/27 17
DOG DAY AFTERNOON 91/06/23 76/04/04 15
EAST OF EDEN 91/06/20 55/01/12 36
GONE WITH THE WIND 91/06/24 39/06/04 52
JAWS 91/06/27 78/05/13 13
MALTESE FALCON, THE 91/06/19 41/11/14 49
MARTY 91/06/19 55/10/26 35
NORTH BY NORTHWEST 91/06/21 59/02/09 32
ON THE WATERFRONT 91/06/24 54/07/06 36
PHILADELPHIA STORY, THE 91/06/21 40/05/06 51
PSYCHO 91/06/17 60/05/16 31
REAR WINDOW 91/06/17 54/12/15 36
SHAGGY DOG, THE 91/06/25 59/01/09 32
SLEEPING BEAUTY 91/06/24 75/08/30 15
TIN DRUM, THE 91/06/17 80/03/01 11
VERTIGO 91/06/27 58/11/25 32

NF646: WHERE-Based JOIN

Version 7.2 Page 6 of 21

Syntax How to Define a Conditional Join in the Master File
SEGNAME=seg, SEGTYPE=styp, PARENT=parseg,
 CRFILE=xmfd, [CRSEG=xseg,]
 JOIN_WHERE=expression; [JOIN_WHERE=expression; ...] ,$

where:
seg

Is the segment name for the joined segment.
styp

Is the segment type for the joined segment. Can be DKU, DKM, KU, or KM
as with traditional cross-references in the Master File. Note: If you specify a
unique join when the relationship between the host and cross-referenced
files is one-to-many, the results will be unpredictable.

parseg

Is the parent segment name.
xmfd

Is the cross-referenced Master File.
xseg

Is the cross-referenced segment, if seg is not the same name as the
SEGNAME in the cross-referenced Master File.

expression

Is any expression valid in a DEFINE FILE command. All of the fields
referenced in all of the expressions must lie on a single path.

NF646: WHERE-Based JOIN

Version 7.2 Page 7 of 21

Example Conditionally Joining Two DB2 Data Sources in a
Master File

The following Master File for the EMPINFO table contains a conditional join to
the PAYINFO table. The conditions specify that the job code starts with the
letter A and the employee IDs are equal in the two tables:
FILENAME=EMPINFO ,SUFFIX=SQLDS,$

SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE ,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4 ,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4 ,$
FIELD=HIRE_DATE_TIME,ALIAS=HDTT ,USAGE=HYYMDm ,ACTUAL=HYYMDm ,$
FIELD=HIRE_TIME ,ALIAS=HT ,USAGE=HHIS ,ACTUAL=HHIS ,$

SEGNAME=PAYINFO, SEGTYPE=KM, PARENT = EMPINFO,
CRFILE = PAYINFO,
JOIN_WHERE = JOBCODE LIKE ’A%’;
JOIN_WHERE = EMP_ID EQ PAYEID; ,$

The EMPINFO Access File follows:
SEGNAME = EMPINFO, TABLENAME = "USER1"."EMPINFO", KEYS = 1, WRITE = YES,
 DBSPACE = PMSDB.PMSTSP1 ,$

NF646: WHERE-Based JOIN

Version 7.2 Page 8 of 21

The PAYINFO Access File follows:
SEGNAME = PAYINFO, TABLENAME = "USER1"."PAYINFO", KEYS = 2,
 WRITE=YES, DBSPACE = PMSDB.PMSTSP1,$

The following request prints fields from both tables:
TABLE FILE EMPINFO
PRINT SALARY JOBCODE
BY LAST_NAME BY FIRST_NAME
END

The output is:
LAST_NAME FIRST_NAME SALARY JOBCODE
--------- ---------- ------ -------
BANNING JOHN $29,700.00 A17
CROSS BARBARA $27,062.00 A17
 $25,775.00 A16
GREENSPAN MARY $9,000.00 A07
IRVING JOAN $24,420.00 A14
 $26,862.00 A15
SMITH RICHARD $9,500.00 A01
STEVENS ALFRED $10,000.00 A07
 $11,000.00 A07

Conditional JOIN Processing
A WHERE in a JOIN is in effect only when a TABLE request references a cross-
referenced segment or its children. If the request makes no such reference, the
WHERE has no effect.

The AT attribute is used to link the correct parent segment or host to the correct
child or cross-referenced segment. The field names used in the AT phrases are
not used to cause the link. They are simply used as segment references.

NF646: WHERE-Based JOIN

Version 7.2 Page 9 of 21

Note: If there is no WHERE in effect, the join will produce a Cartesian product.

The conditional JOIN command can reference any field in the joined data
source and any field in the parent segment or higher on the parent’s path.

When active, these JOIN expressions screen the segment they reside on (the
child or joined segment). That is, if no child segment passes the expression, the
JOIN follows the rules of the SET ALL command when no child segment exists.
Unlike TABLE WHERE clauses, JOIN_WHERE screening does not
automatically screen the parent segment when SET ALL=ON.

To issue a DEFINE-based conditional join, the KEEPDEFINES setting,
described in Preserving Virtual Fields Using the KEEPDEFINES Parameter,
must be ON. You then must create all virtual fields before issuing the join. This
differs from traditional DEFINE-based joins in which the virtual field is created
after the JOIN command is issued. In addition, a virtual field can be part of the
JOIN syntax or WHERE criteria.

Preserving Virtual Fields During Join Parsing
By default, a JOIN command clears all DEFINE FILE commands for the host
data source and the joined structure. Two methods are available for preserving
virtual fields during join parsing.

Preserving Virtual Fields Using the KEEPDEFINES Parameter

Setting KEEPDEFINES to ON reinstates virtual field definitions after the
parsing of a JOIN command. With this setting, every time you issue a JOIN
command, virtual field definitions that were active prior to the JOIN are saved
and reactivated after the join is performed. The set of virtual fields active prior to
each join is called a context. Each new JOIN command creates a new context
for virtual field definitions.

NF646: WHERE-Based JOIN

Version 7.2 Page 10 of 21

Each new context creates a new layer or command environment. When you
first enter the new environment, all of the virtual fields defined in the previous
layer are available in the new layer. Overwriting or clearing a virtual field
definition affects only the current layer. When you return to the previous layer,
its virtual field definitions are intact.

If you redefine an active virtual field after a JOIN, its new definition replaces the
prior definition within the context of the JOIN command. When the join is
cleared, the old definition is re-activated. New DEFINE commands issued after
the JOIN constitute a new context. In each context, all virtual fields of all prior
contexts are accessible. In this way, JOIN and DEFINE commands create a
stack of contexts.

Clearing a join by issuing the JOIN CLEAR join_name command removes all of
the contexts that were created after the JOIN join_name command was issued.

Syntax How to Preserve Virtual Fields With KEEPDEFINES
SET KEEPDEFINES = {OFF|ON}

where:
OFF

Does not preserve virtual fields issued prior to a join. This is the default
value

ON

Preserves virtual fields during join parsing.

NF646: WHERE-Based JOIN

Version 7.2 Page 11 of 21

Example Preserving Virtual Fields During Join Parsing With
KEEPDEFINES

The first virtual field, DAYSKEPT, is defined prior to issuing any joins, but after
setting KEEPDEFINES to ON. DAYSKEPT is the number of days between the
return date and rental date for videotape:
SET KEEPDEFINES = ON
DEFINE FILE VIDEOTRK
DAYSKEPT/I5 = RETURNDATE - TRANSDATE;
END

The ? DEFINE query command shows that this is the only virtual field defined
at this point:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4

The following request prints all transactions in which the number of days kept is
two:
TABLE FILE VIDEOTRK
PRINT MOVIECODE TRANSDATE RETURNDATE DAYSKEPT
WHERE DAYSKEPT EQ 2
END

The first few lines of output show that each return date is two days after the
transaction date:
MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
001MCA 91/06/27 91/06/29 2 2
692PAR 91/06/27 91/06/29 2 2
259MGM 91/06/19 91/06/21 2 2

NF646: WHERE-Based JOIN

Version 7.2 Page 12 of 21

Now, the VIDEOTRK data source is joined to the MOVIES data source. The ?
DEFINE query shows that the join did not clear the DAYSKEPT virtual field:
JOIN MOVIECODE IN VIDEOTRK TO ALL MOVIECODE IN MOVIES AS J1
? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4

Next a new virtual field, YEARS, is defined for the join between VIDEOTRK and
MOVIES:
DEFINE FILE VIDEOTRK
YEARS/I5 = (TRANSDATE - RELDATE)/365;
END

The ? DEFINE query shows that the virtual field created prior to the join was not
cleared by this new virtual field because it was in a separate context:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4
VIDEOTRK YEARS I5 5

Next, the field DAYSKEPT is re-defined so that it is the actual number of days
plus one:
DEFINE FILE VIDEOTRK
DAYSKEPT/I5 = RETURNDATE - TRANSDATE + 1;
END

The ? DEFINE query shows that there are two versions of the DAYSKEPT
virtual field. However, YEARS was cleared because it was in the same context
(after the join) as the new version of DAYSKEPT and the DEFINE command did
not specify the ADD option:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4
VIDEOTRK DAYSKEPT I5 4

NF646: WHERE-Based JOIN

Version 7.2 Page 13 of 21

The same request now uses the new definition for DAYSKEPT. Note that the
number of days between the return date and transaction date is actually one
day, not two, because of the change in the definition of DAYSKEPT:
MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
040ORI 91/06/20 91/06/21 2 1
505MGM 91/06/21 91/06/22 2 1
710VES 91/06/26 91/06/27 2 1

Now, J1 is cleared. The redefinition for DAYSKEPT is also cleared:
 JOIN CLEAR J1
? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4

The report output shows that the original definition for DAYSKEPT is now in
effect:
MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
001MCA 91/06/27 91/06/29 2 2
692PAR 91/06/27 91/06/29 2 2
259MGM 91/06/19 91/06/21 2 2

Preserving Virtual Fields Using DEFINE FILE SAVE and
RETURN

Occasionally, new code needs to be added to an existing application. When
adding code, there is always the possibility of over-writing existing virtual fields
by reusing their names inadvertently.

NF646: WHERE-Based JOIN

Version 7.2 Page 14 of 21

The DEFINE FILE SAVE command forms a new context for virtual fields, which
can then be removed with DEFINE FILE RETURN. Each new context creates a
new layer or command environment. When you first enter the new environment,
all of the virtual fields defined in the previous layer are available in the new
layer. Overwriting or clearing a virtual field definition affects only the current
layer. When you return to the previous layer using DEFINE FILE RETURN, its
virtual field definitions are intact.

Therefore, all the virtual fields that are created in the new application can be
removed before returning to the calling application, without affecting existing
virtual fields in that application.

Syntax How to Use DEFINE FILE SAVE and DEFINE FILE
RETURN

DEFINE FILE mfd SAVE
fld1/format1=expression1 ;
fld2/format2=expression2;
END...
TABLE FILE mfd ...
MODIFY FILE mfd ...
DEFINE FILE mfd RETURN
END

where:
SAVE

Creates a new context for virtual fields.
mfd

Is the name of the Master File for which a new context is created.

NF646: WHERE-Based JOIN

Version 7.2 Page 15 of 21

RETURN

Clears the current context if it was created by DEFINE FILE SAVE and
restores the previous context.

Note: A JOIN can be issued after a DEFINE FILE SAVE. In order to clear the
join context, you must issue a JOIN CLEAR command. If only DEFINE FILE
and DEFINE FILE ADD commands were issued after a DEFINE FILE SAVE,
you can clear them by issuing a DEFINE FILE RETURN.

Example Preserving Virtual Fields With DEFINE FILE SAVE
and RETURN

The following command enables you to preserve virtual fields within a file
context:
SET KEEPDEFINES=ON

The following command defines virtual field A for the VIDEOTRK data source
and places it in the current context:
DEFINE FILE VIDEOTRK
 A/A5=’JAWS’;
 END

The following command creates a new context and saves virtual field B in this
context:
DEFINE FILE VIDEOTRK SAVE
 B/A5=’ROCKY’;
 END
? DEFINE

NF646: WHERE-Based JOIN

Version 7.2 Page 16 of 21

The output of the ? DEFINE query lists virtual fields A and B:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK A A5
VIDEOTRK B A5

The following DEFINE command creates virtual field C. All previously defined
virtual fields are cleared because the ADD option was not used in the DEFINE
command:
DEFINE FILE VIDEOTRK
 C/A10=’AIRPLANE’;
 END
? DEFINE

The output of the ? DEFINE query shows that C is the only virtual field defined:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

The following JOIN command creates a new context. Because KEEPDEFINES
is set to ON, virtual field C is not cleared by the JOIN command:
JOIN MOVIECODE IN VIDEOTRK TAG V1 TO MOVIECODE IN MOVIES TAG M1 AS J1
? DEFINE

The output of the ? DEFINE query shows that field C is still defined:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

The next DEFINE command creates virtual field D in the new context created
by the JOIN command:
DEFINE FILE VIDEOTRK SAVE
 D/A10=’TOY STORY’;
 END
? DEFINE

NF646: WHERE-Based JOIN

Version 7.2 Page 17 of 21

The output of the ? DEFINE query shows that virtual fields C and D are defined:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10
VIDEOTRK D A10

The DEFINE FILE RETURN command clears virtual field D created in the
current context (after the JOIN):
DEFINE FILE VIDEOTRK RETURN
? DEFINE

The output of the ? DEFINE query shows that virtual field D was cleared, but C
is still defined:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

The following DEFINE FILE RETURN command does not clear virtual field C
because field C was not created using a DEFINE FILE SAVE command:
DEFINE FILE VIDEOTRK RETURN
 END
? DEFINE

The output of the ? DEFINE query shows that virtual field C is still defined:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

Note: DEFINE FILE RETURN is only activated when a DEFINE FILE SAVE is
in effect.

NF646: WHERE-Based JOIN

Version 7.2 Page 18 of 21

Clearing Joins
You can clear joins by issuing the JOIN CLEAR command. The effect of the
JOIN CLEAR command depends on whether any conditional joins exist:

• If no conditional joins exist, the JOIN CLEAR command clears all virtual
fields defined for the host data source and the joined structure.

• If conditional joins exist but were issued prior to the join you want to clear,
the JOIN CLEAR command clears only the specified join. Any virtual fields
saved in the context of a join that is cleared will also be cleared.

• If conditional joins exist and were issued subsequent to the join you want to
clear, or if the join you want to clear is a conditional join, the JOIN CLEAR
command clears the specified join and all subsequent joins issued for the
same host file.

The JOIN CLEAR * command clears every join that was issued, along with its
associated virtual fields. However, virtual fields defined in the null context (prior
to any joins) remain in effect.

NF646: WHERE-Based JOIN

Version 7.2 Page 19 of 21

Example Clearing Joins

The following request creates three joins using VIDEOTRK as the host data
source. The first two are conditional (JW1, JW2), and the third join is
unconditional (J1):
JOIN FILE VIDEOTRK AT PRODCODE TO ALL
 FILE GGSALES AT PCD AS JW1
WHERE PRODCODE NE PCD;
END
JOIN FILE VIDEOTRK AT TRANSDATE TO ALL
 FILE MOVIES AT RELDATE AS JW1
WHERE (TRANSDATE - RELDATE)/365 GT 10;
END
JOIN MOVIECODE IN VIDEOTRK TO MOVIECODE IN MOVIES AS J1

The next request creates a conditional join (JW3) using MOVIES as the host
data source:
JOIN FILE MOVIES AT MOVIECODE TO ONE
 FILE VIDEOTRK AT TRANSDATE AS JW2
WHERE (TRANSDATE - RELDATE)/365 LT 2;
END

The last request creates a third conditional join (JW4) that uses VIDEOTRK as
the host data source:
JOIN FILE VIDEOTRK AT LASTNAME TO ALL
 FILE EMPLOYEE AT LAST_NAME AS JW3
WHERE LASTNAME GE LAST_NAME;
END

NF646: WHERE-Based JOIN

Version 7.2 Page 20 of 21

Following is the output of the ? JOIN query after executing these joins:
? JOIN
 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
PRODCODE VIDEOTRK PCD GGSALES JW1 Y Y
TRANSDATE VIDEOTRK RELDATE MOVIES JW2 Y Y
MOVIECODE VIDEOTRK MOVIECODE MOVIES J1 N N
MOVIECODE MOVIES TRANSDATE VIDEOTRK JW3 N Y
LASTNAME VIDEOTRK LAST_NAME EMPLOYEE JW4 Y Y

Clearing JW2 clears all joins that were issued after JW2 and that use the same
host data source. JW1 remains because it was issued prior to JW2, and JW3
remains because it uses a different host data source:
JOIN CLEAR JW2
? JOIN
 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
PRODCODE VIDEOTRK PCD GGSALES JW1 Y Y
MOVIECODE MOVIES TRANSDATE VIDEOTRK JW3 N Y

Listing JOIN Structures: The ? JOIN Query
To display a list of joined data sources, issue the following command at the
FOCUS command prompt or in a stored procedure:
? JOIN

NF646: WHERE-Based JOIN

Version 7.2 Page 21 of 21

This displays every JOIN command currently in effect. The output now includes
a column titled WH for WHERE-based joins:
JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
TRANSDATE VIDEOTRK RELDATE MOVIES JW1 N Y
EMP_ID EMPLOYEE EMP_ID EDUCFILE J1 Y N

Reference Error Message
(FOC36316) WHERE-BASED JOIN FROM NON-FOCUS TO FOCUS NOT SUPPORTED

This error occurs when a non-FOCUS data source is joined to a
FOCUS data source. The feature is supported in FOCUS-to-
FOCUS or non-FOCUS-to-non-FOCUS data sources only.

Version 7.2 Page 1 of 2

NF767: Long Alphanumeric Fields

You can have up to 3968 bytes in an alpha field within a FOCUS or FUSION file
segment. You can have up to 4095 bytes in a fixed format sequential data
source. You may define the length in either the Master File, a DEFINE FILE
command, or a COMPUTE command.

Long alpha fields are useful for:

• Extracting data from other DBMS’s in order to load into a data warehouse.

• Handling long text without the need to use TXT fields.

• Its manipulating capabilities in EDIT, including concatenation, SUBSTR,
and CONTAINS.

Example How to Use an Alpha Field Over 256 Bytes

In a Master File:
FILENAME=VIDEOTRK, SUFFIX=FOC

SEGNAME=CUST, SEGTYPE=S1,
 FIELDNAME=CUSTID,CIN,A3860,$

In a DEFINE FILE:
DEFINE FILE VIDEOTRK

CUSTID/A3860=...;

Reference Usage Notes for 4K Alpha fields

• Long alpha fields cannot be indexed.

• For FOCUS and FUSION files, a segment still has to fit on a 4K page.
Thus, the maximum length of an alpha field is dependent on the length of
the other fields within its segment.

NF767: Long Alphanumeric Fields

Version 7.2 Page 2 of 2

• Long alpha fields cannot be used in a CRTFORM.

• You can print or hold long alpha fields but are unable to view them online.

• Long alpha fields may be used as keys.

• Long alpha fields are not supported in Hot Screen.

Version 7.2 Page 1 of 1

NF787: Increased Report Width

The logical size of the internal (FOCSORT) sort page has been increased from
approximately 4K to approximately 32K. The sort page is increased in 4K
increments, as needed. This allows the width of a result in a TABLE request to
approach 32K, depending on the specific request syntax.

In conjunction with the increased sort page size, the maximum number of
display fields has increased to 1024 subject to the limitation that the length of all
fields in the request be less than the logical sort page size. Each field generates
a small amount of overhead that slightly reduces the total length available.

External sorts cannot handle keys that extend past the first 4K page of the sort
record. Therefore, using FOCSORT may produce a performance improvement
when the keys extend beyond 4K. In this case, FOCSORT is used even if you
have EXTSORT set ON.

The increased logical sort page size applies to the TABLE and TABLEF
commands. MATCH continues to operate under the previous rules.

Version 7.2 Page 1 of 9

NF788: Tiles

A report request can now group data into any number of tiles (for example,
percentiles or quartiles). This enables you to answer such questions as which
salesmen are in the top half of all salesmen based on total sales, or which
students are in the top ten percent (decile) based on test scores.

Grouping Data in Tiles
Grouping data in tiles means sorting the data instances on a BY field in the
request and then apportioning them as equally as possible into the number of
tile groups you specify. Certain rules are followed when applying this process:

• A new column (labeled TILE by default) is added to the report output and
displays the tile number assigned to each instance of the tile field. You can
change the column heading with an AS phrase.

• Tiling is calculated within all of the higher-level sort fields in the request and
restarts whenever a sort field at a higher level than the tile field changes
value.

• Instances are counted using the tile field. If the request prints fields from
lower level segments, there may be multiple report lines that correspond to
one instance of the tile field.

NF788: Tiles

Version 7.2 Page 2 of 9

• Instances with the same tile field value are placed in the same tile. For
example, consider the following data, which is to be apportioned into three
tiles:

1

5

5

5

8

9

In this case, dividing the instances equally produces the following:

However, because all of the same data values must be in the same tile, the
fives that are in group 2 will be moved up to group 1. Group 2 will remain
empty. The final tiles will be:

Group Data Values

1 1,5

2 5,5

3 8,9

Tile Number Data Values

1 1,5,5,5

2

3 8,9

NF788: Tiles

Version 7.2 Page 3 of 9

Syntax How to Group Data In Tiles
BY [{HIGHEST|LOWEST} [k]] tilefield [AS ’head1’]
 IN-GROUPS-OF n TILES [TOP m] [AS ’head2’]

where:
HIGHEST

Sorts the data in descending order so that the highest data values are
placed in tile 1.

LOWEST

Sorts the data in ascending order so that the lowest data values are placed
in tile 1. This is the default sort order.

k

Is a positive integer representing the number of tile groups to display in the
report. For example, BY HIGHEST 2 displays the two non-empty tiles with
the highest data values.

tilefield

Is the field whose values are used to assign the tile numbers.
head1

Is a heading for the column that displays the values of the tile sort field.
n

Is a positive integer not greater than 32,767 specifying the number of tiles
to be used in grouping the data. For example, 100 tiles produces
percentiles, 10 tiles produces deciles.

m

Is a positive integer indicating the highest tile value to display in the report.
For example, TOP 3 does not display any data row that is assigned a tile
number greater than 3.

NF788: Tiles

Version 7.2 Page 4 of 9

head2

Is a new heading for the column that displays the tile numbers.

Note:

• The syntax accepts numbers that are not integers for k, n, and m. In MVS
and VM, values with decimals are rounded to integers; on UNIX and
Windows NT they are truncated. If the numbers supplied are negative or
zero, an error message is generated.

• Both k and m limit the number of rows displayed within each sort break in
the report. If you specify both, the more restrictive value will control the
display. If k and m are both greater than n (the number of tiles), n will be
used.

Example Grouping Data Into Five Tiles
TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LISTPR IN-GROUPS-OF 5 TILES
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
END

NF788: Tiles

Version 7.2 Page 5 of 9

The output is:
CATEGORY LISTPR TILE TITLE
-------- ------ ---- -----
ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 19.98 4 ROBOCOP
 19.99 5 TOTAL RECALL
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI
 29.95 4 ALICE IN WONDERLAND
 SLEEPING BEAUTY
 44.95 5 SHAGGY DOG, THE

Note that the tiles are assigned within the higher-level sort field CATEGORY.
The ACTION category does not have any data assigned to tile 3. The
CHILDREN category has all five tiles.

Example Displaying the First Three Tile Groups

The following request prints only the first three tiles in each category:
TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LOWEST 3 LISTPR IN-GROUPS-OF 5 TILES
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
END

NF788: Tiles

Version 7.2 Page 6 of 9

The output is:
CATEGORY LISTPR TILE TITLE
-------- ------ ---- -----
ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 19.98 4 ROBOCOP
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI

Note that the request displays three tile groups in each category. Because no
data was assigned to tile 3 in the ACTION category, tiles 1, 2, and 4 display for
that category.

Example Displaying Tiles With a Value of Three or Less

In the following request, the TOP 3 phrase restricts the display to tile numbers
less than or equal to 3:
TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LOWEST 3 LISTPR IN-GROUPS-OF 5 TILES TOP 3
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
END

NF788: Tiles

Version 7.2 Page 7 of 9

The output is:
 CATEGORY LISTPR TILE TITLE
 -------- ------ ---- -----
 ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI

Because no data was assigned to tile 3 in the ACTION category, only tiles 1
and 2 display for that category.

Example Grouping Data Into Tiles and Customizing Column
Headings

The following request changes the column headings for both the LISTPR and
TILE columns:
TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LISTPR AS ’PRICE’ IN-GROUPS-OF 10 TILES TOP 3 AS ’DECILE’
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
END

NF788: Tiles

Version 7.2 Page 8 of 9

The output is:
CATEGORY PRICE DECILE TITLE
-------- ----- ------ -----
ACTION 14.95 1 TOP GUN
 19.95 3 JAWS
 RAMBO III
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 2 ROMPER ROOM-ASK MISS MOLLY
 19.95 3 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF

Reference Usage Notes for Tiles

• If a request retrieves data from segments that are descendents of the
segment containing the tile field, multiple report rows may correspond to
one instance of the tile field. These additional report rows do not affect the
number of instances used to assign the tile values. However, if you retrieve
fields from multiple segments and create a single-segment extract file, this
flat file will have multiple instances of the tile field, and this increased
number of instances may affect the tile values assigned. Therefore, when
you can run the same request against the multi-level file and the single-
segment file different tile assignments may result.

• Tiles are always calculated on a BY sort field in the request.

• Only one tiles calculation is supported per request. However, the request
can contain up to five (the maximum allowed) non-tile IN-GROUP-OF
phrases in addition to the TILES phrase.

NF788: Tiles

Version 7.2 Page 9 of 9

• Comparisons for the purpose of assigning tile numbers use exact data
values regardless of their display format. Therefore, if you display a
floating-point value as D7, you may not be showing enough significant
digits to indicate why values are placed in separate tiles.

• The tile field can be a real field or a virtual field created with a DEFINE
command or a DEFINE in the Master File. The COMPUTE command
cannot be used to create a tile field.

• Empty tiles do not display in the report output.

• In requests with multiple display commands, tiles are supported only at the
lowest level and only with the BY LOWEST phrase.

• Tiles are supported with extract files. However, the field used to calculate
the tiles will propagate three fields to a HOLD file unless you set HOLDLIST
to PRINTONLY.

• Tiles are not supported with BY TOTAL, TABLEF, FML, and GRAPH.

Reference Tiles Error Messages
(FOC32408) BY HIGHEST/LOWEST n: n should be positive

(FOC32410) TILES: MORE THAN 1 IN-GROUPS-OF n TILES

(FOC32411) TILES: n in IN-GROUPS-OF n TILES is too large

(FOC32412) TILES: IN-GROUPS-OF n TILES TOP m - wrong values

m and n in request are required to be positive

(FOC32413) TILES are not supported with BY TOTAL

(FOC32414) TILES are supported only in TABLE request

Version 7.2 Page 1 of 32

NF789: FORECAST

The FORECAST feature allows you to uncover trends in numeric data.
Depending on the options you specify, it can also provide predicted values
beyond the range of the values stored in the data source.

The methods available for calculating trend values are:

• Simple moving average (MOVAVE). This method calculates a series of
arithmetic means using a user-specified number of values from a report
column.

• Exponential moving average (EXPAVE). This method calculates a weighted
average between the previously calculated value of the average and the
next data point.

• Linear regression analysis (REGRESS). This method derives the
coefficients of a straight line that best fits the data points and uses this
linear equation to estimate values.

To generate predicted values, FORECAST continues the same calculations
beyond the data points by using the generated trend values as new data points.
For the REGRESS technique, the calculated regression equation is used to
derive trend and predicted values.

FORECAST Processing
You invoke FORECAST using a special version of the ON sortfield RECAP
command. In this command you specify the parameters needed for generating
estimated values, including the field to be used in the calculations, the method
to use, and the number of predictions to generate. T

NF789: FORECAST

Version 7.2 Page 2 of 32

he RECAP field can be a new field or it can be the same field used in the
FORECAST calculations:

• If the RECAP field is the same as the field being used to generate the
FORECAST calculations, it is referred to as a recursive FORECAST. In this
case, the original field is not printed, even if it was referenced in the display
command, and the RECAP column contains the original field values
followed by the number of predicted values specified in the FORECAST
syntax. No trend values display in the report. However, the original column
will be propagated to an output file unless you set HOLDLIST to
PRINTONLY

• If the RECAP field is a new field, the original field and the new field both
display in the report output (if the original field was mentioned in the display
command). This is referred to as a non-recursive FORECAST. The new
field will contain trend values (estimated values within the range of the
existing data points) and, depending on the arguments you supply, forecast
values (predictions beyond the range of the existing data points).

The sort field used for FORECAST must be a numeric or smart date field.
FORECAST operates on the last ACROSS field in the request. If the request
contains no ACROSS fields, it operates on the last BY field. However, to use an
ACROSS field with FORECAST the display command must be SUM (or its
synonyms ADD or WRITE) or COUNT. The command cannot be PRINT or
LIST. The FORECAST calculations start over when the highest-level sort field
changes its value. In a request with multiple display commands, FORECAST
operates on the last ACROSS field (or if there are no ACROSS fields, the last
BY field) of the last display command.

NF789: FORECAST

Version 7.2 Page 3 of 32

Although you pass parameters to FORECAST using an argument list in
parentheses, FORECAST is not a function. It can coexist with a user-written
subroutine of the same name, as long as the user-written subroutine is not
specified in a RECAP command.

Syntax How to Use FORECAST

The following syntax is for the MOVAVE and EXPAVE methods:
ON sfld RECAP fld1[/fmt] = FORECAST(fld2, interval, npredict,
’method’,npoint);

The following syntax is for the REGRESS method (omits the npoint parameter):
ON sfld RECAP fld1[/fmt] = FORECAST(fld2, interval, npredict, ’REGRESS’);

where:
sfld

Is the last ACROSS field in the request and must be a numeric or smart
date field. If the request contains no ACROSS phrases, FORECAST works
on the last BY field. However, FORECAST is only supported with ACROSS
when the display command is SUM, WRITE, ADD, or COUNT.

fld1

Is a numeric field. It can be a real field, a virtual field, or a calculated field.

Note: The word FORECAST and the opening parenthesis must be on the
same line as the syntax fld1=.

fmt

Is the display format for fld1. If it is omitted, the default format is D12.2.
Even if fld1 was previously reformatted using a DEFINE or COMPUTE
command, the format specified in the RECAP command is respected.

NF789: FORECAST

Version 7.2 Page 4 of 32

fld2

Can be any numeric field. If it is the same as fld1 (recursive), the predicted
values will be appended to the report column after the data values, and the
original column is not printed in the report. If it is a different name than fld1
(non-recursive), this new column will be calculated containing both trend
values (estimated values within the range of the existing data points) and, if
you specify a non-zero number of predictions, forecast values (predictions
beyond the range of the existing data points), while retaining the original
field as a separate report column, if it was referenced in the display
command.

interval

Is the increment to add to each sfld value (after the last data point) to get to
the next. It must be a positive whole number. To sort in descending order,
use the BY HIGHEST phrase. The result of adding this number to the sfld
values will be converted to the same format as sfld.

For a date sort field, the minimal component in the format determines how
the number is interpreted. For example, if the format is YMD, MDY, or DMY,
an interval value of 2 is interpreted as meaning two days; if the format is
YM, the 2 is interpreted as meaning two months.

npredict

Is the number of predictions for FORECAST to calculate. It must be a
whole number greater than or equal to zero. Zero indicates that you want
no predictions. Zero is only supported when the RECAP field is a new field
(non-recursive), not the same field used as the first parameter to
FORECAST. If you supply a number that is not a whole number, the
fractional portion is dropped.

NF789: FORECAST

Version 7.2 Page 5 of 32

method

Is the estimation method to use. It can be one of the following values
enclosed in single quotation marks:

npoint

Is a positive whole number that specifies the number of values to average
for the MOVAVE method. For EXPAVE, this number is used to calculate the
weights for each component in the average. This parameter must be
specified for MOVAVE and EXPAVE and omitted for REGRESS. If you
supply a number that is not a whole number, the fractional portion is
dropped.

Reference Usage Notes for FORECAST
• For averages, data values should be evenly spaced in order to get

meaningful results.
• The RECAP command used with FORECAST can contain only the

FORECAST syntax. FORECAST does not recognize any syntax after the
closing semicolon (;). To specify options such as AS or IN:
• If it a non-recursive FORECAST request (creates a new field), use an

empty COMPUTE command prior to the RECAP.
• If it is a recursive FORECAST request, specify the options when the

field is first referenced in the report request.

Method Definition
MOVAVE Simple moving average

EXPAVE Exponentially smoothed moving average

REGRESS Linear regression

NF789: FORECAST

Version 7.2 Page 6 of 32

• FORECAST operates on the last ACROSS field, and if the request contains
no ACROSS phrases, FORECAST operates on the last BY field.

• FORECAST is only supported for ACROSS fields if the display command is
SUM, COUNT, WRITE, or ADD. You cannot use FORECAST on an
ACROSS field if the display command is LIST or PRINT.

• In a request with multiple display commands, FORECAST must be applied
to the last ACROSS field (or if there are no ACROSS fields, the last BY
field) in the last display command. If you use FORECAST to recalculate a
field in the request, the original value of the field will be used everywhere
except in the columns displayed by the last display command in the
request.

• BY TOTAL is not supported.

• MORE, MATCH, FOR, and OVER are not supported.

• The LINES and RECORDS statistics are affected by FORECAST.

• The process of generating the FORECAST values creates extra columns
that are not printed in the report output. The number and placement of
these additional columns varies depending on the specific request.
Therefore, use of column notation is not supported in a request that
includes FORECAST.

• SUMMARIZE and RECOMPUTE are not supported for the same sort field
used for FORECAST.

• FORECAST is not supported for the FOCUS GRAPH facility; it is supported
for the iWay GRAPH facility.

• A request can contain up to seven non-FORECAST RECAP commands
and up to seven additional FORECAST RECAP commands.

NF789: FORECAST

Version 7.2 Page 7 of 32

• The left side of a RECAP command used for FORECAST supports the
CURR attribute for doing currency conversions. The MISSING attribute is
not supported in the RECAP command.

• A request that creates a new field using the REGRESS method with the
SUM command produces a regression based on the detail data values, not
the summed values. This is not true if the REGRESS method is used to
replace an existing field.

Forecasting Methods
The methods available with FORECAST may sometimes be used to predict
values outside the range of the existing data points. However, these methods
are not always reliable predictors. Many factors determine how accurate a
prediction will be. The FORECAST operation performs the calculations based
on the data provided. Decisions about their use and reliability are the user’s
responsibility.

Using a Simple Moving Average
A simple moving average is a series of arithmetic means calculated with a user-
specified number of values, n, from a report column. Each new mean in the
series is calculated by dropping the first value used in the prior calculation and
adding the next data value to the calculation.

Simple moving averages are sometimes used to analyze trends in stock prices
over time. In this scenario, the average is calculated using n periods worth of
stock prices. A disadvantage to this indicator is that because it drops the oldest
values from the calculation as it moves on in time, it loses its memory over time.
Also, mean values are distorted by extreme highs and lows and give equal
weight to each point.

NF789: FORECAST

Version 7.2 Page 8 of 32

Predicted values beyond the range of the data values are calculated using a
moving average that treats the calculated trend values as new data points.
The first complete moving average occurs at the nth data point because the
calculation requires n values. This is called the lag. The moving average values
for the lag rows are calculated as follows: the first value in the moving average
column is equal to the first data value, the second value in the moving average
column is the average of the first two data values, and so on until the nth row at
which point there are enough values to calculate the moving average with the
number of values specified.

Example Calculating a New Simple Moving Average Column
This request defines an integer value named PERIOD to use as the
independent variable for the moving average. It predicts three periods of values
beyond the range of the retrieved data:
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE ’Gifts’
 ON PERIOD RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,’MOVAVE’,3);
END

NF789: FORECAST

Version 7.2 Page 9 of 32

The output is:
Category PERIOD Unit Sales Dollar Sales MOVAVE
-------- ------ ---------- ------------ ------
Coffee 1 61666 801123 801,123.0
 2 54870 682340 741,731.5
 3 61608 765078 749,513.7
 4 57050 691274 712,897.3
 5 59229 720444 725,598.7
 6 58466 742457 718,058.3
 7 60771 747253 736,718.0
 8 54633 655896 715,202.0
 9 57829 730327 711,158.7
 10 57012 724412 703,545.0
 11 51110 620264 691,667.7
 12 58981 762328 702,334.7
 13 0 0 694,975.6
 14 0 0 719,879.4
 15 0 0 705,729.9
Food 1 54394 672727 672,727.0
 2 54894 699073 685,900.0
 3 52713 642802 671,534.0
 4 58026 718514 686,796.3
 5 53289 660740 674,018.7
 6 58742 734705 704,653.0
 7 60127 760586 718,677.0
 8 55622 695235 730,175.3
 9 55787 683140 712,987.0
 10 57340 713768 697,381.0
 11 57459 710139 702,349.0
 12 57290 705315 709,740.7
 13 0 0 708,398.2
 14 0 0 707,818.0
 15 0 0 708,652.3

NF789: FORECAST

Version 7.2 Page 10 of 32

Note:

• The number of values to use in the average is 3.

• Three predicted values of MOVAVE are calculated within each value of
CATEGORY. For values outside the range of the data, new PERIOD values
are generated by adding the interval value (1) to the prior PERIOD value

• There are no UNITS or DOLLARS values for the generated PERIOD
values.

• Each average (MOVAVE value) is computed using DOLLARS values where
they exist. For predicted values beyond those points, the calculated
MOVAVE values are used as new data points to continue the moving
average, PERIOD is the independent variable (x) and MOVAVE is the
dependent variable (y).

The first MOVAVE value (801,123.0) is equal to the first DOLLARS value.

The second MOVAVE value (741,731.5) is the mean of DOLLARS values
one and two: (801123 + 682340) /2.

The third MOVAVE value (749,513.7) is the mean of DOLLARS values one
through three: (801123 + 682340 + 765078) / 3.

The fourth MOVAVE value (712,897.3) is the mean of DOLLARS values
two through four: (682340 + 765078 + 691274) /3.

The predicted MOVAVE values (starting with 694,975.6 for PERIOD 13) are
calculated using the previous MOVAVE values as new data points. For
example, the first predicted value (694,975.6) is the average of the data
points from periods 11 and 12 (620,264 and 762328) and the moving
average for period 12 (702334.7). The calculation is: 694,975 = (620,264 +
762328 + 702334.7)/3.

NF789: FORECAST

Version 7.2 Page 11 of 32

Example Using an Existing Field as a Simple Moving Average
Column

The following is the request in Calculating a New Simple Moving Average
Column, but using same name for the RECAP field as for the first argument in
the FORECAST parameter list. The trend values do not display in the report.
The actual data values for DOLLARS are followed by the predicted values in
the report column:
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE ’Gifts’
 ON PERIOD RECAP DOLLARS/D10.1 = FORECAST(
 DOLLARS,1,3,’MOVAVE’,3);
END

NF789: FORECAST

Version 7.2 Page 12 of 32

The output is:
Category PERIOD Unit Sales DOLLARS
-------- ------ ---------- -------
Coffee 1 61666 801,123.0
 2 54870 682,340.0
 3 61608 765,078.0
 4 57050 691,274.0
 5 59229 720,444.0
 6 58466 742,457.0
 7 60771 747,253.0
 8 54633 655,896.0
 9 57829 730,327.0
 10 57012 724,412.0
 11 51110 620,264.0
 12 58981 762,328.0
 13 0 694,975.6
 14 0 719,879.4
 15 0 705,729.9
Food 1 54394 672,727.0
 2 54894 699,073.0
 3 52713 642,802.0
 4 58026 718,514.0
 5 53289 660,740.0
 6 58742 734,705.0
 7 60127 760,586.0
 8 55622 695,235.0
 9 55787 683,140.0
 10 57340 713,768.0
 11 57459 710,139.0
 12 57290 705,315.0
 13 0 708,398.2
 14 0 707,818.0
 15 0 708,652.3

NF789: FORECAST

Version 7.2 Page 13 of 32

Example Using a Date Sort Field With a Simple Moving
Average

This request defines a smart date field in the form YYMD to use as the
independent variable for the moving average. The format YYMD is used so that
the interval between predictions will be based on months. The request predicts
three months of values beyond the range of the retrieved data. The trend
values, predicted values, and analysis are the same as in Calculating a New
Simple Moving Average Column:
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY SDATE
 WHERE SYEAR EQ 97 AND CATEGORY NE ’Gifts’
 ON SDATE RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,’MOVAVE’,3);
END

NF789: FORECAST

Version 7.2 Page 14 of 32

The output is:
Category SDATE Unit Sales Dollar Sales MOVAVE
-------- ----- ---------- ------------ ------
Coffee 1997/01 61666 801123 801,123.0
 1997/02 54870 682340 741,731.5
 1997/03 61608 765078 749,513.7
 1997/04 57050 691274 712,897.3
 1997/05 59229 720444 725,598.7
 1997/06 58466 742457 718,058.3
 1997/07 60771 747253 736,718.0
 1997/08 54633 655896 715,202.0
 1997/09 57829 730327 711,158.7
 1997/10 57012 724412 703,545.0
 1997/11 51110 620264 691,667.7
 1997/12 58981 762328 702,334.7
 1998/01 0 0 694,975.6
 1998/02 0 0 719,879.4
 1998/03 0 0 705,729.9
Food 1997/01 54394 672727 672,727.0
 1997/02 54894 699073 685,900.0
 1997/03 52713 642802 671,534.0
 1997/04 58026 718514 686,796.3
 1997/05 53289 660740 674,018.7
 1997/06 58742 734705 704,653.0
 1997/07 60127 760586 718,677.0
 1997/08 55622 695235 730,175.3
 1997/09 55787 683140 712,987.0
 1997/10 57340 713768 697,381.0
 1997/11 57459 710139 702,349.0
 1997/12 57290 705315 709,740.7
 1998/01 0 0 708,398.2
 1998/02 0 0 707,818.0
 1998/03 0 0 708,652.3

NF789: FORECAST

Version 7.2 Page 15 of 32

Using an Exponential Moving Average

This method calculates an average that allows you to choose weights to apply
to newer and older values.

The weight given to the newest value is k, where:
k = 2 / (1+n)

The quantity n is an integer greater than one. Increasing n increases the weight
assigned to the earlier observations (or data instances) as compared to the
later ones.

The next calculation of the exponential moving average (EMA) value is derived
by the following formula:
EMA = (EMA * (1-k)) + (datavalue * k)

This means that the newest value from the data source is multiplied by the
factor k and the current moving average is multiplied by the factor (1-k). These
quantities are then summed to generate the new EMA.

Note: When the data values are exhausted, the last average calculated is used
as the next data value, making every predicted value a constant equal to the
last calculated average.

NF789: FORECAST

Version 7.2 Page 16 of 32

Example Calculating a New Exponential Moving Average
Column

DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE ’Gifts’
 ON PERIOD RECAP EXPAVE/D10.1= FORECAST(DOLLARS,1,3,’EXPAVE’,3);
END

NF789: FORECAST

Version 7.2 Page 17 of 32

The output is:
Category PERIOD Unit Sales Dollar Sales EXPAVE
-------- ------ ---------- ------------ ------
Coffee 1 61666 801123 801,123.0
 2 54870 682340 741,731.5
 3 61608 765078 753,404.8
 4 57050 691274 722,339.4
 5 59229 720444 721,391.7
 6 58466 742457 731,924.3
 7 60771 747253 739,588.7
 8 54633 655896 697,742.3
 9 57829 730327 714,034.7
 10 57012 724412 719,223.3
 11 51110 620264 669,743.7
 12 58981 762328 716,035.8
 13 0 0 716,035.8
 14 0 0 716,035.8
 15 0 0 716,035.8
Food 1 54394 672727 672,727.0
 2 54894 699073 685,900.0
 3 52713 642802 664,351.0
 4 58026 718514 691,432.5
 5 53289 660740 676,086.3
 6 58742 734705 705,395.6
 7 60127 760586 732,990.8
 8 55622 695235 714,112.9
 9 55787 683140 698,626.5
 10 57340 713768 706,197.2
 11 57459 710139 708,168.1
 12 57290 705315 706,741.6
 13 0 0 706,741.6
 14 0 0 706,741.6
 15 0 0 706,741.6

NF789: FORECAST

Version 7.2 Page 18 of 32

Note:

• The number n, which is used to calculate the weights is 3.

• Three predicted values of EXPAVE are calculated within each value of
CATEGORY. For values outside the range of the data, new PERIOD values
are generated by adding the interval value (1) to the prior PERIOD value.

• There are no UNITS or DOLLARS values for the generated PERIOD
values.

• Each average is computed using DOLLARS values where they exist. For
predicted values beyond those points, the calculated EXPAVE values are
used as new data points in the exponential average calculation.

The first EXPAVE value (801,123.0) is the same as the first DOLLARS
value.

The second EXPAVE value (741,731.5) is calculated as follows. Note that
because of rounding and the number of decimal places used, the value
derived in this sample calculation varies slightly from the one displayed in
the report output:
n=3 (number used to calculate weights)

k = 2/(1+n) = 2/4 = 0.5

EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) = (801123*0.5) +
(682340*0.50)
 = 400561.5 + 341170 = 741731.5

The third EXPAVE value (753,404.8) is calculated as follows:
EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) =
(741731.5*0.5)+(765078*0.50)
 = 370865.75 + 382539 = 753404.75

NF789: FORECAST

Version 7.2 Page 19 of 32

The predicted EXPAVE values (starting with 706,741.6) are calculated
using the same formula as used to calculate the trend values. However, an
exponential average is always calculated using the previous average and
the new data point. Because the previous average is also used as the new
data point, the predicted values are always equal to the last trend value.
For example, for period 13, the previous average is 706,741.6 and this is
also used as the next data point, therefore, the average is calculated as
follows:
(706,741.6 * 0.5) + (706,741.6 * 0.5) = 706,741.6
EXPAVE = (EXPAVE * (1-k)) + (new-DOLLARS * k) = (706741.6*0.5) +
 (706741.6*0.50) = 353370.8 + 353370.8 = 706741.6

Example Using an Existing Field for an Exponential Moving
Average

The following is the request in Calculating a New Exponential Moving Average
Column, but using same name for the RECAP field as for the first argument in
the FORECAST parameter list.

NF789: FORECAST

Version 7.2 Page 20 of 32

The trend values do not display in the report. The actual data values for
DOLLARS are followed by the predicted values in the report column:
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE ’Gifts’
 ON PERIOD RECAP DOLLARS/D10.1 = FORECAST(
 DOLLARS,1,3,’EXPAVE’,3);
END

NF789: FORECAST

Version 7.2 Page 21 of 32

The output is:
Category PERIOD Unit Sales DOLLARS
-------- ------ ---------- -------
Coffee 1 61666 801,123.0
 2 54870 682,340.0
 3 61608 765,078.0
 4 57050 691,274.0
 5 59229 720,444.0
 6 58466 742,457.0
 7 60771 747,253.0
 8 54633 655,896.0
 9 57829 730,327.0
 10 57012 724,412.0
 11 51110 620,264.0
 12 58981 762,328.0
 13 0 716,035.8
 14 0 716,035.8
 15 0 716,035.8
Food 1 54394 672,727.0
 2 54894 699,073.0
 3 52713 642,802.0
 4 58026 718,514.0
 5 53289 660,740.0
 6 58742 734,705.0
 7 60127 760,586.0
 8 55622 695,235.0
 9 55787 683,140.0
 10 57340 713,768.0
 11 57459 710,139.0
 12 57290 705,315.0
 13 0 706,741.6
 14 0 706,741.6
 15 0 706,741.6

NF789: FORECAST

Version 7.2 Page 22 of 32

Using a Linear Regression Equation

This method estimates values by assuming that the dependent variable (y, the
new calculated values) and the independent variable (x, the sort field values)
are related by the following function, which represents a straight line:
y = mx + b

The value of m represents the slope of the line, and b represents the y-intercept.

REGRESS uses a technique called Ordinary Least Squares to calculate values
for m and b that minimize the sum of the squared differences between the data
and the resulting line.

The following formulas show how m and b are calculated. In these formulas, n is
the number of data points, the y values are the data values (dependent
variable), and the x values are the sort field values (independent variable):
m = (∑xy - (∑x * ∑y)/n) / (∑x2 - (∑x)2/n)
b = (∑y)/n - (m * (∑x)/n)

Trend values as well as predicted values are calculated using the regression
line equation.

Example Calculating a New Linear Regression Field
TABLE FILE CAR
PRINT MPG
BY DEALER_COST
WHERE MPG NE 0.0
 ON DEALER_COST RECAP FORMPG=FORECAST(MPG,1000,3,’REGRESS’);
END

NF789: FORECAST

Version 7.2 Page 23 of 32

The output is:
DEALER_COST MPG FORMPG
----------- --- ------
 2,886 27 25.51
 4,292 25 23.65
 4,631 21 23.20
 4,915 21 22.82
 5,063 23 22.63
 5,660 21 21.83
 21 21.83
 5,800 24 21.65
 6,000 24 21.38
 7,427 16 19.49
 8,300 18 18.33
 8,400 18 18.20
 10,000 18 16.08
 11,000 18 14.75
 11,194 9 14.50
 14,940 11 9.53
 15,940 0 8.21
 16,940 0 6.88
 17,940 0 5.55

Note:

• Three predicted values of FORMPG are calculated . For values outside the
range of the data, new DEALER_COST values are generated by adding
the interval value (1,000) to the prior DEALER_COST value.

• There are no MPG values for the generated DEALER_COST values.

NF789: FORECAST

Version 7.2 Page 24 of 32

• Each FORMPG value is computed using a regression line calculated using
all of the actual data values for MPG.

DEALER_COST is the independent variable (x) and MPG is the dependent
variable (y). The equation is used to calculate MPGFORECAST trend and
predicted values.

In this case, the equation is approximately as follows:
FORMPG = (-0.001323 * DEALER_COST) + 29.32

The predicted values are (the values are not exactly as calculated by
FORECAST because of rounding, but they show the process of calculating
the values):

Example Using an Existing Field as a Linear Regression
Column

The following is the request in Calculating a New Linear Regression Field, but
using same name for the RECAP field as for the first argument in the
FORECAST parameter list. The trend values do not display in the report.

DEALER_COST Calculation FORMPG

15,940 (-0.001323 * 15,940) + 29.32 8.23

16,940 (-0.001323 * 16,940) + 29.32 6.91

17,940 (-0.001323 * 17,940) + 29.32 5.59

NF789: FORECAST

Version 7.2 Page 25 of 32

The actual data values for MPG are followed by the predicted values in the
report column:
TABLE FILE CAR
PRINT MPG
BY DEALER_COST
WHERE MPG NE 0
 ON DEALER_COST RECAP MPG = FORECAST(MPG,1000,3,’REGRESS’);
END

The output is:
 DEALER_COST MPG
 ----------- ---
 2,886 27.00
 4,292 25.00
 4,631 21.00
 4,915 21.00
 5,063 23.00
 5,660 21.00
 21.00
 5,800 24.20
 6,000 24.20
 7,427 16.00
 8,300 18.00
 8,400 18.00
 10,000 18.00
 11,000 18.00
 11,194 9.00
 14,940 11.00
 15,940 8.21
 16,940 6.88
 17,940 5.55

NF789: FORECAST

Version 7.2 Page 26 of 32

FORECAST Reporting Techniques
You can use FORECAST multiple times in one request. However, the
FORECAST requests must all specify the same sort field, interval, and number
of predictions. Only the RECAP field, method, field used to calculate the
FORECAST values, and number of points to average can change. If you
change any of the other parameters, the new parameters are ignored.

If you want to move a FORECAST column in the report output, use an empty
COMPUTE command for the FORECAST field as a placeholder. The data type
(I, F, P, D) must be the same in the COMPUTE command and the RECAP
command.

To make the report output easier to interpret, you can create a field that
indicates whether the FORECAST value in each row is a predicted value. To do
this, define a virtual field whose value is always a constant other than zero.
Rows in the report output that represent actual records in the data source will
display this constant. Rows that represent predicted values will display zero.
You can also propagate this field to a HOLD file.

Example Generating Multiple FORECAST Columns in a
Request

This example calculates moving averages and exponential averages for both
the DOLLARS and BUDDOLLARS fields in the GGSALES data source.

NF789: FORECAST

Version 7.2 Page 27 of 32

The sort field, interval, and number of predictions are the same for all of the
calculations:
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM DOLLARS AS ’DOLLARS’ BUDDOLLARS AS ’BUDGET’
 BY CATEGORY NOPRINT BY PERIOD AS ’PER’
 WHERE SYEAR EQ 97 AND CATEGORY EQ ’Coffee’
 ON PERIOD RECAP DOLMOVAVE/D10.1= FORECAST(DOLLARS,1,0,’MOVAVE’,3);
 ON PERIOD RECAP DOLEXPAVE/D10.1= FORECAST(DOLLARS,1,0,’EXPAVE’,4);
 ON PERIOD RECAP BUDMOVAVE/D10.1 = FORECAST(BUDDOLLARS,1,0,’MOVAVE’,3);
 ON PERIOD RECAP BUDEXPAVE/D10.1 = FORECAST(BUDDOLLARS,1,0,’EXPAVE’,4);
END

The output is:
PER DOLLARS BUDGET DOLMOVAVE DOLEXPAVE BUDMOVAVE BUDEXPAVE
--- ------- ------ --------- --------- --------- ---------
 1 801123 801375 801,123.0 801,123.0 801,375.0 801,375.0
 2 682340 725117 741,731.5 753,609.8 763,246.0 770,871.8
 3 765078 810367 749,513.7 758,197.1 778,953.0 786,669.9
 4 691274 717688 712,897.3 731,427.8 751,057.3 759,077.1
 5 720444 739999 725,598.7 727,034.3 756,018.0 751,445.9
 6 742457 742586 718,058.3 733,203.4 733,424.3 747,901.9
 7 747253 773146 736,718.0 738,823.2 751,910.3 757,999.6
 8 655896 685170 715,202.0 705,652.3 733,634.0 728,867.7
 9 730327 753760 711,158.7 715,522.2 737,358.7 738,824.6
 10 724412 709397 703,545.0 719,078.1 716,109.0 727,053.6
 11 620264 630452 691,667.7 679,552.5 697,869.7 688,413.0
 12 762328 718837 702,334.7 712,662.7 686,228.7 700,582.6

NF789: FORECAST

Version 7.2 Page 28 of 32

Example Moving the FORECAST Column

The following example places the DOLLARS field after the MOVAVE field by
using an empty COMPUTE command as a placeholder for the MOVAVE field.
Both the COMPUTE command and the RECAP command specify formats for
MOVAVE (of the same data type), but the format on the RECAP command
takes precedence:
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS
COMPUTE MOVAVE/D10.2 = ;
DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY EQ ’Coffee’
 ON PERIOD RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,’MOVAVE’,3);
END

NF789: FORECAST

Version 7.2 Page 29 of 32

The output is:
Category PERIOD Unit Sales MOVAVE Dollar Sales
-------- ------ ---------- ------ ------------
Coffee 1 61666 738,659.3 801123
 2 54870 734,447.5 682340
 3 61608 749,513.7 765078
 4 57050 712,897.3 691274
 5 59229 725,598.7 720444
 6 58466 718,058.3 742457
 7 60771 736,718.0 747253
 8 54633 715,202.0 655896
 9 57829 711,158.7 730327
 10 57012 703,545.0 724412
 11 51110 691,667.7 620264
 12 58981 702,334.7 762328
 13 0 694,975.6 0
 14 0 719,879.4 0
 15 0 705,729.9 0

Example Distinguishing Data Rows From Predicted Rows

In the following example, the DATA_ROW virtual field has the value 1 for each
row in the data source. It has the value zero for the predicted rows.

NF789: FORECAST

Version 7.2 Page 30 of 32

The PREDICT field is calculated as YES for predicted rows and NO for rows
containing data:
DEFINE FILE CAR
DATA_ROW/I1 = 1;
END
TABLE FILE CAR
 PRINT DATA_ROW
COMPUTE PREDICT/A3 = IF DATA_ROW EQ 1 THEN ’NO’ ELSE ’YES’ ;
MPG
BY DEALER_COST
WHERE MPG GE 20
 ON DEALER_COST RECAP FORMPG/D12.2=FORECAST(MPG,1000,3,’REGRESS’);
 ON DEALER_COST RECAP MPG =FORECAST(MPG,1000,3,’REGRESS’);
END

The output is:
DEALER_COST DATA_ROW PREDICT MPG FORMPG
----------- -------- ------- --- ------
 2,886 1 NO 27.00 25.65
 4,292 1 NO 25.00 23.91
 4,631 1 NO 21.00 23.49
 4,915 1 NO 21.00 23.14
 5,063 1 NO 23.00 22.95
 5,660 1 NO 21.00 22.21
 1 NO 21.00 22.21
 5,800 1 NO 24.20 22.04
 6,000 1 NO 24.20 21.79
 7,000 0 YES 20.56 20.56
 8,000 0 YES 19.32 19.32
 9,000 0 YES 18.08 18.08

NF789: FORECAST

Version 7.2 Page 31 of 32

Reference FORECAST Error Messages
(FOC36320) FORECAST/REGRESS SYNTAX ERROR

(FOC36322) ON FIELD IS NOT LAST BY OR ACROSS FIELD

FORECAST can only be performed on the last ACROSS field.
If ACROSS is not specified then on last BY field.

(FOC36323) EXPRESSIONS ARE NOT PERMITTED IN PARAMETERS

In FORECAST/REGRESS, parameters cannot be presented
as expressions but only as fields or constants.

(FOC36324) VERB OBJECT OR INTERVAL CANNOT BE A QUOTED CONSTANT

All parameters of FORECAST/REGRESS except ’method’ should
not
contain quotes.

(FOC36325) FORECAST/REGRESS VERB OBJECT IS NOT RECOGNIZED

The verb object is not found in either a master file
or a prior DEFINE section or a COMPUTE statement.

(FOC36326) INTERVAL OR NUMBER IS NOT CONVERTED AS ASSUMED TYPE

In FORECAST, parameter ’interval’ must have
the type of the field which it increments. Parameters
’npoint’, and ’npredict’ must be a positive whole number.

(FOC36327) MATHEMATICAL METHOD IS NOT RECOGNIZED

In FORECAST, only three method functions can be used in
a ’method’ parameter. They are ’REGRESS’, ’MOVAVE’, and
’EXPAVE’.

NF789: FORECAST

Version 7.2 Page 32 of 32

(FOC36328) INCORRECT USE OF NUMERIC FORECAST PARAMETERS

In FORECAST/REGRESS, a numeric parameter such as
’number’, ’npredict’, ’interval, or ’npoint’ is either non-positive
or exceeds an allowed limit.

(FOC36329) INVALID FORECAST REQUEST: PRINT/LIST with ACROSS

It is illegal to use FORECAST together with an
ACROSS phrase when the command is LIST or PRINT.
Only the SUM command can be used in this case.

(FOC36330) INTERNAL FORECAST/REGRESS ERROR

Unforeseen error has occurred in routines for
FORECAST/REGRESS.
Please report the problem to an Information Builders
representative.

(FOC36333) INVALID FORECAST/REGRESS REQUEST

 ’MORE’, ’OVER’, ’GRAPH’, ’MODIFY’, ’FOR’, and ’BY TOTAL’
 as well as re-formatting into non-numeric type of field
 are not permitted in FORECAST/REGRESS.

Version 7.2 Page 1 of 2

NF790: ACROSS-TOTAL

ACROSS-TOTAL produces totals for columns of numbers created by an
ACROSS sort phrase. The display of data on a report makes the report simple
to read and understand. Integer, single precision floating point, double precision
floating point, packed and long packed fields can all be totaled.

ACROSS-TOTAL differs from ROW-TOTAL in that ACROSS-TOTAL only totals
the ACROSS column data, excluding the sorted column data that ROW-TOTAL
displays.

Syntax How to Request ACROSS-TOTAL in a Report
ACROSS sortfield ACROSS-TOTAL [AS ’name’] [COLUMNS col1 AND col2 ...]

where:
sortfield

Is the name of the field being sorted across.
name

Is the new name for the ACROSS-TOTAL column title.
col1, col2

Are the titles of the ACROSS columns you want to include in the total.

Example Requesting ACROSS-TOTAL in a Report
TABLE FILE MOVIES
SUM COPIES BY CATEGORY
COUNT TITLE BY CATEGORY
ACROSS RATING ACROSS-TOTAL

COLUMNS PG AND R

END

NF790: ACROSS-TOTAL

Version 7.2 Page 2 of 2

The output is:
 RATING

 PG R TOTAL

 TITLE TITLE TITLE

 CATEGORY COPIES COUNT COUNT COUNT

 ACTION 14 2 3 5

 COMEDY 16 4 1 5

 DRAMA 2 0 1 1

 FOREIGN 5 2 3 5

 MUSICALS 2 1 1 2

 MYSTERY 17 2 5 7

 SCI/FI 3 0 3 3

Reference Usage Notes for ACROSS-TOTAL

• Stacking headings in ACROSS-TOTAL is not allowed.

• Attempts to use ACROSS-TOTAL with other types of fields (alphanumeric,
text, and dates) produces blank columns.

• In cases of multiple ACROSS columns with ACROSS-TOTAL there will be
additional columns with subtotaled values.

• The results of ROW-TOTAL and ACROSS-TOTAL are the same if there is
only a single display field or single display command in the procedure.

• The maximum number of ACROSS-TOTAL phrases is 5.

Version 7.2 Page 1 of 2

NF792: SET CDN Command Enhancement

Continental Decimal Notation (CDN) includes the SPACE and QUOTE settings
to support countries that require spaces and apostrophes in numbers.

Syntax How to Set Continental Decimal Notation
SET CDN = cdn

Possible values are:
OFF

Sets the decimal point as a period and the thousands separator as a
comma. OFF is the default.

OFF should be used for the USA, Canada, Mexico, and the United
Kingdom.

ON

Sets the decimal point as a comma and the thousands separator as a
period.

ON should be used for Germany, Denmark, Italy, Spain, and Brazil.
SPACE

 Sets the decimal point as a comma and the thousands separator as a
space.

 SPACE should be used for France, Norway, Sweden, and Finland.
QUOTE

Sets the decimal point as a comma and the thousands separator as an
apostrophe.

QUOTE should be used for Switzerland.

NF792: SET CDN Command Enhancement

Version 7.2 Page 2 of 2

Example How Continental Decimal Notation is Displayed

The following table shows how 1234.56 is displayed depending on the setting
of CDN.

OFF 1,234.56

ON 1.234,56

SPACE 1 234,56

QUOTE 1’234,56

Version 7.2 Page 1 of 2

NF793: Displaying Fractions

You can use the SET CENT-ZERO command to display fractions in a format
that accommodates a country’s needs. The setting of CDN determines whether
a decimal point or comma displays for fractions.

Syntax How to Display Fractions
SET CENT-ZERO = {OFF|ON}

where:
OFF

Displays fractions with either a decimal point or comma in front of the
number depending on how Continental Decimal Notation (CDN) is set. OFF
is the default.

ON

Displays fractions with a leading zero. The fraction contains either a
decimal point or comma depending on the setting of CDN.

NF793: Displaying Fractions

Version 7.2 Page 2 of 2

Example Displaying of Fractions

The following shows how the number 1234.56 and the fraction.12 are displayed
depending on the setting of CENT-ZERO.

CENT-ZERO Setting CDN Setting 1,234.56 .12

OFF OFF 1,234.56 ,12

ON 1.234,56 ,12

QUOTE 1’234,56 ,12

SPACE 1 234,56 ,12

ON OFF 1,234.56 0.12

ON 1.234,56 0,12

QUOTE 1’234,56 0,12

SPACE 1 234,56 0,12

Version 7.2 Page 1 of 4

NF796: Unlimited Nested -INCLUDE Commands

The Dialogue Manager -INCLUDE command dynamically inserts a stored
procedure (FOCEXEC file) into another stored procedure at run time. The
inserted file can contain an entire procedure or any part of a procedure. For
example, you can use this technique to insert common virtual field definitions or
heading text into multiple procedures.

-INCLUDE commands are considered nested when a file that is inserted into a
procedure using the -INCLUDE command itself contains a -INCLUDE
command.

Note: The level of nesting is limited only by the available memory. In prior
releases, -INCLUDE commands could be nested up to four levels deep.

Example Using Nested -INCLUDE Commands

Consider the following sequence of files:

INCLUDE1:
-DEFAULTS &ECHO = ON
TABLE FILE MOVIES
-INCLUDE INCLUDE2

INCLUDE2:
HEADING CENTER
"UNLIMITED -INCLUDE COMMANDS"
-INCLUDE INCLUDE3

INCLUDE3:
PRINT TITLE RATING LISTPR
-INCLUDE INCLUDE4

NF796: Unlimited Nested -INCLUDE Commands

Version 7.2 Page 2 of 4

INCLUDE4:
BY CATEGORY
-INCLUDE INCLUDE5

INCLUDE5:
WHERE CATEGORY EQ ’ACTION’ OR ’MUSICALS’
-INCLUDE INCLUDE6

INCLUDE6:
ON CATEGORY SUBTOTAL LISTPR
ON TABLE NOTOTAL
END

Now issue the following command:
EX INCLUDE1

The resulting procedure (displayed by setting the variable &ECHO to ON) is:
TABLE FILE MOVIES
HEADING CENTER
"UNLIMITED -INCLUDE COMMANDS"
PRINT TITLE RATING LISTPR
BY CATEGORY
WHERE CATEGORY EQ ’ACTION’ OR ’MUSICALS’
ON CATEGORY SUBTOTAL LISTPR
ON TABLE NOTOTAL
END

NF796: Unlimited Nested -INCLUDE Commands

Version 7.2 Page 3 of 4

The output is:
 UNLIMITED -INCLUDE COMMANDS
CATEGORY TITLE RATING LISTPR
-------- ----- ------ ------
ACTION JAWS PG 19.95
 ROBOCOP R 19.98
 TOTAL RECALL R 19.99
 TOP GUN PG 14.95
 RAMBO III R 19.95

*TOTAL ACTION
 94.82

MUSICALS CABARET PG 19.98
 ALL THAT JAZZ R 19.98
 CHORUS LINE, A PG13 14.98
 FIDDLER ON THE ROOF G 29.95

*TOTAL MUSICALS
 84.89

Reference Usage Notes for Unlimited Nested -INCLUDE
Commands

• Recursive nesting of -INCLUDE or EX commands is not allowed. That is, a
file that is inserted using the -INCLUDE command cannot directly or
indirectly -INCLUDE or EX itself.
An indirect recursion would occur if procedure A contained a -INCLUDE
command for procedure B and procedure B contained a -INCLUDE or EX
command for procedure A.
Recursion is not supported at any level of nesting and generates the
following error message:
(FOC36249) RECURSIVE -INCLUDES ARE NOT ALLOWED

NF796: Unlimited Nested -INCLUDE Commands

Version 7.2 Page 4 of 4

Reference Error Messages for Nested -INCLUDE Commands
(FOC36249) RECURSIVE -INCLUDES ARE NOT ALLOWED

The -INCLUDE dialogue manager directive may not include the
same file recursively (either directly or indirectly).

Version 7.2 Page 1 of 5

NF797: Field-Based Reformatting

With field-based reformatting you can apply different formats to each row in a
single report column by using a field to identify the format that applies to each
row. For example, you can use this technique to apply the appropriate decimal
currency formats when each row represents a different country. For example,
Japan uses no decimal places while the United States uses two decimal
places.

The field that contains the format specifications can be a real field in the data
source or a temporary field created with a DEFINE command, a DEFINE in the
Master File, or a COMPUTE command. If it is created with a COMPUTE
command, the command must appear in the request prior to using the
calculated field for reformatting.

Using Field-Based Formatting
The field that contains the formats must be alphanumeric and be at least eight
characters in length. Only the first eight characters are used for formatting.

The field-based format may specify a length longer than the length of the
original field. However, if the new length is more than one-third larger than the
original length, the report column width may not be large enough to hold the
value (indicated by asterisks in the field).

You can apply a field-based format to any type of field. However, the new
format must be compatible with the original format:

• A numeric field can be reformatted to any other numeric format with any
edit format options.

• An alphanumeric field can be reformatted to a different length.

NF797: Field-Based Reformatting

Version 7.2 Page 2 of 5

• Any date field can be reformatted to any other date format type.

• Any date-time field can be reformatted to any other date-time format.

If the field-based format is invalid or specifies an impermissible type
conversion, the field displays with plus signs (++++) on the report output.

Syntax How to Define and Apply a Format Field

You can define the format field as follows:

• With a DEFINE command:
DEFINE FILE filename
format_field/A8 = expression;
END

• In a Master File:
DEFINE format_field/A8 = expression; $

• In a request:
COMPUTE format_field/A8 = expression;

where:
format_field

Is the name of the field that contains the format for each row.
expression

Is the expression that assigns the format values to the format field.

Once the format field is defined, you can apply it in a report request:
TABLE FILE filename
display fieldname/format_field[/just]
END

NF797: Field-Based Reformatting

Version 7.2 Page 3 of 5

where:
display

Is any valid display command.
fieldname

Is a field in the request to be reformatted.
format_field

Is the name of the field that contains the formats. If the name of the format
field is the same as an explicit format, the explicit format will be used. For
example, a field named I8 cannot be used for field-based reformatting
because it will be interpreted as the explicit format I8.

just

Is a justification option, L, R, or C. The justification option can be placed
before or after the format field, separated from the format by a slash.

Example Displaying Different Decimal Places for Currency
Values

DEFINE FILE CAR
CFORMAT/A8 = DECODE COUNTRY(’ENGLAND’ ’D10.1’ ’JAPAN’ ’D10’ ELSE
’D10.2’);
END

TABLE FILE CAR
SUM SALES/CFORMAT/C DEALER_COST/CFORMAT
BY COUNTRY
END

NF797: Field-Based Reformatting

Version 7.2 Page 4 of 5

The output is:
COUNTRY SALES DEALER_COST
------- --------- -----------
ENGLAND 12,000.0 37,853.0
FRANCE .00 4,631.00
ITALY 30,200.00 41,235.00
JAPAN 78,030 5,512
W GERMANY 88,190.00 54,563.00

Reference Usage Notes for Field-Based Reformatting

• Field-based reformatting is supported for TABLE and TABLEF. It works with
StyleSheets, joins, and for any type of data source.

• Field-based reformatting is not supported for MODIFY, Maintain, MATCH,
GRAPH, RECAP, FOOTING, HEADING, or text fields.

• Although you can use a DEFINE or COMPUTE command to create the
format field, you cannot apply a field-based format to a calculated or virtual
field.

• Field-based reformatting cannot be used on a BY sort field. It does work
with an ACROSS field.

• If a report column is produced using field-based reformatting, the format
used for a total or subtotal of the column will be taken from the previous
detail line.

• Explicit reformatting creates two display fields internally for each field that is
reformatted. Field-based reformatting creates three display fields.

NF797: Field-Based Reformatting

Version 7.2 Page 5 of 5

• Field-based reformatting works for alphanumeric fields in a HOLD file,
although three fields will be stored in the file for each field that is
reformatted. To prevent the extra fields from being propagated to the HOLD
file, specify SET HOLDLIST=PRINTONLY.

• If the number of decimal places varies between rows, the decimal points
will not be aligned in the report output.

Version 7.2 Page 1 of 3

NF801: DB2 Data Adapter SET SSID Command for MSO

If the CAF option for the DB2 Data Adapter is installed at your site, you must
indicate which DB2 subsystem you intend to use. The name of the DB2
subsystem may differ from the default, or your site may have multiple copies of
DB2. To specify the DB2 subsystem-ID (SSID), issue the SET SSID command
before executing a request. This command is supported for DB2 Version 5 and
higher.

Syntax How to Dynamically Change the DB2 Subsystem ID
SQL [DB2] SET SSID ssid

where:
ssid

Is the DB2 subsystem ID; the default is DSN, unless your site changed the
default at installation time. Omit the DB2 target RDBMS qualifier if you
previously issued the SET SQLENGINE command for DB2.

To reset the SSID to the installation default, issue the command with a
blank ssid value.

Reference Usage Notes for the SQL DB2 SET SSID Command

• The subsystem ID remains in effect for the duration of the session unless it
is issued from a global profile or overridden by a subsequent SET SSID
command.

• The plan associated with the MSO Data Adapter for DB2 must be bound to
all DB2 subsystems that will be referenced.

• The DB2 Data Adapter must be installed with the CAF option.

NF801: DB2 Data Adapter SET SSID Command for MSO

Version 7.2 Page 2 of 3

• The data adapter may have been installed with a default, site-specific,
SSID setting. Use the SQL ? query command to display this setting.

• The data adapter does not check whether the SSID you specified in the
command is valid. If you specify an invalid SSID, DB2 will return an error,
which will then generate the following messages:
(FOC1400) SQLCODE IS %1 (HEX: %2) %3%4

This message indicates an error at execution of an SQL
operation. It contains the SQL return code returned by the
RDBMS and is usually accompanied by appropriate FOCUS error
messages. For additional information about SQL return codes,
refer to the RDBMS manual.

(FOC1456) CAF: SPECIFIED DB2 SSID NOT FOUND %1%2%3%4

During an attempt to allocate a thread to DB2, the most recently
specified subsystem name could not be located. Determine the
correct subsystem name, and use the SQL DB2 SET SSID
command to change the current setting. If a nonexistent
subsystem is the default, the Interface should be reinstalled.

Example Dynamically Changing the DB2 Subsystem ID
SQL DB2 SET SSID DSNX

Example Querying the DB2 Data Adapter Settings
SQL DB2 ?

Information about all of the data adapter settings is returned. You may have to
page down (using PF8 on MVS) to see every option.

NF801: DB2 Data Adapter SET SSID Command for MSO

Version 7.2 Page 3 of 3

The following line of output shows the Subsystem ID setting:
(FOC1447) SSID FOR CALL ATTACH IS - : DSNX

Example Restoring the DB2 Subsystem ID to the Installation
Default

SQL DB2 SET SSID

Version 7.2 Page 1 of 11

NF802: Long Master File Names

Master File names for FOCUS, relational, and fixed format sequential data
sources can be up to 64 characters long on OS/390. Except where noted, this
length is supported in all functional areas that reference a Master File.

Master Files with long names can also be created by issuing the HOLD
command with an AS phrase that specifies a long name.

Using Long Names on OS/390
In the OS/390 environment, file and member names are limited to eight
characters. Therefore, longer Master File names are assigned eight-character
names to be used when interacting with the operating system. Three new
enhancements have been implemented in order to enable this feature on
OS/390:

• A LONGNAME option for the DYNAM ALLOCATE command, which
creates the long Master File name and performs the allocation. This
DYNAM option is described in How to Allocate a Long Master File Name in
OS/390.

• An eight-character naming convention for member names associated with
long Master File names. This convention is described in Member Names
for Long Master File Names in OS/390.

• A long Master File attribute, $ VIRT, which contains the long name to be
used when interacting with the Master File and the operating system. This
attribute is described in How a Long Master File Name is Implemented in
OS/390.

NF802: Long Master File Names

Version 7.2 Page 2 of 11

Member Names for Long Master File Names in OS/390

The DYNAM ALLOC command with the LONGNAME option automatically
creates a member for the long Master File name in the PDS allocated to
ddname HOLDMAST.

The member name consists of three parts: a prefix consisting of the leftmost
characters from the long name, followed by a left brace character ({), followed
by an index number. This naming convention is in effect for all long Master Files
allocated using DYNAM or created using the HOLD command. The length of
the prefix depends on how many long names have a common set of leftmost
characters:

• The first ten names that share six or more leftmost characters have a six-
character prefix and a one-character index number, starting from zero.

• Starting with the eleventh long name that shares the same leftmost six
characters, the prefix becomes five characters, and the index number
becomes two characters, starting from 00.

This process can continue until the prefix is one character and the index
number is six characters. If you delete one of these members from the
HOLDMAST PDS, the member name will be reused for the next new long name
with the same prefix.

NF802: Long Master File Names

Version 7.2 Page 3 of 11

Example Long Master File Names and Corresponding
Member Names

The following table lists sample long names with the corresponding member
names that would be assigned under OS/390.

Long Name Member Name

EMPLOYEES_ACCOUNTING EMPLOY{0

EMPLOYEES_DEVELOPMENT EMPLOY{1

EMPLOYEES_DISTRIBUTION EMPLOY{2

EMPLOYEES_FINANCE EMPLOY{3

EMPLOYEES_INTERNATIONAL EMPLOY{4

EMPLOYEES_MARKETING EMPLOY{5

EMPLOYEES_OPERATIONS EMPLOY{6

EMPLOYEES_PERSONNEL EMPLOY{7

EMPLOYEES_PUBLICATIONS EMPLOY{8

EMPLOYEES_RESEARCH EMPLOY{9

EMPLOYEES_SALES EMPLO{00

EMPLOYEES_SUPPORT EMPLO{01

NF802: Long Master File Names

Version 7.2 Page 4 of 11

Syntax How a Long Master File Name is Implemented in
OS/390

To relate the short name to its corresponding long name, the first line of a long
Master File contains the following attribute:
$ VIRT=long_filename

where:
long_filename

Is the long name, up to 64 characters.

Syntax How to Allocate a Long Master File Name in OS/390
DYNAM ALLOC DD ddname LONGNAME long_filename DS physical_filename

where:
ddname

Is the one- to eight-character member name of the Master File. It must be
an existing member of a PDS allocated to DD MASTER.

long_filename

Is the long Master File name. The DYNAM command creates a copy of the
short Master File in the PDS allocated to DD HOLDMAST. The member in
HOLDMAST conforms to the eight character naming convention for long
names. The Master File has the $ VIRT attribute on the top line, which
contains the long name.

Note: The copy, not the member ddname, is the Master File used when you
reference the long name in a request.

physical_filename

Is the data set name of the FOCUS or fixed format sequential data source.

NF802: Long Master File Names

Version 7.2 Page 5 of 11

After you have allocated the long name, you can reference the data source
using the long Master File name or the short ddname.

Syntax How to Free an Allocation for a Long Master File
Name

DYNAM FREE LONGNAME long_filename

where:
long_filename

Is the long Master File name.

After issuing the DYNAM FREE LONGNAME command, you can no longer
reference the data source using the long Master File name. However, you can
reference it using the short ddname that was specified in the DYNAM ALLOC
command.

Example Using a Long Master File Name on OS/390

To reference the EMPLOYEE data source as EMPLOYEE_DATA, dynamically
allocate the long name:
DYNAM ALLOC DD EMPLOYEE LONGNAME EMPLOYEE_DATA -

 DS USER1.EMPLOYEE.FOCUS SHR REU

You can now issue a request using the long name:
TABLE FILE EMPLOYEE_DATA
PRINT CURR_SAL
BY LAST_NAME BY FIRST_NAME
END

NF802: Long Master File Names

Version 7.2 Page 6 of 11

The output is:
LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------
BANNING JOHN $29,710.00
BLACKWOOD ROSEMARIE $21,790.00
CROSS BARBARA $27,072.00
GREENSPAN MARY $9,010.00
IRVING JOAN $26,872.00
JONES DIANE $18,490.00
MCCOY JOHN $18,490.00
MCKNIGHT ROGER $16,110.00
ROMANS ANTHONY $21,130.00
SMITH MARY $13,210.00
 RICHARD $9,510.00
STEVENS ALFRED $11,010.00

In this example, the long Master File will exist in the HOLDMAST PDS as
member EMPLOY{0. The index number after the bracket depends on the
number of existing long Master Files containing the same first six leftmost
characters. The content of the EMPLOYEE_DATA Master File is virtually
identical to the short Master File used in the allocation. The only difference is
the $ VIRT keyword on line one, which contains the long name. The FILENAME
parameter also contains the long name, up to 64 characters.
$ VIRT=EMPLOYEE_DATA
$ Created from EMPLOYEE MASTER
FILENAME=EMPLOYEE_DATA,
SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 .
 .
 .

NF802: Long Master File Names

Version 7.2 Page 7 of 11

Creating a HOLD Master File With a Long Name on OS/390

If you use the HOLD command to create a FOCUS or fixed format sequential
data source with a long name, a long member name will be generated for the
accompanying Master File. As with the DYNAM command, the long member
name will conform to the eight character naming convention for long file names.
To relate the long name to the short member name, the $ VIRT attribute will be
generated on the top line in the Master File.

Note: The resulting HOLD file will be a temporary data file. To allocate the long
Master File name to a permanent data file, issue the DYNAM command prior to
the HOLD request. The ddname in the command must refer to an existing
member of the MASTER PDS.

Creating RDBMS Tables With Long Master File Names

You can use the HOLD command to create an RDBMS table if you have the
appropriate Write data adapter installed and have authority to create tables. For
example, with the DB2 Data Adapter, you can issue the HOLD FORMAT DB2
command.

If the HOLD command includes a long AS name, both the Master and Access
File names will be long. On OS/390, the Master and Access Files will be named
according to the procedure described in Using Long Names on OS/390. The
short names assigned to corresponding Master and Access Files will be the
same.

The AS name also becomes the table name and is specified in the Access File.
If the AS name specified in the HOLD command is longer than the table name
length supported by the RDBMS, the table cannot be created.

NF802: Long Master File Names

Version 7.2 Page 8 of 11

Reference Maximum Name Lengths for RDBMS Tables

The following table shows maximum name length supported by each RDBMS:

Example Creating a DB2 Table With a Long Name

The following request creates a 15 character DB2 table named
EMPLOYEEINFODB2 (18 is the maximum table name length for DB2):
TABLE FILE EMPLOYEE
PRINT EMP_ID CURR_SAL
BY DEPARTMENT
BY LAST_NAME
BY FIRST_NAME
ON TABLE HOLD AS USER1.EMPLOYEEINFODB2 FORMAT DB2
END

RDBMS Maximum Table Name Length

DB2 18

Oracle 7, 8, 8i 30

Teradata 30

NF802: Long Master File Names

Version 7.2 Page 9 of 11

This request creates the following Master File:
$ VIRT=EMPLOYEEINFODB2

FILE=EMPLOYEEINFODB2 ,SUFFIX=SQL
SEGNAME=SEG01 ,SEGTYPE=S0
FIELDNAME =’DEPARTMENT’ ,’DPT’ ,A10 ,A10 ,$
FIELDNAME =’LAST_NAME’ ,’LN’ ,A15 ,A15 ,$
FIELDNAME =’FIRST_NAME’ ,’FN’ ,A10 ,A10 ,$
FIELDNAME =FOCLIST ,FOCLIST ,I5 ,I4 ,$
FIELDNAME =’EMP_ID’ ,’EID’ ,A9 ,A9 ,$
FIELDNAME =’CURR_SAL’ ,’CSAL’ ,D12.2M ,D8 ,$

This request also creates the following Access File:
$ VIRT=EMPLOYEEINFODB2
SEGNAME=SEG01 ,
TABLENAME=USER1.EMPLOYEEINFODB2
KEYS=04 , WRITE=YES, $

Note that the AS name is also the table name.

Consider what happens when the AS name is longer than the 18 characters
supported for table names in DB2 on OS/390:
TABLE FILE EMPLOYEE
PRINT EMP_ID CURR_SAL
BY DEPARTMENT
BY LAST_NAME
BY FIRST_NAME
ON TABLE HOLD AS EMPLOYEEINFORMATIONDB2 FORMAT DB2
END

NF802: Long Master File Names

Version 7.2 Page 10 of 11

Running this request generates the following messages:
> NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 HOLDING SQL FILE...

(FOC1400) SQLCODE IS -107 (HEX: FFFFFF95)

(FOC1414) EXECUTE IMMEDIATE ERROR.

In this example, the Master and Access Files are created, however, the table
cannot be created because the table name specified in the Access File is too
long and, therefore, invalid. Note that you will get a more descriptive message if
you issue the following command:
SQL DB2 SET ERRORTYPE DBMS

For example:
(FOC1400) SQLCODE IS -107 (HEX: FFFFFF95)
 : DSNT408I SQLCODE = -107, ERROR: THE NAME EMPLOYEEINFORMATIONDB2 IS
TOO
 : LONG. MAXIMUM ALLOWABLE SIZE IS 18
 : DSNT418I SQLSTATE = 42622 SQLSTATE RETURN CODE
 : DSNT415I SQLERRP = DSNHSMUD SQL PROCEDURE DETECTING ERROR
 : DSNT416I SQLERRD = 0 0 0 -1 15 0 SQL DIAGNOSTIC INFORMATION
 : DSNT416I SQLERRD = X’00000000’ X’00000000’ X’00000000’
 : X’FFFFFFFF’ X’0000000F’ X’00000000’ SQL DIAGNOSTIC
 : INFORMATION
(FOC1414) EXECUTE IMMEDIATE ERROR.

Reference Usage Notes for Long Master File Names

• The FOCUS Database Server (SU) is not supported on any platform.

• The DATASET attribute is not supported in a long Master File.

• The ACCESSFILE attribute is not supported with long Master Files.

NF802: Long Master File Names

Version 7.2 Page 11 of 11

• An External index is not supported.

• The LONGNAME option of the DYNAM command may only be issued from
within a FOCEXEC or RPC. It cannot be used to pre-allocate long Master
Files in JCL or CLISTS on OS/390.

• Long Master Files are not designed to be edited on OS/390. Each time the
DYNAM command is issued with the LONGNAME attribute; it overlays the
existing member in HOLDMAST. You must make any edits (such as the
addition of fields or DBA attributes, or use of the REBUILD utility) to an
existing short Master File.

• ? FDT and ? FILE longfilename will show an internal DD alias of
@000000n, where n is less than or equal to the number of existing long file
allocations. Use this internal DDNAME in all queries that require a valid
DDNAME, such as ? TSO DDNAME queries or USE commands (OS/390
only).

• VM is not supported.

• Fusion is not supported.

Reference Error Messages for Long Master File Names
 (FOC1982) UNABLE TO FIND LONGNAME %1

Version 7.2 Page 1 of 12

NF817: Creating Comma-Delimited Files

Formats COMMA, COM and COMT give you a choice of comma-delimited file
formats for your report output. A comma-delimited file is a sequential data
source in which data values are separated by commas. In the output file, all
character values are enclosed in double quotation marks. In addition, you can
choose to:

• Remove leading blanks from numeric fields and trailing blanks from
alphanumeric fields, so that only significant data is propagated to the output
file.

• Propagate only the data values to the output file or include the column
headings as the first record in the output file.

Single or double quotation marks are supported in character fields. Double
quotation marks within a character value are stored as two consecutive double
quotation marks.

Types of Comma-Delimited Output Files
The differences between format COMMA, COM, and COMT output files are
summarized in the following table:

Format
Name

Remove non-
significant
blanks?

Create
Master File?

Suffix in
Master File

Extension
or Filetype

COMMA No No N/A PRN

COM Yes Yes COM CSV

COMT Yes Yes COMT CSV

NF817: Creating Comma-Delimited Files

Version 7.2 Page 2 of 12

Note:

• Format COMMA saves the data values as a variable-length text file with
fields separated by commas and with character values enclosed in double
quotation marks. All blanks within fields are retained. This format is the
industry standard comma-delimited format.

• Format COM saves the data values as a variable-length text file with fields
separated by commas and with character values enclosed in double
quotation marks. Leading blanks are removed from numeric fields and
trailing blanks are removed from character fields. To issue a request
against this data source, the setting PCOMMA=ON is required.

• Format COMT saves the column headings in the first row of the output file.
It produces a variable-length text file with fields separated by commas and
with character values enclosed in double quotation marks. Leading blanks
are removed from numeric fields and trailing blanks are removed from
character fields. This format is required by certain software packages such
as Microsoft Access.

A Master File is created for format COM and COMT when the command used
to create the output file is HOLD. The SUFFIX in the generated Master File is
COM or COMT.

All values are stored in their actual formats. The following display options are
propagated to the output file: leading zeros, zero suppression, and scientific
notation. Master file formats generated are exactly as in FORMAT ALPHA.

Syntax How to Save Report Output in Comma-Delimited
Format

[ON TABLE] command [AS filename] FORMAT comma_format

NF817: Creating Comma-Delimited Files

Version 7.2 Page 3 of 12

where:
ON TABLE

Is the syntax for creating an output file within a TABLE request.
command

Can be one of the following:

HOLD creates a Master File to accompany a FORMAT COM or COMT
output file. For format COMMA, no accompanying Master File is created.

PCHOLD is used to automatically send the output file to a client application
when issued in an environment that supports automatic file transfers.

SAVE creates an output file with no accompanying Master File.
filename

Is the file name of the resulting output file on VM, UNIX, or NT, or the
ddname on OS/390.

comma_format

COMMA creates a comma-delimited variable-length text file containing the
data values from the report request. All character values are enclosed in
double quotation marks. Corresponding columns in each record are the
same length. On VM, the filetype is PRN. On UNIX and Windows NT, the
extension is .prn. Note: No Master File is created to accompany this output
file.

NF817: Creating Comma-Delimited Files

Version 7.2 Page 4 of 12

COM creates a comma-delimited variable-length text file containing the
data values from the report request. All character values are enclosed in
double quotation marks. Leading blanks are stripped from numeric fields
(format codes D, F, I, or P) and trailing blanks are stripped from character
fields (format code A). Corresponding columns in each record may have
different lengths because of the removal of leading and trailing blanks. On
VM, the filetype is CSV. On UNIX and Windows NT, the extension is .csv.
Note: A Master File is created if the HOLD command is used. In the
accompanying Master File, the SUFFIX value is COM. The setting
PCOMMA=ON is required in order to interpret the character fields correctly
in a request. With PCOMMA=OFF (the default), double quotation marks
are considered characters within the field, not delimiters around the field.

COMT creates a comma-delimited variable-length text file containing the
column headings and data values from the report request. All character
values are enclosed in double quotation marks. Leading blanks are
stripped from numeric fields (format codes D, F, I, or P) and trailing blanks
are stripped from character fields (format code A). Corresponding columns
in each record may have different lengths because of the removal of
leading and trailing blanks. On VM, the filetype is CSV. On UNIX and
Windows NT, the extension is .csv. Note: A Master File is created if the
HOLD command is used. In the accompanying Master File, the SUFFIX
value is COMT.

Reference Usage Notes for Comma-Delimited Output Files

• There is an 8K overhead for processing comma-delimited files using HOLD
FORMAT COM or COMT. Therefore, extract files created by HOLD
FORMAT COM | COMT are limited to 26K record lengths.

NF817: Creating Comma-Delimited Files

Version 7.2 Page 5 of 12

• You must be aware of the formats and lengths supported by the application
for which you are creating the output file. Field lengths created by the
HOLD or SAVE command are those supported as USAGE formats in a
Master File. You must take into account any limits of the destination
application.

• The setting PCOMMA=ON is required in order to interpret the character
fields created by HOLD FORMAT COM correctly in a request. With
PCOMMA=OFF (the default), double quotation marks are considered
characters within the field, not delimiters around the field.

• If you use field-based reformatting in the request that creates the output
file, the field lengths in the output file are the lengths from the original
Master File or DEFINE command.

• If the request that creates the output file retrieves missing data described
with MISSING=ON in the original Master File, the output file will contain a
blank if the original field was alphanumeric, or a zero if the field was
numeric.

• As with all HOLD files, column headings specified with an AS phrase are
ignored unless you set ASNAMES to ON. When ASNAMES is set ON, the
value from the AS phrase, up to but not including the comma, becomes the
field name in the HOLD Master File.

• Regardless of the ASNAMES setting, the column heading in the COMT
data file is the value of the AS phrase exactly as specified in the request.

• The SAVB command is not supported. The output file is a text file.

• The OVER phrase is not supported in a request that creates a COMMA,
COM, or COMT format output file.

NF817: Creating Comma-Delimited Files

Version 7.2 Page 6 of 12

• Smart date fields and dates formatted as I or P fields with date format
options are treated as numeric and are not enclosed in double quotation
marks in the output file. Dates formatted as alphanumeric fields with date
format options are treated as alphanumeric and enclosed in double
quotation marks.

• Continental decimal notation (CDN=ON|SPACE|QUOTE) is not supported.
A comma within a number would be interpreted as two separate columns
by a destination application such as Microsoft Access.

• Text fields are not supported.

• There is a 32K record length limit in the output file

• Blank fieldnames will show up as blank column titles. This may result in an
error when attempting to use the file as input to various applications.

• A double-precision number expressed in scientific notation is stored with
the character D before the exponent. For example, the command PRINT
RETAIL_COST/D9.3E prints the values in the following form: 0.888D+04.
Some applications may not understand this value, as they generally expect
an E before the exponent. Printing the value as single precision floating
point instead of double precision produces a value with an E before the
exponent. For example, format F9.3E produces the value 0.888E+04.

NF817: Creating Comma-Delimited Files

Version 7.2 Page 7 of 12

Example Creating a Comma-Delimited File With Leading and
Trailing Blanks

TABLE FILE MOVIES
PRINT COPIES TITLE WHOLESALEPR AS ’WHOLESALE,PRICE’
BY CATEGORY
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
 ON TABLE HOLD AS COMMAH FORMAT COMMA
END

Leading blanks are retained in numeric fields and trailing blanks are retained in
character fields in the COMMAH output file:
"ACTION ", 2,"JAWS ", 10.99
"ACTION ", 3,"ROBOCOP ", 11.50
"ACTION ", 4,"TOTAL RECALL ", 11.99
"ACTION ", 2,"TOP GUN ", 9.99
"ACTION ", 3,"RAMBO III ", 10.99
"CHILDREN", 1,"SMURFS, THE ", 10.00
"CHILDREN", 2,"SHAGGY DOG, THE ", 29.99
"CHILDREN", 1,"SCOOBY-DOO-A DOG IN THE RUFF ", 9.75
"CHILDREN", 2,"ALICE IN WONDERLAND ", 12.50
"CHILDREN", 1,"SESAME STREET-BEDTIME STORIES AND SONGS", 7.65
"CHILDREN", 1,"ROMPER ROOM-ASK MISS MOLLY ", 7.99
"CHILDREN", 1,"SLEEPING BEAUTY ", 15.99
"CHILDREN", 3,"BAMBI ", 12.00

No Master File is created for use with this output file.

NF817: Creating Comma-Delimited Files

Version 7.2 Page 8 of 12

Example Creating a Compressed Comma-Delimited File
Without Column Headings

TABLE FILE MOVIES
PRINT COPIES TITLE WHOLESALEPR AS ’WHOLESALE,PRICE’
BY CATEGORY
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
 ON TABLE SAVE AS COMH FORMAT COM
END

Leading blanks are removed from numeric fields and trailing blanks are
removed from character fields in the COMH output file:
"ACTION",2,"JAWS",10.99
"ACTION",3,"ROBOCOP",11.50
"ACTION",4,"TOTAL RECALL",11.99
"ACTION",2,"TOP GUN",9.99
"ACTION",3,"RAMBO III",10.99
"CHILDREN",1,"SMURFS, THE",10.00
"CHILDREN",2,"SHAGGY DOG, THE",29.99
"CHILDREN",1,"SCOOBY-DOO-A DOG IN THE RUFF",9.75
"CHILDREN",2,"ALICE IN WONDERLAND",12.50
"CHILDREN",1,"SESAME STREET-BEDTIME STORIES AND SONGS",7.65
"CHILDREN",1,"ROMPER ROOM-ASK MISS MOLLY",7.99
"CHILDREN",1,"SLEEPING BEAUTY",15.99
"CHILDREN",3,"BAMBI",12.00

No Master File is created for use with this output file because the SAVE
command was used. The HOLD command would generate an accompanying
Master File.

NF817: Creating Comma-Delimited Files

Version 7.2 Page 9 of 12

Example Creating a Compressed Comma-Delimited File With
Column Headings

TABLE FILE MOVIES
PRINT COPIES TITLE WHOLESALEPR AS ’WHOLESALE,PRICE’
BY CATEGORY
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
 ON TABLE HOLD AS COMTH FORMAT COMT
END

Leading blanks are removed from numeric fields and trailing blanks are
removed from character fields in the COMTH output file, and the first row
contains column headings. The AS phrase becomes the column heading for the
WHOLESALEPR field regardless of the ASNAMES setting:
"CATEGORY","COPIES","TITLE","WHOLESALE,PRICE"
"ACTION",2,"JAWS",10.99
"ACTION",3,"ROBOCOP",11.50
"ACTION",4,"TOTAL RECALL",11.99
"ACTION",2,"TOP GUN",9.99
"ACTION",3,"RAMBO III",10.99
"CHILDREN",1,"SMURFS, THE",10.00
"CHILDREN",2,"SHAGGY DOG, THE",29.99
"CHILDREN",1,"SCOOBY-DOO-A DOG IN THE RUFF",9.75
"CHILDREN",2,"ALICE IN WONDERLAND",12.50
"CHILDREN",1,"SESAME STREET-BEDTIME STORIES AND SONGS",7.65
"CHILDREN",1,"ROMPER ROOM-ASK MISS MOLLY",7.99
"CHILDREN",1,"SLEEPING BEAUTY",15.99
"CHILDREN",3,"BAMBI",12.00

NF817: Creating Comma-Delimited Files

Version 7.2 Page 10 of 12

With ASNAMES set to OFF, the COMTH Master File is:
FILE=COMTH ,SUFFIX=COMT
SEGNAME=COMTH ,SEGTYPE=S01
FIELDNAME =CATEGORY ,E01 ,A8 ,A08 ,$
FIELDNAME =COPIES ,E02 ,I3 ,A03 ,$
FIELDNAME =TITLE ,E03 ,A39 ,A39 ,$
FIELDNAME =WHOLESALEPR ,E04 ,F6.2 ,A06 ,$

With ASNAMES set to ON, the COMTH Master File is:
FILE=COMTH ,SUFFIX=COMT
SEGNAME=COMTH ,SEGTYPE=S01
FIELDNAME =CATEGORY ,E01 ,A8 ,A08 ,$
FIELDNAME =COPIES ,E02 ,I3 ,A03 ,$
FIELDNAME =TITLE ,E03 ,A39 ,A39 ,$
FIELDNAME =WHOLESALE ,E04 ,F6.2 ,A06 ,$

Example Using Date Formats With HOLD FORMAT COMT

The following request prints the date field RELDATE (format YMD) and
computes the following fields:

• IDATE, format I6YMD.

• PDATE, format P6YMD.

• ADATE, format A6YMD.

NF817: Creating Comma-Delimited Files

Version 7.2 Page 11 of 12

TABLE FILE MOVIES
 PRINT TITLE RELDATE
 COMPUTE
 IDATE/I6YMD = RELDATE;
 PDATE/P6YMD = RELDATE;
 ADATE/A6YMD = RELDATE;
BY CATEGORY
WHERE CATEGORY EQ ’ACTION’
 ON TABLE HOLD AS COMTH FORMAT COMT
END

In the output file, only ADATE is enclosed in double quotation marks:
"CATEGORY","TITLE","RELDATE","IDATE","PDATE","ADATE"
"ACTION","JAWS",780513,780513,780513,"780513"
"ACTION","ROBOCOP",880603,880603,880603,"880603"
"ACTION","TOTAL RECALL",910324,910324,910324,"910324"
"ACTION","TOP GUN",880124,880124,880124,"880124"
"ACTION","RAMBO III",891216,891216,891216,"891216"

NF817: Creating Comma-Delimited Files

Version 7.2 Page 12 of 12

Example Opening a Format COMT File in Microsoft Excel

After transferring the COMTH file created in Creating a Compressed Comma-
Delimited File With Column Headings to the PC using FTP, you can open it in a
Microsoft Application such as Excel or Access:

Excel recognizes the data as comma-delimited. You may need to size the
columns.

Version 7.2 Page 1 of 3

NF824: STRIP Subroutine

The STRIP subroutine removes all occurrences of a specific character from an
input string. The resulting string has the same length as the original string but is
padded on the right with blanks.

Syntax How to Remove All Occurrences of a Character
From an Input String

STRIP(length, source_string, strip_char, result)

where:
length

Is a number or numeric field that specifies the length of the source and
result strings.

source_string

Is an alphanumeric string or field from which the character will be removed.
Text fields are not supported.

strip_char

Is an alphanumeric literal or field that specifies the single character to be
removed from the source string. If it is a literal, it must be enclosed in single
quotation marks. If it is a field, the left-most character in the field will be
used as the strip character.

result

Is the name of the alphanumeric output field or its format enclosed in single
quotation marks.

Note: In Dialogue Manager, amper variables will have the length specified by
the result string.

NF824: STRIP Subroutine

Version 7.2 Page 2 of 3

Example Removing All Occurrences of a Character From a
String

The following example removes all occurrences of a period (.) from director
names in the comedy category of the MOVIES data source:
TABLE FILE MOVIES
PRINT DIRECTOR AND COMPUTE
SDIR/A17 = STRIP(17,DIRECTOR,’.’,’A17’);
WHERE CATEGORY EQ ’COMEDY’
END

The output is:
DIRECTOR SDIR
-------- ----
ZEMECKIS R. ZEMECKIS R
ABRAHAMS J. ABRAHAMS J
ALLEN W. ALLEN W
HALLSTROM L. HALLSTROM L
MARSHALL P. MARSHALL P
BROOKS J.L. BROOKS JL

Example Removing Single Quotation Marks From a String

To specify a single quotation mark, use two consecutive single quotation marks.
You must then enclose this character combination in single quotation marks:
TABLE FILE MOVIES
PRINT TITLE AND COMPUTE
STITLE/A39 = STRIP(39,TITLE,’’’’,’A39’);
WHERE TITLE CONTAINS ’’’’
END

NF824: STRIP Subroutine

Version 7.2 Page 3 of 3

The output is:
TITLE STITLE
----- ------
BABETTE’S FEAST BABETTES FEAST
JANE FONDA’S COMPLETE WORKOUT JANE FONDAS COMPLETE WORKOUT
JANE FONDA’S NEW WORKOUT JANE FONDAS NEW WORKOUT
MICKEY MANTLE’S BASEBALL TIPS MICKEY MANTLES BASEBALL TIPS

Version 7.2 Page 1 of 3

NF825: SET PCOMMA

By default, when a Master File specifies SUFFIX=COM, incoming
alphanumeric values are not enclosed in double quotation marks, and each
record is terminated with a comma and dollar sign (,$) character combination.
This format does not support retrieval of most comma-delimited files produced
by PC applications. A comma-delimited file is a sequential data source in which
the data values are separated by commas.

Setting PCOMMA to ON indicates that alphanumeric data will be enclosed in
double quotation marks and that each record will be terminated with a carriage
return and line feed (crlf). This setting supports retrieval of comma-delimited
files created by PC applications and by the HOLD FORMAT COM command.

Syntax How to Retrieve PC-Type Comma-Delimited Data
Sources

SET PCOMMA = {ON|OFF}

or, in a TABLE request
ON TABLE SET PCOMMA {ON|OFF}

where:
ON

Supports retrieval of comma-delimited data sources in which alphanumeric
data is enclosed in double quotation marks and in which each record is
terminated with a carriage return and line feed.

OFF

Supports retrieval of comma-delimited data sources in which alphanumeric
data is not enclosed in double quotation marks and in which each record is
terminated with a comma and dollar sign.

NF825: SET PCOMMA

Version 7.2 Page 2 of 3

Example Reading a Comma-Delimited Data Source

The following request creates a comma-delimited output file with character
values enclosed in double quotation marks:
TABLE FILE MOVIES
PRINT COPIES TITLE WHOLESALEPR RELDATE
BY CATEGORY
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
 ON TABLE HOLD AS COMH FORMAT COM
END

The contents of the output file are:
"ACTION",2,"JAWS",10.99,780513
"ACTION",3,"ROBOCOP",11.50,880603
"ACTION",4,"TOTAL RECALL",11.99,910324
"ACTION",2,"TOP GUN",9.99,880124
"ACTION",3,"RAMBO III",10.99,891216
"CHILDREN",1,"SMURFS, THE",10.00,880216
"CHILDREN",2,"SHAGGY DOG, THE",29.99,590109
"CHILDREN",1,"SCOOBY-DOO-A DOG IN THE RUFF",9.75,880513
"CHILDREN",2,"ALICE IN WONDERLAND",12.50,510721
"CHILDREN",1,"SESAME STREET-BEDTIME STORIES AND SONGS",7.65,870904
"CHILDREN",1,"ROMPER ROOM-ASK MISS MOLLY",7.99,880723
"CHILDREN",1,"SLEEPING BEAUTY",15.99,750830
"CHILDREN",3,"BAMBI",12.00,420703

The following is a Master File that describes this output file:
FILE=COMH ,SUFFIX=COM
SEGNAME=COMH ,SEGTYPE=S01
FIELDNAME =CATEGORY ,E01 ,A8 ,A08 ,$
FIELDNAME =COPIES ,E02 ,I3 ,A03 ,$
FIELDNAME =TITLE ,E03 ,A39 ,A39 ,$
FIELDNAME =WHOLESALEPR ,E04 ,F6.2 ,A06 ,$
FIELDNAME =RELDATE ,E05 ,YMD ,A06 ,$

NF825: SET PCOMMA

Version 7.2 Page 3 of 3

The following request reads this comma-delimited output file:
SET PCOMMA = ON
TABLE FILE COMH
PRINT *
END

The output is:
CATEGORY COPIES TITLE WHOLESALEPR RELDATE
-------- ------ ----- ----------- -------
ACTION 2 JAWS 10.99 78/05/13
ACTION 3 ROBOCOP 11.50 88/06/03
ACTION 4 TOTAL RECALL 11.99 91/03/24
ACTION 2 TOP GUN 9.99 88/01/24
ACTION 3 RAMBO III 10.99 89/12/16
CHILDREN 1 SMURFS, THE 10.00 88/02/16
CHILDREN 2 SHAGGY DOG, THE 29.99 59/01/09
CHILDREN 1 SCOOBY-DOO-A DOG IN THE RUFF 9.75 88/05/13
CHILDREN 2 ALICE IN WONDERLAND 12.50 51/07/21
CHILDREN 1 SESAME STREET-BEDTIME STORIES AND SONGS 7.65 87/09/04
CHILDREN 1 ROMPER ROOM-ASK MISS MOLLY 7.99 88/07/23
CHILDREN 1 SLEEPING BEAUTY 15.99 75/08/30
CHILDREN 3 BAMBI 12.00 42/07/03

Version 7.2 Page 1 of 2

NF826: SQUEEZ Subroutine

The SQUEEZ subroutine reduces multiple contiguous blank characters within
an input string to a single blank character. The resulting string has the same
length as the original string but is padded on the right with blanks.

Syntax How to Reduce Multiple Blanks to a Single Blank
SQUEEZ(length, source_string, result)

where:
length

Is a number or numeric field that specifies the length of the source and
result fields.

source_string

Is an alphanumeric string or field from which the extra blank characters will
be removed. Text fields are not supported.

result

Is the name of the alphanumeric output field or its format enclosed in single
quotation marks.

Note: In Dialogue Manager, amper variables will have the length specified by
the result string.

NF826: SQUEEZ Subroutine

Version 7.2 Page 2 of 2

Example Reducing Multiple Blanks to a Single Blank

The following request concatenates employee first names and last names into
a field called NAME, retaining all blanks. It then uses the SQUEEZ subroutine
to reduce multiple blanks within the name to a single blank:
DEFINE FILE EMPLOYEE
NAME/A30 = FIRST_NAME | LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT NAME AND COMPUTE
SQNAME/A30 = SQUEEZ(30,NAME,’A30’);
WHERE DEPARTMENT EQ ’MIS’
END

The output is:
NAME SQNAME
---- ------
MARY SMITH MARY SMITH
DIANE JONES DIANE JONES
JOHN MCCOY JOHN MCCOY
ROSEMARIE BLACKWOOD ROSEMARIE BLACKWOOD
MARY GREENSPAN MARY GREENSPAN
BARBARA CROSS BARBARA CROSS

Version 7.2 Page 1 of 3

NF827: TRIM Subroutine

The TRIM subroutine removes leading and/or trailing occurrences of a pattern
within a string.

Syntax How to Remove Leading and Trailing Occurrences
TRIM(trim_where, string, string_length, pattern, pattern_length, result)

where:
trim_where

Alphanumeric

Indicates where to remove the pattern. Possible values are:

’L’ Removes leading occurrences.

’T’ Removes trailing occurrences.

’B’ Removes both leading and trailing occurrences.
string

Alphanumeric

Is the source string. Text fields are not supported.
string_length

Integer

Is the length of the source string.
pattern

Alphanumeric

Is the pattern to remove.

NF827: TRIM Subroutine

Version 7.2 Page 2 of 3

pattern_length

Integer

Is the length of the pattern string.
result

Alphanumeric

Is the name of the alphanumeric output field or its format enclosed in single
quotation marks.

Example Removing Leading Occurrences

The following request uses the TRIM subroutine to remove leading occurrences
of the characters BR from director names in the MOVIES data source.
TABLE FILE MOVIES
PRINT DIRECTOR AND
COMPUTE
 TRIMDIR/A17 = TRIM(’L’,DIRECTOR,17,’BR’,2,’A17’);
 WHERE DIRECTOR CONTAINS ’BR’
END

The output is:
DIRECTOR TRIMDIR
-------- -------
ABRAHAMS J. ABRAHAMS J.
BROOKS R. OOKS R.
BROOKS J.L. OOKS J.L.

NF827: TRIM Subroutine

Version 7.2 Page 3 of 3

Example Removing Trailing Occurrences

The following request removes trailing occurrences of the characters ER from
the TITLE field in the MOVIES data source. In order to remove trailing non-
blank characters, trailing blanks must be removed first. The TITLE field has
trailing blanks. Therefore, the TRIM subroutine does not remove the characters
ER when creating field TRIMT. The SHORT field does not have trailing blanks.
Therefore, TRIM removes the trailing ER characters when creating field
TRIMS:
DEFINE FILE MOVIES
SHORT/A19 = SUBSTR(19, TITLE, 1, 19, 19, SHORT);
END
TABLE FILE MOVIES
PRINT TITLE IN 1 AS ’TITLE: ’
 SHORT IN 40 AS ’SHORT: ’ OVER
COMPUTE
 TRIMT/A39 = TRIM(’T’,TITLE,39,’ER’,2,’A39’); IN 1 AS ’TRIMT: ’
COMPUTE
 TRIMS/A19 = TRIM(’T’,SHORT,19,’ER’,2,’A19’); IN 40 AS ’TRIMS: ’
WHERE TITLE LIKE ’%ER’
END

The output is:
TITLE: LEARN TO SKI BETTER SHORT: LEARN TO SKI BETTER
TRIMT: LEARN TO SKI BETTER TRIMS: LEARN TO SKI BETT
TITLE: FANNY AND ALEXANDER SHORT: FANNY AND ALEXANDER
TRIMT: FANNY AND ALEXANDER TRIMS: FANNY AND ALEXAND

Version 7.2 Page 1 of 2

NF828: SUFFIX = COM/COMT/TABT

Master Files for comma and tab-delimited sequential data sources can have
SUFFIX values of COM, COMT, or TABT. Comma-delimited data sources are
sequential data sources in which field values are separated by commas. Tab-
delimited data sources are sequential data sources in which field values are
separated by tabs.
Comma-delimited and tab-delimited data sources cannot participate in joins.

Accessing SUFFIX=COM Data Sources
A Master File containing the attribute SUFFIX=COM can be used to access two
styles of comma-delimited sequential data sources:
• One style is consistent with prior releases. Character values are not

enclosed in double quotation marks, and the comma-dollar sign character
combination is the record terminator. With this style of comma-delimited
data source, records can span multiple lines. A field that contains a comma
as a character must be enclosed within single quotation marks.

• The second style is consistent with the current industry standard for
comma-delimited data sources. Character values are enclosed in double
quotation marks and the crlf (carriage-return, line-feed) character
combination is the record terminator. In addition, each input record must be
completely contained on a single input line. A double quotation mark within
a field is identified by two consecutive double quotation marks.
Note that the setting PCOMMA=ON is required in conjunction with the
SUFFIX=COM Master File when accessing this type of data source in order
to correctly interpret the double quotation marks around character values.
Without this setting, the double quotation marks are considered characters
within the field, not delimiters enclosing the field values.

NF828: SUFFIX = COM/COMT/TABT

Version 7.2 Page 2 of 2

Accessing SUFFIX=COMT Data Sources
A Master File containing the attribute SUFFIX=COMT can be used to access
comma-delimited sequential data sources in which all of the following
conditions are met:

• The first record of the data source contains column titles. This record will be
ignored when the data source is accessed in a request.

• Character values are enclosed in double quotation marks. A double
quotation mark within a field is identified by two consecutive double
quotation marks.

• Each record is completely contained on one line and terminated with the
crlf character combination.

Accessing SUFFIX=TABT Data Sources
A Master File containing the attribute SUFFIX=TABT can be used to access
tab-delimited sequential data sources in which all of the following conditions are
met:

• The first record of the data source contains column titles. This record will be
ignored when the data source is accessed in a request.

• Character values are not enclosed in double quotation marks.

• Each record is completely contained on one line and terminated with the
crlf character combination.

Version 7.2 Page 1 of 4

NF829: AUTODATE for FOCUS Data Sources

Each segment of a FOCUS data source can have a timestamp field that
records the date and time of the last change to the segment. This field can have
any name, but its USAGE format must be AUTODATE. The field will be
populated each time its segment instance is updated. The timestamp is stored
as format HYYMDS and can be manipulated for reporting purposes using any
of the date-time functions.

Creating and Using the AUTODATE Field
In each segment of a FOCUS data source, you can define a field with USAGE =
AUTODATE. The AUTODATE field cannot be part of a key field for the
segment. Therefore, if the SEGTYPE is S2, the AUTODATE field cannot be the
first or second field defined in the segment.

The AUTODATE format specification is supported only for a real field in the
Master File, not in a DEFINE or COMPUTE command or a DEFINE in the
Master File. However, you can use a DEFINE or COMPUTE command to
manipulate or reformat the value stored in the AUTODATE field.

After adding an AUTODATE field to a segment, you must REBUILD the data
source. REBUILD will not timestamp the field. It will not have a value until a
segment instance is inserted or updated.

If a user-written procedure updates the AUTODATE field, the user-specified
value will be overwritten when the segment instance is written to the data
source. No message is generated to inform the user that the value was
overwritten.

NF829: AUTODATE for FOCUS Data Sources

Version 7.2 Page 2 of 4

The AUTODATE field can be indexed; however, it is recommended that you
make sure that the index is necessary because of the overhead needed to keep
the index up to date each time a segment instance changes.

If you create a HOLD file that contains the AUTODATE field, it will be
propagated to the HOLD file as a date-time field with the format HYYMDS.

Syntax How to Define an AUTODATE Field for a Segment
FIELDNAME = name, ALIAS = alias, {USAGE|FORMAT} = AUTODATE ,$

where:
name

Is any valid field name.
alias

Is any valid alias.

Example Defining an AUTODATE Field

The EMPDATE data source can be created by doing a REBUILD DUMP of the
EMPLOYEE data source and a REBUILD LOAD into the EMPDATE data
source. The Master File for EMPDATE is the same as the Master File for
EMPLOYEE with the FILENAME changed and the DATECHK field added:
FILENAME=EMPDATE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=DATECHK, ALIAS=DATE, USAGE=AUTODATE, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 .
 .
 .

NF829: AUTODATE for FOCUS Data Sources

Version 7.2 Page 3 of 4

To add the timestamp information to EMPDATE, run the following procedure:
SET TESTDATE = 20010715
TABLE FILE EMPLOYEE
PRINT EMP_ID CURR_SAL
ON TABLE HOLD
END

MODIFY FILE EMPDATE
FIXFORM FROM HOLD
MATCH EMP_ID
ON MATCH COMPUTE CURR_SAL = CURR_SAL + 10;
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT
DATA ON HOLD
END

You can then reference the AUTODATE field in a DEFINE or COMPUTE
command, or display it using a display command. The following request
computes the number of days difference between the date 7/31/2001 and the
DATECHK field:
DEFINE FILE EMPLOYEE
DATE_NOW/HYYMD = DT(20010731);
DIFF_DAYS/D12.2 = HDIFF(DATE_NOW, DATECHK, ’DAY’, ’D12.2’);
END
TABLE FILE EMPDATE
PRINT DATECHK DIFF_DAYS
WHERE LAST_NAME EQ ’BANNING’
END

The output is:
DATECHK DIFF_DAYS
------- ---------
2001/07/15 15:10:37 16.00

NF829: AUTODATE for FOCUS Data Sources

Version 7.2 Page 4 of 4

Reference Usage Notes for AUTODATE

• PRINT * and PRINT.SEG.fld will print the AUTODATE field.

• To display the AUTODATE field on a CRTFORM, Winform, or in FSCAN,
you must explicitly reference the AUTODATE field name in the request.
CRTFORM * will not display the field. CRTFORM always treats the
AUTODATE field as a display only (D.) field.

• MODIFY FIXFORM and FREEFORM requests capture the system
date/time per transaction.

• SU updates the AUTODATE field per segment using the date and time on
the FOCUS Database Server.

• Maintain will process AUTODATE fields at COMMIT time.

• DBA is permitted on the AUTODATE field; however, when unrestricted
fields in the segment are updated, the system will update the AUTODATE
field.

• The AUTODATE field does not support the following attributes: MISSING,
ACCEPT, and HELPMESSAGE.

Version 7.2 Page 1 of 5

NF833: Creating Tab-Delimited Files

Format TABT enables you to create tab-delimited output files. A tab-delimited
file is a sequential data source in which the data values are separated by tabs.
You can use the HOLD command to automatically generate an accompanying
Master File, or use the SAVE command to generate just the output file.

Format TABT enables you to create tab-delimited output files in which leading
blanks are removed from numeric fields and trailing blanks are removed from
alphanumeric fields, so that only significant data is propagated to the output file.
Column headings are included as the first record in the output file. Character
values are not enclosed in double quotation marks.

A Master File is created for format TABT when the command used to create the
output file is HOLD. The SUFFIX in the generated Master File is TABT.

All values are stored in their actual formats. The following display options are
propagated to the output file: leading zeros, zero suppression, and scientific
notation. Master file formats generated are exactly as in FORMAT ALPHA.

Syntax How to Save Report Output in Tab-Delimited Format
[ON TABLE] command [AS filename] FORMAT TABT

where:
ON TABLE

Is the syntax for creating an output file within a TABLE request.
command

Can be one of the following:

HOLD creates a Master File to accompany the generated output file.

NF833: Creating Tab-Delimited Files

Version 7.2 Page 2 of 5

PCHOLD is used to automatically send the output file to a client application
when issued in an environment that supports automatic file transfers.

SAVE creates an output file with no accompanying Master File.
filename

Is the file name of the resulting output file on VM, UNIX, or NT, or the
ddname on OS/390.

The tab-delimited output file is a variable-length text file containing the column
headings and data values from the report request. Leading blanks are stripped
from numeric fields (format codes D, F, I, or P) and trailing blanks are stripped
from character fields (format code A). Corresponding columns in each record
may have different lengths because of the removal of leading and trailing
blanks. On VM, the filetype is TAB. On UNIX and Windows NT, the extension is
.tab. Note: A Master File is created if the HOLD command is used to create the
output file. In the accompanying Master File, the SUFFIX value is TABT.

Reference Usage Notes for Tab-Delimited Output Files

• You must be aware of the formats and lengths supported by the application
for which you are creating the output file. Field lengths created by the
HOLD or SAVE command are those supported as USAGE formats in a
Master File. You must take into account any limits of the destination
application.

• If you use field-based reformatting in the request that creates the output
file, the field lengths in the output file are the lengths from the original
Master File or DEFINE command.

NF833: Creating Tab-Delimited Files

Version 7.2 Page 3 of 5

• If the request that creates the output file retrieves missing data described
with MISSING=ON in the original Master File, the output file will contain a
blank if the original field was alphanumeric, or a zero if the field was
numeric.

• As with all HOLD files, column headings specified with an AS phrase are
ignored unless you set ASNAMES to ON. When ASNAMES is set ON, the
value from the AS phrase, up to but not including the comma, becomes the
field name in the HOLD Master File.

• Regardless of the ASNAMES setting, the column heading in the TABT data
file is the value of the AS phrase exactly as specified in the request.

• The SAVB command is not supported.
• The TABLEF command is not supported.
• The OVER phrase is not supported.
• Text fields are not supported.
• There is a 32K record length limit in the output file
• Blank fieldnames will show up as blank column titles. This may result in an

error when attempting to use the file as input to various applications.

• A double-precision number expressed in scientific notation is stored with
the character D before the exponent. For example, the command PRINT
RETAIL_COST/D9.3E prints the values in the following form: 0.888D+04.
Some applications may not understand this value, as they generally expect
an E before the exponent. Printing the value as single precision floating
point instead of double precision produces a value with an E before the
exponent. For example, format F9.3E produces the value 0.888E+04.

NF833: Creating Tab-Delimited Files

Version 7.2 Page 4 of 5

Example Creating a Tab-Delimited File
TABLE FILE MOVIES
PRINT COPIES TITLE WHOLESALEPR AS ’WHOLESALE,PRICE’
BY CATEGORY
WHERE CATEGORY EQ ’ACTION’ OR ’CHILDREN’
 ON TABLE HOLD AS TABTH FORMAT TABT
END

Leading blanks are removed from numeric fields and trailing blanks are
removed from character fields in the TABTH output file, and the first row
contains column headings. The AS phrase becomes the column heading for the
WHOLESALEPR field regardless of the ASNAMES setting.

The following shows the generated output file. The right arrows represent the
tab characters:

NF833: Creating Tab-Delimited Files

Version 7.2 Page 5 of 5

With ASNAMES set to OFF, the TABTH Master File is:
FILE=TABTH ,SUFFIX=TABT
SEGNAME=TABTH ,SEGTYPE=S01
FIELDNAME =CATEGORY ,E01 ,A8 ,A08 ,$
FIELDNAME =COPIES ,E02 ,I3 ,A03 ,$
FIELDNAME =TITLE ,E03 ,A39 ,A39 ,$
FIELDNAME =WHOLESALEPR ,E04 ,F6.2 ,A06 ,$

With ASNAMES set to ON, the TABTH Master File is:
FILE=TABTH ,SUFFIX=TABT
SEGNAME=TABTH ,SEGTYPE=S01
FIELDNAME =CATEGORY ,E01 ,A8 ,A08 ,$
FIELDNAME =COPIES ,E02 ,I3 ,A03 ,$
FIELDNAME =TITLE ,E03 ,A39 ,A39 ,$
FIELDNAME =WHOLESALE ,E04 ,F6.2 ,A06 ,$

Version 7.2 Page 1 of 4

NF880: Exit on Error

Using the SET ERROROUT command, you can control how a batch FOCUS
job step or an EDA server responds to error conditions encountered in a
procedure.

The ERROROUT setting is ignored in an interactive session. If you issue the
SET ERROROUT command in an interactive setting, the following message is
returned:
SETTING IGNORED IN INTERACTIVE MODE

Controlling Batch Error Processing
With the ON setting, the result is as follows when an error message is
generated:

• In a batch FOCUS job, the return code is set to 8 and the job step
terminates. The user can then test this return code in subsequent job steps.

• For EDA, the procedure terminates and the error message is returned to
the client.

In addition, the following message displays to inform the user why the program
terminated:
Exiting due to Exit on Error

Warning messages do not invoke this behavior. When a warning is generated,
processing continues as normal.

With the OFF setting, no return code is set. Depending on the specific
message, FOCUS determines whether FOCEXEC processing continues.

NF880: Exit on Error

Version 7.2 Page 2 of 4

Users can check a Dialogue Manager variable such as &FOCERRNUM and
issue the following command to terminate FOCUS and set n as the return code:
-QUIT FOCUS n

On VM, if you include the QUEUE ’FIN’ command in your batch FOCUS EXEC,
and if FOCUS terminates as a result of the ERROROUT setting, the queued
FIN command will cause CMS to issue a return code of -3, which will overwrite
the ERROROUT return code. If you want to see the return code issued by Exit
on Error, you can remove the QUEUE ’FIN’ command from the EXEC and
include the following command immediately after the ’EXEC FOCUS’ command
to exit and issue the return code:
exit rc

Syntax How to Control Batch Error Processing
SET ERROROUT = {ON|OFF}

where:
ON

In response to any error in a batch FOCUS job step, sets the return code to
8 and terminates the job step. In response to an error on an EDA server,
terminates the procedure and returns the error message to the client. This
setting is ignored in an interactive session.

OFF

Does not set a return code or automatically terminate a job step or
procedure in response to any error message. This is the default value.

NF880: Exit on Error

Version 7.2 Page 3 of 4

Reference Usage Notes for Exit on Error

• In unique cases, Information Builders may choose to reclassify specific
errors or warnings or exempt specific errors from this behavior.

• The SET ERROROUT command can be issued in any supported profile, in
the batch input stream, or in a FOCEXEC. It is not supported in a TABLE
request, using ON TABLE SET syntax.

• If the user code handles return codes by using a technique such as
checking &FOCERRNUM having this feature enabled will cause the
program to exit and, therefore, ignore the error handling logic. In this
situation, the user should set ERROROUT to OFF in order to have the error
handling logic respected.

Example Using Exit on Error on OS/390

Consider the following in-stream request in a batch FOCUS job:
//SYSIN DD *
SET ERROROUT = ON
DYNAM ALLOC DD MYFILE DS USER1.MYFILE.DATA SHR REU
TABLE FILE NOMFD
PRINT *
ON TABLE HOLD AS MYFILE
END
FIN
//*
//COPYIT EXEC PGM=IEBCOPY,COND=(4,LT),REGION=2M
 .
 .
 .

NF880: Exit on Error

Version 7.2 Page 4 of 4

The JES log contains the following messages:
 TABLE FILE NOMFD
(FOC205) THE DESCRIPTION CANNOT BE FOUND FOR FILE NAMED: NOMFD
 BYPASSING TO END OF COMMAND
Exiting due to Exit on Error...

The FOCUS job step terminates in response to the FOC205 error, and the
return code for the job step is set to 8.

The COPYIT job step does not execute because the return code is 8, and the
parameter COND=(4,LT) means that it only executes if all preceding job steps
terminate with a return code between zero and four.

Example Using Exit on Error on VM

The following EXEC executes FOCUS in batch on VM. It contains the exit rc
command to return the FOCUS return code to VM. The ERROUT FOCEXEC
sets ERROROUT to ON and issues a request that results in an error condition:
ATTACH PMSDJG 191 ’(’ M
’ATTACH FOCLIB’
’ATTACH F7029907 294 (F ’
GLOBAL TXTLIB FUSELIB
QUEUE ’EX ERROUT1’
’EXEC FOCUS’
exit rc

The VM Batch status shows the return code of 8:
,LISXXC01 Batch Job List VM:Batch
 --
Command Jobname Jobid Owner Class -------- Status: CURRENT -------- PREV
 JOB6296 6296 PMSDJG A completed; Return Code: 8 END

Version 7.2 Page 1 of 4

NF849: Extended Currency Symbol Support

By default, the M and N display options print the currency symbol associated
with the code page being used by your system. For example, when using the U.
S. code page, the M and N options display the dollar sign ($).

Extended currency symbol format options allow you to display the following
currency symbols regardless of the code page used: U. S. dollar, euro, British
pound, and Japanese yen.

The M and N options continue to operate as in prior releases.

Extended Currency Symbol Format Options
The extended currency symbol format options consist of two characters: an
exclamation point followed by one of the supported upper or lower case letters.
An upper case letter displays a floating currency symbol on each detail line. A
lower case letter displays a fixed currency symbol to the left of the field on the
first detail line of each report page. These options are valid for numeric formats
(I, D, F, and P).

NF849: Extended Currency Symbol Support

Version 7.2 Page 2 of 4

Syntax How To Display an Extended Currency Symbol

Use the following character combinations as the final two characters in any
numeric display format:

Reference Usage Notes for Extended Currency Symbol
Support

• Format specifications are limited to a total of eight characters.

• The extended currency option must be the last option in the format.

• The extended currency option cannot be used in the same format
specification as M or N.

Display Option Description Example

!d Fixed dollar sign D12.2!d

!D Floating dollar sign D12.2!D

!e Fixed euro symbol F10.2!e

!E Floating euro symbol F10.2!E

!l Fixed British pound sign D12.1!l

!L Floating British pound sign D12.1!L

!y Fixed Japanese yen symbol I9!y

!Y Floating Japanese yen
symbol

I9!Y

NF849: Extended Currency Symbol Support

Version 7.2 Page 3 of 4

• In order to display or print the extended currency symbols, you must be
sure they are supported by the fonts accessible to your emulation software
or printer.

• The symbol displayed by the M and N options is dependent on the code
page being used. The !d and !D options always display a dollar sign,
regardless of the code page.

• Using a fixed currency symbol places the symbol only on the first line of
each report page. If you use field-based reformatting to display multiple
currency symbols in one report column, only the symbol associated with
the first row will display. In this case, you should use floating currency
symbols.

• Lower case letters are transmitted as upper case letters by the terminal I/O
procedures. Therefore, the fixed extended currency symbols can only be
specified in a FOCEXEC.

• In TSO, when you display report output without HotScreen (SET
SCREEN=OFF), by default the extended currency symbols do not display
because the terminal I/O procedures translate all terminal output to
characters that appear in USA EBCDIC keyboard layouts and code charts.
You can change this default behavior with the following command:
SET TRANTERM = {ON|OFF}

where:
ON

Does not display extended currency symbols. ON is the default.
OFF

Displays extended currency symbols.

NF849: Extended Currency Symbol Support

Version 7.2 Page 4 of 4

Example Displaying Extended Currency Symbols

The following request uses field-based reformatting to display the Japanese
yen on the report row that represents Japan, the British pound on the row that
represents England, and the euro on the row that represents Italy. Note that the
comma inclusion display option (C) in the format for England is specified prior
to the currency option:
DEFINE FILE CAR
CFORMAT/A8 = DECODE COUNTRY(’ENGLAND’ ’F12.1C!L’ ’JAPAN’ ’D12!Y’
 ELSE ’D12.2!E’);
END

TABLE FILE CAR
PRINT SALES/CFORMAT DEALER_COST/CFORMAT
BY COUNTRY
 WHERE COUNTRY EQ ’ENGLAND’ OR ’JAPAN’ OR ’ITALY’
 WHERE SALES GT 0
END

The output is:

Version 7.2 Page 1 of 1

NF886: Reusable MSO/CICS Control Blocks

MSO provides a facility to re-use orphaned control blocks. If you time out or get
disconnected, the control block that you are using goes into a pool. If you return
under normal conditions you will get your old control block back, as long as it is
still available.

If you try and restart your MSO connection and the MSO/CICS environment
has run out of control blocks the following message is displayed:
FOCUS session ended: Error unknown or no longer available

Version 7.2 Page 1 of 21

NF898: SQL Support for Date-Time Formats

The relational data adapters and the SQL Translator now support the date-time
data type introduced in FOCUS 7.1. This data type accurately describes
RDBMS TIME, DATE, and TIMESTAMP columns. The AUTODB2 and
AUTOSQL procedures have been updated to create Master Files that take
advantage of this support. In addition, AUTODB2 now supports the DDF
(Distributed Data Facility) feature, which allows three-part table names in which
the first part of the name specifies a location.

Date-Time Support for the Relational Data Adapters
The date-time data type (format H) can be used to represent time, date, and
timestamp data types available in many relational data sources.

In a Master File, the USAGE format for a date-time field describes which
components to display and various options for displaying them. In Master Files
for relational data sources, date-time fields must also have an ACTUAL format
that indicates how the date-time value is stored in the data source.

ACTUAL formats supported for relational date-time values are listed in the
following table. The corresponding USAGE must be an H format.

RDBMS RDBMS DATA TYPE ACTUAL FORMAT

DB2 and SQL/DS TIME HHIS

TIMESTAMP HYYMDm

DATE DATE

Oracle DATE HYYMDS

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 2 of 21

Reference Using Date-Time Columns in Requests

• These data types are supported for Direct SQL Passthru, TABLE, MODIFY,
Maintain, and SQL Translator requests. They are not supported for Static
TABLE or MODIFY requests.

• AUTODB2, AUTOSQL, and CREATE FILE support these data types.

• Date-time manipulation handled by the FOCUS date-time functions is not
converted to SQL.

• The only optimized selection criteria on date-time columns (criteria passed
to the RDBMS in the generated SQL) are relational expressions that are
valid in an IF clause. For example, comparison of a date-time column with a
date-time literal value is optimized, but comparison of a date-time column
with another date-time column is not optimized.

Example Using a Date-Time Column in a DB2 Table

The DB2 table named EMPINFO has the following columns:

• HIRE_DATE, with ACTUAL = DATE.

• HIRE_DATE_TIME, with ACTUAL = HYYMDm.

• HIRE_TIME, with ACTUAL = HHIS.

The EMPINFO Master File follows:

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 3 of 21

FILENAME=EMPINFO ,SUFFIX=SQLDS,$

SEGNAME=EMPINFO ,SEGTYPE=S0,$
 FIELD=EMP_ID ,ALIAS=EID ,USAGE=A9 ,ACTUAL=A9 ,$
 FIELD=LAST_NAME ,ALIAS=LN ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELD=FIRST_NAME ,ALIAS=FN ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELD=HIRE_DATE ,ALIAS=HDT ,USAGE=YMD ,ACTUAL=DATE ,$
 FIELD=DEPARTMENT ,ALIAS=DPT ,USAGE=A10 ,ACTUAL=A10,
 MISSING=ON,$
 FIELD=CURRENT_SALARY ,ALIAS=CSAL ,USAGE=P9.2 ,ACTUAL=P4 ,$
 FIELD=CURR_JOBCODE ,ALIAS=CJC ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELD=ED_HRS ,ALIAS=OJT ,USAGE=F6.2 ,ACTUAL=F4,
 MISSING=ON,$
 FIELD=BONUS_PLAN ,ALIAS=BONUS_PLAN ,USAGE=I4 ,ACTUAL=I4 ,$
 FIELD=HIRE_DATE_TIME ,ALIAS=HDTT ,USAGE=HYYMDm ,ACTUAL=HYYMDm ,$
 FIELD=HIRE_TIME ,ALIAS=HT ,USAGE=HHIS ,ACTUAL=HHIS ,$

The following request prints the date-time columns:
TABLE FILE EMPINFO
PRINT HIRE_DATE HIRE_DATE_TIME HIRE_TIME
BY LAST_NAME BY FIRST_NAME
END

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 4 of 21

The output is:
LAST_NAME FIRST_NAME HIRE_DATE HIRE_DATE_TIME HIRE_TIME
--------- ---------- --------- -------------- ---------
BANNING JOHN 82/08/01 1982/08/01 16:41:29.453858 16:41:29
BLACKWOOD ROSEMARIE 82/04/01 1982/04/01 08:41:26.584838 08:41:26
CROSS BARBARA 81/11/02 1981/11/02 12:30:01.398742 12:30:01
GREENSPAN MARY 82/04/01 1982/04/01 15:30:17.194398 15:30:17
IRVING JOAN 82/01/04 1982/01/04 15:45:04.394574 15:45:04
JONES DIANE 82/05/01 1982/05/01 14:43:56.348577 14:43:56
MCCOY JOHN 81/07/01 1981/07/01 09:39:46.492837 09:39:46
MCKNIGHT ROGER 82/02/02 1982/02/02 17:36:21.685746 17:36:21
ROMANS ANTHONY 82/07/01 1982/07/01 07:22:34.784738 07:22:34
SMITH MARY 81/07/01 1981/07/01 07:36:25.838573 07:36:25
 RICHARD 82/01/04 1982/01/04 08:02:02.994847 08:02:02
STEVENS ALFRED 80/06/02 1980/06/02 10:35:42.275949 10:35:42

AUTODB2 Support for DDF
AutoDB2 now supports retrieval from and Master File creation for tables from
secondary locations. When a location is specified, the TABLENAME attribute in
the Access File consists of three parts: location.creator.tablename.

During installation, a list of valid locations is included in the AUTODB2 utility.
The list appears on the main menu, just below the row in which the user can
enter the location. The first value in the list appears by default in the main
menu. The user can enter any one the values in the list. Entering a value not on
the list generates the following error message:
PLEASE ENTER A VALID LOCATION.

Table, column, and index information is retrieved from the selected location’s
catalog tables. The location is included in a three-part table name in the Access
File if it is not blank.

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 5 of 21

Note: The menu option ’Use Creator Name in AFD?=N’ is ignored when a non-
blank location is provided. That is, the creator is included in the three-part table
name even when you specify to not include it on the main menu.

The value for location that you include on the menu is logged to the parameter
log file when you press PF4 to log parameters. The next session of
AutoDB2/SQL will display the logged value.

Procedure How to Install AUTODB2 DDF Support

Create a list of valid locations by editing the following lines in the AUTODB2
FOCEXEC. Uncomment the -DEFAULT command and enter up to six location
names. The start and end of the list must be enclosed in single quotation
marks, and each name must be eight characters long, padded on the right with
blanks if necessary:
-
*===
-* Change &LOC_LIST to contain possible location values, padded to 8
-* characters, separated by commas. The entire string is enclosed in
-* single quotes. Include a maximum of 6 locations. The first entry is
-* the default. Example:
-* -DEFAULT &LOC_LIST=’PROD ,TEST ,DEVELOPM’
-* <------>,<------>,<------>,<------>,<------>,<------>
-DEFAULT &LOC_LIST=’ ’

A blank location name designates the location where the plan was bound.

Example Creating a Location List

With the following list, blank will be the default value that appears on the main
menu.
-DEFAULT &LOC_LIST=’ ,LOCDSNA ,LOCDSNC ’

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 6 of 21

Note: Specifying blank (’ ’) as the first option indicates that the default is the
location where the plan was bound.

AUTODB2/SQL Support for TIME and TIMESTAMP
AUTODB2/SQL now supports native RDBMS TIMESTAMP and TIME formats.
You can provide any legal format on the main menu for TIMESTAMP and TIME
column types. All TIMESTAMP and TIME columns will be described with the
format you provide. The default USAGE format for TIMESTAMP is HYYMDm
and the default format for TIME is HHIS. Values are verified, and invalid entries
generate an error. To provide backward compatibility, the previously used
values of A26 (TIMESTAMP) and A8 (TIME) can still be entered.

Note: These formats are case sensitive. You must type in the values on the
AUTODB2/SQL menu in the proper case. The values for TIMESTMP and TIME
formats that you include on the menu are logged to the parameter log file when
you press PF4 to log parameters. The next session of AUTODB2/SQL will
display the logged values.

AUTODB2/SQL Screens That Support DDF and Date-Time
Formats

The AUTODB2/SQL main menu now includes entries for the location
parameter and for TIME and TIMESTAMP formats. (For detailed instructions on
entering information on these screens, see the DB2 and SQL/DS Read/Write
Interface User’s Manual.)

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 7 of 21

The default values display initially. However, you can change these defaults by
entering your preferences and logging them to the parameter log file by
pressing PF4:
Main Menu Master File Generation Facility for DB2
 Master Filename ================> timestmp

 Location => locdsna Creator => USER1 Table => TIMESTMP
 Location values: ,LOCDSNA ,LOCDSNC
 Database Name ================> *
 Description will be a member of:
 Master Target PDS => PMSLCC.MASTER.DATA
 Access Target PDS => PMSLCC.FOCSQL.DATA
 FOCDEF Target PDS => PMSLCC.FOCDEF.DATA
 Replace Existing Description?=> Y (Y/N)
 Read/Write Functionality =====> W (R=Read,W=Write)
 Date Display Format ==========> YYMD
 Time Stamp Display Format ====> HYYMDm
 Time Display Format ==========> HHIS
 Display Decimal when SCALE=0?=> Y (Y/N)
 Use LABEL as Column Heading? => N (Y/N)
 Use Remarks for FOCDEF? ======> N (Y/N)
 Use Creator Name in AFD? =====> Y (Y/N)
 Use Long Fieldnames? =========> Y (Y/N)
 Parm File => PMSLCC.FOCSQL.DATA

PF1=Help PF2=Restart PF3=Exit PF4=Log PF5=MFD PF6=AFD PF9=Picture PF10=List

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 8 of 21

The table selection screen now also displays the location parameters for the list
of tables generated by your selections on the main menu:
Master: Master File Generation Facility for DB2
TIMSTMP ==Table Selection==

Place an ’R’ next to the Table to be the root of the Master.
Place a ’C’ next to all other Tables to be described as children.
Enter ’Y’ next to all selected Tables that will be updated.

Location Creator Name DB2 Table Name Select (R/C) Write (Y/N)
-------- ------------ -------------- ------------ -----------
LOCDSNA PMSLCC TIMESTMP r Y

PF1=Help PF3=End PF4=Add Tables PF7=Up PF8=Down

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 9 of 21

When the Master and Access Files are generated, you return to the main menu
with the DESCRIPTION CREATED message at the bottom:
Main Menu Master File Generation Facility for DB2
 Master Filename ================> TIMSTMP

 Location => LOCDSNA Creator => PMSLCC Table => TIMESTMP
 Location values: ,LOCDSNA ,LOCDSNC
 Database Name ================> *
 Description will be a member of:
 Master Target PDS => PMSLCC.MASTER.DATA
 Access Target PDS => PMSLCC.FOCSQL.DATA
 FOCDEF Target PDS => PMSLCC.FOCDEF.DATA
 Replace Existing Description?=> Y (Y/N)
 Read/Write Functionality =====> W (R=Read,W=Write)
 Date Display Format ==========> YYMD
 Time Stamp Display Format ====> HYYMDm
 Time Display Format ==========> HHIS
 Display Decimal when SCALE=0?=> Y (Y/N)
 Use LABEL as Column Heading? => N (Y/N)
 Use Remarks for FOCDEF? ======> N (Y/N)
 Use Creator Name in AFD? =====> Y (Y/N)
 Use Long Fieldnames? =========> Y (Y/N)
 Parm File => PMSLCC.FOCSQL.DATA
 DESCRIPTION CREATED
PF1=Help PF2=Restart PF3=Exit PF4=Log PF5=MFD PF6=AFD PF9=Picture PF10=List

At this point, you can press PF5 to open the Master File or PF6 to open the
Access File in TED.

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 10 of 21

The generated Master File follows:
$$$ CREATED BY AUTODB2 ON 11/14/01 AT 12.46.37 BY USER1
FILENAME=TIMSTMP,SUFFIX=SQLDS,$

SEGNAME=’TIMESTMP’,SEGTYPE=S0,$
FIELD=ALPHA8 ,ALPHA8 ,A8 ,A8 ,MISSING=ON,$
FIELD=DATE1 ,DATE1 ,YYMD ,DATE ,MISSING=ON,$
FIELD=TIME1 ,TIME1 ,HHIS ,HHIS ,MISSING=ON,$
FIELD=TIMESTMP ,TIMESTMP ,HYYMDm ,HYYMDm,MISSING=ON,$

The generated Access File follows:
$$$ CREATED BY AUTODB2 ON 11/14/01 AT 12.46.37 BY USER1
$$$ FILENAME=TIMSTMP,SUFFIX=SQLDS,$

SEGNAME=’TIMESTMP’,TABLENAME=’"LOCDSNA"."USER1"."TIMESTMP"’,
KEYS=00,WRITE=YES,KEYORDER=LOW,$

Executing AUTODB2 in Batch

To execute AUTODB2 in batch and take advantage of DDF and TIMESTMP
support, pass values to the FOCEXEC using the following syntax:
EX AUTODB2 BATCH=Y,MASTER=master,CREATOR=creator,TABLENAME=table
 [,option1=value1 ...]

where:
master

Is the 1- to 8-character name of the Master File that will be generated.
creator

Is the 1- to 8-character name of the table’s creator.
table

Is the 1- to 18-character name of the RDBMS table.

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 11 of 21

option1 ...

Is an option listed in the following chart.
value1 ...

Is an acceptable value for the corresponding option.

The following options are available:

Option
Name

Values Description Default

LOC location Location value First value in the
location list

REPLACE Y=Yes,N=No Replace existing
description

N

FUNC R=Read,
W=Write

Read/Write Functionality W

DATEDISP format Date Display Format YYMD

TIMESTMP format Time Stamp Display
Format

HYYMDm

TIME format Time Display Format HHIS

DECIMAL Y=Yes,N=No Display Decimal when
SCALE=0?

Y

LABELS Y=Yes,N=No Use Labels as Column
Heading?

N

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 12 of 21

Option
Name

Values Description Default

REMARKS Y=Yes,N=No Use Remarks for
FOCDEF?

N

CREATAFD Y=Yes,N=No Use Creator Name in
AFD?

Y

LONG Y=Yes,N=No Use Long Filednames? Y

USERID userid High level qualifier of
output data sets
(required if target data
set names not provided -
MVS only)

MFDLIST Y=Yes,N=No Store list of Master Files
created per session

N

MASTERDATA dsn Master Target PDS
(MVS only)

&USERID.MASTER.DATA

FOCSQLDATA dsn Access Target PDS
(MVS only)

&USERID.FOCSQL.DATA

FOCDEFDATA dsn FOCDEF Target PDS
(MVS only)

&USERID.FOCDEF.DATA

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 13 of 21

Note the addition of LOC=, TIMESTMP=, and TIME= to this list. The default for
LOC is the first value in LOC_LIST (provided at installation time). If you want a
value of blank, use blank as the first value in LOC_LIST or execute AUTODB2
with the following syntax:
EX AUTODB2 LOC=’ ’ .

Reference Usage Notes for AUTODB2/SQL

• AUTODB2/SQL is a FOCEXEC that has a corresponding Master File. The
FOCEXEC and Master File must be from the same release of FOCUS. If
you attempt to use the old version of the Master File with the new version of
the FOCEXEC, the following message is generated:
PROGRAM AND FILE DESCRIPTION DATES DO NOT MATCH: AUTODB2 date
UNABLE TO EXECUTE AUTODB2 - PLEASE REINSTALL

FOCEXEC execution is terminated, and you return to the FOCUS prompt.

• As of FOCUS 7.0.9, AUTODB2 no longer needs the DB2CAT Master and
Access Files and AUTOSQL no longer needs the SYSCOL Master File or
INDEXES Access File. These Master and Access Files remain on the
distribution tape. They are copied as part of the installation on VM; MVS
instructions tell you to copy them also. However, Information Builders no
longer certifies the accuracy of these Master and Access Files with future
RDBMS catalog table changes.

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 14 of 21

Reference AUTODB2/SQL Error Messages

Not using the appropriate AUTODB2/SQL Master File generates the following
message:
PROGRAM AND FILE DESCRIPTION DATES DO NOT MATCH: AUTODB2 date
UNABLE TO EXECUTE AUTODB2 - PLEASE REINSTALL

supplying an invalid location value generates the following
message:

PLEASE ENTER A VALID LOCATION

 Supplying an invalid USAGE format for TIMESTAMP generates
the following message:

INVALID TIME STAMP DISPLAY FORMAT

Supplying an invalid USAGE format for TIME generates the
following message:

INVALID TIME DISPLAY FORMAT

SQL Translator Support for Date-Time Fields
Several new data types have been defined to the SQL Translator to support
date-time fields in the WHERE predicate or field list of a SELECT statement. In
the following discussion, fff represents the second to three decimal places
(milliseconds) and ffffff represents the second to six decimal places
(microseconds).

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 15 of 21

The following formats are allowed as input to the Translator:

Format USAGE Components

Date YYMD YYYY-MM-DD

Hour HH HH

Hour through minute HHI HH.MM

Hour through second HHIS HH.MM.SS

Hour through millisecond HHISs HH.MM.SS.fff

Hour through
microsecond

HHISsm HH.MM.SS.ffffff

Year through hour HYYMDH YYYY-MM-DD-HH

Year through minute HYYMDI YYYY-MM-DD-HH.MM

Year through second HYYMDS YYYY-MM-DD HH.MM.SS

Year through millisecond HYYMDs YYYY-MM-DD-HH.MM.SS.fff

Year through
microsecond

HYYMDm YYYY-MM-DD-HH.MM.SS.ffffff

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 16 of 21

Notice that:

• Time information may be given to the hour, minute, second, millisecond, or
microsecond.

• The Translator automatically converts date-time literals to the format
required by the RDBMS. Therefore, when you specify a date-time literal,
you can use a hyphen or slash between the date components, a colon or
period between the time components, and a hyphen or space to separate
the date from the time.

Operations on Date-Time Data Supported by the SQL
Translator

Time or timestamp columns can be defined in relational data sources, and date-
time fields can be defined in FOCUS data sources. These are accessible to the
translator. Values can be entered using INSERT and UPDATE statements and
displayed in SELECT statements.

Time or timestamp data items (columns or literals) can be compared in
conditions. Time values or timestamp values can be added or subtracted from
each other, with the result being the number of seconds difference. Expressions
of the form T + 2 DAYS or TS + 5 YEARS are allowed. These expressions will
be translated to calls to the FOCUS date-time functions.

Extracting Date-Time Components Using the SQL Translator

The SQL Translator supports several functions that return components from
date-time values. You can also use the EXRACT statement to extract
components.

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 17 of 21

Syntax Date-Time Functions Accepted by the Translator

The following functions return date-time components as integer values.
Assume x is a date-time value:

Function Return value

YEAR(x) year

MONTH(x) month number

DAY(x) day number

HOUR(x) hour

MINUTE(x) minute

SECOND(x) second

MILLISECOND(x) millisecond

MICROSECOND(x) microsecond

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 18 of 21

Example Using SQL Translator Date-Time Functions

Using the timestamp column TS whose value is ’1999-11-23 07:32:16.123456’:
YEAR(TS) = 1999
MONTH(TS) = 11
DAY(TS) = 23
HOUR(TS) = 7
MINUTE(TS) = 32
SECOND(TS) = 16
MILLISECOND(TS) = 123
MICROSECOND(TS) = 123456

Example Using SQL Translator Date-Time Functions in a
SELECT Statement

Using the DB2 table EMPINFO, consider the following SQL Translator request
that prints the field HIRE_DATE_TIME, the year value, month value, minute
value, and second value:
SQL
SELECT HIRE_DATE_TIME,
YEAR(HIRE_DATE_TIME), MONTH(HIRE_DATE_TIME),
MINUTE(HIRE_DATE_TIME), SECOND(HIRE_DATE_TIME)
FROM EMPINFO;
ECHO ON
END

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 19 of 21

The Translator produces the following Direct SQL Passthru request:
SQL SQLDS
SELECT SQLCOR01.HDTT , YEAR (SQLCOR01.HDTT), MONTH (SQLCOR01.HDTT),
MINUTE (SQLCOR01.HDTT), SECOND (SQLCOR01.HDTT) FROM USER1."EMPINFO"
SQLCOR01
 FOR FETCH ONLY;
END

The following report output is generated:
HDTT E02 E03 E04 E05
---- --- --- --- ---
1980-06-02-10.35.42.275949 1980 6 35 42
1981-07-01-07.36.25.838573 1981 7 36 25
1982-05-01-14.43.56.348577 1982 5 43 56
1982-01-04-08.02.02.994847 1982 1 2 2
1982-08-01-16.41.29.453858 1982 8 41 29
1982-01-04-15.45.04.394574 1982 1 45 4
1982-07-01-07.22.34.784738 1982 7 22 34
1981-07-01-09.39.46.492837 1981 7 39 46
1982-04-01-08.41.26.584838 1982 4 41 26
1982-02-02-17.36.21.685746 1982 2 36 21
1982-04-01-15.30.17.194398 1982 4 30 17
1981-11-02-12.30.01.398742 1981 11 30 1

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 20 of 21

Assume a FOCUS data source called EMPDT has the same fields and formats
as the EMPINFO table. Running the same SQL Translator request against the
FOCUS data source produces the following FOCUS request:
DEFINE FILE EMPDT
SQLDEF01/I5 = HPART(HIRE_DATE_TIME,’YEAR’,’I5’);
SQLDEF02/I5 = INT(SQLDEF01);
SQLDEF03/I3 = HPART(HIRE_DATE_TIME,’MONTH’,’I3’);
SQLDEF04/I3 = INT(SQLDEF03);
SQLDEF05/I3 = HPART(HIRE_DATE_TIME,’MINUTE’,’I3’);
SQLDEF06/I3 = HPART(HIRE_DATE_TIME,’SECOND’,’I3’);
END
TABLEF FILE EMPDT
PRINT HIRE_DATE_TIME SQLDEF02 SQLDEF04 SQLDEF05 SQLDEF06
ON TABLE SET CARTESIAN ON
ON TABLE SET ASNAMES ON
ON TABLE SET HOLDLIST PRINTONLY
END

The report output is the same as that produced using the EMPINFO table. Note
that the SQL Translator functions were converted to DB2 functions in the
request against the DB2 table and were converted to calls to the date-time
functions when run against the FOCUS data source.

NF898: SQL Support for Date-Time Formats

Version 7.2 Page 21 of 21

Syntax Using the SQL Translator EXTRACT Function to
Extract Date-Time Components

You can use the following ANSI standard function to extract date-time
components as integer values:
EXTRACT(component FROM value)

where:
component

Is one of the following: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MILLISECOND, or MICROSECOND.

value

Is a date-time, DATE, TIME, or TIMESTAMP field, constant or expression.

For example, the following are equivalent:
EXTRACT(YEAR FROM TS)
YEAR(TS)

Example Using the EXTRACT Function
SELECT TS, EXTRACT(YEAR FROM TS), EXTRACT(MONTH FROM TS),
EXTRACT(DAY FROM TS) FROM TBL1

This request produces rows similar to the following:

1999-01-01 1999 1 1
2000-03-03 2000 3 3

Version 7.2 Page 1 of 1

NF914: LMF Site Code Warning Message

Each site is required to register its site code as part of the FOCUS installation
process. If this installation step is not completed, users will see the following
warning message every time they enter FOCUS:

 * VIOLATION: *

 * THE SITE CODE FOR YOUR COMPANY WAS NOT REGISTERED *

 * PROPERLY DURING THE FOCUS INSTALLATION PROCESS. *

 * PLEASE CONTACT IBI. "EX READMEF" FOR COMPLETE DETAILS *

Note that all LMF (License Management Facility) site code messages are
warning messages.

Page 1 of 2

7.1 New Features

General Enhancements
NF696: Calling Subroutines Written in REXX
NF750: DATASET in a Master File
NF751: Date-Time Data Type
NF773: Token Delimited Files
NF778: Dialogue Manager TRUNCATE Function
NF779: FOCUS CRTFORM HTML Translation

Reporting Enhancements
NF692: Aggregating and Sorting Report Columns
NF731: Reporting From Independent Paths
NF749: HOLD FORMAT INTERNAL
NF755: Using FILEDEF for Creating Extract Files
NF761: Comma Suppress Edit Format Option
NF762: Percent Edit Format Option
NF766: DEFINE Functions
NF781: Embedding Text Fields in Headings

Raised Limits
NF777: Two-Gigabyte FOCUS Database Support
NF759: Increased Number of Display Fields

7.1 New Features

Page 2 of 2

Performance Enhancements
NF777: Partitioned FOCUS Data Sources

Oracle Data Adapter
NF782: Oracle Data Adapter IXSPACE Setting

Adabas Data Adapter
NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 1 of 3

NF692: Aggregating and Sorting Report Columns

Aggregation and sorting may be applied simultaneously to numeric columns in
your report in one pass of the data.

Syntax How To Sort by a Report Column

The syntax is:
BY [HIGHEST|LOWEST {n}] TOTAL display field

where:
n

Is the number of instances you wish to extract from the data source.
display field

Can be a fieldname, prefixoperator.fieldname or calculated value.

Example Sorting by a Report Column

A BY TOTAL field is treated as a display field when the matrix is created. After
the matrix is created, the output lines are aggregated and re-sorted based on all
of the sort fields. Then the output is produced. For example,

NF692: Aggregating and Sorting Report Columns

Version 7.1 Page 2 of 3

TABLE FILE MOVIES
 SUM LISTPR
 BY CATEGORY
 BY RATING
 BY HIGHEST 5 TOTAL AVE.WHOLESALEPR AS ’AVE,WHOLESALEPR’
 PRINT WHOLESALEPR
 BY CATEGORY
 BY RATING
 WHERE CATEGORY EQ ’CLASSIC’ OR ’MYSTERY’
END

The output is:
 AVE

 CATEGORY RATING WHOLESALEPR LISTPR WHOLESALEPR

 -------- ------ ----------- ------ -----------

 CLASSIC G 40.99 89.95 40.99

 NR 16.08 314.76 14.99

 20.00

 15.99

 10.95

 10.95

 9.99

 40.99

 10.95

 10.99

 15.00

 MYSTERY NR 9.00 19.98 9.00

 PG 9.00 39.96 9.00

 9.00

 PG13 9.00 19.98 9.00

 R 16.19 155.89 15.99

NF692: Aggregating and Sorting Report Columns

Version 7.1 Page 3 of 3

Reference Requirements

You must have an aggregating display command (SUM) for BY TOTAL to work
correctly. A non-aggregating display command (PRINT) simply retrieves the
data without aggregating it. The records will be sorted in either ascending or
descending sequence based on your query.

Version 7.1 Page 1 of 17

NF696: Calling Subroutines Written in REXX

A FOCUS request can now call user-written subroutines coded in REXX. These
routines, also called FUSREXX macros, add a 4GL option to the languages
supported for user-written subroutines.

Using REXX Subroutines
REXX subroutines are supported in the VM/CMS and MVS environments:

• In CMS, a FUSREXX macro can contain either REXX source code or
compiled REXX code created by running the source code through the
REXX compiler. In addition, you can load either type of FUSREXX macro
into memory using the EXECLOAD command. The compilation and load
process reduces the CPU requirements and increases speed. Compilation
also is a security tool, making private information difficult to read.

• In MVS, FOCUS supports source versions of REXX subroutines only.

Because of CPU requirements, the use of FUSREXX routines in large
production jobs should be monitored carefully.

The following notes apply to the examples in this document:

• REXX versions are not necessarily the same in all operating environments.
Therefore, some of the examples may use REXX functions that are not
available in your environment.

• The REXX code is listed, but not fully explained. See your REXX
documentation for information about REXX instructions and functions.

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 2 of 17

Syntax How to Call a REXX User-Written Subroutine

In a DEFINE FILE command:
DEFINE FILE filename
fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);
END

In a DEFINE attribute in the Master File:
DEFINE fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen,
outparm);

In a COMPUTE command:
fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);

In a Dialogue Manager -SET command:
-SET &var = subname(inlen1, inparm1, ..., outlen, outparm);

where:
fieldname

Is the name of the field to receive the return value.
An|In

Is the format of the field to receive return value.
subname

Is the name of the REXX routine.

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 3 of 17

inlen1, inparm1 ...

Are the input parameters. Each parameter consists of a pair of values: a
length and an alphanumeric parameter value. You can supply the name of
an alphanumeric field, an alphanumeric literal, or an expression that
resolves to an alphanumeric value. Up to 13 input parameter pairs are
supported by FOCUS. Each parameter value can be up to 256 bytes long.
Note: Dialogue Manager converts input parameters that consist of numeric
digits to decimal format, regardless of their original data type. Therefore,
you cannot pass numeric input parameters to a REXX routine using -SET.

outlen, outparm

Is the output parameter pair, consisting of a length and a return value. In
most cases, the return value should be alphanumeric, but integer return
values are also supported. The return value can be the name of the field or
Dialogue Manager variable to which the value is returned or its USAGE
format enclosed in single quotation marks. The return value can be a
minimum of one byte long and a maximum (for an alphanumeric value) of
256 bytes. Note: If the value returned is integer, outlen must be 4 because
FOCUS reserves four bytes for integer fields.

&var

Is the name of the Dialogue Manager variable to receive the return value.

REXX subroutines:

• Require input data to be character and should return character output.
Integer return values are also supported, but the output length in the
subroutine call must be four. FOCUS has a 256-byte limit on character
variables. This limit also applies to FUSREXX routines. FUSREXX routines
return variable length data. For this reason, you must supply the length of
the input arguments and the maximum length of the output data.

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 4 of 17

• Do not require any input parameters, but do require one return parameter,
which must return at least one byte of data. It is possible for a FUSREXX
function to need no input, such as a function that returns USERID.

• Do not support floating-point numbers (REXX does not have native floating-
point conversion routines). All numeric fields should be converted to
character format with no commas using a FOCUS function such as EDIT
before being passed to the FUSREXX routine. This prevents FOCUS from
converting numbers to floating point before passing them to the FUSREXX
routine.

• Are not supported in Dialogue Manager -CMS RUN commands.

• On VM/CMS, the FILETYPE of REXX user-written functions is FUSREXX;
they can be stored on any accessed disk.

• On MVS, DDNAME FUSREXX must be allocated to a PDS, and that library
will be searched before other MVS libraries.

• The search order for subroutines is:

1. FUSREXX

2. Standard CMS or MVS search order.

Example Returning the Day of the Week

The FUSREXX routine DOW returns the day of the week an employee was
hired. The routine passes one input parameter pair and one return field pair.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. DAY_OF_WEEK/A9 WITH AHDT= DOW(6,AHDT,9,DAY_OF_WEEK) ;

END

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 5 of 17

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAY_OF_WEEK
END

1. The input field is six bytes long. Data is passed in field AHDT. The hire date
is converted to an alphanumeric field.

2. The return field is up to nine bytes long and is named DAY_OF_WEEK.

The output is:
LAST_NAME HIRE_DATE DAY_OF_WEEK
--------- --------- -----------
STEVENS 80/06/02 Monday
SMITH 81/07/01 Wednesday
JONES 82/05/01 Saturday
SMITH 82/01/04 Monday
BANNING 82/08/01 Sunday
IRVING 82/01/04 Monday
ROMANS 82/07/01 Thursday
MCCOY 81/07/01 Wednesday
BLACKWOOD 82/04/01 Thursday
MCKNIGHT 82/02/02 Tuesday
GREENSPAN 82/04/01 Thursday
CROSS 81/11/02 Monday

The FUSREXX macro is displayed below. The FUSREXX routine reads the
input date, reformats it to MM/DD/YY format, and returns the day of the week
using a REXX DATE call.
/* DOW routine. Return WEEKDAY from YYMMDD format date */
Arg ymd .
Return Date(’W’,Translate(’34/56/12’,ymd,’123456’),’U’)

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 6 of 17

Example Returning Text Format

The REXX function called in this request returns the number of copies of each
classic movie in text format. It passes one input parameter and one return field.

TABLE FILE MOVIES
PRINT TITLE AND COMPUTE

1. ACOPIES/A3 = EDIT(COPIES); AS ’COPIES’
AND COMPUTE

2. TXTCOPIES/A8 = NUMCNT(3,ACOPIES,8,TXTCOPIES);
WHERE CATEGORY EQ ’CLASSIC’
END

1. The input field is 3 bytes long. Data is passed in field ACOPIES. The
COPIES field is converted to an alphanumeric field.

2. The return field is up to 8 bytes long and is named TXTCOPIES.

The output is:
TITLE COPIES TXTCOPIES
----- ------ ---------
EAST OF EDEN 001 One
CITIZEN KANE 003 Three
CYRANO DE BERGERAC 001 One
MARTY 001 One
MALTESE FALCON, THE 002 Two
GONE WITH THE WIND 003 Three
ON THE WATERFRONT 002 Two
MUTINY ON THE BOUNTY 002 Two
PHILADELPHIA STORY, THE 002 Two
CAT ON A HOT TIN ROOF 002 Two
CASABLANCA 002 Two

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 7 of 17

The FUSREXX macro is:
/* NUMCNT routine. Pass a number from 0 to 10, return a character value */
Arg numbr .
data = ’Zero One Two Three Four Five Six Seven Eight Nine Ten’
numbr = numbr + 1 /* so 0 equals 1 element in array */
Return Word(data,numbr)

Example Passing Multiple Arguments

The following example shows how to pass multiple arguments to a FUSREXX
routine. It is an interest calculation using the present salary for the employee
and the employee start date to calculate a present value. It passes four input
parameters and one return field.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. ACSAL/A12 = EDIT(CURR_SAL) ;
3. DCSAL/D12.2 = CURR_SAL ;
4. PV/A12 = INTEREST(6,AHDT,6,’&YMD’,3,’6.5’,12,ACSAL,12,PV) ;

END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
END

1. The first input field is six bytes long. Data is passed in field AHDT. The hire
date is converted to an alphanumeric field.

2. The current salary is converted to an alphanumeric field for use in the
interest calculation.

3. The current salary is converted to a double-precision field to include
commas and a decimal point in the output.

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 8 of 17

4. The second input field is six bytes long. Data is passed as a FOCUS
character variable &YMD in YYMMDD format.

The third input field is a character value of 6.5, which is 3 bytes long to
account for the decimal point in the character string.

The fourth input field is 12 bytes long. This passes the character field
ACSAL.

The return field is up to 12 bytes long and is named PV.

The output is:
LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
--------- ---------- --------- ----- --
STEVENS ALFRED 80/06/02 11,000.00 14055.14
SMITH MARY 81/07/01 13,200.00 15939.99
JONES DIANE 82/05/01 18,480.00 21315.54
SMITH RICHARD 82/01/04 9,500.00 11155.60
BANNING JOHN 82/08/01 29,700.00 33770.53
IRVING JOAN 82/01/04 26,862.00 31543.35
ROMANS ANTHONY 82/07/01 21,120.00 24131.19
MCCOY JOHN 81/07/01 18,480.00 22315.99
BLACKWOOD ROSEMARIE 82/04/01 21,780.00 25238.25
MCKNIGHT ROGER 82/02/02 16,100.00 18822.66
GREENSPAN MARY 82/04/01 9,000.00 10429.03
CROSS BARBARA 81/11/02 27,062.00 32081.82

The FUSREXX macro is displayed below. The REXX format command is used
to format the return value.
/* Simple INTEREST program. dates are yymmdd format */
Arg start_date,now_date,percent,open_balance, .

begin = Date(’B’,Translate(’34/56/12’,start_date,’123456’),’U’)
stop = Date(’B’,Translate(’34/56/12’,now_date,’123456’),’U’)
valnow = open_balance * (((stop - begin) * (percent / 100)) / 365)

Return Format(valnow,9,2)

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 9 of 17

Example Accepting Multiple Tokens in Parameters

FUSREXX routines can accept multiple tokens in a parameter. The following
procedure passes employee information (pay date and monthly gross pay) as
separate tokens in the first parameter. It passes three input parameters and
one return field.

DEFINE FILE EMPLOYEE
1. COMPID/A256 = FN | ’ ’ | LN | ’ ’ | DPT | ’ ’ | EID ;
2. APD/A6 = EDIT(PAY_DATE) ;
3. APAY/A12 = EDIT(MO_PAY) ;
4. OK4RAISE/A1 = OK4RAISE(256,COMPID,6,APD,12,APAY,1,OK4RAISE) ;

END

TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
IF OK4RAISE EQ ’1’
END

1. The first input field is 256 bytes long. Data is passed in field COMPID.
COMPID is the concatenation of several character fields passed as the first
parameter. Each of the other parameters is a single argument.

2. The second input field is six bytes long. Data is passed in field APD. The
pay date is converted to an alphanumeric field.

3. The third input field is 12 bytes long. Data is passed in field APAY. The
monthly gross pay is converted to an alphanumeric field.

4. The return field is up to one byte long and is named OK4RAISE.

The output is:
EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
------ ---------- --------- ----------
071382660 ALFRED STEVENS PRODUCTION

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 10 of 17

The FUSREXX macro is displayed below. Commas separate FUSREXX
parameters. The ARG command specifies multiple variable names before the
first comma and, therefore, separates the first FUSREXX parameter into
separate REXX variables, using blanks as delimiters between the variables.
/* OK4RAISE routine. Parse separate tokens in 1st parm, then more parms*/

Arg fname lname dept empid, pay_date, gross_pay, .

If dept = ’PRODUCTION’ & pay_date < ’820000’
Then retvalue = ’1’
Else retvalue = ’0’

Return retvalue

FUSREXX routines should use the REXX RETURN function to return data to
FOCUS. REXX EXIT is acceptable, but is generally used to end an EXEC, not
a FUNCTION.

Example Returning an Integer Value

It is possible for REXX to return a value that is not character format. The
following example shows how REXX returns an integer value. This example
also shows how the format of the integer field is used as the last field in the
return argument. It passes two input fields and one return field. The FUSREXX
routine NUMDAYS returns the number of days between hire date and date of
increase. Note that the return value for an integer is always four bytes long.

Correct
/* Some FUSREXX function */
Arg input
some rexx process ...
Return data_to_Focus

Not as Clear
/* Another FUSREXX function */
Arg input
some rexx process ...
Exit 0

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 11 of 17

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. ADI/A6 = EDIT(DAT_INC) ;
3. BETWEEN/I6 = NUMDAYS(6,AHDT,6,ADI,4,’I6’) ;

END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAT_INC BETWEEN
IF BETWEEN NE 0
END

1. The first input field is six bytes long. Data is passed in field AHDT. The hire
date is converted to an alphanumeric field.

2. The second input field is six bytes long. Data is passed in field ADI. The
date of increase is converted to an alphanumeric field.

3. The return field is up to six bytes long and is named BETWEEN.

The output is:
LAST_NAME HIRE_DATE DAT_INC BETWEEN
--------- --------- ------- -------
STEVENS 80/06/02 82/01/01 578
STEVENS 80/06/02 81/01/01 213
SMITH 81/07/01 82/01/01 184
JONES 82/05/01 82/06/01 31
SMITH 82/01/04 82/05/14 130
IRVING 82/01/04 82/05/14 130
MCCOY 81/07/01 82/01/01 184
MCKNIGHT 82/02/02 82/05/14 101
GREENSPAN 82/04/01 82/06/11 71
CROSS 81/11/02 82/04/09 158

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 12 of 17

The FUSREXX macro is displayed below. The return value is converted from
REXX character to HEX and formatted to be four bytes long.
/* NUMDAYS. Return number of days between 2 dates in yymmdd format */
/* The value returned will be in hex format
*/

Arg first,second .

base1 = Date(’B’,Translate(’34/56/12’,first,’123456’),’U’)
base2 = Date(’B’,Translate(’34/56/12’,second,’123456’),’U’)

Return D2C(base2 - base1,4)

Example Returning a Date Field From a FUSREXX Macro

FOCUS smart date fields contain the integer number of days since the base
date 12/31/1900. REXX has a date function that can accept and return several
types of date formats, including one called Base format (‘B’) that contains the
number of days since the REXX base date 01/01/0001 (Jan. 1 of the Year 1).

Because input arguments must be alphanumeric, you cannot pass a smart date
field to a REXX subroutine. Therefore, you can either:

• Pass the REXX routine an alphanumeric field with date display options and
have it return a smart date value, if you account for the number of days
difference between the FOCUS base date and the REXX base date and
convert the result to integer.

• Pass the REXX routine a smart date value converted to alphanumeric
format. With this technique, you must account for the difference in base
dates for both the input and output.

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 13 of 17

The following example uses the technique of passing the subroutine an
alphanumeric field with date display options. The FUSREXX macro called
DATEREX1 takes two input arguments: an alphanumeric date in A8YYMD
format and a number of days in character format. It returns a smart date in
YYMD format that represents the input date plus the number of days. The
FOCUS format A8YYMD corresponds to the REXX Standard format (‘S’).

The number 693959 represents the number of days difference between the
FOCUS base date and the REXX base date:
/* REXX DATEREX1 routine. Add indate (format A8YYMD) to days */
Arg indate, days .
Return D2C(Date(’B’,indate,’S’)+ days - 693959, 4)

The following request uses the DATEREX1 macro to calculate the date that is
365 days from the hire date of each employee. The input arguments are the
hire date and the number of days to add. Because HIRE_DATE is in I6YMD
format, it must be converted to A8YYMD before being passed to the macro:
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8YYMD= ADATE; NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX1(8,INDATE,3,’365’,4,NEXT_DATE);
BY LAST_NAME NOPRINT
END

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 14 of 17

The output is:
LAST_NAME FIRST_NAME HIRE_DATE NEXT_DATE
--------- ---------- --------- ---------
BANNING JOHN 82/08/01 1983/08/01
BLACKWOOD ROSEMARIE 82/04/01 1983/04/01
CROSS BARBARA 81/11/02 1982/11/02
GREENSPAN MARY 82/04/01 1983/04/01
IRVING JOAN 82/01/04 1983/01/04
JONES DIANE 82/05/01 1983/05/01
MCCOY JOHN 81/07/01 1982/07/01
MCKNIGHT ROGER 82/02/02 1983/02/02
ROMANS ANTHONY 82/07/01 1983/07/01
SMITH MARY 81/07/01 1982/07/01
SMITH RICHARD 82/01/04 1983/01/04
STEVENS ALFRED 80/06/02 1981/06/02

The following example uses the technique of passing the subroutine a smart
date converted to alphanumeric format. The FUSREXX macro called
DATEREX2 takes two input arguments: an alphanumeric number of days that
represents a smart date, and a number of days to add. It returns a smart date in
YYMD format that represents the input date plus the number of days. Both the
input date and output date are in REXX base date (‘B’) format.

The number 693959 represents the number of days difference between the
FOCUS base date and the REXX base date:
/* REXX DATEREX2 routine. Add indate (original format YYMD) to days */
Arg indate, days .
Return D2C(Date(’B’,indate+693959,’B’) + days - 693959, 4)

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 15 of 17

The following request uses the DATEREX2 macro to calculate the date that is
365 days from the hire date of each employee. The input arguments are the
hire date and the number of days to add. Because HIRE_DATE is in I6YMD
format, it must be converted to an alphanumeric number of days before being
passed to the macro:
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8 = EDIT(ADATE); NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX2(8,INDATE,3,’365’,4,NEXT_DATE);
BY LAST_NAME NOPRINT
END

The report output is the same as that produced by the DATEREX1 macro.

Compiling FUSREXX Macros in CMS
The SUM2 FUSREXX macro takes two amounts as input and returns the sum
in integer format:
/* SUM2 routine. Add amount1 to amount2 and return as integer */
Arg amt1, amt2 .
Return D2C(amt1 + amt2,4)

To compile and compress this FUSREXX macro in CMS, issue the following
command. Note that the file identifier must be in upper case:
rexxcomp SUM2 FUSREXX A (condense

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 16 of 17

A FILELIST of SUM2 * A lists the following files:
SUM2 CFUSREXX A1 F 1024 2 1 1/31/00 12:07:19

SUM2 LISTING A1 V 121 42 1 1/31/00 12:07:19

SUM2 FUSREXX A1 F 80 3 1 1/31/00 12:04:19

The file SUM2 FUSREXX is the original source file. The file SUM2 CFUSREXX
is the compiled version. To call the compiled version in a FOCUS request, you
must rename it to have the file type FUSREXX. The file SUM2 LISTING details
the results of the compilation.

To use the compiled version in a FOCUS request, issue the following
commands. The EXECLOAD command, which loads the routine into memory
and improves performance, is optional:
rename sum2 fusrexx a ssum2 fusrexx a
rename sum2 cfusrexx a sum2 fusrexx a
execload sum2 fusrexx a

Then, in FOCUS, issue the following request:
TABLE FILE EMPLOYEE
PRINT CSAL AND COMPUTE
ASAL/A12 = EDIT(CSAL);
AMOUNT/A4 = ’1000’;
TOTSAL/I6 = SUM2(12, ASAL, 4, AMOUNT, 4, TOTSAL);
END

NF696: Calling Subroutines Written in REXX

Version 7.1 Page 17 of 17

The output is:
 CURR_SAL ASAL AMOUNT TOTSAL
 -------- ---- ------ ------
 $11,000.00 000000011000 1000 12000
 $13,200.00 000000013200 1000 14200
 $18,480.00 000000018480 1000 19480
 $9,500.00 000000009500 1000 10500
 $29,700.00 000000029700 1000 30700
 $26,862.00 000000026862 1000 27862
 $21,120.00 000000021120 1000 22120
 $18,480.00 000000018480 1000 19480
 $21,780.00 000000021780 1000 22780
 $16,100.00 000000016100 1000 17100
 $9,000.00 000000009000 1000 10000
 $27,062.00 000000027062 1000 28062

Version 7.1 Page 1 of 9

NF731: Reporting From Independent Paths

When you report from a multi-path data source, a parent segment may have
children down some paths but not others. The new MULTIPATH parameter
allows you to control whether such a parent segment is omitted from the report
output.

The MULTIPATH setting also affects the processing of selection tests on
independent paths. In prior releases, WHERE or IF tests on separate paths
were considered independently, as if an OR operator connected them.
Therefore, a parent instance was included in the report if at least one of the
paths passed its screening test. However the following warning message was
produced in those cases:
(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA:

The request contains a test on one path, and retrieves data from
another independent path. Records on the independent path will
be retrieved regardless of whether the condition is satisfied on the
tested path. Setting MULTIPATH = COMPOUND will alter this
behavior.

This behavior is consistent with the SIMPLE setting for the MULTIPATH
parameter.

The COMPOUND setting for MULTIPATH eliminates the (FOC144) message
when testing on independent paths. It also treats screening conditions on
separate paths as if they were connected by an AND operator. That is, all paths
must pass their screening tests in order for the parent to be included in the
report output.

NF731: Reporting From Independent Paths

Version 7.1 Page 2 of 9

Retrieving Data From Multiple Paths
The examples for this feature use the following segments from the EMPLOYEE
data source:

E M P IN F O

E M P _ ID
L A S T _ N A M E
F IR S T _ N A M E

S A L IN F O

P A Y _ D A T E
G R O S S

A T T N D S E G

D A T E _ A T T E N D
E M P _ ID

C O U R S E G

C O U R S E _ C O D E
C O U R S E _ N A M E

S H 1 K M

K L U

NF731: Reporting From Independent Paths

Version 7.1 Page 3 of 9

Consider the following request that retrieves data from both paths with
MULTIPATH = SIMPLE:
SET ALL = OFF
SET MULTIPATH = SIMPLE
TABLE FILE EMPLOYEE
PRINT GROSS IN 18 DATE_ATTEND COURSE_NAME
BY LAST_NAME BY FIRST_NAME IN 12
WHERE PAY_DATE EQ 820831
WHERE COURSE_CODE EQ ’103’
END

The following warning message is generated:
(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA:

John Banning has taken no courses but he is included in the report output
because he has an instance on one of the two paths:
LAST_NAME FIRST_NAME GROSS DATE_ATTEND COURSE_NAME
--------- ---------- ----- ----------- -----------
BANNING JOHN $2,475.00 . .
BLACKWOOD ROSEMA $1,815.00 . .
CROSS BARBAR $2,255.00 . .
GREENSPAN MARY $750.00 . .
IRVING JOAN $2,238.50 . .
JONES DIANE $1,540.00 82/05/26 BASIC REPORT PREP FOR PROG
MCCOY JOHN $1,540.00 . .
MCKNIGHT ROGER $1,342.00 . .
ROMANS ANTHON $1,760.00 . .
SMITH MARY $1,100.00 81/11/16 BASIC REPORT PREP FOR PROG
 RICHAR $791.67 . .
STEVENS ALFRED $916.67 . .

NF731: Reporting From Independent Paths

Version 7.1 Page 4 of 9

If you run the same request with MULTIPATH = COMPOUND, John Banning is
omitted from the report output because he has no instances for
COURSE_NAME:
LAST_NAME FIRST_NAME GROSS DATE_ATTEND COURSE_NAME
--------- ---------- ----- ----------- -----------
JONES DIANE $1,540.00 82/05/26 BASIC REPORT PREP FOR PROG
SMITH MARY $1,100.00 81/11/16 BASIC REPORT PREP FOR PROG

The (FOC144) warning message is not generated.

Syntax How to Control Multi-path Processing

Issue the SET MULTIPATH command in one of the following ways:

• From the command level or in a stored procedure:
SET MULTIPATH = {SIMPLE|COMPOUND}

• In a report request:
ON TABLE SET MULTIPATH {SIMPLE|COMPOUND}

where:
SIMPLE

Includes a parent segment in the report output if:

• It has at least one child that passes its screening conditions.

• It lacks any referenced child on a path, but the child is optional (see
Determining if a Segment Is Required).

SIMPLE is the default value for FOCUS for S/390.

NF731: Reporting From Independent Paths

Version 7.1 Page 5 of 9

The (FOC144) warning message is generated when a request screens
data in a multi-path report.
(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA:

The request contains a test on one path, and retrieves data from
another independent path. Records on the independent path will
be retrieved regardless of whether the condition is satisfied on the
tested path. Setting MULTIPATH = COMPOUND will alter this
behavior.

COMPOUND

Includes a parent in the report output if it has all of its required children (see
Determining if a Segment Is Required). The COMPOUND setting does not
generate the (FOC144) warning message. COMPOUND is the default
value for EDA and WebFOCUS.

The segment rule is applied level by level as FOCUS descends the data
source/view hierarchy. That is, a parent segment’s existence depends on the
child segment’s existence and the child segment depends on the grandchild’s
existence, and so on for the full data source tree.

MULTIPATH and SET ALL Combinations
The ALL parameter also affects independent path processing.

NF731: Reporting From Independent Paths

Version 7.1 Page 6 of 9

The following table uses examples from the EMPLOYEE data source to explain
the interaction of ALL and MULTIPATH:

Request MULTIPATH=SIMPLE MULTIPATH=COMPOUND

SET ALL = OFF
PRINT EMP_ID PAY_DATE
 DATE_ATTEND

Shows employees who
have either SALINFO
data or ATTNDSEG
data.

Shows employees who
have both SALINFO and
ATTNDSEG data.

SET ALL = ON
PRINT EMP_ID PAY_DATE
 DATE_ATTEND

Shows employees who
have SALINFO data or
ATTNDSEG data or no
child data at all.

Same as SIMPLE.

SET ALL = OFF
PRINT EMP_ID PAY_DATE
 DATE_ATTEND
WHERE PAY_DATE EQ
980115

Shows employees who
have either SALINFO
data for 980115 or any
ATTNDSEG data.

Produces (FOC144)
message.

Shows employees who
have both SALINFO
data for 980115 and
ATTNDSEG data.

SET ALL = ON
PRINT EMP_ID PAY_DATE
 DATE_ATTEND
WHERE PAY_DATE EQ
980115

Shows employees who
have either SALINFO
data for 980115 or any
ATTNDSEG data.

Produces (FOC144)
message.

Shows employees who
have SALINFO data for
980115. Any
DATE_ATTEND data is
also shown.

NF731: Reporting From Independent Paths

Version 7.1 Page 7 of 9

Note: SET ALL = PASS is not supported with MULTIPATH = COMPOUND.

Request MULTIPATH=SIMPLE MULTIPATH=COMPOUND

SET ALL = OFF
PRINT ALL.EMP_ID
 DATE_ATTEND
WHERE PAY_DATE EQ
980115

Shows employees who
have either SALINFO
data for 980115 or any
ATTNDSEG data.

Produces (FOC144)
message.

Shows employees who
have SALINFO data for
980115. Any
DATE_ATTEND data is
also shown.

SET ALL = ON or OFF
PRINT EMP_ID PAY_DATE
 DATE_ATTEND
WHERE PAY_DATE EQ
980115
 AND COURSE_CODE EQ
’103’

Shows employees who
have either SALINFO
data for 980115 or
COURSE 103. Note:
SIMPLE treats the
AND in the WHERE
clause as an OR.

Produces (FOC144)
message.

Shows employees who
have both SALINFO
data for 980115 and
COURSE 103.

NF731: Reporting From Independent Paths

Version 7.1 Page 8 of 9

Determining if a Segment Is Required

FOCUS determines if a segment is required or optional using the following
rules:

• When SET ALL is ON or OFF, a segment with WHERE or IF criteria is
required for its parent, and all segments up to the root segment are
required for their parents.

When SET ALL = PASS, a segment with WHERE or IF criteria is optional.

• IF SET ALL = ON or PASS, all referenced segments with no IF or WHERE
criteria are optional for their parents (outer join).

• IF SET ALL = OFF, all referenced segments are required (inner join).

• A referenced segment can become optional if its parent segment uses the
ALL. field prefix operator.

Note: ALL = PASS is not supported for all data adapters and, if it is supported,
it may behave slightly differently. Check your specific data adapter
documentation for detailed information.

Reference Environments That Support MULTIPATH =
COMPOUND

• The MULTIPATH setting works with all types of data sources and in all
reporting environments (TABLE, TABLEF, AUTOTABLEF, MATCH, MORE,
GRAPH, requests with multiple display commands). It works with alternate
views, indexed views, filters, DBA, and joined structures.

• A unique segment is considered a part of its parent segment and, therefore,
does not invoke independent path processing.

NF731: Reporting From Independent Paths

Version 7.1 Page 9 of 9

Reference Requirements and Notes for MULTIPATH =
COMPOUND

• The minimum memory requirement for the MULTIPATH = COMPOUND
setting is 4K per active segment. If there is insufficient memory, the
SIMPLE setting is implemented and the following message is returned:
(FOC36263) Insufficient memory for independent path cache.

There is not enough memory to build a cache for independent
paths. Processing will proceed as if MULTIPATH were SIMPLE.

There is no limit to the number of segment instances (rows); however, no
single segment instance can have more than 4K of active fields (referenced
fields or fields needed for retrieving referenced fields). If this limit is
exceeded, the SIMPLE setting is implemented and the following message
is returned:
(FOC36264) A segment’s active fields are larger than the cache limit.

One segment has more than 4000 bytes of active data.
Processing will proceed as if MULTIPATH were SIMPLE.

• SET MULTIPATH = COMPOUND creates a pool boundary when reports
are pooled.

• WHERE criteria that screen on more than one path with the OR operator
are not supported.

Version 7.1 Page 1 of 5

NF749: HOLD FORMAT INTERNAL

FOCUS HOLD files pad binary and packed data values to a full word boundary.
For example, a three-digit integer field (I3), is stored as four bytes in a HOLD
file. In order for third generation programs, such as COBOL, to be able to read
FOCUS extract files in an exact manner, you can save the fields in the HOLD
file without any padding.

Syntax How to Save a File Without Padding

Issue a report request specifying format overrides for the integer and packed
fields that should not be padded and include the following:
ON TABLE HOLD AS name FORMAT INTERNAL

Syntax How to Ensure Accurate Display of Your Request
SET HOLDLIST = PRINTONLY

Setting HOLDLIST to PRINTONLY causes your report request to propagate the
HOLD file with only the fields that would display in the report output as you
specified. If you do not issue this setting, an extra field containing the padded
field length is included in the HOLD file.

Reference How to Use Format Overrides

1. Integer fields (I) of one, two, three, or four bytes produce four byte integers.

2. HOLD FORMAT INTERNAL does not affect floating point double precision
(D) and floating point single precision (F) fields. D remains at eight bytes
and F at four bytes. Alpha fields are also not affected by HOLD FORMAT
INTERNAL.

NF749: HOLD FORMAT INTERNAL

Version 7.1 Page 2 of 5

3. For packed decimal fields (Px.y), x is the total number of digits and y is the
number of digits to the right of the decimal point. The number of bytes is
derived by dividing x by 2 and adding 1.
bytes = INT (x/2) + 1

where:

INT (x/2) is the greatest integer after dividing by 2.

4. Alphanumeric fields automatically inherit their length from their source
Master File and are not padded to a full word boundary.

Example Creating a HOLD File Without HOLD FORMAT
INTERNAL

TABLE FILE CAR
PRINT CAR COUNTRY RETAIL_COST DEALER_COST SEATS
ON TABLE HOLD AS DJG

END

The request creates the following Master File:
FILE=DJG ,SUFFIX=FIX

SEGNAME=DJG ,SEGTYPE=S0

FIELDNAME =CAR ,E01 ,A16 ,A16 ,$

FIELDNAME =COUNTRY ,E02 ,A10 ,A12 ,$

FIELDNAME =RETAIL_COST ,E03 ,D7 ,D08 ,$

FIELDNAME =DEALER_COST ,E04 ,D7 ,D08 ,$

FIELDNAME =SEATS ,E05 ,I3 ,I04 ,$

The values of ACTUAL for RETAIL_COST, DEALER_COST, and SEATS are all
padded to a full word in binary.

NF749: HOLD FORMAT INTERNAL

Version 7.1 Page 3 of 5

Example Creating a HOLD File With HOLD FORMAT
INTERNAL

In this example, DEALER_COST and RETAIL_COST are defined in the Master
File as D fields, but the request overrides RETAIL_COST as an I2 field and
DEALER_COST as a P3 field.
SET HOLDLIST=PRINTONLY
TABLE FILE CAR
PRINT CAR COUNTRY RETAIL_COST/I2 DEALER_COST/P3 SEATS/I1
ON TABLE HOLD AS HINT3 FORMAT INTERNAL
END

This creates the following Master File:
FILE=HINT3 ,SUFFIX=FIX

SEGNAME=HINT3 ,SEGTYPE=S0

FIELDNAME =CAR ,E01 ,A16 ,A16 ,$

FIELDNAME =COUNTRY ,E02 ,A10 ,A10 ,$

FIELDNAME =RETAIL_COST ,E03 ,I6 ,I02 ,$

FIELDNAME =DEALER_COST ,E04 ,P4 ,P02 ,$

FIELDNAME =SEATS ,E05 ,I4 ,I01 ,$

The values of ACTUAL for the overridden fields are I2 and P2.
DEALER_COST has an ACTUAL of P2 because the format override, P3,
means 3 display digits that can be stored in 2 actual digits.

If a format override is not large enough to contain the data values, the values
are truncated. Truncation may cause the data in the HOLD file to be incorrect
in the case of an integer. For packed data and integers, truncation occurs for
the high order digits so the remaining low order digits will resemble the digits
from the correct values.

NF749: HOLD FORMAT INTERNAL

Version 7.1 Page 4 of 5

For example, consider this next request:
SET HOLDLIST=PRINTONLY
TABLE FILE CAR
PRINT CAR COUNTRY RETAIL_COST/I1 DEALER_COST/P3 SEATS/I1
ON TABLE HOLD AS HINT4 FORMAT INTERNAL
END

RETAIL_COST and SEATS are overridden with format I1 and DEALER_COST
is overridden with format P3. These formats for RETAIL_COST and
DEALER_COST are not large enough to contain the data values for these
fields.

The following Master File is produced:
FILE=HINT4 ,SUFFIX=FIX

SEGNAME=HINT4 ,SEGTYPE=S0

FIELDNAME =CAR ,E01 ,A16 ,A16 ,$

FIELDNAME =COUNTRY ,E02 ,A10 ,A10 ,$

FIELDNAME =RETAIL_COST ,E03 ,I4 ,I01 ,$

FIELDNAME =DEALER_COST ,E04 ,P4 ,P02 ,$

FIELDNAME =SEATS ,E05 ,I4 ,I01 ,$

The following is a sampling of the output when reporting from this HOLD file:
CAR COUNTRY RETAIL_COST DEALER_COST SEATS

--- ------- ----------- ----------- -----

JAGUAR ENGLAND 174 427 2

JAGUAR ENGLAND 179 194 5

JENSEN ENGLAND 186 940 4

TRIUMPH ENGLAND 236 296 2

DATSUN JAPAN 67 626 4

TOYOTA JAPAN 11 886 4

ALFA ROMEO ITALY 164 660 2

ALFA ROMEO ITALY 164 660 2

ALFA ROMEO ITALY 37 915 4

NF749: HOLD FORMAT INTERNAL

Version 7.1 Page 5 of 5

The values displayed for RETAIL_COST and DEALER_COST do not represent
the actual values in the original data source. This is due to truncation of the
binary integer representation of the data values for RETAIL_COST, and
truncation of the high order digits for DEALER_COST.

For example, a RETAIL_COST of 8878 is 10001010101110 in binary. To fit this
into an I1 field as stated in the prior TABLE request, the value is 10101110. So
the high order 100010 is truncated. Now, the decimal value of 100010 is 174,
which is why the first record displayed shows a RETAIL_COST of 174.

For a DEALER_COST of 7427 to fit in a P2 ACTUAL, the high order digit, 7, is
truncated, leaving the low order digits, 427. This is why the first record
displayed shows a DEALER_COST of 427.

Version 7.1 Page 1 of 9

NF750: DATASET in a Master File

You can add the DATASET attribute to the Master File to specify a physical
location for the data source to be allocated. In addition, the DATASET attribute
permits you to bypass the FOCUS search mechanism for default data source
location. DATASET eliminates the need to allocate data sources using JCL,
FILEDEF, DYNAM, and USE commands.

User allocation and system specific behavior is as follows:

Note: The MODIFY FIND function does not work with the DATASET attribute.
To use FIND with a data source, you must manually allocate the data source.

DATASET Behavior in FOCUS Data Sources
The DATASET attribute can be used only on the file level of the Master File. If
the Master File’s name is present in the USE list, or the user explicitly allocated
the Master File, a warning is issued and the DATASET attribute is ignored.

If DATASET is used in a Master File whose data source is managed by the
FOCUS Database Server, the DATASET attribute is ignored on the server side
because the FOCUS Database Server does not read Master Files for servicing
table requests.

Platform User allocation command

CMS FILEDEF

TSO DYNAM ALLOC or TSO ALLOC

NF750: DATASET in a Master File

Version 7.1 Page 2 of 9

The DATASET attribute in the Master File has the lowest priority:

• A user’s explicit allocation overrides DATASET attributes.

• The USE command for FOCUS data sources overrides DATASET
attributes and explicit allocations.

An alternative to the DATASET attribute for allocating FOCUS data sources is
an Access File. For detailed information, see NF777: Partitioned FOCUS Data
Sources. DATASET and ACCESSFILE are mutually exclusive attributes in the
Master File; that is, you can use at most one of them, not both.

Note: If a DATASET allocation is in effect, a CHECK FILE command must be
issued in order to override it by an explicit allocation command. The CHECK
FILE command will de-allocate the allocation created by DATASET.

Syntax How to Use the DATASET Attribute
{DATASET|DATA}=’filename [ON sinkname]’

where:
filename

Is the platform-dependent physical name of the data source.
sinkname

Indicates that the data source is located on the FOCUS Database Server.
This attribute is valid for FOCUS data sources.

In MVS, the syntax is:
{DATASET|DATA}=’qualifier.qualifier ...’

or
{DATASET|DATA}=’ddname ON sinkname’

NF750: DATASET in a Master File

Version 7.1 Page 3 of 9

In CMS, the syntax is:
{DATASET|DATA}=’filename filetype filemode [ON sinkname]’

Example Allocating a FOCUS Data Source Using the
DATASET Attribute

The following example illustrates how to allocate a FOCUS data source using
the DATASET attribute:

For MVS,
FILENAME=CAR,SUFFIX=FOC
DATASET=’USER1.CAR.FOCUS’
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

For CMS,
FILENAME=CAR,SUFFIX=FOC
DATASET=’CAR FOCUS A’
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

NF750: DATASET in a Master File

Version 7.1 Page 4 of 9

Example Allocating a Data Source For the FOCUS Database
Server

The following example illustrates how to allocate a FOCUS data source with the
DATASET attribute using ON sink:

For MVS,
FILENAME=CAR,SUFFIX=FOC
DATASET=’CAR ON SINK1’
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

Note: The ddname CAR is allocated by the FOCUS Database Server JCL.

For CMS,
FILENAME=CAR,SUFFIX=FOC
DATASET=’CAR FOCUS A ON SINK1’
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

NF750: DATASET in a Master File

Version 7.1 Page 5 of 9

DATASET Behavior in Fixed-Format Sequential Data
Sources
The DATASET attribute must appear on the file level of the Master File and
cannot contain ON sink. If the DATASET attribute contains ON sink, an error
message is issued and the operation is terminated.

When FOCUS detects the DATASET attribute, FOCUS checks for an explicit
allocation of data for this Master File. If an explicit allocation exists, a warning
message is issued informing the user that the DATASET value has been
overridden and the DATASET attribute is ignored. If this Master File name is not
allocated, an internal command is issued to perform the allocation. This
allocation is stored temporarily and is released when a new Master File is used
or when the FOCUS session terminates.

Syntax How to Use the DATASET Attribute With Fixed-
Format Data Sources

{DATASET|DATA}=’filename’

where:
filename

Is the platform-dependent physical name of the data source.

The DATASET attribute in the Master File has the lowest priority:

• A user’s explicit allocation overrides DATASET attributes.

Note: If a DATASET allocation is in effect, a CHECK FILE command must be
issued in order to override it by an explicit allocation command. The CHECK
FILE command will de-allocate the allocation created by DATASET.

NF750: DATASET in a Master File

Version 7.1 Page 6 of 9

Example Allocating a Fixed-Format Data Source Using the
DATASET Attribute

The following example illustrates how to allocate a fixed-format data source
using the DATASET attribute:
1. FILE=XX, SUFFIX=FIX, DATASET=’SEQFILE1 DATA A’
 .
 .
 .
2. FILE=XX, SUFFIX=FIX, DATASET=’USER1.SEQFILE1’
 .
 .
 .

DATASET Behavior in VSAM Data Sources
The DATASET attribute must appear on the file level of the Master File and
cannot contain ON sink. If the DATASET attribute contains ON sink, an error
message is issued and the operation is terminated.

When FOCUS detects the DATASET attribute, FOCUS checks for an explicit
allocation of data for this Master File. If an explicit allocation is found, a warning
message is issued informing the user that the DATASET value has been
overridden and the DATASET attribute is ignored. If this Master File name is not
allocated, an internal command is issued to perform the allocation. This
allocation is stored temporarily and is released when a new Master File is used
or when the FOCUS session terminates.

NF750: DATASET in a Master File

Version 7.1 Page 7 of 9

The DATASET attribute may also appear on the field level of the Master File to
specify where to find an alternate index. Because of VSAM naming conventions
(truncated to 8 characters), the name of the field alias will be used as the
ddname. If a user allocation is found for the Master File or alternate index
ddname, the DATASET attribute is ignored and a warning message issued.

Note: There is no limit on how many alternate indices you may have. It is also
acceptable for some alternate indices to have the DATASET attribute and
others not. However, if a file level DATASET attribute is missing, the field level
DATASET will be ignored.

Syntax How to Use the DATASET Attribute With VSAM Data
Sources

{DATASET|DATA}=’filename’

where:
filename

Is the platform-dependent physical name of the data source or alternate
index.

The DATASET attribute in the Master File has the lowest priority:

• A user’s explicit allocation overrides DATASET attributes.

Note: If a DATASET allocation is in effect, a CHECK FILE command must be
issued in order to override it by an explicit allocation command. The CHECK
FILE command will de-allocate the allocation created by DATASET.

NF750: DATASET in a Master File

Version 7.1 Page 8 of 9

Example Allocating a VSAM Data Source Using the DATASET
Attribute

The following example illustrates how to allocate a VSAM data source on the
file level and for an alternate index:
FILE=EXERVSM1, SUFFIX=VSAM, DATASET=’VSAM1.CLUSTER1’,$
SEGNAME=ROOT , SEGTYPE=S0,$
 GROUP=KEY1 , ALIAS=KEY , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD1 , ALIAS=F1 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD2 , ALIAS=F2 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD3 , ALIAS=DD1 , FORMAT=A4, ACTUAL=A4 , FIELDTYPE = I ,
 DATASET=’VSAM1.INDEX1’ ,$
 FIELD=FLD4 , ALIAS=F4 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD5 , ALIAS=F5 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD6 , ALIAS=F6 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD7 , ALIAS=F7 , FORMAT=A4, ACTUAL=A4 ,$

Reference Error Messages
(FOC1920) ERROR ALLOCATING FILE %1 AS %2

System could not complete an internal allocation command.
Check file name, allocation, and attributes.

(FOC1921) ERROR PARSING DATASET IN MASTER %1: %2

Error occurred while analyzing value of DATASET. Check the
Master File for spelling errors.

(FOC1922) FOCUS DATASET INTERNAL ERROR: %1

A serious problem occurred processing the FOCUS DATASET.

NF750: DATASET in a Master File

Version 7.1 Page 9 of 9

(FOC1925) DATASET ERROR: PHYSICAL NAME SPECIFIED WITH ’ON’ CLAUSE

Use a ddanme instead of the physical file name in DATASET
when ON sinkname clause is present.

Reference Warning Messages
(FOC1923) WARNING: USE COMMAND OVERRIDES DATASET VALUE IN %1

DATASET value in Master File has been overridden by USE
command.

(FOC1924) WARNING: ALLOCATION OF %1 OVERRIDES DATASET VALUE IN %1

DATASET value in Master File has been overridden by user’s
allocation.

Version 7.1 Page 1 of 44

NF751: Date-Time Data Type

Topics:

• Describing Date-Time Values

• Setting Date-Time Options

• Manipulating Date-Time Values

The new date-time data type supports both the date and time, similar to the
timestamp data types available in many relational data sources.

Date-time fields are stored in eight or ten bytes, four digits for date and either
four or six digits for time, depending on whether the format specifies
microseconds.

New subroutines are provided for manipulating date-time fields.

Describing Date-Time Values
In a Master File, the USAGE format for a date-time field describes which
components to display and various options for displaying them. In Master Files
for non-FOCUS data sources, date-time fields must also have an ACTUAL
format that indicates how the date-time value is stored in the non-FOCUS data
source.

The MISSING attribute for date-time fields can be ON or OFF. If it is OFF, and
the date-time field has no value, it defaults to blank.

This section discusses:

• USAGE formats for displaying date-time field values.

NF751: Date-Time Data Type

Version 7.1 Page 2 of 44

• Alphanumeric formats for date-time values entered by a user at a terminal,
read from a transaction file, or embedded in an expression.

• ACTUAL formats for date-time fields.

Date-Time Display Formats

The USAGE (or FORMAT) attribute determines how date-time field values are
displayed in report output and forms, and how they behave in expressions and
functions; for FOCUS data sources, it also determines how they are stored. A
new format type, H, describes date-time fields. The USAGE attribute for a date-
time field contains the H format code and can identify either the length of the
field or the relevant date-time display options.

The USAGE attribute can be one of the following
USAGE = Hnn

USAGE = Htimefmt1

USAGE = Hdatefmt [separator] [timefmt2]

where:
Hnn

Is the USAGE value for a numeric date-time value without date-time display
options. This format is appropriate for use in alphanumeric HOLD files or
transaction files.

nn is the field length, from 1 to 20, including up to eight characters for
displaying the date and up to nine or 12 characters for the time. For lengths
less than 20, the date is truncated on the right.

An eight-character date includes four digits for the year, two digits for the
month, and two digits for the day of the month, YYYYMMDD.

NF751: Date-Time Data Type

Version 7.1 Page 3 of 44

A nine-character time includes two digits for the hour, two digits for the
minute, two digits for the second, and three digits for the millisecond,
HHMMSSsss. The millisecond component represents the decimal portion
of the second to three places.

A twelve-character time includes two digits for the hour, two digits for the
minute, two digits for the second, three digits for the millisecond, and three
digits for the microsecond, HHMMSSsssmmm. The millisecond component
represents the decimal portion of the second value to three places. The
microsecond component represents three additional decimal places
beyond the millisecond value.

With this format, there are no spaces between the date and time
components, no decimal points, and no spaces or separator characters
within either component. The time must be entered using the 24-hour
system. For example, the value 19991231225725333444 represents 1999/12/31
10:57:25.333444PM

Htimefmt1

Is the USAGE format for displaying time only. Hour, minute, and second
components are always displayed separated by colons (:), with no
intervening blanks.

Unless you specify one of the AM/PM time display options, the time
component is displayed using the 24-hour system.

When the format includes more than one time display option:

• The options must appear in the order hour, minute, second,
millisecond, microsecond.

• The first option must be either hour, minute, or second.

• No intermediate component can be skipped. That is, if hour is specified
the next option must be minute, it cannot be second.

NF751: Date-Time Data Type

Version 7.1 Page 4 of 44

The following table lists the valid time display options for a time-only
USAGE attribute. Assume the time value is 2:05:27.123456 a.m.

Option Meaning Effect

H hour (two digits)

If the format includes the
option a or A, the hour value is
from 01 to 12.

Otherwise, the hour
value is from 00 to 23,
with 00 representing
midnight.

Prints a two-digit hour. For
example:

USAGE = HH prints 02

h hour with zero
suppression

If the format includes the
option a or A, the hour value is
from 1 to 12.

Otherwise, the hour is
from 0 to 23.

Displays the hour with zero
suppression. For example:

USAGE = Hh prints 2

I minute (two digits)

The minute value is from
00 to 59.

Prints the two-digit minute. For
example:

USAGE = HHI prints 02:05

NF751: Date-Time Data Type

Version 7.1 Page 5 of 44

Option Meaning Effect

i minute with zero
suppression

The minute value is from
0 to 59.

Prints the minute with zero
suppression. Cannot be used
together with an hour format (H or
h). For example:

USAGE = Hi prints 5

S Second (two digits)

00 to 59

Prints the two-digit second. For
example:

USAGE = HHIS prints 02:05:27

s millisecond (three digits
— after the decimal point
in the second)

000 to 999

Prints the second to three decimal
places. For example:

USAGE = HHISs prints 02:05:27.123

m microsecond (three
additional digits after
milliseconds)

000 through 999

Prints the second to six decimal
places. For example:

USAGE = HSsm prints 27.123456

A 12-hour time display with
AM or PM in upper case

Prints hours from 01 to 12
followed by AM or PM. For
example:

USAGE = HHISA prints 02:05:27AM

NF751: Date-Time Data Type

Version 7.1 Page 6 of 44

Hdatefmt

Is the USAGE format for displaying the date portion of the date-time field.

The date components can be in any of the following combinations and
order:

• Year first combinations: Y, YY, YM, YYM, YMD, YYMD

• Month-first combinations: M, MD, MY, MYY, MDY, MDYY

• Day-first combinations: D, DM, DMY, DMYY

The date format can include the following display options as long as they
conform to the allowed combinations. In the following table, assume the
date is February 5, 1999.

Option Meaning Effect

a 12-hour time display with
am or pm in lower case

Prints hours from 01 to 12
followed by am or pm. For
example:

USAGE = HHISa prints 02:05:27am

Option Meaning Example

Y 2-digit year 99

YY 4-digit year 1999

M 2-digit month (01 - 12) 02

MT Full month name February

NF751: Date-Time Data Type

Version 7.1 Page 7 of 44

separator

Is a separator between the date components. The default separator is a
slash (/). Other valid separators are: period (.), hyphen (-), blank (B), or
none (N). With translated months, these separators can only be specified
when the k option is not used.

Option Meaning Example

Mt Short month name Feb

D 2-digit day 05

d zero-suppressed day 5

k For formats in which month or day is
followed by year and month is
translated to a short or full name,
separates the year from the day with a
comma and blank. Otherwise the
separator is a blank.

USAGE = HMtDkYY

prints
Feb 05, 1999

NF751: Date-Time Data Type

Version 7.1 Page 8 of 44

timefmt2

Is the format for a time that follows a date. Time is separated from the date
by a blank; time components are separated from each other by colons.
Unlike the format for time alone, a time format that follows a date format
consists of at most two characters: a single character to represent all of the
time components to be displayed and, optionally, one character for an
AM/PM option. The following table lists the valid options. Assume the date
is February 5, 1999 and the time is 02:05:25.444555 a.m.

Option Meaning Example

H Prints hour USAGE = HYYMDH prints
1999/02/05 02

I Prints hour:minute USAGE = HYYMDI prints
1999/02/05 02:05

S Prints hour:minute:second USAGE = HYYMDS prints
1999/02/05 02:05:25

s Prints
hour:minute:second.millisecond

USAGE = HYYMDs prints
1999/02/05 02:05:25.444

m Prints
hours:minutes:seconds.micro
seconds

USAGE = HYYMDm prints
1999/02/05 02:05:25.444555

NF751: Date-Time Data Type

Version 7.1 Page 9 of 44

Note: Unless you specify one of the AM/PM time display options, the time
component is displayed using the 24-hour system.

Specifying Date-Time Values

An external date-time value is a constant in character format from one of the
following sources:

• A sequential data source.

• Typed by an application user at a terminal or workstation.

• Used in an expression in a WHERE clause, an IF clause, a DEFINE, or a
COMPUTE.

A date-time constant typed by an application user at a terminal or workstation,
or a date-time value as it appears in a character file has one of the following
formats
date_string [time_string]
time_string [date_string]

Option Meaning Example

A Prints AM or PM. Uses the
12-hour system and causes
the hour to be printed with
zero suppression.

USAGE = HYYMDSA prints
1999/02/05 2:05:25AM

a Prints am or pm. Uses the 12-
hour system and causes the
hour to be printed with zero
suppression.

USAGE = HYYMDSa prints
1999/02/05 2:05:25am

NF751: Date-Time Data Type

Version 7.1 Page 10 of 44

A date-time constant in a COMPUTE, DEFINE, or WHERE expression must
have one of the following formats.
DT(date_string [time_string])
DT(time_string [date_string])

A date-time constant in an IF expression has one of the following formats:
’date_string [time_string]’
’time_string [date_string]’

If the value contains no blanks or special characters, the single quotation marks
are not necessary. Note that the DT prefix is not supported in IF criteria.

where:
time_string

Cannot contain blanks. Time components are separated by colons and
may be followed by AM, PM, am, or pm. For example:
14:30:20:99 (99 milliseconds)
14:30
14:30:20.99 (99/100 seconds)
14:30:20.999999 (999999 microseconds)
02:30:20:500pm

Note that seconds can be expressed with a decimal point or be followed by
a colon.

• If there is a colon after seconds, the value following it represents
milliseconds. There is no way to express microseconds using this
notation.

• A decimal point in the seconds value indicates the decimal fraction of a
second. Microseconds can be represented using six decimal digits.

NF751: Date-Time Data Type

Version 7.1 Page 11 of 44

date_string

Can have one of the following three formats:

• The numeric string format is exactly four, six, or eight digits. Four-
digit strings are considered to be a year (century must be specified);
the month and day are set to January 1. Six and eight-digit strings
contain two or four digits for the year, followed by two for the month,
and then two for the day. Because the component order is fixed with
this format, the DATEFORMAT setting described in How to Specify the
Order of Date Components in Formatted Input Values is ignored.

If a numeric-string format longer than eight digits is encountered, it is
treated as a combined date-time string in the Hnn format described in
Describing Date-Time Values. The following are examples of numeric
string date constants:
99
1999
19990201

• The formatted-string format contains a one or two-digit day, a one or
two-digit month, and a two or four-digit year separated by spaces,
slashes, hyphens, or periods. All three parts must be present and
follow the DATEFORMAT setting described in How to Specify the Order
of Date Components in Formatted Input Values. If any of the three
fields is four digits, it is interpreted as the year, and the other two fields
must follow the order given by the DATEFORMAT setting. The
following are examples of formatted-string date constants:
1999/05/20
5 20 1999
99.05.20
1999-05-20

NF751: Date-Time Data Type

Version 7.1 Page 12 of 44

• The translated-string format contains the full or abbreviated month
name. The year must also be present in four-digit or two-digit form. If
the day is missing, day 1 of the month is assumed; if present, it can
have one or two digits. If the string contains both a two-digit year and a
two-digit day, they must be in the order given by the DATEFORMAT
setting. For example:
January 6 2000

Note:

• The date and time strings must be separated by at least one blank space.
Blank spaces are also permitted at the beginning and end of the date-time
string.

• In each date format, two-digit years are interpreted using the [F]DEFCENT
and [F]YRTHRESH settings.

Example Reading Date-Time Values From a Transaction File

The DTTRANS comma-delimited transaction file has an ID field and a date-time
field that contains both the date (as eight characters) and time (in the format
hour:minute:second):
01, 20000101 02:57:25,$
02, 19991231 14:05:35,$

Because the transaction file contains the dates in numeric string format the
DATEFORMAT setting is not used, and the dates are entered in YMD order.

The following transaction file is also valid. It contains formatted string dates that
comply with the default DATEFORMAT setting, MDY:
01, 01/01/2000 02:57:25,$
02, 12/31/1999 14:05:35,$

NF751: Date-Time Data Type

Version 7.1 Page 13 of 44

The following Master File describes the FOCUS data source named
DATETIME, which will receive these values:
FILE=DATETIME, SUFFIX=FOC ,$
SEGNAME=DATETIME, SEGTYPE=S0 ,$
FIELD=ID, ID, USAGE = I2 ,$
FIELD=DT1, DT1, USAGE=HYYMDS ,$

The following MODIFY procedure loads the transaction values into the FOCUS
data source:
-* THE FOLLOWING ALLOCATION AND CREATE FILE IS NEEDED FOR THE TRANSACTION
FILE
-* ON MVS
-* DYNAM ALLOC DD DTTRANS DA USER1.DTTRANS SHR REUSE
-* CREATE FILE DATETIME
-* THE FOLLOWING FILEDEF IS NEEDED FOR THE TRANSACTION FILE ON CMS
CMS FILEDEF DTTRANS DISK DTTRANS DATA A
MODIFY FILE DATETIME
 FREEFORM ID DT1
DATA ON DTTRANS
END

To see the printed values, issue the following request:
TABLE FILE DATETIME
PRINT ID DT1
END

The output is:
ID DT1
-- ---
 1 2000/01/01 02:57:25
 2 1999/12/31 14:05:35

NF751: Date-Time Data Type

Version 7.1 Page 14 of 44

Example Using a Date-Time Value in a COMPUTE Command
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME AND COMPUTE
NEWSAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
WHERE CURR_JOBCODE LIKE ’B%’
END

The output is:
LAST_NAME FIRST_NAME NEWSAL RAISETIME
--------- ---------- ------ ---------
SMITH MARY $14,520.00 2000/01/01 9:00AM
JONES DIANE $20,328.00 2000/01/01 9:00AM
ROMANS ANTHONY $23,232.00 2000/01/01 9:00AM
MCCOY JOHN $20,328.00 2000/01/01 9:00AM
BLACKWOOD ROSEMARIE $23,958.00 2000/01/01 9:00AM
MCKNIGHT ROGER $17,710.00 2000/01/01 9:00AM

Example Using a Date-Time Value in WHERE Criteria

In a WHERE clause, a date-time constant must use the DT() format:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE
WHERE TRANSDATE GT DT(2000/01/01 02:57:25)
END

The output is:
CUSTID TRANSDATE
------ ---------
1118 2000/06/26 05:45
1237 2000/02/05 03:30

NF751: Date-Time Data Type

Version 7.1 Page 15 of 44

Example Using a Date-Time Value in IF Criteria

In an IF clause, a date-time constant must be enclosed in single quotation
marks if it contains any blanks:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE
IF TRANSDATE GT ’2000/01/01 02:57:25’
END

Note: The DT prefix for a date-time constant is not supported in an IF clause.

The output is:
CUSTID TRANSDATE
------ ---------
1118 2000/06/26 05:45
1237 2000/02/05 03:30

ACTUAL Formats for Date-Time Values

ACTUAL formats supported for date-time values are:

• Ann, H8, H10, and H12. Ann accepts all the date-time string formats
described in How to Specify the Order of Date Components in Formatted
Input Values, as well as the Hnn USAGE display format described in
Describing Date-Time Values. ACTUAL=H8, H10, or H12 accepts a date-
time field as it occurs in a binary HOLD file or SAVB file. ACTUAL=Ann
accepts a date-time field as it occurs in an alphanumeric HOLD file or
SAVE file.

NF751: Date-Time Data Type

Version 7.1 Page 16 of 44

Example Creating a Binary HOLD File Containing a Date-
Time Field

The following request creates a binary HOLD file using the VIDEOTR2 data
source:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE
ON TABLE HOLD AS DTHOLD
END

The DTHOLD Master File created from this request contains the ACTUAL
format H8 for the TRANSDATE date-time field:
FILE=DTHOLD ,SUFFIX=FIX
SEGNAME=DTHOLD ,SEGTYPE=S0
FIELDNAME =CUSTID ,E01 ,A4 ,A04 ,$
FIELDNAME =TRANSDATE ,E02 ,HYYMDI ,H08 ,$

Example Creating an Alphanumeric HOLD File Containing a
Date-Time Field

The following request creates an alphanumeric HOLD file using the VIDEOTR2
data source:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE
ON TABLE HOLD AS DTALPHA FORMAT ALPHA
END

The DTALPHA Master File created from this request contains the ACTUAL
format A17 for the TRANSDATE date-time field. The ACTUAL format is A20 if
the time format includes microseconds, A17 otherwise (padded with low order
zeros if necessary):

NF751: Date-Time Data Type

Version 7.1 Page 17 of 44

FILE=DTALPHA ,SUFFIX=FIX
SEGNAME=DTALPHA ,SEGTYPE=S0
FIELDNAME =CUSTID ,E01 ,A4 ,A04 ,$
FIELDNAME =TRANSDATE ,E02 ,HYYMDI ,A17 ,$

Setting Date-Time Options
Three parameter settings determine how to interpret a date-time value and
manipulate it in requests:

• DATEFORMAT specifies the order of the date components.

• WEEKFIRST assigns a day to be considered the first day of the week in
date-time computations involving weeks.

• DTSTRICT controls whether values are error checked (for example,
whether the day portion of a date is within the correct number of days for
the specified month).

Syntax How to Specify the Order of Date Components in
Formatted Input Values

The DATEFORMAT parameter specifies the order of the date components
(month/day/year) when date-time values are entered in the formatted string and
translated string formats described in Describing Date-Time Values. It makes a
value’s input format independent of the format of the variable to which it is
being assigned. The syntax is
SET DATEFORMAT = datefmt

NF751: Date-Time Data Type

Version 7.1 Page 18 of 44

where:
datefmt

Can be one of the following: MDY, DMY, YMD, or MYD. The U. S. English
default format is MDY.

Syntax How to Specify the First Day of the Week

The WEEKFIRST parameter is used in week computations by the HDIFF,
HNAME, HPART, and HSETPT functions described in Date-Time Functions.
For an example, see Extracting the Week Component With Different
WEEKFIRST Settings. The values from 1 to 7 represent Sunday through
Saturday. The syntax is
SET WEEKFIRST = number

where:
number

Is a number from one to seven, where one represents Sunday and seven
represents Saturday. The U. S. English default value is seven (Saturday)
meaning that Saturday is the first day of each week, so every Friday-
Saturday transition is the start of a new week.

The WEEKFIRST setting does not change the number that corresponds to
each day of the week, it just specifies which one is considered the start of
the week. The default of Saturday (7) as the first day of the week is
consistent with the Microsoft SQL Server convention.

NF751: Date-Time Data Type

Version 7.1 Page 19 of 44

Syntax How to Control Error Checking of Date-Time Values

The DTSTRICT parameter controls how much error checking is done on date-
time values when they are input by users, read from an alphanumeric
transaction file, displayed, or used in user-written subroutines. The syntax is
SET DTSTRICT = {ON|OFF}

where:
ON

Invokes strict processing. This means that whenever a date-time value is
input by a user, read from a transaction file, displayed, or returned by a
subroutine it is checked to make sure that the value represents a valid date
and time. For example, a numeric month must be between 1 and 12, and
the day must be within the number of days for the specified month. ON is
the default value. If you attempt to enter a value that violates this rule, the
following message displays:
(FOC177) INVALID DATE CONSTANT: dt_constant

OFF

Does not invoke strict processing. Any date-time component can have any
value within the constraint of the number of decimal digits allowed; for
example, the month value can be 00 or 13 or 99, but not 115. Furthermore,
the values do not have to be consistent; for example, any month in any year
can have 30 or 31 days.

NF751: Date-Time Data Type

Version 7.1 Page 20 of 44

Manipulating Date-Time Values
The only direct operations that can be performed on date-time variables and
constants are comparison using a logical expression and simple assignment of
the form A = B. All other operations are accomplished through a set of date-
time functions.

Comparison and Assignment

Any two date-time values can be compared, even if their lengths do not match.

If a date-time field supports missing values, fields that contain the missing value
have a greater value than any date-time field can have.

Therefore, in order to exclude missing values from the report output when using
a GT or GE operator in a selection test, it is recommended that you add the
additional constraint field NE MISSING to the selection test:
date_time_field {GT|GE} date_time_value AND date_time_field NE MISSING

Assignments are permitted between date-time formats of equal or different
lengths. Assigning a 10-byte date-time value to an 8-byte date-time value
truncates the microsecond portion (no rounding takes place). Assigning a short
value to a long one sets the low-order three digits of the microseconds to zero.

Other operations, including arithmetic, concatenation, EDIT, and LIKE on date-
time operands are not supported. Prefix operators that work with alphanumeric
fields are supported.

NF751: Date-Time Data Type

Version 7.1 Page 21 of 44

Example Testing for Missing Date-Time Values

Consider the DATETIM2 Master File:
FILE=DATETIM2, SUFFIX=FOC ,$
SEGNAME=DATETIME, SEGTYPE=S0 ,$
FIELD=ID, ID, USAGE = I2 ,$
FIELD=DT1, DT1, USAGE=HYYMDS, MISSING=ON,$

Field DT1 supports missing values. Consider the following request:
TABLE FILE DATETIM2
PRINT ID DT1
END

The resulting report output shows that in the instance with ID=3, the field DT1
has a missing value:
ID DT1
-- ---
 1 2000/01/01 02:57:25
 2 1999/12/31 00:00:00
 3 .

The following request selects values of DT1 that are greater than
2000/01/01 00:00:00 and are not missing:
TABLE FILE DATETIM2
PRINT ID DT1
 WHERE DT1 NE MISSING AND DT1 GT DT(2000/01/01 00:00:00);
END

The missing value is not included in the report output:
ID DT1
-- ---
 1 2000/01/01 02:57:25

NF751: Date-Time Data Type

Version 7.1 Page 22 of 44

Example Assigning a Different Usage Format to a Date-Time
Column

Consider the following request using the VIDEOTR2 data source:
TABLE FILE VIDEOTR2
 PRINT CUSTID TRANSDATE AND COMPUTE
 DT2/HYYMDH = TRANSDATE;
 T1/HHIS = TRANSDATE;
 WHERE DATE EQ 2000
 END

The output is:
CUSTID TRANSDATE DT2 T1
------ --------- --- --
1118 2000/06/26 05:45 2000/06/26 05 05:45:00
1237 2000/02/05 03:30 2000/02/05 03 03:30:00

Date-Time Functions

The following functions allow you to manipulate date-time values:

Function
Name

Description

HCNVRT Converts date-time values to alphanumeric format for use with
operators such as EDIT, CONTAINS, and LIKE.

HINPUT Converts an alphanumeric string to a date-time value.

HADD Increments date-time values by a specified number of units.

NF751: Date-Time Data Type

Version 7.1 Page 23 of 44

Function
Name

Description

HDIFF Returns the number of units of a specific date-time component
between two date-time values.

HNAME Extracts specified components of a date-time value and converts
them to alphanumeric format.

HPART Extracts a component of a date-time value in numeric format.

HSETPT Inserts the numeric value of a specified component in a date-
time field.

HMIDNT Changes the time portion of a date-time field to midnight.

HDATE Extracts the date components from a date-time field and
converts them to a date field.

HDTTM Converts a date field to a date-time field with the time set to
midnight.

HTIME Extracts all of the time components from a date-time field and
converts them to a number of milliseconds or microseconds in
numeric format.

HGETC Returns the current date and time in date-time format.

NF751: Date-Time Data Type

Version 7.1 Page 24 of 44

Note:

• In those arguments that give you a choice of 8 or 10, use 8 for processing
values without microseconds, 10 when the field value includes
microseconds.

• The last argument is always a USAGE format that indicates the data type
returned by the function. The type may be A (alpha), I (integer), D (double
precision), DATE (smart date), or H (date-time).

Reference Component Names and Values for Use With Date-
Time Functions

The following component names and values are supported as arguments to
those date-time functions that require you to specify a component name as an
argument:

Component Name Valid Values

year 0001-9999

quarter 1-4

month 1-12

day-of-year 1-366

day or day-of-month 1-31 (The two names for the component
are equivalent.)

week 1-53

weekday 1-7 (Sunday-Saturday)

NF751: Date-Time Data Type

Version 7.1 Page 25 of 44

Reference Notes Regarding ISO Standard Date-Time
Representations

International Standard ISO 8601 describes the standards for numeric
representations of date and time. Some of the relevant standards and notes
about their implementation follow:

• The international standard date notation is YYYY-MM-DD. In this
implementation, you can control the date format used to enter date-time
values with the DATEFORMAT parameter. For details, see How to Specify
the Order of Date Components in Formatted Input Values.

• The international standard for the first day of a week is Monday. You can
use the WEEKFIRST parameter to control the day used as the first day of
the week by the date-time functions.

Component Name Valid Values

hour 0-23

minute 0-59

second 0-59

millisecond 0-999

microsecond 0-999999

NF751: Date-Time Data Type

Version 7.1 Page 26 of 44

• The standard specifies that week 1 of a year is the first week of the year
that has a Thursday. Combined with the standard of Monday as day 1, this
rule ensures that week 1 has at least four of its days in the specified year.

The following rules represent an extension to the standard in this
implementation:

• Whatever day you choose for your WEEKFIRST setting, the date-time
functions define week 1 as the first week with at least four days in the
specified year.

• With these rules, it is possible for the first few days of January to fall in
the week prior to week 1. The international standard considers these
dates to be in week 53 of the previous year. However, the date-time
functions return zero for the week component when it falls in the week
prior to week 1.

• The international standard notation for the time of day is hh:mm:ss using
the 24-hour system. However, the date-time data type and date-time
functions allow you to use the 12-hour system.

HCNVRT: Converting a Date-Time Field to Alphanumeric
Format

Use the following syntax in an expression to convert a date-time field to
alphanumeric format for use with operators such as EDIT, CONTAINS, and
LIKE.
HCNVRT (dtfield, ’(Hfmt)’, rlength, ’Ann’)

where:
dtfield

Is the date-time value to convert. You can supply the name of a date-time
field, a date-time constant, or an expression that returns a date-time value.

NF751: Date-Time Data Type

Version 7.1 Page 27 of 44

Hfmt

Is the USAGE format of the date-time field being converted, enclosed in
parentheses and single quotation marks.

rlength

Is the length of the alphanumeric field returned. You can supply the actual
value, the name of a numeric field that contains the value, or an expression
that returns the value. If rlength is smaller than the number of characters
needed to display the alphanumeric field, an all-blank field is returned.

Ann

Is the USAGE format of the returned alphanumeric value, enclosed in
single quotation marks.

Example Converting a Date-Time Field to Alphanumeric
Format

The following request converts the TRANSDATE field to alphanumeric format:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
ALPHA_DATE_TIME1/A20 = HCNVRT (TRANSDATE,’(H17)’, 17, ’A20’);
ALPHA_DATE_TIME2/A20 = HCNVRT (TRANSDATE,’(HYYMDS)’, 20, ’A20’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ALPHA_DATE_TIME1 ALPHA_DATE_TIME2
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

NF751: Date-Time Data Type

Version 7.1 Page 28 of 44

HINPUT: Converting an Alphanumeric String to a Date-Time
Value

Use the following syntax in an expression to convert an alphanumeric string to
a date-time value.
HINPUT (inputlength, ’inputstring’, {8|10}, ’Hfmt’)

where:
inputlength

Is the length of the alphanumeric string to convert. You can supply the
actual value, the name of a numeric field that contains the value, or an
expression that returns the value.

inputstring

Is the alphanumeric string to convert. You can supply the actual string
enclosed in single quotation marks, the name of an alphanumeric field, or
an expression that returns an alphanumeric value. The alphanumeric string
can consist of any valid date-time input value as described in Describing
Date-Time Values.

8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for time values down to microseconds.

Hfmt

Is the USAGE format of the returned date-time value, enclosed in single
quotation marks.

NF751: Date-Time Data Type

Version 7.1 Page 29 of 44

Example Converting an Alphanumeric String to a Date-Time
Value

The following request converts the TRANSDATE field to alphanumeric format
(using the HCNVRT function) and then uses the HINPUT routine to convert the
alphanumeric string to a date-time value:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
ALPHA_DATE_TIME/A20 = HCNVRT (TRANSDATE,’(H17)’, 17, ’A20’);
DT_FROM_ALPHA/HYYMDS = HINPUT(14, ALPHA_DATE_TIME, 8, ’HYYMDS’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ALPHA_DATE_TIME1 ALPHA_DATE_TIME2
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

HADD: Incrementing a Date-Time Field

Use the following syntax in an expression to increment a date-time field by a
given number of units, for example, 1 year, 3 months, or -15 seconds.
HADD (dtfield, ’component’, increment, {8 | 10}, ’Hformat’)

where:
dtfield

Is the date-time value to increment. You can supply the name of a date-time
field, a date-time constant, or an expression that returns a date-time value.

NF751: Date-Time Data Type

Version 7.1 Page 30 of 44

component

Is the name of the component to be incremented, enclosed in single
quotation marks. See Component Names and Values for Use With Date-
Time Functions for a list of supported components.

increment

Is the number of units by which to increment the specified component. You
can supply the actual value, the name of a numeric field that contains the
value, or an expression that returns the value.

8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single
quotation marks.

Example Incrementing the Month Component of a Date-Time
Field

The following request adds two months to the TRANSDATE field:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, ’MONTH’, 2, 8, ’HYYMDS’);
WHERE DATE EQ 2000
END

NF751: Date-Time Data Type

Version 7.1 Page 31 of 44

The output is:
CUSTID DATE-TIME ADD_MONTH
------ --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00

If necessary, the day is adjusted to be valid for the resulting month.

HDIFF: Finding the Number of Units Between Two Date-Time
Values

Use the following syntax in an expression to find the number of boundaries of a
given type crossed in going from date 2 to date 1.
HDIFF (dtfield1, dtfield2, ’component’, ’Dformat’)

where:
dtfield1

Is the ending date-time value. You can supply the name of a date-time field,
a date-time constant, or an expression that returns a date-time value.

dtfield2

Is the starting date-time value. You can supply the name of a date-time
field, a date-time constant, or an expression that returns a date-time value.

component

Is the name of the component to be used in the calculation, enclosed in
single quotation marks. See Component Names and Values for Use With
Date-Time Functions for a list of supported components. If the unit is
weeks, the WEEKFIRST setting is used in the calculation.

NF751: Date-Time Data Type

Version 7.1 Page 32 of 44

Dformat

Is the USAGE format of the resulting number of units, enclosed in single
quotation marks. The format type must be D.

Example Finding the Number of Days Between Two Date-
Time Fields

The following request finds the number of days between the ADD_MONTH and
TRANSDATE fields:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, ’MONTH’, 2, 8, ’HYYMDS’);
DIFF_DAYS/D12.2 = HDIFF(ADD_MONTH, TRANSDATE, ’DAY’, ’D12.2’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ADD_MONTH DIFF_DAYS
------ --------- --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00 61.00
1237 2000/02/05 03:30 2000/04/05 03:30:00 60.00

HNAME: Extracting a Date-Time Component in Alphanumeric
Format

Use the following syntax in an expression to extract a specified component
from a date-time field and return it in alphanumeric format.
HNAME (dtfield, component, Aformat)

NF751: Date-Time Data Type

Version 7.1 Page 33 of 44

where:
dtfield

Is the date-time value. You can supply the name of a date-time field, a date-
time constant, or an expression that returns a date-time value.

component

Is the name of the component to be extracted, enclosed in single quotation
marks. See Component Names and Values for Use With Date-Time
Functions for a list of supported components.

Aformat

Is the alphanumeric USAGE format of the returned component, enclosed in
single quotation marks. All other components are converted to strings of
digits only. The year is always four digits, and the hour assumes the 24-
hour system.

Example Extracting the Day Component in Alphanumeric
Format From a Date-Time Field

The following request extracts the day in alphanumeric format from the
TRANSDATE field:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
DAY_COMPONENT/A2 = HNAME(TRANSDATE, ’DAY’, ’A2’);
WHERE DATE EQ 2000
END

NF751: Date-Time Data Type

Version 7.1 Page 34 of 44

The output is:
CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 05

Example Extracting the Week Component With Different
WEEKFIRST Settings

The following request extracts the week in alphanumeric format from the
TRANSDATE field. Changing the WEEKFIRST setting changes the value of the
extracted component:
SET WEEKFIRST = 7
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
WEEK_COMPONENT/A10 = HNAME(TRANSDATE, ’WEEK’, ’A10’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 06

NF751: Date-Time Data Type

Version 7.1 Page 35 of 44

Running the same request setting WEEKFIRST to 3 produces the following
output (see How to Specify the First Day of the Week):
CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 25
1237 2000/02/05 03:30 05

HPART: Extracting a Date-Time Component in Numeric
Format

Use the following syntax in an expression to extract a specified component
from a date-time field and return it in numeric format.
HPART (dtfield, ’component’, ’Iformat’)

where:
dtfield

Is the date-time value. You can supply the name of a date-time field, a date-
time constant, or an expression that returns a date-time value.

component

Is the name of the component to be extracted, enclosed in single quotation
marks. See Component Names and Values for Use With Date-Time
Functions for a list of supported components.

Iformat

Is the integer USAGE format of the returned component, enclosed in single
quotation marks. The year is always four digits, and the hour assumes the
24-hour system.

NF751: Date-Time Data Type

Version 7.1 Page 36 of 44

Example Extracting the Day Component in Numeric Format
From a Date-Time Field

The following request extracts the day in integer format from the TRANSDATE
field:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
DAY_COMPONENT/I2 = HPART(TRANSDATE, ’DAY’, ’I2’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 5

HSETPT: Inserting a Component Into a Date-Time Field

Use the following syntax in an expression to insert the numeric value of a
specified component into a date-time field.
HSETPT (dtfield, ’component’, value, {8|10}, ’Hformat’)

where:
dtfield

Is the date-time value. You can supply the name of a date-time field, a date-
time constant, or an expression that returns a date-time value.

component

Is the name of the component to be inserted, enclosed in single quotation
marks. See Component Names and Values for Use With Date-Time
Functions for a list of supported components.

NF751: Date-Time Data Type

Version 7.1 Page 37 of 44

value

Is the numeric value to use for the requested component. You can supply
the actual value, the name of a numeric field that contains the value, or an
expression that returns the value.

8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single
quotation marks.

Example Inserting the Day Component Into a Date-Time Field

The following request inserts the day into the ADD_MONTH field:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, ’MONTH’, 2, 8, ’HYYMDS’);
INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH, ’DAY’, 28, 8, ’HYYMDS’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ADD_MONTH INSERT_DAY
------ --------- --------- ----------
1118 2000/06/26 05:45 2000/08/26 05:45:00 2000/08/28 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00 2000/04/28 03:30:00

NF751: Date-Time Data Type

Version 7.1 Page 38 of 44

HMIDNT: Setting the Time Portion of a Date-Time Field to
Midnight

Use the following syntax in an expression to change the time portion of a date-
time field to midnight (all zeroes). This function can be used for testing date-
time fields for a given date.
HMIDNT (dtfield, {8|10}, ’Hformat’)

where:
dtfield

Is date-time value. You can supply the name of a date-time field, a date-
time constant, or an expression that returns a date-time value.

8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single
quotation marks.

Example Setting the Time to Midnight

The following request sets the time portion of the TRANSDATE field to midnight
in both the 24- and 12-hour systems:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
TRANSDATE_MID_24/HYYMDS = HMIDNT(TRANSDATE, 8, ’HYYMDS’);
TRANSDATE_MID_12/HYYMDSA = HMIDNT(TRANSDATE, 8, ’HYYMDSA’);
WHERE DATE EQ 2000
END

NF751: Date-Time Data Type

Version 7.1 Page 39 of 44

The output is:
CUSTID DATE-TIME TRANSDATE_MID_24 TRANSDATE_MID_12
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 2000/06/26 00:00:00 2000/06/26 12:00:00AM
1237 2000/02/05 03:30 2000/02/05 00:00:00 2000/02/05 12:00:00AM

HDATE: Converting the Date Portion of a Date-Time Field to a
Date Format

Use the following syntax in an expression to extract the date portion of a date-
time field and convert it to a date format (number of days since the base date
1900/12/31).
HDATE (dtfield, ’dateformat’)

where:
dtfield

Is the date-time value. You can supply the name of a date-time field, a date-
time constant, or an expression that returns a date-time value.

dateformat

Is the USAGE format of the returned date field (for example, YMD),
enclosed in single quotation marks.

NF751: Date-Time Data Type

Version 7.1 Page 40 of 44

Example Converting the Date Portion of the TRANSDATE
Field to a Date Format

The following request converts the date portion of the TRANSDATE field to
date format YYMD:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, ’YYMD’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME TRANSDATE_DATE
------ --------- --------------
1118 2000/06/26 05:45 2000/06/26
1237 2000/02/05 03:30 2000/02/05

HDTTM: Converting a Date field to a Date-Time Field

Use the following syntax in an expression to convert a date field to a date-time
field. The time portion is set to midnight.
HDTTM (datefield, {8|10}, Hformat)

where:
datefield

Is the date value to be converted. You can supply the name of a date field,
a date constant, or an expression that returns a date value.

8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for time values down to microseconds.

NF751: Date-Time Data Type

Version 7.1 Page 41 of 44

Hformat

Is the USAGE format of the returned date-time value.

Example Converting a Date Field to a Date-Time Field

The following request converts the date field TRANSDATE_DATE to a date-
time field:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, ’YYMD’);
DT2/HYYMDIA = HDTTM(TRANSDATE_DATE, 8, ’HYYMDIA’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME TRANSDATE_DATE DT2
------ --------- -------------- ---
1118 2000/06/26 05:45 2000/06/26 2000/06/26 12:00AM
1237 2000/02/05 03:30 2000/02/05 2000/02/05 12:00AM

HTIME: Converting the Time Portion of a Date-Time Field to a
Number

Use the following syntax in an expression to convert the time portion of a date-
time field to a numeric number of milliseconds (if the first argument is 8) or
microseconds (if the first argument is 10). For microseconds, the input date-
time field must be a 10-byte field.
HTIME ({8|10}, dtfield, ’Dformat’)

NF751: Date-Time Data Type

Version 7.1 Page 42 of 44

where:
8 | 10

Is the length of the input date-time value. Use 8 for time values down to
milliseconds, 10 for input time values down to microseconds.

dtfield

Is the date-time value to use for extracting the time. You can supply the
name of a date-time field, a date-time constant, or an expression that
returns a date-time value.

Dformat

Is the USAGE format of the returned number of milliseconds or
microseconds, enclosed in single quotation marks.

Example Converting the Time Portion of a Date-Time Field to
a Number

The following request converts time portion of the TRANSDATE field to a
number of milliseconds:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
MILLISEC/D12.2 = HTIME(8, TRANSDATE, ’D12.2’);
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME MILLISEC
------ --------- --------
1118 2000/06/26 05:45 20,700,000.00
1237 2000/02/05 03:30 12,600,000.00

NF751: Date-Time Data Type

Version 7.1 Page 43 of 44

HGETC: Storing the Current Date and Time in a Date-Time
Field

Use the following syntax in an expression store the current date and time in a
date-time field. If millisecond or microsecond values are not available in your
operating environment, the value returned for these components is zero.
HGETC ({8|10}, ’Hformat’)

where:
8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for input time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single
quotation marks.

Example Storing the Current Date and Time in a Date-Time
Field

The following request stores the current date and time in field DT2:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS ’DATE-TIME’ AND COMPUTE
DT2/HYYMDm = HGETC(10, ’HYYMDm’);
WHERE DATE EQ 2000
END

NF751: Date-Time Data Type

Version 7.1 Page 44 of 44

The output is:
CUSTID DATE-TIME DT2
------ --------- ---
1118 2000/06/26 05:45 2000/10/03 15:34:24.000000
1237 2000/02/05 03:30 2000/10/03 15:34:24.000000

Version 7.1 Page 1 of 3

NF755: Using FILEDEF for Creating Extract Files

By default in VM/CMS, extract files are written to the VM minidisk specified by
the SET TEMP command. If you do not issue the SET TEMP command, extract
files are written to the minidisk with the largest amount of unused space to
which you have write access. The name of an extract file is the AS name
specified in the command that creates it or, if no AS name is specified, a default
name (HOLD, SAVE, orSAVB). The file type is assigned based on the extract
file format.

This feature enables you to use a FILEDEF command to assign a file name, file
type, and file mode for an extract file. In prior releases, FILEDEF was supported
for creating SAVE and SAVB files, but not for creating HOLD files.

In the case of a HOLD file, the Master File is not affected by the FILEDEF
command. The Master File is written to the minidisk specified by the SET TEMP
command, and its name is taken from the AS name in the HOLD command. If
the HOLD command does not contain an AS phrase, the Master File name is
HOLD.

The HOLD, SAVE, or SAVB command can be issued within a request or after a
request executes.

Note: The FILEDEF command is not supported on OS/390 or MVS. As in prior
releases, you can use the DYNAM ALLOCATE or TSO ALLOCATE command
to dynamically allocate extract files.

NF755: Using FILEDEF for Creating Extract Files

Version 7.1 Page 2 of 3

Syntax How to Use a FILEDEF Command for Creating an
Extract File

Issue the following command before creating the extract file:
CMS FILEDEF ddname DISK filename filetype filemode

where:
ddname

Is the AS name from the HOLD, SAVE, or SAVB command. If the command
did not specify an AS name, the ddname is HOLD, SAVE, or SAVB.

filename

Is the file name for the extract file.
filetype

Is the file type for the extract file.
filemode

Is the file mode for the extract file. You must have write access to this
minidisk. If you do not have write access, the following error message is
returned:
(FOC350) ERROR WRITING OUTPUT FILE: filename

Note:

• If a FOCSORT file is created, it is written to the minidisk specified by the
SET TEMP command.

• The FILEDEF command must be in effect any time you use FOCUS to
access the file.

• Do not specify DCB parameters for a HOLD file; if you do, they will be
ignored.

NF755: Using FILEDEF for Creating Extract Files

Version 7.1 Page 3 of 3

• The FILEDEF command is not supported for creating extract files in
FOCUS format or other DBMS formats.

• The FILEDEF command is supported for MATCH FILE requests.

Example Using FILEDEF to Create a HOLD File

In the following examples, SET TEMP = T. The request is:
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME BY FIRST_NAME
ON TABLE HOLD AS CURRSAL
END

Running this request with no FILEDEF command creates the following files:
CURRSAL MASTER T1
CURRSAL FOCTEMP T1

Issue the following FILEDEF command:
CMS FILEDEF CURRSAL DISK SALLIST DATA A

Now, running the same request creates the following files:
CURRSAL MASTER T1
SALLIST DATA A1

Note that the file name, file type, and destination minidisk for the extract file are
taken from the FILEDEF command. The file name and destination minidisk for
the Master File are not.

Version 7.1 Page 1 of 2

NF759: Increased Number of Display Fields

The maximum number of display fields allowed in a request has been
increased from 256 to approximately 495. This number includes all named
fields, whether printed or not, such as data source fields, temporary fields
(virtual fields and calculated values), certain internal fields (for example,
TABPAGENO) and fields used in headings and footings. The increased field
limit is the maximum number of fields allowed when each field has the smallest
length possible (A4 ACTUAL). Longer field lengths reduce the total number of
printable fields.

Reference Error Messages for Number of Display Fields
(FOC005) THE NUMBER OF VERB OBJECTS EXCEEDS THE MAXIMUM

Up to 495 fields may be used in a single report request. This total
does not include sort fields.

(FOC098) TOTAL LENGTH OF VERB OBJECTS EXCEED 3956 CHARACTERS

The length of all verb objects was greater than 3956. Adjust the
lengths or quantity of fields and reissue the TABLE request.

Reference Usage Notes for Number of Display Fields

• Out of a 4K there exists a 3956 byte data area. (The data area is where
fields are stored for report creation.)

• Every field in this data area is rounded up to a full word boundary.

• Every field gets a four-byte counter field associated with it and the four-byte
counter field affects the total number of bytes in this data area.

NF759: Increased Number of Display Fields

Version 7.1 Page 2 of 2

• Field Prefixes, and formatting options may also affect the available data
area.

Version 7.1 Page 1 of 2

NF761: Comma Suppress Edit Format Option

The comma suppress edit format option allows you to suppress the display of
commas. This gives you the ability to display numeric and monetary data
without commas and gives you an additional display option when using
COMPUTE/DEFINE.

Syntax How to Suppress Commas

The comma suppress edit option is invoked by including a lower case ‘c’ after
numeric format options M and N (floating and non-floating dollar sign) and data
format D (floating-point double-precision).

Reference Error Messages for Comma Suppress Option

Using the comma suppress edit option with alphanumeric data types causes
the following error message to be displayed:
(FOC207) ERROR IN THE FORMAT DEFINITION OF FIELD

Format Data Display

D6c 41376 41376

D7Mc 6148 $6148

D7Nc 6148 $ 6148

NF761: Comma Suppress Edit Format Option

Version 7.1 Page 2 of 2

Reference Considerations for Comma Suppress Option

This feature may only be used with numeric format options that automatically
invoke comma inclusion option C.

Using this option with other numeric data types has no effect.

Version 7.1 Page 1 of 2

NF762: Percent Edit Format Option

FOCUS provides a format option that enables you to display a percent sign
along with numeric data. This allows you to display data as percentages after
calculations using COMPUTE/DEFINE.

Syntax How to Display Percent Signs

The percent edit option is invoked by including a ‘%’ after any numeric format
option.

Reference Error Messages for Percent Display Option

Using the percent edit format option with either alphanumeric data types, format
options M and N, or date formats results in the following error message being
displayed:
(FOC207) ERROR IN THE FORMAT DEFINITION OF FIELD

Reference Special Considerations for Percent Display Option

This feature may only be used with numeric data.

Format Data Display

I2% 21 21%

D7% 6148 6,148%

F3.2% 48 48.00%

NF762: Percent Edit Format Option

Version 7.1 Page 2 of 2

This feature does not perform calculations intended to derive a percentage of
data. It is only a format option that allows numeric data to be displayed as a
percentage.

The percent sign may only be displayed on the right hand side of the data.

Version 7.1 Page 1 of 9

NF766: DEFINE Functions

A DEFINE function is a named group of calculations that use any number of
input values and produce a return value. These functions are not tied to a
specific Master File or request and therefore can be reused in different contexts
throughout your FOCUS session.

Using DEFINE Functions
A DEFINE function can be called in the same situations that are valid for user-
written subroutines. Data types (numeric or alphanumeric) must match between
the arguments defined and the arguments used. Shorter alphanumeric
arguments are padded with blanks while longer alphanumeric arguments are
truncated.

All calculations within the function are done in double precision. As with other
FOCUS calculations, format conversions occur only across equal signs in the
assignments that define temporary fields.

Before calling a DEFINE function, you must issue the commands that define
the function at the FOCUS prompt or in a stored procedure.

Syntax How To Define a Function
DEFINE FUNCTION name (parameter1/format1,..., parametern/formatn)

[tempvariablea/formata = expressiona;]
 .
 .
 .

[tempvariablex/formatx = expressionx;]
name/format = [result_expression];
END

NF766: DEFINE Functions

Version 7.1 Page 2 of 9

where:
name

 Is the name of the function. This must be the last field calculated in the
function and is used to return the value of the function to the calling
procedure.

format

 Is the format of the value the function returns.
parameter1/format1...parametern/formatn

Are the parameter names and their formats.

If a parameter is alphanumeric, the calling argument must be
alphanumeric. Shorter calling arguments are padded on the right with
blanks, and longer arguments are truncated.

If a parameter is numeric, the calling argument must also be numeric. To
prevent unexpected results, you must be consistent in your use of data
types.

tempvariablea/formata...tempvariablex/formatx

Are temporary fields and their formats. Temporary fields hold intermediate
values used in the function. You can define as many temporary fields as
you need.

expressiona...expressionx

Are the expressions that calculate the temporary field values. The
expressions can use parameters, constants, and other temporary fields
defined in the same function.

NF766: DEFINE Functions

Version 7.1 Page 3 of 9

result_expression

Is the expression that calculates the value returned by the function. The
expression can use parameters, constants, and temporary fields defined in
the same function.

All names defined in the body of the function are local to the function. The last
field defined before the END command in the function definition must have the
same name as the function and represents the return value for the function.

Example Defining a Function
DEFINE FUNCTION SUBTRACT (VAL1/D8, VAL2/D8)
SUBTRACT/D8.2 = VAL1 - VAL2;
END

TABLE FILE MOVIES
PRINT TITLE LISTPR IN 35 WHOLESALEPR AND COMPUTE
PROFIT/D8.2 = SUBTRACT(LISTPR,WHOLESALEPR);
BY CATEGORY
 WHERE CATEGORY EQ ’MYSTERY’ OR ’ACTION’
END

SUBTRACT is the name of the function. It uses local parameters VAL1 and
VAL2.

NF766: DEFINE Functions

Version 7.1 Page 4 of 9

The output is:
CATEGORY TITLE LISTPR WHOLESALEPR PROFIT
-------- ----- ------ ----------- ------
ACTION JAWS 19.95 10.99 8.96
 ROBOCOP 19.98 11.50 8.48
 TOTAL RECALL 19.99 11.99 8.00
 TOP GUN 14.95 9.99 4.96
 RAMBO III 19.95 10.99 8.96
MYSTERY REAR WINDOW 19.98 9.00 10.98
 VERTIGO 19.98 9.00 10.98
 FATAL ATTRACTION 29.98 15.99 13.99
 NORTH BY NORTHWEST 19.98 9.00 10.98
 DEAD RINGERS 25.99 15.99 10.00
 MORNING AFTER, THE 19.95 9.99 9.96
 PSYCHO 19.98 9.00 10.98
 BIRDS, THE 19.98 9.00 10.98
 SEA OF LOVE 59.99 30.00 29.99

Syntax How to Query DEFINE Functions

You can display a list of all defined functions and their parameters by issuing:
? FUNCTION

A screen similar to the following is displayed:
FUNCTIONS CURRENTLY ACTIVE

Name Format Parameter Format
-------- -------- ------------ --------
SUBTRACT D8.2 VAL1 D8
 VAL2 D8

NF766: DEFINE Functions

Version 7.1 Page 5 of 9

If you issue the ? FUNCTION command with no functions defined, the following
is displayed:
NO FUNCTIONS CURRENTLY IN EFFECT

Syntax How to Clear DEFINE Functions

You can clear functions by issuing:
DEFINE FUNCTION {name|*} CLEAR

where:
name

Is the function name to clear.
*

Clears all active functions.

Reference DEFINE Function Limits and Restrictions

• The number of functions you can define and use in a session is virtually
unlimited.

• DEFINE functions are not cleared by issuing a JOIN, or any other FOCUS
command, with the exception of DEFINE FUNCTION CLEAR.

• Function names are limited to eight characters. There is no limit on the
number of parameters.

• Parameter names are limited to twelve characters.

• DEFINE functions can use other DEFINE functions but cannot be used
recursively.

NF766: DEFINE Functions

Version 7.1 Page 6 of 9

• If you overwrite or clear a DEFINE function, a subsequent attempt to use a
temporary field that refers to that function will generate the following
message:
(FOC1956) DEFINE FUNCTION %1 used after CLEAR or reDEFINE

DEFINE FUNCTION dfname was invoked, but it no longer exists.
A "DEFINE FUNCTION dfname" command was processed
subsequently (with or without CLEAR), thereby invalidating any
references to the the original version of dfname.

Reference DEFINE FUNCTION Error Messages
(FOC1940) DEFINE FUNCTION name not 1-8 characters: %1

The name given for a DEFINE FUNCTION (the character string
following "DEFINE FUNCTION") contains more than eight
characters or is null.

(FOC1941) DEFINE FUNCTION %1 CLEAR--illegal delimiter

In a "DEFINE FUNCTION dfname CLEAR" command, the
character string dfname contains a forward slash, an open or
close parenthesis, or a comma; this is not supported.

(FOC1942) DEFINE FUNCTION not found: %1

In a "DEFINE FUNCTION dfname CLEAR" command, the syntax
is proper but dfname does not exist, so it cannot be CLEARed.

(FOC1943) DEFINE FUNCTION needs close paren to delimit params: %1

A DEFINE FUNCTION definition must contain a list of parameters
delimited by a close parenthesis. The DEFINE FUNCTION
parser encountered END or a similar termination without finding a
close parenthesis.

NF766: DEFINE Functions

Version 7.1 Page 7 of 9

(FOC1944) No open paren after DEFINE FUNCTION format: %1

A format may be specified for a DEFINE FUNCTION immediately
after the DEFINE FUNCTION name (and a forward slash) and
before the open parenthesis enclosing the parameter list. The
forward slash is coded but the next delimiter is not an open
parenthesis.

(FOC1945) DEFINE FUNCTION format not 1-8 characters: %1

A format may be specified for a DEFINE FUNCTION immediately
after the DEFINE FUNCTION name (and a forward slash) and
before the open parenthesis enclosing the parameter list. The
length of the format specification must be from one to eight
characters.

(FOC1946) Name of DEFINE FUNCTION not delimited by "/" or "(": %1

The delimiter for the DEFINE FUNCTION name must be a
forward slash (if a format specification follows) or an open
parenthesis (if there is no format specification). The actual
delimiter is neither of these.

(FOC1947) DEFINE FUNCTION parameter name not delimited by "/": %1

A format specification must follow each parameter for a DEFINE
FUNCTION, and the delimiter that separates the name from the
format specification must be a forward slash. The actual delimiter
is not a forward slash.

(FOC1948) DEFINE FUNCTION parameter name not 1-12 characters: %1

The name of each parameter for a DEFINE FUNCTION must
contain from one to twelve characters. Either the parameter
name shown is null or it contains more than twelve characters.

NF766: DEFINE Functions

Version 7.1 Page 8 of 9

(FOC1949) DEFINE FUNCTION parameter format not delimited by "," or ")":
%1

A format specification must follow each parameter for a DEFINE
FUNCTION, and the delimiter that marks the end of the
specification must be a comma (if there are additional
parameters) or a close parenthesis (if this is the last parameter).

(FOC1950) DEFINE FUNCTION parameter format not 1-8 characters: %1

A format specification must follow each parameter for a DEFINE
FUNCTION, and it must contain from one to eight characters.
Either the actual specification contains more than eight characters
or it is null.

(FOC1951) Invalid DEFINE FUNCTION parameter format: %1

The format specification given for the parameter shown for a
DEFINE FUNCTION is not recognized.

(FOC1952) DEFINE FUNCTION %1 is void

At least one computational statement must appear between the
parameter list for DEFINE FUNCTION and "END", but the actual
DEFINE FUNCTION has no computational statements.

(FOC1953) DEFINE FUNCTION name %1 not equal to final assignment name %2

The name immediately following "DEFINE FUNCTION" must
match the name on the left-hand side of the final computational
statement given for the DEFINE FUNCTION, but it does not
match.

NF766: DEFINE Functions

Version 7.1 Page 9 of 9

(FOC1954) DEFINE FUNCTION format %1 not equal to final assignment
format %2

The (optional) format specified before the parameters for a
DEFINE FUNCTION must match the format on the left-hand side
of the final computational statement given for the DEFINE
FUNCTION, but it does not match.

(FOC1955) DEFINE FUNCTION %1 entered recursively

A DEFINE FUNCTION was invoked, but before returning it was
invoked again; this is not supported. Note that the invalid
recursive usage may have been indirect: DF1 invokes DF2, which
invokes DF3, ... , which invokes DF1.

(FOC1956) DEFINE FUNCTION %1 used after CLEAR or reDEFINE

DEFINE FUNCTION dfname was invoked, but it no longer exists.
A "DEFINE FUNCTION dfname" command was processed
subsequently (with or without CLEAR), thereby invalidating any
references to the original version of dfname.

(FOC1957) Warning--DEFINE FUNCTION %1 superseded; could result in
FOC1956

A successful DEFINE FUNCTION dfname has replaced the prior
dfname. Trying to use a DEFINE FILE (or another DEFINE
FUNCTION) that refers to the prior version of dfname will result in
FOC1956. Such a DEFINE FILE/FUNCTION could be re-issued,
which would direct it to use the new version of dfname.

(FOC1958) DEFINE FUNCTION %1 takes %2 parameter(s), but # supplied

DEFINE FUNCTION dfn requires Nexp input parameters, but
Nsupp were supplied. dfn, Nexp, and Nsupp are displayed within
the message text.

Version 7.1 Page 1 of 5

NF773: Token Delimited Files

FOCUS can now read single-segment sequential data sources in which fields
are separated by any delimiter.

Syntax How to Define Files With Delimiters

Delimiters must be defined in the Master File. The FILE declaration must
include the following attribute:
SUFFIX=DFIX

To use a delimiter that consists of a single non-printable character or of one or
more printable characters, the delimiter is defined as a field with the following
attributes:
FIELDNAME=DELIMITER, ALIAS=delimiter, USAGE=ufmt, ACTUAL=afmt ,$

To use a delimiter that consists of multiple non-printable characters or a
combination of printable and non-printable characters, the delimiter is defined
as a group:
GROUP=DELIMITER, ALIAS= , USAGE=ufmtg, ACTUAL=afmtg ,$
 FIELDNAME=DELIMITER, ALIAS=delimiter1, USAGE=ufmt1, ACTUAL=afmt1 ,$
 .
 .
 .
 FIELDNAME=DELIMITER, ALIAS=delimitern, USAGE=ufmtn, ACTUAL=afmtn ,$

where:
DELIMITER

Indicates that the field or group is used as the delimiter in the data source.

NF773: Token Delimited Files

Version 7.1 Page 2 of 5

delimiter

Identifies a delimiter.

For one or more printable characters, the value consists of the actual
characters. The delimiter must be enclosed in single quotation marks if it
includes characters used as delimiters in Master File syntax.

For a non-printable character, the value is the decimal equivalent of the
EBCDIC or ASCII representation of the character, depending on your
operating environment.

ufmt, afmt

Are the USAGE and ACTUAL formats for the delimiter. Possible values are:

Type of delimiter USAGE ACTUAL

Printable characters An where n is the
number of
characters

An where n is the
number of
characters

Non-printable character such
as Tab

I4 I1

Group (combination of
printable and non-printable
characters, or multiple non-
printable characters)

Sum of the
individual USAGE
lengths

Sum of the
individual
ACTUAL lengths

NF773: Token Delimited Files

Version 7.1 Page 3 of 5

Reference Usage Notes for Token Delimited Files

• If the delimiter is alphanumeric and the delimiter value contains special
characters (those used as delimiters in Master File syntax), it must be
enclosed in single quotation marks.

• Numeric (decimal) values may be used to represent any character, but are
predominantly used for non-printable characters such as Tab. The numeric
values may differ between EBCDIC and ASCII platforms.

• A delimiter is needed to separate field values. A pair of delimiters denotes a
missing or default field value.

• Trailing delimiters are not necessary except that all fields must be
terminated with the delimiter if the file resides in CMS or has fixed length
records in MVS.

• Only one delimiter field/group is permitted per Master File.

• Token delimited files cannot be used in joins.

Example Defining Delimiters

The following example shows a one-character alphanumeric delimiter:
FIELDNAME=DELIMITER, ALIAS=’,’ ,USAGE=A1, ACTUAL=A1 ,$

The following example shows a two-character alphanumeric delimiter:
FIELDNAME=DELIMITER, ALIAS=// ,USAGE=A2, ACTUAL=A2 ,$

The following example shows how to use the Tab character as a delimiter:
FIELDNAME=DELIMITER, ALIAS=05 ,USAGE=I4, ACTUAL=I1 ,$

The following example shows how to use a blank character described as a
numeric delimiter:
FIELDNAME=DELIMITER, ALIAS=64 ,USAGE=I4, ACTUAL=I1 ,$

NF773: Token Delimited Files

Version 7.1 Page 4 of 5

The following example shows a group delimiter (Tab-slash-Tab combination):
GROUP=DELIMITER, ALIAS= ,USAGE=A9, ACTUAL=A3 ,$

FIELDNAME=DEL1, ALIAS=05 ,USAGE=I4, ACTUAL=I1 ,$

FIELDNAME=DEL2, ALIAS=/ ,USAGE=A1, ACTUAL=A1 ,$

FIELDNAME=DEL3, ALIAS=05 ,USAGE=I4, ACTUAL=I1 ,$

Example Separating Field Values for Missing Data

The following Master File shows the MISSING attribute specified for the CAR
field:
FILE=DFIXF01 ,SUFFIX=DFIX

SEGNAME=SEG1 ,SEGTYPE=S0

FIELDNAME=COUNTRY ,ALIAS=F1 ,USAGE=A10 ,ACTUAL=A10 ,$

FIELDNAME=CAR ,ALIAS=F2 ,USAGE=A16 ,ACTUAL=A16 ,MISSING=ON, $

FIELDNAME=NUMBER ,ALIAS=F3 ,USAGE=P10 ,ACTUAL=Z10 ,$

FIELDNAME=DELIMITER ,ALIAS=’,’ ,USAGE=A1 ,ACTUAL=A1 ,$

In the source file, two consecutive comma delimiters indicate missing values for
CAR:
GERMANY,VOLKSWAGEN,1111
GERMANY,BMW,
USA,CADILLAC,22222
USA,FORD
USA,,44444
JAPAN
ENGLAND,
FRANCE

NF773: Token Delimited Files

Version 7.1 Page 5 of 5

The output is:
COUNTRY CAR NUMBER
GERMANY VOLKSWAGEN 1111
GERMANY BMW 0
USA CADILLAC 22222
USA FORD 0
USA . 44444
JAPAN . 0
ENGLAND 0
FRANCE . 0

Version 7.1 Page 1 of 2

NF777: Two-Gigabyte FOCUS Database Support

The FOCUS database size has been increased to a maximum of two gigabytes
per physical data file, overcoming previous FOCUS database size limitations.
Through partitioning, one logical FOCUS database can now span up to 500
gigabytes. FOCUS database size was previously limited to 64 gigabytes
through the use of LOCATION files.

Note that the discussion in this document applies to any FOCUS file that has
extended beyond one-gigabyte but has not reached the two-gigabyte limit.

For information about partitioning FOCUS data sources, see NF777:
Partitioned FOCUS Data Sources.

Enabling Two-Gigabyte Support
In order to enable support for two-gigabyte databases, you need to set the
value of the FOC2GIGDB parameter to ON in the FOCPARM profile.

Syntax How to Enable Two-Gigabyte Support

Issue the following command in the FOCPARM profile:
SET FOC2GIGDB = {ON|OFF}

where:
ON

Enables support for FOCUS data sources larger than one-gigabyte. Note
that an attempt to use FOCUS data sources larger than one-gigabyte in a
release prior to FOCUS Version 7.1 can cause database corruption.

NF777: Two-Gigabyte FOCUS Database Support

Version 7.1 Page 2 of 2

OFF

Disables support for FOCUS data sources larger than one-gigabyte. OFF is
the default value.

Reference Usage Notes for Two-Gigabyte FOCUS Data
Sources

• To sort a FOCUS data source that is larger than one-gigabyte, on MVS you
must explicitly allocate ddname FOCSORT to a temporary file with enough
space to contain the data; on VM, you must have enough TEMP space
available.

• To REBUILD a FOCUS data source that is larger than one-gigabyte, on
MVS you must explicitly allocate ddname REBUILD to a temporary file with
enough space to contain the data; on VM you must have enough TEMP
space available. It is strongly recommended that you REBUILD/REORG to
a new file, in sections, to avoid the need to allocate large amounts of space
to REBUILD. In the DUMP phase, use selection criteria to dump a section
of the database. In the LOAD phase, make sure to add each new section
after the first. To add to a database in MVS you must issue the LOAD
command with the following syntax:
LOAD NOCREATE

• If you create a FOCUS data source that is larger than one gigabyte using
HOLD FORMAT FOCUS, on MVS you must explicitly allocate ddnames
FOC$HOLD and FOCSORT to temporary files large enough to hold the
data; on VM you must have enough TEMP space available.

Version 7.1 Page 1 of 17

NF777: Partitioned FOCUS Data Sources

Through partitioning, one logical FOCUS database can now span up to 500
gigabytes. FOCUS database size was previously limited to 64 gigabytes
through the use of LOCATION files.

For information about two-gigabyte support, see NF777: Two-Gigabyte FOCUS
Database Support

Partitioning
FOCUS data sources can now consist of up to 250 physical files of up to two
gigabytes each, for a maximum of 500 gigabytes of real storage per logical
database. The new horizontal partition is a slice of the entire file structure,
meaning that new FOCUS database partitions are not subject to the
multiplicative effect of LOCATION-style vertical partitioning. Note, however, that
the number of physical files associated with one FOCUS data source is the sum
of all of its partitions and LOCATION files. This sum must be less than or equal
to 250. New FOCUS data sources can grow in size over time, and can be
repartitioned based on the requirements of the application.

Note: You do not have to partition your data source. If you choose not to, your
application will automatically support the increased FOCUS database size
when you set the FOC2GIGDB parameter to ON.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 2 of 17

Intelligent Partitioning

The FOCUS database now supports intelligent partitioning, which means that
each horizontal partition contains the complete database structure for specific
data values or ranges of values. Intelligent partitioning lets you not only
separate the data into up to 250 physical two-gigabyte files, it allows you to
create an Access File in which you describe, using WHERE criteria, the actual
data values in each partition. When processing a report request, the selection
criteria in the request are compared to the WHERE criteria in the Access File to
determine which partitions are required for retrieval.

To select applications that can benefit most from partitioning, look for
applications that employ USE commands to concatenate data sources or for
data that lends itself to separation based on data values or ranges of values,
such as data stored by month or by department. Intelligent partitioning functions
like an intelligent USE. It looks at the Access File when processing a report
request to determine which partitions to read, whereas the USE command
reads all of the files on the list. This intelligence decreases I/O and delivers
significant performance benefits.

To take advantage of the partitioning feature, you must:

• Edit the Master File and add the ACCESSFILE attribute.

• Create the Access File using a text editor.

Concatenation of multiple partitions is supported for reporting only. You must
load or rebuild each physical partition separately.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 3 of 17

You can either create a separate Master File for each partition to reference in
the load procedure, or you can use the single Master File created for reporting
against the partitioned data source, if you:

• Issue an explicit allocation command to link the Master File to each partition
in turn.

• Run the load procedure for each partition in turn.

Note: Report requests will automatically read all required partitions without
user intervention.

Specifying an Access File in a FOCUS Master File
To take advantage of the partitioning feature, you must edit the Master File and
add the ACCESSFILE attribute to identify the name of the Access File.

Syntax How to Specify an Access File for a Partitioned
FOCUS Database

FILENAME=fname, SUFFIX=FOC, ACCESS[FILE]=accessfile,
.
.
.

where:
fname

Is the file name of the partitioned data source.
accessfile

Is the name of the Access File. Note that this can be any valid name.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 4 of 17

Example Master File for the VIDEOTR2 Partitioned Database
FILENAME=VIDEOTR2, SUFFIX=FOC,
ACCESS=VIDEOACX, $
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $
DEFINE DATE/I4 = HPART(TRANSDATE, ’YEAR’, ’I4’);

The FOCUS Access File
The Access File provides comprehensive metadata management for all
FOCUS data sources. It shields end users from the complex file storage and
configuration details used for efficient and transparent access to partitioned and
distributed databases.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 5 of 17

The Access File describes how to locate, concatenate, join, and select the
appropriate physical data files for retrieval requests against one or more
FOCUS databases. Access Files are optional in retrieval requests against non-
partitioned databases with no location files and play no part in data
maintenance requests.

Every request supplies the name of a Master File. The Master File is read and
the declarations in it are used to access the data source. If the Master File
includes an ACCESSFILE attribute, FOCUS reads the named Access File and
uses it to locate the correct data files. Each Master File can point to its own
separate Access File, or several Master Files can point to the same Access
File. This flexibility makes it possible to create one Access File that manages
database access for an entire application. If the Master File does not contain an
ACCESSFILE attribute, FOCUS attempts to satisfy the request with the Master
File alone.

You can use an Access File to take advantage of the following database
features:

• Horizontal and vertical partitioning. A database can consist of several
separate files, or horizontal partitions, each of which contains the database
records for a specific time period, region, or other element. Segments can
also be stored separately from the rest of the data source (LOCATION files
or vertical partitions). The Access File describes how to concatenate the
separate data files.

• Joins. If joined files are partitioned, the Access File describes how to
concatenate the separate data files in the join.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 6 of 17

An Access File is required to take advantage of intelligent partitioning. Intelligent
partitioning places specific data values in each physical partition and uses the
Access File to describe the values in each partition. With this information,
FOCUS optimizes database access by retrieving only those partitions whose
values are consistent with the selection criteria in the request.

Note: On OS/390 the Access File must be a member of a data set
concatenated in the allocation for ddname ACCESS. On VM/ESA the Access
File must have the file type ACCESS. FOCSQL cannot be used as the file type.
The Access File has the same DCB attributes as the Master File (LRECL=80,
RECFM=FB, BLKSIZE= multiple of LRECL).

FOCUS Access File Attributes

The Access File can include the following attributes:

Each Access File declaration begins with a MASTERNAME attribute that
identifies the Master File to which it applies. By including multiple
MASTERNAME declarations, you can use one Access File for multiple Master
Files, possibly for an entire application.

Attribute Synonyms Description

MASTERNAME MASTER A Master File entry.

DATANAME DATA The name of the physical file.

WHERE The WHERE criteria.

LOCATION A segment location.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 7 of 17

Syntax How to Create an Access File
MASTERNAME filename1
 DATANAME dataname1 [WHERE test1 ;]
 [LOCATION locationnamea DATANAME datanamea]
 .
 .
 .
 DATANAME dataname2 [WHERE test2;]
 [LOCATION locationnameb DATANAME datanameb]
 .
 .
 .
MASTERNAME filename2
 .
 .
 .

where:
MASTERNAME

Is the attribute that identifies the Master File name. MASTER is a synonym
for MASTERNAME.

filename1, filename2

Are names of Master Files. You can describe unrelated Master Files in one
Access File.

DATANAME

Is the attribute that identifies a physical file. DATA is a synonym for
DATANAME.

dataname1, dataname2

Are the fully qualified physical file names of physical partition files, in the
syntax native to your operating environment.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 8 of 17

test

Is a valid WHERE test. The following types of expressions are supported.
You can also combine any number of these expressions with the AND
operator:
fieldname relational_operator value1 [OR value2 OR value3 ...]

fieldname FROM value1 TO value2 [OR value3 TO value4 ...]

fieldname1 FROM value1 TO value2 [OR fieldname2 FROM value3 TO value4
...]

where:
fieldname, fieldname1, fieldname2

Are field names in the Master File.
relational_operator

Can be one of the following: EQ, NE, GT, GE, LT, LE.
value1, value2, value3, value4

Are valid values for their corresponding fields.

Note: If the test conditions do not accurately reflect the contents of the files,
you may get incorrect results from requests.

LOCATION

Is the attribute that identifies a separately stored segment.
locationnamea,locationnameb

Are the values of the LOCATION attributes from the Master File.

Segment locations must map one-to-one to horizontal partitions.
datanamea, datanameb

Are the fully qualified physical file names of the LOCATION files, in the
syntax native to your operating environment.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 9 of 17

Example Describing Intelligent Partitions in a FOCUS Access
File

The following Access File illustrates how to define intelligent partitions for the
VIDEOTR2 database, in which data is grouped by date.

For MVS:
MASTERNAME VIDEOTR2
 DATANAME USER1.VIDPART1.FOCUS
 WHERE DATE EQ 1991;

 DATANAME USER1.VIDPART2.FOCUS
 WHERE DATE FROM 1996 TO 1998;

 DATANAME USER1.VIDPART3.FOCUS
 WHERE DATE FROM 1999 TO 2000;

For CMS:
MASTERNAME VIDEOTR2
 DATANAME ’VIDPART1 FOCUS A’
 WHERE DATE EQ 1991;

 DATANAME ’VIDPART2 FOCUS A’
 WHERE DATE FROM 1996 TO 1998;

 DATANAME ’VIDPART3 FOCUS A’
 WHERE DATE FROM 1999 TO 2000;

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 10 of 17

Example Describing Intelligent Partitions With LOCATION
Files

Consider the following version of a SALES Master File. The CUSTDATA
segment is stored in a separate LOCATION file named MORECUST:
FILENAME=SALES, ACCESSFILE=XYZ,$
 SEGNAME=SALEDATA
 .
 .
 .
 SEGNAME=CUSTDATA, LOCATION=MORECUST,$

The corresponding Access File (XYZ) describes one partition for 1994 data,
and another partition for the 1993 data. Each partition has its corresponding
MORECUST LOCATION file:

For MVS:
MASTERNAME SALES
 DATANAME USER1.SALES94.FOCUS
 WHERE SDATE FROM ’19940101’ TO ’19941231’;
 LOCATION MORECUST
 DATANAME USER1.MORE1994.FOCUS

 DATANAME USER1.SALES93.FOCUS
 WHERE SDATE FROM ’19930101’ TO ’19931231’;
 LOCATION MORECUST
 DATANAME USER1.MORE1993.FOCUS

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 11 of 17

For CMS:
MASTERNAME SALES
 DATANAME ’SALES94 FOCUS A’
 WHERE SDATE FROM ’19940101’ TO ’19941231’;
 LOCATION MORECUST
 DATANAME ’MORE1994 FOCUS A’

 DATANAME ’SALES93 FOCUS A’
 WHERE SDATE FROM ’19930101’ TO ’19931231’;
 LOCATION MORECUST
 DATANAME ’MORE1993 FOCUS A’

Example Using a Partitioned Database

The following illustrates how to use a partitioned database.
TABLE FILE VIDEOTR2
PRINT LASTNAME FIRSTNAME DATE
WHERE DATE FROM 1996 TO 1997
END

The output is:
LASTNAME FIRSTNAME DATE
-------- --------- ----
HANDLER EVAN 1996
JOSEPH JAMES 1997
HARRIS JESSICA 1997
HARRIS JESSICA 1996
MCMAHON JOHN 1996
WU MARTHA 1997
CHANG ROBERT 1996

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 12 of 17

There is nothing in the request or output that signifies that a partitioned
database was used. However, only the second partition is retrieved, reducing
I/O and enhancing performance.

Describing Joined Files
The Master File can describe cross-references to other Master Files. In simple
cases, the Master File alone may be sufficient for describing the cross-
reference.

If one of the joined files is horizontally partitioned, only that file needs an
Access File to implement the join.

However, when both of the joined files are horizontally partitioned, they can
both be described in one Access File or they can each be described in a
separate Access File in order to implement the join. Only the host file is allowed
to have WHERE criteria in the Access File. If both the host and cross-
referenced file have WHERE criteria, a join may produce unexpected results.

Example Joining Two Partitioned Data Sources

Recall that the cross-referenced field in a join must be indexed. If the host file is
partitioned, the cross-referenced file must either contain the same number of
partitions as the host file or only one partition.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 13 of 17

For MVS:
MASTERNAME SALES
 DATANAME USER1.NESALES.FOCUS
 DATANAME USER1.MIDSALES.FOCUS
 DATANAME USER1.SOSALES.FOCUS
 DATANAME USER1.WESALES.FOCUS

MASTERNAME CUSTOMER
 DATANAME USER1.NECUST.FOCUS
 DATANAME USER1.MIDCUST.FOCUS
 DATANAME USER1.SOCUST.FOCUS
 DATANAME USER1.WECUST.FOCUS

For CMS:
MASTERNAME SALES
 DATANAME ’NESALES FOCUS A’
 DATANAME ’MIDSALES FOCUS A’
 DATANAME ’SOSALES FOCUS A’
 DATANAME ’WESALES FOCUS A’

MASTERNAME CUSTOMER
 DATANAME ’NECUST FOCUS A’
 DATANAME ’MIDCUST FOCUS A’
 DATANAME ’SOCUST FOCUS A’
 DATANAME ’WECUST FOCUS A’

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 14 of 17

Reference Usage Notes for Partitioned FOCUS Data Sources

• Concatenation of multiple partitions in one request is only valid for
reporting. To MODIFY or REBUILD a partitioned database, you must
explicitly allocate and MODIFY, Maintain, or REBUILD one partition at a
time.

• The order of precedence for allocating data sources is as follows:

• A USE command in effect has the highest precedence. It overrides an
Access File or an explicit allocation for a data source.

• An Access File overrides an explicit allocation for a data source.

• A DATASET attribute cannot be used in the same Master File as an
ACCESSFILE attribute.

Reference Error Messages
(ACC20201) BOTH DATASET AND ACCESS FILE NOT PERMITTED

A Master file cannot specify a DATASET and an Access File at
the same time.

(ACC20202) MEMORY ALLOCATION ERROR

Access File Memory Failure.

(ACC20203) ACCESS FILE %1 (MASTER %2) NOT FOUND

The Access File specified in the Master could not be found.
Check the spelling and/or the location of the Access File.

(ACC20204) ACCESS FILE SYSTEM ERROR

The Access File system could not execute the Access File.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 15 of 17

(ACC20205) UNABLE TO OPEN ACCESS FILE %1

The Access File specified could not be opened. Check the
permissions and/or the name of the Access File.

(ACC20206) ACCESS FILE %1 HAS MULTIPLE ENTRIES FOR MASTER %2

No Access File may have two entries for a single master. Remove
all duplicate entries from the Access File

(ACC20207) NO ENTRY FOUND FOR MASTER %1 IN ACCESS FILE %2

An Access File specified in the Master must have a corresponding
MASTER name. Add a MASTER entry to the Access File, or
remove the Access File from the Master.

(ACC20208) UNABLE TO PARSE ACCESS FILE

An error occurred while trying to parse the Access File.

(ACC20209) PARSER ERROR: %1

There is a grammatical and/or syntactical error in the Access File.
If nn/ii/ll is shown then look at line nn, column ii, for a length
of ll for the problem token.

(ACC20211) UNABLE TO PARSE WHERE CLAUSE

The WHERE clause in the Access File could not be parsed.
Check the clause and parse the Master again.

(ACC20212) ACCESS FILE LOGICAL NAME LENGTH EXCEEDED : %1

Logical Names: Master File Name, External Location Names, and
External Index Names Logical names may not exceed 8
characters.

(ACC20215) ACCESS FILE SYSTEM ERROR FOR FILE : %1

Check the physical file name in the Access File.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 16 of 17

(ACC20216) TOO MANY PARTITIONS. PARTITION %1 FOR MASTER %2 EXCEEDS
LIMIT.

There is a limit to the total number of physical partitions that may
be used in a request. Delete partitions that are not needed from
the Access File.

(ACC20217) ACCESS FILE TOKEN %1 TOO LONG

The Token in the Access File is too long. No Token may be longer
than 80 characters.

(ACC20219) PARTITION %2 IS MISSING AN ENTRY FOR LOCATION %1

If a location entry exists for a horizontal partition, it must be
specified for all partitions.

(ACC20224) WHERE CLAUSE EXCLUDES ALL AVAILABLE PARTITIONS

The WHERE/IF clause in the current request does not match any
of the WHERE clauses specified in the Access File. No partitions
can be accessed.

(ACC20225) UNABLE TO LOAD ACCFILE MODULE

The system is unable to find a required library.

(ACC20226) DATASET SPECIFIED FOR MASTER %1 DOES NOT EXIST

The dataset specified in the Master either has not been created
or cannot be read. Verify the status of the specified physical
file and try the request again.

(ACC20227) PARTITION No. %2 FOR DATABASE %1 DOES NOT EXIST

The partition specified in the Access File for the above
Master either has not been created or cannot be read. Verify
the status of the physical partition.

NF777: Partitioned FOCUS Data Sources

Version 7.1 Page 17 of 17

(ACC20228) LOCATION %3 IN PARTITION No. %2 FOR DATABASE %1 DOES NOT
EXIST

The physical file specified for the above LOCATION for the
specified
partition in the given database either does not exist or cannot
be read. Verify the status of the file and retry the request.

(ACC20235) INVALID PHYSICAL FILENAME %2 FOR MASTER %1

Only absolute filenames are accepted by the Access File
and the DATASET command.

Version 7.1 Page 1 of 3

NF778: Dialogue Manager TRUNCATE Function

The Dialogue Manager TRUNCATE function removes trailing blanks from
Dialogue Manager amper variables and adjusts the length accordingly.

Using the Dialogue Manager TRUNCATE Function
The Dialogue Manager TRUNCATE function has only one argument, the string
or variable to be truncated. If you attempt to use the Dialogue Manager
TRUNCATE function with more than one argument, the following error
message is generated:
(FOC03665) Error loading external function ’TRUNCATE’

This function can only be used in Dialogue Manager commands that support
subroutine calls, such as -SET and -IF commands. It cannot be used in -TYPE
or -CRTFORM commands or in arguments passed to stored procedures.

Note: A user-written subroutine of the same name can exist without conflict.

Syntax How to Use the TRUNCATE Function
-SET &var2 = TRUNCATE(&var1);

where:
&var2

Is the Dialogue Manager variable to which the truncated string is returned.
The length of this variable is the length of the original string or variable
minus the trailing blanks. However, if the original string consisted of only
blanks, a single blank, with a length of one is returned.

NF778: Dialogue Manager TRUNCATE Function

Version 7.1 Page 2 of 3

&var1

Is a Dialogue Manager variable or a literal string enclosed in single
quotation marks. System variables and statistical variables are allowed as
well as user-created local and global variables.

Example Using the Dialogue Manager TRUNCATE Function

The following example shows the result of truncating trailing blanks:
-SET &LONG = ’ABC ’ ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:
LONG = ABC LENGTH = 06
RESULT = ABC LENGTH = 03

The following example shows the result of truncating a string of all blanks:
-SET &LONG = ’ ’ ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:
LONG = LENGTH = 06
RESULT = LENGTH = 01

NF778: Dialogue Manager TRUNCATE Function

Version 7.1 Page 3 of 3

The following example uses the TRUNCATE function as an argument for EDIT:
-SET &LONG = ’ABC ’ ;
-SET &RESULT = EDIT(TRUNCATE(&LONG)|’Z’,’9999’);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:
LONG = ABC LENGTH = 06
RESULT = ABCZ LENGTH = 04

Version 7.1 Page 1 of 2

NF779: FOCUS CRTFORM HTML Translation

When the HTML/TP feature of Web390 generates replacement HTML forms for
a 3270 screen, it can dynamically account for fields that may or may not be
populated with data during execution. HTML/TP can use this technique with
turnaround (T.) fields on CRTFORMs because they are enclosed in @ signs.
These @-sign markers enable HTML/TP to recognize them and handle them
dynamically on a customized HTML form. In contrast, CRTFORM display (D.)
fields are not normally enclosed in @ signs.

A new SET parameter, WEBTAB, can be used to instruct FOCUS to enclose
CRTFORM display fields in @ signs.

Note: This setting is only for those MODIFY CRTFORM or Dialogue Manager
-CRTFORM applications that will be used in conjunction with the HTML/TP
feature of Web390. For information about Web390 and the HTML/TP feature,
see the Web390 for OS/390 and MVS Developer’s Guide and Installation
Manual.

Syntax How to Add Markers to CRTFORM Display Fields
SET WEBTAB = {ON|OFF}

where:
ON

Adds @ signs around CRTFORM display fields. These markers may cause
the fields displayed on the CRTFORM to shift slightly to the right. Use this
setting only for MODIFY CRTFORM or Dialogue Manager -CRTFORM
applications that will be used in conjunction with the HTML/TP feature of
Web390.

NF779: FOCUS CRTFORM HTML Translation

Version 7.1 Page 2 of 2

OFF

Does not place @ signs around CRTFORM display fields. OFF is the
default setting.

Syntax How to Query the WEBTAB Parameter Setting

The WEBTAB parameter setting is displayed by ? SET WEBTAB query
command.
? SET WEBTAB

Version 7.1 Page 1 of 2

NF781: Embedding Text Fields in Headings

You can now embed text fields (FORMAT=TXn) in heading types (heading,
footing, subhead, subfoot, and ON TABLE subhead and subfoot) in reports.

Example Embedding a Text Field in a Heading

The following example illustrates how to embed a text field in a heading.
TABLE FILE TXTFLD
BY COUNTRY SUBHEAD
"Here is a TX field: <TEXTFLD"
END

The heading in the output is:
Here is a TX field: The quick brown
 fox jumps over
 the lazy dog.

The following is the Master File for this example:
FILENAME=TXTFLD,SUFFIX=FOC
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY, FORMAT=A16, $
FIELDNAME=TEXTFLD, FORMAT=TX16, $

As is shown in this example, the text field values display on one or more lines.
The output is aligned vertically so that the position of the TX field in the initial
line is maintained in the following lines.

The number of characters specified in the TX format specification determines
the horizontal space occupied by the text field (for example, TX16 means 16
spaces wide).

NF781: Embedding Text Fields in Headings

Version 7.1 Page 2 of 2

Reference Usage Notes for Embedding Text Fields in Headings

• You cannot embed TX fields in FML free-text lines.

• HEADING or FOOTING lines can contain multiple embedded TX fields;
SUBHEAD or SUBFOOT lines may only contain a single embedded TX
field instance.

Version 7.1 Page 1 of 3

NF782: Oracle Data Adapter IXSPACE Setting

The new IXSPACE setting for the Oracle Data Adapter enables you to override
the default parameters for the Oracle index space implicitly created by the
CREATE FILE and HOLD FORMAT SQLORA commands.

Specifying Oracle Index Space Parameters
You can specify up to 94 bytes of index space parameters for the SQL CREATE
INDEX statement that the data adapter issues when it creates an Oracle table
as a result of a CREATE FILE or HOLD FORMAT SQLORA command for a
table that has an index defined.

Syntax How to Specify Oracle Index Space Parameters

You can issue the following SET command at the command prompt, in a stored
procedure, or in any supported profile
SQL [SQLORA] SET IXSPACE [index_spec]

where:
index_spec

Consists of up to 94 bytes of valid Oracle index space parameters. To reset
the index space parameters to their default values, issue the SET IXSPACE
command with no parameters. If the index specification requires more than
one line, use the long form of the SQL SET command:
SQL [SQLORA]
SET IXSPACE
index_spec_line1
index_spec_line2
END

NF782: Oracle Data Adapter IXSPACE Setting

Version 7.1 Page 2 of 3

SQLORA

Indicates the Oracle RDBMS. Omit if you issued the SET SQLENGINE
command for Oracle.

Examples of index specification parameters you may want to specify are the
tablespace clause, global_index clause, local_index clause, and parallel
clause. The data adapter does not verify the validity of the parameters. See the
Oracle SQL Reference Manual for syntax descriptions.

Example Specifying a Table Space for an Oracle Index

When you issue the CREATE FILE or HOLD FORMAT SQLORA command, the
DBSPACE setting determines which table space will be used to contain the
resulting Oracle table. In prior releases, the index was always placed in the
default table space specified at installation.

You can now specify a table space for the index using the SQL SET IXSPACE
command. The following example places the index in the tablespace ORATS1:
SQL SQLORA SET IXSPACE TABLESPACE ORATS1

As a result of setting this value, any CREATE FILE or HOLD FORMAT
SQLORA command will generate an SQL CREATE INDEX statement
containing the TABLESPACE clause, if an index is defined for the table. You
can see the SQL CREATE INDEX syntax in the FSTRACE4 output.

The data adapter does not verify the validity of the parameters. If they are not
valid, the following errors are returned at runtime:
(FOC1400) SQLCODE IS 959 (HEX: 000003BF)

: ORA-00959: tablespace ’tablespacename’ does not exist

(FOC1414) EXECUTE IMMEDIATE ERROR.

NF782: Oracle Data Adapter IXSPACE Setting

Version 7.1 Page 3 of 3

When the SQL SQLORA SET IXSPACE TABLESPACE tablespacename
command has been issued with a valid table space name, the following line is
added to the SET SQLORA? query command output:
(FOCxxxx) DEFAULT IXSPACE IS - : tablespacename

If no table space has been set, this line is not displayed.

Example Resetting the IXSPACE Value

The following command resets the IXSPACE parameters to their installation
defaults:
SQL SQLORA SET IXSPACE

Version 7.1 Page 1 of 73

NF785: The Adabas Write Data Adapter for FOCUS

You can now use FOCUS to maintain Adabas data sources. This bulletin
identifies aspects of the FOCUS file maintenance facilities, MODIFY and
Maintain, that are unique for the Adabas environment. MODIFY and Maintain
requests read, add, update, and delete records. You can modify single data
sources, sets of data sources defined in a multi-segment Master File, or
unrelated sets of data sources.

Maintain provides a graphical user interface and event-driven processing. In a
Maintain procedure, temporary storage areas called stacks collect data,
transaction values, and temporary field values. You can use the Maintain
Window Painter facility to design Winforms—windows that display stack values,
collect transaction values, and invoke triggers. A trigger implements
event-driven processing by associating an action (such as performing a specific
case in the Maintain procedure) with an event (such as pressing a particular PF
key). Maintain also provides set-based processing through enhanced NEXT,
UPDATE, DELETE, and INCLUDE commands.

This bulletin describes differences between the MODIFY and Maintain facilities
when these differences affect data adapter processing.

The FOCUS for S/390 documentation contains a detailed discussion of file
maintenance with the FOCUS MODIFY and Maintain facilities. Read this
documentation carefully before developing MODIFY or Maintain procedures to
use with Adabas data sources.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 2 of 73

Note: You can maintain up to 64 data sources in a single MODIFY or Maintain
procedure. The limit for a MODIFY COMBINE or a Maintain procedure is 16
Master Files; however, each Master File can describe more than one data
source, for a total of 64 segments per procedure minus one for the virtual root
segment created by the COMBINE command. In addition, a Maintain procedure
can call other Maintain procedures that reference additional data sources.

Prerequisites for running MODIFY and Maintain requests include:

• The Write data adapter. The Write component of the data adapter must be
installed and operational.

• Proper authorization to perform maintenance operations.

• Existing data sources to modify. If you intend to load new data sources with
MODIFY or Maintain, you must generate them first using Adabas utilities.

Activating the Adabas Write Data Adapter
Before you can use any commands that write to an Adabas data source, you
must make the following edits to the Master and Access Files:

In the Master File:

• All segments must have SEGTYPE = S0. (For the Read Data Adapter
SEGTYPE=S is sufficient.)

• Fields with ACTUAL format Z (zoned) must have a numeric USAGE format
(P or I). Format A is supported only for reading an Adabas data source.

Tip: For best performance, you can change ACTUAL format Z to ACTUAL
format P in the Master File. In this case, you must also change the ALIAS
attribute to contain the length and data type. If the ALIAS was ff, and the
field length is lll, the ALIAS attribute should be coded as:
ALIAS = ’ff,lll,P’

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 3 of 73

For example, consider the following field declaration:
FIELD = LEAVE_DUE ,ALIAS = AU ,USAGE = P2 ,ACTUAL = Z2 ,$

You would edit this declaration as follows:
FIELD = LEAVE_DUE ,ALIAS = ’AU,2,P’ ,USAGE = P2 ,ACTUAL = P2 ,$

• If two or more fields in the Master File are synonyms (they refer to the same
field in the data source and, therefore, have the same ALIAS attribute), only
the first field encountered in the Master File can be used in INSERT and
UPDATE commands. If a synonym other than the first is used in an
INSERT command, it will be ignored. If one is used in an UPDATE
command, processing will be terminated with the following error message:
(FOC4565) IGNORED ATTEMPT TO CHANGE NONUPDATABLE FIELD

In the Access File:

• If a segment has the attribute ACCESS=ADBS you can define a unique
key by adding the following attribute:
UNQKEYNAME=name

where:
name

Is the name of the elementary or group field to be used as the unique
key.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 4 of 73

The UNQKEYNAME attribute does not necessarily define the key
described in the Adabas FDT (option UQ). The data adapter uses it to
decide which rules to apply in a NEXT, INCLUDE, DELETE, or
UPDATE command. If the UNQKEYNAME attribute does not
correspond to the key described with option UQ in the Adabas FDT,
Adabas and the data adapter may not agree on whether a segment
instance is unique. This can affect the results of INCLUDE commands,
as described in Effect of UNQKEYNAME on INCLUDE Actions for
Segments With ACCESS=ADBS.

If this attribute is not present, the data adapter uses the rules for
modifying a segment with a non-unique key. If it is present, the data
adapter uses the rules for modifying a segment with a unique key.
Subsequent sections describe these rules.

Note: For modifying Adabas data sources with Maintain, the
UNQKEYNAME attribute in the Access File is required. Otherwise you
can use only commands that do not change the data source (such as
TYPE) and can only issue requests against single-segment data
sources.

• We recommend the use of CALLTYPE=FIND instead of CALLTYPE=RL.

Reference AUTOADBS Considerations

You can use AUTOADBS to create a read version of the Master File. To convert
it to a Write version, change the SEGTYPE value in all segments to S0.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 5 of 73

Limitations on Options Described for the Adabas Data
Adapter

When using the Write data adapter, the data adapter automatically sets the
values of the following two options:

• ADABAS OPEN is set to YES.

• FETCH is set to OFF for all segments.

Fields That Cannot be Updated

For both MODIFY and Maintain, certain types of fields listed in the Master File
cannot be updated. In some cases, the update commands are ignored, and in
some cases they generate errors. The following sections contain a detailed
explanation.

Reference Using Synonyms

In a Master File, two or more field declarations can refer to the same Adabas
field. Each duplicate field declaration after the first is called a synonym.
Synonyms can be used in commands that print, but cannot be used in
commands that change the data source. The following actions occur as a result
of using synonyms in INCLUDE/UPDATE commands:

• Synonym fields used in INCLUDE commands are ignored.

• Synonym fields used in UPDATE commands cause processing to terminate
and generate the following error message:

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 6 of 73

(FOC4565) IGNORED ATTEMPT TO CHANGE NONUPDATABLE FIELD

An UPDATE command was used against a nonupdatable field,
i.e. - field described in AFD as SUB/SUPERDESCRIPTOR or
part of it;
- field that refers in MFD to the same DB field (ALIAS) as another
field (synonym case).

Reference Fields That Cannot Be Updated in MODIFY
In MODIFY, update commands for the following types of fields are ignored:
• Counter fields (ALIAS=xxC).
• ORDER fields (ALIAS=ORDER).
• Group fields (UPDATE ignored).
In MODIFY, update commands for the following types of fields generate an
error:
• Synonyms (see Using Synonyms).
• Fields created from sub- or superdescriptors (as defined in the Access

File).

Reference Fields That Cannot Be Updated in Maintain
Maintain generates an error in response to update commands for the following
types of fields:

• Counter fields (ALIAS=xxC).

• ORDER fields (ALIAS=ORDER).

• Unique key fields (fields specified by the UNQKEYNAME attribute in the
Access File).

• Synonyms (see Using Synonyms).

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 7 of 73

Checking Adabas Return Codes and FOCUS Error Message
Numbers

The Dialogue Manager status return variable, &RETCODE, indicates the status
of FOCUS requests. You can use it to test Adabas return codes. The
&RETCODE variable contains the last return code resulting from an executed
report request or MODIFY request.

In a Dialogue Manager request, you can use a -IF statement to test the
&RETCODE value against a specified Adabas return code. Then, you can take
corrective actions based on the result of the -IF test. An Adabas return code of
zero (0) indicates a successful execution, a non-zero return code indicates an
error.

Another useful Dialogue Manager variable, &FOCERRNUM, stores the last
FOCUS or data adapter (not Adabas) error number generated by the execution
of a FOCEXEC. See your FOCUS for S/390 documentation for information
about &FOCERRNUM and other statistical variables.

Adabas Write Examples
The examples in this document access the EMPLOYEES-WRITE data source.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 8 of 73

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 9 of 73

Example Sample Adabas Write Master File

This Master File provides write access to the Adabas EMPLOYEES-WRITE
data source:
FILENAME=EMPWRITE,SUFFIX=ADBSIN,$
SEGNAME=S01 ,SEGTYPE=S0,$
 FIELD= EMPLOYEE_ID ,ALIAS= AA ,A8 ,A8 , INDEX=I,$
 GROUP= FULL_NAME ,ALIAS= AB ,A60 ,A60 ,$
 FIELD=FIRST_NAME ,ALIAS= AC ,A20 ,A20 ,$
 FIELD=LAST_NAME ,ALIAS= AE ,A20 ,A20 , INDEX=I,$
 FIELD=MIDDLE_NAME ,ALIAS= AD ,A20 ,A20 ,$
 FIELD=ADDRESS_LINE_CNT ,ALIAS= AIC ,I4 ,I1 ,$
 FIELD=CITY ,ALIAS= AJ ,A20 ,A20 , INDEX=I,$
 FIELD=ZIP_CODE ,ALIAS= AK ,A10 ,A10 ,$
 FIELD=POST_CODE ,ALIAS= AK ,A10 ,A10 ,$
 FIELD=COUNTRY ,ALIAS= AL ,A3 ,A3 ,$
 FIELD= DEPT ,ALIAS= AO ,A6 ,A6 , INDEX=I,$
 FIELD= INCOME_CNT ,ALIAS= AQC ,I4 ,I1 ,$
 GROUP= LEAVE_DATA ,ALIAS= A3 ,A16 ,A4 ,$
 FIELD=LEAVE_DUE ,ALIAS= AU ,P2 ,Z2 ,$
 FIELD=LEAVE_TAKEN ,ALIAS= AV ,P2 ,Z2 ,$
 FIELD= LEAVE_BOOKED_CNT ,ALIAS= AWC ,I4 ,I1 ,$
 FIELD= DEPARTMENT ,ALIAS= S1 ,A4 ,A4 , INDEX=I,$
 GROUP= DEPT_PERSON ,ALIAS= S2 ,A26 ,A26 , INDEX=I,$
 FIELD=DEPT_S03 ,ALIAS= AO ,A6 ,A6 , INDEX=I,$
 FIELD=NAME_S03 ,ALIAS= AE ,A20 ,A20 , INDEX=I,$
SEGNAME=AI0101 ,SEGTYPE=S0,PARENT=S01 ,OCCURS=AIC,$ MAX= 8
 FIELD= ADDRESS_LINE ,ALIAS= AI ,A20 ,A20 ,$
 FIELD= AI0101_OCC ,ALIAS= ORDER ,I4 ,I1 ,$

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 10 of 73

SEGNAME=AQ0201 ,SEGTYPE=S0,PARENT=S01 ,OCCURS=AQC,$ MAX= 40
$PEMU = INCOME ,ALIAS= AQ ,A19 ,A13 ,$
 FIELD=CURR_CODE ,ALIAS= AR ,A3 ,A3 ,$
 FIELD=SALARY ,ALIAS= AS ,P9 ,P5 ,$
 FIELD=BONUS_CNT ,ALIAS= ATC ,I4 ,I1 ,$
 FIELD= AQ0201_OCC ,ALIAS= ORDER ,I4 ,I1 ,$

SEGNAME=AT0301 ,SEGTYPE=S0,PARENT=AQ0201,OCCURS=ATC,$ MAX= 12
 FIELD= BONUS ,ALIAS= AT ,P9 ,P5 ,$
 FIELD= AT0301_OCC ,ALIAS= ORDER ,I4 ,I1 ,$

SEGNAME=AW0401 ,SEGTYPE=S0,PARENT=S01 ,OCCURS=AWC,$ MAX= 20
 GROUP= LEAVE_BOOKED ,ALIAS= AW ,A16 ,A12 ,$
 FIELD=LEAVE_START ,ALIAS= AX ,P6 ,Z6 ,$
 FIELD=LEAVE_END ,ALIAS= AY ,P6 ,Z6 ,$
 FIELD= AW0401_OCC ,ALIAS= ORDER ,I4 ,I1 ,$

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 11 of 73

Example Sample Adabas Write Access File

The following Access File corresponds to the Master File illustrated in Sample
Adabas Write Master File:
RELEASE=6.2, OPEN=YES,$

$ ADABAS FILE = EMPLOYEES_WRITE DICTIONARY =
SEGNAM=S01 ,ACCESS=ADBS,FILENO=042,DBNO=1,CALLTYPE=FIND,
 UNQKEYNAME=EMPLOYEE_ID ,$
 FIELD= DEPARTMENT ,TYPE=NOP ,$
 FIELD= DEPT_PERSON ,TYPE=SPR ,$
 FIELD=DEPT_S03 ,TYPE=DSC,NU=NO ,$
 FIELD=NAME_S03 ,TYPE=DSC,NU=NO ,$
SEGNAM=AI0101,ACCESS=MU ,FILENO=042,DBNO=1,$ ADDRESS_LINE
SEGNAM=AQ0201,ACCESS=PE ,FILENO=042,DBNO=1,$ INCOME
SEGNAM=AT0301,ACCESS=MU ,FILENO=042,DBNO=1,$ BONUS
SEGNAM=AW0401,ACCESS=PE ,FILENO=042,DBNO=1,$ LEAVE_BOOKED

Types of Transaction Processing
You can process incoming transactions by comparing (or matching on) the
following types of fields:

• For segments with a unique key:

• A unique key field or superset of the key (unique key plus any number
of non-unique key fields or non-key fields.

• A non-unique key field or a non-key field that is used as a non-unique
key field, as described in Descriptor Considerations.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 12 of 73

• For segments with a non-unique key:

• Any field when issuing NEXT or INCLUDE commands in a subrequest
(after at least one initial MATCH or NEXT command). Any field can be
used as a unique key for these commands.

In MODIFY, a MATCH on a non-unique key in a segment with a unique key may
retrieve more than one record instance. MATCH returns only the first instance
of this answer set; subsequent sections demonstrate how to use NEXT to
retrieve the remaining instances.

In Maintain, MATCH always matches on the unique key and retrieves at most
one record instance. To match on a non-unique key in Maintain, you use the
NEXT command without a prior MATCH. The Maintain implementation of the
NEXT command fetches the entire answer set returned by Adabas directly into
a stack. It also includes three optional phrases:

• The FOR phrase determines how many records to retrieve.

• The WHERE phrase defines retrieval criteria.

• The INTO phrase names a stack to receive the returned records.

See the FOCUS for S/390 documentation for complete syntax.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 13 of 73

Descriptor Considerations
Descriptors (or inverted lists) enhance the performance of data maintenance
routines, especially when created on the data source’s unique key. Without a
descriptor, Adabas must read the entire data source to locate particular record
instances; with a descriptor, Adabas can access record instances directly when
given search values for the descriptor fields. A data source can have several
associated descriptors. Descriptors created for performance reasons can be
unique or non-unique. To use FOCUS referential integrity, create descriptors on
lower level segments in the Master File.

If all of the following conditions are true, non-descriptor (non-key) fields can be
used as non-unique descriptor fields:

• The Access File defaults to or specifies CALLTYPE=FIND.

• The command SET NDFIND=NO was not issued (by default,
NDFIND=YES).

• The Adabas session parameter NONDES is set to YES (the default).

You can define a unique key in a data source. When a key is unique, the
concatenated values of the key fields in one record cannot be duplicated in any
other record. A unique descriptor is generally defined on a unique key. Once
you create it, Adabas automatically prevents the insertion of duplicate key
values. Any attempt to insert a duplicate record instance generates an error
message.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 14 of 73

An example of a unique descriptor on a unique key is the employee ID in the
sample EMPWRITE data source. Since no two employees can have the same
employee number, the value in the EMPLOYEE_ID field makes each record
unique:
EMPLOYEE_ID LAST_NAME FIRST_NAME
----------- --------- ----------
50004300 GUERIN MICHELE
50004600 VERDIE BERNARD
50004900 CAOUDAL ALBERT
50005500 BRAUN ALEXANDRE
50005800 GUENTER SIMONE

You cannot add another record with EMPLOYEE_ID 50004300 to this data
source.

Any segment below the root always has a unique key—the ORDER field. You
can also use another field as either a non-unique key field (for example,
SALARY) or as a unique key, if you are sure that none of the values are
duplicated (for example, LEAVE_START).

Modifying Data
With the FOCUS MODIFY and Maintain facilities, you can add new records to a
data source, update field values for specific records, or delete specific records.

The data adapter processes a MODIFY or Maintain transaction with the
following steps:

1. FOCUS reads the transaction for incoming data values.

2. The data adapter generates the appropriate calls to Adabas based on the
MATCH or NEXT criteria.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 15 of 73

3. Adabas either returns an answer set consisting of one or more records that
satisfy the request, or determines that the record does not exist.

4. After Adabas returns the answer set and/or return code, the data adapter
either

• Performs the update operation (UPDATE or DELETE) on the returned
answer set. With MODIFY, the data adapter processes one record at a
time; with Maintain, it can either process one record at a time or a set of
records.

• Creates the new record (INCLUDE). In Maintain, it may create multiple
records.

5. Adabas changes the database appropriately.

In MODIFY, you must use the NEXT command to process a multi-record
answer set one record at a time. Each NEXT command puts you physically at
the next logical record in the answer set created by the most recent MATCH
command for this segment. In Maintain, one NEXT command can process a
multi-record answer set without a prior MATCH.

The MATCH Command

In response to a MATCH command, the data adapter selects the first record in
the data source that meets the MATCH criteria.

The MATCH command compares incoming data with one or more field values
and then performs actions that depend on whether or not a record with
matching field values exists in the data source.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 16 of 73

The syntax of the MATCH command in MODIFY is
MATCH field1 [field2...fieldn]
 ON MATCH action_1
 ON NOMATCH action_2

where:
fieldn

Are fields in any segment of the Master File. FOCUS compares incoming
data values against existing field values. The fields can be any combination
of key and/or non-key fields. Specify complete fieldnames; MATCH does
not support truncated names.

action_1

Is the operation to perform when a record’s values match the incoming data
values.

action_2

Is the operation to perform when a record’s existing values do not match
the incoming data values.

The FOCUS for S/390 documentation discusses these actions in detail.

MATCH processing for multi-segment Master Files is the same as for a
multi-segment FOCUS database.

Acceptable actions for MATCH commands fall into eight groups. They are
operations that:

• Include, change, or delete records.

• Control MATCH processing, such as rejecting the current transaction.

• Read incoming data fields.

• Perform computations and validations, or type messages to the terminal.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 17 of 73

• Control case logic.

• Control multiple-record processing.

• Activate and deactivate fields in MODIFY.

• Permanently store data in the Adabas data source.

Data Adapter MATCH Behavior

In MODIFY requests, there are two major differences in the way MATCH
commands function for the data adapter and for native FOCUS:

• With the data adapter, you can change the value of a data source’s unique
key (subject to Adabas limitations) using the UPDATE command. When
modifying a FOCUS data source, you cannot change key field values.

• You can MATCH on any field or combination of fields in the record.
However, if the full unique key is not included in the MATCH criteria, the
data adapter may retrieve more than one record as a result of the MATCH.

For example, if the unique key is EMPLOYEE_ID and the incoming value
for MATCH LAST_NAME is SMITH, the answer set contains all records
with last name SMITH.

Note: In Maintain, MATCH functions identically for the data adapter and for
native FOCUS.

Example Using the MODIFY MATCH Command

Consider a MODIFY request that maintains the EMPWRITE data source. It
prompts for an employee ID and for a new number of leave days; then it
processes the incoming data. The annotated request contains the following
MATCH commands:

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 18 of 73

MODIFY FILE EMPWRITE
PROMPT EMPLOYEE_ID LEAVE_DUE

1. MATCH EMPLOYEE_ID

2. ON MATCH UPDATE LEAVE_DUE

3. ON NOMATCH REJECT

DATA

The incoming transaction contains the following values:
EMPLOYEE_ID = 12345678
LEAVE_DUE = 20

The request processes as follows:

1. The MATCH command compares the value of the incoming
EMPLOYEE_ID, 12345678, to the EMPLOYEE_ID values in the records of
the EMPWRITE data source. Since EMPLOYEE_ID is the unique key of
this data source, Adabas can return at most one record as a result of this
MATCH.

2. If a record exists for EMPLOYEE_ID 12345678, the MATCH command
updates the LEAVE_DUE value of that record with the incoming value 20.

3. If no record exists for EMPLOYEE_ID 12345678, the MATCH command
rejects the transaction.

In Maintain, you do not have to include an ON NOMATCH command in order to
reject a transaction; Maintain automatically rejects a transaction that does not
satisfy the MATCH criteria.

The NEXT Command

In MODIFY, the NEXT command provides a flexible means of processing
multi-record answer sets by moving the current position in the answer set from
one record to the next.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 19 of 73

The syntax is
NEXT field

ON NEXT action_1
ON NONEXT action_2

where:
field

Is any field in the current segment. This field does not affect subsequent
actions.

action_1

Is the operation to perform when there is a subsequent record in the
answer set. May be any of the acceptable actions listed for MATCH in The
MATCH Command.

action_2

Is the operation to perform when no more records exist in the answer set.

The CALLTYPE parameter in the Access File controls the sort order for NEXT.
It determines whether to retrieve records in physical order (CALLTYPE=FIND)
or sorted by the unique key (CALLTYPE=RL).

Your choice of MATCH and NEXT command combinations determines the
contents of the answer set. Subsequent sections explain these choices in more
detail:

• NEXT command without a MATCH command. The data adapter requests
the retrieval of all records in the data source in physical order
(CALLTYPE=FIND) or sorted by the unique key (CALLTYPE=RL).

• MATCH on the unique key. The MATCH returns the single record that is the
starting point for any subsequent NEXT commands, which retrieve the
remaining records in the answer set in physical order (CALLTYPE=FIND)
or sorted by the unique key (CALLTYPE=RL).

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 20 of 73

• MATCH on a non-unique key field. Adabas returns a multi-record answer
set in which each record satisfies the MATCH criteria. The data adapter
requests the retrieval of these records in physical order.

You can also use NEXT commands with multi-segment structures (FOCUS
views) to modify or display data in either case logic or non-case logic requests.
If your MATCH or NEXT specifies a record from a parent segment in a multi-
segment structure, that record becomes the current position in the parent
segment.

A subsequent NEXT on a field in a descendant of that segment retrieves the
first descendant record in the related segment. In MODIFY:

• Without case logic, you can retrieve all parent records in the segment and
only the first descendant record of any specified related segment.

• With case logic, you can retrieve all records for each segment defined in a
multi-segment Master File. To do so, first MATCH on the parent. Then, in
another case, use NEXT to loop through the related segments (at the
lowest level) until there are no more related instances. On NONEXT, return
to the parent case for the next parent instance.

You can trace case logic with the FOCUS trace facility. To invoke the trace
facility, include the TRACE command on a separate line after the MODIFY
FILE command. Y
described in Technical Memo 7966, Adabas Interface: Using Traces

ou can also use the data adapter trace facilities,
.

The following sections illustrate different combinations of MATCH and NEXT
command with annotated examples. The MODIFY requests have been kept
simple for purposes of illustration; you can create more sophisticated
procedures.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 21 of 73

Note: In Maintain:

• The syntax of the NEXT command includes optional FOR and WHERE
phrases that control the number of records retrieved into a stack. As in
MODIFY, the CALLTYPE attribute in the Access File determines whether
NEXT returns records in physical order or unique key order.

• NEXT always starts its retrieval at the current database position; it will not
retrieve a record it has already passed in its retrieval path unless you use
the REPOSITION command to reset the current position.

Also as in MODIFY, once you MATCH on a parent segment, a subsequent
NEXT on a child segment retrieves descendant records within the parent
established by the MATCH. However, one NEXT command can retrieve all
such child instances, without case logic.

• The UPDATE, DELETE, and INCLUDE commands also incorporate the
optional FOR phrase to process multiple records from a stack.

For complete details, see the Maintaining Databases manual.

NEXT Processing Without MATCH

If you use a NEXT command without a previous MATCH command in a
MODIFY request, Adabas returns an answer set consisting of all records in the
data source in physical order (CALLTYPE=FIND) or sorted by the unique key
(CALLTYPE=RL). Use the ON NEXT command to view each record in the order
determined by the CALLTYPE attribute. In a Maintain request, the FOR and
WHERE phrases in the NEXT command determine the number of records
retrieved, in the order determined by the CALLTYPE attribute.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 22 of 73

Example Using NEXT Without MATCH in MODIFY

In this MODIFY example, the NEXT command retrieves each record in physical
order because the Access File contains the attribute CALLTYPE=FIND:
MODIFY FILE EMPWRITE
NEXT EMPLOYEE_ID
 ON NEXT TYPE "EMPLOYEE ID: <D.EMPLOYEE_ID LAST NAME: <D.LAST_NAME "
 ON NONEXT GOTO EXIT
DATA
END

The TYPE commands display the following on the screen:
EMPLOYEE ID: 50005800 LAST NAME: GUENTER
EMPLOYEE ID: 50005500 LAST NAME: BRAUN
EMPLOYEE ID: 50004900 LAST NAME: CAOUDAL
EMPLOYEE ID: 50004600 LAST NAME: VERDIE
EMPLOYEE ID: 50004300 LAST NAME: GUERIN
EMPLOYEE ID: 50004200 LAST NAME: VAUZELLE
EMPLOYEE ID: 50004100 LAST NAME: CHAPUIS
EMPLOYEE ID: 50004000 LAST NAME: MONTASSIER
EMPLOYEE ID: 50003800 LAST NAME: JOUSSELIN
EMPLOYEE ID: 50006900 LAST NAME: BAILLET
 .
 .
 .

If the Access File contained the attribute CALLTYPE=RL, the records would be
retrieved in order of employee ID number.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 23 of 73

Example Using NEXT in Maintain

The following Maintain procedure retrieves the same answer set into a stack
named INSTACK and displays the retrieved values on a Winform named WIN1
(consult the Maintaining Databases manual for instructions on creating
Winforms):
MAINTAIN FILE EMPWRITE
INFER EMPLOYEE_ID LAST_NAME INTO INSTACK
FOR ALL NEXT EMPLOYEE_ID INTO INSTACK
WINFORM SHOW WIN1
END

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 24 of 73

The following Winform displays as a result of this procedure:

NEXT Processing After MATCH on a Unique Key

In MODIFY, NEXT processing is identical for either MATCH on a full unique key
or MATCH on a superset (full unique key plus a non-key field).

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 25 of 73

When the initial MATCH is successful, Adabas retrieves one record. This
establishes the logical position in the data source. The subsequent NEXT
command causes Adabas to retrieve all records following the matched record in
physical order (CALLTYPE=FIND) or key sequence (CALLTYPE=RL).

Example Using NEXT After MATCH on a Full Unique Key in
MODIFY

The following is an example of NEXT processing after a MATCH on a full
unique key, the EMPLOYEE_ID field:

MODIFY FILE EMPWRITE
CRTFORM LINE 1
" PLEASE ENTER VALID EMPLOYEE ID </1"

1. " EMP: <EMPLOYEE_ID "

2. MATCH EMPLOYEE_ID

ON NOMATCH REJECT

3. ON MATCH GOTO GETREST

CASE GETREST

4. NEXT EMPLOYEE_ID

ON NEXT CRTFORM LINE 10
" EMPLOYEE_ID: <D.EMPLOYEE_ID LAST_NAME: <D.LAST_NAME "
ON NEXT GOTO GETREST

5. ON NONEXT GOTO EXIT

ENDCASE
DATA
END

The MODIFY procedure processes as follows:

1. The user enters the employee ID for the search, 20009000.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 26 of 73

2. The MATCH command causes Adabas to search the data source for the
entered value. If no such record exists, the transaction is rejected.

3. If the specified value matches a value in the EMPLOYEE_ID field of the
data source, the procedure branches to the GETREST case; it contains the
NEXT command.

4. The NEXT command retrieves the next record based on physical order, if
the Access File contains the attribute CALLTYPE=FIND, or based on the
sequence of EMPLOYEE_ID, if the Access File specifies CALLTYPE=RL. If
such a record exists, the procedure displays the values of the
EMPLOYEE_ID and LAST_NAME fields. It continues to display each
record in the order determined by the CALLTYPE attribute of the key field,
EMPLOYEE_ID.

5. If there are no more records, the procedure ends.

The output after executing this MODIFY procedure with CALLTYPE=FIND is:
PLEASE ENTER VALID EMPLOYEE ID (line 1)

EMP: 20009000 (line 3)

EMPLOYEE_ID: 50005800 LAST_NAME: GUENTER (line 10)

EMPLOYEE_ID: 50005500 LAST_NAME: BRAUN (line 10)

EMPLOYEE_ID: 50004900 LAST_NAME: CAOUDAL (line 10)

EMPLOYEE_ID: 50004600 LAST_NAME: VERDIE (line 10)

EMPLOYEE_ID: 50004300 LAST_NAME: GUERIN (line 10)

Because of the NEXT command, all employees whose records are physically
after 20009000 display one at a time on the screen.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 27 of 73

The output after executing this MODIFY procedure with CALLTYPE=RL is:
PLEASE ENTER VALID EMPLOYEE ID (line 1)

EMP: 20009000 (line 3)

EMPLOYEE_ID: 20009100 LAST_NAME: JENSON (line 10)

EMPLOYEE_ID: 20009200 LAST_NAME: MEYER (line 10)

EMPLOYEE_ID: 20009300 LAST_NAME: SMITH (line 10)

EMPLOYEE_ID: 20009400 LAST_NAME: OLLE (line 10)

EMPLOYEE_ID: 20009500 LAST_NAME: RAY (line 10)

Notice that the employee ids after 20009000 are retrieved in key sequence.

Example Using NEXT on a Full Unique Key in Maintain

The following Maintain procedure retrieves the same answer set into a stack
named EMPSTACK. Assume that when Maintain displays the Winform called
WIN1, the user enters the transaction value, 20009000, into a stack named
TRANS and clicks the NextRecs button to invoke the NEXTRECS case:
MAINTAIN FILE EMPWRITE
INFER EMPLOYEE_ID LAST_NAME INTO EMPSTACK
WINFORM SHOW WIN1
CASE NEXTRECS
 FOR ALL NEXT EMPLOYEE_ID INTO EMPSTACK WHERE EMPLOYEE_ID GT
TRANS.EMPLOYEE_ID
ENDCASE
END

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 28 of 73

The following Winform displays when 20009000 is entered in the
EMPLOYEE_ID field with CALLTYPE=FIND:

NEXT Processing After MATCH on a Non-Unique Key

In a MODIFY request processed by the data adapter, you do not have to
MATCH on the full set of unique key fields. You can match on a non-key field or
non-unique key. (Maintain always matches on the full unique key, regardless of
which fields you specify in the MATCH command.)

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 29 of 73

When you MATCH on a non-unique key, multiple records may satisfy the
MATCH condition. The MATCH operation retrieves the first record of the
answer set, and the NEXT command makes the remaining records in the
answer set available to the program in physical order. In this case, the order of
retrieval for NEXT is always the physical sequence. MATCH on a non-key field
should always be processed using CALLTYPE=FIND to prevent the data
adapter from issuing an inefficient Read Physical call. For more information see
the FOCUS for IBM Mainframe ADABAS Interface User’s Manual and
Installation Guide.

Example Using MATCH on a Non-Unique Key in MODIFY

This annotated procedure is the same procedure described in Using NEXT
After MATCH on a Full Unique Key in MODIFY, altered to MATCH on the
non-unique key field LAST_NAME. The NEXT operation retrieves the
subsequent records from the answer set in physical sequence:

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 30 of 73

MODIFY FILE EMPWRITE
CRTFORM LINE 1
" PLEASE ENTER A LAST NAME </1 "

1. " LAST NAME: <LAST_NAME </1"

2. MATCH LAST_NAME

ON NOMATCH REJECT

3. ON MATCH CRTFORM LINE 5

" EMPLOYEE_ID: <D.EMPLOYEE_ID LAST_NAME: <D.LAST_NAME "

4. ON MATCH GOTO GETSAME

CASE GETSAME

5. NEXT LAST_NAME

ON NEXT CRTFORM LINE 10
" EMPLOYEE_ID: <D.EMPLOYEE_ID LAST_NAME: <D.LAST_NAME "
ON NEXT GOTO GETSAME

6. ON NONEXT GOTO EXIT

ENDCASE
DATA
END

The MODIFY procedure processes as follows:

1. The user enters the last name (LAST_NAME) for the search, SMITH.

2. The MATCH command causes Adabas to search the data source for all
records with the value SMITH and return them in physical order. If the value
SMITH does not exist, the transaction is rejected.

3. If the incoming value matches a value in the data source, the procedure
displays the employee ID and last name. (This is the first record of the
answer set.)

4. After displaying the record, the procedure goes to the GETSAME case; it
uses NEXT to loop through the remaining records in the answer set.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 31 of 73

5. Instead of retrieving the next logical record with a higher key value as in the
previous example, the procedure retrieves the next record in the answer
set (all records in the answer set have the last name SMITH). If any exist,
they display on the screen in physical order.

6. When no more records exist with the value SMITH, the procedure ends.

The output from this MODIFY procedure follows:
PLEASE ENTER A LAST NAME

LAST_NAME smith

EMPLOYEE_ID 40000311 LAST_NAME: SMITH

EMPLOYEE_ID: 20009300 LAST_NAME: SMITH
EMPLOYEE_ID: 20014100 LAST_NAME: SMITH
 .
 .
 .
EMPLOYEE_ID: 30038013 LAST_NAME: SMITH

A line displays on the screen for each employee with the last name SMITH.
Employee ID 40000311 is the result of the MATCH operation; employee ID
20009300 is the result of the NEXT operation, employee ID 30038013 is the
result of the last NEXT operation. Notice that the records are retrieved in
physical sequence, and order is not dependent on the CALLTYPE attribute.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 32 of 73

Example Using NEXT on a Non-Unique Key Field in Maintain

The following Maintain procedure retrieves the entire answer set into a stack
named EMPSTACK. Assume that when Maintain displays the Winform named
WINA, the user enters the transaction value (SMITH) into the first record of a
stack named TRANS and clicks the NextRecs button to invoke the NEXTRECS
case:
MAINTAIN FILE EMPWRITE
INFER EMPLOYEE_ID LAST_NAME INTO EMPSTACK
WINFORM SHOW WINA
CASE NEXTRECS
 FOR ALL NEXT EMPLOYEE_ID INTO EMPSTACK WHERE LAST_NAME EQ
TRANS.LAST_NAME
ENDCASE
END

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 33 of 73

The following Winform displays when the NexRecs button is pressed with
SMITH entered in the Last_Name field:

INCLUDE, UPDATE, and DELETE Processing

While MATCH and NEXT operations in MODIFY can operate on unique key or
non-unique key fields and return single or multi-record answer sets, the
MODIFY commands INCLUDE, UPDATE, and DELETE must always identify
the target records by their unique key. Therefore, in MODIFY, each update
operation affects at most one record. (In Maintain, the FOR phrase in the
update command determines the number of records affected.)

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 34 of 73

Reference Rules for Inserting Records Into an Adabas Data
Source

• For a segment with a unique key:

The unique key field value is used to insert the target segment. If any
additional MATCH criteria are supplied for a segment in the path, they will
be used to qualify that path segment.

An attempt to use MATCH on a non-unique key before an INCLUDE
command generates the following error message:
(FOC4563)INCORRECT INCLUDE REQUEST FOR NON UNIQUE KEY

• For a segment with a non-unique key or no key:

If you want to insert an additional record for an existing key field, you must
MATCH on the key field and specify ON MATCH INCLUDE.

• For segments with ACCESS=PE or MU, if a new occurrence is inserted,
you must set the occurrence number (ORDER field) to 0 (zero indicates the
next occurrence) or to a value greater than the number of existing
occurrences. This new occurrence is always inserted after the last existing
occurrence. For example, if a PE or MU segment has two existing
occurrences, the next occurrence added will always be the third. If the
occurrence with the given number already exists, processing will terminate
with the following message:
(FOC4564) THIS OCCURRENCE ALREADY EXISTS. USE UPDATE COMMAND.

You should use the UPDATE command instead of INCLUDE in this case.

• For segments with ACCESS=MU, if the corresponding field with the MU
option is defined without the NU option on the second level of the Adabas
FDT (that is, it is part of a periodic group (PE) or simple group (GR)):

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 35 of 73

• If an INCLUDE command is issued for the root segment alone, Adabas
automatically inserts an empty child (MU) segment and, if this child
segment has a parent with ACCESS=PE, an empty parent segment.

• If an INCLUDE command is issued for the root and a parent (PE) of the
MU segment simultaneously, but without values for the child (MU)
segment, Adabas automatically inserts an empty child (MU) segment.
The data adapter automatically inserts the first occurrence of the
parent (PE) segment using the values from the INCLUDE command.

• If an INCLUDE command is issued for the root, parent (PE), and child
(MU) segments simultaneously, the data adapter inserts the first
occurrence of both the child and parent segments using the values
from the INCLUDE command.

• For segments with ACCESS=MU, if the corresponding field with the MU
option is defined with the NU option on any level in the Adabas FDT, Adabas
automatically suppresses the empty values. An INCLUDE command can
be issued for the parent and child segments separately or simultaneously.

Note: The Master File does not identify the level of an MU field because if the
MU field belongs to a simple group, the Master File does not describe this
group. (However, if AUTOADBS created the Master File, there will be a
commented declaration for the group.) Therefore, FOCUS cannot determine
whether Adabas will add an empty occurrence for the corresponding segment.
You must be aware of the options in the Adabas FDT to understand the
behavior that occurs in response to an INCLUDE command for an MU
segment.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 36 of 73

Effect of UNQKEYNAME on INCLUDE Actions for Segments
With ACCESS=ADBS

The UNQKEYNAME attribute in the Access File determines how the data
adapter presents an INCLUDE command to Adabas. The option UQ in the
Adabas FDT and the specific fields used in the MATCH command determine
whether Adabas actually inserts the segment instance. The following table
describes how these factors affect the result of the INCLUDE command.
Assume that the Access File specifies UNQKEYNAME=EMPLOYEE_ID and
that the employee id value EMPID005 already exists in the data source:

Result of INCLUDE Command for Existing EMPLOYEE_ID EMPID005

EMPLOYEE_ID
has option UQ
in FDT

Fields in MATCH
command

Instance Inserted
(ON NOMATCH)

No EMPLOYEE_ID only ON MATCH case
performed

Yes EMPLOYEE_ID only ON MATCH case
performed

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 37 of 73

This table describes INCLUDE actions when EMPLOYEE_ID is not in the
MATCH field list:

Result of INCLUDE Command Without Matching on Field EMPLOYEE_ID

Reference Rules for Deleting Records From an Adabas Data
Source

• For a segment with a unique key, the key field value is used to delete the
target segment.

EMPLOYEE_ID
has option UQ
in FDT

Fields in MATCH
command

Instance Inserted
(ON NOMATCH)

No EMPLOYEE_ID plus fields
with values that do not
already exist

Yes

Yes EMPLOYEE_ID plus fields
with values that do not
already exist

No - error (FOC4561),
RC=198

UNQKEYNAME =
EMPLOYEE_ID?

Instance Inserted

Yes No - error (FOC4563)

No Yes

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 38 of 73

• For a segment with a non-unique key, you must supply the key field. If the
MATCH criteria for this type of segment, in the path or target, do not identify
a unique occurrence, the first occurrence found will be deleted. The use of
Adabas descriptors for this type of segment is highly recommended for
efficiency.

• For a segment with no key, you must supply at least one MATCH condition.
If the MATCH criteria for this type of segment, in the path or target, do not
identify a unique occurrence, the first occurrence found will be deleted.

• A segment occurrence with ACCESS=PE or MU is deleted from the data
source except if it is the last occurrence for an ACCESS=PE segment.
Adabas will only delete the last occurrence if all fields have the NU option in
the FDT; if they do not all have this option, the occurrence will have empty
values in all fields.

• When you delete segments that have dependent segments, the DELETED
counter for the session may have an incorrect value. For a first level
segment with descendants, this counter will always be incorrect. For a
second level segment, this counter will be incorrect if there are multiple
descendant segments. For a third level segment, this counter is always
correct.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 39 of 73

Reference Rules for Updating Records in an Adabas Data
Source

• For a segment with a unique key, the key field value and any additional
MATCH criteria are used to qualify the target segment for update.

• For a segment with a non-unique key, you must supply the key field. If the
MATCH criteria for this type of segment, in the path or target, do not identify
a unique occurrence, the first occurrence found will be updated. The use of
Adabas descriptors for this type of segment is highly recommended for
efficiency.

• For a segment with no key, you must supply at least one MATCH condition.
If the MATCH criteria for this type of segment, in the path or target, do not
identify a unique occurrence, the first occurrence found will be updated.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 40 of 73

Example Updating Adabas Records With MODIFY

Suppose you want to display all the employees in a department and update the
amount of leave they have taken:

MODIFY FILE EMPWRITE
CRTFORM LINE 1
" PLEASE ENTER A VALID DEPARTMENT </1"

1. " DEPARTMENT: <DEPARTMENT "

2. MATCH DEPARTMENT

ON NOMATCH REJECT
ON MATCH CRTFORM LINE 10

3. "ID: <D.EMPLOYEE_ID LEAVE DUE: <D.LEAVE_DUE> TAKEN <T.LEAVE_TAKEN> "

4. ON MATCH UPDATE LEAVE_TAKEN

ON MATCH GOTO GETREST
CASE GETREST

5. NEXT EMPLOYEE_ID

ON NEXT CRTFORM LINE 10
"ID: <D.EMPLOYEE_ID LEAVE DUE: <D.LEAVE_DUE> TAKEN <T.LEAVE_TAKEN> "
ON NEXT UPDATE LEAVE_TAKEN
ON NEXT GOTO GETREST

6. ON NONEXT GOTO EXIT

ENDCASE
DATA
END

The MODIFY procedure processes as follows:

1. The user enters the department (DEPARTMENT) for the search, PROD.

2. The MATCH command causes Adabas to search the data source for the
first record with the value PROD and return them in physical sequence. If
none exists, the transaction is rejected.

3. If the supplied value matches a database value, the procedure displays it.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 41 of 73

4. The procedure updates the LEAVE_TAKEN field for the first retrieved
record using the turnaround value from the CRTFORM. EMPLOYEE_ID
establishes the target record for the update.

5. Each time it executes the NEXT, the procedure retrieves the next record
with the same department, PROD. It displays each one in physical order. It
updates the LEAVE_TAKEN field for each retrieved record with the
turnaround value.

6. When no more records exist for department PROD, the procedure ends.

Example Updating Adabas Records With Maintain

In Maintain, you can use stack columns as turnaround values to update a data
source. The following annotated Maintain request updates the same records as
the preceding MODIFY request:

MAINTAIN FILE EMPWRITE
INFER EMPLOYEE_ID LEAVE_DUE LEAVE_TAKEN INTO EMPSTACK

1. WINFORM SHOW WIN1

2. CASE MATCHREC

 FOR ALL NEXT EMPLOYEE_ID INTO EMPSTACK
 WHERE DEPARTMENT EQ VALSTACK.DEPARTMENT
ENDCASE

3. CASE UPDLV

 FOR ALL UPDATE LEAVE_TAKEN FROM EMPSTACK
ENDCASE
END

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 42 of 73

The Maintain procedure processes as follows:

1. A Winform named WIN1 displays. Assume that it displays an entry field
labeled DEPARTMENT (whose source and destination stack is called
VALSTACK) and a grid (scrollable data source) with columns
EMPLOYEE_ID, LEAVE_DUE and LEAVE_TAKEN. See the Maintaining
Databases manual for instructions on creating Winforms.

2. The user enters a DEPARTMENT value for the search and clicks the
GetEmps button to invoke case MATCHREC. Case MATCHREC retrieves
the records that satisfy the NEXT criteria and stores them in a stack named
EMPSTACK. The Winform displays the retrieved records on the grid.

3. The user edits all the necessary leaves taken directly on the Winform grid
and then clicks the Update button to invoke case UPDLV, which updates all
leaves taken.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 43 of 73

The following Winform displays when the GetEmp button (or PF4) is pressed
with PROD entered in the Department field:

The user can update the LEAVE_TAKEN field for all of the listed employees
and update them all in one step with the Update button (or PF6).

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 44 of 73

Adabas Transaction Control Within MODIFY

The data adapter supports the Logical Unit of Work (LUW) concept. An LUW
consists of one or more FOCUS maintenance actions (UPDATE, INCLUDE, or
DELETE) that process as a single unit. The maintenance operations within the
LUW can operate on the same or separate data sources.

In MODIFY, all records read by MATCH and NEXT commands are held by
Adabas in a user’s hold record queue. To prevent overflow of this queue, the
user should periodically issue the SQL COMMIT WORK command to
propagate the changes to the Adabas data source and clear the queue.

In Maintain, records are not held when they are read into a stack. They are held
only in response to an updating command.

A transaction is defined as all actions taken since the application first accessed
Adabas, last issued an SQL COMMIT WORK in MODIFY or COMMIT
command in Maintain, or last issued an SQL ROLLBACK WORK in MODIFY or
ROLLBACK command in Maintain.

Within a Logical Unit of Work, Adabas either executes all commands
completely, or else it executes none of them. If Adabas detects no errors in any
of the commands within the LUW:

• FOCUS issues a COMMIT WORK command. The data adapter issues an
ET (End of Transaction) command to Adabas. The changes indicated by
the updates within the transaction are recorded in the data source.

• Adabas releases locks on the target data.

• Database changes become available for other tasks.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 45 of 73

In response to unsuccessful execution of any command in the transaction, the
data adapter:

• Issues a BT (Backout Transaction) command to Adabas. Target data
returns to its state prior to the unsuccessful transaction. All changes
attempted by the commands in the transaction are backed out.

• Does not execute the remaining commands in the transaction.

• Releases locks on the target data.

• Discards partially accumulated results.

Adabas and the data adapter provide a level of automatic transaction
management but, in many cases, this level of management alone is not
sufficient. FOCUS supports explicit control of Adabas transactions with the
commands SQL COMMIT WORK and SQL ROLLBACK WORK in MODIFY,
and with the commands COMMIT and ROLLBACK in Maintain.

Note: SQL COMMIT WORK and SQL ROLLBACK WORK are data adapter
commands. Do not confuse these commands with the FOCUS COMMIT
WORK and ROLLBACK WORK commands that apply to FOCUS databases
only. The data adapter ignores COMMIT WORK and ROLLBACK WORK
without the SQL qualifier.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 46 of 73

Unless you specify SQL COMMIT WORK and/or SQL ROLLBACK WORK in
your MODIFY procedure (or COMMIT and/or ROLLBACK in your Maintain
procedure), all FOCUS maintenance actions until the END command constitute
a single LUW. If the procedure completes successfully, the data adapter
automatically transmits an ET command to Adabas, and the changes become
permanent. If the procedure terminates abnormally, the data adapter issues a
BT command to Adabas, and the database remains untouched. Since locks are
not released until the end of the program, a long MODIFY or Maintain
procedure that relies on the default, end-of-program ET can interfere with
concurrent access to data. In addition:

• You may lose all updates in the event of a system failure.

• You may fill up the hold queue Adabas establishes records locked by a
user. The number of ISNs that can be held in this queue is determined by
the Adabas NISNHQ parameter. To avoid exceeding this number, keep a
counter in your MODIFY or Maintain procedure, and commit or rollback the
transaction to avoid holding too many records.

Transaction Termination (COMMIT WORK)

The SQL COMMIT WORK command signals the successful completion of a
transaction at the request of the procedure. Execution of a COMMIT command
makes changes to the data sources permanent. The syntax in a MODIFY
request is:
SQL COMMIT WORK

You can issue a COMMIT WORK as an ON MATCH, ON NOMATCH, ON
NEXT, or ON NONEXT condition, after an update operation (INCLUDE,
UPDATE, DELETE), or within cases of a case logic request.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 47 of 73

Note: In Maintain, you must use the Maintain facility’s COMMIT command to
transmit an ET (End of Transaction) command to Adabas.

Example Using COMMIT WORK in a MODIFY Procedure

A COMMIT WORK example using Case Logic follows:
CASE PROCESS
 CRTFORM
 MATCH field1 ...
 ON MATCH insert, update, delete, ...
 GOTO EXACT
ENDCASE
CASE EXACT
 SQL COMMIT WORK
 GOTO TOP
ENDCASE

The PROCESS case handles the MATCH, ON MATCH, ON NOMATCH
processing. Then it transfers to CASE EXACT, which commits the data
instructing Adabas to write the entire Logical Unit of Work to the database.

Transaction Termination (ROLLBACK WORK)

The SQL ROLLBACK WORK command signals the unsuccessful completion of
a transaction at the request of the procedure. Execution of a ROLLBACK
command backs out all changes made to the data sources since the last
COMMIT command. The syntax in a MODIFY request is:
SQL ROLLBACK WORK

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 48 of 73

You can design a MODIFY procedure to issue a ROLLBACK WORK command
if you detect an error. For example, if a FOCUS VALIDATE test finds an
inaccurate input value, you may choose to exit the transaction, backing out all
changes since the last COMMIT. You can issue ROLLBACK WORK as an ON
MATCH, ON NOMATCH, ON NEXT, or ON NONEXT condition, or within cases
of a case logic request.

Note: In Maintain, you must use the Maintain facility’s ROLLBACK command to
transmit a BT command (Back out Transaction) to Adabas.

The data adapter automatically executes an SQL ROLLBACK WORK
command when you exit from a transaction early. For example, if you exit a
CRTFORM without specifying some action, the data adapter automatically
issues a ROLLBACK WORK command on your behalf.

The data adapter automatically issues a BT command in case of system failure
or when it detects a fatal data error, such as a reference to a field or data
source that does not exist.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 49 of 73

Example Using ROLLBACK WORK in a MODIFY Procedure

The following is an example of the ROLLBACK WORK command using Case
Logic:
ON NOMATCH CRTFORM ...
ON NOMATCH VALIDATE ...

ON INVALID GOTO ROLLCASE
.
.
.

CASE ROLLCASE
SQL ROLLBACK WORK
GOTO TOP

ENDCASE

Code the ROLLBACK WORK command before a REJECT command. FOCUS
ignores any action following the rejection of a transaction, except for GOTO or
PERFORM.

For example:
ON MATCH SQL ROLLBACK WORK
ON MATCH REJECT

Example Transaction Control in Adabas

Each time an employee takes leave days, the following example updates the
LEAVE_TAKEN field in the root segment of the EMPWRITE data source and
posts a record for the leave start and end dates in the related AW0401
segment. To ensure that both updates complete or neither one does, the
MODIFY procedure places both actions prior to a COMMIT WORK command. If
the descendant data source is not processed, ROLLBACK WORK discards the
whole logical transaction.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 50 of 73

MODIFY FILE EMPWRITE
CRTFORM LINE 1
"</2 <25 MODIFY FOR LEAVE TAKEN </2 "
"<20 ENTER THE EMPLOYEE ID <EMPLOYEE_ID "
MATCH EMPLOYEE_ID
 ON MATCH CRTFORM LINE 7
 "<D.FIRST_NAME <D.LAST_NAME> LEAVE TAKEN <T.LEAVE_TAKEN> </1 "
 ON MATCH UPDATE LEAVE_TAKEN
 ON MATCH COMPUTE AW0401_OCC =0;
 ON NOMATCH REJECT
MATCH AW0401_OCC
 ON NOMATCH CRTFORM LINE 10
 "PLEASE ENTER LEAVE DATES"
 "LEAVE_START: <T.LEAVE_START> "
 "LEAVE_END: <T.LEAVE_END> "
 ON NOMATCH INCLUDE
 ON NOMATCH SQL COMMIT WORK
 ON MATCH SQL ROLLBACK WORK
 ON MATCH REJECT
DATA
END

Using the Return Code Variable: FOCERROR

FOCUS stores the return code from the updating commands INCLUDE,
DELETE, and UPDATE in the variable FOCERROR:

• In MODIFY, the return code value is the Adabas response code.

• In Maintain, the value is

• 1 if an INCLUDE command failed.

• 2 if a DELETE command failed.

• 3 if an UPDATE command failed.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 51 of 73

A return code of zero indicates successful completion of the last updating
command issued.

You can test the FOCERROR variable and take appropriate action if you
encounter a non-fatal error. This condition might indicate the need to
ROLLBACK the transaction or re-prompt the user for new input values. In
Maintain, all errors after updating commands are non-fatal, and you should
always test FOCERROR after issuing an updating command. In MODIFY, you
can issue the SQL SET ERRORRUN ON command to make these errors non-
fatal. If you do not issue this command, all errors after updating commands in
MODIFY will be fatal.

All errors that result from retrieval commands such as MATCH or NEXT are
fatal errors. An example of a command that causes a retrieval error is
attempting to read a record held by another user. These errors terminate
MODIFY and Maintain procedures.

For a list of common Adabas response codes, see Adabas Response Codes.

Using the Data Adapter SET ERRORRUN Command

With SET ERRORRUN ON, MODIFY processing continues even when a
serious error occurs, allowing applications to handle their own errors in the
event that an Adabas error is part of the normal application flow. Code this
command explicitly within the MODIFY procedure, preferably in CASE AT
START, where it executes once.

Note: Maintain does not support the SET ERRORRUN command. All errors
after updating commands are non-fatal.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 52 of 73

When SET ERRORRUN is ON, the MODIFY procedure reports the error but
continues execution. The MODIFY code can then test the value of FOCERROR
to determine the cause of the error and take appropriate action. Be careful in
evaluating the contents of FOCERROR, to prevent unpredictable errors in
subsequent MODIFY processing.

SET ERRORRUN returns to its default setting of OFF at the end of the
MODIFY procedure.

Syntax How to Issue the SET ERRORRUN Command in a
MODIFY Procedure

CASE AT START
 SQL SET ERRORRUN {OFF|ON}
ENDCASE

where:
OFF

Stops MODIFY processing when the Data Adapter detects a fatal error.
OFF is the default.

ON

Enables MODIFY processing to continue despite fatal errors. Test the value
of FOCERROR to determine the desired action after an updating command
fails. After the procedure ends, ERRORRUN returns to its default value of
OFF.

Modifying Data sources Without Unique Keys

Adabas permits data sources with duplicate records. Such data sources cannot
possibly have a unique key, since no combination of field values can make a
given record unique.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 53 of 73

The data adapter provides a way of maintaining data sources with duplicate
records. However, only the first record encountered will be affected by data
maintenance commands.

Note:

• Maintain does not support modifying unkeyed data sources.

Referential Integrity
The term referential integrity defines the type of consistency that should exist
between parent and descendant segments.

• A parent segment must exist before a related record in a lower level
segment can exist. For example, a specific employee ID must exist in the
EMPWRITE data source before a salary can be added for that employee in
the AQ0201 segment (INCLUDE referential integrity).

• If a parent segment is deleted, all of its descendant segments must be
deleted (DELETE referential integrity).

FOCUS can provide referential integrity for the following types of data sources
described in one multi-segment Master File:

• A single Adabas file.

• Multiple Adabas files connected by an embedded join in the Access File.
The segment declarations for all such Adabas files must have
ACCESS=ADBS in the Access File and must be joined using the Access
File attributes KEYFLD and IXFLD. For more information on embedded
joins, see the FOCUS for IBM Mainframe ADABAS Interface User’s Manual
and Installation Guide.

The following sections discuss referential integrity constraints.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 54 of 73

FOCUS INCLUDE Referential Integrity

The FOCUS MODIFY facility syntax provides automatic referential integrity for
inserting new records.

You must describe the data source in one multi-segment Master File. The multi-
segment description establishes the relationship between the segments.

With a multi-segment Master File, you cannot add a descendant segment using
the FOCUS MODIFY facility unless the parent segment already exists.
Therefore, a MODIFY procedure that inserts records must MATCH on the
parent segment before adding a record in descendant segment.

Example Using FOCUS INCLUDE Referential Integrity

The following examples demonstrate referential integrity when adding new
records. The scenarios are:

1. Add a salary for an employee only if data for the employee ID already
exists.

2. The employee ID does not exist. Add both a new employee ID and a salary.

A simple, annotated FOCUS MODIFY procedure for each scenario follows.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 55 of 73

The first example adds course information only if a record already exists for the
employee:

MODIFY FILE EMPWRITE
CRTFORM LINE 2
"ADD SALARY INFORMATION FOR EMPLOYEE </1"

1. "EMPLOYEE ID: <EMPLOYEE_ID </1 "

"SALARY: <SALARY CURR_CODE: <CURR_CODE "

2. MATCH EMPLOYEE_ID

ON MATCH COMPUTE AQ0201_OCC = 0;

3. ON MATCH CONTINUE

4. ON NOMATCH REJECT

5. MATCH AQ0201_OCC

ON NOMATCH INCLUDE
ON MATCH REJECT

DATA
END

The MODIFY procedure processes as follows:

1. The user enters the employee ID, salary, and appropriate code. This
constitutes the incoming transaction record.

2. The MATCH command causes Adabas to search the data source for an
existing record with the specified employee ID.

3. If the employee record exists, the MODIFY sets the salary occurrence
number to zero and continues to the next MATCH command.

4. If no record in the EMPWRITE data source exists with the specified
employee ID, MODIFY rejects this transaction and routes control to the top
of the procedure.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 56 of 73

5. MATCH AQ0201_OCC causes Adabas to search for an existing salary
record with the specified occurrence number for the employee ID located in
Step 2. Because the occurrence number was set to zero in the previous
MATCH command, no such record exists, and the MODIFY adds a new
salary occurrence. If the occurrence number already existed, the MODIFY
would reject the transaction as a duplicate.

The second example adds a record to the EMPWRITE data source for a new
employee and adds a salary for that employee to the AQ0201 segment. If the
employee ID already exists, the procedure adds only the salary information to
the AQ0201 segment:

MODIFY FILE EMPWRITE
CRTFORM LINE 1

1. "ID: <EMPLOYEE_ID "

2. MATCH EMPLOYEE_ID

3. ON NOMATCH CRTFORM LINE 2

" LAST: <LAST_NAME FIRST: <FIRST_NAME </1 "
" MIDDLE: <MIDDLE_NAME> </1 "
" ADDRESS_LINE_CNT <ADDRESS_LINE_CNT> CITY: <CITY "
" ZIP: <ZIP_CODE COUNTRY: <COUNTRY </1"
" DEPT: <DEPT INCOME_CNT: <INCOME_CNT </1"
"LEAVE DUE: <LEAVE_DUE DEPARTMENT: <DEPARTMENT "
"SALARY: <SALARY CODE: <CURR_CODE "
ON NOMATCH INCLUDE
ON NOMATCH COMPUTE AQ0201_OCC = 0;
ON MATCH COMPUTE AQ0201_OCC = 0;

4. ON MATCH CRTFORM LINE 9

"SALARY: <SALARY CODE: <CURR_CODE "R_TAKEN QTR: <QTR "

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 57 of 73

5. MATCH AQ0201_OCC

ON NOMATCH INCLUDE
ON MATCH REJECT
DATA
END

The MODIFY procedure processes as follows:

1. The user enters EMPLOYEE_ID.

2. The MATCH command causes Adabas to search the EMPWRITE data
source for an existing record for the specified employee ID.

3. If the employee record does not exist, the user enters the data for both the
employee and the salary. The procedure adds a record to each segment.

4. If the employee already exists, the user enters only the salary data.

5. The MATCH AQ0201_OCC command causes Adabas to search the
AQ0201 segment for the specified occurrence. If this occurrence does not
exist for this employee, the procedure adds it. If it does exist, the procedure
rejects the transaction.

FOCUS DELETE Referential Integrity

FOCUS provides automatic referential integrity for deleting records described in
a multi-segment Master File. Just as with INCLUDE referential integrity, only
data sources described in a multi-segment Master File invoke FOCUS DELETE
referential integrity.

When you delete a parent segment in a MODIFY or Maintain procedure,
FOCUS automatically deletes all descendant segments at the same time.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 58 of 73

Example Using FOCUS DELETE Referential Integrity

For example, when you delete an employee from the root segment in the
EMPWRITE Master File, FOCUS also deletes all records from the descendent
segments for the employee:

MODIFY FILE EMPWRITE
CRTFORM LINE 2
"DELETE EMPLOYEE </1"

1. "EMPLOYEE ID: <EMPLOYEE_ID "

2. MATCH EMPLOYEE_ID

ON MATCH COMPUTE DOIT/A1 = ’N’;
ON MATCH CRTFORM LINE 6

3. "EMPLOYEE TO BE DELETED: <D.EMPLOYEE_ID </1"

" LAST NAME: <D.LAST_NAME </1"
" FIRST NAME: <D.FIRST_NAME </1"
" DEPARTMENT: <D.DEPARTMENT </1"
"IS THIS THE EMPLOYEE YOU WISH TO DELETE? (Y,N): <DOIT "
ON MATCH IF DOIT EQ ’N’ THEN GOTO TOP;

4. ON MATCH DELETE

ON NOMATCH REJECT
DATA
END

The MODIFY procedure processes as follows:

1. The user enters the employee ID.

2. The MATCH command causes Adabas to search the root segment of the
EMPWRITE data source for an existing record with the specified employee
ID.

3. If the record exists, the MODIFY displays information for verification.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 59 of 73

4. Once verified, FOCUS deletes the employee and all associated segment
instances. When FOCUS deletes a parent instance, it automatically deletes
all associated related instances.

Inhibiting FOCUS Referential Integrity

You may not always want to enforce FOCUS referential integrity. If the
referential integrity is being enforced between separate Adabas files described
in a single Master File using an embedded join described in the Access File,
you can describe each file you want to modify separately in a separate Master
File.

Another technique is to COMBINE data sources rather than using a multi-
segment Master File. COMBINE of single data sources does not invoke
FOCUS referential integrity.

The MODIFY COMBINE Facility
Some applications require that you use a single input transaction to update
several data sources in the same MODIFY procedure. If the data sources are
not defined in the same Master File, you can use the COMBINE facility to
modify them as if they are one.

Note: In Maintain, you do not issue a COMBINE command to modify unrelated
data sources. Instead, you reference multiple data sources in the MAINTAIN
FILE command. For example:
MAINTAIN FILES EMPWRITE AND COURSE

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 60 of 73

You can maintain up to 63 data sources in a single MODIFY procedure that
operates on a COMBINE structure. The COMBINE limit is 16 Master Files;
however, each Master File can describe more than one data source, for a total
of 64 per procedure, minus one for the virtual root segment created by the
COMBINE command.

The COMBINE facility links multiple data sources and assigns a new name to
them so FOCUS can treat the data sources as a single structure. Data sources
in a COMBINE structure can have different SUFFIX attributes, but you cannot
combine a FOCUS database with anything except other FOCUS databases.

Note: In Maintain, you can modify FOCUS databases and Adabas data sources
in the same procedure.

When you issue a COMBINE command, the COMBINE structure remains in
effect for the duration of the FOCUS session or until you enter another
COMBINE command. Only one COMBINE structure can exist at a time, so
each subsequent COMBINE command replaces the existing structure.

Do not confuse COMBINE with the dynamic JOIN command. You use JOIN to
report from multiple data sources that share at least one common field or for
LOOKUP functions. With the COMBINE facility, you can MODIFY multiple data
sources. COMBINE is part of the MODIFY command; only the MODIFY and
CHECK FILE commands process COMBINE structures. The FIND function
also works in conjunction with COMBINE (see The FIND Function).

Note that COMBINE considers the component structures to be unrelated.
FOCUS referential integrity does not apply to a COMBINE of single-data source
Master Files. Your procedure should check for and enforce referential integrity,
if necessary.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 61 of 73

Syntax How to Use the COMBINE Command

The basic syntax for the COMBINE command is
COMBINE FILES file1 [PREFIX pref1|TAG tag1] [AND]
 .
 .
 .
 filen [PREFIX prefn|TAG tagn] AS asname

where:
file1 - filen

Are the Master File names of the data sources you want to modify. You can
specify up to 16 Master Files.

pref1 - prefn

Are prefix strings for each file; up to four characters. They provide
uniqueness for fieldnames. You cannot mix TAG and PREFIX in a
COMBINE structure. Refer to the FOCUS for S/390 documentation for
additional information.

tag1 - tagn

Are aliases for the data source names; up to eight characters. FOCUS uses
the tag name as a qualifier for fields that refer to that data source in the
combined structure. You cannot mix TAG and PREFIX in a COMBINE, and
you can only use TAG if FIELDNAME is set to NEW or NOTRUNC.

AND

Is an optional word to enhance readability.
asname

Is the required name of the combined structure to use in MODIFY
procedures and CHECK FILE commands.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 62 of 73

Once you enter the COMBINE command, you can modify the combined
structure.

How FOCUS Creates a COMBINE Structure

For example, the EMPINFO data source contains employee number, last
name, first name, hire date, department code, current job code, current salary,
number of education hours, and bonus plan information. A second data source,
PAYINFO, is a historical record of the employee’s pay history. It contains the
employee number, date of increase, percent of increase, new salary, and job
code.

Each time a salary changes, both the EMPINFO and PAYINFO data sources
must reflect the change. Since both data sources need to share data entered
for employee number, salary and job code, this application is appropriate for the
COMBINE facility. You can update both data sources at the same time without
having to define multi-segment Master and Access Files.

The following figures represent the data sources as separate entities.
EMPINFO data source PAYINFO data source

 EMPINFO PAYINFO
01 S0 01 S0
************** **************
*EMPLOYEE_ID ** *PAYEID **
*LAST_NAME ** *DAT_INC **
*FIRST_NAME ** *PCT_INC **
*HIRE_DATE ** *SALARY **
* ** * **
*************** ***************
************** **************
 EMPINFO PAYINFO

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 63 of 73

To modify the data sources simultaneously, issue the following sequence of
commands at the FOCUS command level or in a FOCEXEC:
COMBINE FILES EMPINFO PAYINFO AS EMPSPAY
MODIFY FILE EMPSPAY

.

.

.

In the following picture, generated by the CHECK FILE command, FOCUS
defines a new segment, identified as SYSTEM99, to be the root segment of the
combined structure.

SYSTEM99 acts as the traffic controller for this structure; it is a virtual (artificial)
segment. It counts as one segment towards the total of 64 segments allowed in
the COMBINE structure.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 64 of 73

check file empspay pict
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 3 (REAL= 3 VIRTUAL= 0)
 NUMBER OF FIELDS= 15 INDEXES= 0 FILES= 3
 TOTAL LENGTH OF ALL FIELDS= 95
 SECTION 01
 STRUCTURE OF SQLDS FILE EMPINFO ON 07/22/93 AT 09.54.27

 SYSTEM99
 01 S0

 * **
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I EMPINFO I PAYINFO
 02 I S0 03 I S0
 ************** **************
 *EMPLOYEE_ID ** *PAYEID **
 *LAST_NAME ** *DAT_INC **
 *FIRST_NAME ** *PCT_INC **
 *HIRE_DATE ** *SALARY **
 * ** * **
 *************** ***************
 ************** **************
 EMPINFO PAYINFO

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 65 of 73

The COMBINE facility makes it easy to modify many files with the same
transaction. For additional information regarding the COMBINE facility of
MODIFY, refer to the Maintaining Databases manual.

The LOOKUP Function
The LOOKUP function, used in FOCUS MODIFY procedures, retrieves data
values from cross-referenced data sources joined dynamically with the JOIN
command. The function is valid in both MODIFY COMPUTE and VALIDATE
commands.

The syntax for the LOOKUP function is
rfield/I1 = LOOKUP(field);

where:
rfield

Contains the return code (1 or 0) after the LOOKUP function executes.
field

Is the name of any field in a cross-referenced data source. After the
LOOKUP, this fieldname contains the field’s value for you to use as
needed.

To use this feature most efficiently with Adabas, specify a cross-referenced field
for which an Adabas descriptor has been established.

Note:

• The LOOKUP function is not supported between Adabas data sources and
FOCUS databases in either direction.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 66 of 73

• The extended syntax of the LOOKUP function (parameters GE and LE) is
not valid for Adabas data sources. LOOKUP can only retrieve values that
match exactly. Refer to the FOCUS for S/390 documentation for more
information.

The FIND Function
The FIND function, used with COMBINE structures in FOCUS MODIFY
procedures or with any file in a Maintain procedure, verifies the existence of a
value in another data source. The FIND function sets a temporary field to 1 if
the value exists in the other data source and to 0 if it does not. FIND does not
return any actual data values.

Use FIND only with a data source referenced in a COMBINE command or a
MAINTAIN FILE command. With COMBINE, if the FIND is for a field in a VSAM
file, this field must be the index or alternate index field. For Maintain, the field
must be indexed only if it is in a FOCUS database.

The syntax for the FIND function is
rfield/I1 = FIND(fieldname AS dbfield IN file);

where:
rfield

Contains the return code (1 or 0) after the FIND function executes.
fieldname

Is the comparison field from one COMBINE data source or one data source
referenced in a MAINTAIN FILE command.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 67 of 73

dbfield

For MODIFY, is the field in another COMBINE file structure or an indexed
field in a VSAM file, to use for the value comparison. The AS dbfield clause
is optional if rfield and dbfield have the same name.

For Maintain, is a fieldname from one of the files listed in the MAINTAIN
FILE command, qualified with its file name.

To use this feature most efficiently with Adabas, specify a field for which an
Adabas descriptor has been established.

file

In MODIFY, names the data source or VSAM file in which dbfield resides. In
Maintain, is ignored.

The FIND function is only supported within MODIFY or Maintain procedures.
For more information, consult the FOCUS for S/390 documentation.

Data Adapter Error Messages and Adabas Response
Codes
This section lists the Adabas Write Data Adapter error messages and common
Adabas response codes.

Adabas Write Data Adapter Error Messages

In the following error messages, the term number refers to the response code
that Adabas returns. For example, the following message references Adabas
error response code 113 in the Adabas Messages and Codes manual:
(FOC4561) ERROR IN ADABAS INCLUDE/113

The following messages apply to the Adabas Write Data Adapter:
(FOC4555) INVALID UNQKEYNAME FOR SEGMENT

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 68 of 73

(FOC4557) ERROR IN ADABAS COMMIT/number

(FOC4558) ERROR IN ADABAS ROLLBACK/number

(FOC4559) ERROR IN ADABAS UPDATE/number

(FOC4560) ERROR IN ADABAS DELETE/number

(FOC4561) ERROR IN ADABAS INCLUDE/number

(FOC4562) RECORD IS HELD BY ANOTHER USER

(FOC4563) INCORRECT INCLUDE REQUEST FOR NON UNIQUE KEY

(FOC4564) THIS OCCURRENCE ALREADY EXISTS. USE UPDATE COMMAND.

(FOC4565) IGNORED ATTEMPT TO CHANGE NONUPDATABLE FIELD

An UPDATE command was used against a nonupdatable field,
i.e. - field described in AFD as SUB/SUPERDESCRIPTOR or part
of it;
- field that refers in MFD to the same DB field (ALIAS) as another
field (synonym case).

For individual Adabas Data Adapter error messages, consult Appendix B,
Adabas Interface Error Messages in the FOCUS for IBM Mainframe Adabas
Interface User’s Manual and Installation Guide.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 69 of 73

Adabas Response Codes

If variables FOCERROR or RETCODE have the value 999, the Adabas

FOCUS
Error

Adabas
Response
Code

Description

FOC4490 148 The database is down or unavailable.

FOC4496 148 Check the DBNO in the Access File.

FOC4500 113 The FILENO for the segment in the Access
File is not correct.

FOC4504 0 Check the DBNO and FILENO in both the
PREDDB and PREDEL Access Files.

FOC4504 17 The database contains no data and/or the
database does not exist in the Predict
dictionary.

FOC4504 28 Check the compatibility of the Predict
dictionary and FDT listing.

FOC4504 41 The Predict dictionary and FDT may not
match. Check the group in the FDT. It may
have been created differently in the Predict
dictionary.

FOC4504 201 The password is not correct.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 70 of 73

FOCUS
Error

Adabas
Response
Code

Description

Any 9 As a rule:

The transaction time limit (TT) or the
transaction non-activity time limit (TNAE,
TNAX, TNAA) has been exceeded.

For details see a subcode value in the Adabas
control block’s ADD2 field in the data
adapter’s level 3 trace, and refer to its
explanation in the Adabas Messages and Codes
manual.

Any 47 The maximum value for the NISNHQ
parameter was exceeded.

Too many records are held. You can release
them by periodically issuing the COMMIT
command.

Any 40-45 One or more errors occurred in the Format
Buffer.

There is a discrepancy between the Master
File and the Adabas FDT.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 71 of 73

response code was not used. Use the data adapter error message to determine
the cause of the error.

For details on the Adabas response codes that may accompany the Adabas
Data Adapter error messages, see your Software AG publication, General
Reference Set: Messages and Codes Manual. If a subcode details the specific
cause and actions for the response code in this manual, you can find the
subcode’s value in the low-order (rightmost) two bytes of the Adabas control
block’s ADD2 field using the Adabas Data Adapter’s level 3 trace. The trace
facility for the Write data adapter is the same as for the Read data adapter.

FOCUS
Error

Adabas
Response
Code

Description

Any 50-59 One or more errors occurred in the Record
Buffer.

There is a discrepancy between the Master
File and the Adabas FDT.

Any 145 An attempt was made to hold a record already
in the hold queue for another user.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 72 of 73

Common User Errors
1. Using a group field in an INCLUDE or UPDATE command.

In the following request, the record is not inserted because the field list
contains a group field (LEAVE_DATA):
MODIFY FILE EMPWRITE
-* This is an example of the error caused by using a
-* group field (LEAVE_DATA), rather than only elementary fields,
-* in an INCLUDE process.
-* The insert (Segname=S01) is rejected with the error -
-* (FOC4491) FIND ERROR READING FIRST RECORD : S01 /61
-*
-* Insert for SEGNAM=S01 - ACCESS=ADBS
 COMPUTE EMPLOYEE_ID = ’EMPID003’;
 MATCH EMPLOYEE_ID
 ON MATCH COMPUTE
 LAST_NAME = ’SMITH’ ;
 FIRST_NAME = ’ROBERT’ ;
 MIDDLE_NAME = ’EDWARD’ ;
 CITY = ’NEW YORK’ ;
 ZIP_CODE = ’10121’ ;
 COUNTRY = ’USA’ ;
 LEAVE_DATA = ’VAC0801080700’;
 ON MATCH INCLUDE
 ON NOMATCH REJECT
DATA
END

Solution: Use only elementary fields in the field list for INCLUDE and
UPDATE.

NF785: The Adabas Write Data Adapter for FOCUS

Version 7.1 Page 73 of 73

2. Issuing an INCLUDE command for a new key value with additional fields in
the MATCH list.

In the following example EMPLOYEE_ID is defined as a unique key in the
Access File. However, Adabas may insert the record even if the employee
ID value already exists in the data source:
MODIFY FILE EMPWRITE

-* INSERT FOR SEGNAM=S01 - ACCESS=ADBS
 COMPUTE EMPLOYEE_ID = ’EMPID001’;
 LAST_NAME = ’SMITH’;
 MATCH EMPLOYEE_ID LAST_NAME
 ON NOMATCH COMPUTE
 FIRST_NAME = ’ROBERT’;
 MNAME = ’EDWARD’;
 CITY = ’NEW YORK’;
 ON NOMATCH INCLUDE
 ON MATCH REJECT
DATA
END

Solution: Issue the MATCH command for the field EMPLOYEE_ID alone,
then enter values into the other fields and issue the INCLUDE command.

Page 1 of 2

7.0.9 New Features

Fusion
NF575: Fusion

General Enhancements
NF716: Euro Currency Support
NF655: FOCPROF - The System Wide Profile
NF735: Enhancement to ? SET
NF746: Leading Zeros
NF656: Controlling REBUILD Messages
NF740: Changes to the REBUILD Prompt
NF660: Multi-volume Support in MVS FOCUS
NF670: DYNAM Support for Unit Count
NF718: DYNAM Support for Existing Relative GDG

Numbers
NF745: ? PTF Enhancements

Reporting Enhancements
NF691: Escape Character for LIKE Predicate
NF744: HOLD FORMAT EXCEL
NF748: HOLD FORMAT WP With Carriage Control

7.0.9 New Features

Page 2 of 2

Performance Enhancements
NF654: HOLD From External Sort
NF597: Aggregation by External Sort
NF728: Changing Retrieval Order with Aggregation

Web Interface for FOCUS
NF683: Web Interface Support for Maintain Winforms
NF684: PCHOLD for Non-Html Files
NF730: Hold Format PDF

Relational Interfaces
NF720: SQLJOIN OUTER Setting for Relational Interfaces

Teradata Interface
NF652: Teradata Interface Kanji Support

Model 204 Interface
NF673: Model 204 Interace Account Split

CA-IDMS Interface
NF584: Dynamically Setting the IDMS DBNAME and

DICTNAME

FOCUS Client
NF722: FOCUS Client DNS Names Support

Version 7.0 Release 9 Page 1 of 1

NF575: Fusion

FOCUS Version 7.0 release 9 introduces the Fusion database for CMS and
MVS FOCUS. Fusion is a high performance database whose unique Multi
Dimensional Indexing (MDI) architecture extends the scope of high-speed
multi-dimensional query performance.

For complete details, see the Fusion User’s Manual for EDA 4.2 and
FOCUS 7.0 (DN3700041.1198).

Version 7.0 Release 9 Page 1 of 18

NF716: Euro Currency Support

With the introduction of the euro currency, businesses need to maintain books
in two currencies, add new fields to their database designs, and perform new
types of currency conversions. This new feature gives FOCUS the ability to
perform currency conversions according to the rules specified by the European
Union. Before you can use FOCUS to process currency conversions, you must:

• Create a currency database with the currency IDs and exchange rates you
will use. See Creating the Currency Database.

• Identify fields in your data sources that represent currency data. See
Identifying Fields That Contain Currency Data.

• Activate your currency database. See Activating the Currency Database.

After you complete these preliminary steps, you can perform currency
conversions. See Processing Currency Data.

Note: Operating system vendors are in the process of integrating the euro
currency symbol into their environments. As the euro symbol becomes
available, FOCUS will support it.

Converting Currencies
Although the euro was introduced in 11 countries of the European Union on
January 1, 1999, it will not immediately replace local currencies in those
countries. During the transition period from 1999 to 2002, both traditional
currencies and the euro will be used simultaneously for accounting purposes
and non-cash transactions in each participating country. Euro cash will not be
introduced until January 1, 2002, and by July 1, 2002 the traditional currencies
will no longer be legal tender.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 2 of 18

On the last day of 1998, the European Union set fixed exchange rates between
the euro and the traditional national currency in each of the 11 adopting
member nations. While the exchange rates within “Euroland” will remain fixed,
exchange rates between the euro and non-euro countries will continue to vary
freely and, in fact, several rates may be in use at one time (for example, actual
and budgeted rates).

The European Union has established the following rules for currency
conversion:

• The exchange rate must be specified as a decimal value, r, with six
significant digits (not six decimal places). For example, 123.456 has six
significant digits but not six decimal places. This rate will establish the
following relationship between the euro and the particular national
currency:

1 euro = r national units

• To convert from the euro to the national unit, multiply by r and round the
result to two decimal places.

• To convert from the national currency to the euro, divide by r and round the
result to two decimal places.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 3 of 18

• To convert from one national currency to another, first convert from one
national unit to the euro, rounding the result to at least three decimal places
(FOCUS rounds to exactly three decimal places). Then convert from the
euro to the second national unit, rounding the result to two decimal places.
The following diagram illustrates this two-step conversion process known
as triangulation:

Preparing FOCUS to Process Currency Conversions
Although 11 or more currencies in the European Union will be converting to the
euro, more than 100 currencies have a recognized status worldwide. In
addition, you may need to define custom currencies for some applications.

USD
r = 1.17249

EUR
r = 1.00000

FRF
r = 6.55957

Converting 10 US Dollars to French Francs

Step 1:

10 USD = 10/1.17249 EUR
 = 8.529 EUR

Step 2:

8.344 EUR = 8.529*6.55957 FRF
 = 55.95 FRF

NF716: Euro Currency Support

Version 7.0 Release 9 Page 4 of 18

You identify your currency codes and rates by creating a currency database.
The currency database can be any type of data source that FOCUS can
access.

Creating the Currency Database

For each type of currency you need, you must supply the following values in
your currency database:

• A three-character code to identify the currency, such as USD for U.S.
dollars or BEF for Belgian francs. (For a partial list of recognized currency
codes, see Sample Currency Codes.)

• One or more exchange rates for the currency.

There is no limit to the number of currencies you can add to your currency
database; the currencies you can define are not limited to official currencies
and, therefore, the currency database can be fully customized for your
applications.

We strongly recommend that you create a separate database for the currency
data rather than adding the currency fields to another data source. A separate
currency database enhances performance and minimizes resource utilization
because FOCUS loads the currency database into memory before you perform
currency conversions.

Syntax How to Specify Currency Codes and Rates in a Master File

The currency database can be any type of data source accessible by FOCUS
(for example, FOCUS, FIX, DB2, or VSAM). The currency Master File must
have one field that identifies each currency ID you will use and one or more
fields to specify the exchange rates.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 5 of 18

The syntax is
FIELD = CURRENCY_ID, FORMAT = A3, ACTUAL = A3 ,$
FIELD = rate1, FORMAT = {D12.6|numeric_format1}, ACTUAL = A12,$

.

.

.
FIELD = raten, FORMAT = {D12.6|numeric_formatn}, ACTUAL = A12,$

where:
CURRENCY_ID

Is the required field name. The values stored in this field are the three-
character codes that identify each currency, such as USD for U.S. dollars.
Each currency ID can be a universally recognized code or a user-defined
code. Note: FOCUS automatically recognizes the code EUR; you should
not store this code in your currency database. See Sample Currency
Codes for a list of common currency codes.

rate1,...,raten

Are types of rates (such as BUDGET, FASB, ACTUAL) to be used in
currency conversions. Each rate is the number of national units that
represent one euro.

numeric_format1,...,numeric_formatn

Are the display formats for the exchange rates. Each format must be
numeric. The recommended format, D12.6, ensures that the rate is
expressed with six significant digits as required by the European Union
conversion rules. Do not use Integer format (I).

ACTUAL An

Is required only for non-FOCUS data sources.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 6 of 18

Note: The maximum number of fields in the currency database must not
exceed 255 (that is, the CURRENCY_ID field plus 254 currency conversion
fields).

Example Specifying Currency Codes and Rates in a Master
File

The following Master File for a comma-delimited currency database specifies
two rates for each currency, ACTUAL and BUDGET:
FILE = CURRCODE, SUFFIX = COM,$
FIELD = CURRENCY_ID, FORMAT = A3, ACTUAL = A3 ,$
FIELD = ACTUAL, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$
FIELD = BUDGET, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$

The following is sample data for the currency database defined by this Master
File:
FRF, 6.55957, 6.50000,$
USD, 1.17249, 1.20000,$
BEF, 40.3399, 41.00000,$

Identifying Fields That Contain Currency Data

Once you have created your currency database, you must identify the fields in
your data sources that represent currency values. To designate a field as a
currency-denominated value (a value that represents a number of units in a
specific type of currency) add the CURRENCY attribute to one of the following:

• The FIELD specification in the Master File.

• The left side of a DEFINE or COMPUTE.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 7 of 18

Syntax How to Identify a Currency Value

Use the following syntax to identify a currency-denominated value:

• In a Master File
FIELD = currfield, FORMAT = numeric_format, ,
CURR = {curr_id|codefield} ,$

• In a DEFINE in the Master File
DEFINE currfield/numeric_format CURR curr_id = expression ;$

• In a DEFINE FILE command
DEFINE FILE filename
currfield/numeric_format CURR curr_id = expression ;
END

• In a COMPUTE command
COMPUTE currfield/numeric_format CURR curr_id = expression ;

where:
filename

Is the name of the file for which this field is defined.
currfield

Is the name of the currency-denominated field.
numeric_format

Is a numeric format. Depending on the currency denomination involved, the
recommended number of decimal places is either two or zero. Do not use I
or F format.

CURR

Indicates that the field value represents a currency-denominated value.
CURR is an abbreviation of CURRENCY, which is the full attribute name.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 8 of 18

curr_id

Is the three-character currency ID associated with the field. In order to
perform currency conversions, this ID must either be the value EUR or
match a CURRENCY_ID value in your currency database.

codefield

Is the name of a field, qualified if necessary, that contains the currency ID
associated with currfield. The code field should have format A3 or longer
and is interpreted as containing the currency ID value in its first three bytes.

For example:
FIELD = PRICE, FORMAT = P12.2C, ..., CURR = TABLE.FLD1,$
.
.
.
FIELD = FLD1, FORMAT = A3, ...,$

The field named FLD1 contains the currency ID for the field named PRICE.
expression

Is a valid expression.

Example Identifying a Currency-denominated Field

Assume that the currency database contains the currency ID value BEF
(Belgian francs).

If the FINANCE data source contains a field named PRICE that is denominated
in Belgian francs, the description of PRICE in the FINANCE Master File could
be:
FIELD = PRICE, ALIAS=, FORMAT = P17.2, CURR=BEF,$

NF716: Euro Currency Support

Version 7.0 Release 9 Page 9 of 18

Activating the Currency Database
Before you can perform currency conversions, you must bring the relevant
currency database into memory by issuing the SET EUROFILE command.

Syntax How to Activate Your Currency Database

Issue the following command at the FOCUS command prompt, in a FOCEXEC,
or in any supported profile
SET EUROFILE = {ddname|OFF}

where:
ddname

Is the name of the Master File for the currency database. There is no
default value for EUROFILE. The ddname must refer to a data source
known to FOCUS and accessible by FOCUS in read-only mode.

OFF

Deactivates the currency database and removes it from memory.

During your FOCUS session, if you want to access a different currency
database, you can re-issue the SET EUROFILE command.

Note:

• You cannot append any additional SET parameters to the SET EUROFILE
command line. For example, the PAUSE setting would be lost if you issued
the following command:
SET EUROFILE=filename , PAUSE=OFF

• You cannot issue the SET EUROFILE command within a TABLE request.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 10 of 18

Syntax How to Determine the Currency Database in Effect

If you want to determine which currency database is in effect, issue the ? SET
ALL command or the new EUROFILE query command:
? SET EUROFILE

Example Determining the Currency Database in Effect

Assume the currency database is named CURRCODE.

If you issue the following commands:
set eurofile = currcode
? set eurofile

FOCUS returns the following response:
 EUROFILE CURRCODE

Reference SET EUROFILE Error Messages and Notes

Issuing the SET EUROFILE command when the currency database Master File
does not exist generates the following error message:
(FOC205) THE DESCRIPTION CANNOT BE FOUND FOR FILE NAMED: ddname

Issuing the SET EUROFILE command when the currency Master File specifies
a FOCUS database and the associated FOCUS database does not exist
generates the following error message:
(FOC036) NO DATA FOUND FOR THE FOCUS FILE NAMED: name

Note for Pooled Table users: The SET EUROFILE command creates a pool
boundary.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 11 of 18

Processing Currency Data
After you have created your currency database, identified the currency-
denominated fields in your data sources, and activated your currency database,
you can perform currency conversions.

Each currency ID in your currency database generates a virtual conversion
function whose name is the same as its currency ID. For example, if you added
BEF to your currency database, a virtual BEF currency conversion function will
be generated.

The euro function, EUR, is supplied automatically with FOCUS. You do not
need to add the EUR currency ID to your currency database.

Syntax How to Convert Currency Data

Use the following syntax for calling a currency conversion function

• In a TABLE, GRAPH, or MODIFY procedure:
DEFINE FILE filename
result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);
END

or
COMPUTE result/format [CURR curr_id] = curr_id(infield, rate1
[,rate2]);

• In a Master File:
DEFINE result/format [CURR curr_id] = curr_id(infield, rate1
[,rate2]);$

where:

NF716: Euro Currency Support

Version 7.0 Release 9 Page 12 of 18

filename

Is the name of the file for which this field is defined.
result

Is the converted currency value.
format

Must be a numeric format. Depending on the currency denomination
involved, the recommended number of decimal places is either two or zero.
Do not use I or F format. The result will always be rounded to two decimal
places, which will display if the format allows at least two decimal places.

curr_id

Is the currency ID of the result field. This ID must be the value EUR or
match a currency ID in your currency database; any other value generates
the following message
(FOC263) EXTERNAL FUNCTION OR LOAD MODULE NOT FOUND: curr_id

Note: The CURR attribute on the left side of the DEFINE or COMPUTE
identifies the result field as a currency-denominated value which can be
passed as an argument to a currency function in subsequent currency
calculations. Adding this attribute to the left side of the DEFINE or
COMPUTE does not invoke any format or value conversion on the
calculated result.

infield

Is a currency-denominated value. This input value will be converted from its
original currency to the curr_id denomination. If the infield and result
currencies are the same, no calculation is performed and the result value is
the same as the infield value.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 13 of 18

rate1

Is the name of a rate field from the currency database. The infield value is
divided by its currency’s rate1 value to produce the equivalent number of
euros.

If rate2 is not specified in the currency calculation and triangulation is
required, this intermediate result is then multiplied by the result currency’s
rate1 value to complete the conversion.

In certain cases, you may need to provide different rates for special
purposes. In these situations you can specify any field or numeric constant
for rate1 as long as it indicates the number of units of the infield currency
denomination that equals one euro.

rate2

Is the name of a rate field from the currency database. This argument is
only used for those cases of triangulation in which you need to specify
different rate fields for the infield and result currencies. It is ignored if the
euro is one of the currencies involved in the calculation.

The number of euros that was derived using rate1 is multiplied by the result
currency’s rate2 value to complete the conversion.

In certain cases, you may need to provide different rates for special
purposes. In these situations you can specify any field or numeric constant
for rate2 as long as it indicates the number of units of the result currency
denomination that equals one euro.

Note: MAINTAIN does not support these currency conversion functions.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 14 of 18

Example Converting Currencies

Assume that the currency database contains the currency IDs USD and BEF,
and that PRICE is denominated in Belgian francs as follows:
FIELD = PRICE, ALIAS=, FORMAT = P17.2, CURR=BEF,$

• The following example converts PRICE to euros and stores the result in
PRICE2 using the BUDGET conversion rate for the BEF currency ID:
COMPUTE PRICE2/P17.2 CURR EUR = EUR(PRICE, BUDGET);

• This example converts PRICE from Belgian francs to US dollars using the
triangulation rule:
DEFINE PRICE3/P17.2 CURR USD = USD(PRICE, ACTUAL);$

First PRICE is divided by the ACTUAL rate for Belgian francs to derive the
number of euros rounded to three decimal places. Then this intermediate
value is multiplied by the ACTUAL rate for US dollars and rounded to two
decimal places.

• The following example uses a numeric constant for the conversion rate:
DEFINE PRICE4/P17.2 CURR EUR = EUR(PRICE,5);$

• The next example uses the ACTUAL rate for Belgian francs in the division
and the BUDGET rate for US dollars in the multiplication:
DEFINE PRICE5/P17.2 CURR USD = USD(PRICE, ACTUAL, BUDGET);$

Reference Currency Calculation Processing and Messages

The result is always calculated with very high precision, 31 to 36 significant
digits, depending on platform. The precision of the final result is always
rounded to two decimal places. In order to display the result to the proper
precision, its format must allow at least two decimal places.

NF716: Euro Currency Support

Version 7.0 Release 9 Page 15 of 18

Issuing a TABLE request against a Master File that specifies a currency code
not listed in the active currency database generates the following message:
(FOC1911) CURRENCY IN FILE DESCRIPTION NOT FOUND IN DATA

A syntax error or undefined fieldname in a currency conversion expression
generates the following message:
(FOC1912) ERROR IN PARSING CURRENCY STATEMENT

Reference Sample Currency Codes

The following rates were in effect on December 31, 1998. Euroland countries
as of that date are marked with an asterisk (*). Their rates are fixed and will not
change; the rates for other countries can change over time:

Country Currency Code Rate

Austria* ATS 13.7603

Belgium* BEF 40.3399

Canada CAD 1.7978

Denmark DKK 7.46215

European Union EUR 1

Finland* FIM 5.94573

France* FRF 6.55957

Germany* DEM 1.95583

NF716: Euro Currency Support

Version 7.0 Release 9 Page 16 of 18

Country Currency Code Rate

Greece GRD 328.6

Ireland* IEP 0.787564

Italy* ITL 1936.27

Japan JPY 133.149

Luxembourg* LUF 40.3399

Netherlands* NLG 2.20371

Norway NOK 8.91039

Portugal* PTE 200.482

Spain* ESP 166.386

Sweden SEK 9.52669

Switzerland CHF 1.61093

UK GBP 0.706739

USA USD 1.17249

NF716: Euro Currency Support

Version 7.0 Release 9 Page 17 of 18

Example Converting U.S. Dollars to Euros, French Francs,
and Belgian Francs

Assume PRICE is denominated in U.S. dollars and ACTUAL is the name of a
rate in the currency database. Using the currency conversion rates from
Sample Currency Codes, the following FOCEXEC converts PRICE to euros,
French francs, and Belgian francs:
-* CURRCODE IS THE CURRENCY DATABASE
-* CURRDATA IS THE DATA SOURCE WITH CURRENCY-DENOMINATED FIELDS

-* THE FOLLOWING FILEDEFS ARE FOR RUNNING UNDER CMS
CMS FILEDEF CURRCODE DISK CURRCODE TEXT A
CMS FILEDEF CURRDATA DISK CURRDATA TEXT A

-* THE FOLLOWING ALLOCATIONS ARE FOR RUNNING UNDER MVS
-* DYNAM ALLOC FILE CURRCODE DA USER1.FOCEXEC.DATA(CURRCODE) SHR REU
-* DYNAM ALLOC FILE CURRDATA DA USER1.FOCEXEC.DATA(CURRDATA) SHR REU

SET EUROFILE = CURRCODE

DEFINE FILE CURRDATA
PRICEEUR/P17.2 CURR EUR = EUR(PRICE, ACTUAL);
END

TABLE FILE CURRDATA
PRINT PRICE PRICEEUR AND COMPUTE
PRICEFRF/P17.2 CURR FRF = FRF(PRICE, ACTUAL);
PRICEBEF/P17.2 CURR BEF = BEF(PRICE, ACTUAL);
END

NF716: Euro Currency Support

Version 7.0 Release 9 Page 18 of 18

This request generates the following report:
 PAGE 1

 PRICE PRICEEUR PRICEFRF PRICEBEF
 ----- -------- -------- --------
 5.00 4.26 27.97 172.01
 6.00 5.12 33.57 206.42
 40.00 34.12 223.78 1376.20
 10.00 8.53 55.95 344.06

Note: You cannot use the derived euro value PRICEEUR in a conversion from
USD to BEF. PRICEEUR has two decimal places (P17.2), not three, as the
triangulation rules require. Therefore, PRICEEUR yields the following
inaccurate result (see PRICEBEF above) and is not valid as the intermediate
value in a currency conversion that requires triangulation:
COMPUTE PRICENEW/P17.2 CURR BEF = BEF(PRICEEUR, ACTUAL);

 PRICENEW

 171.85
 206.54
 1376.40
 344.10

Version 7.0 Release 9 Page 1 of 3

NF744: HOLD FORMAT EXCEL

FOCUS can now format report output as a Microsoft® Excel spreadsheet.
When you use the HOLD FORMAT EXCEL syntax, FOCUS creates a binary file
containing all columns of the report output with their column headings.

If you are using the Web Interface for FOCUS, the Excel spreadsheet can be
downloaded automatically to your Web Browser. If you do not have the Web
Interface, you can transfer the spreadsheet file to any environment that

supports Excel, such as a PC running Microsoft Windows®; the recommended
transfer protocol is FTP in binary mode.

You can also store the Excel file on a web server where users can display it
using any browser configured with Excel as a plug-in.

Syntax How to Create an Excel Spreadsheet

The syntax is.
[ON TABLE] HOLD [AS filename] FORMAT EXCEL

where:
ON TABLE

Is required syntax if you create the Excel file within a report request.
filename

Assigns a name to the Hold file. The default name is HOLD.

In MVS, unless you allocate this ddname to a permanent file, FOCUS
allocates it to a temporary data set.

In CMS, this name becomes the file name. The file type is XLS.

NF744: HOLD FORMAT EXCEL

Version 7.0 Release 9 Page 2 of 3

By default, the extension for Microsoft Excel files is .xls in environments
that support file names with extensions. Therefore, the file name after
transfer is filename.xls.

Syntax How to Create and Download an Excel File With the Web
Interface for FOCUS

If you are using the Web Interface for FOCUS, you can create the Excel
spreadsheet and automatically download it to your Web Browser with the
following syntax:
[ON TABLE] PCHOLD FORMAT EXCEL

where:
ON TABLE

Is required syntax if you create the Excel file within a report request.

On the PC, the name of the Excel spreadsheet file is hold.xls.

For a detailed description of how to download report output using the Web
Interface for FOCUS and PCHOLD, see NF730: Hold Format PDF.

Example Creating an Excel Spreadsheet in a Report Request

Consider the following request run in CMS:
TABLE FILE CAR
PRINT CAR MODEL RETAIL_COST DEALER_COST
BY COUNTRY
ON TABLE HOLD AS EXCEL1 FORMAT EXCEL
END

NF744: HOLD FORMAT EXCEL

Version 7.0 Release 9 Page 3 of 3

This request creates the file EXCEL1 XLS A. After transferring this file (using
FTP in binary mode) to a file named excel1.xls on your PC, you can open it in
Excel:

Version 7.0 Release 9 Page 1 of 5

NF730: Hold Format PDF

FOCUS can now generate output in Adobe® Portable Document Format (PDF).
This feature enables Web Interface users to produce reports with all PDF
formatting options (for example, headings, footings, and titles) correctly aligned
on the physical pages. PDF also supports StyleSheets incorporating drill-downs
and links to URLs.

Required Software Configuration

Adobe Acrobat Reader® Version 3.01 or higher is required to display PDF
output, however, no third-party products are needed to produce it. The Adobe
Acrobat Reader is Internet shareware for Windows 95, Windows NT, UNIX, and
Macintosh, and is available free from their Web site, http://www.adobe.com.

Reports viewed with Adobe Acrobat Reader look precisely as if printed. By
configuring the Acrobat Reader as a plug-in on your Web browser, PDF output
displays directly inside the browser window in printed format without additional
setup or configuration.

Browser users who have not installed Acrobat Reader can save PDF files to
disk or download them to a PC when prompted by the browser and then
transfer them later to a machine with the Acrobat Reader to display them. Users
can then either run the standalone Acrobat Reader program or use a browser
with the PDF plug-in to view the PDF files.

Syntax How to Create PDF Output

The syntax is:
ON TABLE {HOLD|SAVE} FORMAT PDF [AS filename]

http://www.adobe.com

NF730: Hold Format PDF

Version 7.0 Release 9 Page 2 of 5

where:
ON TABLE

Is required syntax if you create the PDF file within a report request.
filename

Assigns a name to the Hold file. The default name is HOLD. If you specify an
optional AS filename the name that you supply (1-8 characters) is used in place of
HOLD. If you issue a FILEDEF for the filename, the PDF output is created in the
file specified in the FILEDEF.

In MVS, unless you allocate this ddname to a permanent file, FOCUS
allocates it to a temporary dataset.

In CMS, this name becomes the filename. The filetype is PDF.

Downloading PDF Output

The technique for downloading PDF files depends on how you accessed FOCUS. PDF-
formatted Hold files created on the mainframe can be downloaded to the PC using FTP
transfers. With the Web Interface, browser users can issue the following PCHOLD
syntax to download PDF files to their browsers.
ON TABLE PCHOLD FORMAT PDF

The Web Interface automatically FTPs output to your PC if you choose. A
browser window opens after the command is issued, inquiring whether you
wish to have the file opened immediately or saved to disk.

NF730: Hold Format PDF

Version 7.0 Release 9 Page 3 of 5

NF730: Hold Format PDF

Version 7.0 Release 9 Page 4 of 5

Example Creating a PDF-formatted Report Using the CAR
File

This report request generates the PDF report that follows.
TABLE FILE CAR
HEADING CENTER
"CAR COSTS PER COUNTRY"
FOOTING
"---> Uncentered footing"
PRINT
MODEL DEALER_COST RETAIL_COST
BY COUNTRY
BY CAR
WHERE COUNTRY = ’ENGLAND’ OR ’ITALY’
ON CAR SUBTOTAL
ON TABLE PCHOLD FORMAT PDF
END

NF730: Hold Format PDF

Version 7.0 Release 9 Page 5 of 5

Version 7.0 Release 9 Page 1 of 2

NF654: HOLD From External Sort

External sorts can be used to create HOLD files. This can lead to savings of up
to twenty percent on processing time. The gains are most notable with relatively
simple requests against large databases.

Syntax How to Create HOLD FILES with an External Sort
SET EXTHOLD = [OFF|ON]

where:
OFF

Disables HOLD files by an external sort. OFF is the default.
ON

Enables HOLD files by an external sort.

Conditions for Using External Sort to Create a HOLD File
• The default setting of EXTSORT=ON must be in effect.

• EXTHOLD must be ON.

• Request must contain a BY field.

• Request must contain ON TABLE HOLD or ON TABLE HOLD AS.

NF654: HOLD From External Sort

Version 7.0 Release 9 Page 2 of 2

• Your query should be simple (AUTOTABLEFable). AUTOTABLEF analyzes
a query and determines whether the combination of verbs and formatting
options require the internal matrix or not. In cases where it's determined
that a matrix is not necessary to satisfy the query we avoid the extra
internal costs associated with creating the matrix. The internal matrix is
stored in a file or dataset named FOCSORT. Its default is ON so that
performance gains may be realized.

• SET ALL must be OFF.

• There cannot be an IF/WHERE TOTAL or BY TOTAL in the request.

• If a request contains a SUM command, EXTAGGR must be set ON and the
only column prefixes allowed are SUM and FST.

• If a request contains a PRINT command, the column prefixes allowed are
SUM, AVE, MAX, MIN, FST and LST.

Version 7.0 Release 9 Page 1 of 3

NF597: Aggregation by External Sort

External sorts can be used to perform aggregation with a significant decrease
in processing time in comparison to using the sort facility of FOCUS. The gains
will be most notable with relatively simple requests against large databases.

Syntax How to Use Aggregation in Your External Sort
SET EXTAGGR = aggropt

where:
aggropt

can be one of the following:
OFF

disallows aggregation by an external sort.
NOFLOAT

allows aggregation if there are no floating data fields present.
ON

allows aggregation by an external sort. ON is the default.

Conditions for Aggregating with an External Sort
• You must be using SYNCSORT or DFSORT.

• EXTAGGR cannot be set to OFF.

• Your query should be simple. (AUTOTABLEFable)

• The PRINT display command may not be used in the query.

• SET ALL must be equal to OFF.

NF597: Aggregation by External Sort

Version 7.0 Release 9 Page 2 of 3

• Only the following column prefixes are allowed: SUM, AVG, CNT, FST.

• Columns can be COMPUTEd or have a ROW-TOTAL.

• CMS DFSORT does not support aggregation of numeric data types. When
SET EXTAGGR = NOFLOAT and your query aggregates numeric data, the
external sort is not called and aggregation is performed by the FOCUS sort.

Example How Using an External Sort for Aggregation Can
Change Your Output

Using an external sort for aggregation can change the output of your report
request.

If you use SUM on an alphanumeric field in your report request without using an
external sort, FOCUS displays the last instance of the sorted fields in the
output. Turning on aggregation in the external sort results in the first record
being displayed instead.

With aggregation in the external sort turned on:
SET EXTAGGR = ON

TABLE FILE CAR

SUM CAR BY COUNTRY

END

The output is:
COUNTRY CAR

------- ----

ENGLAND JAGUAR

FRANCE PEUGEOT

ITALY ALFA ROMEO

JAPAN DATSUN

W GERMANY AUDI

NF597: Aggregation by External Sort

Version 7.0 Release 9 Page 3 of 3

With aggregation in the external sort turned off:
SET EXTAGGR = OFF

TABLE FILE CAR

SUM CAR BY COUNTRY

END

The output is:
COUNTRY CAR

------- ---

ENGLAND TRIUMPH

FRANCE PEUGEOT

ITALY MASERATI

JAPAN TOYOTA

W GERMANY BMW

Note: The SET SUMPREFIX command in conjunction with aggregation using
an external sort also affects the order of information displayed in your report.
For complete information on SUMPREFIX please see New Feature Bulletin
728, SUMPREFIX.

Reference Special Considerations

When aggregation is performed by an external sort the statistical variables
&RECORDS and &LINES are of equal value. This is done because the external
sort products do not return a line count for the answer set. This is a behavior
change and affects any code that checks the value of &LINES.

Version 7.0 Release 9 Page 1 of 1

NF728: Changing Retrieval Order with Aggregation

When an external sort product performs aggregation of alphanumeric or smart
date formats, the order of the answer set returned differs from the order of the
FOCUS sorted answer sets.

External sort products return the first alphanumeric or smart date record that
was aggregated. Conversely, FOCUS returns the last record.

The SUMPREFIX command deals with this difference in behavior by allowing
users to choose which order the answer set should display.

Syntax Setting Retrieval Order
SET SUMPREFIX = {LST|FST}

where:
LST

Displays the last value in cases of data aggregation of alphanumeric or
smart date data types.

FST

Displays the first value in cases of data aggregation of alphanumeric or
smart date data types.

Version 7.0 Release 9 Page 1 of 2

NF655: FOCPROF - The System Wide Profile

FOCPROF is a new global profile for FOCUS. While the FOCPARM profile
supports only FOCUS SET commands, this new profile can contain any
command that is valid in a FOCEXEC, including TABLE, GRAPH, MATCH,
MODIFY, MAINTAIN, REBUILD, COMPILE, LOAD, Dialogue Manager
commands, CMS commands, TSO commands, and DYNAM commands.

FOCUS Profiles
With the addition of FOCPROF, there are now three FOCUS profiles:
FOCPARM, FOCPROF, and PROFILE.

The files FOCPARM and FOCPROF:

• Are members of the ERRORS PDS on MVS.

• Have filetype ERRORS on CMS.

The file PROFILE:

• Is a member of the FOCEXEC PDS on MVS.

• Has filetype FOCEXEC on CMS.

Using FOCUS Profiles

The order of execution of FOCUS profiles is:

1. FOCPARM, which can contain FOCUS SET commands only.

2. FOCPROF, the new global profile.

3. PROFILE.

NF655: FOCPROF - The System Wide Profile

Version 7.0 Release 9 Page 2 of 2

Procedure How to Create a FOCPROF Profile

• For MVS, create a new member of the ERRORS PDS named FOCPROF.

• For CMS, create a file with filename FOCPROF and filetype ERRORS.

Edit the FOCPROF file to contain the commands to be executed each time
FOCUS is invoked.

Version 7.0 Release 9 Page 1 of 12

NF660: Multi-volume Support in MVS FOCUS

The latest release of MVS FOCUS gives sites the option of allocating FOCUS
databases, Fusion databases, and FOCUS-created sequential files across
multiple volumes.

Advantages of Multi-volume Data Sources
Many sites prefer to distribute high volume data sources across multiple
volumes in order to manage:

• Use of storage on specific devices or device types.

• Run-time access to these devices.

• B37 abends.

You can now use this performance tuning technique (also known as data
striping) with FOCUS databases, Fusion databases, and FOCUS-created
sequential files in the MVS batch, TSO, and MSO environments.

Allocating Multi-volume Data Sources
The SPACE parameter for allocating a data source can include a primary and a
secondary allocation. The primary allocation is the amount of space allocated
the first time data is written to the data set. The secondary allocation is the
amount of space to be allocated, when necessary, for up to 15 additional
extents.

For a single-volume data source, processing terminates with a B37 abend
when the system detects either of the following conditions:

• A need for more than 16 extents.

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 2 of 12

• A need for a new secondary extent (below the 16-extent limit) when enough
space is not available on the volume.

FOCUS returns the following message to indicate that one of these conditions
has occurred:
(FOC198) FATAL ERROR IN DATABASE I/O. FOCUS TERMINATING CODE: 00000070

You can prevent this type of abnormal termination by allocating multiple
volumes to the data source. With multiple volumes, an out of space condition
on the first volume causes allocation to start on another volume.

With multiple volumes, the allocation process varies slightly for each of the
following:

• The first volume.

• Intermediate volumes.

• The last volume.

The following table describes the multi-volume allocation process:

Primary
Allocation

The primary allocation is applied to the first volume only. It can
consist of the number of extents allowed by MVS for a primary
allocation.

Note: A data source with no secondary space allocation is
limited to a single volume.

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 3 of 12

Secondary
Allocation

1.First volume:

As many extents as are available, up to the 16-extent limit,
are allocated and filled before continuing to the second
volume.

2.Intermediate volume:

Depending on the space available, up to 16 extents are
filled before allocation begins on the next volume.

3.Last volume:

Once the need for a number of extents greater than the
limit is detected:

• For a FOCUS or Fusion database, processing
terminates with the following message
(FOC198) FATAL ERROR IN DATABASE I/O. FOCUS
TERMINATING CODE 00000070

• For temporary FOCSORT files, after all volumes and
extents are filled allocation spills to up to 15 additional
temporary files, each with 16 extents. (This feature,
NF536, Multi-Image FOCSORT, was added in
FOCUS 7.0.6.) The SPACE allocation for each spill file
is the same as the SPACE allocation for the original
FOCSORT file.

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 4 of 12

Syntax How to Allocate a Multi-volume Data Source in the MVS Batch
Environment

You have two choices for statically allocating a new multi-volume FOCUS
database, Fusion database, or sequential file.

You can list multiple VOLSER identifiers on the DD card for the multi-volume
data source:
//ddname DD DSN=dsname,VOL=SER=(vol1,…,voln),…

Alternatively, you can ask for multiple units of a specific type:
//ddname DD DSN=dsname,UNIT=(type,n),…

For example:
//FOCSORT DD SPACE=(TRK,(5,5))

This allocates a total of 5 + (5*15) = 80 tracks. When
the 81st track is needed, another temporary data set is
allocated with the parameter SPACE=(TRK,(5,5)). If
necessary, this additional step is repeated a total of 15
times yielding a total of 80*16 tracks for FOCSORT.

If enough space is not available after filling all of the
extents of all of the spill files, the FOC198 message is
issued and processing terminates.

Note: The number of extents actually obtained on any volume
may be less than 16; however, in most situations 16 will be
available and used.

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 5 of 12

where:
ddname

Is the DDNAME associated with the multi-volume data source.
dsname

Is the data set name of the multi-volume data source.
vol1,…,voln

Are the volume identifiers for the each of the volumes to use.
type

Is the type of unit to use.
n

Is the number of units.

Allocating a Multi-volume Data Source in the TSO and MSO
Environments

In both TSO and MSO you have two choices for dynamically allocating a multi-
volume data source:

• You can list multiple volume identifiers.

• You can specify the number of units to use and let the system choose the
specific volumes. All of the units will be the same type (for example, 3390).

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 6 of 12

Syntax How to Allocate Specific Volumes in the TSO and MSO
Environments

To allocate specific volumes for a multi-volume data source, use the following
syntax:

• In TSO
TSO ALLOC ... VOLUME(’vol1,...,voln’)...

• In MVS FOCUS or MSO
DYNAM ALLOC ... VOL vol1,...,voln ...

where:
vol1,...,voln

Are the volume identifiers for the each of the volumes to use.

Syntax How to Specify the Number of Units in the TSO and MSO
Environments

To specify the number of volumes for a multi-volume data source and let the
system choose the specific volumes, use the following syntax:

• In TSO
TSO ALLOC ... UCOUNT(’n’) UNIT(’type’) ...

• In MVS FOCUS or MSO
DYNAM ALLOC ... UCOUNT n UNIT type ...

where:
n

Is the number of volumes to use.

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 7 of 12

type

Is the type of unit to use.

Note:

• UNIT VIO is not supported.

• The RLSE option of the SPACE parameter is not supported.

• The DYNAM UCOUNT parameter is also discussed in NF670, DYNAM
Support for Unit Count.

Example Allocating a Data Source to Two Volumes

The following DYNAM command allocates two volumes to a data source called
MULTVOL:
DYNAM ALLOC FI MULTVOL DS USER1.FOCTST.MULTVOL TRACK SPACE 4 4 REU -
 UCOUNT 2 UNIT SYSDA CATALOG

With this allocation, a second volume will be used when the 17th extent is
needed.

Syntax How to Display the Volume Identifiers Allocated to a Multi-
volume Data Source

To see the data set information associated with a specific DDNAME, issue the
following command
? TSO DDNAME ddname

where:
ddname

Is the DDNAME allocated to the data set whose volume identifiers you want
to see.

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 8 of 12

Example Displaying Multi-volume Data Set Information

The following example shows how to display data set information for DDNAME
MULTVOL:
? tso ddname multvol

The following information is returned. Notice that two volume serial identifiers
are listed on the VOLSER line:
 DDNAME = MULTVOL
 DSNAME = USER1.FOCTST.MULTVOL
 DISP = NEW
 DEVICE = DISK
 VOLSER = MFOC02,MFOC01
 DSORG = PS
 RECFM = F
 SECONDARY = 4
 ALLOCATION = TRACKS
 BLKSIZE = 4096
 LRECL = 4096
 TRKTOT = 92
 EXTENTSUSED = 23
 BLKSPERTRK = 12
 TRKSPERCYL = 15
 CYLSPERDISK = 2227
 BLKSWRITTEN = 1104
 FOCUSPAGES = 1059
 > >

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 9 of 12

Choosing Default Sizes for FOCUS-created Files
IBITABLA, the file that contains default allocations for FOCUS-created files, has
been enhanced to allow a unit count for FOCUS databases, Fusion databases,
and all sequential FOCUS-created files. The advantages of multi-volume
allocations are described in Advantages of Multi-volume Data Sources.

Every FOCUS release is shipped with a member of the FOCCTL.DATA PDS
named IBITABLA. This member contains default allocations for all FOCUS-
created files that you do not specifically allocate in your FOCUS session, JCL,
or CLIST. As part of the installation process, the FOCUS installer should copy
the new version of IBITABLA to the ERRORS PDS and edit it to conform to the
standards for the site.

When a new release of FOCUS is shipped, the installer should compare the
latest version of IBITABLA to the prior site-specific version in order to construct
a new site-specific version of IBITABLA. In this way, the installer will be aware
of changes in format (such as new fields or ddnames added in the new release)
that must be addressed in the customized copy.

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 10 of 12

The following is the default IBITABLA shipped with FOCUS Version 7.0
Release 9:
*...+....1....+....2....+....3....+....4....+
HOLD CYLS 5 10 3,
HOLDMAST TRKS 5 5 36 ,
SAVE CYLS 5 10 3,
REBUILD CYLS 5 10 3,
FOCSML CYLS 5 5 2,
FOCUS CYLS 5 5 1,
FOCSTACK TRKS 5 5 2,
FOCSORT CYLS 5 5 1,
OFFLINE CYLS A ,
SESSION TRKS 5 5 2,
FOCCOMP TRKS 5 5 12 ,
HOLDACC TRKS 5 5 12 ,
FMU TRKS 5 5 12 ,
TRF TRKS 5 5 12 ,
FOCPOOLT CYLS 5 20 NOHIPER 4,
FUSION CYLS 5 50 NOHIPER 4,
MDI CYLS 5 20 NOHIPER 4,
FOC$HOLD CYLS 5 5 2,
EXTINDEX CYLS 5 5 2,

The unit count field is columns 44-45. The fields are:

Columns Length Comments

01-08 8 Class of file - DDname

10-13 4 Allocation units (CYLS, TRKS)

15-17 3 Primary allocation

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 11 of 12

Note that partitioned data sets do not support multi-volume allocations.

If you enter a non-valid value for any field in IBITABLA, FOCUS substitutes the
corresponding value from the original version of IBITABLA that was shipped
with FOCUS.

Columns Length Comments

19-21 3 Secondary allocation

23-24 2 Number of directory blocks (blank specifies a
sequential file; 0 is invalid)

26-26 1 SYSOUT class

28-33 6 Volume serial on which to allocate

35-42 8 Type of unit to allocate (for example, 3390, DASD,
NOHIPER*)

44-45 2 Unit count

NF660: Multi-volume Support in MVS FOCUS

Version 7.0 Release 9 Page 12 of 12

Example Allocating DDNAME FOCSTACK to Two Volumes in
IBITABLA

Assume you replaced the original FOCSTACK line with the following in
IBITABLA:
|...+....1....+....2....+....3....+....4....+

FOCSTACK TRKS 5 5 3390 2,

This line indicates the following allocation attributes:

• DDname = FOCSTACK

• Allocation is in tracks:

Primary tracks=5

Secondary tracks=5

• Type of unit = 3390

• Number of units=2

The resulting dynamic allocation is equivalent to the following JCL:
//FOCSTACK DD SPACE=(TRK,(5,5)),UNIT=(3390,2),...

Reference Usage Notes for IBITABLA

• IBITABLA is a fixed-format file.

• Each data field must be placed in specific columns, but leading or trailing
blanks are allowed. (There is at least one blank between successive data
fields.)

• All lines beginning with an asterisk (*) are comments.

• Unit count is ignored for HiperFOCUS files with DISP=(NEW,DELETE).

Version 7.0 Release 9 Page 1 of 2

NF584: Dynamically Setting the IDMS DBNAME and
DICTNAME

The new IDMS Interface commands SET DBNAME and SET DICTNAME
enable you to dynamically change the DBNAME and DICTNAME parameters at
any time during your FOCUS session.

If you do not issue these commands, the Interface reads the DBNAME and
DICTNAME from the Access File. However, once you issue them, the new
DBNAME and DICTNAME values take precedence over those in your Access
Files. The new values remain in effect until you either:

• Reissue the SET commands with new DBNAME and DICTNAME values.

• End your FOCUS session.

• Reinstate the Access File parameters by issuing the SET commands with
the DEFAULT option.

Syntax How to Set the DBNAME and DICTNAME

Issue the following commands at the FOCUS session prompt, in a FOCEXEC,
or in any supported profile:
TSO IDMSR SET DBNAME {dbname|DEFAULT}

TSO IDMSR SET DICTNAME {dictname|DEFAULT}

where:
dbname

Is the IDMS database name that you want to access.
dictname

Is the IDMS dictionary name that you want to access.

NF584: Dynamically Setting the IDMS DBNAME and DICTNAME

Version 7.0 Release 9 Page 2 of 2

DEFAULT

Causes the Interface to read the value from the Access File.

Syntax How to Display the Current Settings

To display the settings that are currently in effect, issue the following command:
TSO IDMSR SET ?

Example Dynamically Changing the DBNAME and
DICTNAME Values

TSO IDMSR SET DBNAME EMPDEMO

TSO IDMSR SET DICTNAME APPLDICT

Version 7.0 Release 9 Page 1 of 1

NF673: Model 204 Interface Account Split

The Model 204 Interface has been enhanced to accept an account code as part
of the logon string.

The syntax for specifying the logon account in the Access File is
ACCOUNT=x[y], ACCOUNTPASS=pswd, IFAMCHNL=ifchnl,$

The SET command syntax for specifying the logon account is
{TSO|MVS} M204IN SET ACCTNAME x[y]
{TSO|MVS} M204IN SET ACCTPASS pswd

where:
TSO|MVS

Is a required environmental prefix. TSO and MVS are synonyms and can
be used interchangeably.

x

Is the user ID, up to 16 characters.
y

Is the account code, up to 15 characters, preceded by exactly one blank.
pswd

Is the account password.

Example Setting the Model 204 Userid and Account Code
Assume the Model 204 userid is SUPERKLUGE and the account code is MIS.

You can issue the following Interface command to set these values:
TSO M204IN SET ACCTNAME SUPERKLUGE MIS

You can also set them in the Access File with the following attribute:
ACCOUNT=SUPERKLUGE MIS, ...

Version 7.0 Release 9 Page 1 of 4

NF720: SQLJOIN OUTER Setting for Relational
Interfaces

With the new SQLJOIN OUTER setting you can control when the relational
Interfaces optimize outer joins without affecting the optimization of other
operations. This parameter provides backward compatibility with prior releases
of the relational Interfaces and enables you to fine-tune your applications.

When join optimization is in effect, the Interface generates one SQL SELECT
statement that includes every table involved in the join. The RDBMS can then
process the join. When join optimization is disabled, the Interface generates a
separate SQL SELECT statement for each table, and FOCUS processes the
join.

In FOCUS Version 7.0 Release 6, the relational Interfaces were enhanced to
optimize outer joins. The following command causes the Interface to generate
an outer join:
SET ALL = ON

Beginning with FOCUS Version 7.0 Release 6, issuing this command with
OPTIMIZATION enabled invokes outer join optimization. In FOCUS releases
prior to 7.0.6, this setting disabled optimization so that FOCUS always
processed the outer join. Turning OPTIMIZATION OFF still causes FOCUS to
process the join, but it disables all optimization enhancements, not just outer
join processing.

Starting with FOCUS Version 7.0 Release 9, you can use the SQLJOIN
OUTER setting to disable outer join optimization while leaving other
optimization enhancements in effect.

NF720: SQLJOIN OUTER Setting for Relational Interfaces

Version 7.0 Release 9 Page 2 of 4

Syntax How to Control Outer Join Optimization

Issue the following command at the FOCUS prompt, in a stored procedure, or
in any supported profile:
SQL target_db SET SQLJOIN OUTER {ON|OFF}

where:
target_db

Indicates the target RDBMS. Valid values are DB2, SQLDS, SQLDBC,
SQLORA, or SQLIDMS. Omit if you issued the SET SQLENGINE
command.

ON

Enables outer join optimization.
OFF

Disables outer join optimization. OFF is the default value.

Note:

• The SQLJOIN OUTER setting is available only when optimization is
enabled (that is, OPTIMIZATION is not set to OFF).

• The SQLJOIN OUTER setting is ignored when SET ALL = OFF.

NF720: SQLJOIN OUTER Setting for Relational Interfaces

Version 7.0 Release 9 Page 3 of 4

Effects of Combinations of Settings on Outer Join
Optimization

The following table describes how different combinations of OPTIMIZATION
and SQLJOIN OUTER settings affect Interface behavior. It assumes that SET
ALL = ON:

Settings Results

OPTIMIZATION SQLJOIN
OUTER

Outer Join
Optimized?

Other
Optimization
Features

ON ON Yes Enabled

ON OFF No Enabled

OFF N/A No Disabled

SQL ON Yes, in all possible
cases

Enabled

SQL OFF No Enabled

FOCUS ON Yes if results are
equivalent to
FOCUS managed
request

Enabled

FOCUS OFF No Enabled

NF720: SQLJOIN OUTER Setting for Relational Interfaces

Version 7.0 Release 9 Page 4 of 4

Reference SQLJOIN OUTER Messages

If SQLJOIN OUTER is set to OFF, the following message displays when you
issue the SQL ? query command:
(FOC1420) OPTIMIZATION OF ALL=ON AS LEFT JOIN - : OFF

Version 7.0 Release 9 Page 1 of 1

NF652: Teradata Interface Kanji Support

The Teradata Interface now supports the DBCS (Double Byte Character Set)
Kanji characters described by the Teradata datatypes GRAPHIC and
VARGRAPHIC.

The following conversion chart shows the SQL datatypes that support the Kanji
character set and their corresponding ACTUAL formats in the Master File:

SQL Datatype ACTUAL
Format

Description

GRAPHIC Kn DBCS Kanji character set. Fixed-length
string of ’n’ 16-bit characters where 0 < n ≤
127. The appropriate corresponding USAGE
format is A(2n+2).

VARGRAPHIC Kn DBCS Kanji character set. Varying-length
string of ’n’ 16-bit characters where 0 < n ≤
127. The appropriate corresponding USAGE
format is A(2n+2).

Note: LONG VARGRAPHIC (or
VARGRAPHIC (n) where n>127) is not
supported.

Version 7.0 Release 9 Page 1 of 2

NF722: FOCUS Client DNS Names Support

This feature enables the FOCUS Client EDACFG file to identify an EDA server
by host name rather than IP address. The EDACFG file is the client
communications configuration file allocated to DDNAME EDACFG. In prior
versions of FOCUS Client, the EDACFG file had to supply the IP address of the
EDA server to which it would connect.

The domain name system (DNS) is a global network of servers that translate
host names, such as www.ibi.com, into IP addresses. For more information
about FOCUS Client, see NF494, FOCUS Client - Remote Data Access via
EDA/SQL, which was implemented in FOCUS 7.0.5.

Syntax How to Invoke DNS Names Support

The syntax for specifying a host name in the client configuration file for TCP/IP
is
HOST = hostname

where:
hostname

Is the host name of the EDA server.

NF722: FOCUS Client DNS Names Support

Version 7.0 Release 9 Page 2 of 2

Example Using DNS Names Support

The following client configuration file is used for connecting to the host named
IBIMVS:
NAME = EDA/SQL CLIENT USING CS/3 TCP/IP
NODE = TCPOUT
 BEGIN
 ; TRACE = 31
 PROTOCOL = TCP
 CLASS = CLIENT
 HOST = IBIMVS ; DNS NAME OF HOST
 SERVICE = 2459 ; PORT NUMBER OF THE EDA SERVER
 END

Version 7.0 Release 9 Page 1 of 2

NF656: Controlling REBUILD Messages

This feature allows for direct control over the frequency with which REBUILD
issues messages. FOCUS, by default, displays a message for every 1000
records read during the database retrieval and load phases of the REBUILD
utility. The message, REFERENCE..AT SEGMENT 1000, REFERENCE..AT
SEGMENT 2000.. is a function of the number of records in the FOCUS file
being rebuilt. The frequency of these messages can become problematic for
larger FOCUS files because CMS spool space may be limited.

Syntax How to Control REBUILD Messages

The user can set how often the message is displayed by issuing the command:
SET REBUILDMSG = n

where:
n

 is any 8-byte integer.

A setting of less than 1000 generates a diagnostic and keeps the current
setting. The current setting will either be the default of 1000, or the last valid
integer greater than 999 to which REBUILDMSG was set. A setting of 0
disables the ‘REFERENCE..AT SEGMENT’ messages.

NF656: Controlling REBUILD Messages

Version 7.0 Release 9 Page 2 of 2

Example Controlling Display of REBUILD Messages

The following example shows a REBUILD CHECK function where
REBUILDMSG has been set to 4000, and the database contains 19,753
records.
ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

...

STARTING..

REFERENCE..AT SEGMENT 4000

REFERENCE..AT SEGMENT 8000

REFERENCE..AT SEGMENT 12000

REFERENCE..AT SEGMENT 16000

NUMBER OF SEGMENTS RETRIEVED= 19753

CHECK COMPLETED...

Version 7.0 Release 9 Page 1 of 2

NF670: DYNAM Support for Unit Count

The DYNAM command now supports the unit count parameter for allocating
multi-volume data sources. With the UCOUNT parameter you can allocate a file
to multiple volumes of a particular type of storage device without indicating
specific volume serial numbers.

Advantages of Multi-volume Data Sources
Many sites prefer to distribute high volume data sources across multiple
volumes in order to manage:

• Use of storage on specific devices or device types.

• Run-time access to these devices.

This new DYNAM parameter is particularly useful for allocating large temporary
files such as FOCSORT, FOCPOOLT, and HOLD files in the TSO and MSO
environments.

Syntax How to Specify the DYNAM Unit Count Parameter
DYNAM ALLOC ... UCOUNT n UNIT type ...

where:
n

Is the number of volumes to use.
type

Is the type of unit to use. Note: UNIT VIO is not supported.

NF670: DYNAM Support for Unit Count

Version 7.0 Release 9 Page 2 of 2

Example Allocating a HOLD File to Two Volumes

The following DYNAM command allocates two 3390s to a HOLD file:
DYNAM ALLOC FILE HOLD SPACE 20,10 TRACKS UCOUNT 2 UNIT 3390

Version 7.0 Release 9 Page 1 of 5

NF684: PCHOLD for Non-Html Files

Web Interface support of PCHOLD enables Web browser users to extract five
types of preformatted data from the mainframe and either display the output
immediately on their browsers or automatically transfer the files via FTP to their
PCs.

Using PCHOLD for Formats LOTUS, DIF, EXCEL, or PDF
When you issue the PCHOLD command for files with LOTUS, DIF, EXCEL, or
PDF formats, the Web Interface returns a notification window telling you that
the file is being downloaded. You can then rename the file on the PC using the
correct extension from the table below. Word processing files (Format=WP) are
always displayed first on the browser and can then be saved to the PC.

Syntax Specifying PCHOLD in a TABLE Request
ON TABLE PCHOLD FORMAT fmt

where:

NF684: PCHOLD for Non-Html Files

Version 7.0 Release 9 Page 2 of 5

fmt

Specifies the format of the PCHOLD extract file. When downloading these
files to the PC you must use the appropriate extensions from the following
table:

Syntax Specifying PCHOLD for a WP File in a TABLE Request
ON TABLE PCHOLD FORMAT WP

WP-formatted files are displayed immediately on the browser and can be saved
to the PC. When the file appears, select the Save As option, providing a file
name with an appropriate file extension for your word processor (for example,
extension for MS Word = .doc).
SAVE AS myfile.doc

File Format Content Extension

LOTUS Lotus PRN files .prn

DIF Spreadsheets without
headings

.dif

EXCEL Excel spreadsheets
with headings

.xls

PDF ADOBE Portable
Document Format
(PDF) files

.pdf

WP Word processing files .txt or .doc

NF684: PCHOLD for Non-Html Files

Version 7.0 Release 9 Page 3 of 5

Example Using PCHOLD for Non-Html Files

The request below creates a spreadsheet without headings (format=DIF)
displayed on the screen that follows:
table file car
print compute salesl/i9 = sales;
profit/d10.2 = retail_cost - dealer_cost;
adate/yymd = ’1999/04/29’;
by model
ON TABLE PCHOLD FORMAT DIF
end

NF684: PCHOLD for Non-Html Files

Version 7.0 Release 9 Page 4 of 5

Reference Notes for Internet Explorer Users

• LOTUS or DIF. When using Internet Explorer to view consecutive LOTUS
or DIF reports online you must take special precautions to insure getting
latest version of temporary files.

NF684: PCHOLD for Non-Html Files

Version 7.0 Release 9 Page 5 of 5

This step must be taken to avoid a potential problem caused by the use of
the same filename when running consecutive reports for immediate viewing
(as opposed to saving the output in uniquely named files). Spreadsheet
users planning to view multiple consecutive reports online must configure
the Internet Explorer browser in the following manner:

• Internet Explorer Release 5 - Under Tools/Internet Options/Temporary
Internet Files, select Check for newer versions automatically.

• Internet Explorer Release 4 - Under View options/General/Temporary
Internet Files, select Check every time.

This step is not required with Netscape Navigator, which checks temporary
Internet files for newer versions every time as the default. Users of other
browsers must check their browser’s handling of this situation and act
accordingly.

• Excel. When using Internet Explorer to view Excel output you must use the
binary MIME type for the file transfer (all other file types are transferred as
text).

Version 7.0 Release 9 Page 1 of 3

NF683: Web Interface Support for Maintain Winforms

This feature enables mainframe FOCUS sites to deploy applications created
with the Cactus Workbench to intranet or Internet audiences without installing
an EDA or Cactus server on the host machine.

Existing applications can be “webified” by using the Cactus Workbench to
convert Maintain Winforms into Webforms. The Focexecs (.fex files) and
Winforms (.wfm files) must then be transmitted manually to the mainframe
using FTP (alphanumeric mode):

• For MVS, transfer the FOCEXEC files to a data set allocated to ddname
FOCEXEC and the Winform files to a data set allocated to ddname
WINFORMS in your FOCUS CLIST.

• For CMS, transfer the files to your A disk. The FOCEXEC files have filetype
FOCEXEC and the Winform files have filetype WINFORMS.

Once these are installed, end users running the Web Interface from a Web
browser can execute these applications and access data defined to mainframe
FOCUS.

Prerequisites
Web390 Server Release 3.2 is required to use this feature and end-users will
need to install at least Release 4 of Netscape Navigator, Microsoft Internet
Explorer, or an equivalently featured browser.

Procedure How to Execute Maintain Applications From a
 Browser

There are two ways to execute Maintain applications from the browser window:

NF683: Web Interface support for Maintain Winforms

Version 7.0 Release 9 Page 2 of 3

1. Use Logon scripts (Web390 Developer’s Guide and Installation Manual
DN1001035.0599 provides instructions for creating Logon scripts).

Logon scripts can bring browser users directly into the Webform equivalent
of a Maintain Winform after they enter the appropriate userid and
password. Thereafter, they can work interactively with the applications on
their browsers.

2. Users can execute applications directly from the Web Interface Interactive
screen
EX FOCEXECname

where:
FOCEXECname

Is the name of the target Maintain application.

Example Running a Maintain Application From a Browser

This webified Maintain application issues a simple car-by-country report
request, formatting the output on the Webform below:

NF683: Web Interface support for Maintain Winforms

Version 7.0 Release 9 Page 3 of 3

EX CMNTX05W

Version 7.0 Release 9 Page 1 of 3

NF691: Escape Character for LIKE Predicate

New syntax exists for the LIKE predicate that enables you to search for special
characters in data. You can set an escape character to use in the LIKE
predicate. Then, when you include this escape character in front of a special
character in the mask pattern, the parser treats the special character as a
normal character and searches for it in the data. This next character can be ‘%’
or ‘_’ which are normally special characters. LIKE may be coded in WHERE,
DEFINE, and COMPUTE statements. The mask is an alphanumeric, user-
supplied pattern that FOCUS uses to compare characters in a data field value.
A mask has two special characters:

1. The percent sign (%) to indicate any number of characters; and

2. The underscore (_) to indicate a single character in a specified position.

The escape character enhancement permits FOCUS to treat these masking
characters as literals within the search pattern and not as wildcards.

Any single character can be used as an escape character, but the one used
must be prefaced with the word ESCAPE. The syntax is:
WHERE field LIKE ’phrase’ ESCAPE ’c’

where
’c’

Is any character embedded in the phrase before a ‘%’ or ‘_’.

Escape Character Capabilities
The escape character is supported by the SQL Interfaces, as well as FOCUS
databases. The escape character is only in effect when the ESCAPE syntax is
included in the LIKE predicate.

NF691: Escape Character for LIKE Predicate

Version 7.0 Release 9 Page 2 of 3

Syntax How to Use the Escape Character

The pattern (alphanumeric constant) that follows the LIKE predicate may
contain wildcard characters (‘%’) and (‘_’) that users may need to escape in
order to use as part of the search pattern. Every LIKE predicate can provide its
own escape character to be used within the pattern (or mask). The syntax is as
follows:
WHERE expression LIKE ’abc\%’ ESCAPE ’\’

where
expression

Is the name of the expression to be evaluated in the selection test.
’abc\%’

Is the alphanumeric test value.
’\’

Is the escape character enclosed in single quotation marks. When the
escape character is used in the pattern immediately preceding the special
character ‘%’ or ‘_’, FOCUS is instructed to treat the special character as a
literal and not as a wildcard. The character itself can also be escaped, thus
becoming a normal character in a string (for example, ’abc\%\\’).

Example Using the Escape Character

Using the Car file, assume that both Peugeot and Alfa Romeo produce 4_door
car models. To generate a report showing countries that produce 4_door car
models, the syntax would be as follows:

NF691: Escape Character for LIKE Predicate

Version 7.0 Release 9 Page 3 of 3

TABLE FILE CAR
PRINT CAR MODEL
BY COUNTRY
WHERE MODEL LIKE ’%g_DOOR%’ ESCAPE ’g’
END

The request produces the following report:

PAGE 1

COUNTRY CAR MODEL

------- --- -----

FRANCE PEUGEOT 504 4_DOOR

ITALY ALFA ROMEO 2000 4_DOOR BERLINA

Reference Special Considerations

• The use of an escape character in front of any character other that ‘%’, ‘_’,
and itself will be ignored.

• Only one escape character can be used per LIKE phrase.

• If a WHERE clause is used with lazy ORs, the ESCAPE must be on the first
phrase and will apply to all subsequent phrases in that WHERE clause. For
example:
WHERE field LIKE ’ABCg_’ ESCAPE ’g’ OR ’ABCg%’ OR ’g%ABC’

Reference Error Messages
(FOC36251) SYNTAX ERROR IN LIKE OPERATOR

Alphanumeric mask must follow the LIKE operator. An optional
keyword ESCAPE followed by a single character alphanumeric
constant in apostrophes can be used after the mask.

Version 7.0 Release 9 Page 1 of 6

NF718: DYNAM Support for Existing Relative GDG
Numbers

The DYNAM command now supports allocation of existing iterations of a
Generation Data Group (GDG) using relative index numbers. Existing iterations
are those with index numbers less than or equal to zero.

Note: DYNAM does not support allocation of a new GDG iteration; that is, you
cannot use the relative number +1 in a DYNAM allocation for a GDG.

Using DYNAM With Relative GDG Numbers
The original definition of a GDG assigns it a group name and specifies how
many generations will be maintained. Once the maximum number of
generations has been reached, each new iteration replaces the oldest existing
iteration. The data set name for each iteration is the group name appended with
a qualifier that contains the iteration number.

 For example, the following GDG, named USER1.HOLD.GDG, has three
generations:

Data Set Name Iteration Number Index Number

USER1.HOLD.GDG.G0003V00 3 (Oldest) -2

USER1.HOLD.GDG.G0004V00 4 -1

USER1.HOLD.GDG.G0005V00 5 (Current) 0

NF718: DYNAM Support for Existing Relative GDG Numbers

Version 7.0 Release 9 Page 2 of 6

The current (that is, newest) iteration always has the highest iteration number
and corresponds to index number zero. The next newest corresponds to index
number -1, and so on.

Prior to this new feature, DYNAM could allocate only the current iteration of a
GDG. Now DYNAM supports relative index numbers for allocating any existing
iteration.

Syntax How to Use DYNAM With Relative Index Numbers

Use the following syntax to allocate an existing iteration of a GDG
DYNAM ALLOC FILE ddname DS ’group_name(index)’ SHR REUSE

where:
ddname

Is the name of the Master File for the GDG.
group_name

Is the group name of the GDG.
index

Is the index number for an existing iteration of the GDG. It must be less
than or equal to zero.

NF718: DYNAM Support for Existing Relative GDG Numbers

Version 7.0 Release 9 Page 3 of 6

Example Allocating Existing GDG Iterations Using DYNAM
With Relative Index Numbers

The GDG named USER1.HOLD.GDG discussed in Using DYNAM With
Relative GDG Numbers, is described by Master File GDG1:
FILENAME=GDG1,SUFFIX=FIX
SEGNAME=ORIGIN,SEGTYPE=S1
 FIELDNAME=FLD1,,A10,$
 FIELDNAME=FLD2,,A20,$
 FIELDNAME=FLD3,,A30,$
 FIELDNAME=FLD4,,A10,$

In each iteration, the value stored in FLD1 is the generation number. For
example, USER1.HOLD.GDG.G0004V00 contains the following records:
4444444444444AAA
4444444444444AAA
4444444444444AAA
4444444444444AAA
4444444444444AAA
4444444444444AAA

The following request allocates and prints FLD1 of iteration four (index number
-1)
 > dynam alloc file gdg1 ds ’user1.hold.gdg(-1)’ shr reu
 > > table file gdg1
 > print fld1
 > end

NF718: DYNAM Support for Existing Relative GDG Numbers

Version 7.0 Release 9 Page 4 of 6

 PAGE 1

 FLD1

 4444444444
 4444444444
 4444444444
 4444444444
 4444444444

The following DYNAM command allocates the current iteration of the GDG,
and the TABLE request accesses this latest iteration:
 > dynam free file gdg1
 > > dynam alloc file gdg1 ds ’user1.hold.gdg(0)’ shr reu
 > > table file gdg1
 > print fld1
 > where recordlimit eq 1
 > end

 PAGE 1

 FLD1

 5555555555

Syntax Determining Which GDG Iteration is Allocated

To determine which GDG iteration is allocated, issue the ? TSO DDNAME
query command:
 > > ? tso ddname gdg1

NF718: DYNAM Support for Existing Relative GDG Numbers

Version 7.0 Release 9 Page 5 of 6

 DDNAME = GDG1
 DSNAME = USER1.HOLD.GDG.G0003V00
 DISP = SHR
 DEVICE = DISK
 VOLSER = USERME
 DSORG = PS
 RECFM = FB
 SECONDARY = 5
 ALLOCATION = TRACKS
 BLKSIZE = 8000
 LRECL = 80
 TRKTOT = 1
 EXTENTSUSED = 1
 BLKSPERTRK = 6
 TRKSPERCYL = 15
 CYLSPERDISK = 3340
 BLKSWRITTEN = 1
 > >

The DSNAME, USER1.HOLD.GDG.G0003V00, indicates that the third iteration
is allocated.

Reference Error Messages

The MESSAGE parameter must be set ON in order to receive these messages.

An attempt to allocate a new iteration of a GDG (index number +1) generates
the following error message:
(FOC880) DYNAMIC ALLOCATION ERROR: IKJ56871I DATA SET name

NOT ALLOCATED, RELATIVE GENERATION NUMBER INCOMPATIBLE FOR
SPECIFIED STATUS, #099:0C-0394

NF718: DYNAM Support for Existing Relative GDG Numbers

Version 7.0 Release 9 Page 6 of 6

Allocating an index number that is out of range (too large a negative number),
generates the following message:
(FOC855) UNABLE TO LOCATE DATASET name, #099:04-1708

Version 7.0 Release 9 Page 1 of 3

NF735: Enhancement to ? SET

Two options have been added to the ? SET command. They are ? SET FOR
and ? SET NOT. The FOR option lists the current state of the command
queried, and details where it may be set within FOCUS. The NOT option
produces a list of SET commands not settable in five specific areas.

Syntax Querying a Command
? SET FOR parameter

where:
parameter

Is any SET parameter.

Example Querying the Current State of EXTSORT

Entering
? SET FOR EXTSORT

yields
EXTSORT ON

 SETTABLE FROM COMMAND LINE : YES

 SETTABLE ON TABLE : YES

 SETTABLE FROM SYSTEM-WIDE PROFILE : YES

 SETTABLE FROM HLI PROFILE : YES

 POOL TABLE BOUNDARY : YES

>

NF735: Enhancement to ? SET

Version 7.0 Release 9 Page 2 of 3

The preceding screen shows that EXTSORT is currently set ON and that it is
settable from all five features.

Syntax Determining Which Commands Are Not Settable In Each of the
Five Features

? SET NOT functional_area

where:
functional_area

can be one of the following five areas:

• PROMPT (in a PROMPT command)

• ONTABLE (in a report request)

• FOCPARM (in the FOCPARM profile)

• HLIPROF (in the HLI profile)

• PT (Pooled Tables)

Example Determining Which Commands Are Not Settable In
a Report Request

Entering
? SET NOT ONTABLE

NF735: Enhancement to ? SET

Version 7.0 Release 9 Page 3 of 3

yields:
 NON-SETTABLE ON TABLE PARAMETER SETTINGS

 BINS 64 LANGUAGE AMENGLISH REBUILDMSG 1000

 BLKCALC NEW MAXPOOLMEM 32768 SAVEMATRIX ON

 BYPANELING OFF MDIBINS 8000 TCPIPINT OFF

 CACHE 0 MDIPROGRESS 100000 TEMP DISK A

 COLUMNSCROLL OFF MODE CMS TRMSD 24

 DATEDISPLAY OFF MPRINT NEW TRMSW 80

 DATEFNS ON POOL OFF TRMTYP 1 (3270)

 DEFCENT 19 POOLBATCH OFF WEBHOME OFF

 EUROFILE POOLFEATURE OFF WIDTH 130

 FIELDNAME NEW POOLMEMORY 16384 WINPFKEY OLD

 FOCSTACK SIZE 8 POOLRESERVE 1024 YRTHRESH 0

 HTMLMODE OFF PRINTPLUS OFF

>

The preceding screen shows a list of parameters that are not settable using ON
TABLE.

Version 7.0 Release 9 Page 1 of 1

NF740: Changes to the REBUILD Prompt

With the addition of two new options, MIGRATE and MDINDEX, the REBUILD
prompt no longer fits on one line. After you enter REBUILD at the FOCUS
prompt a numbered list is displayed that allows you to enter either the option
name or its corresponding number.

Syntax The REBUILD Prompt Screen
>REBUILD

Enter option

1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)

4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)

7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

Note: A change was also made to the FILENAME prompt. Instead of
prompting for the name of the FOCUS file, you are now asked for the
FOCUS/FUSION filename. Within the individual options a similar numbered
list is also displayed if applicable. REBUILD commands are stackable in name
or number format.

Version 7.0 Release 9 Page 1 of 1

NF745: ? PTF Enhancements

Two columns have been added to the output displayed in response to ? PTF.
They are, SUPERSEDED BY, which displays a superseding PTF if one exists
and PUT LEVEL, which demonstrates the order in which multiple PTFs must
be applied..

Syntax How to Identify PTFs Applied to Your Version of FOCUS

Issue the following command at the FOCUS prompt:
? PTF

A screen similar to the following is displayed:

Note: Dots denote that no information exists for a column entry in the resulting
report.

Version 7.0 Release 9 Page 1 of 2

NF746: Leading Zeros

This feature may be used in Dialogue Manager for date subroutines that return
a numeric integer format. It specifically addresses the case where a two-digit
year is input in a Dialogue Manager string. The result of the subroutine is 00,
representing the year 2000. The leading zeros are truncated when typed out.

Syntax Displaying Leading Zeros
SET LEADZERO = {ON|OFF}

where:
ON

Allows the display of leading zeros if they are present.
OFF

Truncates leading zeros if they are present.

Example Preserving Leading Zeros

In the following example the AYM subroutine is being called. The input year is
99 and the month is 12.
-SET &IN = ’9912’;

-SET &OUT = AYM (&IN, 1, ’I4’);

-TYPE &OUT

This yields
1

Adding
SET LEADZERO = ON

NF746: Leading Zeros

Version 7.0 Release 9 Page 2 of 2

before the above example yields
0001

correctly indicating January. 2000.

Note: LEADZERO only supports expressions that make a direct call to a
subroutine. Expressions that have nesting or other mathematical functions
truncate leading zeros. For example,
-SET &OUT = AYM(&IN, 1, ’I4’/100;

Version 7.0 Release 9 Page 1 of 3

NF748: HOLD FORMAT WP With Carriage Control

You can now control whether carriage control characters appear in column 1 of
each page of report output saved with the HOLD FORMAT WP option. When
you choose to include carriage control in a format WP file in MVS, FOCUS
creates the file with RECFM VBA so that each report page prints on a separate
sheet of paper.

Syntax How to Include Carriage Control Characters in a FORMAT WP
Hold File

[ON TABLE] HOLD AS filename FORMAT WP [CC|NOCC]

where:
filename

Is the name of the resulting file.
CC

Includes a carriage control character (1) as the first character of each report
page in the extract file. In MVS, the file is created with RECFM VBA which
causes the operating system to respect the carriage control via page
ejects.

NOCC

Omits carriage control characters from the extract file. The file is created
with RECFM VB.

NF748: HOLD FORMAT WP With Carriage Control

Version 7.0 Release 9 Page 2 of 3

When you do not include either CC or NOCC in the syntax, the value of the
PAGE-NUM (or PAGE) parameter controls whether carriage control characters
are supplied in column 1:

• SET PAGE-NUM=ON (the default) or SET PAGE-NUM=NOPAGE causes
column 1 to be blank (no carriage control). In MVS, the file is created with
RECFM=VB.

• SET PAGE-NUM=OFF, SET PAGE-NUM=TOP, or using the TABPAGENO
option in the heading of the report request supplies carriage control
characters. This is the same as prior behavior. However, starting with this
release, these settings cause the Hold file to be created with RECFM VBA
in MVS.

Reference Directing Output to a Printer

In MVS, you can send the format WP output directly to a printer by allocating
the filename to that printer. You must FREE or CLOSE the file after it is created
and before it is printed. For example:
SET PAGE = ON

 DYNAM ALLOC FILE EMPLOYEE DA PREFIX.EMPLOYEE.FOCUS SHR REU

 DYNAM FREE FILE HOLD1

 DYNAM ALLOC FILE HOLD1 SYSOUT A DEST IBIVM.P29C1 CLOSE REUSE

 TABLE FILE EMPLOYEE

 PRINT EMP_ID

 BY CURR_SAL BY LAST_NAME

 ON TABLE HOLD AS HOLD1 FORMAT WP CC

END

Note: Your SYSOUT allocation must contain your destination printer.

NF748: HOLD FORMAT WP With Carriage Control

Version 7.0 Release 9 Page 3 of 3

In VM/CMS, print the HOLD file using the CC option of the CMS PRINT
command to interpret the first character of each record as a carriage control
character.
PRINT fn ft fm (cc

Reminder: If the HOLD file is created with carriage control, it must be printed
with carriage control.

Reference FORMAT WP Carriage Control and MVS Record
Format Options

The following table summarizes the options for creating a FORMAT WP extract
file:

Carriage
Control Option

PAGE=ON or NOPAGE PAGE=OFF or TOP or
TABPAGENO in heading

Carriage
Control?

MVS
RECFM

Carriage
Control?

MVS
RECFM

CC Yes VBA Yes VBA

NOCC No VB No VB

none No VB Yes VBA

Page 1 of 1

7.0.8R New Features

Year 2000

FOCUS
NF557: REBUILD - Legacy Date Conversion
NF653: Displaying Base Dates in FOCUS Reports
NF659: CHECK FILE HOLD ALL
NF700: New Date Math Functions for the Year 2000
NF703: Displaying Invalid Smart Dates in Reports
NF705: Enhancement to the YRTHRESH Command
NF708: Enhancement to the TODAY Subroutine
NF709: Displaying a Date Variable Without Separators
NF710: Field FORMAT=YYJUL
NF711: Altering Your System Date for Testing Purposes
NF713: MSO Log Changes

General Enhancements
NF714: LE Support

Version 7.0 Release 8R Page 1 of 9

NF557: REBUILD - Legacy Date Conversion

A new option has been added to REBUILD for legacy date conversion. The
option DATE NEW converts legacy dates to smart dates in your FOCUS
databases. The utility uses ‘update-in-place’ technology. It updates your
database and creates a new Master File, yet does not change the structure or
size of the database.

You must backup the database before executing REBUILD with the DATE NEW
option. We recommend that you run the utility against the copy and then
replace the original file with the updated backup.

How the REBUILD Utility Converts Legacy Dates
The utility overwrites the original legacy date field with a smart date. When the
storage size of the legacy date exceeds four bytes (the storage size of a smart
date), a pad field is added to the database following the date field. Formats
A6YMD, A6MDY, and A6DMY are changed to formats YMD, MDY, and DMY,
respectively, and have a two-byte pad field added to the Master File. The
storage size of integer dates (I6YMD, I6MDY, for example) is four bytes, so no
pad field is added. All packed fields and A8 dates add a four-byte pad field.
When a date is a key field (but not the last key for the segment), and it requires
a pad field, the number of keys in the SEGTYPE is increased by one for each
date field that requires padding.

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 2 of 9

The utility only changes legacy dates to smart dates. The FORMAT in the
Master File must be one of the following (Month translation edit options T and
TR may be included in the format):
A8YYMD A8MDYY A8DMYY A6YMD A6MDY A6DMY A6YYM A6MYY A4YM A4MY
I8YYMD I8MDYY I8DMYY I6YMD I6MDY I6DMY I6YYM I6MYY I4YM I4MY
P8YYMD P8MDYY P8DMYY P6YMD P6MDY P6DMY P6YYM P6MYY P4YM P4MY

If you have a field that stores date values but does not have one of these
formats, the utility does not change it. If you have a date with one of these
formats that you do not want changed, temporarily remove the date
components from the FORMAT, run the REBUILD, and then restore the date
format.

Example Using REBUILD With the DATE NEW Option
let clear *
set defcent = 19
set yrthresh = 50
set pass = dohide
use

employee focus f
end
rebuild
ENTER OPTION (REBUILD,REORG,INDEX,EXTERNAL INDEX,CHECK OR TIMESTAMP,DATE
NEW)
date new
ENTER THE NAME OF THE MASTER
employee
ENTER THE NEW NAME FOR THE MASTER (FN FT FM)
newemp master a
HAVE YOU BACKED UP THE DATABASE? (YES,NO)
yes

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 3 of 9

If you answer anything other than YES to ‘HAVE YOU BACKED UP THE
DATABASE’, the REBUILD does not continue. Backing up your database is
critical to this process.

In CMS, the new Master File is written to the file that you specified in the
prompt. The default filetype is MASTER, and the default filemode is A.

In MVS, the new Master File is written to ddname HOLDMAST. After the new
Master File is created, you should immediately copy it to a permanent dataset.

For example:
DYNAM COPYDD HOLDMAST(newname) MASTER(newname)

Notes:

• The DBA password for the file must be issued prior to issuing REBUILD.

• The original Master File cannot be encrypted.

• All files must be available locally during the REBUILD, including
LOCATION files.

• The Master File cannot have GROUP fields.

• Some error numbers are available in &FOCERRNUM while all error
numbers are available in &&FOCREBUILD. Test both &&FOCREBUILD
and &FOCERRNUM for errors when writing procedures to rebuild your
files.

• To avoid any potential problems, clear all LETs and JOINs before issuing
REBUILD.

• DEFCENT/YRTHRESH are respected at the global, file, and field level.

• Correct all invalid date values in the database before executing
REBUILD/DATE NEW. The utility converts all invalid dates to zero. Invalid
dates used as keys may lead to duplicate keys in the database.

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 4 of 9

• Adequate workspace, such as temporary attached disk storage, must be
available for the temporary REBUILD file. As a rule of thumb, have space
10 to 20% larger than the size of the existing file available.

• REBUILD/INDEX is performed automatically if an index exists.

• REBUILD/REBUILD is performed automatically after REBUILD/DATE NEW
when any key is a date.

• Sort libraries and workspace must be available (as with REBUILD/INDEX).
The REBUILD allocates default sortwork space in MVS, if you have not
already. DDNAMEs SORTIN and SORTOUT must be allocated prior to
issuing a REBUILD:

 DYNAM ALLOC FILE SORTIN SPACE 5,5 TRACKS NEW
 DYNAM ALLOC FILE SORTOUT SPACE 5,5 TRACKS NEW
 DYNAM ALLOC FILE SYSOUT DA * MOD

Restrictions

REBUILD DATE NEW is a remediation tool for your FOCUS databases and
date fields only. It does not remediate:

• DEFINEs in the Master File

• ACCEPTS in the Master File

• DBA restrictions (especially VALUE restrictions) in the Master File or
DBAFILE

• Cross-references to other date fields in this or other Master Files.

• Any references to date fields in your application (FOCEXECs, Master
Files).

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 5 of 9

Updated Master File Created by REBUILD/DATE NEW
The REBUILD/DATE NEW utility creates an updated Master File that reflects
the changes made to the database. Once the file has been rebuilt, the original
Master File can no longer be used against the database. You must use the new
Master File created by the REBUILD/DATE NEW utility.

For example:
USE
EMPLOYEE {FOCUS F} AS NEWEMP
END
REBUILD
DATE NEW
EMPLOYEE
NEWEMP
YES
-RUN
-IF (&&FOCREBUILD NE 0)OR(&FOCERRNUM NE 0) GOTO error_case;
USE
EMPLOYEE {FOCUS F} AS NEWEMP
END
TABLE FILE NEWEMP
PRINT
END

The new Master File is an updated copy of the original Master File except:

• The USAGE format for legacy date fields is updated to remove the format
and length. The date edit options are retained. For example A6YMDTR
becomes YMDTR.

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 6 of 9

• Padding fields are added for those dates that need them:
FIELDNAME= ,ALIAS= ,FORMAT=An,$ PAD FIELD ADDED BY REBUILD

where n is the padding length (either 2 or 4). Note that the FIELDNAME and
ALIAS are blank.

• The SEGTYPE attribute is updated for segments that have remediated
dates as keys when the date requires padding and the date is not the last
field in the key. The SEGTYPE number will be increased by the number of
pad fields added to the key.

• If the SEGTYPE is missing for any segment, the following line is added
immediately prior to the $ terminator for that segment:

 SEGTYPE=segtype,$ OMITTED SEGTYPE ADDED BY REBUILD

where segtype is determined by FOCUS.

• If the USAGE for any field, including date fields is missing, the following line
is added, immediately prior to the $ terminator for that field:

 USAGE=fmt,$ OMITTED USAGE ADDED BY REBUILD

where fmt is the format of the previous field in the Master File. FOCUS
automatically assigns the previous field’s format to any field coded without an
explicit USAGE= statement.

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 7 of 9

Example Sample Master File: Before and After Conversion

In the conversion of the Master File:

• The SEGTYPE changes from an S2 to S3 to incorporate a 2-byte pad field.

• Format A6YMD changes to smart date format YMD.

• A 2-byte pad field with a blank fieldname and alias is added to the Master
File.

• Format I6MDY changes to smart date format MDY (no pad needed).

• Format A8YYMD changes to smart date format YYMD.

• A 4-byte pad field with a blank fieldname and alias is added to the Master
File.

Before Conversion After Conversion

FILE=filename FILE=newfilename

SEGNAME=segname,
SEGTYPE=S2

SEGNAME=segname, SEGTYPE=S3

FIELD=KEY1,,USAGE=A6YMD,$ FIELD=KEY1,,USAGE= YMD,$

FIELD=, ,USAGE=A2,$ PAD FIELD ADDED BY
REBUILD

FIELD=KEY2,,USAGE=I6MDY,$ FIELD=KEY2,,USAGE= MDY,$

FIELD=FIELD3,,USAGE=A8YYMD
,$

FIELD=FIELD3,,USAGE= YYMD,$

FIELD=, ,USAGE=A4,$ PAD FIELD ADDED BY
REBUILD

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 8 of 9

Action Taken on a Date Field During REBUILD/DATE
NEW
A new message has been added after a REBUILD has been performed:

NUMBER OF SEGMENTS CHANGED= n

where:

n is the number of segments that have been changed. For example, if there
are 10 fields on one segment, and 20 records, then n is 20 (the number of
records/segments changed).

REBUILD/DATE NEW performs a REBUILD/REBUILD or REBUILD/INDEX
automatically when a date field is a key or a date field is indexed. The following
chart shows the action taken on a date field during the REBUILD/DATE NEW
process.

Date is
a Key

Index Result

No None NUMBER OF SEGMENTS CHANGED = n

No Yes REBUILD/INDEX on date field

Yes None REBUILD/REBUILD is performed.

Yes On Any
field

REBUILD/REBUILD is performed.
REBUILD/INDEX is performed for the indexed
fields.

NF557: REBUILD - Legacy Date Conversion

Version 7.0 Release 8R Page 9 of 9

REBUILD/DATE NEW Error Messages
40001 - THIS UTILITY IS NOT SUPPORTED ON THIS PLATFORM
40002 - FILE NOT BACKED UP - REBUILD NOT EXECUTED
40003 - THERE ARE NO DATE FIELDS IN THE FILE - REBUILD NOT EXECUTED
40004 - FILE CONTAINS GROUP FIELDS - REBUILD NOT EXECUTED
40005 - COMBINE FILE CANNOT BE REBUILT
40006 - INTERNAL ERROR IN REBUILD/DATE NEW
40007 - NEW MASTER NAME MUST BE DIFFERENT THAN THE ORIGINAL

Version 7.0 Release 8R Page 1 of 1

NF653: Displaying Base Dates in FOCUS Reports

You can now display base dates in a FOCUS report. Previously, TABLE always
displayed a blank when:

• A date read from a file matched the base date, or

• A field with a smart date format had the value 0

The following chart shows the base date for each supported date format:

Syntax Invoking DATEDISPLAY
SET DATEDISPLAY={ON|OFF}

where:
ON

Displays the base date if the data is the base date value.
OFF

Displays blanks if the data is the base date value. OFF is the default.

You cannot set DATEDISPLAY with the ON TABLE command.

FORMAT Base Date

YMD and YYMD 1900/12/31

YM and YYM 1901/01

YQ and YYQ 1901/Q1

JUL and YYJUL 00/365 and 1900/365
respectively

Version 7.0 Release 8R Page 1 of 2

NF659: CHECK FILE HOLD ALL

CHECK FILE HOLD has been enhanced so you can view all of the attributes in
a HOLD file including YRTHRESH and DEFCENT. The HOLD file contains two
new columns with the values of FDEFCENT and FYRTHRESH at the file level
and two new columns with the values of DEFCENT and YRTHRESH at the field
level.

The syntax is:
CHECK FILE filename HOLD ALL

where
filename

Is the name of the file whose Master specifications are to be placed in a
HOLD file

Then issue the following to see the data about the Master:
TABLE FILE HOLD
PRINT *
END

Running this report request displays columns FDEFCENT and FYRTHRESH at
the file level,

NF659: CHECK FILE HOLD ALL

Version 7.0 Release 8R Page 2 of 2

and columns DEFCENT and YRTHRESH at the field level.

The four columns shown in the previous two examples represent a small
portion of the total information displayed by the TABLE FILE HOLD command.

Version 7.0 Release 8R Page 1 of 11

NF700: New Date Math Functions for the Year 2000

Several functions have been added to FOCUS enabling you to perform
operations on day-based new dates in DEFINEs, COMPUTEs and anywhere
else a function can be used.

New Date Function Capabilities
The new date functions can:

• Add or subtract date units (months, years, days, weekdays or business
days) to or from a date

• Yield a difference between dates in date units

• Move a date to a specific point in the calendar, such as End-of-Month

• Convert from one date format to another (including old dates)

These new functions can help you:

• Compute payroll dates

• Track and ship orders

• Ensure correct credit card transactions

Non day-based date calculations (for example, YM, YQ) can be computed in
direct operations (+, -), so they do not need these functions.

Syntax Adding and Subtracting Date Units to or from a Date

You can add or subtract date units to or from a date by issuing the following:
DATEADD (YYMDdate, ’unit’, #units)

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 2 of 11

where
YYMDdate

Is any day-based new date, for example, YYMD, MDY, or JUL
unit

Can be one of the following:

• Y (Year)

• M (Month)

• D (Day)

• WD (Weekday)

• BD (Business Day)
#units

Is the number of date units you wish to add or subtract to or from the day-
based new date

For example,
DATE/YYMD = ’19991231’;

NEWDATE/YYMD = DATEADD (DATE, ’D’, 5);

adds 5 days to yield a value of 2000/01/05

The number of units passed to DATEADD is always a whole unit. For example,
DATEADD (date, ’M’, 1.999)

adds 1 month because the number of units is less than 2. Any fractional part is
ignored. If the number of units is negative, DATEADD performs subtraction
instead of addition.

Invalid date units result in a zero being returned.

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 3 of 11

If the result of adding months creates an invalid day in the new month, the day
is backed off to the end of the resultant month. For example, adding one month
to March 31st cannot yield April 31st. Instead, it correctly yields April 30th. The
same is true for adding one month to January 29th, 30th, or 31st. All three
result in the last day of February (28th, or 29th if a leap year). DATEADD works
with smart dates only.

The following uses DATEADD to determine whether a date is a business day:
SET EMPTYREPORT=ON

DEFINE FILE DATE

 X/YYMD=DATEADD(D1_YYMD,’BD’,0);

END

TABLE FILE DATE

HEADING

" USE DATEADD TO DETERMINE WHETHER A SMARTDATE FIELD IS A BUSINESS "

" DAY. THE DATABASE HAS THE DATE ’1998/06/05’ WHICH IS A FRIDAY "

" STORED IN FIELD D1_YYMD. AN IF TEST IS USED TO DETERMINE IF THE "

" DATE CORRESPONDS TO A BUSINESS DAY. "

 PRINT D1_YYMD X

 IF X EQ ’19980605’

END

TABLE FILE DATE

HEADING

" IT WILL YIELD 0 RECORDS 0 LINES IF THE RESULTING DATE IS NOT A "

" A BUSINESS DAY. THE DATABASE ALSO HAS ’1998/06/06, A SATURDAY. "

 PRINT D1_YYMD X

 IF X EQ ’19980606’

END

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 4 of 11

The preceding FOCEXEC yields the following:
 PAGE 1

 USE DATEADD TO DETERMINE WHETHER A SMARTDATE FIELD IS A BUSINESS

 DAY. THE DATABASE HAS THE DATE ’1998/06/05’ WHICH IS A FRIDAY

 STORED IN FIELD D1_YYMD. AN IF TEST IS USED TO DETERMINE IF THE

 DATE CORRESPONDS TO A BUSINESS DAY.

 D1_YYMD X

 ------- -

 1998/06/05 1998/06/05

 PAGE 1

 IT WILL YIELD 0 RECORDS 0 LINES IF THE RESULTING DATE IS NOT A

 A BUSINESS DAY. THE DATABASE ALSO HAS ’1998/06/06, A SATURDAY.

 D1_YYMD X

 ------- -

Weekday Units

Weekday units (WD), by default, refer to Monday though Friday. One weekday
past a Friday is the following Monday. If the input to DATEADD using WD is a
Saturday or Sunday, the input is adjusted to the next weekday before doing the
addition. For example,
DATEADD (Saturday,’WD’,1)

and
DATEADD (Sunday,’WD’,1)

both yield Tuesday as a result because Saturday and Sunday are not business
days, so DATEADD begins with Monday and adds 1, yielding Tuesday.

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 5 of 11

Business Day Units

You can direct which days are considered business days and which days are
not. Business days are traditionally Monday through Friday, but not every
business works the same schedule. For example, if your company does
business on Sunday, Tuesday, Wednesday, Friday, and Saturday, you can tailor
business day units to reflect that situation. Issue the following positionally
dependent command to set business days:
SET BUSDAYS = {day-list|_MTWTF_}

where
day-list

is the list of days that represents your business week. The list has a
position for each day from Sunday to Saturday.

MTWTF

Represents the positional days of the week from Sunday through Saturday.
The underscores represent Sunday and Saturday respectively. Monday
through Friday with an underscore before and an underscore afterwards is
the default.

Any day that you do not wish to designate as a business day must be replaced
with an underscore (_) in its designated space. If any position within
SMTWTFS is either not in its correct position or is not an underscore, an error
message is displayed. Using the example of a company that does business on
Sunday, Tuesday, Wednesday, Friday and Saturday, business days are
represented as:
S_TW_FS

To view the current setting of business days issue:
? SET ALL or ? SET

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 6 of 11

Holidays

You also have the ability to individually tailor holiday schedules that affect the
calculation of business days by skipping those days when calculating offsets.
For example, in a given week, if Friday is designated as a holiday, the next
business day (BD) after Thursday is the following Monday. In MVS the list of
holidays is loaded from a member in ERRORs called HDAYxxxx. In CMS the
list is loaded from HDAYxxx ERRORS. A sample Master File, (HDAYDB), and
FOCEXEC, (HDAYMAKE), that creates an errors member from a data source
used to maintain a list of holidays is available on the FOCUS disk. Create a flat
file of holidays as described in the FOCEXEC and execute the FOCEXEC to
create the holiday file. The value of xxxx is controlled by the SET HDAY
command so that a single installation can support different holiday schedules.

For example,
SET HDAY = STKM

Reads in the holidays from member HDAYSTKM. Each year for which data
exists must be represented in the holiday file. Calling a date function with a
date value outside the range of the holidays file returns a zero on BD requests.
The current setting of HDAY can be viewed with
? SET ALL or ? SET

Syntax Returning the Difference between Two Dates

You can return the difference between two dates by issuing the following:
DATEDIF (fromYYMD, toYYMD, ’unit’)

where
fromYYMD

Is the starting date from which to calculate the difference

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 7 of 11

toYYMD

Is the ending date from which to calculate the difference
unit

See Adding and Subtracting Date Units to or from a Date for valid units

The number of units returned from DATEDIF is always a whole number. For
example,
DATEDIF (19960302,19970301,’Y’)

DATEDIF calculates to zero because the difference between March 2, 1996
and March 1, 1997 is less than a whole year. If the to-date is before the from-
date, a negative number is returned. For example,
DATEDIF (19990228, 19990128, ’M’)

DATEDIF (19990228, 19990129, ’M’)

DATEDIF (19990228, 19990130, ’M’)

DATEDIF (19990228, 19990131, ’M’)

all return a result of minus 1 month.

Using DATEDIF with month units yields the inverse of DATEADD. If adding one
month to date X creates date Y, then the count of months via DATEDIF between
date X and date Y must be one month. The rule is:

If the to-date is an end-of-month then the month difference may be rounded up
(in absolute terms) to guarantee the inverse rule. For example,
DATEDIF (March31, May31, ’M’) yields 2
DATEDIF (March31, May30, ’M’) yields 1 (because May 30 is not the end of the month)
DATEDIF (March31, April30, ’M’) yields 1

The same rules apply to year math, the only difference being that February 29th
plus 1 year is equal to February 28th.

DATEDIF works with smart dates only.

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 8 of 11

Syntax Moving a Date to a Significant Point

You can move a date to a significant point on the calendar by issuing the
following:
DATEMOV (YYMDdate, ’move-point’)

where
YYMDdate

Is the date you wish to move. May be any new date format as long as it
implies a day component (for example MDYY, DMY, but not YM or MYY).

move-point

Is the significant point to which you wish to move. Permissible move-points
are:

• EOM End of month

• BOM Beginning of month

• EOQ End of quarter

• BOQ Beginning of quarter

• EOY End of year

• BOY Beginning of year

• EOW End of week

• BOW Beginning of week

• NWD Next weekday

• NBD Next business day (Affected by BUSDAY and HDAY files)

• PWD Prior weekday

• PBD Prior business day (Affected by BUSDAY and HDAY files)

• WD- A weekday or earlier

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 9 of 11

• BD- A business day or earlier (Affected by BUSDAY and HDAY
files)

• WD+ A weekday or later

• BD+ A business day or later (Affected by BUSDAY and HDAY files)

DATEMOV works with smart dates only.

The following shows an application using DATEMOV and the report it produces
DEFINE FILE CAR
ANUM/I5 WITH COUNTRY = ANUM +1;
ADATEX/YYMD WITH COUNTRY = 19980507;
ADATE/YMD = ADATEX + ANUM;
NWD/YMDWT = DATEMOV(ADATE,’NWD’);
PWD/YMDWT = DATEMOV(ADATE,’PWD’);
WDP/YMDWT = DATEMOV(ADATE,’WD+’);
WDM/YMDWT = DATEMOV(ADATE,’WD-’);
NBD/YMDWT = DATEMOV(ADATE,’NBD’);
PBD/YMDWT = DATEMOV(ADATE,’PBD’);
WBP/YMDWT = DATEMOV(ADATE,’BD+’);
WBM/YMDWT = DATEMOV(ADATE,’BD-’);
END
SET BUSDAY = _MTWT__
TABLE FILE CAR
HEADING
"EXAMPLES OF DATEMOV"
"BUSINESS DAYS ARE MONDAY, TUESDAY, WEDNESDAY, + THURSDAY "
" "
"START DATE.. ³ MOVE POINTS..........................."
PRINT ADATE/WT AS 'DOW'
NWD/WT PWD/WT WDP/WT AS 'WD+' WDM/WT AS 'WD-'
NBD/WT PBD/WT WBP/WT AS 'BD+' WBM/WT AS 'BD-'
BY ADATE
END

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 10 of 11

yields:
EXAMPLES OF DATEMOV

 BUSINESS DAYS ARE MONDAY, TUESDAY, WEDNESDAY, + THURSDAY

 START DATE.. | MOVE POINTS...........................

 ADATE DOW NWD PWD WD+ WD- NBD PBD BD+ BD-

 ----- --- --- --- --- --- --- --- --- ---

 98/05/08 FRI MON THU FRI FRI TUE WED MON THU

 98/05/09 SAT TUE THU MON FRI TUE WED MON THU

 98/05/10 SUN TUE THU MON FRI TUE WED MON THU

 98/05/11 MON TUE FRI MON MON TUE THU MON MON

 98/05/12 TUE WED MON TUE TUE WED MON TUE TUE

Invalid move-points result in a zero being returned.

Syntax Converting From One Date Format to Another

Applications no longer have to use intermediate calculations to convert date
formats. Instead you can issue the following:
DATECVT (indate, ’infmt’, ’outfmt’)

where
indate

Is the date whose format you wish to change
infmt and outfmt

Can be:

• Any new date format (for example, YYMD, YQ, M, DMY, JUL) that
matches the format of indate. It can also be in the format of the output
value enclosed within single quotes.

NF700: New Date Math Functions for the Year 2000

Version 7.0 Release 8R Page 11 of 11

• Any old date format (such as I6YMD or A8MDYY)

• Non-date formats (such as I8, or A6). Non-date formats on infmt are
treated as offsets from the base date (12/31/1900). Use the DAYMD
function to retrieve the offset of a date.

The format of the field on the left side of the equal sign must match the outfmt
value. For example,
field/DMY = DATECVT (indate, ’YYMD’, ’DMY’);

If the value of indate is 19991231 then the field is set to the offset, which is
311299. Indates with old formats obey any DEFCENT and YRTHRESH values
implied for that field when performing the conversion.

Invalid old dates passed to DATECVT cause a zero to be returned as does a
DEFINE. Invalid formats in DATECVT cause a zero or blank to be returned.

New Date Math Functions in MAINTAIN
MAINTAIN supports the new date functions DATEADD, DATEDIF, and
DATEMOV with an extra parameter: the result field. In MAINTAIN, you can
code:
COMPUTE ADATE/YYMD = ... (some expression)

COMPUTE DUE_DATE/YYMD = DATEADD(ADATE,’BD’,20,DUE_DATE);

COMPUTE NOTICE_DATE/YYMD = DATEMOV(DUE_DATE+1,’EOM’,NOTICE_DATE);

COMPUTE TOTAL_DAY/I4 = DATEDIF(ADATE,NOTICE_DATE,’BD’,TOTAL_DAY);

DATECVT is not supported in MAINTAIN. If you attempt to use DATECVT in
MAINTAIN the following message displays:
FUNCTION NOT FOUND ERROR

Version 7.0 Release 8R Page 1 of 2

NF703: Displaying Invalid Smart Dates in Reports

In previous releases of FOCUS, if a date field in a non-FOCUS file contained an
invalid date, a diagnostic error was displayed and the entire record failed to
display in a report. For example, if a date field contained ‘980450’ with an
ACTUAL of A6 and a USAGE of YMD, the record containing that field would not
display. With the use of a new command, it is possible to display the rest of the
record that contains the incorrect date.

Syntax Invoking ALLOWCVTERR
SET ALLOWCVTERR = {ON|OFF}

where
ON

Allows the display of a field containing an incorrect date.
OFF

Generates an error if bad data is encountered, and does not display the
record containing the bad data. This behavior is identical to releases prior
to FOCUS Release 7.0.8R.

When it encounters a bad date, ALLOWCVTERR sets the value of the field to
either MISSING or to the base date. When a field is being converted and
ALLOWCVTERR is set on, FOCUS first checks to see if MISSING=ON.

NF703: Displaying Invalid Smart Dates in Reports

Version 7.0 Release 8R Page 2 of 2

The following chart shows the results of interaction between DATEDISPLAY
and MISSING assuming ALLOWCVTERR=ON and the presence of a bad date.

DATEDISPLAY only affects how the base date is displayed.

Note: See New Feature Bulletin 653, Displaying Base Dates in FOCUS Reports,
for detailed information concerning the setting of DATEDISPLAY.

MISSING=OFF MISSING=ON

DATEDISPLAY=ON Displays Base Date
19001231 or 1901/1

.

DATEDISPLAY=OFF Displays Blanks .

Version 7.0 Release 8R Page 1 of 2

NF705: Enhancement to the YRTHRESH Command

You can now set YRTHRESH as an offset from the current year in addition to
specifying a year. This technique creates a moving century window that
increments itself each year without modifying your application.

You decide the number of years to offset in YRTHRESH. For example, if the
current year is 1998 and you wish to set YRTHRESH to 60, you can set
YRTHRESH to -38 (1998 - 38 = 60). By setting YRTHRESH to a negative
number FOCUS subtracts, in this example, 38 from whatever the current year
is. In the year 1999 YRTHRESH is 61 instead of 60 (1999 - 38 = 61) illustrating
how the moving window application functions without outside intervention.

If you set YRTHRESH to a large enough value that crosses a century boundary,
the value of DEFCENT is recalculated. For example, if you set YRTHRESH to
minus 99 (1998-99 = -1), DEFCENT is calculated to 18 and YRTHRESH
becomes 99. The 100- year span begins with a pivot year of 1899 and ends
with year 1998. ? SET and ? SET ALL now reflect the new settings of
DEFCENT.

The following request shows the use of an offset with DEFCENT set to 19 and
YRTHRESH set to -38 (where the current year is 1998), followed by the output:
SET DEFCENT=19, YRTHRESH=-38

TABLE FILE DATE

PRINT D2_I6YMD AND COMPUTE

NEWDATE/I8YYMD=AYMD(D2_I6YMD,1,NEWDATE);

END

NF705: Enhancement to the YRTHRESH Command

Version 7.0 Release 8R Page 2 of 2

D2_I6YMD NEWDATE
-------- -------
60/04/02 1960/04/03
66/06/06 1966/06/07
60/12/13 1960/12/14
53/06/06 2053/06/07
59/08/11 2059/08/12
60/02/28 1960/02/29

Version 7.0 Release 8R Page 1 of 2

NF708: Enhancement to the TODAY Subroutine

The TODAY subroutine is year 2000 compatible and is useful in a compiled
MODIFY. It can return a 4-digit year when you declare a DEFINE or COMPUTE
field as 10 bytes. TODAY can continue returning a 2-digit year when you
declare the output format as 8 bytes.

For example,
DEFINE FILE EMPLOYEE
NOWDATE/A10 WITH EMP_ID = TODAY (NOWDATE)
END

TABLE FILE EMPLOYEE
HEADING
"SALARY REPORT RUN ON DATE <NOWDATE>"
" "
PRINT DEPARTMENT CURR_SAL
BY LAST_NAME BY FIRST_NAME
END

The DEFINE may also be coded as
NOWDATE/A10 WITH EMP_ID = TODAY(’A10’);

NF708: Enhancement to the TODAY Subroutine

Version 7.0 Release 8R Page 2 of 2

The request produces the following report:

Note: DATEFNS must be set to ON to retrieve the extended TODAY value.

Version 7.0 Release 8R Page 1 of 2

NF709: Displaying a Date Variable Without Separators

You can now display a date variable containing a 4-digit year without
separators. The variables are &YYMD, &MDYY and &DMYY. These variables
complement the existing 2-digit year variables &YMD, &MDY, and &DMY.

The following example shows a report using &YYMD:
TABLE FILE EMPLOYEE

HEADING

"SALARY REPORT RUN ON DATE &YYMD"

" "

PRINT DEPARTMENT CURR_SAL

BY LAST_NAME BY FIRST_NAME

END

NF709: Displaying a Date Variable Without Separators

Version 7.0 Release 8R Page 2 of 2

The resulting output for May 18, 1998 is:

Version 7.0 Release 8R Page 1 of 2

NF710: Field FORMAT=YYJUL

A new date field formatting option, FORMAT=YYJUL, lets you print a Julian
date in the format YYYY/DDD. The 7-digit format displays the four-digit year
and the number of days counting from January 1. For example, January 3,
2001 in Julian format is 2001003.

FORMAT=JUL is still supported; however, only the last two digits of the year
display (YY/DDD).

Example Displaying a Date in YYJUL Format

The example displays expiration dates in YYJUL format. It also illustrates the
definition of a new date field that converts the Julian date and displays it in
YYMD format.
FILENAME=EXAMPLE, SUFFIX=FOC
SEGNAME=ROOT, SEGTYPE=S1
FIELDNAME=DRIVER_ID, ALIAS=, FORMAT=A9, $
FIELDNAME=EXP_DATE, ALIAS=, FORMAT=YYJUL, $
FIELDNAME=CLASS, ALIAS=, FORMAT=A2, $

DEFINE FILE EXAMPLE
 NEWDATE/YYMD=EXP_DATE;
 END
TABLE FILE EXAMPLE
 PRINT EXP_DATE NEWDATE CLASS
 BY DRIVER_ID
END

NF710: Field FORMAT=YYJUL

Version 7.0 Release 8R Page 2 of 2

DRIVER_ID EXP_DATE NEWDATE CLASS
--------------- --------------- --------------- ----------
123254365 2000/139 2000/05/18 A4
254069503 1999/068 1999/03/09 R4
675678904 2003/253 2003/09/10 W9

Version 7.0 Release 8R Page 1 of 1

NF711: Altering Your System Date for Testing Purposes

TESTDATE is a new SET command that allows you to temporarily alter your
FOCUS system date for a given application program. This allows you to
determine what impact the year 2000 will have on your application programs.

Note: Only use TESTDATE for testing purposes with a test database.

The syntax for TESTDATE is:
SET TESTDATE = {yyyymmdd|TODAY}

where
yyyymmdd

Is an 8-digit date in the format YYYYMMDD.
TODAY

Is today’s date. TODAY is the default.

The value of TESTDATE affects all reserved variables that retrieve the current
date from the system. Setting TESTDATE also affects anywhere in FOCUS
that a date is used (such as CREATE, MODIFY, MAINTAIN) but does not affect
the date referenced directly from the system.

TESTDATE can either be equal to TODAY or a date in the format YYYYMMDD.
If anything else is entered the following message is displayed:
TESTDATE MUST BE YYYYMMDD OR TODAY

Version 7.0 Release 8R Page 1 of 1

NF713: MSO Log Changes

The MSO logs now display dates with four-digit years.

Example Sample MSO Log

Following is a portion of a sample MSOPRINT log. Note that the dates display
with four-digit years:

Version 7.0 Release 8R Page 1 of 5

NF714: LE Support

You can now control use of IBM’s Dynamic Language Environment for IBI-
supplied and user-written subroutines by setting an option in FOCPARM, in a
FOCUS application, or in your FOCUS session.

Syntax How to Control the LE Environment Setting

The syntax for specifying the type of LE support you need is
SET IBMLE = {OFF|ON|ALL}

where:
OFF

Does not initialize the LE environment. OFF is the default value and is the
recommended setting for applications using only IBI-supplied subroutines.

ON

Establishes the LE pre-initialization environment with the IBM default
configuration. This configuration initializes the LE environment for
subroutines coded in COBOL, PL/I, C, and ASMH if the routines are linked
with the LE environment. If the application calls a module not supported
under LE, it runs without LE. For a list of languages supported under LE,
see LE Language Support for User-Written Subroutines.

ON is the recommended setting for applications that call user-written
subroutines linked with the LE environment and not coded in FORTRAN.
ON is also recommended for applications that call a combination of these
subroutines and IBI-supplied subroutines. Running IBI-supplied
subroutines with this setting requires LE version 1.5 or above.

NF714: LE Support

Version 7.0 Release 8R Page 2 of 5

ALL

Should be used only for user-created FORTRAN subroutines that need the
LE environment. Note: This is not supported by IBM. The ALL setting adds
FORTRAN to the list of languages supported for LE pre-initialization. The
FORTRAN run-time libraries must be installed under LE. However,
FORTRAN modules do not run under LE. ALL is the recommended setting
for applications that call user-written subroutines written in FORTRAN if the
FORTRAN run-time libraries were installed under LE. This setting requires
LE version 1.5 and above.

Reference LE Language Support for User-Written Subroutines

FOCUS supports LE access to user-written subroutines coded in the following
LE-supported languages:

• C/MVS™.

• COBOL for MVS & VM (Release 2).

• COBOL/370™ (Release 1).

• VS FORTRAN (Version 2).

• PL/I for MVS & VM.

• ASMH (with macro support).

Recommended IBMLE Settings
LE pre-initialization may be beneficial for application performance when using
3GL user-written subroutines. However, users should be aware that IBM may
modify the LE environment at any time; its use is the responsibility of the user
based on system analysis and resource requirements. IBM provides extensive
documentation regarding LE at the following URL: www1.s390.ibm.com/os390.

NF714: LE Support

Version 7.0 Release 8R Page 3 of 5

Use the guidelines in the following table to determine the appropriate setting for
each FOCUS application. If you need to change the setting in a particular
application or in a FOCUS session, issue the SET IBMLE command prior to
executing the first subroutine call. Results can be unpredictable if you change
the setting between FOCEXECs or subroutine calls.

Determining Proper IBMLE Settings

The following table describes the results of various IBMLE settings on
supported LE subroutines:

The application calls … Setting

At least one FORTRAN module, and the FORTRAN runtime
libraries were installed under LE.

ALL

Modules linked with the LE environment and coded in
languages other than FORTRAN.

ON

Only IBI-supplied subroutines and modules not linked with LE. OFF

Type of
Subroutine

Required
Setting

Effects of Changing the IBMLE Setting

IBI-supplied any setting None, works with any IBMLE setting.

FORTRAN/LE ALL ALL is the only supported setting for
FORTRAN/LE. Requires LE release 1.5 or
above.

NF714: LE Support

Version 7.0 Release 8R Page 4 of 5

Note:

• Non-LE Assembler subroutines require source code changes in order to be
LE compliant.

Type of
Subroutine

Required
Setting

Effects of Changing the IBMLE Setting

COBOL/LE ON or ALL For performance reasons, link-edit the
subroutine as reusable (reus).

If the subroutine must be executed with
IBMLE=OFF, apply the COBOL run-time
option rtereus to the routine.

Without this option, the subroutine returns
invalid data and generates the following
messages:
IGZ0044S There was an attempt to call the
COBOL main program [xxxxxxxx] that was
not in initial state.

The traceback information could not be

determined.

The job does not abend but produces a
CEEDUMP prefaced by:
CEE3DMP[release]: Condition processing
resulted in the unhandled condition.

PL/I - LE ON or ALL If executed with IBMLE=OFF, results in an
0C1 abend.

NF714: LE Support

Version 7.0 Release 8R Page 5 of 5

• Mixed-mode applications calling both LE and non-LE subroutines in the
same FOCEXEC or FOCUS session are not supported and may produce
unpredictable results.

Page 1 of 3

7.0.8 New Features

Year 2000
Project 2000 - Phase III
NF605: Date Handling for the Year 2000 in FOCUS
NF620: Year 2000 Subroutines

Performance Enhancements
NF564: Pooled Tables
NF593: IUCV CMS SU
NF617: Automatic Allocation of FOCUS Files

Raised Limits
NF642: Increased DEFINE Limitation

Reporting Enhancements
NF579: Assigning Screening Conditions to a File for

Reporting Purposes
NF586: Expanding Byte Precision for COUNT and LIST
NF623: Increasing the Number of Verbs in a Report

Request

7.0.8 New Features

Page 2 of 3

General Enhancements
NF607: TABLA Enhancements
NF609: Sink Validation of Userids in CMS
NF630: Querying Which PTFs Have Been Applied for a

Specific Release
NF631: Extended Plists
NF640: Dynamic Language Environment (LE) Support

The Multi-Session Option
NF566: MSO/CICS Cooperative Processing

Web Interface for FOCUS
NF619: -HTMLFORM SAVE
NF626: JAVA Graph Wizard
NF594: JAVA Report Assist
NF628: Automatic Activation of Web Interface for Web

Browser Users
NF645: WEBHOME

Relational Interfaces
NF568: DB2 Interface IF-THEN-ELSE Optimization
NF571: DB2 Interface SET ISOLATION Command

7.0.8 New Features

Page 3 of 3

Model 204 Interface
NF572: Invisible Ordered Character and Ordered

Numeric Data Type Key Support

IMS Interface
NF550: EDA/MSO Console Display for IMS PSB

System 2000 Interface
NF574: System 2000 Interface Trace Facility

Teradata Interface
NF583: Teradata Outer Join Optimization

National Language Support
NF647: Extended Support for Scandinavian External Sort

Version 7.0 Release 8 Page 1 of 2

NF550: EDA/MSO Console Display for IMS PSB

The EDA/MSO Console for the DU (Display Users) screen includes a new
column heading named PSB. This column displays the name of the IMS PSB
scheduled for each TCB that is accessing IMS. IMS PSB names are up to 8
characters in length.

Usage

When an EDA/MSO user subtask is accessing IMS, a PSB is used. By
selecting DU from the Console and scrolling the display to the third screen to
the right, a column named PSB will display the IMS PSB scheduled by a TCB.
This is especially useful when a user subtask is not responding due to a
runaway query. If the operator decides to, he can cancel that particular subtask.

In the case where an IMS error condition is encountered, the PSB column
remains populated; however, an asterisk (*) is placed in the first position as an
indicator of an error condition. This can be useful for debugging purposes
and/or notification of other users attempting to use that particular PSB.

Example Sample Console DU Screen

Below is an example of the CONSOLE DU screen display:
 <PMSLCCM JOB04558----- .CONSOLE DISPLAY USERS PANEL. -----
Line:001(002) Col:153

 COMMAND ===>

 C Logon_ID Runcount MVSDD USER-DD OPN DDs QueryID1 QueryID2 PSB

 REGION

 USER01 ALLPSB

NF550: EDA/MSO Console Display for IMS PSB

Version 7.0 Release 8 Page 2 of 2

In the above example, userid USER01 has scheduled a PSB named ALLPSB.
If an error was encountered, the PSB display for the user would have read:
*LLPSB.

Reference Special Considerations

The PSB name will be populated at the time that the PSB is scheduled by the
user subtask, and is removed after the DBCTL thread connection is
successfully de-allocated. If an IMS error is encountered , the PSB column will
remain populated until another PSB is scheduled. The PSB column is cleared
whenever an END THREAD command is processed, or an OPEN thread is
attempted. This feature requires no action to be activated.

Error Messages

None.

Version 7.0 Release 8 Page 1 of 40

NF564: Pooled Tables

Pooled Tables is a FOCUS performance feature for reporting applications that
enables many reports or extract files to be created from a single pass of a
database. Requests from any database, file, or JOINed structure that FOCUS
reads can be pooled, reducing all of the normal reporting costs including
database I/O, CPU and elapsed time. Performance gains with Pooled Tables
can be dramatic; there is no penalty for its use -- even with applications that do
not take advantage of it.

Pooled Tables is simple to use: by just adding a few lines to your application,
Pooled Tables does the work of identifying reports that can share database I/O
and running them concurrently.

Pooled Tables is ideal for large applications with many reports and batch
reporting applications. Additionally, reports where data retrieval costs are
significant compared to formatting costs benefit greatly from Pooled Tables.

There are several additional efficiencies that users can employ to maximize
performance gains achievable through Pooled Tables.

This document describes how to use Pooled Tables. Refer to the Pooled
Tables White Paper (DN1100978.0498) for additional information describing the
internal logic.

This document covers the following topics:

• Overview - a general overview of Pooled Tables.

• Memory Needs - covers memory requirements for Pooled Tables.

• Report Size Estimates - describes record and line estimates for Pooled
Tables.

NF564: Pooled Tables

Version 7.0 Release 8 Page 2 of 40

• FOCPOOLT - describes a temporary work file Pooled Tables sometimes
creates.

• Reporting Statistics - describes changes to the ? STAT output.

• Sort Selection - describes criteria for sort selection.

• Managing Memory - describes how you can control memory usage.

• Common Selection Criteria - describes efficiencies developers can employ.

• Reporting from Non-Relational databases - provides general information for
using Pooled Tables with Non-Relational databases.

• Reporting from Relational databases - provides general information for
using Pooled Tables with Relational databases.

• Trace Facility - describes the Pooled Tables trace facility.

• Pooled Tables in Batch Mode - provides general information for using
Pooled Tables in batch mode.

• Tuning applications - provides suggestions for using Pooled Tables more
efficiently.

• Syntax - provides syntax reference.

• Pooled Tables Example - illustrates the use of Pooled Tables commands.

• Single TABLE Clusters - describes situations when pooling is not done.

• Subpool Boundary Conditions - describes situations that constitute
boundaries.

• Pooled Tables Installation Instructions

• Usage Notes

• Frequently Asked Questions

• Error Processing

NF564: Pooled Tables

Version 7.0 Release 8 Page 3 of 40

Overview
Pooled Tables should be used whenever two or more consecutive reports are
executed against the same database. It is ideal for use with large batch or
canned FOCUS reporting runs and data-extract applications. The feature is
implemented with only a few simple SET commands. There is no need to
change an application. A sample program that uses Pooled Tables is illustrated
in the section Pooled Tables Example.

A pool begins with the command SET POOL=ON and continues until SET POOL=OFF
is encountered. Within a pool, FOCUS reads ahead in an application searching
for consecutive TABLE requests that access the same file using the same
access method. This read ahead feature extends across FOCEXECs and
divides commands into retrieval and non-retrieval categories called subpools. A
subpool is a collection of TABLE requests and related commands. Only report
requests within a subpool can be combined.

Commands that alter data or the processing environment create subpool
boundaries. For example, in the sequence
TABLE FILE CAR
... END
TABLE FILE CAR
... END
MAINTAIN FILE CAR
... END

TABLE FILE CAR
... END

a subpool boundary occurs at the MAINTAIN command. A list of subpool
boundary commands appears in the section Subpool Boundary Conditions.

NF564: Pooled Tables

Version 7.0 Release 8 Page 4 of 40

Subpools are further divided into clusters. A cluster is a set of consecutive
TABLE requests that share the same logical database and access method. For
example, two TABLE requests against a VSAM file, one using sequential
access and the other using indexed retrieval, are placed in separate clusters
because of the different access methods. Reports that cannot be pooled
because of syntax or environmental conditions are executed as single TABLE
clusters. A list of these conditions appears in Single TABLE Clusters.

All TABLE requests in a single cluster are executed concurrently and share the
same data retrieval and screening processes. Sorting and output formatting
are not shared.

The figure below diagrams the breakdown of pools into sub-pools and clusters:

NF564: Pooled Tables

Version 7.0 Release 8 Page 5 of 40

NF564: Pooled Tables

Version 7.0 Release 8 Page 6 of 40

Memory Needs

The number of reports that can be executed in a single cluster is limited only by
the amount of memory the user allocates to Pooled Tables (POOLMEMORY).
More reports can be run concurrently with Pooled Tables when larger amounts
of memory are available. Memory requirements for each report depend on the
number of records included in the report, the number of lines of output, and the
width of the report. Pooled Tables calculates these memory requirements. In
general, the memory needed for small summary reports can be estimated as
NUMBER OF LINES OF OUTPUT * REPORT WIDTH. The memory needed
for large summary reports and detail reports can be estimated as NUMBER OF
RECORDS SELECTED * REPORT WIDTH. The Pooled Tables trace facility
displays the actual amount of memory allocated for each report and the
statistics used to calculate it.

When available memory is insufficient for simultaneously executing all of
the requests in a cluster, Pooled Tables executes them in a series of
steps, called iterations.

When multiple iterations are required, Pooled Tables produces as many reports
as it can directly in memory during the first iteration. Concurrently, data for the
remaining reports in the cluster are staged in a work file called FOCPOOLT.
The rest of the reports are then produced from the data in FOCPOOLT in
subsequent iterations. The source database is only accessed once at the
beginning of the process.

NF564: Pooled Tables

Version 7.0 Release 8 Page 7 of 40

Report Size Estimates

To calculate memory needs, Pooled Tables requires accurate estimates of the
size of each report to deliver optimal performance. These estimates are used
to select the appropriate sort and distribute memory resources equitably across
the several reports in the pool. Input report size equals the number of records
in the report following selection (ESTRECORDS); output report size is the
number of output lines after aggregation is complete (ESTLINES). These
estimates apply to the individual reports, not the size of the set of reports in the
cluster.

ESTLINES and ESTRECORDS estimates can be gathered from:

• The statistical message: NUMBER OF RECORDS IN TABLE= LINES=

• The RECORDS and LINES information available on the ? STAT output.

• Previously gathered information from the &RECORDS and &LINES
variables.

• When ACROSS is used, ESTLINES = number of lines X number of unique
ACROSS columns.

• When IF TOTAL or WHERE TOTAL is used, ESTLINES is the number of
lines before the TOTAL selection is made.

These estimates should be set individually for every request. Global settings
can be issued, however. If ESTRECORDS is set for a group of requests, the
estimate should be representative of the most common reports and need not
exceed the size of the database.

NF564: Pooled Tables

Version 7.0 Release 8 Page 8 of 40

FOCPOOLT
The temporary work file FOCPOOLT is created only when a cluster contains
more reports than can be executed in available memory (POOLMEMORY). If a
cluster can be produced directly from memory, the FOCPOOLT file is not
created.

For example, a cluster has 30 reports, each of which requires 1 megabyte of
memory. There are 10 megabytes of memory available (POOLMEMORY).
Pooled Tables retrieves all of the data once and produces the first 10 reports
from memory (this is the first iteration). The records for the remaining 20
reports are written to the work file FOCPOOLT. In the second iteration, Pooled
Tables reads data for the next 10 reports from FOCPOOLT and produces them.
The final 10 reports are produced in the third iteration.

It is more efficient to get data from FOCPOOLT than the database, because
data in FOCPOOLT has already been screened and formatted. In addition,
Pooled Tables determines accurate record counts (ESTRECORDS) for all
reports in the second and subsequent iterations. Memory needs for these
reports are more accurately calculated, further optimizing Pooled Tables
performance.

The size of FOCPOOLT depends on the volume of data in the reports that are
executed in the second and subsequent iterations. Data required only for
reports in the first iteration are not stored in FOCPOOLT. Overlapping data
required for more than one report is stored only once. The size of FOCPOOLT
will never exceed the size of the logical database used for the cluster. Typical
size requirements for FOCPOOLT are the same as those for the largest
FOCSORT file for any report in the pool.

NF564: Pooled Tables

Version 7.0 Release 8 Page 9 of 40

For MVS users, the default allocation for FOCPOOLT is 5 primary and 20
secondary cylinders. FOCUS uses a second volume if all extents on the first
volume are used. It is recommended that the user pre-allocate FOCPOOLT with the
necessary space attributes under MVS. DCB information will be determined by
FOCUS.

In CMS, adequate temp disk space must be made available for this file.

Reporting statistics
? STAT has been enhanced to display pooling statistics for each pooled report.
It can be used to identify pooling characteristics in an application and tune the
application.

Below is an annotated sample of the output for ? STAT with only the information
for Pooled Tables shown.

NF564: Pooled Tables

Version 7.0 Release 8 Page 10 of 40

Where, for the report just run:

1. READS The total number of records retrieved for the
cluster.

2. SUBPOOL The report is in the first subpool.

3. CLUSTER The report is in the second cluster.

NF564: Pooled Tables

Version 7.0 Release 8 Page 11 of 40

4. # CLUSTER ITEMS There are 25 reports in the cluster.

5. SEQ# IN CLUSTER This is the fifth report in the cluster.

6. ESTIMATED RECS ESTRECORDS has been set to 50,000. This
number should be compared with RECORDS
at the top of this ? STAT. If there is a
discrepancy, change the ESTRECORDS
value for this report.

7. REPORT WIDTH The report width is 148 bytes.

8. ITERATION This report was produced in the first iteration.

9. # ITER ITEMS There are 16 reports produced in the first
iteration. The next 9 reports are executed
during subsequent iterations.

10
.
SEQ# IN ITER This is the fifth report in this iteration.

11
.
ESTIMATED LINES ESTLINES has been set to 50,000. This

number should be compared with LINES at
the top of this ? STAT. If there is a
discrepancy, change the ESTLINES value for
this report.

NF564: Pooled Tables

Version 7.0 Release 8 Page 12 of 40

Sort Selection
Pooled Tables uses the report size estimates to choose the appropriate sort: an
in-memory FOCUS sort or an external sort. The FOCUS sort is used for all
reports whose memory needs are less than 1 megabyte. In general, an
external sort is used for all other cases. The maximum number of concurrently
executing sorts, and thus the maximum number of concurrently executing
reports, is limited by the amount of memory available to Pooled Tables. The
maximum number of external sorts that can be used by Pooled Tables is 26.
This number can be decreased with the MAXEXTSRTS setting. The number of
external sorts can also be limited by the amount of available memory below the
16 megabyte line in MVS. In VM, only one version of the external sort can be
executed when the sort package is SyncSort. When practical, the FOCUS sort
is substituted for the external sort when the number of external sorts is limited
but memory is available.

Managing Memory
The maximum amount of memory used by Pooled Tables can be limited with
the POOLMEMORY setting. In MVS, the number represents memory above
the 16 megabyte line. In VM, the number represents total virtual memory. The
default value for POOLMEMORY is 16,384 K (16 M). The minimum value is
1,024 K. A maximum bound can be placed on POOLMEMORY when Pooled
Table is installed. In MVS, you can also control the total amount of memory
available from the operating system above the 16 megabyte line by coding
REGION=nM in your JCL job card , where n is greater than 16.
POOLMEMORY can be set from the command line, during FOCUS
initialization (in the PROFILE FOCEXEC), or within an application.

NF564: Pooled Tables

Version 7.0 Release 8 Page 13 of 40

Memory is reserved by using the POOLRESERVE setting. This reserves a
portion of available memory for system or FOCUS use that is not to be used by
Pooled Tables. In MVS, the default is 100K. In VM the default is 1,024 K.
The default value can be changed at installation time. POOLRESERVE can be
set from the command line, during FOCUS initialization (in the PROFILE
FOCEXEC), or within an application.

The purpose of POOLRESERVE is to reserve memory during Pooled Tables’
parsing and decision making process for other modules. For example, first time
access to SQL/DS requires loading of IBI interface code and IBM modules.
The memory needed for these is not used in the Pooled Tables case until the
common read is executed. After these modules are loaded, POOLRESERVE
can be reduced, possibly to zero. If the IBI interface and IBM load modules are
stored in a saved segment, POOLRESERVE can be reduced prior to
execution of Pooled Tables.

Suggested values for POOLRESERVE are :
Running an interface (not in saved segment): 1024 K
Running an interface (in saved segment): 256 K
Using SyncSort as the external sort: 512 K
Using any other sort: 128 K

NF564: Pooled Tables

Version 7.0 Release 8 Page 14 of 40

Common Selection Criteria
Common selection statements that appear in every report in the cluster are
applied during Pooled Tables retrieval. The common test must refer to the
same field and use an equality screening relational operator (EQ or IS). The
selected values do not need to be the same in all reports. For example, if the
first report has the test WHERE FISCAL_YEAR EQ 1997 and the second request has
the test WHERE FISCAL_YEAR EQ 1998, the test WHERE FISCAL_YEAR EQ 1997 OR
1998 is evaluated during Pooled Tables retrieval. Common selection tests are
included to reduce the size of the answer set returned for a pool.

Common selection criteria that do not use equality can be evaluated by Pooled
Tables using another FOCUS feature: Filters. Filters allow you to specify
simple or complex selection tests for all reports against the same file. Filters in
effect for all reports in a cluster are also applied during Pooled Tables retrieval.
The use of Filters allows you to reduce the size of the pooled answer set, even
when there are no common equality selection tests.

NF564: Pooled Tables

Version 7.0 Release 8 Page 15 of 40

Reporting from non-Relational Databases
Reports against non-relational databases, such as VSAM, IMS, IDMS, FOCUS,
and sequential files, must meet several simple criteria in order to be pooled
together into one cluster. First, all reports must access the same database,
using the same Master File Description. Next, the reports in a cluster must
share the same access method. For example, reports that use sequential
access can be pooled together; reports that use indexed access can be pooled
together. Finally, all reports in a cluster must share the same entry point. That
is, the reporting view must be from the same segment and, in the case of
indexed access, from the same field. Reports against sequential files always
meet these criteria so they always pool. Reports against JOINed structures are
pooled together based on the access method to the host file.

Reporting from Relational Databases
Reports against relational databases, such as DB2 and SQL/DS, can be pooled
into the same cluster when they share several common attributes. Like non-
relational files, all reports must access the same Master File Description from
the same entry point. Reports that require SQL aggregation (that is, the
generated SQL statements contain the GROUP BY phrase) are not pooled. This
assures that the set presented to each report in the pool is accurate.

NF564: Pooled Tables

Version 7.0 Release 8 Page 16 of 40

Further, all requests against a multi-table relational view must reference the
same tables to be pooled into the same cluster. Consider, for example, a view
that contains table ‘A’ and table ‘B’. All reports that reference only fields from
table ‘A’ can be pooled together; all reports that reference only fields from table
‘B’ can be pooled together, and all reports that reference fields from both tables
‘A’ and ‘B’ can be pooled together. However, none of the reports in each of
these three preceding sets can be pooled with reports from another set. This
limitation is imposed to assure that the same optimization logic is used by the
RDBMS retrieval engine for each report in the set.

Pooling requirements for relational databases are less stringent when
optimization is turned off (SQL SET OPTIMIZATION OFF). In this case, FOCUS
manages the retrieval and aggregation. Therefore, pooling conditions are the
same with optimization off as for non-relational databases. Restrictions
regarding common accessed tables and SQL aggregation do not apply. The
benefits of pooling reports with optimization off versus allowing the RDBMS to
optimize retrieval vary from case to case. For example, a request that requires
an area sweep and returns a large answer set, even with optimization, would be
a good candidate to pool with other requests by turning optimization off.

When using the interface trace facility for a relational database, the generated
SQL for each request is echoed. The SQL is generated during the Pooled
Tables parsing phase but is not submitted to the RDBMS. Instead, Pooled
Tables constructs an internal request to retrieve all of the data required for the
cluster. The SQL SELECT statements generated for the cluster are echoed in
the trace. These are the statements that are passed to the RDBMS.

NF564: Pooled Tables

Version 7.0 Release 8 Page 17 of 40

The SQL SELECT statements generated by Pooled Tables are the ones
optimized by the RDBMS. Therefore, the best optimization occurs when all
requests in a cluster contain the same equality screening conditions or Filters
(see Common Selection Criteria). In these cases, the screening tests are
included in the SQL and passed to the RDBMS for optimization. Without
common selections or Filters, it is possible that efficiencies gained from
RDBMS optimization may be lost when pooling individual requests. For
example, consider two requests: the first request returns a small answer set
based on a selection against a key field named KEY1. The second request
returns a small answer set based on a selection against a different key field
named KEY2. The independent screening conditions are not included in the
SQL generated by Pooled Tables, resulting in an area sweep and large answer
set for the cluster. If the two tests are included as an OR condition in a Filter,
the screening tests will be passed to the RDBMS. A much smaller answer set
will be returned to Pooled Tables.

Pooled Tables in Batch Mode
Pooled Tables can automatically pool all batch requests. For batch jobs to
become pools, issue the SET command POOLBATCH, from either users
PROFILE or in FOCPARM. Wherever possible, pooling automatically occurs.
In the context of Pooled Tables, ‘batch’ means any non-interactive FOCUS
session. In MVS, this occurs in batch jobs, or when ddname SYSIN is allocated
to a dataset. In VM, a non-interactive job occurs when ddname SYSIN is
FILEDEFed to a file, FOCUS is invoked with the syntax FOCUS IN fileid, or the
VM session is running disconnected.

NF564: Pooled Tables

Version 7.0 Release 8 Page 18 of 40

Trace Facility
In general, the trace facility displays the reasons for segregation of a pool into
subpools and clusters, warnings when allocating insufficient memory, and
completion statistics for pooled reports. The purpose of the trace facility is to
assist the application developer in determining how a pool was executed so
that the information can be used in tuning the application.

The trace facility is started by issuing the command SET TRACEON=POOLTABL. By
default, the trace output is routed to the ddname PTTRACE which is allocated
to SYSOUT (MVS) or the terminal (VM). You can select a different ddname by
issuing the command SET TRACEON=POOLTABL//ddname. To route the output to
disk, allocate or FILEDEF ddname PTTRACE (or the optional ddname you
selected) to a file with LRECL 160 and disposition MOD. You may also
allocate the ddname to the terminal. Stop the trace by issuing the command
SET TRACEOFF=POOLTABL.

The following messages are displayed when a subpool boundary is
encountered:
Subpool boundary--prior output required as input
Subpool boundary--FOCUS/SET command
Subpool boundary--DEFINE ADD
Subpool boundary--new MASTER name
Subpool boundary--new DEFINE clears pre-pool DEFINE
This command will run now, outside of pooling:
A DEFINE ADD will run now, outside of pooling.

NF564: Pooled Tables

Version 7.0 Release 8 Page 19 of 40

The following messages are displayed when a cluster boundary is encountered:
Cluster boundary--new master name
Cluster boundary--single-table cluster
Cluster boundary--new alternate view
Cluster boundary--new pool flag
Cluster boundary--new pool condition
Cluster boundary--mid-stream DEFINE
Cluster boundary--new entry segment
Cluster boundary--too many verb objects

The following messages are displayed for reports that cannot be pooled (they
are single-table clusters):
Single-table cluster--REDEFINEd real field
Single-table cluster--User subroutine not known safe
Single-table cluster--self-referential DBA/filter
Single-table cluster--INCLUDES/EXCLUDES selection
Single-table cluster--too many test literals
Single-table cluster--complex test on index
Single-table cluster--$ORTPARM allocated
Single-table cluster--REDEFINEd constant real field
Single-table cluster--RANKED BY
Single-table cluster--COUNT DISTINCT
Single-table cluster--RECAP
Single-table cluster--COUNT is a verb object
Single-table cluster--indexed view via AUTOINDEX
Single-table cluster--EMR
Single-table cluster--ON TABLE SET
Single-table cluster--TEXT field
Single-table cluster--PREVIEW mode
Single-table cluster--ALL = ON/PASS
Single-table cluster--per message above
Single-table cluster--indexed view for FOCUS database
Single-table cluster--non-poolable interface request
Single-table cluster--too many verb objects

NF564: Pooled Tables

Version 7.0 Release 8 Page 20 of 40

The following messages appear in the trace during the creation and execution
of clusters and iterations:
Building cluster x...
Cluster contains n table(s)
Cluster n dedicated to command x
Clusters built; subpool contains x cluster(s).
****** Stack before 1st cluster: ******
****** Stack before nth cluster: ******
****** Begin union table ******
**** Stack before nth iteration: ****

During the parsing phase of the Pooled Table process, the following statistics
are displayed for each report. They are used to determine if a report is poolable
and under what conditions. All reports that have the same pooling criteria can
be pooled with each other.
Entry Segment : x
Relational Flag : y
Pool Flag : z
Condition Length: n
Condition : c

After a pooled report is executed, the output from ? STAT is included in the
trace. The entries for TRACKIO and MINIO are included in the output but their
values are not populated. In addition, the following statistics are included:

TRAVERSAL MTHD = x ENTRY SEGMENT = i
FOCUS SORT MEM = y1 EXTSORT MEMORY = y2
ALGORITHM USED = z

NF564: Pooled Tables

Version 7.0 Release 8 Page 21 of 40

The following messages are displayed to indicate limitations imposed on
Pooled Tables to execute reports under the most favorable conditions, based
on parameters provided by the user (POOLMEMORY, POOLRESERVE,
ESTRECORDS, and ESTLINES) or the available memory. These messages
will not inhibit the execution of Pooled Tables. To correct these situations,
replace the values for ESTRECORDS and ESTLINES with accurate values or
make more memory available for Pooled Tables.
concurrent external sorts reduced from x to y by below-16M shortage
Minimum sort memory forces iterations
Warning--POOLMEMORY desired = x but only y is available
Warning: actual line count (x) exceeds lines estimate (y) in heavy
aggregation case
Warning: records estimate (x) off by more than 10%-actual record count=y
Warning: lines estimate (x) off by more than 10%-actual line count = y

Tuning Applications
Pooled Tables will always pool any application when POOL is set ON. Pooled
Tables works best when accurate estimates for ESTRECORDS, ESTLINES,
and POOLMEMORY are given for each request. These numbers can be
determined by reviewing the statistics from previous runs. If these estimates
are not provided, FOCUS uses the defaults: ESTRECORDS=100000,
ESTLINES=0, and POOLMEMORY=16,384K. When ESTLINES is 0, Pooled
Tables uses the current value of ESTRECORDS for ESTLINES. While these
defaults are adequate for large extract reports, they may provide minimal
benefit if they are grossly inaccurate.

NF564: Pooled Tables

Version 7.0 Release 8 Page 22 of 40

To optimize pooling capacity, provide ample memory to Pooled Tables.
Increase POOLMEMORY to an adequate size. Provide a sufficient region size
(MVS) or virtual memory (VM). Reduce POOLRESERVE once interface and
other modules are loaded. Furnish accurate estimates for ESTRECORDS and
ESTLINES.

To optimize pooling capability, remove all unnecessary subpool boundary
commands such as extraneous -RUNs. Consolidate the necessary boundary
commands such as the DYNAMs, SETs, etc. Organize the requests for optimal
cluster usage by putting all requests for the same database with the same entry
point and retrieval method together. This will increase the opportunity for
pooling more requests in one cluster.

To optimize retrieval and reduce the size of the answer set returned by Pooled
Tables, use Filters to screen data. For example, if all reports in a cluster use
WHERE DELETE_FLAG NE ’Y’, create a filter with this test. Alternately, change the
test to read WHERE DELETE_FLAG EQ ’N’ so that the common selection statement
is used in the Pooled Tables common read.

Syntax How to Use Pooled Tables

To activate Pooled Tables, issue the following command
SET POOL = {OFF|ON}

where:
OFF

Ends Pooled Tables and executes any queued requests.
ON

Begins Pooled Tables.

NF564: Pooled Tables

Version 7.0 Release 8 Page 23 of 40

Issue the following command in a report request to supply an estimate for the
number of input records for that report:
ON TABLE SET ESTRECORDS m

where:
m

Is the estimate of the number of records being retrieved for a report.

You can assign a global value for each report in a pool with the following
command
SET ESTRECORDS=m

The default value is 100,000.

Issue the following command in a report request to supply an estimate for the
number of output lines for that report:
ON TABLE SET ESTLINES n

where:
n

Is the user’s estimate of the number lines of output for a report.

You can assign a global value for each report in a pool with the following
command
SET ESTLINES=n

The default value is 0. If no value is given, Pooled Tables assumes there is no
aggregation and the number of lines is the same as the number of records.

To set a limit on the amount of memory that FOCUS can use for pooling a
cluster for a user, issue the following command
SET POOLMEMORY=n

NF564: Pooled Tables

Version 7.0 Release 8 Page 24 of 40

where:
n

Is the upper limit on the number of kilobytes of memory that FOCUS may
use during any cluster for this user. In MVS, the number represents
memory above the 16 megabyte line. In VM, the number represents total
virtual memory.

The default value is 16,384 K (16 M). The minimum value is
1,024 K.

To reserve memory for other modules, issue the following command
SET POOLRESERVE =n

where:
n

Is the amount of memory in kilobytes to reserve for other modules and
restrict Pooled Tables from using.

In VM, the default is 1,024K. In MVS, the default is 100K.

To set a limit on the number of concurrent external sorts that can run, issue the
following command
SET MAXEXTSRTS=n

where:
n

Is the number of concurrent external sorts that can run.

Is a number from 1 to 26. The default is 26. In VM, only one version of
SyncSort can run concurrently. If you use SyncSort in VM, the value of
MAXEXTSRTS is assumed to be 1.

NF564: Pooled Tables

Version 7.0 Release 8 Page 25 of 40

To control whether Pooled Tables is used automatically for batch processing,
issue the following command
SET POOLBATCH = {OFF|ON}

where:
OFF

Does not enable automatic use of Pooled Tables for batch processing.
This is the default.

POOLBATCH can be included in the FOCPARM ERRORS, FOCUS
PROFILE, a FOCEXEC, or issued in the SYSIN input stream.

SET POOLBATCH=ON has the effect of automatically setting POOL=ON for
batch execution. SET POOLBATCH=OFF will not reverse this setting. To disable
pooling when POOLBATCH=ON, issue the command SET POOL=OFF.

ON

Enables automatic use of Pooled Tables for batch processing.

To identify an external sort utility to use for Pooled Tables, issue the following
command
SET SORTLIB = sorttype

NF564: Pooled Tables

Version 7.0 Release 8 Page 26 of 40

where:
sorttype

Can be one of the following

To direct the trace output, issue the following command
SET TRACEON=POOLTABL //{PTTRACE|ddname}

where:
PTTRACE

Is the default ddname where the trace output is directed.
ddname

Is an optional ddname where the trace output can be directed.

To turn off the trace facility, issue the following command
SET TRACEOFF=POOLTABL

where:
POOLTABL

Ends the Pooled Tables Trace facility.

SYNCSORT Identifies the external sort utility as SYNCSORT.

DFSORT Identifies the external sort utility as DFSORT.

VMSORT Identifies the external sort utility as VMSORT.

MVSMSGSS Identifies the external sort utility as SYNCSORT and its
messages are displayed (MVS only).

MVSMSGDF Identifies the external sort utility as DFSORT and its
messages are displayed (MVS only).

NF564: Pooled Tables

Version 7.0 Release 8 Page 27 of 40

Pooled Tables Example
The following example illustrates the ease in which Pooled Tables can be
implemented. In it, a small amount of memory is made available for Pooled
Tables (4,000K), pooling is turned on, and report size estimates are provided
for each report. The reports will be queued until pooling is turned off. At that
time, data will be retrieved only once for all of the reports in the pool. The
reports will be executed concurrently and the output printed one after the other.
SET POOLMEMORY = 4000
SET POOL = ON
TABLE FILE EMPLOYEE
PRINT LN FN BY DPT IF HIRE_DATE GE 860101
ON TABLE SET ESTLINES 1000 AND ESTRECORDS 1000
END
TABLE FILE EMPLOYEE
SUM CURR_SAL BY CURR_JOBCODE IF CURR_JOBCODE EQ ‘A$*’
ON TABLE SET ESTLINES 5 AND ESTRECORDS 400
END
TABLE FILE EMPLOYEE
SUM GROSS BY PAY_DATE
IF PAY_DATE FROM 960101 TO 961231
ON TABLE SET ESTLINES 52 AND ESTRECORDS 1200
END
SET POOL = OFF

Single TABLE Clusters

There are several instances when reports will not be pooled because of
syntactical or environmental conditions. The reports will be executed as single
TABLE clusters. Reports that fall into this category include:

• TABLEF requests.

NF564: Pooled Tables

Version 7.0 Release 8 Page 28 of 40

• MATCH requests.

• Extended Matrix Reports (EMR).

• Reports using SET ALL=ON or PASS.

• Reports against FOCUS databases using an explicit indexed view or an
implicit indexed view via AUTOINDEX.

• Reports against relational databases where aggregation is passed to the
DBMS.

• Reports which use MORE, ON field RECAP, COUNT DISTINCT, DST.,
INCLUDES, EXCLUDES, or COUNT as a verb object.

• Reports that use a redefined database field.

• Reports issued from the FOCUS command line.

• Reports that use a self-referential Filter or DBA value restriction.

• Reports that have more then 256 values in an equality IF or WHERE test.

• Reports executed when $ORTPARM is allocated.

• Reports that use a user written subroutine except those found in Table 1.
In general, subroutines that require initialization and are then reused are
not poolable. Random number generator subroutines are an example of
these.

ARGLEN ATODBL AYM AYMD BAR

BITSON BITVAL BYTVAL CHGDAT CHKFMT

CHKPCK CTRAN CTRFLD DADMY DADYM

DAMDY DAMYD DAYDM DAYMD DMOD

NF564: Pooled Tables

Version 7.0 Release 8 Page 29 of 40

Table 1. Poolable User Written Subroutines

Subpool Boundary Conditions

A subpool is a collection of TABLE or GRAPH requests and their related
commands. Subpool boundaries are imposed by non-retrieval commands.
Only reports within a subpool can be pooled together to share the same I/O.
Commands that cause subpool boundaries can change the data or retrieval
method for the database. Therefore, reports on either side of a subpool
boundary cannot be pooled together reliably. When a subpool boundary
command is encountered, pooling is temporarily stopped and all queued
requests are executed.

A subpool boundary is created when:

• A FOCEXEC completes execution and control is returned to the command
line.

DOWK DOWKL DTDMY DTDYM DTMDY

DTMYD DTYDM DTYMD EXP FEXERR

FINDMEM FMOD FTOA GETPDS GETTOK

GETUSER GREGDT HEXBYT HHMMSS IMOD

ITONUM ITOPACK ITOZ JULDAT LCWORD

LJUST LOCASE OVRLAY PARAG PCKOUT

POSIT RJUST SOUNDEX SUBSTR TODAY

UFMT UPCASE YM

NF564: Pooled Tables

Version 7.0 Release 8 Page 30 of 40

• A -RUN or -EXIT command is issued in a FOCEXEC.

• A DEFINE FILE filename ADD command is issued.

• Any non-TABLE or GRAPH command is issued that could change the data
(MAINTAIN, MODIFY, SQL), change the source of the data (DYNAM,
USE), change the retrieval method (JOIN, PASS, FILTER), or change the
operating environment (TSO, MVS, CMS), Table 2 lists the retrieval
commands that are part of a subpool. Table 3 lists the commands that
cause subpool boundaries.

• Any SET or ON TABLE SET command that can alter retrieval or the
Pooled Tables environment. Table 4 lists the SET commands that cause
subpool boundaries. SET commands that appear in ? SET ALL and not on
this list will not cause a subpool boundary. This list is accurate for FOCUS
release 7.0.8 and is subject to change in subsequent releases.

Table 2. Commands Included in a Subpool

? ?F ?FF CHECK DEFINE

GRAPH HELP HOLD OFFLINE ONLINE

PCHOLD REPLOT RETYPE SAVB SAVE

TABLE TABLEF

NF564: Pooled Tables

Version 7.0 Release 8 Page 31 of 40

Table 3. Commands That Cause Subpool Boundaries

Table 4. SETs That Cause Subpool Boundaries

ACE ANALYSE CALC CMS COMBINE

COMPILE CREATE DECRYPT DYNAM ENCRYPT

EX EXEC FILETALK FILTER FIN

FINISH FIXPACK FS FSCAN GRAPHTALK

JOIN LET LOAD MAINTAIN MATCH

MODIFY MODIFYTALK MPAINT MVS PASS

PLOTTALK REBUILD RECALC REMOTE RESTRICT

RUN SCAN SET SQL TABLETALK

TED TSO UNLOAD USE WINDOW

XFER

ADABAS AGGRRATIO ALL. AUTOINDEX

AUTOPATH AUTOSTRATEGY AUTOTABLEF BINS

BLKCALC BYPANEL 2 BYSCROLL CACHE

CALC CALCMEMORY CALCROWS CALCWAIT

CARTESIAN CDN COLUMNSCROLL2 COMMIT

COMPUTE CONSULTOPTN CURRENCY DATETIME

NF564: Pooled Tables

Version 7.0 Release 8 Page 32 of 40

1 - Subpool boundary with SET only

2 - Subpool boundary with ON TABLE SET only

DEFCENT ESTLINES 1 ESTRECORDS 1 EXTSORT

FIELDNAME FILENAME FIXRETRIEVE FOCSTACK

FOC144 1 HIPERFOCUS HTMLMODE ICUFORM

IMPLIEDLOAD IMS LABELPROMPT LANGUAGE

LE370 LOADLIMIT LOOKGRAPH MAXLRECL

MAXPOOLMEM MINIO MODE XXXXXX MPRINT

PASS POOL POOLBATCH POOLFEATURE

POOLMEMORY POOLRESERVE PREFIX PREVIEW

PRINTPLUS 2 QUALCHAR RECORDLIMIT 1 SAVEMATRIX 2

SHIFT SM SQLENGINE SQLTCARTES

SQLTOPTTF STYLEMODE SUSI SUTABSIZE

TCPIPINT TEMP DISK TERMINAL TEXTFIELD

TRACKIO TRMSD TRMSW TRMTYP

USER WINPFKEY XRETRIEVAL YRTHRESH

3DGRAPH

NF564: Pooled Tables

Version 7.0 Release 8 Page 33 of 40

Pooled Tables Installation Instructions
This section describes installation instructions for all systems, IMS, MVS, and
VM/CMS.

Procedure Installation Instructions for All Systems

Pooled Tables is enabled for your release of FOCUS by including the command
SET POOLFEATURE = ON in FOCPARM. To disable Pooled Tables, include the
command

SET POOLFEATURE = OFF

in the FOCPARM file. If there is no SET POOLFEATURE in FOCPARM, FOCUS
assumes Pooled Tables is disabled.

The maximum amount of memory above 16 megabytes that can be requested
by a user with the SET POOLMEMORY command can be restricted by including the
SET MAXPOOLMEM = n command in FOCPARM.

To make POOL = ON the default for all batch jobs, include the command SET
POOLBATCH = ON. This must follow the SET POOLFEATURE = ON command in
FOCPARM.

Each of the commands is also included in the member FOCPARM in
ERRORS.DATA (MVS) or the file FOCPARM ERRORS (CMS).

NF564: Pooled Tables

Version 7.0 Release 8 Page 34 of 40

Procedure Installation Instructions for MVS

Include the POOLFEATURE, POOLBATCH, and MAXPOOLMEM commands in
the member FOCPARM in ERRORS.DATA as outlined above. Refer to the
MVS Installation Guide for FOCUS Release 7.0 (DN1000994.1097) or New
Feature Memo 607, TABLA Enhancements, to change the default allocation for
the file FOCPOOLT. If you use DFSort, refer to Usage Notes for information
about a required IBM PTF.

Procedure Installation Instructions for VM/CMS

Include the POOLFEATURE, POOLBATCH, and MAXPOOLMEM commands in
the file FOCPARM ERRORS as outlined above. Change the value of
POOLRESERVE in FOCPARM ERRORS if appropriate for your installation.
See Managing Memory for recommended values.

Commands for the FOCPARM file

To configure Pooled Tables, include the following commands in the FOCPARM
file.
SET POOLFEATURE = {OFF|ON}

where:
OFF

Disables Pooled Tables for this FOCUS site.
ON

Enables Pooled Tables for this FOCUS site.
SET POOLBATCH = {OFF|ON}

NF564: Pooled Tables

Version 7.0 Release 8 Page 35 of 40

where:
OFF

Does not enable automatic use of Pooled Tables for batch processing. This
is the default.

POOLBATCH can be included in the FOCPARM ERRORS, FOCUS
PROFILE, a FOCEXEC, or issued in the SYSIN input stream.

SET POOLBATCH=ON has the effect of automatically setting POOL=ON for
batch execution. SET POOLBATCH=OFF will not reverse this setting. To disable
pooling when POOLBATCH=ON, issue the command SET POOL=OFF.

ON

Enables automatic use of Pooled Tables for batch processing.
SET MAXPOOLMEM = n

where:
n

Sets upper limit in Kilobytes of memory above 16 megabytes available for
users to set in the SET POOLMEMORY command. The default is 32,768 K
(32 M). Minimum is 1,024K.

Reference Usage Notes

• With pooling, there may be differences in the order of output records in
unsorted reports (PRINT with no BYs).

• In MVS batch jobs that have set MSG=ON, the TABLE request appears twice in
the output.

• ? SET ALL has been enhanced to display the values of Pooled Tables
settings. No Pooled Tables settings have been added to ? SET.

NF564: Pooled Tables

Version 7.0 Release 8 Page 36 of 40

• If it is needed, adequate temporary disk space must be made available for
FOCPOOLT under CMS.

• If it is needed, it is recommended that the user pre-allocate FOCPOOLT
with the necessary space attributes under MVS. DCB information will be
determined by FOCUS.

• KX following the attention interrupt is not supported during a pooled
request.

• Pooled Tables memory in MVS is generally restricted using the
POOLMEMORY setting. Pooled Tables memory in VM is generally
restricted by using the POOLRESERVE setting.

• An implied SET POOL=OFF is issued and all queued requests are
executed when an explicit or implicit FIN command is encountered and
POOL is still ON.

• When SyncSort is the external sort package, the ddname $ORTPARM
must not be allocated. If $ORTPARM is allocated, pooling is disabled for
all requests, not only those that require the external sort. A warning
message is issued when pooling is attempted and $ORTPARM is allocated.

• DFSort Release 13.0 has a limitation where only 10 sorts can be run
concurrently in MVS. If you exceed this limit, DFSort will display the
message:
ICE149A DFSORT IS NOT LICENSED FOR USE ON THIS SYSTEM.RETURN CODE 12,
REASON CODE 4.

This will cause FOCUS to abend. Issue the command SET MAXEXTSRTS
= 10 to temporarily avoid this symptom. This problem has been fixed by
IBM with APAR OW29152. Order IBM PTF UW41671 if you are running
SMS Release 1.3. Order IBM PTF UW41672 if you are running SMS
Release 1.4.

NF564: Pooled Tables

Version 7.0 Release 8 Page 37 of 40

Frequently Asked Questions
• " How can I control how much memory Pooled Tables uses? I am afraid that users

will abuse memory resources."

The command SET POOLMEMORY=n, where n is in kilobytes, sets the
upper bound of memory that FOCUS will use for pooling on a per user
basis. The default is 16 Megabytes and the minimum is 1 Megabyte. A
maximum limit per user can be established during Pooled Tables
installation by including the command SET MAXPOOLMEM=n in the
FOCPARM file. A user will not be able to request more memory than this
limit.

• "I already create a HOLD file from my database and then report from that. Why do
I need Pooled Tables?”

With Pooled Tables, it is possible to receive even better results than this
technique, without any pre-planning on the developers part! Rather than
create the HOLD file, Pooled Tables will read the data only once and pass it
to each of the reports in the pool. There is no I/O to write the HOLD file
and, more importantly, no I/O to read the HOLD file once for each of the
reports in the pool. If you already use this technique, there is no immediate
need to change your application to benefit from Pooled Tables. All of the
reports from the HOLD file can be pooled. This will alleviate all but the I/O
to create the HOLD file and one set of I/O to read the file once for all of the
reports in the pool.

NF564: Pooled Tables

Version 7.0 Release 8 Page 38 of 40

• "I have reports in two separate FOCEXECs. Will they be pooled?"

Pooling will occur across FOCEXECs, as long as there are no intermediate
commands between them that would create a subpool boundary. The most
common subpool boundary command that would be encountered in this
situation is the use of -RUN or -EXIT in the first FOCEXEC. Although this is
good practice in the non-Pooled Tables case, it will cause reports that could
benefit from Pooled Tables to be executed separately, as they are without
Pooled Tables.

• "What happens if I provide incorrect estimates for the number of records and lines
in a pooled report?"

Your reports will still execute and you will still receive the benefit of reduced
database I/O and the CPU associated with it. However, the report sorting
and formatting costs may increase. With incorrect estimates, Pooled
Tables may select the wrong sort or allocate too little or too much memory
for the report within the pool. If too much memory is allocated, fewer
reports can be executed concurrently. If too little memory is allocated, fewer
records can be sorted in memory, causing additional sort work I/O. If a
FOCUS sort is selected, you lose the benefit an external sort when it is
more appropriate. Note, however, that Pooled Tables will have an accurate
count of the selected records (ESTRECORDS) for reports in the second
and subsequent iterations.

Reference Error Processing

• Any error detected during parsing causes pooled tables to flush the
remaining commands through SET POOL = OFF .

NF564: Pooled Tables

Version 7.0 Release 8 Page 39 of 40

• Any error detected during the retrieval phase will cause Pooled Tables to
abort the FOCUS session. This occurrence will display both the error
message that caused the problem and error message FOC1897. The
following is an example of when this may occur:
(FOC1070) VALUE FOR JOIN ’FROM’ FIELD OUT OF SEQUENCE. RETRIEVAL ENDED

(FOC1897) FATAL ERROR DURING POOLED TABLES RETRIEVAL. FOCUS
TERMINATING.

• Any error detected during the output phase for a given TABLE terminates
processing for that TABLE. Output processing continues for subsequent
TABLE requests.

• Line numbers and FOCEXEC name may be missing in the message:
ERROR AT OR NEAR LINE n IN PROCEDURE a

Reference Warning/Error Messages

FOCUS warning messages (normally generated without Pooled Tables) may
appear twice when running with Pooled Tables active.

Below is a list of messages generated by Pooled Tables. These appear only
when FOCUS is about to be terminated.
(FOC1897) FATAL ERROR DURING POOLED TABLES RETRIEVAL. FOCUS

TERMINATING.

An error was encountered in a report during Pooled Tables
retrieval. FOCUS cannot recover from this error and will return to
the host environment.

NF564: Pooled Tables

Version 7.0 Release 8 Page 40 of 40

(FOC1899) LOAD FAILED FOR EXTERNAL SORT

In preparation for an external sort under Pooled Tables, FOCUS
tried to LOAD the external-sort module. The LOAD failed. (This
message is produced only under VM.)

(FOC1900) NOT ENOUGH MEMORY FOR EXTERNAL SORT

In preparation for an external sort, available memory was queried.
Not enough memory is available for an external sort. Increase
memory and execute the request again.

Version 7.0 Release 8 Page 1 of 17

NF566: MSO/CICS Cooperative Processing

CICS transactions and MSO FOCEXECs may now communicate directly with
each other in a synchronous mode. A CICS pseudo conversational transaction
may start an MSO session on behalf of a CICS user. Once a cooperative
processing session is started, data can be handed back and forth between
FOCEXECs and CICS transactions in packets containing up to 256 bytes.
Additionally, a suspend function is available. When this is invoked in MSO, the
CICS transaction is given control. This allows a “hot” MSO to be available to the
CICS user. The CICS user may go in and out of MSO without terminating their
MSO session.

These new facilities allow CICS transactions to get and retrieve data from the
MSO region and the reverse is also true. The FOCEXEC interaction is
implemented in MSO via a FUSELIB routine, CICSCOMM.

The CICS transaction functions are implemented by linking the installation’s
transaction module with the IBI supplied module, CMSOAPI. CMSOAPI
provides five function calls that supply the MSO/CICS communications.

Also, a reconnect facility is available for cooperative processing sessions and
for standard MSO connections from CICS. This allows the reconnection of an
MSO session when the logical connection from a CICS terminal is lost.

The figure below illustrates the relationship between a FOCEXEC running in
the MSO address space and user programs running in the CICS address space
when a cooperative session has been established.

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 2 of 17

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 3 of 17

MSO FOCEXEC Cooperative Processing Service
The CICSCOM FUSELIB routine supplies the cooperative processing facility to
FOCEXECs executing in the MSO region. It may be called from wherever a
FOCUS user-written subroutine is supported. This routine is used to
communicate and synchronize activity with the CICS portion of the dialog.
When invoked, the FOCEXEC is placed into a wait until action is taken on the
CICS side of the conversation. Data specified by the outlen/outbuf parameters
is passed to CICS. When this subroutine is called it causes a CICS transaction
specified in the CMSLOGN to be started in the CICS region. When CICSCOM
completes, the inlen/inbuf parameters contain data that was passed back from
CICS.

CICSCOM supports the following syntax:
CICSCOMM(timeout, outlen, outbuf, inlen, inbuf);

where:
timeout

Is the number of seconds to wait for response before timing out FOCUS. If
this timeout duration is reached before the CICS portion of the session
responds, the MSO FOCUS session is terminated. This action is
represented as a FIN function code to the CMSRCV call.

outlen

Is length (0-256) of the outbound message to CICS.
outbuf

Is the field containing the outbound message to CICS.

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 4 of 17

inlen

Is the length (0-256) of the inbound message buffer.
This value is the maximum amount that can be returned by CICS. It is
presented to the CICS portion of the conversation in the outlen parameter
of the CMSORCV call.

inbuf

Is the field to contain the inbound message from CICS.

MSO/CICS Cooperative Processing Services
The CICS portion of the cooperative processing functions is provided in the IBI
supplied module CMSOAPI. This module contains the functional code that
supports the individual calls available to CICS transactions. When this module
is link edited with a CICS transaction module, five functions become available
to the module.

CMSOLGN Logs a CICS user as an MSO FOCUS user and establishes a
session between MSO FOCUS and CICS

CMSRCV Interrogates MSO/CICS to identify the session that requires
servicing, receiving data if sent.

CMSREC Reconnects to a session that is in an indeterminant state.

CMSOSTP Stops or terminates the session. This cancels the users MSO
FOCUS task.

CMSORSM Sends data back to the FOCUS portion of a session or restarts a
suspended MSO FOCUS session.

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 5 of 17

Syntax and descriptions of the functions follow:

Syntax How to Use the CMSOLGN Function

This function starts an MSO session for the user by logging on to MSO. It
defines the details of the MSO/CICS conversation processing that will take
place.
CALL CMSOLGN(EIB, COMMAREA, MSONAME, USERWD, NEXTPROG, LOGONBUF)

where:
EIB

is the CICS Exec Interface control Block
COMMAREA

is the CICS Communications Area
MSONAME

4 byte name of MSO CICS transaction. Each MSO transaction name
corresponds to a single MSO region that may be connected to.

USERWD

4 byte user word to associate with an MSO session
It is an arbitrary 4 byte value that is returned by CMSOLGN. It represents a
unique identifier for the conversation that this service just established. It will
be returned when the CMSRCV is issued to identify the specific
conversation that needs to be serviced

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 6 of 17

NEXTPROG

8 byte name of next program to call
It identifies the CICS user program that will be called when the CMSCOMM
FUSELIB is invoked on the MSO side of the conversation. NEXTPROG is
mutually exclusive with the LOGTRAN entry in the LOGONBUF control
block. Only one of these parameters should be specified. They function
identically. Cooperative processing support, that is, the ability to be called
back at all, is enabled by specifying a NEXTPROG in CMSOLGN. Fill NEXTPROG
with blanks or nulls if no callbacks are desired.

LOGONBUF

Is a required control block. It should be completely initialized to blanks
(x’40’) before individual fields are set. Some of the fields support the MSO
Load Balancing feature. The purpose of these fields are fully described in
the new feature documentation for that feature.

An assembler copy file, CMSOAPIA, is supplied in MSO.DATA. This file maps
the LOGONBUF. The fields and their meanings are listed in the table below. All
fields are alphabetic.

Field Name length contents

LOGAPPL 8 bytes A load balancing parameter that limits MSO region
selection to those service groups that specify the
same application name.

LOGSERV 8 bytes Specifies the particular MSO Service Group that
this user should be started in. It applies to load
balancing as well as a single region MSO.

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 7 of 17

LOGTRAN 4 bytes This defines the CICS transaction that will be
invoked when the CICSCOMM FUSELIB routine is
called in the MSO region. It is mutually exclusive
with NEXTPROG in the invocation parameters.
Only one should be specified.

LOGBREAK 4 bytes Break key (PF/PAnn)
Identifies the key that will unconditionally terminate
the active MSO session.

LOGSUSP 4 bytes Suspend key (PF/PAnn)
Identifies the key that will cause the active MSO
session to suspend operation. When this key is
pressed, the LOGTRAN or NEXTPROG CICS
transaction (whichever was specified) will be
invoked in the CICS region.

Field Name length contents

LOGELVL 4 bytes Error level (ALL,ERR,NONE)
Controls what messages are displayed to the user
when the MSO session ends.
ALL - All messages are displayed
ERR - Only error messages are displayed
NONE - No messages are displayed

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 8 of 17

LOGGROUP 8 bytes Logon group name
The load balancing group name. It controls the
MSO load balancing group that the user will be
started in.

LOGVALID 1 byte Security check flag (N/Y)
Y must be specified for the reconnect service
(CMSOREC call) to work. In addition,
UNIQUE=LOGONID must be specified in the MSO
configuration file.

LOGINITM 1 byte Suppress initialization message flag (N/Y)
Y suppresses the MSO initialization message.

LOGFLAG1 1 byte reserved flag

LOGFLAG2 1 byte reserved flag

LOGRESV 20
bytes

reserved

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 9 of 17

Syntax How to Use the CMSORCV Function

This function is used to interrogate the MSO/CICS control program. The
returned parameters identify the particular conversation that had a status
change, the current status of the conversation, and any data that may have
been received from MSO. It is usually the first MSO/CICS Cooperative
Processing service used in the transaction that is triggered by the CICSCOMM
subroutine (NEXTPROG or LOGTRAN).

The FUNCTION field is set based on either an event in the MSO region or if
an event in the CICS region caused the status. The FUNCTION codes that are
returned are described in CMSORCV Function Codes.
CALL CMSORCV(EIB, COMMAREA, FUNCTION, CONNID, USERWD, INLEN, OUTLEN,
BUFFER, ERRNUM)

Field Name length contents

LOGACCT 40
bytes

account
Specifies the MSO account field. This field will be
recorded in the MSO SMF records when that
feature is active.

LOGUPRM 256
bytes

Logon parameter
The contents of this field is available to FOCEXECs
via the MSOINFO subroutine. It is generally used
to provide control information to the MSO profile
exec so that specific FOCUS applications may be
invoked in the MSO region.

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 10 of 17

where
EIB

Is the CICS Exec Interface control Block
COMMAREA

Is the CICS Communications Area
FUNCTION

4 byte callback function code See CMSORCV Function Codes
CONNID

4 byte connect id of MSO session. This value together with USERWD
uniquely define each MSO/CICS session.

USERWD

4 byte user word to associate with an MSO session. This value together
with CONNID uniquely define each MSO/CICS session.

INLEN

4 byte length of buffer inbound from FOCUS
OUTLEN

4 byte length of return buffer expected by FOCUS

When using the CMSORSM, the LENGTH parameter may not exceed the
value of OUTLEN. If it does, the data presented to the MSO FOCEXEC is
truncated to the value of OUTLEN.

BUFFER

256 byte inbound data buffer

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 11 of 17

ERRNUM

4 byte FOCUS ending error number (function FIN) or 4 This field is a binary
number and is mapped by the CMSOAPIA member of MSO.DATA.
Possible returned values are described in section: CMSORCV Function
Codes.

Syntax How to Use the CMSOREC Function

This function re-establishes a MSO/CICS session based upon the current
user’s CICS id. The connect id may be supplied if known. Otherwise, the
function uses a connect id of 0 and the userid to identify the session. This
condition may be caused by the user powering off their terminal while an
MSO/CICS session is active and then logging on to CICS again.

Security flag - If the security flag in the logon buffer is set to yes, then the
resuming or reconnecting userid is validated against the known userid. The
reconnection is rejected if they do not match. If present userid determination is
subject to the MSCXUID exit. The default for the security flag in the logon
buffer is no.

CALL CMSOREC(EIB, COMMAREA, MSONAME, CONNID, NEXTPROG)

where:
EIB

is the CICS Exec Interface control Block
COMMAREA

Is the CICS Communications Area
MSONAME

4 byte name of MSO transaction

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 12 of 17

CONNID

4 byte connect id of MSO session
NEXTPROG

8 byte name of next program to call

Syntax How to Use the CMSOSTP Function

This function stops an MSO/CICS session immediately. MSO must have
passed control to the CICSCOMM FUSELIB program before a stop can be
issued. A CMSOSTP received while MSO is still in control is treated as a
protocol error.
CALL CMSOSTP(EIB, COMMAREA, MSONAME, CONNID, NEXTPROG)

where:
EIB

Is the CICS Exec Interface control Block
COMMAREA

Is the CICS Communications Area
MSONAME

4 byte name of MSO transaction
CONNID

4 byte connect id of MSO session
NEXTPROG

8 byte name of next program to call. This field specifies a CICS transaction
to start if the current invocation fails and cannot be associated with a known
session. If a session is identified then the nextprog that was specified in the
CMSOLGN service for the identified session will be called.

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 13 of 17

Syntax How to Use the CMSORSM Function

This function sends data to an MSO FOCUS session that previously issued the
CICSCOMM FUSELIB routine or resumes an existing MSO/CICS session that
was suspended by the user with the suspend key. Data may be sent in both
cases but will be ignored if the session is in a suspended state. A CMSORSM
received while MSO is still in control is a protocol error. If there is data, a buffer
is allocated which is freed by MSOCICS.
CALL CMSORSM(EIB,COMMAREA,MSONAME,CONNID,NEXTPROG,LENGTH,BUFFER)

where:
EIB

Is the CICS Exec Interface control Block
COMMAREA

Is the CICS Communications Area
MSONAME

4 byte name of MSO transaction
CONNID

4 byte connect id of MSO session
NEXTPROG

8 byte name of next program to call
LENGTH

4 byte length of outbound buffer. Data sent to MSO FOCUS will be
truncated to the original length specified by INLEN on the MSO FOCEXEC
call to CICSCOMM.

BUFFER

Outbound data buffer (up to 256 bytes)

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 14 of 17

CMSORCV Function Codes
The possible function codes that may be returned on the CMSORCV call are
listed below:

Value name value Meaning Returned
Parameters

IB_DATA 9 Data returned
This is the result of
CICSCOMM being invoked
in MSO.

CONNID USERWD INLEN
OUTLEN BUFFER

IB_SUSP 10 suspend key struck
The users MSO session is
dormant until CMSORSM is
issued for it.

CONNID USERWD

IB_FIN 11 FOCUS session ended
ERRNUM contains return
code from the MSO FOCUS
session.

CONNID USERWD
ERRNUM

IB_ERROR 12 API protocol error
ERRNUM contains the
value for the error. See the
following table for a list of
errors and their meanings.

CONNID USERWD
ERRNUM

IB_NOAPI 17 Program not called by
MSO\CICS

None

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 15 of 17

The ERRNUM values that may be associated with a function code of
IB_ERROR are:

Examples

The following sample members are supplied in MSO.DATA to aid in developing
installation applications to use this feature:

Error Value Description

IBERR_STATE 1 MSO called in invalid state

IBERR_INVFUNC 2 MSO called w/invalid function

IBERR_SECURE 3 id verification failed.

IBERR_NORECON 4 RECON called but not
supported

IBERR_NOTFOUND 5 user not found for connect id

CCDEMO A FOCEXEC that implements a sample MSO menu to
illustrate the function supplied by the CICSCOMM
FUSELIB routine

CCDEMOAS Assembler source of CICS API program

CCDEMOAJ JCL to build CCDEMOA module

CCMAPS map source for demo program

CCMAPSAJ JCL to build mapset and MAP DSECT

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 16 of 17

Reconnection Capability
A CICS connection may be lost by powering off a terminal or closing an
emulator session. This feature adds the capability of reconnecting to that
session. Previously there was no way to do this and the user would not be
allowed to re-logon until the original session had timed out or been canceled by
the MSO operator.

Now, a standard MSO session may be reconnected with, by specifying MSO
RECON (where MSO is the CICS transaction that invokes the MSOCICS
program).

An MSO/CICS cooperative processing session, one that was established via
the CMSOLGN call, may be reconnected using the CMSREC call. CMSREC
allows the use of conid or userid to be specified. If conid is specified then the
userid of the MSO FOCUS session has to match the CICS userid only if the
LOGVALID security flag was set to Y in the LOGONBUF. The reconnection is
found using the userid associated with the CICS session. UNIQUE=LOGONID
must have been specified in the MSO configuration file for this service to be
able to reconnect.

Suspend key

If the suspend key is activated in the MSO FOCUS session, it is subject to the
MSO configuration setting of IDLELIM. If the session is in the suspended state
long enough to set off the IDLELIM limit, the session is terminated. This
condition can be avoided by defining a separate service group that has
IDLELIM set to a high value and placing the cooperative processing MSO
sessions into these service groups by specifying the appropriate LOGSERV
parameter.

NF566: MSO/CICS Cooperative Processing

Version 7.0 Release 8 Page 17 of 17

Previous API

The CMSOLGN is an alternate method of starting an MSO/CICS session. The
original method was documented with the Load Balancing new feature of
FOCUS 7.0.5 & 7.0.6. Logon according to those specifications is still supported.
More information is available in New Feature Bulletin NF554.

Version 7.0 Release 8 Page 1 of 3

NF568: DB2 Interface IF-THEN-ELSE Optimization

The DB2 interface has been enabled to improve the performance of FOCUS
TABLE requests that include IF/THEN/ELSE define statements. Where
applicable, the defined statements will be passed to DB2 as expressions
allowing DB2 to optimize its own execution and minimize the size of the answer
set returned to FOCUS.

Usage

By issuing the new DB2 interface set command OPTIFTHENELSE, the
interface will attempt to deliver as an expression to DB2 the construct of
FOCUS IF/THEN/ELSE defines. The defined field must be an object of a
selection test or an object of an aggregation request. The define definition may
be specified in the table request or in the master file description.

Syntax How to Enable IF-THEN-ELSE Optimization
SQL {DB2} SET OPTIFTHENELSE {ON|OFF}

where
ON

Enables the feature
OFF

Disables the feature and is the default

Note: Omit the DB2 target RDBMS qualifier to issue the command if you
previously issued the SET SQLENGINE command for DB2.

NF568: DB2 Interface IF-THEN-ELSE Optimization

Version 7.0 Release 8 Page 2 of 3

Example Using IF-THEN-ELSE Optimization Without
Aggregation

SQL DB2 SET OPTIFTHENELSE ON
DEFINE FILE DB2TABLE
DEF1 = IF (NAME EQ ’ ’) AND (NAME EQ ’XYZ’) AND (SSNO EQ ’ ’) THEN 1
ELSE 0;
END
TABLE FILE DB2TABLE
PRINT SSNO NAME
WHERE DEF1 EQ 1
END

>SELECT T1.SSNO,T1. NAME FROM Creator.table T1 WHERE
> (((((T1.TOTAL_NAME = ’ ’) AND (T1.NAME = ’XYZ’)) AND
 (T1.SSNO = ’ ’)))) FOR FETCH ONLY;

Example Using IF-THEN-ELSE Optimization With
Aggregation

DEFINE FILE DB2TABLE
DEF2 = IF NAME EQ ’NAME1’ THEN 1 ELSE IF NAME EQ ’NAME2’ THEN 2
 ELSE IF NAME EQ ’NAME3’ THEN 3 ELSE 0 ;
END
TABLE FILE DB2TABLE
WRITE MAX.NAME IF DEF2 EQ 1
END

> SELECT MAX(T1. NAME) FROM creator.table T1 WHERE
 (((T1. NAME = ‘NAME1’))) FOR FETCH ONLY;

TABLE FILE DB2TABLE
WRITE MAX.NAME IF DEF2 EQ 2
END

> SELECT MAX(T1. NAME) FROM creator.table T1 WHERE (((NOT
(T1. NAME = ‘NAME1’)) AND (T1. NAME = ‘NAME2’))) FOR FETCH ONLY;

NF568: DB2 Interface IF-THEN-ELSE Optimization

Version 7.0 Release 8 Page 3 of 3

Example Using IF-THEN-ELSE Optimization With Selection
Criteria That Is Always False

DEFINE FILE DB2TABLE
DEF3=IF NAME EQ ‘RITA’ THEN 1 ELSE 0;
END

TABLE FILE DB2TABLE
PRINT NAME IF DEF3 EQ 2
END

> SELECT T1.NAME FROM creator.table T1 WHERE (1 = 0) FOR FETCH ONLY;

Note: Please note that DEF3 EQ 2 will never be true, thus the interface passes
the where test 1=0 to DB2, denoting a not true condition and returning zero
records from DB2.

Reference Special Considerations

This new feature is enabled for SELECT statements only created as a result of
FOCUS TABLE requests.

The following features are not supported:

• Decode defines

• Self-referencing or “recursive” defines

• STATIC SQL requests

• IF/WHERE DDname defines

• Partial Date selection

There is no guarantee that the SQL that is generated will improve performance
for all requests. If it’s found that this feature does not improve performance,
OPTIFTENELSE OFF will disable this feature to initiate previous behavior.

Version 7.0 Release 8 Page 1 of 3

NF571: DB2 Interface SET ISOLATION Command

Starting with FOCUS release 7.0.8, the interface has been enabled to take
advantage of the DB2 version 4 (and higher) ability to pass an SQL statement
isolation level. This allows the interface to modify the isolation level for a TABLE
request with the new interface SET command. The SET ISOLATION command
will override the isolation level that was established at interface installation bind
time. The new setting removes the requirement of binding multiple DB2 plans,
each bound with different isolation levels.

Usage

DB2 protects data being read by one user from changes (INSERT, UPDATE, or
DELETE) made by other users; the isolation level setting governs the duration
of the protection. The isolation level determines when shared locks on rows or
data pages are released, so that rows or pages become available for updates
by other users. DB2 version 4 and above allows this isolation setting to be
changed at the SQL statement level. Besides the earlier DB2 supported
isolation levels of CS and RR, DB2 version 4 and above has introduced the
uncommitted read isolation level (UR) and in DB2 5.1, introduced the read
stability isolation level (RS) and the isolation level of NC.

Please refer to the DB2 Read/Write Interface Users Manual for a more detailed
definition of isolation level and to the appropriate DB2 manuals for a complete
description of CS, RR, UR, RS and NC isolation levels and their impact on
concurrency and database implications.

Syntax How to Set the DB2 Isolation Level
SQL {DB2} SET ISOLATION level

NF571: DB2 Interface SET ISOLATION Command

Version 7.0 Release 8 Page 2 of 3

where:
level

Can be one of the following DB2 isolation levels:
RR

UR

RS

NC

Omit the DB2 target RDBMS qualifier to issue the command if you previously
issued the SET SQLENGINE command for DB2.

To display the isolation level setting, issue the command SQL DB2 ?.

Issue the command SQL DB2 SET ISOLATION (without an isolation level) to
revert back to the bound isolation level of the interface plan.

Example Setting the DB2 Isolation Level

This example shows the SQL passed to DB2 as a result of the SET ISOLATION
command:
SQL SET ISOLATION UR
SELECT T1.field1 FROM "creator"."table1" T1 FOR FETCH ONLY WITH UR;
SQL SET ISOLATION CS
SELECT T1.field1 FROM "creator"."table1" T1 FOR FETCH ONLY WITH CS;

The following is a result of the SQL DB2 ? command:

(FOC1424) ISOLATION LEVEL FOR TABLE REQUEST IS : CS

To reset the isolation to the Interface default:
SQL SET ISOLATION (blank)
SELECT T1.field1 FROM "creator"."table1" T1 FOR FETCH ONLY;

NF571: DB2 Interface SET ISOLATION Command

Version 7.0 Release 8 Page 3 of 3

The following is a result of the SQL DB2 ? command:

(FOC1424) ISOLATION LEVEL FOR TABLE REQUEST IS :

The blank isolation level denotes the default isolation level will be used.

Reference Special Considerations

This new feature is enabled for SELECT requests only created as a result of
FOCUS TABLE requests.

This new setting cannot be used to override the required isolation level of RR
for FOCUS MODIFY requests, COPY MANAGER or CACTUS/MAINTAIN
applications.

RS isolation level is only available for DB2 version 5.1 (4.2).

The interface does not validate the isolation level values, so be sure that they
are one of the acceptable isolation levels for the version of DB2 that is being
accessed, otherwise an SQL code of -104 will occur signifying a SQL syntax
error.

Error Messages

None.

Version 7.0 Release 8 Page 1 of 2

NF572: Invisible Ordered Character and Ordered
Numeric Data Type Key Support

This new feature will allow access and selection of Model 204 invisible ordered
character and invisible ordered numeric fields. The interface supports these key
designations with comparable abbreviations called suffix operators. These
operators are described with the TYPE attribute in the Access File Description.

Usage

A TYPE=IOA in the Access File will designate a Model 204 Key of invisible
ordered character. A TYPE=ION would denote an invisible ordered numeric
field.

Any FOCUS or EDA selection request against a field with TYPE=IOA or ION
will result in a Model 204 IFFIND command with the appropriate IFFIND
specification.

Example Using TYPE=IOA and TYPE=ION to Produce an
IFFIND Specification

For example, an equality test produces the following IFFIND specification:

Suffix Operator Model 204 KEY Type IFFIND Specification

IOA Ordered Character, invisible IS ALPHA

ION Ordered Numeric, invisible IS NUM

NF572: Invisible Ordered Character and Ordered Numeric Data Type Key

Version 7.0 Release 8 Page 2 of 2

A range test using LT or GT produces the following IFFIND specification:

A range test using FROM-TO produces the following IFFIND specification:

Special Considerations

For a complete list and chart of all Model 204 KEY types and their
corresponding IFFIND specifications, please refer to the Model 204 Interface
Users Manual.

Error Messages

N/A

Suffix Operator Model 204 KEY Type IFFIND Specification

IOA Ordered Character, invisible IS ALPHA BEFORE/AFTER

ION Ordered Numeric, invisible IS NUM LT/GT

Suffix Operator Model 204 KEY Type IFFIND Specification

IOA Ordered Character, invisible IS ALPHA BEFORE/AFTER

ION Ordered Numeric, invisible IS NUM LT/GT

Version 7.0 Release 8 Page 1 of 2

NF574: System 2000 Interface Trace Facility

Two new trace levels have been enabled. The traces can be used for
informational or debugging purposes. You can access the SYSTEM 2000
database two ways with FOCUS or EDA: Selective or Sequential. FSTRACE
will display all SYSTEM 2000 calls made by the Interface. If the selective
strategy has been used, then FSTRACE1 can be used to display the SYSTEM
2000 LOCATE command with the associated parameters.

Usage

You can store the trace information in an MVS sequential data set or CMS file,
to SYSOUT in a batch job, or you can display it online at the terminal.

Syntax How to Invoke the System 2000 Interface Trace Facility

For Online to the screen (do not use for EDA or MSO):
DYNAM ALLOC F(FSTRACE) DA(*)

To write the trace to a file, use the appropriate allocation:
MVS ALLOC F(FSTRACE) DA(’userid.FSTRACE’) SHR REUSE LRECL(80) RECFM(F)

TSO ALLOC F(FSTRACE) DA(’userid.FSTRACE’) SHR REUSE LRECL(80) RECFM(F)

DYNAM ALLOC FILE FSTRACE DATASET userid.FSTRACE SHR REUSE LRECL 80 RECFM
F

For a batch job, to write the trace information to SYSOUT:
//FSTRACE DD SYSOUT=*,DCB=(LRECL=*,BLKSIZE=80,RECFM=F)

For CMS:
CMS FILEDEF FSTRACE DISK FSTRACE DATA A (LRECL 80 RECFM F

NF574: System 2000 Interface Trace Facility

Version 7.0 Release 8 Page 2 of 2

Note: Depending on the trace desired, specify FSTRACE or FSTRACE1. You
must specify the MOD parameter in order to produce a complete trace listing.
The FSTRACE and FSTRACE1 data sets are opened and closed for each
SYSTEM 2000 request. Without the MOD disposition parameter, requests that
produce multiple database accesses store only the last statement in the
dataset.

Reference Special Consideration

FSTRACE1 will contain less information than FSTRACE since it is restricted to
SYSTEM 2000 LOCATE calls. It should contain enough information to
determine interface to database communication and/or possible causes of
performance degradation. When utilizing FSTRACE, it is recommended to use
a RECORDLIMIT of 1 to begin with and increase this limit when needed since
the FSTRACE file produced can be quite voluminous.

Error Messages

N/A

Version 7.0 Release 8 Page 1 of 10

NF579: Assigning Screening Conditions to a File for
Reporting Purposes

A filtering mechanism that assigns screening conditions to a file has been
added to the functionality of TABLE. This enables you to declare a set of
screening conditions, and assign it to a specific file, instead of constantly
having to rewrite these screening conditions every time you need them.

The following example illustrates the use of filters. Both sides yield the same
results.

Whenever a TABLE request is made against a file, all filters that have been
activated for that file are in effect. A filter is a packet of definitions that resides
at the file level, containing IF and/or WHERE statements. Once these
conditions have been declared, you may deactivate and reactivate them as
needed for your reporting purposes.

Without filters With Filters

TABLE FILE CAR ... FILTER FILE CAR ...

WHERE SEATS GT 5 SET FILTER= WHERE ... SEATS GT 5...

TABLE FILE CAR ... TABLE FILE CAR ...

WHERE SEATS GT 5 ... TABLE FILE CAR ...

TABLE FILE CAR ... TABLE FILE CAR ...

WHERE SEATS GT 5 TABLE FILE CAR ...

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 2 of 10

Using Filters
A filter is an IF or WHERE statement that is automatically added to every
TABLE against that file as if the IF or WHERE were actually coded by the user.
All IF/WHERE syntax that is valid in a TABLE is valid in a filter. A filter can be
declared at any time before the TABLE request, and remains in effect after the
TABLE request has been executed. There can be one or more filters declared
for a file.

Just declaring a filter for a file does not make it active. A filter must be activated
with a SET command to be in effect.

Filters allow you to:

• Declare a common set of screening conditions that apply to all extracts
from a file.

• Declare a set of screening conditions and dynamically turn them on and off.

• Reduce repetitive ad hoc typing.

• Implement DBA capabilities that are not tied to the Master File Description.

Syntax How to Declare a Filter

A filter can be described by the following declaration:
 FILTER FILE filename [CLEAR/ADD]
 [filter-defines;]
 NAME=filtername1 [,DESC=text]
 if-where-statements
 ...
 NAME=filternamen [,DESC=text]
 if-where-statements
 END

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 3 of 10

where:
filename

Is thename of master to be used in subsequent TABLE commands
filter-defines

Are virtual fields declared for use in filters. For more information, see Filter
Defines.

NAME

Identifies the start of the declaration of a new filter
filtername

Is the name by which the filter is referenced in subsequent SET FILTER
commands. Filtername may be up to 8 characters in length and must be
unique for a particular filename.

CLEAR

Releases any previously declared filters.
ADD

Enables you to specify additional filters without releasing existing ones.
DESC

Describes the filter. Text must fit on one line for documentation purposes.
END

Terminates the filter
if-where-statements

Are screening conditions that can include all valid syntax. May not refer to
defined fields declared via DEFINE FILE. May refer to Database fields,
defines in the Master. May not refer to other filternames.

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 4 of 10

Reference Filter Defines

• Are exclusively local to (usable by) filters in the filter block.

• Are not referenceable by DEFINE FILE DEFINEs or TABLE.

• Support any syntax valid for DEFINEs in DEFINE FILE.

• Cannot reference DEFINEs from DEFINE FILE but can reference DEFINEs
in the Master File Description.

• Do not count toward the 256 verb object limit of TABLE unlike DEFINEs
from DEFINE FILE when referenced explicitly or implicitly.

• Must all be declared before the first named filter.

• Must each end with a semi-colon

• Cannot be enclosed between DEFINE FILE/END commands.

Example Using Filters

The following example replaces the filter UK, with a new WHERE condition. It
also adds to the CAR file’s set of filter-defines, a definition for “MARK_UP”.
When the TABLE command is issued for CAR, and UK is activated, the
condition WHERE MARK_UP is greater than 1000 is automatically added to the
TABLE request.

Note: The field MARK_UP cannot be explicitly displayed or referenced in the
TABLE.

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 5 of 10

FILTER FILE CAR ADD
MARK_UP/A16=RCOST-DCOST;
NAME=UK
WHERE MARKUP GT 1000
END
TABLE FILE CAR
PRINT

The following example declares three named filters for the CAR file; ASIA, UK,
and LUXURY. The filter ASIA is given a textual description, for documentation
purposes only. The CLEAR on the first line erases any named filters that had
existed for CAR, as well any filter DEFINEs for CAR, before it processes the
new definitions.
FILTER FILE CAR CLEAR
NAME=ASIA,DESC=Asian cars only
IF COUNTRY EQ JAPAN
NAME=UK
IF COUNTRY EQ ENGLAND
NAME=LUXURY
IF RETAIL_COST GT 50000
END

Syntax How to Activate/Deactivate Filters

Filters can be activated and deactivated with the following SET command:
SET FILTER {*|xx[yy zz]} IN file {ON|OFF}

where:
*

Denotes all declared filters (default)
ON

Activates the filter.

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 6 of 10

OFF

Deactivates the filter (default).
xx

Is the name of a filter as declared in the NAME = syntax of the FILTER FILE
block

The following is an example of filter activation and deactivation:
SET FILTER = UK LUXURY IN CAR ON
...
TABLE FILE CAR
PRINT COUNTRY NAME MODEL RETAIL_COST
END
...
SET FILTER = LUXURY IN CAR OFF
TABLE FILE CAR
PRINT COUNTRY NAME MODEL RETAIL_COST
END

The first SET FILTER activates CAR’s filters, UK and LUXURY, and applies the
conditions their filters contain to any subsequent TABLE request of CAR. The
second SET FILTER, deactivates the filter named LUXURY of CAR. Any
subsequent TABLE request (unless LUXURY is activated again) of CAR will not
apply the conditions in LUXURY but continues to apply UK.

Syntax Filter Query

In order to find out the status of any existing filters, use the following syntax:
? FILTER [{file|*}] [SET] [ALL]]

where:
file

Is the name of a database master

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 7 of 10

*

Displays filters for all files that have filters declared
SET

Displays only active filters
ALL

Displays all information about the filter including its description and the
exact IF/WHERE definition.

Example Querying Filters

The following is an example of querying filters:
? FILTER

NO FILTERS DEFINED

 or
Set File Filter name Description
--- -------- ----------- -----------------------------------
 CAR ROB Rob’s selections
* CAR PETER Peter’s selections for CAR
* EMPLOYEE DAVE Dave’s tests
 EMPLOYEE BRAD Brad’s tests

? FILTER CAR

NO FILTERS DEFINED FOR FILE NAMED CAR

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 8 of 10

 or
Set File Filter name Description
--- -------- ----------- -----------------------------------
 CAR ROB Rob’s selections
* CAR PETER Peter’s selections for CAR

? FILTER * SET
Set File Filter name Description
--- -------- ----------- -----------------------------------
* CAR PETER Peter’s selections for CAR
* EMPLOYEE DAVE Dave’s tests

Filters and JOINs
Filters against a file are suspended (but not erased) when that file is the object
of a JOIN. Filters against the primary file of a JOIN may be re-declared or be
entirely different, may reference only fields in the JOINed structure and are in
effect until the JOIN is cleared. At that time the pre-JOIN filters are brought
back. Filters against the secondary JOIN file(s) remain alive as originally
declared.

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 9 of 10

-*****************************
 -* JOIN AND FILTER INTERACTION
 -*****************************

 -* DECLARE A FILTER
 FILTER FILE EMPLOYEE CLEAR
 NAME=XXX WHERE JOBCODE EQ ’A01’
 END
 SET FILTER = XXX IN EMPLOYEE ON
 -* EMPLOYEE FILE SHOWS JOBCODE A01 ONLY
 TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
 END
 -* --
 -* NOW JOIN TO JOBFILE AND REDECLARE THE SAME FILTER TO A DIFFERENT VALUE
 -* --
 JOIN JOBCODE IN EMPLOYEE TO JOBCODE IN JOBFILE
 FILTER FILE EMPLOYEE
 NAME=XXX WHERE JOBCODE EQ ’A07’
 END
-* (NOTE: NEW FILTER FOR JOIN STRUCTURE IS NOT ACTIVATED YET)
 -* EMPLOYEE FILE SHOWS **ALL** JOBCODES (ORIGINAL FILTER TURNED OFF BY
JOIN)
 TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
 END
-* ---
 -* NOW TURN ON THE NEW FILTER THAT APPLIES TO THE JOIN STRUCTURE
 -* --
 SET FILTER = XXX IN EMPLOYEE ON
 -* SHOWS JOBCODE A07 (NOT A01) (NEW FILTER APPLIES TO JOIN ONLY)
 TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
 END
 -* NOW CLEAR THE JOIN TO RE-ESTABLISH THE ORIGINAL FILTER
 JOIN CLEAR *
 -* NOW SHOWS JOBCODE A01 ONLY, AS BEFORE (ORIGINAL FILTER REACTIVATED)

NF579: Assigning Screening Conditions to a File for Reporting Purposes

Version 7.0 Release 8 Page 10 of 10

 TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
 END

Reference Special Consideration

The maximum number of filters set ‘ON’ for a file is limited by the number of
IF/WHERE statements in these filters, not to exceed the standard FOCUS limit
of IF/WHERE statements in any single TABLE.

The SET FILTER command is limited to one line. To activate more filters than
fit on one line, repeat the SET FILTER command. As long as you specify ‘ON’
the effect is additive, not one of replacement. For example,
SET FILTER A B C IN CAR ON
SET FILTER D E F IN CAR ON
SET FILTER G IN CAR OFF

activates A, B, C, D, E, F and deactivates G (assuming that it was set ON
previously).

Reference Error Messages
(FOC 36237) SYNTAX ERROR SETTING FILTER

(FOC36241) FILTERS DON’T EXIST FOR FILE NAMED:

(FOC36242) FILTER DOESN’T EXIST

Version 7.0 Release 8 Page 1 of 2

NF583: Teradata Outer Join Optimization

This feature improves the Teradata Relational Interface performance by
enabling the interface to deliver better optimized SQL to the Teradata RDBMS,
permitting the RDBMS to optimize its own join processing.

The interface now passes left outer joins to Teradata when you issue the
FOCUS command
SET ALL=ON

(Note: SET ALL=ON previously disabled optimization, leaving FOCUS to
handle the join).

Optimization of outer joins is available for the interface installed with Teradata
TOS version 1 release 5.1 and higher or Teradata version 2 release 2 and
higher. The Teradata version is specified by the REL= parameter of the
Teradata Installation procedure GENFDBC.

Syntax How to Invoke Teradata Outer Join Optimization
SET ALL=ON

SQL SET OPTIMIZATION ON

Example Invoking Teradata Outer Join Optimization

This example shows the SQL passed to Teradata for a FOCUS dynamic join
with SET ALL=ON, SQL SET OPTIMIZATION ON:
JOIN field1 IN file1 TO field2 IN file25

SELECT T1.field1,T2.field2 FROM "creator.table1" T1 LEFT OUTER JOIN
"creator.table2" T2 ON T2.field2 = T1.field1 FOR FETCH ONLY;

NF583: Teradata Outer Join Optimization

Version 7.0 Release 8 Page 2 of 2

Special Considerations

• The SET ALL=ON command also controls processing of short paths. The
interface default setting is OFF. For a complete description of short path
processing, please refer to your Interface Users Guide.

• Please be aware that in passing requests to Teradata with SET ALL=ON,
you may get correct, yet subtly different, sequences of report rows than you
had with earlier releases of the Interface. These differences are due to
differences between sorting algorithms used by FOCUS and by Teradata,
and do not indicate upward compatibility problems.

Error Messages
N/A

Version 7.0 Release 8 Page 1 of 2

NF586: Expanding Byte Precision for COUNT and LIST

The COUNT and LIST verbs may now optionally be expanded from 5 to 9
characters on display. This internally reformats COUNT and LIST from I5 to I9.

Usage

Before FOCUS Release 7.0.8, if the number of records retrieved for a field
exceeded 5 bytes, asterisks were displayed in the report. This indicates an
overflow condition, meaning that the display must be increased. The new
maximum value for COUNT and LIST is 999,999,999.

Syntax How to Set the Precision for COUNT and LIST
SET COUNTWIDTH = {ON|OFF}

where OFF is the default.

Example Setting Precision for COUNT and LIST

The following example shows the COUNT verb with behavior prior to FOCUS
Release 7.0.8:
TABLE FILE filename
COUNT Fldxx
BY Fldyy
END

 FLDxx

Fldyy COUNT

value *****

NF586: Expanding Byte Precision for COUNT and LIST

Version 7.0 Release 8 Page 2 of 2

The following example shows the COUNT verb with behavior as of FOCUS
Release 7.0.8 with SET COUNTWIDTH = ON:
TABLE FILE filename
COUNT Fldxx
BY Fldyy
END

 FLDxx

Fldyy COUNT

value 999999999

Special Considerations

This feature will affect the width of a report when the COUNTWIDTH is set to
ON. Calculating the LRECL of a report will now require an additional 4 bytes for
each COUNT and LIST column.

Error Messages

None.

Version 7.0 Release 8 Page 1 of 1

NF593: IUCV CMS SU

Inter-user communications vehicle is now supported for CMS SU. This is a
desirable protocol as the master processor is not enqueued serially per
request. IUCV also offers performance gains when compared to the VMCF
communications protocol.

IUCV is not supported for any release prior to R7.0.8. If any earlier release of
FOCUS is used with an IUCV server the results are unpredictable. Please see
the Simultaneous Usage Reference Manual, CMS Version (DN 1000015.0797)

Version 7.0 Release 8 Page 1 of 1

NF594: JAVA Report Assist

Java Report Assist provides a user-friendly environment for creating ad hoc
reports in HTML, WP, DF or Lotus formats. The Report Assistant supports
automatic generation of complete record selection criteria, sort fields, headings
and footings, subtotals, and calculations.

Complete documentation for the Web Interface product can be found in the
Web Interface User’s Manual and Installation Guide Release 7.0.8
(DN1001038.1097).

Version 7.0 Release 8 Page 1 of 5

NF605: Date Handling for the Year 2000 in FOCUS

As part of our year 2000 compliance effort we have changed the default date
format display in FOCUS. The new format is MMDDCCYY.

Usage

The two digit century, has been added to the year portion of the display. This
applies to all areas within FOCUS that display a date. They include:

• The FOCUS Banner

• ? REL

• ? FILE

• ? FDT

• MODIFY FILE FN

• CREATE FILE FN

• FSCAN FILE FN

• REBUILD TIMESTAMP

A 4 digit year is written into the FOCUS file in the format of CCYY. Prior to
Release 7.0.8, YY was written into page 1 of the FOCUS file.

Example Displaying Four-digit Years in FOCUS

Entering ? REL at the FOCUS prompt displays a screen similar to the following:
>

? REL

FOCUS 7.0.8 CREATED 11/20/1997

NF605: Date Handling for the Year 2000 in FOCUS

Version 7.0 Release 8 Page 2 of 5

Date Literals Interpretation Table
This table illustrates the behavior of FOCUS date formats. The columns
indicate the number of input digits for a date format. The rows indicate the
usage or format of the field. The intersection of row and column describes the
result of input and format.

 1 2 3 4

YYMD * * CC00/0m/dd CC00/mm/dd

MDYY * * * *

DMYY * * * *

YMD * * CC00/0m/dd CC00/mm/dd

MDY * * * *

DMY * * * *

YYM CC00/0m CC00/mm CC0y/mm CCyy/mm

MYY * * * *

YM CC00/0m CC00/mm CC0y/mm CCyy/mm

MY * * 0m/CCyy mm/CCyy

M 0m mm * *

YYQ CC00/q CC0y/q CCyy/q 0yyy/q

NF605: Date Handling for the Year 2000 in FOCUS

Version 7.0 Release 8 Page 3 of 5

 1 2 3 4

QYY * * q/CCyy *

YQ CC00/q CC0y/q CCyy/q 0yyy/q

QY * * q/CCyy *

Q q * * *

JUL CC00/00d CC00/0dd CC00/ddd CC0y/ddd

YY 000y 00yy 0yyy yyyy

Y 0y yy * *

D 0d dd * *

W w * * *

 5 6 7 8

YYMD CC0y/mm/dd CCyy/mm/dd 0yyy/mm/dd yyyy/mm/dd

MDYY 0m/dd/CCyy mm/dd/Ccyy 0m/dd/yyyy mm/dd/yyyy

DMYY 0d/mm/CCyy dd/mm/Ccyy 0d/mm/yyyy dd/mm/yyyy

YMD CC0y/mm/dd CCyy/mm/dd 0yyy/mm/dd yyyy/mm/dd

MDY 0m/dd/CCyy mm/dd/Ccyy 0m/dd/yyyy mm/dd/yyyy

NF605: Date Handling for the Year 2000 in FOCUS

Version 7.0 Release 8 Page 4 of 5

 5 6 7 8

DMY 0d/mm/CCyy dd/mm/Ccyy 0d/mm/yyyy dd/mm/yyyy

YYM 0yyy/mm yyyy/mm * *

MYY 0m/yyyy mm/yyyy * *

YM 0yyy/mm yyyy/mm * *

MY 0m/yyyy mm/yyyy * *

M * * * *

YYQ yyyy/q * * *

QYY q/yyyy * * *

YQ yyyy/q * * *

QY q/yyyy * * *

Q * * * *

JUL CCyy/ddd * * *

YY * * * *

Y * * * *

D * * * *

W * * * *

NF605: Date Handling for the Year 2000 in FOCUS

Version 7.0 Release 8 Page 5 of 5

• CC stands for two century digits provided by DFC/YRT settings.

• * stands for error message FOC177 (invalid date constant).

• FOCUS reads date literals from right to left.

Special Considerations

N/A

Error Messages
(FOC177) INVALID DATE CONSTANT:

The constant in the calculation is not a valid date. Enter a valid
date.

Version 7.0 Release 8 Page 1 of 3

NF607: TABLA Enhancements
(Default Space Allocation Table for Work Files)

FOCUS output datasets not allocated by the user are allocated dynamically by
FOCUS itself. The default space attributes associated with each dynamically
allocated ddname are now set by editing the member IBITABLA in the PDS
called FOCCTL.DATA.
In order to change the defaults for these FOCUS output datasets, the file
IBITABLA must be copied to a dataset allocated to the DDname ERRORS. The
file is a fixed columnar file. All changes must be made in the appropriate
column. The columns are:

* Use NOHIPER as a unit name to exclude particular datasets from
HiperFOCUS.

Column name Starting column length

DDname 01 8

Allocation units (CYLS,TRKS) 10 4

Primary space 15 3

Secondary space 19 3

Number of Directory entries (PDS) 23 2

Sysout class (OFFLINE only) 26 1

Volume 28 6

Unit (SYSDA,DASD,HIPER,NOHIPER*,etc) 35 8

Unit Count (FOCPOOLT only) 44 2

NF607: TABLA Enhancements

Version 7.0 Release 8 Page 2 of 3

If the file IBITABLA is not available in a PDS allocated to the ddname ERRORS,
the defaults are in affect for all FOCUS output datasets. The default for all
FOCUS output datasets except FOCPOOLT is 5 CYLs with secondary extent
size of 5. The default for FOCPOOLT is 5 CYLs with secondary extent size of
20.

Example Sample IBITABLA

This is a copy of IBITABLA as shipped.
* DDNAME*A.UN*SP1*SP2*DR*C*VOLUME* UNIT *UC* FIELD NAME
0-------1----1---1---2--2-2------3--------4- STARTING
1-------0----5---9---3--6-8------5--------4- COLUMN
---8-----4-- -3- -3- 2- 1 --6--- ---8---- 2- LENGTH
HOLD CYLS 5 5 , /* 1 */
HOLDMAST TRKS 5 5 36 , /* 2 */
SAVE CYLS 5 5 , /* 3 */
REBUILD CYLS 5 5 , /* 4 */
FOCSML CYLS 5 5 , /* 5 */
FOCUS CYLS 5 5 , /* 6 */
FOCSTACK TRKS 5 5 , /* 7 */
FOCSORT CYLS 5 5 , /* 8 */
OFFLINE CYLS 5 5 A , /* 9 */
SESSION TRKS 5 5 , /*10 */
FOCCOMP TRKS 5 5 12 , /*11 */
HOLDACC TRKS 5 5 12 , /*12 */
FMU TRKS 5 5 12 , /*13 */
TRF TRKS 5 5 12 , /*14 */
FOCPOOLT CYLS 5 20 2, /*15 */
*
*
* The UC or unit count column may be specified for FOCPOOLT only.
******************************** Bottom of Data

NF607: TABLA Enhancements

Version 7.0 Release 8 Page 3 of 3

Special Consideration

This New Feature document supersedes Section 3.14 ‘Default Space
Allocation Table for Work Files: TABLA’ in the FOCUS MVS/TSO Installation
Guide (DN1000994.0295, DN1000994.0896, or DN1000994.1097).

Error Messages

If the old method is used and the installer attempts to link TABLA into module
FOCUS, there is now a U593 abend at FOCUS initialization.

Version 7.0 Release 8 Page 1 of 1

NF609: Sink Validation of Userids in CMS

A new file has been created in CMS to help verify who may connect to a
specific CMS sinkid.

Usage

A filename called FOCSUACC, with FILETYPE = DATA and FILEMODE = A1,
can be created on the A disk of the CMS sink id. The DCBs of the file are as
follows: LRECL 80 RECFM F BLKSIZE 80. You may code up to eight-
character userids in this file. They are coded one per line in the file. When
HLIMAIN or IUCVMAIN programs initialize, a search is performed for this file. If
it’s found, all of the userids stored in the file are read into a list in memory. This
list is then used to verify who may connect to this CMS sink id with READ
and/or WRITE access. If a client tries to connect to the sinkid and their userid
doesn’t exist in the FOCSUACC DATA file, an error message is displayed. This
provides an equivalent of MVS SUSI for the CMS SU product.

Examples

Verification that this feature is working can be simply tested. For example, if
FOCSUACC DATA A has two userids coded on two lines, and you start the
sink, and attempt to connect with a third userid that is not coded in FOCSUACC
DATA an error will display after the first request for data from the sink.

Special Considerations

ENCRYPT FILE is not supported for this feature.

Error Messages
(FOC517) SU. ACCESS DENIED BY EXTERNAL SECURITY SYSTEM:

Version 7.0 Release 8 Page 1 of 2

NF617: Automatic Allocation of FOCUS Files

The automatic allocation of FOCUS files in MVS FOCUS was removed from
FOCUS Release 7.0.1. This was a dramatic change from prior releases where
TABLE, MATCH, MODIFY, etc. commands would search the catalog for
‘prefix.master.FOCUS’. If the file is found, the allocation for the file would be
made automatically. This change was made for performance reasons.

Usage

With the new SET command activated before running a TABLE, MODIFY, or
MATCH, etc. request, FOCUS dynamically issues the equivalent of a DYNAM
ALLOC or TSO ALLOC.

Syntax How to Activate or Deactivate Automatic Allocation of FOCUS
Files

SET FOCALLOC = {ON|OFF}

where OFF is the default.

Example Activating and Deactivating Automatic Allocation of
FOCUS Files

The following shows a TABLE request and its result in any FOCUS Release
between 7.0.1. and 7.0.7, without any previous allocation to the EMPLOYEE
file:
TABLE FILE EMPLOYEE
PRINT EMP_ID
END

(FOC036) NO DATA FOUND FOR THE FOCUS FILE NAMED: EMPLOYEE

NF617: Automatic Allocation of FOCUS Files

Version 7.0 Release 8 Page 2 of 2

The same TABLE request in FOCUS Release 7.0.8, without any previous
allocation to the EMPLOYEE file, but after setting FOCALLOC on, yields a
report with all of the EMP_ID records in the EMPLOYEE file.

Reference Special Considerations

? SET ALL shows this feature in its list. ? SET does not show this feature in its
list. This is an MVS only feature.

Error Messages

None.

Version 7.0 Release 8 Page 1 of 2

NF619: -HTMLFORM SAVE

FOCUS 7.0.8 introduces a new -HTMLFORM SAVE feature for the WEB
Interface. With this feature, you can save html content generated by the
-HTMLFORM command to a file, rather than to the screen. All FOCUS amper
variables (&var) and escape sequences (e.g., ‘!IBI.AMP.varname’) will be fully
resolved in the external file.

Usage

This feature may be useful for those wishing to use FOCUS to generate HTML
content in batch mode, rather than interactively.

Syntax Using -HTMLFORM SAVE
-HTMLFORM BEGIN SAVE AS filename

or
-HTMLFORM htmlfile SAVE AS filename

where:
filename

Is a 1 to 8 character filename of the file that will receive the html output from
-HTMLFORM.

htmlfile

Is a 1 to 8 character filename of a source file containing HTML that you
wish to save as output of -HTMLFORM.

In CMS FOCUS, this creates an html file named filename with a filetype of
HTML.

NF619: -HTMLFORM SAVE

Version 7.0 Release 8 Page 2 of 2

In MVS FOCUS (TSO or MSO), this creates an html extract file in one of three
ways:

• If ddname ‘filename’ is allocated, to either a sequential file or a member of a
partitioned dataset, the html is written to that file.

• If ddname ‘filename’ is not allocated, but ddname ‘HTML’ is allocated to a
partitioned dataset, the file is written to the HTML PDS as member

• ‘filename.’

• If neither ‘filename’ nor ‘HTML’ is allocated, the file is written to a temporary
sequential file using ddname ‘filename’.

In each case, this HTML file can then be copied to a Web server for display to
end users’ browsers.

Special Consideration

Complete documentation for the Web Interface product can be found in the
Web Interface User’s Manual and Installation Guide Release 7.0.8
(DN1001038.1097).

Error Messages
FOC36235 - AS KEYWORD NOT SPECIFIED FOLLOWING SAVE

Version 7.0 Release 8 Page 1 of 7

NF620: Year 2000 Subroutines

Enhancements have been made to subroutines that handle dates. All
subroutines that perform date calculations or perform date format conversions
support dates including and after the year 2000. This change was made to
coincide with our Year 2000 project.

The subroutines that were re-written for Year 2000 are:

Usage

The new versions of these date subroutines are used by default.

AYMD Adds and subtracts days from a date.

AYM Adds and subtracts months from a date.

YM Finds the number of months between two dates.

CHGDAT Rearranges the year, month and day portions of dates, and
connects dates between long and short formats.

JULDT Converts dates in year-month-day format into Julian format.

GREGDT Converts Julian dates to year-month-day dates.

DAxxx Converts dates into number of days elapsed.

DTxxx Converts the number of days elapsed into date usage.

NF620: Year 2000 Subroutines

Version 7.0 Release 8 Page 2 of 7

Syntax How to Choose a Version of a Subroutine
SET DATEFNS = {ON|OFF}

where:
ON

is the default.

If you require the older version which does not have Year 2000 capabilities,
deactivate this feature by setting DATEFNS = OFF.

Example Using Subroutines With Year 2000 Capabilities

The following FOCEXEC shows a straight conversion on the input to the
subroutine.
SET DEFCENT=19,YRTHRESH=50
 DYNAM ALLOC FILE DATE DS PMSPAK.DATE.FOCUS SHR REU
 TABLE FILE DATE
 ON TABLE SUBHEAD
 " THIS EXAMPLE ILLUSTRATES THE USE OF THE THIRD PARAMETER IN THE "
 " SUBROUTINE CALL. THE INPUT FIELD IS AN I6YMD FORMAT. IT CONTAINS "
 " 2 DIGIT YEARS. SETTING A PIVOT YEAR OF 1950 RESULTS IN CONVERSION "
 " TO A FULL 4 DIGIT YEAR VIA THE FORMAT OF ’I8’. "
 PRINT D2_I6YMD AND COMPUTE
 X/I8YYMD=AYMD(D2_I6YMD,1,’I8’);
 END

NF620: Year 2000 Subroutines

Version 7.0 Release 8 Page 3 of 7

Output:
 PAGE 1

 THIS EXAMPLE ILLUSTRATES THE USE OF THE THIRD PARAMETER IN THE
 SUBROUTINE CALL. THE INPUT FIELD IS AN I6YMD FORMAT. IT CONTAINS
 2 DIGIT YEARS. SETTING A PIVOT YEAR OF 1950 RESULTS IN CONVERSION
 TO A FULL 4 DIGIT YEAR VIA THE FORMAT OF ’I8’.
 D2_I6YMD X
 -------- -
 97/09/16 1997/09/17
 00/02/29 2000/03/01
 01/02/28 2001/03/01
 00/02/28 2000/02/29

The following example demonstrates giving the subroutine a 4 digit year as
input.
DYNAM ALLOC FILE DATE DS PMSPAK.DATE.FOCUS SHR REU
TABLE FILE DATE
ON TABLE SUBHEAD
" START WITH A COMPUTED FIELD CALLED A. IT HAS A PIVOT YEAR OF 1950."
" CONVERTING IT FROM I6YMD TO YYMD SETS THE CENTURY DIGITS TO ’20’ "
" FOR THOSE YEARS WHICH ARE LT 50. CREATE OLD DATE FIELD B. "
" PASS B INTO THE AYMD SUBROUTINE ADDING 1 DAY TO THE DATE. "
 PRINT D2_I6YMD AND COMPUTE
 A/YYMD DFC 19 YRT 50 = D2_I6YMD;
 B/I8YYMD=A;
 C/I8YYMD=AYMD(B,1,C);
END

NF620: Year 2000 Subroutines

Version 7.0 Release 8 Page 4 of 7

Output:

 PAGE 1

Start with a computed field called A. It has a pivot year of 1950. Converting it from I6YMD to YYMD sets
the century digits to ’20’ for those years which are less than 50. Create old date field B. Pass B into the
AYMD subroutine adding 1 day to the date.
 D2_I6YMD A B C
 -------- - - -
 97/09/16 1997/09/16 1997/09/16 1997/09/17
 00/02/29 2000/02/29 2000/02/29 2000/03/01
 01/02/28 2001/02/28 2001/02/28 2001/03/01
 00/02/28 2000/02/28 2000/02/28 2000/02/29

Date Literals Interpretation Table
This table illustrates the behavior of FOCUS date formats. The columns
indicate the number of input digits for a date format. The rows indicate the
usage or format of the field. The intersection of row and column describes the
result of input and format.

 1 2 3 4

YYMD * * CC00/0m/dd CC00/mm/dd

MDYY * * * *

DMYY * * * *

YMD * * CC00/0m/dd CC00/mm/dd

MDY * * * *

NF620: Year 2000 Subroutines

Version 7.0 Release 8 Page 5 of 7

 1 2 3 4

DMY * * * *

YYM CC00/0m CC00/mm CC0y/mm CCyy/mm

MYY * * * *

YM CC00/0m CC00/mm CC0y/mm CCyy/mm

MY * * 0m/CCyy mm/CCyy

M 0m mm * *

YYQ CC00/q CC0y/q CCyy/q 0yyy/q

QYY * * q/CCyy *

YQ CC00/q CC0y/q CCyy/q 0yyy/q

QY * * q/CCyy *

Q q * * *

JUL CC00/00d CC00/0dd CC00/ddd CC0y/ddd

YY 000y 00yy 0yyy yyyy

Y 0y yy * *

D 0d dd * *

W w * * *

NF620: Year 2000 Subroutines

Version 7.0 Release 8 Page 6 of 7

 5 6 7 8

YYMD CC0y/mm/dd CCyy/mm/dd 0yyy/mm/dd yyyy/mm/dd

MDYY 0m/dd/CCyy mm/dd/Ccyy 0m/dd/yyyy mm/dd/yyyy

DMYY 0d/mm/CCyy dd/mm/Ccyy 0d/mm/yyyy dd/mm/yyyy

YMD CC0y/mm/dd CCyy/mm/dd 0yyy/mm/dd yyyy/mm/dd

MDY 0m/dd/CCyy mm/dd/Ccyy 0m/dd/yyyy mm/dd/yyyy

DMY 0d/mm/CCyy dd/mm/Ccyy 0d/mm/yyyy dd/mm/yyyy

YYM 0yyy/mm yyyy/mm * *

MYY 0m/yyyy mm/yyyy * *

YM 0yyy/mm yyyy/mm * *

MY 0m/yyyy mm/yyyy * *

M * * * *

YYQ yyyy/q * * *

QYY q/yyyy * * *

YQ yyyy/q * * *

QY q/yyyy * * *

NF620: Year 2000 Subroutines

Version 7.0 Release 8 Page 7 of 7

• CC stands for two century digits provided by DFC/YRT settings.

• * stands for error message FOC177 (invalid date constant).

• FOCUS reads date literals from right to left.

Reference Special Considerations

You may need to deactivate the new subroutines if you are hardcoding the
century digits based on specific years. The windowing technique determines
what the century digits should be for each subroutine call.

 5 6 7 8

Q * * * *

JUL CCyy/ddd * * *

YY * * * *

Y * * * *

D * * * *

W * * * *

Version 7.0 Release 8 Page 1 of 2

NF623: Increasing the Number of Verbs in a Report
Request

The number of verbs for a multi-verb request, has been increased from 6 to 16.

Usage

This is extremely useful for executing complex reports. The original
requirement of having the detail verb last still applies. In other words, PRINT or
LIST must be coded last in the list. The aggregation verb (SUM or COUNT) is
coded prior to PRINT or LIST.

Syntax

Not applicable

Example Repeating Aggregation of the PCT_INC Field

The following example shows a repeating aggregation of the PCT_INC field out
of the EMPLOYEE FOCUS file. This example has 15 verb objects, which are
aggregated, and 1 verb object, which lists the detail records for LAST_NAME
and FIRST_NAME. The CURR_SAL field is also counted for the total number
of records, which passed the IF on DEPARTMENT. The resulting report is an
effective illustration of how this feature is used.

NF623: Increasing the Number of Verbs in a Report Request

Version 7.0 Release 8 Page 2 of 2

TABLE FILE EMPLOYEE
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM PCT_INC
SUM GROSS
SUM DED_AMT
SUM SALARY
SUM ED_HRS
SUM CNT.CURR_SAL BY DEPARTMENT
LIST LAST_NAME FIRST_NAME
BY DEPARTMENT BY EMP_ID
IF DEPARTMENT EQ ’PRODUCTION’
END

Special Considerations

Not Applicable

Reference Error Messages

If another SUM PCT_INC is added to the above request a diagnostic displays:
(FOC019) THERE ARE TOO MANY VERBS IN THE REQUEST BYPASSING TO END OF

COMMAND

The total number of verbs in the request would be 17 which exceeds the new
limit. This is the same error message that displays in releases prior to R7.0.8
when the old limit of 6 is exceeded.

Version 7.0 Release 8 Page 1 of 1

NF626: JAVA Graph Wizard

Java Graph Wizard guides a user step-by-step through creating a graph. The
Graph Wizard is an alternative to stored graph procedures and generates
FOCUS graph syntax from the user’s input.

Complete documentation for the Web Interface product can be found in the
Web Interface User’s Manual and Installation Guide Release 7.0.8
(DN1001038.1097).

Version 7.0 Release 8 Page 1 of 1

NF628: Automatic Activation of Web Interface for Web
Browser Users

Beginning with Release 7.0.8, FOCUS automatically activates the interactive
Web environment for FOCUS Web Interface users entering via the Web
Interface Server or WEB390.

Usage

FOCUS automates the activation of this environment by internally issuing two
SET commands (see “Syntax” below).

Syntax How to Activate the Web Interface
SET HTMLMODE=ON
SET ONLINE-FMT=HTML

Examples

N/A - see “Syntax.”

Special Consideration

Sites wishing to activate the Web environment for FOCUS Web Interface users
on a selective basis, can do so by turning the SET commands off and reissuing
them selectively to activate the environment for only certain users. Complete
documentation for the Web Interface product can be found in the Web Interface
User’s Manual and Installation Guide Release 7.0.8 (DN1001038.1097).

Error Messages

None

Version 7.0 Release 8 Page 1 of 1

NF630: Querying Which PTFs Have Been Applied for a
Specific Release

By issuing a command at the FOCUS prompt, you are able to view a list of ptfs
that have been applied to the version of FOCUS you are currently using.

Example Querying the PTFs
? ptf

Example Using the ? PTF Command

The following displays a screen containing the entering of the ? ptf command,
followed by a sample result to the query.
FOCUS 7.0.8 10/20/1997 11.44.11 9999.01
>
? ptf
PTFS APPLIED TO RELEASE 7.0.8
FROM PTFABLE LOCATED IN FOCLIB LOADLIB F

COUNT PTF NUM CREATED APPLIED

1) 12345 19970403 19971020

2) 12444 19970702 19971020

3) 12499 19970808 19971020

Version 7.0 Release 8 Page 1 of 2

NF631: Extended Plists

VM FOCUS now issues commands to CMS using CMS’s ‘Extended Plist’. This
will enable FOCUS users to issue CMS commands such as STORMAP and
PIPE that require the extended plist. It will also enable FOCUS users to specify
FILEDEF, ACCESS and other CMS commands with parameters that are longer
than eight characters.

Usage

The standard plist or tokenized plist uppercases each token, left-justifies it, and
truncates it to a length of 8 bytes. Extended plist has no limit on the length of
the plist passed.

Syntax

N/A

Reference Examples

Without extended plist the command:
FILEDEF MINE DSN TEST.SAMPLE.MAY

would read as:
FILEDEF
MINE
DSN
TEST.SAM

NF631: Extended Plists

Version 7.0 Release 8 Page 2 of 2

In this case the Data Set Name has lost the ‘PLE.MAY’ part of the qualifier. A
tokenized plist is limited to 32 tokens, each of which may be between 1 and 8
bytes. The extended plist consists of a control block that points to an
uppercase command token, a pointer to the start of the option list, and a pointer
to the end of the option list. The option list is left unchanged. Using extended
plist with the previous example, would pass the following:
FILEDEF
MINE DSN TEST.SAMPLE.MAY

With extended plist, all of the Data Set Name is preserved.

Reference Special Considerations

FOCUS uses a FILEDEF for SYSIN to read from the terminal and from
FOCEXECs. By default FILEDEF uppercases all data. Reissuing FILEDEF
with the LOWCASE option, allows a lowercase option list to be passed to VM.
This requires all FOCUS commands to be typed in uppercase. This may be
used for special cases when a lowercase plist is required

Error Messages

N/A

Version 7.0 Release 8 Page 1 of 1

NF640: Dynamic Language Environment (LE) Support

IBM’s recommended platform for high-level language products is known as
Language Environment for VM and MVS. It provides a unified platform for
runtime services used by LE supported languages. FOCUS user-written
subroutines can now be linked using IBM’s LE environment. LE support is
available for both the MVS and VM operating systems.

This feature enhances our currently announced support for IBM Language
Environment. It incorporates the automatic pre-initialization of a Language
Environment Enclave or Sub-Enclave as required. This allows customer
written HLL subroutines that were linked with LE libraries to run most efficiently.
The implementation also allows non-LE-linked subroutines to run as well.
FOCUS determines the characteristics of these subroutines and invokes them
using LE interface module CEEPIPI if they are LE linked or in the traditional
manner if they are not.

Usage

All standard FOCUS subroutines, whether linked prior to LE or using the LE
single runtime library are supported depending on Language Environment
restrictions. Existing FOCUS subroutine libraries need not be recompiled and
relinked unless your site converts to a single run-time library.

Reference Special Considerations

Refer to IBM manual , SC28-1944 Language Environment for OS/390 and VM
Run-Time Migration Guide, for instructions on how to use this environment and
conversion limitations.

Version 7.0 Release 8 Page 1 of 1

NF642: Increased DEFINE Limitation

The limit of 256 for the number of DEFINEs allowed in FOCUS has been
removed. The limit now is dependent on the amount of memory available. The
number of fields, both real and defined that can be referenced in a single
request is still 256. It is possible to define as many fields as you need, as long
as you have enough memory and the total number of fields referenced in a
request is no more than 256.

Version 7.0 Release 8 Page 1 of 2

NF645: WEBHOME

FOCUS 7.0.8 introduces the Web Interface feature ‘WEBHOME’ which enables
Web application developers to specify execution of a default FOCEXEC
procedure in situations where FOCUS would normally return to command level.
This allows them to prevent application users from accidentally or intentionally
accessing command level FOCUS from within a Web application. Previously,
FOCUS always displayed the ‘FOCUS Interactive’ screen by default whenever
a Web Interface user entered FOCUS or after they ran a drill-down report or
graph that cleared FOCSTACK. With this feature, developers can now display
a menu or form that they choose, instead of returning to the FOCUS command
level. This will ensure that the FOCUS application environment remains intact
and consistent even when Web applications include drill-downs and/or allow
users to access the ad hoc Java report and graph generation tools.

WEBHOME is activated via a FOCUS SET command that you can specify
globally for a FOCUS session or issue in a FOCEXEC for a specific application.

Syntax Identifying a FOCEXEC to Run Automatically
SET WEBHOME= {focexecname|OFF}

where:
focexecname

Is the 1 to 8-character filename of the FOCEXEC to be called instead of
returning to the FOCUS command level and displaying the FOCUS
Interactive screen
In CMS FOCUS, the focexecname must have a filetype of FOCEXEC.
In MVS FOCUS (TSO or MSO) the FOCEXEC must be a member of a
partitioned dataset allocated to ddname FOCEXEC.

NF645: WEBHOME

Version 7.0 Release 8 Page 2 of 2

OFF

The default, OFF, disables WEBHOME and restores the default behavior -
the FOCUS Interactive screen is displayed whenever FOCUS returns to
command level.

Example Automatically Running a FOCEXEC
SET WEBHOME=APPMENU1

The above SET command causes the FOCEXEC named APPMENU1 to be
called each time FOCUS would normally return to command level.

Reference Special Consideration

This SET command is valid only in the Web Interface environment. It has no
effect in a standard FOCUS 3270 session.

Error Messages
This SET command only valid in Web Interface Environment.

Version 7.0 Release 8 Page 1 of 1

NF647: Extended Support for Scandinavian External
Sort

FOCUS supports external sort with the Scandinavian National Languages
Character set, and is able to pass the sort sequences for Swedish , Danish,
Finnish, and Norwegian to the external sorting products. To specify the
National Language Support Environment, use the LANG parameter as
described in Section 21 of the FOCUS 7.0 Users Manual.

Version 7.0 Release 8 Page 1 of 1

Project 2000 - Phase III

The third phase of our year 2000 project for FOCUS includes rewritten user
subroutines which perform date manipulations. They are: AYMD, AYM, YM,
CHGDAT, GREGDT, JULDAT, DAxxx, DTxxx and FOCUS functions
YMD,DMY,MDY. These subroutines and functions will now allow for century
digit interpretation via the DEFCENT and YRTHRESH FOCUS settings. Date
calculations for these subroutines may now extend beyond year 1999. The
subroutines have also been enhanced to respect the last argument which may
contain the output format from the subroutine.

Page 1 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Index

Symbols

$ VIRT
&DMYY
&FOCERRNUM in Adabas Write
&LOC_LIST
&MDYY
&RETCODE
&YYMD
? FILTER
? FUNCTION command
? PTF
? SET FOR
? SET NOT

Numerics

1024 display objects
495 display objects
4K alpha

A

Access File for Adabas Write
sample

Page 2 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Access File for FOCUS data sources
attributes
creating
DATANAME attribute
introduction
LOCATION attribute
MASTERNAME attribute
syntax
WHERE attribute

ACCESSFILE attribute
ACCTNAME
ACCTPASS
ACROSS-TOTAL
ACTUAL format for date-time data type

relational data source
Adabas Write Data Adapter

Access File changes
delete rules
error messages
examples
INSERT and UNQKEYNAME
insert rules
Master File changes
non-updatable fields in MAINTAIN
non-updatable fields in MODIFY
options
return codes
sample Access File

Page 3 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Adabas Write Data Adapter (continued)
sample Master File
synonyms
testing FOCERROR
transaction control
UPDATE rules
user errors

aggregating
and sorting report columns
controlling retrieval order
using external sort

ALL parameter
and MULTIPATH
CHECK FILE HOLD

ALLOC for multiple volumes
allocating

default space in TABLA
FOCUS files automatically
long Master File names
multiple units
multi-volume data sources

ALLOWCVTERR
and DATEDISPLAY
and MISSING

alphanumeric fields, long
assignment of date-time values
attributes for FOCUS Access Files
AUTODATE

Page 4 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

AUTODB2
and DDF
batch execution
date-time support

AUTOIMS
accessing Master File and FOCPSB
CLIST
COBOL FD translator window
default parameters
installing
invoking
Master File
PF keys
prerequisites
PSB name
required data sets

AUTOSQL
date-time support

B

Base dates in FOCUS Reports
batch

allocating multi-volume data sources
error processing
pooled tables

batch error processing
Boundary conditions for Pooled Tables
British pound symbol

Page 5 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

BUSDAYS (Business day units)
BY TOTAL
byte precision for COUNT and LIST

C

CAF
SET SSID

CA-IDMS Data Adapter
NF584 Dynamically Setting the IDMS DBNAME and DICTNAME

calculated value, sorting by
calling subroutines written in REXX
CALLTYPE

with NEXT
carriage control

in FORMAT WP files
case logic
CC
CDN
CEEPIPI
CENT-ZERO
Changes to the REBUILD Prompt
Changing Retrieval Order with Aggregation
CHECK FILE HOLD ALL
CICS

MSO control blocks
MSO cooperative processing

CICSCOMM
clearing DEFINE functions

Page 6 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

CMS
extended Plists
FILEDEF for creating extract files
validating userids on sink

CMSOAPI functions
COM output file format
COM suffix
COMBINE

diagram
different SUFFIX
FIND
versus JOIN

COMMA output file format
comma suppress edit format option
comma-delimited files
commands and subpool boundaries
COMMIT WORK
comparison of date-time values
compile REXX subroutines in CMS
compiler, LE-supported
components for date-time functions
COMPUTE

and currency conversion
and date-time values
sorting by

COMT output file format
COMT suffix
conditional join

Page 7 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

console, MSO, display of IMS PSB
continental decimal notation
control blocks for MSO/CICS
Controlling REBUILD Messages
COUNT, expanding precision for
COUNTWIDTH
Creating Comma-Delimited Files
CRTFORM for Web390
CS
CURR
currency

conversion
calculations
database
processing

euro support
field in a data source
sample codes

currency symbols
CURRENCY_ID

D

Danish external sort
data source, token delimited

Page 8 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

data type, date-time
ACTUAL format
and SQL Translator
entering values
for relational data sources
USAGE

DATANAME attribute
DATASET in a Master File

behavior in fixed-format sequential data sources
behavior in FOCUS data sources
behavior in VSAM data sources
priority in the Master File
syntax for fixed-format data sources
syntax for FOCUS data sources
syntax for VSAM data sources

date
adding date units
base date in FOCUS reports
business day units
converting formats
converting legacy
difference between two
displaying invalid smart dates in reports
functions for the year 2000
handling for the year 2000 in FOCUS
holidays
literal interpretation
MAINTAIN functions

Page 9 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

date (continued)
moving
subtracting date units
system, altering for testing
variable, displaying without separators
weekday units

DATE format
date literal interpretation table
date string

formatted string format
numeric string format
translated string format

DATEADD
Using in MAINTAIN

DATECVT
DATEDIF

Using in MAINTAIN
DATEDISPLAY

And ALLOWCVTERR
DATEFORMAT parameter
DATEMOV

Using in MAINTAIN
date-time data type

ACTUAL format
ACTUAL format for relational data source
and HOLD files
and missing values
and SAVE files

Page 10 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

date-time data type (continued)
assignment
comparison
component names in functions
DATEFORMAT parameter
describing

relational
DTSTRICT parameter
entering values
formatted string date format
functions
HADD function
HCNVRT function
HDATE function
HDIFF function
HDTTM function
HGETC function
HINPUT function
HMIDNT function
HNAME function
HPART function
HSETPT function
HTIME function
ISO standards
numeric string date format
optimization for relational data sources
SQL Translator support
translated string date format

Page 11 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

date-time data type (continued)
USAGE
WEEKFIRST parameter
with AUTODB2/SQL

date-time formats
and SQL

DB2 Data Adapter
IF-THEN-ELSE optimization
SET ISOLATION
SET OPTIFTHENELSE
SET SSID Command for MSO

DB2 data sources
and date-time data type
and long Master File names

DBCS character support in Teradata
DBNAME
DDF
DDNAME

Default space
For REXX subroutines

DEFCENT and CHECK FILE HOLD ALL
DEFINE

and currency conversion
and date-time values
increased limit
preserving fields

DEFINE FILE SAVE and DEFINE FILE RETURN

Page 12 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

DEFINE functions
clearing
querying

DELETE
rules for Adabas data sources

delimter
descriptors in Adabas Write
DFSORT
Dialogue Manager TRUNCATE Function
DICTNAME
DIF format in Web Interface
difference between two dates
display commands

number in a report request
display fields

raised limits
display objects, 1024
displaying fractions
displaying WHERE-based JOINs
Distributed Data Facility
DNS names support
dollar sign
DT format for date-time constants
DTSTRICT parameter
DU
dummy segment (SYSTEM99)

Page 13 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

DYNAM
allocating multiple volumes
for long Master File names
support for existing relative GDG numbers
support for unit count

DYNAM ALLOC LONGNAME
DYNAM FREE LONGNAME
Dynamic Language Environment support
dynamic reformatting

E

EDA
IMS PSB display in console

EDACFG
embedding text fields in headings
Enhancement to ? SET (FOR, NOT)
error

messages for Adabas Write
messages for Pooled Tables
processing for Pooled Tables

error handling
Adabas
batch
ROLLBACK WORK
testing with &RETCODE

ERROROUT parameter
ERRORRUN
ERRORS, IBITABLA default space allocation table

Page 14 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

errors, user
for Adabas Write

Escape character for LIKE
ESTLINES
ESTRECORDS
euro support

calculations
currency conversion
currency database
currency-denominated field
euro symbol
sample currency codes

euro symbol
EUROFILE
examples for Adabas Write
Excel (HOLD format)
EXCEL format in Web Interface
EXECLOAD
Exit on Error
EXPAVE
exponential moving average
EXTAGGR
Extended Currency Symbol Support
external sort

aggregation by
controlling retrieval order
HOLD from

EXTHOLD

Page 15 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

F

FDEFCENT and CHECK FILE HOLD ALL
Field-Based Reformatting
FILEDEF for extract files
files, token delimited
FILETYPE for REXX subroutines
filter

and joins
assigning to a file for reporting
query command
SET command

FIND
Finish external sort
FOC144 message

eliminating with MULTIPATH parameter
FOC2GIGDB
FOCALLOC
FOCCTL.DATA default space allocation table
FOCERROR in Adabas Write
FOCPARM

configuring Pooled Tables in
FOCPOOLT
FOCPROF - The System Wide Profile
FOCPSB
FOCSORT

allocating multiple units
allocating multiple volumes

FOCSUACC

Page 16 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

FOCUS 7.0.8
NF550 EDA/MSO Console Display for IMS PSB
NF564 Pooled Tables
NF566 MSO/CICS Cooperative Processing
NF568 DB2 Interface IF-THEN-ELSE Optimization
NF571 DB2 Interface SET ISOLATION Command
NF574 System 2000 Interface Trace Facility
NF579 Assigning Screening Conditions to a File for Reporting Purposes
NF583 Teradata Outer Join Optimization
NF586 Expanding Byte Precision for COUNT and LIST
NF594 JAVA Report Assist
NF605 Date Handling for the Year 2000 in FOCUS
NF607 Default Space Allocation Table for Work Files
NF607 TABLA Enhancements
NF609 Sink Validation of Userids in CMS
NF617 Automatic Allocation of FOCUS Files
NF619 -HTMLFORM SAVE
NF620 Year 2000 Subroutines
NF623 Increasing the Number of Verbs in a Report Request
NF626 JAVA Graph Wizard
NF628 Automatic Activation of Web Interface
NF630 Querying Which PTFs Have Been Applied for a Specific Release
NF631 Extended Plists
NF640 Dynamic Language Environment (LE) Support
NF642 Increased DEFINE Limitation
NF645 WEBHOME
NF647 Extended Support for Scandinavian External Sort

Page 17 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

FOCUS 7.0.8R
NF557 REBUILD Enhancement - Legacy Date Conversion
NF653 Displaying Base Dates in FOCUS Reports
NF659 CHECK FILE HOLD ALL
NF700 New Date Math Functions for Year 2000
NF703 Displaying Invalid Smart Dates in Reports
NF705 Enhancement to YRTHRESH Command
NF708 Enhancement to the TODAY subroutine
NF709 Displaying a Date Variable Without Separators
NF710 Field FORMAT=YYJUL
NF711 Altering Your System Date for Testing
NF713 MSO Log Changes
NF714 LE Support

FOCUS 7.0.9
NF575 Fusion
NF584 Dynamically Setting the IDMS DBNAME and DICTNAME
NF597 Aggregation by External Sort
NF652 Teradata Interface Kanji Support
NF654 HOLD From External Sort
NF655 FOCPROF - The System Wide Profile
NF656 Controlling REBUILD Messages
NF660 Multi-volume Support in MVS FOCUS
NF670 DYNAM Support for Unit Count
NF673 Model 204 Interface Account Split
NF683 Web Interface support for Maintain Winforms
NF684 PCHOLD for Non-Html Files
NF691 Escape Character for LIKE
NF716 Euro Currency Support

Page 18 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

FOCUS 7.0.9 (continued)
NF718 DYNAM Support for Existing Relative GDG Numbers
NF720 SQLJOIN OUTER Setting for Relational Interfaces
NF722 FOCUS Client DNS Names Support
NF728 Changing Retrieval Order with Aggregation
NF730 Hold Format PDF
NF735 Enhancement to ? SET
NF740 Changes to the REBUILD PROMPT
NF744 HOLD FORMAT EXCEL
NF745 ? PTF Enhancements
NF746 Leading Zeros
NF748 HOLD FORMAT WP With Carriage Control

FOCUS 7.1
NF692 Aggregating and Sorting Report Columns
NF696 Calling Subroutines Written in REXX
NF731 Reporting From Independent Paths
NF749 HOLD FORMAT INTERNAL
NF750 DATASET in a Master File
NF751 Date-Time Data Type
NF755 Using FILEDEF for Creating Extract Files
NF759 Increased Number of Display Fields
NF761 Comma Suppress Edit Format Option
NF762 Percent Edit Format Option
NF766 DEFINE Functions
NF773 Token Delimited Files
NF777 Partitioned FOCUS data sources
NF777 Two-Gigabyte FOCUS Database Support
NF778 Dialogue Manager TRUNCATE Function

Page 19 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

FOCUS 7.1 (continued)
NF779 FOCUS CRTFORM HTML Translation
NF781 Embedding Text Fields in Headings
NF782 Oracle Data Adapter IXSPACE Setting
NF785 Adabas Write Data Adapter for FOCUS

FOCUS 7.2
NF551 AUTOIMS
NF646 WHERE-Based JOIN
NF767 Long Alphanumeric Fields
NF787 Increased Report Width
NF788 Tiles
NF789 FORECAST
NF790 ACROSS-TOTAL
NF792 SET CDN Enhancement
NF793 Displaying Fractions
NF796 Unlimited Nested -INCLUDE Commands
NF797 Field-Based Reformatting
NF801 DB2 Data Adapter SET SSID Command for MSO
NF802 Long Master File Names
NF817 Creating Comma-Delimited Files
NF824 STRIP
NF825 SET PCOMMA
NF826 SQUEEZ
NF827 TRIM
NF828 SUFFIX=COM/COMT/TABT
NF829 AUTODATE
NF833 Creating Tab-Delimited Files
NF849 Extended Currency Symbol Support

Page 20 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

FOCUS 7.2 (continued)
NF880 Exit on Error
NF886 Reusable MSO/CICS Control Blocks
NF898 SQL Support for Date-Time Formats
NF914 LMF Site Code Warning Message

FOCUS Client
NF722 DNS Names Support

FOCUS CRTFORM HTML Translation
FOCUS database

Access File
allocating multiple units
allocating multiple volumes
partitioned
two-gigabyte

FOCUS referential integrity
DELETE
INCLUDE

FORECAST
EXPAVE
methods
MOVAVE
REGRESS
reporting techniques
syntax

Page 21 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

format
date-time

ACTUAL
date-time for relational data sources
options for currency symbols
overrides
YYJUL

formatted string date format
fractions
freeing long Master File names
FSTRACE

for System 2000 Data Adapter
Functional Area

Adabas Data Adapter
NF785 The Adabas Write Data Adapter for FOCUS

CA-IDMS Data Adapter
NF584 Dynamically Setting the IDMS DBNAME and DICTNAME

FOCUS Client
NF722 FOCUS Client DNS Names Support

Fusion
NF575 Fusion

General Enhancements
NF607 TABLA Enhancements (Default Space Allocation Table for Work Files)
NF609 Sink Validation of Userids in CMS
NF630 Querying Which PTFs Have Been Applied for a Specific Release
NF631 Extended Plists
NF640 Dynamic Language Environment (LE) Support
NF655 FOCPROF - The System Wide Profile

Page 22 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Functional Area: General Enhancements (continued)
NF656 Controlling REBUILD Messages
NF670 DYNAM Support for Unit Count
NF696 Calling Subroutines Written in REXX
NF714 LE Support
NF718 DYNAM Support for Existing Relative GDG Numbers
NF735 Enhancement to ? SET
NF740 Changes to the REBUILD Prompt
NF745 ? PTF Enhancements
NF746 Leading Zeros
NF750 DATASET in a Master File
NF751 Date-Time Data Type
NF773 Token Delimited Files
NF777 Two-Gigabyte FOCUS Database Support
NF778 Dialogue Manager TRUNCATE Function
NF779 FOCUS CRTFORM HTML Translation
NF796 Unlimited Nested -INCLUDE Commands
NF802 Long Master File Names
NF824 STRIP
NF825 SET PCOMMA
NF826 SQUEEZ
NF827 TRIM
NF828 SUFFIX=COM/COMT/TABT
NF829 AUTODATE
NF880 Exit on Error
NF898 SQL Support for Date-Time Formats
NF914 LMF Site Code Warning Message

Page 23 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Functional Area (continued)
IMS Data Adapter

NF550 EDA/MSO Console Display for IMS PSB
NF551 AUTOIMS

Model 204 Data Adapter
NF572 Invisible Ordered Character and Ordered Numeric Data Type Key

Support
NF673 Model 204 Interface Account Split

MSO Enhancements
NF466 MSO/CICS Cooperative Processing
NF801 DB2 Data Adapter SET SSID Command
NF886 Reusable MSO/CICS Control Blocks

National Language Support
NF647 Extended Support for Scandinavian External Sort

Performance Enhancements
NF564 Pooled Tables
NF597 Aggregation by External Sort
NF617 Automatic Allocation of FOCUS Files
NF654 HOLD From External Sort
NF728 Changing Retrieval Order with Aggregation
NF777 Partitioned FOCUS Data Sources

Raised Limits
NF642 Increased DEFINE Limitation
NF759 Increased Number of Display Fields
NF767 Long Alphanumeric Fields
NF777 Two-Gigabyte FOCUS Database Support
NF787 Increased Report Width

Page 24 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Functional Area (continued)
Relational Data Adapters

NF568 DB2 Interface IF-THEN-ELSE Optimization
NF571 DB2 Interface SET ISOLATION Command
NF583 Teradata Outer Join Optimization
NF652 Kanji support
NF720 SQLJOIN OUTER Setting
NF782 Oracle Data Adapter IXSPACE Setting
NF801 SET SSID Command for MSO

Reporting Enhancements
NF579 Assigning Screening Conditions to a File for Reporting Purposes
NF586 Expanding Byte Precision for COUNT and LIST
NF623 Increasing the Number of Verbs in a Report Request
NF646 WHERE-Based JOIN
NF691 Escape Character for LIKE
NF692 Aggregating and Sorting Report Columns
NF731 Reporting From Independent Paths
NF744 HOLD FORMAT EXCEL
NF748 HOLD FORMAT WP with Carriage Control
NF749 HOLD FORMAT INTERNAL
NF755 Using FILEDEF for Creating Extract Files
NF759 Increased Number of Display Fields
NF761 Comma Suppress Edit Format Option
NF762 Percent Edit Format Option
NF766 DEFINE Functions
NF781 Embedding Text Fields in Headings
NF788 Tiles
NF789 FORECAST

Page 25 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Functional Area: Reporting Enhancements (continued)
NF790 ACROSS-TOTAL
NF792 SET CDN Enhancement
NF793 Displaying Fractions
NF797 Field-Based Reformatting
NF817 Creating Comma-Delimited Files
NF833 Creating Tab-Delimited Files
NF849 Extended Currency Symbol Support

System 2000 Data Adapter
NF574 System 2000 Interface Trace Facility

Web Interface for FOCUS
NF594 JAVA Report Assist
NF619 -HTMLFORM SAVE
NF626 JAVA Graph Wizard
NF628 Automatic Activation of Web Interface
NF645 WEBHOME
NF683 Web Interface support for Maintain Winforms
NF684 PCHOLD for Non-Html Files
NF730 Hold Format PDF

Year 2000 Enhancements
NF557 REBUILD Enhancement - Legacy Date Conversion
NF605 Date Handling for the Year 2000 in FOCUS
NF620 Year 2000 Subroutines
NF653 Displaying Base Dates in FOCUS Reports
NF659 CHECK FILE HOLD ALL
NF700 New Date Math Functions for the Year 2000
NF703 Displaying Invalid Smart Dates in Reports

Page 26 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Functional Area: Year 2000 Enhancements (continued)
NF705 YRTHRESH As an offset from current year
NF708 Enhancement to the TODAY Subroutine
NF709 Displaying a Date Variable Without Separators
NF710 Field FORMAT=YYJUL
NF711 Altering Your System Date For Testing
NF713 MSO Log Changes

functions
clearing
date-time

SQL Translator
date-time component names
DEFINE
FOCUS
For the Year 2000
HADD
HCNVRT
HDATE
HDIFF
HDTTM
HGETC
HINPUT
HMIDNT
HNAME
HPART
HSETPT
HTIME
querying

Page 27 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Fusion
FUSREXX macro

CMS FILETYPE
compiling in CMS
date return value
integer return value
loading in CMS
multiple tokens in parameters
MVS DDNAME
parameters
search order

FYRTHRESH and CHECK FILE HOLD ALL

G

GDG
DYNAM support for existing relative numbers

General Enhancements
FOCUS 7.0.8

NF607 TABLA Enhancements (Default Space Allocation Table for Work Files)
NF609 Sink Validation of Userids in CMS
NF630 Querying Which PTFs Have Been Applied for a Specific Release
NF631 Extended Plists
NF640 Dynamic Language Environment (LE) Support

FOCUS 7.0.8R
NF714 LE Support

Page 28 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

General Enhancements (continued)
FOCUS 7.0.9

NF655 FOCPROF - The System Wide Profile
NF656 Controlling REBUILD Messages
NF670 DYNAM Support for Unit Count
NF718 DYNAM Support for Existing Relative GDG Numbers
NF735 Enhancement to ? SET
NF740 Changes to the REBUILD Prompt
NF745 ? PTF Enhancements
NF746 Leading Zeros

FOCUS 7.1
NF696 Calling Subroutines Written in REXX
NF750 DATASET in a Master File
NF751 Date-Time Data Type
NF773 Token Delimited Files
NF777 Two-Gigabyte FOCUS Database Support
NF778 Dialogue Manager TRUNCATE Function
NF779 FOCUS CRTFORM HTML Translation

FOCUS 7.2
NF796 Unlimited Nested -INCLUDE Commands
NF802 Long Master File Names
NF824 STRIP
NF825 SET PCOMMA
NF826 SQUEEZ
NF827 TRIM
NF828 SUFFIX=COM/COMT/TABT
NF829 AUTODATE
NF880 Exit on Error

Page 29 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

General Enhancements: FOCUS 7.2 (continued)
NF898 SQL Support for Date-Time Formats
NF914 LMF Site Code Warning Message

Graph Wizard, JAVA

H

H format code
H USAGE format
HADD date-time function
HCNVRT date-time function
HDATE date-time function
HDAY
HDIFF date-time function
HDTTM date-time function
headings, embedding text in
HGETC date-time function
HINPUT date-time function
HLIMAIN
HMIDNT date-time function
HNAME date-time function

Page 30 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

HOLD
ALL
allocating with FILEDEF
and date-time data type
and DEFCENT, YRTHRESH
and long Master File names
FORMAT EXCEL
FORMAT INTERNAL
Format PDF
FORMAT WP

with carriage control
from external sort

HOLD FORMAT TABT
Holidays
HPART date-time function
HSETPT date-time function
HTIME date-time function
-HTMLFORM SAVE

I

IBITABLA
Default space allocation

IBMLE
recommended settings

IF
and date-time values
optimization in DB2 Data Adapter

Page 31 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

IMS Data Adapter
NF550 EDA/MSO Console Display for IMS PSB
NF551 AUTOIMS

-INCLUDE
INCLUDE
increased number of display fields
increased report width
independent paths

and FOC144 message
and SET ALL
required segments
resource requirements for MULTIPATH

index in MODIFY
index space parameters for Oracle
INSERT

rules for Adabas data sources
installation

Pooled Tables
all systems
MVS
VM/CMS

integer return value from REXX subroutine
intelligent partitioning
Invisible Ordered Character and Ordered Numeric Data Type Key Support
ISO standards for date-time
Isolation, setting level in DB2 Interface
iWay

IMS PSB display in console

Page 32 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

IXSPACE

J

Japanese yen symbol
JAVA Graph Wizard
JAVA Report Assist
JOIN

expression
LOOKUP
versus COMBINE

joins
and Access Files
and filters
and partitioned FOCUS data sources
clearing
conditional
left outer
listing
outer in Teradata Data Adapter
WHERE-based

K

Kanji character set
KEEPDEFINES
key, invisible ordered character and ordered numeric support

Page 33 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

L

Language Environment (LE) support
in FOCUS 7.0.8
in FOCUS 7.0.8R

LE support
languages
recommended settings

LEADZERO
LIKE with escape character
limits

alphanumeric field length
data sources per MAINTAIN request
data sources per MODIFY request
DEFINE
display objects
FOCUS database size
Master File name length
nested -INCLUDE commands
number of display fields
report width

linear regression
LIST
LIST, expanding precision for
LMF Site Code Warning Message
LOCATION attribute

in Access File
logical sort page
logical unit of work

Page 34 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

logs, MSO, support for four-digit years
long alphanumeric fields
Long Master File Names

and HOLD
and relational data sources

LONGNAME
LOOKUP
LOTUS format in Web Interface

M

MAINTAIN
Adabas data sources
Date math functions
DELETE
INCLUDE
limits
MATCH
NEXT
non-updatable Adabas fields
prerequisites
processing overview
referential integrity
transaction control for Adabas Write
UPDATE
Winforms in Web Interface
without unique keys

maintaining data sources

Page 35 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Master File
ACCESSFILE attribute
for Adabas Write
generated by AUTOIMS
long names
sample for Adabas Write

MASTERNAME attribute
MATCH

DELETE
INCLUDE
MAINTAIN
UPDATE

MAXEXTSRTS
memory management with Pooled Tables
messages

For Adabas data source
Pooled Tables

MISSING
and ALLOWCVTERR
and date-time data type

Model 204 Data Adapter
FOCUS 7.0.8

NF572 Invisible Ordered Character and Ordered Numeric key support
FOCUS 7.0.9

NF673 Model 204 Interface Account Split
IOA and ION

Page 36 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

MODIFY
Adabas data sources
case logic
COMBINE
COMBINE SUFFIX
COMBINE versus JOIN
COMMIT WORK
DELETE
differences from standard FOCUS
FIND
INCLUDE
limits
LOOKUP
MATCH
NEXT
non-updatable Adabas fields
prerequisites
processing overview
referential integrity
ROLLBACK WORK
transaction control for Adabas Write
UPDATE
VALIDATE
without unique keys

MOVAVE
moving average

Page 37 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

MSO
allocating multiple units
allocating multiple volumes
CICS cooperative processing
DB2 Data Adapter SET SSID Command
IMS PSB display in console
logs with four-digit years
reusable MSO/CICS control blocks

MSO/CICS control blocks
MULTIPATH parameter

and FOC144 message
and SET ALL
required segments
resource requirements

multiple
units in MVS FOCUS
volumes

default allocations
multi-verb requests

number of verbs in
MVS batch

allocating multi-volume data sources
MVS LE support

N

National Language Support
Scandinavian external sort

NC

Page 38 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

new date
displaying invalid dates in reports

New Features
FOCUS 7.0.8

Assigning Screening Conditions to a File for Reporting Purposes
Automatic Activation of Web Interface
Automatic Allocation of FOCUS Files
Date Handling for the Year 2000 in FOCUS
DB2 Interface IF-THEN-ELSE Optimization
DB2 Interface SET ISOLATION Command
Default Space Allocation Table for Work Files
Dynamic Language Environment (LE) Support
EDA/MSO Console Display for IMS PSB
Expanding Byte Precision for COUNT and LIST
Extended Plists
Extended Support for Scandinavian External Sort
-HTMLFORM SAVE
Increased DEFINE Limitation
Increasing the Number of Verbs in a Report Request
Invisible Ordered Character and Ordered Numeric Data Type Key Support
JAVA Graph Wizard
JAVA Report Assist
MSO/CICS Cooperative Processing
Pooled Tables
Querying Which PTFs Have Been Applied for a Specific Release
Sink Validation of Userids in CMS
System 2000 Interface Trace Facility
TABLA Enhancements

Page 39 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

New Features: FOCUS 7.0.8 (continued)
Teradata Outer Join Optimization
WEBHOME
Year 2000 Subroutines

FOCUS 7.0.8R
Altering Your System Date for Testing
CHECK FILE HOLD ALL
Displaying a Date Variable Without Separators
Displaying Base Dates in FOCUS Reports
Displaying Invalid Smart Dates in Reports
Enhancement to the TODAY Subroutine
Enhancement to YRTHRESH Command
Field FORMAT=YYJUL
LE Support
MSO Log Changes
New Date Math Functions for Year 2000
REBUILD Enhancement - Legacy Date Conversion

FOCUS 7.0.9
? PTF Enhancements
Aggregation by External Sort
Changes to the REBUILD PROMPT
Changing Retrieval Order with Aggregation
Controlling REBUILD Messages
DYNAM Support for Existing Relative GDG Numbers
DYNAM Support for Unit Count
Dynamically Setting the IDMS DBNAME and DICTNAME
Enhancement to ? SET
Escape Character for LIKE

Page 40 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

New Features: FOCUS 7.0.9 (continued)
Euro Currency Support
FOCPROF - The System Wide Profile
FOCUS Client DNS Names Support
Fusion
HOLD FORMAT EXCEL
Hold Format PDF
HOLD FORMAT WP With Carriage Control
HOLD From External Sort
Leading Zeros
Model 204 Interface Account Split
Multi-volume Support in MVS FOCUS
PCHOLD for Non-Html Files
SQLJOIN OUTER Setting for Relational Interfaces
Teradata Interface Kanji Support
Web Interface Support for Maintain Winforms

FOCUS 7.1
Aggregating and Sorting Report Columns
Calling Subroutines Written in REXX
Comma Suppress Edit Format Option
DATASET in a Master File
Date-Time Data Type
DEFINE Functions
Dialogue Manager TRUNCATE Function
Embedding Text Fields in Headings
FOCUS CRTFORM HTML Translation
HOLD FORMAT INTERNAL
Increased Number of Display Fields

Page 41 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

New Features: FOCUS 7.1 (continued)
Oracle Data Adapter IXSPACE Setting
Partitioned FOCUS Data Sources
Percent Edit Format Option
Reporting From Independent Paths
The Adabas Write Data Adapter for FOCUS
Token Delimited Files
Two-Gigabyte FOCUS Database Support
Using FILEDEF for Creating Extract Files

FOCUS 7.2
ACROSS-TOTAL
AUTODATE
AUTOIMS
Creating Comma-Delimited Files
Creating Tab-Delimited Files
DB2 Data Adapter SET SSID Command for MSO
Displaying Fractions
Exit on Error
Extended Currency Symbol Support
Field-Based Reformatting
FORECAST
Increased Report Width
LMF Site Code Warning Message
Long Alphanumeric Fields
Long Master File Names
Reusable MSO/CICS Control Blocks
SET CDN Enhancement
SET PCOMMA

Page 42 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

New Features: FOCUS 7.2 (continued)
SQL Support for Date-Time Formats
SQUEEZ
STRIP
SUFFIX=COM/COMT/TABT
Tiles
TRIM
Unlimited Nested -INCLUDE Commands
WHERE-Based JOIN

NEXT
MAINTAIN
non-unique key in Adabas Write
unique key in Adabas Write
without MATCH

NLS
Scandinavian external sort

NOCC
Norwegian external sort
numeric string date format

O

OPTIFTHENELSE
optimization

and date-time values
DB2 Data Adapter IF-THEN-ELSE
of outer joins
Teradata Interface outer join

Page 43 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

options
for Adabas Write

Oracle Data Adapter IXSPACE Setting
Oracle data sources

and date-time data type
and long Master File names

outer join
optimization

P

padding, preventing in HOLD files
partitioned FOCUS data sources
partitions

and joins
FOCUS database
intelligent

paths, independent
and FOC144 message
and SET ALL
required segments
resource requirements for MULTIPATH

PCHOLD for Non-Html Files
PCOMMA
PDF format

in Web Interface
percent edit format option

Page 44 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Performance Enhancements
FOCUS 7.0.8

NF564 Pooled Tables
NF617 Automatic Allocation of FOCUS Files

FOCUS 7.0.9
NF597 Aggregation by External Sort
NF654 HOLD From External Sort
NF728 Changing Retrieval Order with Aggregation

FOCUS 7.1
NF777 Partitioned FOCUS data sources

Plists, extended
Pooled Tables

Additional information
And common selection criteria
And non-relational databases
And relational databases
Batch mode
Commands and subpool boundaries
Configuring in FOCPARM
Error processing
Example
FOCPARM file
FOCPOOLT
Installing

All systems
MVS
VM/CMS

Memory management

Page 45 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Pooled Tables (continued)
Memory needs
Messages
Questions about
Single TABLE clusters
Size estimates
Sort selection
Statistics
Subpool boundaries
Subroutines for use with
Temporary work file
Trace facility
Tuning techniques

pound symbol
precision, expanding for COUNT and LIST
PSB, display in EDA/MSO console
PTF query command
PTF, querying which have been applied

Q

query commands
? FUNCTION
? PTF

QUOTE

Page 46 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

R

Raised Limits
FOCUS 7.0.8

NF642 Increased DEFINE Limitation
FOCUS 7.1

NF759 Increased Number of Display Fields
NF777 Two-Gigabyte FOCUS Database Support

FOCUS 7.2
NF767 Long Alphanumeric Fields
NF787 Increased Report Width

RDBMS tables
and long Master File names

REBUILD
converting legacy dates
DATE NEW

REBUILDMSG
RECFM VBA
referential integrity

and COMBINE
FOCUS DELETE
FOCUS INCLUDE
inhibiting

REGRESS
regression

Page 47 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Relational Data Adapters
FOCUS 7.0.8

NF568 DB2 Interface IF-THEN-ELSE Optimization
NF571 DB2 Interface SET ISOLATION Command
NF583 Teradata Outer Join Optimization

FOCUS 7.0.9
NF652 Teradata Kanji Support
NF720 SQLJOIN OUTER Setting

FOCUS 7.1
NF782 Oracle Data Adapter IXSPACE Setting

FOCUS 7.2
NF801 DB2 Data Adapter SET SSID Command for MSO

relational data sources
and date-time data type
and long Master File names

release
querying which PTFs have been applied for

report
displaying invalid smart dates in
increased display fields
number of display fields in
number of verbs in
pooling requests

Report Assist, JAVA
report headings

embedding text in
text alignment

report width, increased

Page 48 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Reporting Enhancements
FOCUS 7.0.8

NF579 Assigning Screening Conditions to a File for Reporting Purposes
NF586 Expanding Byte Precision for COUNT and LIST
NF623 Increasing the Number of Verbs in a Report Request

FOCUS 7.0.9
NF691 Escape Character for LIKE
NF744 HOLD FORMAT EXCEL
NF748 HOLD FORMAT WP With Carriage Control

FOCUS 7.1
NF692 Aggregating and Sorting Report Columns
NF731 Reporting From Independent Paths
NF749 HOLD FORMAT INTERNAL
NF755 Using FILEDEF for Creating Extract Files
NF759 Increased Number of Display Fields
NF761 Comma Suppress Edit Format Option
NF762 Percent Edit Format Option
NF766 DEFINE Functions
NF781 Embedding Text Fields in Headings

FOCUS 7.2
NF646 WHERE-Based JOIN
NF788 Tiles
NF789 FORECAST
NF790 ACROSS-TOTAL
NF792 SET CDN Enhancement
NF793 Displaying Fractions
NF797 Field-Based Reformatting
NF817 Creating Comma-Delimited Files

Page 49 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Reporting Enhancements: FOCUS 7.2 (continued)
NF833 Creating Tab-Delimited Files
NF849 Extended Currency Symbol Support

reporting from independent paths
REPOSITION
requests

increased display fields
number of display fields in
number of verbs in
pooling multiple reports

return code on error
Reusable MSO/CICS Control Blocks
REXX user-written subroutines

CMS FILETYPE
compiling in CMS
date return value
integer return value
loading in CMS
multiple tokens in parameters
MVS DDNAME
parameters
search order

ROLLBACK WORK
RR
rules

for delete from Adabas data sources
for update of Adabas data sources
insert for Adabas data sources

Page 50 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

S

SAVE files
and date-time data type

Scandinavian National Language character set
and external sort

screening conditions
assigning to a file for reporting
in a join

segment SYSTEM99
segments, required for report
SEGTYPE for Adabas Write
SET

ACCTNAME
ACCTPASS
ALL and MULTIPATH
ALLOWCVTERR
BUSDAYS
CDN
CENT-ZERO
COUNTWIDTH
DATEDISPLAY
DATEFORMAT
DBNAME
DICTNAME
DTSTRICT
ERROROUT
ERRORRUN
ESTLINES

Page 51 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

SET (continued)
ESTRECORDS
EUROFILE
EXTAGGR
EXTHOLD
FILTER
FOC2GIGDB
FOCALLOC
HDAY
IBMLE
ISOLATION in DB2 Interface
IXSPACE (Oracle)
LEADZERO
MAXEXTSRTS
MULTIPATH
OPTIFTHENELSE
PCOMMA
POOL
POOLBATCH
POOLFEATURE
POOLMEMORY
POOLRESERVE
SORTLIB
SQLJOIN OUTER
SSID
SUMPREFIX
TESTDATE
TRACEOFF

Page 52 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

SET (continued)
TRACEON
TRANTERM
WEBHOME
WEBTAB
WEEKFIRST

SET CDN Enhancement
SET CENT-ZERO
simple moving average
sink, validating userids in CMS
site code warning message
smart date, displaying invalid
sorting

by a calculated value
controlling retrieval order
Scandinavian National Language character set
sort selection with Pooled Tables

SPACE
space, default allocation table in TABLA
SQL

COMMIT WORK
ROLLBACK WORK
SET IXSPACE (Oracle)
support for date-time formats

SQL Support for Date-Time Formats
SQL Translator

support for date-time formats
functions

Page 53 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

SQL/DS data source and date-time data type
SQLJOIN OUTER
SQUEEZ
SSID
STRIP
subheadings, embedding text in
subpool

boundaries and commands
boundaries for Pooled Tables

subroutines
and Pooled Tables
date literal interpretation table
LE support
REXX

CMS FILETYPE
compiling in CMS
date return value
integer return value
loading in CMS
multiple tokens in parameters
MVS DDNAME
parameters
search order

SQUEEZ
STRIP
TRIM
year 2000 support

DATEADD

Page 54 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

subroutines (continued)
DATECVT
DATEDIF
DATEMOV
in MAINTAIN
TODAY

SUFFIX
COM/COMT/TABT
COMBINE

SUFFIX=COM/COMT/TABT
SUMPREFIX
Swedish external sort
SYNCSORT
synonyms in Adabas Write
System 2000 Data Adapter

NF574 System 2000 Trace Facility
SYSTEM99

T

tab-delimited files
TABLA

default space allocation table
TABLE

pooling requests
TABT HOLD format
TABT suffix

Page 55 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Teradata data sources
and long Master File names
Kanji support
outer join optimization

TESTDATE
text fields

alignment in headings
embedding in headings

tiles
TIME format
timestamp

for FOCUS data sources
TIMESTAMP format
TODAY

and Year 2000
token delimited files
total for ACROSS
trace

for Pooled Tables
for System 2000 Data Adapter

transaction control in Adabas Write
COMMIT WORK
ROLLBACK WORK

translated string date format
TRANTERM parameter
TRIM subroutine
TRUNCATE

Page 56 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

TSO
allocating multiple units
allocating multiple volumes

Two-Gigabyte FOCUS Database Support

U

U.S. dollar sign
UCOUNT

allocating multiple units
unique key

and INSERT for Adabas data sources
in Adabas Write

unit of work
units

allocating multiple
business day
weekday

Unlimited Nested -INCLUDE Commands
UNQKEYNAME

and INSERT for Adabas data source
UPDATE

rules for Adabas data sources
UR
USAGE, date-time (H)
user errors for Adabas Write
userid, validating by sink in CMS
using FILEDEF for creating extract files

Page 57 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

V

VALIDATE
LOOKUP

validation of userids by sink in CMS
VARGRAPHIC
variable, date without separators
VBA
verb objects, 1024
verbs, number in a report request
virtual fields

preserving
virtual segment SYSTEM99
VM

CMS extended Plists
FILEDEF for creating extract files
LE support

VMSORT
VOLSER, multiple
volume, allocating multiple

W

warning messages, Pooled Tables

Page 58 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

Web Interface for FOCUS
FOCUS 7.0.8

NF594 JAVA Report Assist
NF619 -HTMLFORM SAVE
NF626 JAVA Graph Wizard
NF628 Automatic Activation of Web Interface
NF645 WEBHOME

FOCUS 7.0.9
NF683 Support for Maintain Winforms
NF684 PCHOLD for Non-Html Files
NF730 Hold Format PDF

WEBHOME
WEBTAB parameter
weekday units
WEEKFIRST parameter
WHERE test

and date-time values
in Access File
in joins

WHERE-based JOIN
AT attribute
Master File syntax
preserving virtual fields

Winforms
In Web Interface

work files, default space allocation table

Page 59 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

WP format
in Web Interface
with carriage control

write
Access File for Adabas
component for data source maintenance
Master File for Adabas
options for Adabas

Y

Year 2000 Enhancements
FOCUS 7.0.8

NF605 Date handling for the Year 2000 in FOCUS
NF620 Year 2000 Subroutines

FOCUS 7.0.8R
NF557 Converting legacy dates
NF653 Displaying Base Dates in FOCUS Reports
NF659 CHECK FILE HOLD ALL
NF700 New Date Math Functions for the Year 2000
NF703 Displaying invalid smart dates in reports
NF705 YRTHRESH As an offset from current year
NF708 Enhancement to the TODAY Subroutine
NF709 Displaying a Date Variable Without Separators
NF710 Field FORMAT=YYJUL
NF711 Altering Your System Date For Testing
NF713 MSO Log Changes

yen symbol

Page 60 of 60

A B C D E F GH I J K L MN OP QR S T U V WX Y Z Symbols Numerics

YRTHRESH
and CHECK FILE HOLD ALL
as an offset from the current year

YYJUL

	Back to Main Page
	Contents
	7.2 New Features
	7.1 New Features
	7.0.9 New Features
	7.0.8R New Features
	7.0.8 New Features
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

