Infarmation

m-ld
l emi

FOCUS® for S/390°

Using Functions
Version 7.2

DN1001140.1101

Cactus, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information
Builderslogo, Parlay, PC/FOCUS, SmartMart, SmartM ode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are
registered trademarks and EDA, iWay, and iWay Software are trademarks of Information Builders, Inc.

Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.

Allaire and JRun are trademarks of Allaire Corporation.

NOMAD is aregistered trademark of Aonix.

UniVerseis aregistered trademark of Ardent Software, Inc.

IRMA is atrademark of Attachmate Corporation.

Baan is aregistered trademark of Baan Company N.V.

SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.

Impromptu is a registered trademark of Cognos.

Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compag Computer
Corporation.

CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, & Ingres are registered trademarks of Computer Associates International, Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.

Paradox is aregistered trademark of Corel Corporation.

StorHouse is aregistered trademark of FileTek, Inc.

HP MPE/iX is aregistered trademark of Hewlett Packard Corporation.

Informix is aregistered trademark of Informix Software, Inc.

ACF/VTAM, AlX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVSESA, 0S/2, 05390,
0S/400, RACF, RS/6000, S/390, VM/ESA, VSE/ESA and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MV'S, QMF,
SQL/DS, WebSphere, z/OS and z/VM are trademarks of International Business Machines Corporation.

INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.

Orbix is aregistered trademark of lona Technologies Inc.

Approach and Datalens are registered trademarks of Lotus Development Corporation.

ObjectView is atrademark of Matesys Corporation.

ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visua Basic, Visual C++, Visua FoxPro, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.

Teradatais aregistered trademark of NCR International, Inc.

Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
CORBA isatrademark of Object Management Group, Inc.

Oracleis aregistered trademark and Rdb is atrademark of Oracle Corporation.

PeopleSoft is aregistered trademark of PeopleSoft, Inc.

INFOAccess is atrademark of Pioneer Systems, Inc.

Progressis aregistered trademark of Progress Software Corporation.

Red Brick Warehouse is atrademark of Red Brick Systems.

SAP and SAP R/3 are registered trademarks and SAP Business |nformation Warehouse and SAP BW are trademarks of SAP AG.
Silverstream is atrademark of Silverstream Software.

ADABAS isaregistered trademark of Software A.G.

CONNECT:Direct isatrademark of Sterling Commerce.

Java and all Java-based marks, NetDynamics, Solaris, SunOS, and iPlanet are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

PowerBuilder and Sybase are registered trademarks and SQL Server is atrademark of Sybase, Inc.

Unicode is atrademark of Unicode, Inc.

UNIX isaregistered trademark of The Open Group in the United States and other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not all
cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s intent to
use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these
names other than to refer to the product described.

Copyright © 2001 by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed in the U.SA.

Preface

Using Functions

This documentation describes how to use functions to perform certain calculations and
manipulations. It isintended for application developers. This manual is part of the
FOCUS for S/390 documentation set.

The documentation set consists of the following components:

e The Creating Reports manual describes FOCUS Reporting environments and
features.

» The Describing Data manual explains how to create the metadata for the data
sources that your FOCUS procedures will access.

» The Developing Applications manual describes FOCUS application development
tools and environments.

* The Maintaining Databases manual describes FOCUS data management facilities
and environments.

e The Using Functions manual describes internal functions and user-written
subroutines.

* The Overview and Operating Environments manual contains an introduction to
FOCUS and FOCUS tools and describes how to use FOCUS in the VM/CMS and
MVS (0S/390) environments.

The users’ documentation for FOCUS Version 7.2 is organized to provide you with a
useful, comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities
and concepts are related, each chapter fully coversits respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and
conventions.

Preface

How This Manual Is Organized

Thismanual is organized as follows:

Chapter/Appendix Contents

1 Introducing Functions Offers an introduction to functions and explains the
different types of functions available.

2 | Accessing and Invoking | Describes the considerations for supplying

a Function argumentsin afunction, explains how to use a
function in acommand, and how to access
externally-stored functions.

3 Character Functions Describes the available character functions, which
enable you to manipulate al phanumeric fields and
character strings

4 Data Source and Describes the available data source functions, which

Decoding Functions enable you to search for or retrieve data source
records or values.

5 Date and Time Describes the available date and time functions,

Functions which enable you to manipulate date and time
values.

6 Format Conversion Describes the available format conversion functions,

Functions which convert fields from one format to another.

7 Numeric Functions Describes the available numeric functions, which
enable you to perform calculations on numeric
constants and fields.

8 System Functions Describes the available system functions, which
enable you to make calls to the operating system to
obtain information about the operating environment
or to use asystem service

A | Creating Your Own Describes how to create and store site-specific

Subroutines functions.

Information Builders

Summary of New Features

Summary of New Features

Using Functions

The new FOCUS features and enhancements described in this documentation set are

listed in the following table.

New Feature Manual Chapter

Field-based Reformatting Creating Reports Chapter 1, Creating Tabular
Reports

Increased Report Width Creating Reports Chapter 1, Creating Tabular
Reports

ACROSS-TOTAL Creating Reports Chapter 4, Sorting Tabular
Reports

Tiles Creating Reports Chapter 4, Sorting Tabular
Reports

DEFINE FILE SAVE and Creating Reports Chapter 6, Creating

DEFINE FILE RETURN Temporary Fields

Forecast Creating Reports Chapter 6, Creating
Temporary Fields

Creating Comma-Delimited | Creating Reports Chapter 11, Saving and

Files Reusing Report Output

Creating Tab-Delimited Creating Reports Chapter 11, Saving and

Files Reusing Report Output

Long Master File Names Creating Reports Chapter 11, Saving and
Reusing Report Output

JOIN WHERE Creating Reports Chapter 13, Joining Data
Sources

KEEPDEFINES Creating Reports Chapter 13, Joining Data

Sources

Long Master File Names

Describing Data

Chapter 1, Understanding a
Data Source Description

4K AlphaFields

Describing Data

Chapter 4, Describing an

Individual Field
Extended Currency Symbol | Describing Data Chapter 4, Describing an
Support Individual Field
SUFFIX = Describing Data Chapter 5, Describing a
COMT/COMMA/TABT Sequential, VSAM, or 1ISAM

Data Source

Preface

New Feature Manual Chapter
AUTODATE Describing Data Chapter 6, Describing a
FOCUS Data Source
CDN parameter Developing Chapter 1, Customizing Your
Applications Environment
CENT-ZERO parameter Developing Chapter 1, Customizing Your
Applications Environment
ERROROUT parameter Developing Chapter 1, Customizing Your
Applications Environment
KEEPDEFINES parameter | Developing Chapter 1, Customizing Your
Applications Environment
PCOMMA parameter Developing Chapter 1, Customizing Your
Applications Environment
Unlimited nested Developing Chapter 2, Managing an
-INCLUDE commands Applications Application With Dialogue
Manager
SQUEEZ function Using Functions Chapter 3, Character
Functions
STRIP function Using Functions Chapter 3, Character

Functions

TRIM function

Using Functions

Chapter 3, Character
Functions

DYNAM ALLOC
LONGNAME

Overview and
Operating
Environments

Chapter 5, 05390 and MVS
Guide to Operations

Information Builders

Documentation Conventions

Documentation Conventions

The following conventions apply throughout this manual:

Convention Description

THI'S TYPEFACE Denotes a command that you must enter in uppercase, exactly
as shown.

this typeface Denotes a value that you must supply.

{1} Indicates two choices from which you must choose one. Y ou

type one of these choices, not the braces.

| Separates two mutually exclusive choicesin a syntax line.
Type one of these choices, not the symbol.

[] Indicates optional parameters. None of them is required, but
you may select one of them. Type only the information within
the brackets, not the brackets.

underscore Indicates the default value.

Indicates that you can enter a parameter multiple times. Type
only the information, not the ellipsis points.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

See the Information Builders Publications Catalog for the most up-to-date listing and
prices of technical publications, plus ordering information. To obtain a catalog, contact
the Publications Order Department at (800) 969-4636.

You can also visit our World Wide Web site, http://www.informationbuilders.com, to
view acurrent listing of our publications and to place an order.

Customer Support

Do you have questions about FOCUS?

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or

(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 am. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities
and documentation. Please be ready to provide your six-digit site code number (300xx.xx)
when you call.

Using Functions

Preface

Y ou can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. It connects you to the tracking system and
known-problem database at the Information Builders support center. Registered users can
open, update, and view the status of casesin the tracking system, and read descriptions of
reported software issues. New users can register immediately for this service. The
technical support section of www.informationbuilders.com also provides usage
techniques, diagnostic tips, and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Onling, or call (800) 969-INFO.

Information You Should Have

To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

* Your six-digit site code number (XXxX.xx).
e The FOCEXEC procedure (preferably with line numbers).
* Master Filewith picture (provided by CHECK FILE).

* Run sheet (beginning at login, including call to FOCUS), containing the following
information:

? RELEASE
2FDT

2LET

2LOAD

2 COMBINE

2 JOIN

2 DEFINE

2STAT

2SET

2 SET GRAPH

2USE

For MV'S, 2 TSO DDNAME
For VM, CMS QFI

Information Builders

User Feedback

e The exact nature of the problem:

» Aretheresults or the format incorrect; are the text or calculations missing or
misplaced?

* Theerror message and code, if applicable.
* Isthisrelated to any other problem?

» Hasthe procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

* What release of the operating system are you using? Has it, FOCUS, your security
system, or an interface system changed?

» Isthisproblem reproducible? If so, how?

» Haveyou tried to reproduce your problem in the simplest form possible? For
example, if you are having problems joining two databases, have you tried executing
aquery containing just the code to access the database?

* Doyouhaveatracefile?

* How isthe problem affecting your business? Isit halting development or
production? Do you just have questions about functionality or documentation?

User Feedback

In an effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual. Please
use the Reader Comments form at the end of this manual to relay suggestions for
improving the publication or to alert usto corrections. Y ou can also use the Document
Enhancement Request Form on our Web site, http://www.informationbuilders.com.

Thank you, in advance, for your comments.

Information Builders Consulting and Training

Using Functions

Interested in training? Information Builders Education Department offers awide variety
of training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes,
visit our World Wide Web site (http://www.informationbuilders.com) or call (800)
969-INFO to speak to an Education Representative.

Contents

TR e Lt e A Le 1 1-1
JUS N0 FFUNCE OIS, sttt et easeeeseteneseeseeeesseseaseaseaneseseseeae seseaseanen seeeneeaeeaeeeseaseaneseeenetatereeaseasenesetanesatenesneannenes 1-2
Rl m Va1 YT — 1-3

(O gT= = o (< 0101011) SRR 1-3
Data Source and Decoding FUNCLIONSccviieierieese ettt e sre e ene e eneenes 1-6
Date and TimME FUNCLIONSuveii ettt et e e et e s s ee e s s st e e e s e ae e s s sba e e s ssbbeessasbensssasanaessabenasans 1-7
Format CONVErSION FUNCHIONS.......c.eoiiiiiiie ettt ettt tee ettt s b s s saeesbeebeeabesaeesbaesbeenseesaeesas 1-12
INUMETTC FUNCLIONS.....eeee ettt e s st e e s et e e s s aaa e e s s b e e e s s bt e s e saasaaessabeeessasbenssansenesssnnnas 1-13
VS 0= T U o S 1-15

R Accessing and 1NVOKING 8 FUNCEION. c....iueeeeeteieeeetereseeeeseessseeseeessesssensaressessssessesssresseessneaseneseeseesesaeseseseesessens 2-1
Y A N SV Ia e i o W — 2-2
JUSING @N ATQUIMENE 1M 8 FUNCE ON.... sttt eeteeteeseseeesesesesessesesssseasensesssasssnesaesessaseasesneanesessresnsseeaseasesresesenessennenes 2-3

ATGUIMENT TYPES.... . teeteetiete ettt ettt bttt e bt eabeeaeesheesbeesbeeabeeaeeeasesaeeeaeeabeenbeanbeeabesabesaeesheesaeeseeaneennennnens 2-3
ATGUMENE FOIMNELS. ... e eteeteeieeeeie e seee st e seeesteeeesaeesseeste e teentesseesseesreesaeeaseenseaneesseenseenseensennsennsesnensnessens 2-4
ATGUMENT LENGLN ...ttt bbbt ae e b e se e be s bt ebeeaeabesaesbesaeeneenes 2-4
Number and Order Of ATFQUIMENES.oiieieeeerese e steee e e e ste e sre s e eseeseestestesresseeseeneeseensesressesseenennes 2-5
Using aFunction in @ FOCUS COMMANGoiisiieisiisiieiesieiisessissssssssssssssssssssesses 2-5
Using a Calculation or Compound IF Command With a COMPUTE Command...........cccceeevererieenene 2-6
Using a Function With a Dialogue Manager COMMEBNG.e.tieireeieereeerosesessesesssesseseessessseressenesseessenes 2-4
Assigning the Result of a Function to aVariable.........cooieiiiiii e 2-7
Using a Function in a-1F COomMMAaNdccovieeeeieerieresese e stese e seesees e e te e s e eeeeeseestesnessesseeneenes 2-8
Using a Function in an Operating System -RUN COMMANG.........cccueiirirerinenenieieeiese e 2-9
USiNg @ FUNCEiON N ANOtNEI FUNCE ON ...ttt tereseteeeseeeesesesseaseseeenessesesssessesseseeasesassrssssasesseseeesesaeeneessesses 2-11
Using a FUNction in WHERE OF IF CritEal.....uiuiiiiisieisiisiisssisssassssssssssssssssssnssess 2-11
JUSing @ FUNCEION 1N WHEN CritEa...uuiuiritiieisississsisssesssssssessasssssssesssssssssnssess 2-17
WUsing a Function in @ RECAP COMMEINGeoteiitieeioeeeessesetasessssesessesessessessesessesasessesnsssesseseeesesseessessesses 2-13
oo n I mU L e Lo 1 TR 2-14
Storing and Accessing a FUNction 0N OS/390.......cc.eiiiiiiiiieie et st 2-14
Storing and Accessing a FUNCtion ONUNIXocvieciiecercre e ens 2-16
Storing and Accessing @ FUNCtion 0N VIM/CMS ..ot e b 2-16
Searching for @ FUNCHION LiBrarycocooiiiiiiiceccceses et 2-17
Adding and Deleting a SUbroUting LiDrary ..o 2-19
Dynamic Language ENVironmMent SUDDOMe.eeereeererereroesaseosessteresssrssssessessessessesssnesessosessessessesesssesses 2-2Q

Using Functions

Contents

B Character FUNCHIONS......c.cuiuieieieiece ittt ettt et se s saeresesss s ensssss s s s s e nsssereses s s nasssassesenssnas 3-1
ARGLEN: Measuring the Length of & String........cccceeceieiiiiiicsiss s 3-2
ASIS: Distinguishing Between a Space and 8 ZEM0......cucuiieieiiiieieieieeeerercree e eresersrer s sn e sreresens 3-3
BITSON: Determining if aBitiSON or Offccccceiiiiieiieiese et erenns 3-4
BITVAL: Evauating a Bit String @ BiNary INtEOENocovevivieieieiesesecesesessssse s sesesesese s ssssss s s seseseseees 3-5
BYTVAL: Trandating a Character to aDecimal ValUE..........couiueeereeieiiiieiiesi e 3-7
CHKFEMT: Checking the Format Of @ StriNg.........ccoceeiiiiiiiiiieieieiceeeceis s erererenns 3-9
CTRAN: Tranglating One Character t0 ANOtNEYcc.eoviiieiiiseseseesee e 3-11
CTRFLD: Centering a CharaCter StIiNGocoieieeirieirieeerererereiieee i sessesesesessrsesses s s sresssssesesessssssssasasanns 3-17
EDIT: Extracting or Adding CharaCterS.......ceeieiiiiiiiiiieieieececeieieeee s ererer e cases s esesesessnsssasassanns 3-19
GETTOK: Extracting a SURStHNG (TOKEN).....criiiieieseseseseseeesesissssssssesesesesesesesesesssssssesesesesesesesessssssssnsssses 3-20
LCWORD: Converting a String t0 MiXed Case........coueieiiiiriririeirerercriiiis s issssseeesescsssss s s s sessesersrsrsssnssans 3-24
LIUST: Left-JUStifying @ StINGovivieereeieieiiiiiie it eterer s eeerercressrsrsass s ss s s s sseseserensnsassassnns 3-24
LOCASE: Converting TeXt t0 L OWEICASE.cueeeeiieriissirsesesssesesesesesssssssesesesesesssesssssssssssesesssssesesssssssssasses 3-24
OVRLAY: Overlaying a Substring Within @ String........coceceesssssiccce s, 3-21
PARAG: Dividing Text INt0 SMaller LINES.....coccciviiererirereriiieee i sieieseecseserce s esesesessnsssnsass s 3-29
POSIT: Finding the Beginning of & SUDSIHNG.cvcivieieieseeecesesisessssssi s s sesssss s sese e snsns s 3-31
RJIUST: Right-JUStIfYiNG @ StING......ccivereeeeieirieiiieie i ss s s e eaererersrersass s sssr s s sssseserersssnsasassnns 3-34
SOUNDEX: Comparing Strings PRONEtCallYccueeiiiiieiie s er e 3-33
SQUEEZ: Reducing Multiple Blanks to @ SINGI€ Blankccovoveiieieisesesesecesss s s s 3-34
STRIP: Removing a CharaCter From @ StiNg ... sesisrerererer e srsseserersrersasanns 3-34
SUBSTR: EXracting & SUDSIIINGcceuiieieiiiisisieisieeseseseserssssesisssssssssssesesesesssssssssssssssssssssssesesessssasassssns 3-37
[TRIM: Removing Leading and Trailing OCCUIMTENCES.ccereiresiisisssssesesesesesesesessssssssssssesesesesesesesssnsnsaes 3-39
JUPCASE: Converting Text t0 UDDEICASE.ccueuieiiiieisieieerseesererssesceiis s sessssssssesesessssssssssssssssseserssessnsasasans 3-41

Data Source and Decoding FUNCLIONS.c..cueuiieeiiecesice et 4-1
DECODE: DECOUING VAlUES.......civieetieieieieiiis i ieseisisesescscseeisss s sssessssesesesssssess s ssssssssssesesessnsssasassssssresaseresens 4-2
FIND: Verifying the Existence of an INdexed Field........ccouoiiieiesececesisissssse s 4-5
LAST: Retrieving the Preceting ValUe............cuiiiueuereeieiiiieiie s eeeiesescseecssie s sseresersssssnss s srsrereserenns 4-7
LOOKUP: Retrieving a Value From a Cross-Referenced File.........coooiiieiiiiiee e 4-9

Using the Extended LOOKUP FUNCHIONcoiriiiiiieinisieesesieese s 4-15

Information Builders

Contents

5 Dateand Time FUNCHIONS.ccuiueieceereceseee et e esaes s essnssessssesssensessnsssesnsssssnsssessssessnsssensnsssannsens 5-1
Using Standard Date and Time FUNCHONS.c.c.ceiieeeiiieiesice st 5-2
SPECITYING WOITK DAYS.....eceiieieiciiseceeeeesee sttt es e st e e sae s e e steseestesaesaeeneeneeneessessesnentesneennnneens 5-3
Enabling Leading Zeros For Date and Time Functions in Dialogue Managercccccveverenieeieeneeneenn 5-5
DATEADD: Adding or Subtracting a Date Unit to or From aDate.........ccccevveeeeveevenevese s 5-6
DATECVT: Converting aDate FOMMALccoieiirieieeierese ettt 59
DATEDIF: Finding the Difference BEtWeen TWO DaES.......ccccvvvveriereeieeeeereeseese e srese e eseeseeeeneens 5-11
DATEMOV: Moving aDate to a Significant POINtccccoiiiiiiiineiieeee e 5-14
HADD: Incrementing aDate-Time FIeld.........cocvviiiiieeceees e e ene e 5-16
HCNVRT: Converting a Date-Time Field to Alphanumeric FOrmatcccooeiiiiieniniecienenenees 5-17
HDATE: Converting the Date Portion of aDate-Time Field to aDate Formatccoevveeerervnninnns 5-18
HDIFF: Finding the Number of Units Between Two Date-Time ValUeS.........cccoevereierenenieeneeienens 5-19
HDTTM: Converting aDatefield to aDate-Time Field........ccovveereeveie e 5-20
HGETC: Storing the Current Date and Timein aDate-Time Field........cccoooiiiiiineniiinieeeeeeee 521
HHMMSS: Returning the CUITENt TIME......c.coi e et seese sttt s se et re s sre e eneeneens 5-22
HINPUT: Converting an Alphanumeric String to aDate-Time Value.........ccccooeieniniienenenieeseeienne 5-23
HMIDNT: Setting the Time Portion of a Date-Time Field to Midnightcccceovvievienivienecieieeeens 5-24
HNAME: Extracting a Date-Time Component in Alphanumeric FOrmat...........cocooeverenenenienieeiinnenns 5-25
HPART: Returning a Date-Time Component in NUMEric FOrmMat........ccoovvvvveeereenenesese e seesesseeeens 5-27
HSETPT: Inserting a Component Into aDate-Time Field ... 5-28
HTIME: Converting the Time Portion of aDate-Time Field to aNUumbercccccevvvevieeceevennnninnns 5-29
TODAY : Returning the CUMTENE DELEccoieiieieieeie ettt se e s b e sae e 5-30
UsSiNg L egacy Date FUNCHONS..........cceieceeeieeeieeisiececectesss s esessscseseessssesssssrsresesssesssessssesesesessssnsssesesesasassnsssass 5-34
Using Legacy Versions of Date FUNCLIONS.........c.ovireiiieneieceseese s eeesee e st sre e e e seenen 5-33
Using Dates With Two and FOUr-Digit Y EarS.......ccooiiiiiiiiiiieeee ettt 5-33
AYM: Adding or Subtracting Monthsto or From DateS..........ccceeeereererenienesesieeeeseeseese e sreseeeeneens 5-34
AYMD: Adding or Subtracting Dayst0o Or FrOm Dates..........cccererierererienienieneeeeeeee e 5-36
CHGDAT: Changing Date FOrMBES.......cccuiereeeereeiereesesesesteseeseseesesseeseessessessessessesseessessesssssessesssenes 5-37
DA Functions: Converting aDatet0 an INTEOEYcoiiiiiiiireeeeeree e sre e 5-39
DMY, MDY, YMD: Calculating the Difference Between TWO DateS.........ccccvvvrvrereeeereeseereseneneens 5-41
DOWK and DOWKL : Finding the Day Of the WEeK...........ccoiiiiiiiniieeeeee e 5-42
DT Functions: Converting an INteger t0 aDaLEccccvvvierireeeeerese s et ereens 5-43
GREGDT: Converting From Julian to Gregorian FOrMEL.............cceereeeerenene e 5-45
JULDAT: Converting a Date From Gregorian to Julian FOrmat...........cccceveeeeveereniesesie e eeeseenee s 5-46
YM: Calculating Elapsed MONENS..........ooiiiee et 5-47

Using Functions

Contents

B___Format CoNVErSion FUNCHIONS.cccuiuiieieiece ettt ce st sesssece s ensss s s nssasassessnennas 6-1
ATODBL: Converting an Alphanumeric String to Double-Precision FOrmatc.ccceecevevieieiiesesesececesesenene, 6-4
EDIT: Converting the Format of @ FIeldcccceieieiiiiiiiceeecce et er s erenns 6-6
FTOA: Converting a Number to Alphanumeric FOrMAL...........cccciieiiiieieiseeercececce e 6-9
HEXBYT: Converting a NUmMber t0 @ CharaCter.........ooccieieiissesis st s e 6-9
ITONUM: Converting a Large Binary Integer to Double-Precision FOrmMat..........ocovevvieeeieieiecececeiieseeeeee, 6-14
ITOPACK: Converting aLarge Binary Integer to Packed-Decimal FOrmat..........ococeveieeeiieieieiecrcrceiesescen, 6-13
ITOZ: Converting a NUmber t0 ZoNed FOIMALcceieiiiieieiesesesesecesissse s s s s sss s sesnns s 6-19
PCKOUT: Writing Packed Numbers of Different Lengths..........cococceiiiiiiii s 6-17
UEMT: Converting Alphanumeric to HEXA0ECIMElccovoveviviveeererieiiiee e 6-19

[7_ NUMEIIC FUNCHIONScieieitetitieseiie ettt sttt eess et et esesse s s s es s s s s ssass s s s s e s s erer s s s esasasassesersnnas 7-1
ABS: Calculating ADSOIULE ValUE.c.coviiisrseseseseeesecesesis st se st sesesesssss s s s sese s sesessss s s s srsrsrneens 7-2
ASIS: Distinguishing Between a Blank and @ ZEr0..........ccccueueiiiiiiieieieisececiesss s sesseresererse s eresereens 7-3
BAR: Producing Bar ChalrtS......ccceiiiiiiiieieieeeieiiieisi s siesescrerescsss s ssssssesesssssss s s ssssssesesenenssssssasassssssseseserssns 7-3
CHKPCK: Validating PaCKe FIEITS.ccrereerereeaeeseescessearesseeeesseseeeseessessesse s seessceasenes 7-6
DMOD, FMOD, and IMOD: Calculating the Remainder From a DiViSIONccccecieieieeieieieceeeeeecececeeees 7-§
EXP: Raising “€” 10 the Nth POWEcciieieiiiiseeeceeetec e erersn s 7-10
EXPN: Evaluating a Number in SCientific NOtationccoceveveiieicieseiessese s csss s 7-11
INT: Finding the Greatest INtEOENccccuceieiiiieieeie e seeeeecs s er s eses s s s ersnsnsanassn s 7-14
LOG: Calculating the Natural Logarithm..........coceceveieereercccie et er s 7-13
MAX and MIN: Finding the Maximum or Minimum ValU€..........coecevereresecessssissssisise s cesse s 7-14
PRDNOR and PRDUNI: Generating Reproducible Random NUMbBEYS........ccccceieieiiiiccccccc e 7-19
RDNORM and RDUNIF: Generating Random NUMDEXS........cccoceieiiiiiiiccecrceecce e 7-19
SORT: Calculating the SQUAre ROOL........c.cieieieisisisisesesesesececessses s se s s s s sss s s se s 7-2Q

B SYSEM FUNCHIONS.c.cuiieeice ettt 8-1
FEXERR: REIevVing an EITOr MESSA0E.ciiiiiiieieieirescsieisiisessessssesesesssessssis s s ssssssssesessssassssssssssesssesesesasns 8-4
FINDMEM: Finding a Member of a Partitioned Data Setcccceeeeeirieieieseiesesesecesesesesssss s s sesesenees 8-3
GETPDS: Determining if a Member of a Partitioned Data Set EXIStSvvuieieiecececesessssnsss s se s cesesenens 8-
GETUSER: RErEVING AUSEN ID......cucuiuieiiiieie it es s sseseseresssssss s s ssssssssssesessssnsssasasssssssesesesssans 8-9
HHMMSS: Returning the CUMTENt TiMEcououeirueeseseseeesesesessssssssssesesesesesesesesesesesnssssssesesssssesesesesesssssssasses 8-10
MVSDYNAM: Passing aDYNAM Command to the Command ProCeSSOr.......c.covvereeececesesesesssnsieieseseseaes 8-11
[TODAY : Returning the CUMTeNt Dale.........coieieieiiiiiirieirieeiererceieis i ss s eserererenesis s e s s s sseserersrsnsasasanns 8-13

Information Builders

Contents

A Creating Your OWN SUDI OULINES..........cceeieieieieeeece ettt e e ssesse e ensssss s s s nasasens A-1
PrOCESS OVEIVIEWveeeececeiesis st st sesesesessss s s sesesssaseessesessss st sssesessessssesesassssssrsesssesesssssessnnssnsssssssssssnsssnsas A-2
Considerations for Writing SUDIOULINES.........cociviiiiieieieeeesceieieissesissesseseseseresssss s sessssssesesessssssssssssssssssssesesesas A-3

N E= T o @0 1= o] RS A-3
ArguMENt CONSIAEIBLIONS.eueeueeeeiesie ettt e et ettt aeete et e e e seessesbeseestesaeeseeneeseaseseesbesmeensensaneeses A-4
Programming CONSIAEIrAtiONS.cccueiirieresiseeeesestesesrestesseeseesaesee e saesresseeseeseessessessessesseensessensenseseens A-5
Language CONSIAEIALIONScoueiuieuereeieie sttt ee e te st st saeshe e e e e sbesbesaeeaeeae e e anbeseesbesaeeaeeneeneaneeseens A-6
Programming Technique: ENtry POINEScviiiieerere st seens A-8
Programming Technique: Subroutines With More Than 28 Arguments..........cccceoecenenenenenenieeieneens A-9
Compilation AN SEOTA0E........cceiiiieieieceeecree ittt ee s s srereseseseresers s essssrsrssesesessasssasassssssssereserara A-13
VM/CMS: Compilation @nd SEOFA0E.......coueiuereerieieeie ettt sttt s b e e ne e e e A-13
0OS/390: Compilation aNd SEOFAQE......c.ueeereeiererese s see e e sre s e s eee e e sre e ese e e enseseessessesseeeensenseseens A-14
[Testing the SUDIOULINE.ciieeiiesesesesecesesesessse s s s st st s ssssss s ss s s st s sesesese s s s se s seseseessssesessss s sesesesrsnsrneas A-14
Example of a Custom Subroutine: The MTHNAM SUBIOULINE.........cccueeeeiiieiiieicisceeececcsse e A-15
The MTHNAM Subroutine Written in FORTRANcocoiiiieneieene s A-16
The MTHNAM Subrouting Written in COBOLccciiiiiiieiirese et A-17
The MTHNAM Subroutine WItEen in PL/ ..o A-19
The MTHNAM Subroutine Written in BAL ASSEMDIESooiiiiiiiiere e A-20
The MTHNAM Subroutine WIHTEN IN C ..o A-21
The MTHNAM Subroutine Called by a FOCUS REQUESEccueiuirieriirierieeeeie e A-22
Subroutines WIitten iN REXXiuiucuieieiiisisisisssseseesesesisisisisssssssssesesesesssessnsasssssssssssesesessssssasssssssssssasesesesas A-23
USING REXX SUBIOULTNES ...ttt sttt st e bbb b st e e e b e A-23
Compiling FUSREXX Macrosin VIM/CIMS.........cocoviiieeieecesese s seesae e st sne e s ensesnens A-34
MOEX ettt ettt ettt ee et ea e s esee s st et et et es e eass e et s s s e ee s e bt s es e asseaeseh et es s eh st b b s s s anasenaenas -1

Using Functions

CHAPTER 1

Introducing Functions

Topics:

* |Using Functions

« [Types of Functions |

Using Functions

Thistopic offers an introduction to functions and explains the
different types of functions available.

1-1

Introducing Functions

Using Functions

Functions operate on one or more arguments and return a single value or character string.
The return value or string can be stored in afield, assigned to a Dialogue Manager
variable, used in a calculation or other processing, or used in a selection or validation test.
Functions provide a convenient way to perform certain cal culations and manipulations.

There are two types of functions:

* Internal functions are built into FOCUS and require no extrawork to access or use.
The following areinternal functions. All other functions are external.

 ABSfunction

e ASISfunction

e DMY, MDY, and YMD function
 DECODE function

e EDIT function

e FIND function

e LAST function

e LOG function

e LOOKUP function

« MAX and MIN function
e SQRT function

» External functions are stored in an external library that must be accessed. When you
invoke these functions, an extra argument specifying the output field or format of the

result is required.

For information on how to use an internal or external function, see Chapter 2, Accessing

and Invoking a Function.

1-2

Information Builders

Types of Functions

Types of Functions

Y ou can access any of the following kinds of functions:

e Character functions manipulate a phanumeric fields or character strings. For details,
see Character Functions on page 1-3.

« Data Source and Decoding functions search for or retrieve data source records or
values, and assign values. For details, seeData Source and Decoding Functionsjon
page 1-6.

» Date and Time functions manipulate dates and times. For details see[Date and Time

Functionsjon page 1-7.

* Format Conversion functions convert fields from one format to another. For details,
see[Format Conversion Functionsjon page 1-12.

* Numeric functions perform calculations on numeric constants and fields. For details,
seeNumeric Functionsjon page 1-13.

e System functions call the operating system to obtain information about the operating
environment or to use a System service. For details see System Functionsjon page
1-15.

Character Functions

Using Functions

The following functions manipulate alphanumeric fields or character strings. For details
see Chapter 3, Character Functions.

ARGLEN function
Measures the length of a character string within afield, excluding trailing blanks.
Available Operating Systems: All
Available Languages:. reporting, Maintain
ASISfunction
In Dialogue Manager, distinguishes between a blank and a zero.

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, Windows
NT/2000

Available Languages:. reporting
BITSON function

Evaluates an individual bit within a character string to determine whether it is on or
off.

Available Operating Systems: All
Available Languages:. reporting, Maintain
BITVAL function
Evaluates a string of bits within a character string and returns its binary value.
Available Operating Systems: All
Available Languages: reporting, Maintain

1-3

Introducing Functions

BYTVAL function
Trandates a character to its corresponding ASCI| or EBCDIC decimal value.
Available Operating Systems: All
Available Languages: reporting, Maintain

CHKFMT function

Checksfor incorrect character types by comparing each character in the input string
to the corresponding character in a mask.

Available Operating Systems: All
Available Languages: reporting, Maintain
CTRAN function
Converts one character in a string to another character.
Available Operating Systems: All
Available Languages: reporting, Maintain
CTRFLD function
Centers a character string within afield, excluding trailing blanks.
Available Operating Systems: All
Available Languages: reporting, Maintain
EDIT function
Extracts characters from or adds charactersto an al phanumeric string (with mask).
Available Operating Systems: All
Available Languages: reporting
GETTOK function
Divides a character string at adelimiter and returns a substring called a token.
Available Operating Systems: All
Available Languages: reporting, Maintain
LCWORD function
Convertsthe lettersin agiven string to mixed case.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
LJUST function

Left-justifies a character string within afield. All leading blanks become trailing
blanks.

Available Operating Systems: All
Available Languages: reporting, Maintain

Information Builders

Types of Functions

LOCASE function
Converts alphanumeric text to lowercase.
Available Operating Systems: All
Available Languages: reporting, Maintain
OVRLAY function
Overlays a base character string with a substring.
Available Operating Systems: All
Available Languages:. reporting, Maintain
PARAG function
Divides lines of text into smaller lines with delimiters.
Available Operating Systems: All
Available Languages: reporting, Maintain
POSIT function
Finds the starting position of a substring within alarger string.
Available Operating Systems: All
Available Languages:. reporting, Maintain
Available Languages: reporting, Maintain
RJUST function

Right-justifies a character string within afield. All trailing blanks become leading
blanks.

Available Operating Systems: All
Available Languages:. reporting, Maintain
SOUNDEX function
Searches for a character string phonetically rather than by its spelling.
Available Operating Systems: All
Available Languages: reporting, Maintain
SQUEEZ function

Reduces multiple contiguous blank characters within a string to a single blank
character.

Available Operating Systems: All
Available Languages: reporting, Maintain
STRIP function
Removes all occurrences of a specific character from a string.
Available Operating Systems: All
Available Languages: reporting, Maintain

Using Functions 1-5

Introducing Functions

SUBSTR function
Extracts a substring based on where it starts and ends in the parent string.
Available Operating Systems: All
Available Languages: reporting, Maintain
TRIM function
Removes leading and/or trailing occurrences of a pattern within a string.
Available Operating Systems: All
Available Languages:. reporting, Maintain
UPCASE function
Converts alphanumeric text to uppercase.
Available Operating Systems: All
Available Languages: reporting, Maintain

Data Source and Decoding Functions

The following functions search for data source records, retrieve data source records or

values, and assign values. For details, see Chapter 4, Data Source and Decoding
Functions.

DECODE function
Assigns values based on the value of an input field.
Available Operating Systems: All
Available Languages: reporting, Maintain

FIND function
Verifiesif avalue existsin an indexed field in another file.
Available Operating Systems: All
Available Languages:. reporting

LAST function
Retrieves the preceding value selected for afield.
Available Operating Systems: All
Available Languages:. reporting

LOOKUP function
Retrieves a value from a cross-referenced file.
Available Operating Systems: All
Available Languages:. reporting

1-6 Information Builders

Types of Functions

Date and Time Functions

Using Functions

The following functions manipulate dates and times. For details, see Chapter 5, Date and
Time Functions.

Standard Date and Time Functions
DATEADD function
Adds or subtracts years, months, or days to or from a date.

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain
DATECVT function
Converts dates from one date format to another.

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain
DATEDIF function
Calculates the difference between two dates, expressed as years, months, or days.

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain
DATEMOV function
Moves a date to a significant point on the calendar.

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain
HADD function
Increments a date-time field by a given number of units.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
HCNVRT function

Converts a date-time field to a phanumeric format for use with operators such as
EDIT, CONTAINS, and LIKE.

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

1-7

Introducing Functions

HDATE function
Extracts the date portion of a date-time field and convertsit to a date format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
HDIFF function
Finds the number of boundaries of a given type crossed going from date 2 to date 1.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
HDTTM function
Converts adate field to adate-time field. The time portion is set to midnight.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
HGETC function
Stores the current date and time in a date-time field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000 NT/2000

Available Languages:. reporting, Maintain
HHMM SS function
Retrieves the current time from the system.
Available Operating Systems: All
Available Languages: reporting, Maintain
HINPUT function
Converts an alphanumeric string to a date-time value.

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
HMIDNT function
Changes the time portion of adate-time field to midnight (all zeroes).

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

1-8 Information Builders

Types of Functions

HNAME function
Extracts a specified component from a date-time field and returnsit in alphanumeric
format.
Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000
Available Languages: reporting, Maintain

HPART function
Extracts a specified component from a date-time field and returnsit in numeric
format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
HSETPT function
I nserts the numeric value of a specified component into a date-time field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
HTIME function

Converts the time portion of adate-time field to a numeric number of milliseconds
(if the first argument is 8) or microseconds (if the first argument is 10).

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
TODAY function

Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain

Using Functions 1-9

Introducing Functions

Legacy Date Functions

AYM function
Adds or subtracts months from dates that are in year-month format.
Available Operating Systems: 0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages: reporting, Maintain

AYMD function
Adds or subtracts days from dates that are in year-month-day format.
Available Operating Systems:0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages:. reporting, Maintain

CHGDAT function

Rearranges the year, month, and day portions of dates, and converts dates between
long and short date formats.

Available Operating Systems: 0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages:. reporting, Maintain
DA functions

Convert dates to the corresponding number of days elapsed since December 31,
1899.

DADMY converts dates in day-month-year format.
DADYM converts dates in day-year-month format.
DAMDY converts dates in month-day-year format.
DAMY D converts dates in month-year-day format.
DAY DM converts dates in year-day-month format.
DAY MD converts dates in year-month-day format.
Available Operating Systems: All
Available Languages: reporting, Maintain
DMY, MDY, and YMD functions
Calculate the difference between two dates.
Available Operating Systems: All
Available Languages: reporting, Maintain
DOWK]L] functions
Determine the day of the week for dates.
Available Operating Systems: All
Available Languages: reporting, Maintain

1-10 Information Builders

Types of Functions

DT functions

Convert the number of days elapsed since December 31, 1899 to the corresponding
date.

DTDMY converts numbers to day-month-year dates.
DTDYM converts numbers to day-year-month dates.
DTMDY converts numbers to month-day-year dates.
DTMY D converts numbers to month-year-day dates.
DTYDM converts numbers to year-day-month dates.
DTYMD converts numbers to year-month-day dates.
Available Operating Systems: All
Available Languages: reporting, Maintain

GREGDT function
Converts dates in Julian format to year-month-day format.
Available Operating Systems: All
Available Languages: reporting, Maintain

JULDAT function
Converts dates from year-month-day format to Julian (year-day format).
Available Operating Systems: All
Available Languages: reporting, Maintain

YM function

Calculates the number of months that elapse between two dates. The dates must be in
year-month format.

Available Operating Systems: All
Available Languages:. reporting, Maintain

Using Functions 1-11

Introducing Functions

Format Conversion Functions

The following functions convert fields from one format to another. For details, see
Chapter 6, Format Conversion Functions.

ATODBL function
Converts a number in a phanumeric format to double-precision format.
Available Operating Systems: All
Available Languages: reporting, Maintain
EDIT function
Converts an alphanumeric field to numeric or anumeric field to alphanumeric.
Available Operating Systems: 0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages:. reporting
FTOA function
Converts a number in anumeric format to al phanumeric format.
Available Operating Systems: All
Available Languages:. reporting, Maintain
HEXBYT function
Obtains the ASCII or EBCDIC character equivalent of adecimal integer value.

Available Operating Systems: AS/400, HP, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
I TONUM function
Converts large binary integers in non-FOCUS files to double-precision format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
ITOPACK function
Converts large binary integersin non-FOCUS files to packed-decimal format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain
ITOZ function
Converts numbers from numeric format to zoned format for extract files.

Available Operating Systems: AS/400, HP, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain

1-12 Information Builders

Types of Functions

PCKOUT function

Writes packed numbers of varying lengths (between one and 16 bytes) to extract
files.

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
UFMT function

Converts characters in alphanumeric field values to hexadecimal (HEX)
representation.

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS
Available Languages: reporting, Maintain

Numeric Functions

Using Functions

The following functions perform cal culations on humeric constants or fields. For details,
see Chapter 7, Numeric Functions.

ABS function
Returns the absolute value of its argument.
Available Operating Systems: All
Available Languages: reporting, Maintain
ASISfunction
In Dialogue Manager, distinguishes between a blank and a zero.

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, Windows
NT/2000

Available Languages:. reporting
BAR function
Produces horizontal bar chartsin reports.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
CHKPCK function
Verifiesthat the value of a packed field isin packed format.
Available Operating Systems: All
Available Languages: reporting, Maintain
DMOD, FMOD, and IMOD functions
Calculate the remainder from a division.
Available Operating Systems: All
Available Languages:. reporting, Maintain

1-13

Introducing Functions

EXP function
Raises the number “€” to a power you specify.
Available Operating Systems: All
Available Languages: reporting, Maintain
EXPN function
Evaluates an argument expressed in scientific notation.
Available Operating Systems: AS/400, OpenVM S, Windows NT/2000
Available Languages:. reporting
INT function
Returns the integer part of its argument.
Available Operating Systems: All
Available Languages: reporting, Maintain
LOG function
Returns the natural logarithm of its argument.

Available Operating Systems: AS/400, HP, OpenVMS, 0S/390, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
MAX and MIN functions
Return the maximum or minimum value from alist of arguments.
Available Operating Systems: All
Available Languages:. reporting, Maintain
PRDNOR and PRDUNI functions
Generate reproducible random numbers.
Available Operating Systems: All
Available Languages: reporting, Maintain
RDNORM, and RDUNIF functions
Generate random numbers.
Available Operating Systems: All
Available Languages: reporting, Maintain
SQRT function
Returns the sguare root of its argument.
Available Operating Systems: All
Available Languages: reporting, Maintain

1-14 Information Builders

Types of Functions

System Functions

The following functions call the operating system to obtain information about the
operating environment or to use a system service. For details, see Chapter 8, System
Functions.

FEXERR function
Retrieves error messages.

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
FINDMEM function
Determines if a specific member of a partitioned data set exists.
Available Operating Systems: 0S/390, VM/CM S
Available Languages: reporting, Maintain
GETPDS function

Determines if a specific member of apartitioned data set exists, and if so, returnsthe
data set name.

Available Operating Systems: 0S/390

Available Languages: reporting, Maintain
GETUSER function

Retrieves the user ID from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain
HHMM SS function

Retrieves the current time from the system.

Available Operating Systems:

Available Languages: reporting, Maintain
MVSDYNAM function

Passesa DYNAM command to the command processor.

Available Operating Systems: 0S/390, VM/CM S

Available Languages:. reporting, Maintain
TODAY function

Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain

Using Functions 1-15

CHAPTER 2
Accessing and Invoking a Function

Topics:

[nvoking a Function|
Osing an Argument in a Function|

sing a Function in a FOCUS
Command

Using a Function With a Dialogue
Manager Command

Using a Function in Another Function

Using a Function in WHERE or IF
Criteria

Using a Function in WHEN Criteria|

Using a Function in a RECAP
Command

Accessing a Function |

Dynamic Language Environment
Support

Using Functions

Thistopic describes the considerations for supplying arguments
in afunction, explains how to use a function in a command, and

how to access externally-stored functions.

2-1

Accessing and Invoking a Function

Invoking a Function

Syntax

Syntax

2-2

A function can be invoked in acommand, or as part of an expression. It isinvoked with
the function name, arguments, and, for some functions, an output field.

Y ou can invoke afunction from a FOCUS command, Dial ogue Manager command, or
FML command. For details see the topic on the appropriate command.

How to Invoke a Function
function(argl, arg2, ... [outputfield])
where:

function

Is the name of the function.
argl, arg2,

Are the arguments.
outputfield

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. Thisis required only for external functions.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

How to Store Output in a Field

{ DEFI NE| COWPUTE} field fnmt = function(inputl, input2, ... outfield);
or
DEFINE FILE file
field fm = function(inputl, input2, ... outfield);
or
-SET &var = function(inputl, input2, ... outfield),
where:
field
Isthe field in which the output is to be stored.
file

Isthefilein which the virtual field will be created.
var
Isthe variable in which the output is to be stored.
fmt
Isthe format of the output field.
function
Isthe name of the function, up to eight characterslong.
inputl, input2,...
Are the input function arguments, which are data values and fields that the function

needs to do its processing. For more information about arguments see
Argument in a Functionjon page 2-3.

Information Builders

Using an Argument in a Function

outfield

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Using an Argument in a Function

When using an argument in afunction, there are several considerations. Y ou must
understand what types of arguments are acceptable, the formats and lengths for these
arguments, and the number and order of arguments.

Argument Types

Using Functions

The following are acceptable arguments for a function:

Numeric constant, such as 6 or 15.
Date constant, such as 022894.

Alphanumeric literal, such as STEVENS or NEW YORK NY. A literal must be
enclosed in single quotation marks.

Number stored in alphanumeric format.
Date in aphanumeric, numeric, or date format.

Field name, such as FIRST_NAME or HIRE_DATE. A field can be adata source
field or temporary field. The field name can be up to 66-characterslong or a
qualified field name, unique truncation, or alias.

Expression, such as a numeric, date, or alphanumeric expression. An expression can
use arithmetic operators and the concatenation sign (|). For example, the following
arevalid expressions:

CURR_SAL * 1.03

and

FN || LN

Dialogue Manager variable, such as & CODE or & DDNAME.
Format of the output value, enclosed in single quotation marks.

Asan input argument for a RECAP command, row or column reference (R notation,
E notation, or label) or names of other RECAP calculations.

Another function.

2-3

Accessing and Invoking a Function

Argument Formats

Depending on the function, an argument can be in either alphanumeric, numeric, or date
format. If you supply an argument in the wrong format, you will cause an error or the
function will not return correct data. These are the types of formats:

An alphanumeric argument is stored internally as one character per byte. An
alphanumeric argument can be aliteral, an alphanumeric field, a number or date
stored in alphanumeric format, an alphanumeric expression, or the format of an
alphanumeric field. A literal is enclosed in single quotation marks, except when
specified in operating systems that support RUN commands (for example, -MVS
RUN).

A numeric argument is stored internally as a binary or packed number. A numeric
argument includes integer (1), floating-point (F), double-precision (D), and packed
(P) formats. A numeric argument can be a numeric constant, field, or expression, or
the format of anumeric field.

All numeric arguments are converted to double-precision format when used with a
function, but results are returned in the format specified for your output field.

A date argument can be in either alphanumeric, numeric, or date format. The list of
arguments for the individual function will specify what type of format the function
accepts. A date argument can be a date in alphanumeric, numeric or date format, a
date field or expression, or the format of adatefield.

If you specify an argument with atwo digit year, the function will specify a century
based on the DATEFNS, YRTHRESH, and DEFCENT settings.

Argument Length

An argument is passed to a function by reference, meaning that the memory location of
the argument is passed. Therefore, no indication of the length of the argument isimplied.

When needed (for alphanumeric strings), the argument length must be passed as a
separate argument. Some functions require a length for the input arguments and output
arguments (for example, SUBSTR), and others use one length for both input and output
arguments (for example, UPCASE).

Be careful to ensurethat all lengths are correct. Providing an incorrect length can cause
incorrect results:

If the specified length is shorter than the actual length, a subset of a string is used.
For example, passing the argument 'ABCDEF and specifying alength of 3 istreated
asastring of 'ABC..

If the specified length is too long, whatever isin memory beyond the lengthis
included. For example, passing an argument of '"ABC' and specifying alength of 6is
treated as a string beginning with 'ABC' plus whatever three characters arein the
next three positions of memory. Depending on memory utilization, the extrathree
characters can be anything.

Some operating system routines are very sensitive to incorrectly specified lengths
and read into incorrectly formatted memory areas.

Information Builders

Using a Function in a FOCUS Command

Number and Order of Arguments

The number of arguments required varies according to each function. Built-in functions
may reguire up to six arguments. Customized functions may require any number of
arguments. The maximum number of arguments per function, including the output
argument, is 28. If the function regquires more than 28 arguments, you must use two or
more call statements to pass the arguments to the function.

Arguments must be specified in the order specified in the syntax of each function in this
manual. The required order varies between functions.

Using a Function in a FOCUS Command

A function can be called from the DEFINE command or Master File attribute, the
COMPUTE command, or VALIDATE command.

Syntax How to Use a Function in a COMPUTE or DEFINE Command
DEFI NE [FI LE f// enane]
tenpfield | format] = function (inputl, input2, input3, ... [outfield]);
COVPUTE
tenpfield | format] = function (inputl, input2, input3, ... [outfield]);
VALI DATE
tenpfield | format] = function (inputl, input2, input3, ... [outfield]);
where:
fil ename

Is the data source to be used.

tenpfiel d

Isthe temporary field to be created by the DEFINE or COMPUTE command. Thisis
the same field specified by outfield. If the function returns output as the format of the
output value, the format of the temporary field must match the outfield argument.

/ fornat
Isthe format of the temporary field. The format is required if it isthefirst time the
field is defined; otherwise, it is optional .

function
Isthe name of the function.

input1, input2, input3...
Are the arguments.

outfield
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. Thisis required only for some functions.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Using Functions 2-5

Accessing and Invoking a Function

Using a Calculation or Compound IF Command With a COMPUTE

Command

In acalculation or compound IF command, you must specify the format for the output
value. There are two methods for this:

* Pre-define the format of the output field with a separate command. For example, in
the following, the AMOUNT field is pre-defined with the format D8.2 and the
function returns avalue to the output field AMOUNT. The IF command tests if
AMOUNT is greater or less than 500 and stores the result in the calculated value.
AMOUNT_FLAG.

COVPUTE

AMOUNT/ D8. 2 =;

AMOUNT_FLAG A5 = | F function(inputl,input2 AMOUNT) CGE 500
THEN ' LARGE' ELSE ' SMALL';

e Specify the last argument in the argument list as the format. For example, in the
following, the command tests the returned value directly. Thisis possible because
the function defines the format of the return value (D8.2).

AMOUNT_FLAG A5 = | F function(inputl,input2'D8.2") GE 500
THEN ' LARGE' ELSE ' SMALL';

Using a Function With a Dialogue Manager

Command

2-6

Y ou can use afunction with Dialogue Manager. Y ou can do thisin the following ways:

+ Storetheresult of afunction in avariable. For details see Assigning the Result of a |
Function to a Variable|on page 2-7.

e Useafunctionin a-IF command. For details seelUsing aFunctionina-TF |
Command]on page 2-8.

+ Useafunctionina-RUN command. For details see[USinga Function inan |
Operating System -RUN Command|on page 2-9.

Dialogue Manager converts a numeric argument to double precision format whether or
not the argument type is supposed to be character. This means you must be careful when
supplying arguments for afunction in Dialogue Manager. If Dialogue Manager converts
an argument to double-precision when you do not want it to, you will get incorrect
results. If the function expects an alphanumeric string and the input is a numeric string,
incorrect results will occur because of the conversion to double precision. To resolve this
problem, append a non-numeric character to the end of the string, but do not count this
extra character in the length of the argument. For example, to prevent the conversion of a
delimiter blank character (' *) to adouble precision zero in the GETTOK function, include
anon-numeric character after the blank. GETTOK uses only the first character (the
blank) as a delimiter and the extra character prevents conversion to double precision.

Information Builders

Using a Function With a Dialogue Manager Command

Assigning the Result of a Function to a Variable

Syntax

Example

Example

Using Functions

Y ou can store the result of afunction in avariable. Thisis done with the -SET command,
which Dialogue Manager usesto create variables.

Dialogue Manager variables contain only alphanumeric data. If afunction returns a
numeric value to a Dialogue Manager variable, the output is truncated to an integer and
converted to a character string before being stored in the variable.

Note: You cannot specify a Dialogue Manager amper variable for the output argument
unlessyou use the .EVAL suffix.

How to Store the Result of a Function in a Variable
-SET &variable = function(inputl, &ariableZ[.LENGTH], ..., "format');
where:
vari abl e
I's the amper variable to which the returned value will be assigned.
function
Is the function.
i nput 1
Isthe first argument.
format
Isthe format of the output value, enclosed in single quotation marks. Y ou cannot
specify a Dialogue Manager amper variable for the output argument; however, you
may specify an amper variable as an input argument.
. LENGTH

Tests for the length. If afunction requires the length of acharacter string as an input
argument, you may prompt for the character string, and test the length.

Preventing Conversion to Double Precision Format

In the following Dialogue Manager command, GETTOK extracts the third word from a
sentence stored in the & SN variable. The .LENGTH suffix passes the number of
characters in the sentence to the function. The extra character (%) isincluded to prevent
the conversion of a delimiter blank character to a double precision zero.

-SET &WORD3 = GETTOK (&SN, &SN. LENGTH, 3, ' %, 30, 'A30');

Using a Function in a -SET Command

In this example, the AYMD function, adds 14 daysto the value of & INDATE. The

& INDATE variable for the input date is previously set in the procedure and isin the
six-digit year-month-day format.

- SET &OUTDATE = AYMX & NDATE, 14, '16');

The format of the output date is a six-digit integer. Although the format (16) indicates that
the output is an integer, it is stored in the & OUTDATE variable as a character string. For
thisreason, if you display the value of & OUTDATE, you will not see lashes separating
the year, month, and day.

2-7

Accessing and Invoking a Function

Using a Function in a -IF Command

Syntax

2-8

Y ou can use afunction in the Dialogue Manager -IF command.

Note: If abranching command must span more than one line, you can continue on the
next line by placing adash in the first column.

How to Use a Function in a -IF Test
-l F function(args) relation expression GOTO /[abel1 [ELSE GOTO /abel 2]
where:
function(args)
Isthe function and its arguments.
rel ation

Is an operator that determines the relationship between the function and expression,
for example, EQ or LE.

expressi on
Isavalid relation or logical expression. Literals do not need to be enclosed in single
guotation marks unless they contain commas or embedded blanks.

/ abel 1
I's a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that can be confused with functions, or arithmetic or logical operations.
The label text may precede or follow the -IF criteriain the procedure.

ELSE GOTO
Passes control to label2 when the -IF test fails.

Information Builders

Using a Function With a Dialogue Manager Command

Example

Using a Function in a -IF Command

In the following example, the result of the AYMD function provides a condition for a
-IF test. One of two requestsis executed, depending on the result of the AYMD function.

-LOOP
- PROWT &l NDATE. ENTER START DATE | N YEAR- MONTH DAY FORVAT OR ZERO TO EXIT: .
-1 F & NDATE EQ 0 GOTO EXI T,
- SET &WEEKDAY = DOWK(& NDATE, ' Ad4');
- TYPE START DATE | S &WEEKDAY &l NDATE
- PROWPT &DAYS. ENTER ESTI MATED PRQIECT LENGTH | N DAYS: .
-1 F AYMD(& NDATE, &DAYS, ' | 6YMD') LT 960101 GOTO EARLY;
- TYPE LONG PRQJECT
- *EX LONGPRQJ
7. -RUN
- GO0ro Locp
- EARLY
- TYPE SHORT PRQIECT
- *EX SHRTPRQJ
8. -RUN
- GO0ro LocpP
-EXIT

This procedure processes as follows:

The procedure prompts you for a start date of aproject in YYMMDD format.

If you enter a 0, the procedure terminates execution.

The DOWK function obtains the day of week for the start date.

The -TY PE statement displays the day of week and date for the start of the project.
The procedure prompts you for the estimated length of the project in days.

The AYMD function calculates the date that the project will finish. If thisdateis
before January 1, 1996, the -1F statement branchesto the label EARLY .

7. If the project will finish on or after January 1, 1996, the procedure types the words
LONG PROJECT and returnsto the top of the procedure.

8. If the procedure branches to the label -EARLY, it types the words SHORT
PROJECT and returns to the top of the procedure.

AU R

o ok~ wbdpE

Using a Function in an Operating System -RUN Command

Using Functions

You can call afunction with al alphanumeric arguments with the Dialogue Manager
-CMSRUN, -TSO RUN, and -MVS RUN commands. These functions perform specific
tasks but typically do not return any values.

All numeric arguments in Dialogue Manager are stored in a phanumeric format and
reguire conversion before being passed to functions because unlike the -SET command,
operating system -RUN commands do not automatically convert numeric arguments to
double precision. For functions that require arguments in numeric format, you must first
convert the arguments into double-precision numbers using the ATODBL function.

If afunction requires the length of a character string as an input argument, you may
prompt for the character string, then use the .LENGTH suffix to test the length.

2-9

Accessing and Invoking a Function

Syntax

Example

2-10

How to Use a Function in a RUN Command

{-COM8| - TSQ - WS} RUN function, inputl, input2, ... [, &output]

where:

function
Isthe name of the function.

inputl, input2, ...
Are the arguments. Separate the function name and each argument with a comma.
Do not enclose alphanumeric literals in single quotation marks.

, &out put
IsaDialogue Manager variable. Include thisif the function returns avalue;
otherwise, omit it. If you specify an output variable, you must pre-define its length
using a-SET command.

For example, if the function requires an output argument that is eight byteslong, you
need to define the variable with eight characters enclosed in single quotation marks
before the function call:

- SET &out put = ' 12345678

Using a Function in a RUN Command

The following is an example of a function that does not return any values. Assume you
wrote afunction called BLANKOUT that clears part of the screen on a Tektronix
terminal (a non-3270 terminal). The function reads one argument that indicates which
part of the screen to blank out. To clear the top half of the screen, you include this
command in a procedure:

-CV5 RUN BLANKQUT, H1L
or
- TSO RUN BLANKQUT, H1L

Information Builders

Using a Function in Another Function

Using a Function in Another Function

A function can serve as an argument for another function.

Example Using a Function in Another Function
The command
field = MAX(5000, function,(argunents, 'fornmat'));

stores either the value 5000 or the value returned by the function, whichever islarger, ina
field.

Using a Function in WHERE or IF Criteria

A function may be used in WHERE or IF criteria. When this is done, the output value of
the function is compared against the test value.

Example Using a Function With a WHERE Test

In this example, the SUBSTR function extracts the first two characters as a substring. The
reguest prints an employee’ s name and salary if the result of the function isMC.
TABLE FI LE EMPLOYEE

PRI NT FI RST_NAME LAST_NAME CURR_SAL
VWHERE SUBSTR(15, LAST_NAME, 1,2,2,"'A2') IS 'M;

END

The output is:

FI RST_NAME LAST_NAME CURR_SAL
JOHN MOCOY $18, 480. 00
ROGER MCKNI GHT $16, 100. 00

Using Functions 2-11

Accessing and Invoking a Function

Using a Function in WHEN Criteria

Example

2-12

A function may be used as WHEN criteria as part of a Boolean expression.

Using a Function in WHEN Criteria

The following example checks the valuesin LAST_NAME against the result of the
CHKFMT function. When a match does not occur, a subfoot is printed.

TABLE FI LE EMPLOYEE

PRI NT DEPARTMENT BY LAST_NAME

ON LAST_NAME SUBFOOT

"***x LAST NAME <LAST_NAME DOES MATCH MASK"
WHEN NOT CHKFMT(15, LAST_NAME, ' SM TH

END
The output is:
LAST_NAME

BANNI NG
BLACKWOCD
CRCSS
GREENSPAN
I RVI NG
JONES
MCCOY
MCKNI GHT
ROMANS
SM TH

*** LAST NAME SM TH DOES MATCH MASK

STEVENS

DEPARTNMENT

M S
PRODUCTI ON
PRODUCTI ON
M S
PRODUCTI ON

PRCDUCTI ON

16

Information Builders

Using a Function in a RECAP Command

Using a Function in a RECAP Command
You can use afunction in a Financial Modeling Language (FML) RECAP command.

Syntax How to Use a Function Call in a RECAP Command
RECAP nane[(n)| (n,m|(n, mi)l[/ format]l = function(inputl,..., "format2);
where:
name

Is the name of the calculation.

Displays the value in the column number specified by n. If you omit the column
number, the value appearsin all columns.

n,m
Displaysthe valuein all columns beginning with the column number specified by n
and ending with the column number specified by m.

n,.mi
Displays the value in the columns beginning at the column number specified by n
and ending with the column number specified by m by theinterval specified by i. For
example, if nis specified as 1, mis specified as 5, and i is specified as 2, the value
will display in columns 1, 3, and 5.

format
Isthe format of the calculation. The default value is the format of the report column.

function
Isthe function.

inputi, ...
Are the arguments. The input arguments for a RECAP command can include
numeric constants, alphanumeric literals, row and column references (R notation, E
notation, or labels), and names of other RECAP calculations.

format?2
Isthe format of the function output value. If the calculation consists of only the
function, make sure this format agrees with the calculation’s format. If the
calculation format is larger than the column width, the value displaysin that column
as asterisks.

Using Functions 2-13

Accessing and Invoking a Function

Example

Accessing

Using a Function in a RECAP Command

The following request sums the AMOUNT field for account 1010 using the label CASH,
account 1020 using the label DEMAND, and account 1030 using the label TIME. The
MAX function displays the maximum of these accounts:

TABLE FI LE LEDGER

SUM AMOUNT FOR ACCOUNT
1010 AS ' CASH ON HAND
1020 AS ' DEMAND DEPCSI TS
1030 AS ' TI ME DEPCSI TS

LABEL CASH OVER
LABEL DEMAND OVER
LABEL TIME OVER

BAR OVER
RECAP MAXCASH = MAX(CASH, DEMAND, TIME); AS ' MAX CASH
END

The output is:

AMOUNT
CASH ON HAND 8, 784
DEMAND DEPCSI TS 4,494
TI ME DEPCSI TS 7,961
MAX CASH 8, 784
a Function

Many of the functions are built in and do not require any additional work to access them.

Some functions are stored externally in load libraries. The way these functions are
accessed is determined by your platform. The following topics describe how to access
Information Builders-supplied functions on specific platforms.

Y ou can also access private site-written functions. If you have a private collection of
functions (that is, you created your own or use customized functions), do not store them
in the function library. Store them separately to avoid overwriting them whenever your
siteinstalls a new release.

Storing and Accessing a Function on OS/390

2-14

In OS/390, load libraries are partitioned data sets containing link-edited modules. These
load libraries are stored as part of EDALIB.LOAD or FUSELIB.LOAD. In addition to
thisload library, your site may have private function collections stored in separate load
libraries.

0OS/390 Batch Allocation

To use afunction stored as aload library, allocate the load library to the ddname
USERLIB inyour JCL or CLIST.

The search order isUSERL B, STEPLIB, JOBLIB, link pack area, and linklist.

Information Builders

Accessing a Function

Example

Syntax

Using Functions

Allocating Load Libraries on OS/390
The following example allocates functions stored in BIGLIB.LOAD in JCL:
/1 USERLI B DD DI SP=SHR, DSN=BI GLI B. LOAD

TSO Allocation

To use external functionsin TSO, allocate the load libraries to ddname USERLIB using
the ALLOCATE command. The ALLOCATE command can be issued:

* InTSO before entering your FOCUS session.
» Before executing your request.
* Inyour PROFILE FOCEXEC.

Note: If you have private function collections, you need to alocate those load librariesin
addition to the FUSEL IB load library. If you arein a FOCUS session, you may use the
DYNAM ALLOCATE command to specify the allocation.

How to Allocate a Load Library
{MWS| TSO ALLOCATE FI LE(USERLIB) DSN(// b1 [ib2 [ib3 ...) SHR
where;

MWS| TSO

Isthe prefix. Specify the prefix if you issue the ALLOCATE command from your
application or include it in your PROFILE FOCEXEC.

USERLI B
I's the ddname to which you allocate function load libraries.
1ibl 1ib 1ib3. ..

Are the names of the load libraries. (This concatenates the data sets to ddname
USERLIB.)

2-15

Accessing and Invoking a Function

Example

Allocating the FUSELIB.LOAD Load Library

The following commands allocate the FUSELIB.LOAD load library.
TSO ALLOC FI LE(USERLI B) DSN(' M/S. FUSELI B. LOAD') SHR

or

DYNAM ALLOC FI LE USERLI B DA MVS. FUSELI B. LOAD SHR

Suppose areport request calls two functions: BENEFIT stored in library
SUBLIB.LOAD, and EXCHANGE stored in library BIGLIB.LOAD. To concatenate the
BIGLIB and SUBLIB load librariesin the allocation for ddname USERLIB, issue the
following commands:

DYNAM ALLOC FI LE USERLI B DA SUBLI B. LOAD SHR

DYNAM ALLOC FILE BIGLIB DA BI GLI B. LOAD SHR

DYNAM CONCAT FI LE USERLI B Bl GLI B

The load libraries are searched in the order that you specified themin the ALLOCATE
command.

Or, for batch mode, concatenate the load library to the ddname STEPLIB or USERLIB in
your JCL.:

/1 FOCUS EXEC PGVEFOCUS
/| STEPLI B DD DSN=FOCUS. FOCLI B. LOAD, DI SP=SHR
/1 DD DSN=FOCUS. FUSELI B. LOAD, DI SP=SHR

The search order isUSERLIB, STEPLIB, JOBLIB, and link pack area and linklist.

Storing and Accessing a Function on UNIX

No extrawork is required.

Storing and Accessing a Function on VM/CMS

2-16

In VM/CMS, functions are stored as:

* Theload library FUSELIB LOADLIB. In addition to the FUSELIB load library,
your site may have private collections of functions stored in separate libraries or text
files. If you create your own function in atext file or text library, the function must
be 31-bit addressable and created as part of aLOADLIB.

* Thetext library FUSELIB TXTLIB. A text library isafile that is composed of
multiple text files called members. Functions can be stored as members of one or
more text libraries. The file type for text librariesis TXTLIB.

e Textfiles. Thefile name of atext file must match the function name. Thefiletypeis
TEXT. For example, the EXCHANGE function stored as atext file has thefile
identifier (ID):

EXCHANGE TEXT

Information Builders

Accessing a Function

Accessing a Function Automatically

For afunction stored as atext filein VM/CMS, the access method is automatic. When
your request calls the function, the attached disks are searched in alphabetical order,
provided that you have proper authorization.

Reference Search Sequence in VM/CMS
Functions are searched for in the standard VM/CM S search sequence:

1. Load libraries, in the order that you specified them in the GLOBAL LOADLIB
command.

2. Text files, searching attached disks in alphabetical order.

3. Textlibraries, in the order that you specified them in the GLOBAL TXTLIB
command.

Searching for a Function Library

For functions stored in aload or text library in VM/CMS, you need to issue the CMS
GLOBAL command. The GLOBAL command enables your application to search
specified libraries for the functions. Y ou can issue the GLOBAL command:

» Before entering FOCUS.
e Inaprofile.
e From aprocedure.

Y ou must also specify a system library for afunction written in alanguage such as
COBOL and PL/1, and for afunction that calls system functions. FUSELIB functions do
not require any other system libraries.

If you issue two GLOBAL commands of the same type, the second command replaces
thefirst. Once alibrary is opened (as aresult of referencing one of its members), the
library cannot be changed until you exit.

If you have a private function collection, you need to specify the librariesin the
GLOBAL command in addition to the FUSELIB load library.

Using Functions 2-17

Accessing and Invoking a Function

Syntax

Syntax

Example

Example

2-18

How to Enable Your Application to Search a Specified Library
[CvB] GLOBAL {LOADLIB| TXTLIB} //ibraryl Iibrary2 I|ibrary3 ...

where:

CVs

Isrequired if you issue the GLOBAL command from a profile or procedure, or if
you includeitin aprofile.

LOADLI B

Indicatesthelibrary isaload library.
TXTLI B

Indicatesthe library isatext library.

libraryl library2 [ibrary3...
Are the file names of the load and text libraries containing the functions. The
maximum number of librariesis 63.

How to List Libraries Specified by the GLOBAL Command
COVB QUERY {LQADLI B| TXTLI B}
where:
LOADLI B
Indicatesthe library isaload library.
TXTLI B
Indicatesthe library isatext library.

Accessing a Library With the GLOBAL Command

The following command, issued in the global profile, accesses the FUSELIB library:
OMB GLOBAL LOADLI B FUSELI B

Accessing Multiple Libraries With the GLOBAL Command

The following command, issued in a procedure, accesses the SUBLIB and BIGLIB
libraries:
CMS GLOBAL TXTLIB SUBLIB BI GLI B

Information Builders

Accessing a Function

Adding and Deleting a Subroutine Library

Syntax

Using Functions

The GLOBAL library list automatically contains the FUSELIB subroutine library. If you
need to add or delete private subroutine libraries you can use two CMS EXECs,
FOCADLIB and FOCDELIB.

Before adding LOADLIBsto the GLOBAL list, the existing list is saved. Then the
required and optional LOADLIBs are added in front of any libraries you may have
specified. After arequest, the prior GLOBAL environment is restored.

Prior entries can beretained in the GLOBAL list and new entries added by using the
FOCADLIB EXEC. To delete entries while maintaining othersin the list, use the
FOCDELIB EXEC. For both FOCADLIB and FOCDELIB, the output from the EXEC is
the return code of the GLOBAL command. The EXECs FOCADLIB and FOCDEL 1B
must be found in the CM S search sequence (A-Z).

How to Add and Delete a Subroutine Library
OMB EX { FOCADLI B| FOCDELI B} //btype 1ibl [/ib2 1ib3...] [(QUET]
where:
FOCADLI B

Adds libraries to the beginning of the GLOBAL library list.
FOCDELI B

Deletes libraries from the GLOBAL library list.
/i bt ype

Isthe library type, for example, LOADLIB or TXTLIB.
1ibl 1ib2 1ib3. ..

Are the names of the libraries to be added or deleted.
QU ET

Suppresses messages from the GLOBAL command. The open parenthesisis
required.

Note: FUSELIB routines now reside in FUSELIB LOADLIB (rather thanina TXTLIB).
Issuing GLOBAL TXTLIB FUSELIB still works because the TXTLIB still exists.
However, VM/CMS loads routines from the LOADLIB before searching the TXTLIBs.

2-19

Accessing and Invoking a Function

Dynamic Language Environment Support

Syntax

2-20

IBM’s Dynamic Language Environment (L E) uses a common run-time environment for
all LE-supported high-level languages (HLLS).

The IBMLE setting controls the LE run-time environment by identifying which LE
librariesto load. By default, the COBOL and C libraries are loaded. On OS/390, you
need to issue the SET IBMLE command in order to access LE-compiled PL/I or
FORTRAN user-written subroutines. On VM/CMS, the setting has no effect; LE and
non-LE versions of subroutinesin all HLLs work properly regardless of the I BMLE
setting. On OS/390, non-LE versions of subroutines work properly regardless of the
IBMLE setting.

Loading extra libraries uses some additional memory below the line. Once this memory
has been used, it cannot be released during the FOCUS session. Therefore, you can
control this memory use by waiting to issue the SET IBMLE command until you need to
execute a FOCEXEC that makes a call to an LE-compliant PL/I or FORTRAN
subroutine.

How to Control the LE Run-Time Environment

SET | BMLE = { OFF| ON| ALL}

where:

OFF
Loads the libraries for LE-compiled C and COBOL subroutines. Thisvaueisthe
default.

ON
Addsthe libraries for LE-compiled PL/I subroutines to the C and COBOL libraries.
Once the ON setting has been established, you cannot issue the OFF setting. Y ou can
issuethe ALL setting to add libraries for LE-compiled FORTRAN subroutines.

ALL
Addsthe libraries for LE-compliant FORTRAN and PL/I subroutines (if they are not
already loaded) to the C and COBOL libraries. Once the ALL setting has been
established, you cannot issue the OFF or ON setting.

Information Builders

CHAPTER 3
Character Functions

Topics:

Alphabetical List of Character
Functions

Using Functions

Character functions manipulate alphanumeric fields and
character strings.

3-1

Character Functions

ARGLEN: Measuring the Length of a String

Syntax

Example

3-2

Available Operating Systems: All

Available Languages: reporting, Maintain

The ARGLEN function measures the length of a character string within afield, excluding
trailing spaces. The field format specifies the length of the field, including trailing spaces.

In Dialogue Manager, you can measure the length of a supplied character string using the
.LENGTH suffix.

How to Measure the Length of a String
ARGLEN(/ nl ength, infield, outfield)
where:
i nl ength

Integer

Isthe length of the field containing the character string.
infield

Alphanumeric

Isthe name of the field containing the character string.
outfield

I nteger

Isthe field to which the integer result is returned, or the format of the output value

enclosed in single quotation marks.

In Dialogue Manager, the format must be specified. In Maintain, the name of the
field must be specified.

Measuring the Length of a String
In the following example, ARGLEN determines the length of the character string in
LAST _NAME and storesthe resultin NAME_LEN.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

NAME_LEN/ |3 = ARGLEN(15, LAST_NAME, NAME_LEN);
WHERE DEPARTMENT EQ ' M S

END

The output is:

LAST_NANE NAMVE_LEN

GREENSPAN
CRCSS

Information Builders

ASIS: Distinguishing Between a Space and a Zero

ASIS: Distinguishing Between a Space and a Zero

Syntax

Example

Using Functions

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, Windows NT/2000
Available Languages:. reporting

The ASIS function distinguishes between a space and a zero in Dialogue Manager. It
differentiates between a numeric string constant or variable defined as a numeric string
(number within single quotation marks), and a field defined simply as numeric. ASIS

forces avariable to be evaluated as it is entered rather than be converted to anumber. It is
used in Dialogue Manager equality expressions only.

How to Distinguish Between a Space and a Zero
AS| S(argunent)
where:

ar gument
Alphanumeric

Isthe value to evaluate. Y ou may supply the actual value, the name of afield that
contains the value, or an expression that returns the value. An expression can call a
function.

If you specify an alphanumeric literal, encloseit in single quotation marks. If you
specify an expression, use parentheses as needed to ensure the correct order of
evaluation.

Distinguishing Between a Space and a Zero

The first request does not use the ASI'S function. No difference is detected between
variables defined as space and 0.

-SET &ARL = ' ':

-SET &VAR2 = 0;

-IF &/AR2 EQ &/ARL GOTO ONE;

-TYPE VARL &ARL EQ VAR2 &AR2 NOT TRUE
SQUIT

- ONE

-TYPE VARL &/ARL EQ VAR2 &AR2 TRUE

The output is:
VARL EQ VAR2 0 TRUE
The next request uses ASI S to distinguish between the two variables.

-SET &ARL = '

-SET &VAR2 = 0;

-1 F &VAR2 EQ ASI S(&VARL) GOTO ONE;
-TYPE VARL &ARL EQ VAR2 &AR2 NOT TRUE
SQUIT

-ONE

-TYPE VARL &ARL EQ VAR2 &AR2 TRUE

The output is:
VARL EQ VAR2 0 NOT TRUE

3-3

Character Functions

BITSON: Determining If a Bit is On or Off

Syntax

Available Operating Systems: All

Available Languages: reporting, Maintain

The BITSON function evaluates an individual bit within a character string to determine
whether it ison or off. If the bit is on, the function returns avalue of 1; if the bit is off, it

returns avalue of 0. This function isuseful in interpreting multi-punch data, where each
punch conveys an item of information.

Theresult of the BITSON function varies between operating systems.

How to Determine If a Bit is On or Off
Bl TSON(b/ t nunber, string, outfield)
where:
bi t nunber
I nteger
Is the number of the bit to be evaluated, counted from the left-most bit in the
character string.
string
Alphanumeric

Isthe string. This can be the character string enclosed in single quotation marks, or
the field that contains the character string. The character string isin multiple 8-bit
blocks.

outfield
Integer or Alphanumeric
Isthe name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Information Builders

BITVAL: Evaluating a Bit String a Binary Integer

Example

Evaluating a Bit in a Field

In this request, BITSON evaluates the 24th bit of LAST_NAME and storesthe result in
BIT_24.

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

BIT 24/11 = BI TSON(24, LAST_NAME, BIT 24);
WWHERE DEPARTMENT EQ ' M S'

END

The output is:
LAST_NAME BI T_24

GREENSPAN

1
1
1
BLACKWOCD 1
1
CRCSS 0

BITVAL: Evaluating a Bit String a Binary Integer

Syntax

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The BITVAL function evaluates a string of bits within a character string. The bit string
can be any group of bits within the character string and can cross byte and word

boundaries. The function evaluates the hit string as a binary integer and returns the
corresponding value.

Note: Theresult of the BITVAL function differs between operating systems.

How to Evaluate a Bit String
Bl TVAL(string, startbit, number, outfield)
where:
string
Alphanumeric

Isthe string. This can be the character string enclosed in single quotation marks, or
the field that contains the string.

startbit
Integer
Isthe number of the first bit in the bit string, counting from the left-most bit in the
character string. If this argument is less than or equal to 0, the function returns a
value of zero.

nunber
Integer
Is the number of bitsin the bit string. If this argument is less than or equal to 0, the
function returns avalue of zero.

3-5

Character Functions

outfield
Integer
Isthe name of the field that contains the integer equivalent, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Evaluating a Bit String

In this example, BITVAL evaluates the bits 12 through 20 of LAST_NAME and stores
theresult in afield with the format 15.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

STRING VAL/ 15 = BITVAL(LAST_NAME, 12, 9, 'I5");
WHERE DEPARTMENT EQ 'M S

END

The output is:

LAST_NANME STRI NG VAL
SM TH 332
JONES 365
MCCOY 60
BLACKWOCD 316
GREENSPAN 412
CROSS 413

3-6 Information Builders

BYTVAL: Translating a Character to a Decimal Value

BYTVAL: Translating a Character to a Decimal Value

Syntax

Example

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The BY TVAL function trand ates a character to the ASCII or EBCDIC decimal value
that representsiit.

How to Translate a Character
BYTVAL(character, outfield)
where:
character
Alphanumeric

Isthe character to be trandated. Y ou can specify afield or amper variable that
contains the character, or specify the character itself. If you supply more than one
character, the function evaluates the first one.

outfield
Integer
Isthe name of the field that contains the corresponding decimal value, or the format
of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Translating the First Character of a Field

In thisexample, BY TVAL trandates the first character of LAST _NAME into its ASCII
or EBCDIC decimal value, and storesthe result in LAST _INIT_CODE. Since the input
string has more than one character, BY TVAL evauates the first one.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND

COVPUTE LAST_| NI T_CODE/ | 3 = BYTVAL(LAST_NAME, '13');

WHERE DEPARTMENT EQ 'M §'
END

The output on an ASCII platform is:
LAST_NAME LAST_I NI T_CCDE

SM TH 83
JONES 74
MCCOY 77
BLACKWOCD 66
GREENSPAN 71
CROSS 67

3-7

Character Functions

The output on an EBCDIC platformis:
LAST_NAME LAST_I NI T_CCDE

SM TH 226
JONES 209
MCCOY 212
BLACKWOOD 194
GREENSPAN 199
CRCSS 195

CHKFMT: Checking the Format of a String

Syntax

3-8

Available Operating Systems: All

Available Languages: reporting, Maintain

The CHKFMT function checks a character string for incorrect characters or character
types. It compares each string to a second string, called a mask, comparing each character
in the first string to the corresponding character in the mask. If all charactersin the string
match the characters or character types in the mask, CHKFMT returns the value 0.
Otherwise, CHKFMT returns a value equal to the position of the first character in the
string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the
character string corresponding to the mask. For example, if you are using a four-character
mask to test a nine-character string, only the first four charactersin the string are
checked; the rest are returned as a no match with CHKFMT giving the first non-matching
position as the result.

How to Check the Format of a String
CHKFMT(nunthar, string, 'mask', outfield)
where:
nunthar
I nteger
Is the number of characters you want to compare against the mask.
string
Alphanumeric

Isthe character string to be checked. This can be the character string enclosed in
single quotation marks, or the field that contains the character string.

Information Builders

CHKFMT: Checking the Format of a String

Example

Using Functions

' mask'
Alphanumeric

I's the mask, which contains the comparison characters enclosed in single quotation
marks.

Some characters in the mask are generic and represent character types. If a character
in the string is compared to one of these characters and is the same type, it matches.
Generic characters are;

A Any of the letters A-Z (uppercase or lowercase).
9 Any of the digits 0-9.

X Any of the letters A-Z or digits 0-9.

$ Any character.

Any other character in the mask represents only that character. For example, if the
third character in the mask is B, the third character in the string must be B to match.

outfield
Integer or Alphanumeric

Isthe name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Checking the Format of a Field

In this example, CHKFMT examinesthe EMP_ID field to seeif it has nine numeric
characters starting with 11, and stores the result in CHK _ID.

TABLE FI LE EMPLOYEE

PRI NT EMP_I D AND LAST_NAVE AND

COWUTE CHK I DY 13 = CHKFMI(9, EMP_ID, '119999999', CHK ID);
WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:
EMP_I D LAST_NAME CHK_ID

071382660 STEVENS 1
119265415 SM TH 0
119329144 BANNI NG 0
123764317 | RVING 2
126724188 ROVANS 2
451123478 MCKNI GHT 1

3-9

Character Functions

Example Checking the Format of a Field With MODIFY on OS/390

The following MODIFY procedure adds records of new employeesto the EMPLOY EE
data source. Each transaction begins as an employee ID that is a phanumeric with the first
five characters as digits. The procedure rejects records with other charactersin the
employee ID.

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D LAST_NANVE FI RST_NAME DEPARTMENT
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH COVPUTE
BAD CHAR/ 13 = CHKFMT (5, EMP_ID, '99999', BAD_CHAR):
ON NOVATCH VALI DATE
ID_TEST = | F BAD CHAR EQ 0 THEN 1 ELSE O;
ON | NVALI D TYPE
"BAD EMPLOYEE ID. <EMP_| D'
"I NVALI D CHARACTER | N POSI TI ON <BAD_CHAR'
ON NOVATCH | NCLUDE
LOG | N\VALI D MSG OFF
DATA

A sample execution is:

>
EMPLOYEEFOCUS A ON 12/05/96 AT 15.42.03
DATA FOR TRANSACTI ON 1

EMP_I D =
111w2

LAST_NAMVE
j ohnson

FI RST_NAME
greg

DEPARTMENT =
production

BAD EMPLOYEE I D: 111w

I NVALI D CHARACTER IN PCSITION 4

DATA FOR TRANSACTI ON 2

EMP_ID =
end

TRANSACTI ONS: TOTAL = 1 ACCEPTED= 0 REJECTED= 1
SEGVENTS: I NPUT = 0 UPDATED = 0 DELETED = 0

>

3-10 Information Builders

CTRAN: Translating One Character to Another

The procedure processes as follows:

1. The procedure prompts you for an employee ID, last name, first name, and
department assignment. Y ou enter the following data:

EMP_ID: 112w2
LAST NAME: johnson
FIRST_NAME: greg
DEPARTMENT: production

2. The procedure searches the data source for the ID 111W?2. If it does not find thisID,
it continues processing the transaction.

3. The CHKFMT function checks the ID against the mask 99999, which represents five
digits.

4. Thefourth character in the ID, the letter W, is not adigit. The function returns the
value 4 to the BAD_CHAR field.

5. TheVALIDATE command teststhe BAD_CHAR field. Since BAD_CHAR is hot
equal to 0, the procedure rejects the transaction and displays a message indicating the
position of theinvalid character in the ID.

CTRAN: Translating One Character to Another

Syntax

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The CTRAN function translates a character within a string to another character based on
its decimal value. This function is especially useful for changing replacement characters
to unavailable characters, or to charactersthat are difficult to input or unavailable on your
keyboard. It can also be used for inputting characters that are difficult to enter when

responding to a Dialogue Manager -PROMPT command, such as a comma or apostrophe.
It eliminates the need to enclose entries in single quotation marks.

To use this function, you need to know the decimal equivalent of the charactersin
internal machine representation. Printable EBCDIC or ASCII characters and their
decimal equivalents are listed in character charts.

How to Translate One Character to Another
CTRAN(charlen, string, decimal, decvalue, outfield)
where:
charl en

Integer

Isthe length in characters of the input string.
string

Alphanumeric

Isthe character string enclosed in single quotation marks, or the field that contains
the string.

3-11

Character Functions

deci nmal
Integer
Isthe ASCII or EBCDIC decimal value of the character to be trandated.
decval ue
Integer
Isthe ASCII or EBCDIC decimal value of the character to be used as a substitute for
decimal.
outfield
Alphanumeric
Isthe name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Translating Spaces to Underscores on an ASCII Platform

In this example, CTRAN trandates the spacesin ADDRESS | N3 (ASCII decimal value
32) to underscores (ASCII decimal value 95), and storestheresult in ALT_ADDR.
TABLE FI LE EMPLOYEE

PRI NT ADDRESS_LN3 AND COVPUTE

ALT_ADDR/ A20 = CTRAN(20, ADDRESS LN3, 32, 95, ALT_ADDR);

BY EMP_I D

VWHERE TYPE EQ ' HSM

END

The output is:

EMP_I D ADDRESS_LN3 ALT_ADDR

117593129 RUTHERFORD NJ 07073 RUTHERFORD NJ_07073_
119265415 NEW YORK NY 10039 NEW YORK_NY_10039__
119329144 FREEPORT NY 11520 FREEPORT_NY_11520_
123764317 NEW YORK NY 10001 NEW YORK_NY_10001__
126724188 FREEPORT NY 11520 FREEPORT_NY_11520_
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CI TY NJ 07300 JERSEY_CI TY_NJ_07300
818692173 FLUSH NG NY 11354 FLUSH NG NY_11354

3-12 Information Builders

CTRAN: Translating One Character to Another

Example

Using Functions

Translating Spaces to Underscores on an EBCDIC Platform

In this example, CTRAN trandates the spacesin ADDRESS L N3 (EBCDIC decimal
value 64) to underscores (EBCDIC decimal value 109), and storestheresult in
ALT_ADDR.

TABLE FI LE EMPLOYEE

PRI NT ADDRESS_LN3 AND COVPUTE

ALT_ADDR/ A20 = CTRAN(20, ADDRESS LN3, 64, 95, ALT _ADDR);
BY EMP_ID

WHERE TYPE EQ ' HSM

END

The output is:
EMP_I D ADDRESS_LN3 ALT_ADDR

117593129 RUTHERFORD NJ 07073 RUTHERFORD_NJ_07073_

119265415 NEW YORK NY 10039 NEW YORK_NY_10039__
119329144 FREEPORT NY 11520 FREEPORT_NY_11520
123764317 NEW YORK NY 10001 NEW YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY_11520___
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CI TY NJ 07300 JERSEY_CI TY_NJ_07300
818692173 FLUSH NG NY 11354 FLUSH NG NY_11354__

3-13

Character Functions

Example

3-14

Inserting Accented Letter E’s With MODIFY

ThisMODIFY request enables you to enter the names of new employees containing the
accented |etter E, asin the name Adéle Moliere. The equivalent EBCDIC decimal value
for an asterisk is 92, for an E, 159.

If you are using the Hot Screen facility, some unusual characters cannot be displayed. If
Hot Screen does not support the character you need, disable Hot Screen with SET
SCREEN=OFF and issue the RETY PE command. If your terminal can display the
character, the character will appear. The display of special characters depends upon your
software and hardware; not all special characters may display.

Therequest is:

MODI FY FI LE EMPLOYEE
CRTFORM
"xxxxx NEW EMPLOYEE ENTRY SCREEN *****"

"ENTER EMPLOYEE' S I D. <EMP_I D"

"ENTER EMPLOYEE' S FI RST AND LAST NAME"
"SUBSTI TUTE *' S FOR ALL ACCENTED E CHARACTERS"

"FI RST_NAME: <FI RST_NAME LAST_NAME: <LAST_NAME"

"ENTER THE DEPARTMENT ASSI GNMVENT: <DEPARTMENT"
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH COVPUTE
FI RST_NAME/ A10 = CTRAN(10, FIRST_NAME, 92, 159, 'A10');
LAST_NAME/ A15 = CTRAN(15, LAST_NAME, 92, 159, 'Al5');
ON NOVATCH TYPE "FI RST_NAME: <FI RST_NAME LAST_NAME: <LAST_NAME"
ON NQVATCH | NCLUDE
DATA
END

A sample execution follows:

*¥xx%% NEW EMPLOYEE ENTRY SCREEN *****
ENTER EMPLOYEE' S I D: 999888777

ENTER EMPLOYEE' S FI RST AND LAST NAME
SUBSTI TUTE *' S FOR ALL ACCENTED E CHARACTERS

FI RST_NAME: ADFLE LAST_NAME: MOLI *RE

ENTER THE DEPARTMENT ASSI GNMENT: SALES

Information Builders

CTRAN: Translating One Character to Another

The request processes as:

1. The CRTFORM screen prompts you for an employee ID, first name, last name, and
department assignment. It requests that you substitute an asterisk (*) whenever the
accented letter E appearsin aname.

2. Enter the following data:
EMPLOYEE ID: 999888777
FIRST_NAME: AD*LE

LAST_NAME: MOLI*RE
DEPARTMENT: SALES

3. The procedure searches the data source for the employee ID. If it does not find it, it
continues processing the request.

4. The CTRAN fuqction converts the asterisks into E’sin both the first and last names
(ADELE MOLIERE).

*¥xx%% NEW EMPLOYEE ENTRY SCREEN *****
ENTER EMPLOYEE' S | D

ENTER EMPLOYEE' S FI RST AND LAST NAME
SUBSTI TUTE *' S FOR ALL ACCENTED E CHARACTERS

FI RST_NAME: LAST_NAME:

ENTER THE DEPARTMENT ASSI GNVENT:

FI RST_NAMVE: ADELE LAST NAME: MOLI ERE

5. The procedure stores the datain the data source.

Using Functions 3-15

Character Functions

Example

3-16

Inserting Commas With MODIFY

ThisMODIFY request adds records of new employees to the EMPLOY EE data source.
The PROMPT command prompts you for data one field at atime. The CTRAN function
enables you to enter commas in names without having to enclose the namesin single
guotation marks. Instead of typing the comma, you type a semicolon, which is converted
by the CTRAN function into acomma. The equivalent EBCDIC decimal value for a

semicolon is 94; for acomma, 107.
Therequest is:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D LAST_NAME FI RST_NAME DEPARTMENT
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH COVPUTE
LAST_NAME/ A15 = CTRAN(15, LAST_NAME, 94,
ON NOVATCH | NCLUDE
DATA

A sample execution follows:

>
EMPLOYEEFOCUS A ON 04/19/96 AT 16.07.29
DATA FOR TRANSACTI ON 1

EMP_I D =
224466880

LAST_NANE
BRADLEY; JR

FI RST_NAMVE
JOHN

DEPARTMENT
MS

DATA FOR TRANSACTION 2

EMP_I D =
end

TRANSACTI ONS: TOTAL = 1 ACCEPTED=
SEGMVENTS: I NPUT = 1 UPDATED =

>

107, 'A15');
1 REJECTED= 0
0 DELETED = 0

Information Builders

CTRFLD: Centering a Character String

The request processes as:

1. Therequest prompts you for an employee ID, last name, first name, and department
assignment. Enter the following data:

EMP_ID: 224466880
LAST_NAME: BRADLEY; JR.
FIRST_NAME: JOHN
DEPARTMENT: MIS

2. Therequest searches the data source for the ID 224466880. If it does not find the ID,
it continues processing the transaction.

3. TheCTRAN function converts the semicolon in “BRADLEY; JR.” to acomma. The
last name isnow “BRADLEY, JR.”

4. Therequest adds the transaction to the data source.

This regquest displays the semicolon converted to a comma:

TABLE FI LE EMPLOYEE
PRI NT EMP_I D LAST_NAME Fl RST_NAVME DEPARTMENT
IF EMP_ID | S 224466880

END
EMP_I D LAST_NAME FI RST_NAME DEPARTMENT
224466880 BRADLEY, JR JOHN M S

CTRFLD: Centering a Character String

Available Operating Systems: All

Available Languages: reporting, Maintain

The CTRFLD function centers a character string within afield. The number of leading
spacesis equal to or one less than the number of trailing spaces.

The CTRFLD function is useful for centering the contents of afield and its report
column, or a heading that consists only of an embedded field. HEADING CENTER
centers each field value including trailing spaces. To center the field value without the
trailing spaces, first center the value within the field using the CTRFLD function.

Limit:
Using CTRFLD in a styled report (StyleSheets feature) generally negates the effect of
CTRFLD unless the item is also styled as a centered element. Also, if you are using

CTRFLD on a platform for which the default font is proportional, either use a
non-proportional font, or issue SET STYLE=OFF before running the request.

Using Functions 3-17

Character Functions

Syntax How to Center a Character String

CTRFLD(string, [length, outfield)

where:

string
Alphanumeric
Isthe character string. This can be the string enclosed in single quotation marks, or
the name of the field that contains the string.

l engt h
Integer
Isthe length of string and outfield. This argument must be greater than 0. A length
less than 0 can cause unpredictable results.

outfield
Alphanumeric
Isthe name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Centering a Field
In thisexample, CTRFLD centersthe LAST_NAME field, and stores the resultsin
CENTER_NAME.
SET STYLE=OFF

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

CENTER NAME/ A15 = CTRFLD(LAST_NANE, 15, 'Al5');
VWHERE DEPARTMENT EQ ' M S'

END

The output is:

LAST_NANME CENTER_NANVE
SM TH SM TH
JONES JONES
MCCOY MCCOY
BLACKWOCD BLACKWOCD
GREENSPAN GREENSPAN
CROSS CROSS

3-18 Information Builders

EDIT: Extracting or Adding Characters

EDIT: Extracting or Adding Characters

Available Operating Systems: All

Available Languages:. reporting

The EDIT function extracts characters from or adds characters to an a phanumeric string.
Another way to extract a substring isto use the SUBSTR function. The differences are;

» TheEDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

e The SUBSTR function can vary the position of the substring depending on the values
of other fields.

The EDIT function can also convert the format of afield. For information on converting a
field with EDIT, see Chapter 6, Format Conversion Functions.

Syntax How to Extract or Add Characters
EDI T(f/i el dnanme, ' nask');
where:
fiel dnane
Alphanumeric
Isthe source field.
nmask
Alphanumeric

Isastring, enclosed in single quotation marks. When EDIT encountersa 9 in the
mask, it copies the corresponding character from the source field to the new field.
When it encounters adollar sign in the mask, EDIT ignores the corresponding
character in the source field. When it encounters any other character in the mask,
EDIT copies that character to the corresponding position in the new field.

The length of the mask, excluding any characters other than 9 and $, must be the
length of the source field.

Using Functions 3-19

Character Functions

Example Extracting and Adding a Character to a Field

In this example, EDIT extracts the first initial from the FIRST_NAME field, and stores
the result in the FIRST _INIT field. EDIT also adds dashed to the EMP_ID field, and
stores the result in the EMPIDEDIT field.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

FIRST_I NI T/ Al = EDI T(FI RST_NAME, ' 9$$3$$$$$$$') ;
EMPI DEDI T/ A11 = EDI T(EMP_I D, ' 999-99-9999');
WHERE DEPARTMENT EQ 'M S

END
The output is:

LAST_NANME FIRST INFT EMPIDED T
SM TH M 112- 84- 7612
JONES) 117-59- 3129
MCCOY J 219- 98- 4371
BLACKWOCD R 326-17- 9357
GREENSPAN M 543-72- 9165
CROSS B 818-69- 2173

GETTOK: Extracting a Substring (Token)

Available Operating Systems: All
Available Languages: reporting, Maintain
The GETTOK function divides a character string into substrings, called tokens, where a

specific character, called adelimiter, occursin the string. It then returns one of the
tokens.

For example, suppose you want to extract the fourth word from a sentence. The function
divides the sentence into words using spaces as delimiters, then extracts the fourth word.
If the string is not divided by a delimiter, use the PARAG function for this purpose.

3-20 Information Builders

GETTOK: Extracting a Substring (Token)

Syntax

Using Functions

How to Extract a Substring (Token)
GETTOK(/ nfield, inlen, token, 'delim, outlen, outfield
where:
infield
Alphanumeric
Isthe field containing the parent character string.
inlen
Integer
Isthe length of the parent string. If this argument is less than or equal to O, the
function returns spaces.
t oken
I nteger
Isthe number of the token to extract. If this argument is positive, the tokens are
counted from left to right. If this argument is negative, the tokens are counted from
right to left. For example -2 extracts the second token from the right. If this argument
is 0, the function returns spaces. Leading and trailing null tokens are ignored.
"delim
Alphanumeric
Isthe delimiter in the parent string enclosed in single quotation marks. If you specify
more than one character, only the first character is used.
Tip:
In Dialogue Manager, to prevent the conversion of a delimiter space character
('") to a double precision zero, include a non-numeric character after the space (for
example, ' %'). GETTOK uses only the first character (the space) as a delimiter, while
the extra character (%) prevents conversion to double precision.
outlen
Integer
I's the maximum size of the token. If this argument is less than or equal to 0, the
function returns spaces. If the token islonger than this argument, it istruncated; if it
is shorter, it is padded with trailing spaces.
outfield
Alphanumeric
Isthe name of the field that contains the token, or the format of the output value
enclosed in single quotation marks. The delimiter is not included in the token.
Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

3-21

Character Functions

Example

Extracting a Token From a Field

In this example, GETTOK extracts the last token from ADDRESS_|L N3 and stores the
resultin LAST_TOKEN.

TABLE FI LE EMPLOYEE

PRI NT ADDRESS_LN3 AND COVPUTE

LAST_TOKEN A10 = GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, LAST_TCKEN) ;
AS ' LAST TOKEN, (ZI P CODE) "'

WHERE TYPE EQ ' HSM

END

The output is:

LAST TOKEN
ADDRESS_LN3 (ZI P CODE)
RUTHERFORD NJ 07073 07073
NEW YORK NY 10039 10039
FREEPORT NY 11520 11520
NEW YORK NY 10001 10001
FREEPORT NY 11520 11520
ROSELAND NJ 07068 07068
JERSEY CI TY NJ 07300 07300
FLUSH NG NY 11354 11354

LCWORD: Converting a String to Mixed Case

3-22

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain

The LCWORD function converts the lettersin a string to mixed case. It converts every
alphanumeric character to lowercase except the first letter of each new word and the first
letter after asingle or double quotation mark. For example, O’ CONNOR is converted to
O’ Connor and JACK’Sto Jack’S. If LCWORD encounters a number in the string, it
treats it as an uppercase character and continues to convert the following al phabetic
charactersto lowercase. The result of LCWORD isaword with aninitial uppercase
character followed by lowercase characters.

Information Builders

LCWORD: Converting a String to Mixed Case

Syntax

Example

Using Functions

How to Convert to Mixed Case
LOWORD(/ engt h, string, outfield)
where:
l engt h

I nteger

Isthe length of the field to be converted.
string

Alphanumeric

Isthe string to be converted. This can be the name of the field containing the string,

or the string enclosed in single quotation marks.
outfield

Alphanumeric

Is the name of the output field, or the format of the output value enclosed in single
guotation marks. The length must be at least the length of length.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Converting a String to Mixed Case

In the following, LCWORD convertsthe LAST _NAME field to mixed case and stores
theresult in MIXED_CASE.

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

M XED_CASE/ A15 = LOWORD(15, LAST_NAME, M XED CASE) :
WWHERE DEPARTMENT EQ ' PRODUCTI ON

END

The output is:

LAST_NAME M XED_CASE
STEVENS St evens

SM TH Smith

BANNI NG Banni ng

I RVI NG Irving
ROVANS Romans
MCKNI GHT Mekni ght

3-23

Character Functions

LJUST: Left-Justifying a String

Syntax

3-24

Available Operating Systems: All

Available Languages: reporting, Maintain

The LJUST function left-justifies a character string within afield. All leading spaces
become trailing spaces.

LJUST will not have any visible effect in areport that uses StyleSheets (SET
STYLE=0ON) unless you center the item.

How to Left-Justify a String
LIUST(/ ength, string, outfield)
where;
l engt h

Integer

Isthe length of string and outfield.
string

Alphanumeric

Isthe string to be justified. This can be the field that contains the string, or the string
enclosed in single quotation marks.

outfield
Alphanumeric

Isthe name of the field to which the output is returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Information Builders

LOCASE: Converting Text to Lowercase

Example

Left-Justifying a Formerly Numeric Field

In this example, FTOA converts CURR_SAL to an aphanumeric field called
SAL_STRING. LJUST then left-justifies the SAL_STRING field and stores the result in
LEFT_SAL.

SET STYLE=CFF

TABLE FI LE EMPLOYEE
PRI NT FI RST_NAME AND COMPUTE

SAL_STRI NG Al2 = FTOA(CURR SAL, '(D8.2M', SAL_STRING;
LEFT_SAL/ A12 = LJUST(12, SAL_STRING LEFT_SAL);

BY LAST_NAME

VHERE DEPARTMENT EQ 'M S

END

The output is:

LAST_NANME FI RST_NAME SAL_STRI NG LEFT_SAL
BLACKWOCD ROSEMARI E $21, 780. 00 $21, 780. 00
CROSS BARBARA $27, 062. 00 $27, 062. 00
GREENSPAN MARY $9, 000. 00 $9, 000. 00
JONES DI ANE $18, 480. 00 $18, 480. 00
MCCOY JOHN $18, 480. 00 $18, 480. 00
SM TH MARY $13, 200. 00 $13, 200. 00

LOCASE: Converting Text to Lowercase

Syntax

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain
The LOCASE function converts alphanumeric text to lowercase. Thisis useful for

converting input fields from FIDEL CRTFORMs and from non-FOCUS applications to
lowercase.

How to Convert Text to Lowercase
LOCASE(/ engt h, string, outfield)
where:

l engt h
I nteger

Isthe length of string and outfield in characters. The length must be greater than O,
and the same for both arguments; otherwise, an error occurs.

string
Alphanumeric

Isthe string to be converted. This can be the field that contains the string, or the
string enclosed in single quotation marks.

3-25

Character Functions

Example

3-26

outfield

Alphanumeric

Isthe name of the field in which to store the result, or the format of the output value
enclosed in single quotation marks. The field name can be the same as string.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Converting a Field to Lowercase

In this example, LOCASE convertsthe LAST_NAME field to lowercase and stores the
result in LOWER_NAME.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE
LOVER_NAME/ A15

LOCASE(15, LAST_NAME, LOAER NAME) ;

WHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NANE

GREENSPAN
CRCSS

nccoy
bl ackwood
gr eenspan
Ccross

Information Builders

OVRLAY: Overlaying a Substring Within a String

OVRLAY: Overlaying a Substring Within a String

Syntax

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain
The OVRLAY function overlays a substring on another character string. When specified

inaMODIFY procedure, the function enables you to edit a part of an alphanumeric field
without replacing the field entirely.

How to Overlay a Substring
OVRLAY(stringl, stringlen, string2 sublen, position, outfield)
where:
string
Alphanumeric
Isthe character string into which you want to overlay characters.
stringlen
I nteger
Isthe length of stringl and outfield. If this argument is less than or equal to O,
unpredictable results occur.
string2
Alphanumeric
Isthe string you want to overlay into stringl.
subl en
Integer
Isthe length of string2. If thisargument is less than or equal to 0, the function
returns spaces.
posi tion
Integer
Isthe position in the base string where the overlay isto begin. If this argument isless

than or equal to 0, the function returns spaces. If the argument is larger than
stringlen, the function returns the base string.

outfield
Alphanumeric

Isthe name of the field to which the overlaid string is returned, or the format of the
output value enclosed in single quotation marks. If the overlaid string islonger than
the output field, the string is truncated to fit the field.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

3-27

Character Functions

Example Replacing Characters in a String

In the following example, OVRLAY replaces the last three characters of EMP_ID with
CURR_JOBCODE to create a new security identification code, and stores the result in
NEW_ID.

TABLE FI LE EMPLOYEE

PRI NT EMP_I D AND CURR_JOBCODE AND COMPUTE

NEW | D/ A9 = OVRLAY(EMP_ID, 9, CURR JOBCODE, 3, 7, NEWID);
BY LAST_NAME BY FI RST_NANE

WHERE DEPARTMENT EQ 'M S

END

The output is:

LAST_NAMVE FIRST_NAME EMP_ID CURR_JOBCCDE NEW I D

BLACKWOOD ROSEVARI E 326179357 BO04 326179B04

CRGCSS BARBARA 818692173 Al7 818692A17

GREENSPAN MARY 543729165 A07 543729A07

JONES DI ANE 117593129 BO3 117593B03

MCCOY JOHN 219984371 BO2 219984B02

SM TH MARY 112847612 Bl4 112847B14
Example Replacing Characters in a String With MODIFY

ThisMODIFY procedure prompts for input using a CRTFORM screen and updates first
names in the EMPLOY EE data source. The CRTFORM LOWER option enables you to
update the names in lowercase, but the procedure ensures that the first letter of each name
is capitalized. The procedureis:

MODI FY FI LE EMPLOYEE
CRTFCRM LOVWER
"ENTER EMPLOYEE' S ID. <EMP_| D'
"ENTER FI RST_NAME | N LOAER CASE: <FI RST_NAVE"
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH COVPUTE
F_UP/AL = UPCASE (1, FIRST_NAME 'Al');
FI RST_NAME/ A10 = OVRLAY (FIRST_NAME, 10, F_UP, 1, 1, 'Al0');
ON MATCH TYPE " CHANGI NG FI RST NAME TO <FI RST_NAME "
ON MATCH UPDATE FI RST_NAME
DATA
END

The COMPUTE command invokes two functions:
* The UPCASE function extracts the first letter and convertsit to uppercase.

e« TheOVRLAY function replaces the present first letter in the name with the
uppercase initial.
A sample execution is:

ENTER EMPLOYEE' S I D. 071382660
ENTER FI RST_NAME I N LOAER CASE: alfred

3-28 Information Builders

PARAG: Dividing Text Into Smaller Lines

The procedure processes as:
1. The procedure prompts you from a CRTFORM screen for an employee ID and afirst
name. Y ou type the following data and press the Enter key:

EMPLOYEE' S I D: 071382660
FI RST NAME: al fred

2. The procedure searches the data source for the ID 071382660. If it findsthe ID, it
continues processing the transaction. In this case, the ID exists and belongsto Alfred
Stevens.

3. The UPCASE function extracts the letter afrom afred and converts it to the letter A.

4. The OVRLAY function overlaysthe letter A on alfred. The first name is now Alfred.

ENTER EMPLOYEE' S | D
ENTER FI RST_NAME | N LONER CASE:

CHANG NG FI RST NAME TO Al fred
5. The procedure updates the first name in the data source.

6. When you exit the procedure with PF3, the FOCUS transaction message indicates
that one update occurred.

TRANSACTI ONS: TOTAL
SEGVENTS: I NPUT

1 ACCEPTED= 1 REJECTED= 0
0 UPDATED = 1 DELETED = 0

PARAG: Dividing Text Into Smaller Lines

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The PARAG function divides lines of text into smaller lines by marking them off with a
delimiter character. The PARAG function scans a specific number of characters from the
beginning of the line and replaces the last space with adelimiter. It repeats this until
reaching the end of the line. Each group of characters marked off by the delimiter
becomes a subline. The GETTOK function can then place the sublinesinto different
fields. If the function does not find any spacesin the group it scans, it replaces the first
character after the group with the delimiter. Therefore, be sure that no word of text is
longer than the number of characters scanned by the function.

If the input lines of text are roughly equal in length, you can keep the sublines equal by
specifying a subline length that evenly divides into the length of the text lines. For
example, if you are dividing text lines 120 characters long, you can divide each of them
into two sublines of 60 characters long, three sublines of 40 characters long, and so on.
This enables you to print lines of text in paragraph form. However, if you divide the lines
evenly, you may create more sublines than you intend. For example, suppose you divide
120-character text linesinto two lines of 60 characters maximum length. Onelineis
divided so that the first subline is 50 characters long and the second is 55. This leaves
room for athird subline 15 characterslong. To correct this, insert a space (using weak
concatenation) at the beginning of the extra subline, then append this subline (using
strong concatenation) to the end of the one before it.

3-29

Character Functions

Syntax

Example

3-30

How to Divide Text Into Smaller Lines
PARAG(/ engt h, string, 'delim, subsize, outfield)
where;
l engt h

I nteger

Isthe length of string and outfield.
string

Alphanumeric

Isthe input string.
del im

Alphanumeric

Isthe delimiter character enclosed in single quotation marks. Choose a character that
does not appear in the text.
subsi ze
I nteger
I's the maximum length of each subline.
outfield
Alphanumeric
Isthe name of the field to which the delimited text is returned, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Dividing Text Into Smaller Lines

In the following example, PARAG divides ADDRESS L N2 into smaller lines of not
more than ten characters, using a comma as the delimiter. It then stores the result in
PARA_ADDR.

TABLE FI LE EMPLOYEE
PRI NT ADDRESS_LN2 AND COVPUTE

PARA ADDR/ A20 = PARAG(20, ADDRESS LN2, ',', 10, PARA ADDR);
BY LAST_NAME

VHERE TYPE EQ ' HSM

END

The output is:

LAST_NANVE ADDRESS_LN2 PARA_ADDR

BANNI NG APT 4C APT 4C

CROSS 147-15 NORTHERN BLD 147- 15, NORTHERN, BLD
GREENSPAN 13 LI NDEN AVE. 13 LI NDEN, AVE.

I RVI NG 123 E 32 ST. 123 E 32, ST. ,
JONES 235 MURRAY HI L PKWY 235 MURRAY, H L PKWY
MCKNI GHT 117 HARRI SON AVE. 117, HARRI SON, AVE.
ROVANS 271 PRESI DENT ST. 271, PRESI DENT, ST.
SM TH 136 E 161 ST. 136 E 161, ST.

Information Builders

POSIT: Finding the Beginning of a Substring

POSIT: Finding the Beginning of a Substring

Available Operating Systems: All
Available Languages: reporting, Maintain
The POSIT function finds the starting position of a substring within alarger string. For

example, the beginning position of the substring DUCT in the string PRODUCTION is
position 4. If the substring is not in the parent string, the function returns the value 0.

Syntax How to Find the Beginning of a Substring
PCsSI T(parent, inlength, substring, sublength, outfield)
where;
par ent

Alphanumeric
Isthe field containing the parent character string.
i nl engt h
I nteger
Isthe parent field length. If this argument is less than or equal to O, the function
returns 0.
substring
Alphanumeric
I's the substring whose position you want to find. This can be the substring enclosed
in single quotation marks, or the field that contains the string.
subl engt h
I nteger
Isthe length of substring. If this argument islessthan or equal to O, or if it is greater
than the inlength argument, the function returns a 0.
outfield
I nteger
Is the name of the field to which the position is returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Using Functions 3-31

Character Functions

Example

Finding the Beginning of a String

In the following example, POSIT determines the position of the first capital letter | in
LAST_NAME, and savestheresultin|_IN_NAME.

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

| _IN_NAVE/ |2 = POSI T(LAST_NAME, 15, 'I', 1, '12');
VHERE DEPARTMENT EQ ' PRODUCTI ON

END

The output is:
LAST_NAME I _I N_NAME

0
SM TH 3
BANNI NG 5
I RVI NG 1
ROVANS 0
MCKNI GHT 5

RJUST: Right-Justifying a String

Syntax

3-32

Available Operating Systems: All
Available Languages: reporting, Maintain
The RIJUST function right-justifies a character string within afield. All trailing spaces

become leading spaces. Thisis helpful when you display aphanumeric fields containing
numbers.

Note: RJUST will not have any visible effect in areport that uses StyleSheets (SET
STYLE=ON) unless you center the item. Also, if you using RJUST on aplatform where
StyleSheets are turned on by default, issue SET STY LE=OFF before running the
request.

How to Right-Justify a String
RIUST(/ ength, string, outfield)
where:
l engt h

I nteger

Isthe length of string and outfield. Their lengths must be the same to avoid
justification problems.

string
Alphanumeric

Isthe string to be justified. This can be the field that contains the string, or the string
enclosed in single quotation marks.

Information Builders

SOUNDEX: Comparing Strings Phonetically

Example

outfield
Alphanumeric
Isthe name of the field to which the output is returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Right-Justifying a Field

In the following example, RJUST right-justifies LAST_NAME and stores the result in
RIGHT_NAME.

SET STYLE=OFF

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

RI GHT_NAME/ A15 = RJUST(15, LAST_NAME, Rl GHT_NAME);
VWHERE DEPARTMENT EQ ' M S'

END
The output is:

LAST_NANME Rl GHT_NAME

SM TH SM TH
JONES JONES
MCCOY MCCOY
BLACKWOCD BLACKWOCD
GREENSPAN GREENSPAN
CROSS CROSS

SOUNDEX: Comparing Strings Phonetically

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The SOUNDEX function enables you to search for character strings phonetically without
knowing how they are spelled. It converts character strings to 4-character codes. The first

character must be the first character in the string. The last three characters represent the
next three significant sounds in the string.

To conduct a phonetic search, do the following:

1. Usethe SOUNDEX function to trandlate data values from the field you are searching
for to their phonetic codes.

2. Usethe SOUNDEX function to translate your best guess target string to a phonetic
code. Remember that the spelling of your target string need be only approximate;
however, the first letter must be correct.

3. Use WHERE or IF criteriato compare the temporary fields created in step 1 to the
temporary field created in Step 2.

3-33

Character Functions

Syntax

Example

3-34

How to Compare Strings Phonetically
SQUNDEX(/ nl engt h, string, outfield)
where:
i nl ength
A2

Isthe length of the input character string. It can be a number enclosed in single
guotation marks, or afield containing the number. The number must be from 1 to 99;
anumber larger than 99 will cause the function to return asterisks (*) as output.

string
Alphanumeric
Isthe source of the input character string. It can be the character string itself
enclosed in single quotation marks, or afield or amper variable that contains the
string.

outfield
Alphanumeric
Isthe name of the field to which the phonetic code is returned, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Comparing Strings Phonetically

The following request creates three fields:

» Thefield PHON_NAME contains the phonetic code of the employee’ s last name.

» Thefield PHON_COY contains the phonetic code of your guess, Micoy.

e Thefield PHON_MATCH contains YES if the phonetic code matches, NO if it does
not.

The WHERE criteria selects the last name that matches your best guess.

DEFI NE FI LE EMPLOYEE

PHON_NAVME/ A4 = SOUNDEX(' 15', LAST_NAME, PHON NAME);

PHON_COY/ A4 W TH LAST_NAME = SOUNDEX(' 15', ‘M COY', PHON_COY):
PHON_MATCH A3 = | F PHON_NAME |'S PHON COY THEN ' YES' ELSE ' NO ;
END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME

I F PHON_MATCH I S ' YES'
END

The output is:
LAST_NAME

Information Builders

SQUEEZ: Reducing Multiple Blanks to a Single Blank

SQUEEZ: Reducing Multiple Blanks to a Single Blank

Syntax

Example

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain
The SQUEEZ function reduces multiple contiguous blank characters within a string to a

single blank character. The resulting string has the same length as the original string but it
is padded on the right with blanks.

How to Reduce Multiple Blanks to a Single Blank
SQUEEZ(/ engt h, string, outfield)
where:
l engt h
Isanumber or numeric field that specifies the length of the source and resultsfields.
string
Is an aphanumeric string or field from which the extra blank characters will be
removed.
outfield
Alphanumeric

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Reducing Multiple Blanks to a Single Blank

In the following example, SQUEEZ reduces multiple blanksin the NAME field to a
single blank, and stores the result in afield with the format A30.

DEFI NE FI LE EMPLOYEE

NAME/ A30 = FI RST_NAME | LAST_NAME;
END

TABLE FI LE EMPLOYEE

PRI NT NAME AND COWPUTE

SQNAME/ A30 = SQUEEZ(30, NAME, " A30') ;
WHERE DEPARTMENT EQ ‘M S

END

The output is:

NANVE SQNAVE

MARY SM TH MARY SM TH

DI ANE JONES DI ANE JONES

JOHN MCCOY JOHN MCCoY

ROSEMARI E BLACKWOOD ROSEMARI E BLACKWOOD
MARY GREENSPAN MARY GREENSPAN
BARBARA CROSS BARBARA CROSS

3-35

Character Functions

STRIP: Removing a Character From a String

Syntax

3-36

Available Operating Systems: All
Available Languages:. reporting
The STRIP function removes all occurrences of a specific character from an input string.

The resulting string has the same length as the original string but is padded on the right
with blanks.

How to Remove a Character From an Input String
STRIP(/ength, string, char, outfielad)
where:
l engt h

Integer

Isanumber or numeric field that specifies the length of string and outfield.
string

Alphanumeric

Is an aphanumeric string, or the field from which the character will be removed.
char

Alphanumeric

Is the character to be removed from the string. This can be an alphanumeric literal

enclosed in single quotation marks, or afield that contains the character. If itisa
field, the left-most character in the field will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You
must then enclose this character combination in single quotation marks.

outfield
Alphanumeric
Isthe field to which the substring is returned, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Information Builders

SUBSTR: Extracting a Substring

Example

Removing All Occurrences of a Character From a String
In the following example, STRIP removes all occurrences of aperiod (.) from the
DIRECTOR field, and stores the result in afield with the format A17.

TABLE FI LE MOVl ES
PRI NT DI RECTOR AND COVPUTE

SDI R/ A17 = STRIP(17, DIRECTOR,.",’ Al7');
VHERE CATEGORY EQ ‘ COVEDY'

END

The output is:

DI RECTOR SDI R
ZEMECKI S R ZEMECKI S R
ABRAHANG J. ABRAHANS J
ALLEN W ALLEN W
HALLSTROM L. HALLSTROM L
MARSHALL P. MARSHALL P
BROOKS J. L. BROOKS JL

SUBSTR: Extracting a Substring

Syntax

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain
The SUBSTR function extracts a substring based on where it begins and its length in the

parent string. Another way to extract substringsisto use the EDIT function. The
differences are:

» TheEDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

e The SUBSTR subroutine can vary the position of the substring depending on the
values of other fields.

How to Extract a Substring
SUBSTR(/ nl/ ength, parent, start, end, sublength, outfielad)
where;
i nl ength
Integer
Isthe length of the parent string.

par ent
Alphanumeric

Isthe field containing the parent string, or the parent string enclosed in single
guotation marks.

3-37

Character Functions

start
Integer
Isthe starting position of the substring in the parent string. If this argument isless
than 1, the function returns spaces.

end
I nteger
Is the ending position of the substring. If this argument is less than start or greater
than inlength, the function returns spaces.

subl engt h
Integer
Isthe length of the substring (normally end - start + 1). If sublength is longer than
end - start +1, the substring is padded with trailing spaces. If it is shorter, the
substring is truncated. This value should be the declared length of outfield. Only
sublength characters will be processed.

outfield
Alphanumeric
Isthe field to which the substring is returned, or the format of the output value
enclosed in single quotation marks.
Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Extracting a String

In this example, POSIT determines the position of the first letter | in LAST_NAME and
savestheresultin1_IN_NAME. SUBSTR then extracts the three characters beginning
with the letter | from 1 _IN_NAME, and savestheresultsin|_SUBSTR.

TABLE FI LE EMPLOYEE

PRI NT
COVPUTE
| _IN_NAME/ 12 = POSI T(LAST_NAME, 15, 'I', 1, '12');
| _SUBSTR/ A3 =
SUBSTR(15, LAST_NAME, | _IN_NAME, | _IN NAME+2, 3, |_SUBSTR);
BY LAST_NAME
VWHERE DEPARTMENT EQ ' PRODUCTI ON
END
The output is:
LAST_NAME I _IN_.NAVE | _SUBSTR
BANNI NG 5 ING
I RVI NG 1 IRV
MCKNI GHT 5 IGH
ROVANS 0
SM TH 3 ITH
STEVENS 0
Notice that since Stevens and Romans have no | in their names, SUBSTR extracts a blank
string.

3-38 Information Builders

TRIM: Removing Leading and Trailing Occurrences

TRIM: Removing Leading and Trailing Occurrences

Syntax

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain

The TRIM function removes leading and/or trailing occurrences of a pattern within a
string.

How to Remove Leading and Trailing Occurrences

TRIM (trimwhere, string, string_/ength, pattern, pattern_|ength,
outfield)

where:

trimwhere
Alphanumeric

Is one of the following, which indicates where to remove the pattern:
L' removes leading occurrences.
' T removes trailing occurrences.
*B removes both leading and trailing occurrences.
string
Alphanumeric
I's the source string.
string_l ength
I nteger
Isthe length of the source string.

pattern
Alphanumeric

Is the pattern to remove.

pattern_Il ength
I nteger
Isthe length of the pattern.

outfield
Alphanumeric

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

3-39

Character Functions

Example

Example

3-40

Removing Leading Occurrences

The following request uses the TRIM function to remove leading occurrences of the
characters BR from director namesin the MOV IES data source.

TABLE FI LE MOVl ES

PRI NT DI RECTOR AND

COVPUTE
TRIMDI R/ A17 = TRRM' L', DI RECTCR, 17, ' BR , 2, ' A17");
WHERE DI RECTCR CONTAI NS ' BR

END

The output is:

DI RECTOR TR MDI R
ABRAHAMS J. ABRAHAMS J.
BROOKS R. OKS R
BROOKS J. L. OOKS J. L.

Removing Trailing Occurrences

The following request removes trailing occurrences of the characters ER fromthe TITLE
field in the MOV IES data source. In order to remove trailing non-blank characters,
trailing spaces must be removed first. The TITLE field has trailing spaces. Therefore, the
TRIM function does not remove the characters ER when creating field TRIMT. The
SHORT field does not have trailing spaces. Therefore, TRIM removes the trailing ER
characters when creating field TRIMS:

DEFI NE FI LE MOVl ES
SHORT/ A19 = SUBSTR(19, TITLE, 1, 19, 19, SHORT);
END
TABLE FI LE MOVI ES
PRINT TITLE IN1 AS'TITLE
SHORT I N 40 AS 'SHORT: ' OVER

COVPUTE

TRI MI/ A39
COVPUTE

TRIMS/ A19 = TRIM'T', SHORT, 19, " ER ,2," A19"); IN 40 AS ' TRI Ms:
WHERE TI TLE LI KE ' %R

TRIM'T ,TITLE, 39,"ER ,2,"A39"); IN1 AS ' TRI MI:

END
The output is:

TITLE. LEARN TO SKI BETTER SHORT: LEARN TO SKI BETTER
TRIMI: LEARN TO SKI BETTER TRIMB: LEARN TO SKI BETT
TITLE:. FANNY AND ALEXANDER SHORT: FANNY AND ALEXANDER
TRIMI: FANNY AND ALEXANDER TRIMS: FANNY AND ALEXAND

Information Builders

UPCASE: Converting Text to Uppercase

UPCASE: Converting Text to Uppercase

Syntax

Example

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The UPCASE function converts a string of charactersto uppercase. Thisis useful for
sorting on afield that contains both mixed case and uppercase values. Sorting on a mixed
case field produces incorrect results because the sorting sequence in EBCIDIC always
places lowercase | etters before uppercase letters and the ASCII sorting sequence always
places uppercase letters before lowercase | etters. To obtain correct results, define anew
field with all of the valuesin uppercase, and sort on that.

In FIDEL, CRTFORM LOWER retains the case of entries as they were typed. Y ou can
use the UPCASE function to convert entries for particular fields to uppercase.

How to Convert Text to Uppercase
UPCASE(/ engt h, i nput, outfield)
where:
l engt h
Integer
Isthe length of input and outfield.
i nput
Alphanumeric
I's the mixed-case input string or field.
outfield
Alphanumeric
I's the uppercase output string or field, or the format of the output value enclosed in
single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Converting a Mixed Case Field to Uppercase

Suppose you are sorting on afield that contains both uppercase and mixed case values.
The following request defines afield called LAST_NAME_MIXED that contains both
uppercase and mixed case values:

DEFI NE FI LE EMPLOYEE

LAST_NAME_M XED/ A15=I F DEPARTMENT EQ 'M S THEN LAST_NAME ELSE
LOWORD (15 , LAST_NAME, 'Al5');

END

Suppose you execute arequest that sorts by thisfield:

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAME BY LAST_NAME_M XED

WHERE CURR_JOBCODE EQ ' B02' OR 'Al7' OR 'B04',;
END

3-41

Character Functions

3-42

On an EBCDIC-based platform, the output is:
LAST_NAME_M XED FI RST_NAME

Banni ng JOHN
BLACKWOOD ROSEMVARI E
CRCSS BARBARA
Mckni ght ROGER
MCCOY JOHN
Romans ANTHONY

On an ASClI-based platform, the output is:
LAST_NAME_M XED FI RST_NAME

BLACKWOOD ROSEMARI E
Banni ng JOHN
CRCSS BARBARA
MCCOY JOHN
Mckni ght ROGER
Romans ANTHONY

In the first example, Mcknight appears before MCCQY, since the EBCDIC sorting order
places lowercase letters before uppercase letters. In the second example, Blackwood
appears before Banning, since the ASCII sorting order places uppercase letters before
lowercase letters. In either case, thisis not how you would expect your report to be
sorted.

The solution isto create a new field with all uppercase letters and sort using this field:

DEFI NE FI LE EMPLOYEE

LAST_NAME_M XED/ A15=I F DEPARTMENT EQ 'M S THEN LAST_NAME ELSE
LOWORD (15, LAST_NAME, 'Al5');

LAST_NANME_UPPER/ AL5=UPCASE (15, LAST_NAVE M XED, 'Al5')

END

TABLE FI LE EMPLOYEE

PRI'NT LAST_NAME_M XED AND FI RST_NAME BY LAST_NAME_UPPER
WHERE CURR_JOBCODE EQ ' B02' OR 'Al7' OR 'B04',;

END

Now, when you execute the request, the names are sorted correctly:
LAST_NAME_UPPER LAST_NAME_M XED FI RST_NANVE

BANNI NG Banni ng JOHN
BLACKWOOD BLACKWOOD ROSENVARI E
CRCSS CROSS BARBARA
MCCOY MCCOY JOHN

MCKNI GHT Mckni ght ROGER
ROVANS Romans ANTHONY

If you do not want to see the field with all uppercase values, you can NOPRINT it.

Information Builders

UPCASE: Converting Text to Uppercase

Example

Using Functions

Converting a Mixed Case Field to Uppercase With MODIFY

Suppose your company decided to store employee namesin mixed case and the
department assignments in uppercase in the EMPLOY EE data source.

To enter records of new employees, execute this MODIFY procedure:

MODI FY FI LE EMPLOYEE

CRTFORM LOVER

"ENTER EMPLOYEE' S I D : <EMP_I D'

"ENTER LAST_NAME: <LAST_NAME FI RST_NAME: <FI RST_NAME"
"TYPE THE NAME EXACTLY AS YOU SEE I T ON THE SHEET"

"ENTER DEPARTMENT ASSI GNVENT: <DEPARTMENT"
MATCH EMP_I D

ON MATCH REJECT

ON NOVATCH COVPUTE

DEPARTMENT = UPCASE (10, DEPARTMENT, 'Al0Q0');

ON NOVATCH | NCLUDE

ON NOVATCH TYPE " DEPARTMENT VALUE CHANGED TO UPPERCASE: <DEPARTMENT"
DATA
END

A sample execution is as follows:

ENTER EMPLOYEE' S I D : 444555666
ENTER LAST_NAME: Cutter FIRST_NAME: Al an
TYPE THE NAME EXACTLY AS YQU SEE I T ON THE SHEET

ENTER DEPARTMENT ASSI GNMENT: sal es

The procedure processes as:

1. The procedure prompts you for an employee ID, last name, first name, and
department on a CRTFORM screen. The CRTFORM LOWER option retains the
case of entries as they were typed.

2. You typethefollowing data and press the Enter key:

EMPLOYEE'SID: 444555666
LAST_NAME: Cutter
FIRST_NAME: Alan

DEPARTMENT ASSIGNMENT: sales

3. The procedure searches the data source for the ID 444555666. If it does not find the
ID, it continues processing the transaction.

4. The UPCASE function converts the DEPARTMENT entry salesto SALES.
ENTER EMPLOYEE' S ID :
ENTER LAST_NAME: FI RST_NAME:
TYPE THE NAME EXACTLY AS YOU SEE I T ON THE SHEET
ENTER DEPARTMENT ASSI GNVENT:

DEPARTMENT VALUE CHANGED TO UPPERCASE. SALES

3-43

Character Functions

5. The procedure adds the transaction to the data source.

6. When you exit the procedure with PF3, the FOCUS transaction message indicates
the number of transactions accepted or rejected.

TRANSACTI ONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGMVENTS: I NPUT = 1 UPDATED = 0 DELETED = 0

3-44 Information Builders

CHAPTER 4

Data Source and Decoding Functions

Topics:

* |Alphabetical List of Data Source and
Decoding Functions

Using Functions

Data source and decoding functions search for data source
records, retrieve data source records or values, and assign
values.

Data Source and Decoding Functions

DECODE: Decoding Values

Syntax

Available Operating Systems: All

Available Languages: reporting, Maintain

The DECODE function assigns values based on the value of an input field.

Thisis helpful for giving acoded value in afield amore useful value. For example, the
field SEX may have the code F for female employees and M for male employees. This
allows the value for the field to be stored more efficiently (for example, one character

instead of six for female), and reduces the storage requirement for the file. The DECODE
function expands (decodes) these values.

Y ou can use DECODE by typing values directly into the DECODE function or reading
values from a separate file.

How to Decode Values Supplied in the DECODE Function
DECODE £/ el dname(codel result1 code2 result2...[ELSE default 1);
where:
fiel dname
Alphanumeric or Numeric
Isthe name of the input field.
code
Any supported format
Isthe code value DECODE is searching for; once it has found the specified value, it

will assign the corresponding result. If the value has embedded blanks, commas, or
other special characters, enclose the value in single quotation marks.

resul t
Any supported format
Is the value to be assigned when the field has the corresponding code. If the value
has embedded blanks or commas or contains a negative number, enclose the valuein
single quotation marks.

defaul t
Any supported format

Isthe value to be assigned if the code is not found among the list of codes. If this
value is omitted, DECODE will assign a blank or zero for non-matching codes.

Note: You can use up to 40 lines to define the code and result pairs for any given
DECODE expression, or 39 if you also use an EL SE phrase. Y ou can use either commas
or blanks to separate the code from the result, or one pair from another.

Information Builders

DECODE: Decoding Values

Syntax

Using Functions

How to Decode Values in a Separate File
DECODE £/ el dname(ddname [ELSE default 1);
where:
fiel dnanme
Alphanumeric or Numeric
Isthe name of the input field.
ddnane
Isalogical name or a shorthand name that points to the physical file name containing
the decoded values.
defaul t
Any supported format
Isthe value to be assigned if the code is not found among the list of codes. If this
default is omitted, DECODE will assign a blank or zero for non-matching codes.
Note:

» Eachrecord in the separate file is expected to contain one pair of elements separated
by a comma or blanks.

» All dataisinterpreted in ASCII format on UNIX and Windows, or in EBCDIC
format on OS/390 or VM/CMS, and converted to the USAGE formats of the
DECODE pairs.

e Leading and trailing blanks are ignored.

e Theremainder of each record isignored and can be used for comments or other data.
This convention isfollowed in all cases, except when the file nameis HOLD. In that
case thefileis presumed to have been created by the FOCUS HOLD command,
which writes fields in their internal format, and the DECODE pairs are interpreted
accordingly. In this case, extraneous data in the record isignored.

» |If each record in the file consists of only one element, this element isinterpreted as
the code, and the result becomes either a blank or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the
screening condition

IF field |'S (filenane)

and as afile of literals for an IF criteria specified in a computational expression. For
example:

TAKE = DECODE SELECT (f//enane ELSE 1);
VALUE = IF TAKE IS O THEN... ELSE...;

TAKE will be 0 for SELECT vaues found in the literal fileand 1 in all other cases.
The VALUE computation is carried out asif the expression had been:

| F SELECT (fi/ename) THEN... ELSE...;
* When using DECODE with afile, you can have up to 32,767 charactersin thefile.

Data Source and Decoding Functions

Example

Example

4-4

Decoding Values Supplied in the DECODE Function

In the following example, EDIT extracts the first character of the CURR_JOBCODE
field, then DECODE replaces these values with either ADMINISTRATIVE or DATA
PROCESSING.

TABLE FI LE EMPLOYEE

PRI'NT CURR_JOBCODE AND COVPUTE

DEPX_CCDE/ A1 = EDI T(CURR_JOBCODE, ' 9$$') ; NOPRI NT AND COVPUTE

JOB_CATEGORY/ A15 = DECODE DEPX_CODE(A ' ADM NI STRATI VE' B ' DATA PROCESSI NG)
BY LAST_NAME

WHERE DEPARTMENT EQ 'M S';

END
The output is:

LAST_NANME CURR_JOBCODE JOB_CATEGORY
BLACKWOCD BO4 DATA PROCESSI NG
CROSS A17 ADM NI STRATI VE
GREENSPAN A07 ADM NI STRATI VE
JONES BO3 DATA PROCESSI NG
MCCOY BO2 DATA PROCESSI NG
SM TH B14 DATA PROCESSI NG

Reading DECODE Values From a File

The following example has two parts. The first part creates afile with alist of the
employee | Ds for the employees who have taken classes. The second part reads thisfile
and assigns 0 to those employees who have taken classes and 1 to those employees who
have not. (Notice that the HOLD file contains only one column of values; therefore
DECODE assigns the value 0 to an employee whose EMP_ID appearsin thefileand 1
when EMP_ID does not appear in the file.)

TABLE FI LE EDUCFI LE

PRI NT EMP_I D
ON TABLE HOLD
END

TABLE FI LE EMPLOYEE

PRINT EMP_I D AND LAST_NAME AND FI RST_NAVE AND
COVPUTE NOT_IN LI ST/ 11 = DECODE EMP_I DY HOLD ELSE 1);
WHERE DEPARTMENT EQ 'M S' ;

END

The output is:

EMP_I D LAST_NAME FI RST_NAME NOT_IN_LI ST
112847612 SM TH MARY 0
117593129 JONES DI ANE 0
219984371 MCCOY JOHN 1
326179357 BLACKWOOD ROSEMAR! E 0
543729165 GREENSPAN MARY 1
818692173 CROSS BARBARA 0

Information Builders

FIND: Verifying the Existence of an Indexed Field

FIND: Verifying the Existence of an Indexed Field

Available Operating Systems: All
Available Languages: MODIFY, Maintain

The FIND function verifiesif an incoming datavalue isin an indexed data source field,
whether the field isin the data source you are modifying, or if it isin another data source.
The function sets atemporary field to a non-zero value if theincoming value isin the
data sourcefield, and to O if itis not. A value greater than zero confirms the presence of
the data value, not the number of instances in the data source field.

The FIND function can also be used in a VALIDATE command to test if atransaction
field value exists in another FOCUS data source. If the field value is not in that data
source, the function returns a value of 0, causing the validation to fail and the request to
reject the transaction.

Y ou can use any number of FIND functionsin a COMPUTE or VALIDATE command.
However, more FIND functions increase processing time and require more buffer space
in memory.

Limit:
The FIND function does not work on files with different DBA passwords.

Syntax How to Verify the Existence of an Indexed Field
field = FIND(fieldname [AS dbfieldl IN file
where:
field
Is the name of the temporary field to which the result is returned.
fiel dnanme
Isthe full field name of the incoming field being tested.
AS dbfiel d

Isthe full field name of the data source field containing values to be compared with
the incoming data field. This field must be indexed. If the incoming field and the
data source field have the same name, you can omit this phrase.

file
Is the name of the data source.
Note: Thereis no space between FIND and the left parenthesis.

Using Functions 4-5

Data Source and Decoding Functions

Example

Example

4-6

Verifying the Existence of an Indexed Field in Another File
The following tests if each employee ID entered is also in the EDUCFILE data source. It
then displays a message informing you whether it found the ID in the data source.

MODI FY FI LE EMPLOYEE
PROWPT EMP_I D

COVPUTE
EDTEST = FI ND(EMP_I D I N EDUCFI LE) ;
MBG A40 = | F EDTEST NE O THEN

' STUDENT LI STED | N EDUCATI ON FI LE' ELSE
' STUDENT NOT LI STED | N EDUCATI ON FI LE' ;
MATCH EMP_I D
ON NOVATCH TYPE " <MsG'
ON MATCH TYPE " <MSG'
DATA

Using the FIND Function in a VALIDATE Command

The following updates the number of hours employees spent in class. It rejects employees
not listed in the EDUCFI LE data source, which records class attendance.

This VALIDATE command will discard any incoming EMP_ID value not found in the
EDUCFILE data source.

MODI FY FI LE EMPLOYEE
PROWT EMP_I D ED_HRS
VALI DATE
EDTEST = FIND(EMP_I D I N EDUCFI LE) ;
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH UPDATE ED_HRS
DATA

Information Builders

LAST: Retrieving the Preceding Value

LAST: Retrieving the Preceding Value

Syntax

Using Functions

Available Operating Systems: All
Available Languages:. reporting
The LAST function retrieves the preceding value selected for afield.

The effect of the keyword LAST depends on whether it appearsin a DEFINE or
COMPUTE.

* InaDEFINE command, the LAST valueisthe previous record retrieved from the
file before sorting takes place.

* InaCOMPUTE command, the LAST valueisthe record in the previouslinein the
report.

Limit:
LAST cannot be used with the -SET command in Dialogue Manager.

How to Retrieve the Preceding Value
LAST f/el dnane
where;

fiel dnanme
Alphanumeric or Numeric

Isthe field name.

Data Source and Decoding Functions

Example

Retrieving the Preceding Value

In the following example, LAST retrieves the previous value of the DEPARTMENT field
to determine whether to restart the running total of salaries by department.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME CURR SAL AND COVPUTE

RUN_TOT/ D12. 2M = | F DEPARTMENT EQ LAST DEPARTMENT THEN
(RUN_TOT + CURR SAL) ELSE CURR SAL ;

AS ' RUNNI NG, TOTAL, SALARY'

BY DEPARTMENT SKI P- LI NE

END

The output is:

RUNNI NG
TOTAL
DEPARTMENT LAST_NAME CURR_SAL SALARY
M S SM TH $13, 200. 00 $13, 200. 00
JONES $18, 480. 00 $31, 680. 00
MCCOY $18, 480. 00 $50, 160. 00
BLACKWOCD $21, 780. 00 $71, 940. 00
GREENSPAN $9, 000. 00 $80, 940. 00
CROSS $27, 062. 00 $108, 002. 00
PRODUCTI ON STEVENS $11, 000. 00 $11, 000. 00
SM TH $9, 500. 00 $20, 500. 00
BANNI NG $29, 700. 00 $50, 200. 00
I RVI NG $26, 862. 00 $77,062. 00
ROMANS $21, 120. 00 $98, 182. 00
MCKNI GHT $16, 100. 00 $114, 282. 00

Information Builders

LOOKUP: Retrieving a Value From a Cross-Referenced File

LOOKUP: Retrieving a Value From a
Cross-Referenced File

Using Functions

Available Operating Systems: All
Available Languages: MODIFY

The LOOKUP function retrieves data values from cross-referenced filesin aMODIFY
reguest. You can retrieve datafrom afile cross-referenced statically in the Master File or
afilejoined dynamically by the JOIN command. The LOOKUP function is necessary
because unlike TABLE requests, MODIFY requests cannot read cross-referenced files
freely. The LOOKUP function allows a request to use the datain computations and in
messages, but not modify a cross-referenced file; to modify more than onefilein one
request, use the COMBINE command or the Maintain facility.

The LOOKUP function can read cross-referenced segments that are linked directly to a
segment in the host data source (the host segment). This means that the cross-referenced
segments must have segment types of KU, KM, DKU, or DKM (but not KL or KLU) or
contain the cross-referenced field specified by the JOIN command. Because LOOKUP
retrieves a single cross-referenced value, it is best used with unique cross-referenced
segments.

The cross-referenced segment contains two fields which the LOOKUP function uses:

» Thefield containing the values you want. Alternatively, you can retrieve al of the
fieldsin the segment at onetime. The field, or your decision to retrieve all the
segment’sfields, is specified in the LOOKUP function.

For example, this LOOKUP function retrieves a single value from the
DATE_ATTEND field:

RTN = LOOKUP(DATE_ATTEND) ;

e Thecrossreferenced field. Thisfield shares values with afield in the host segment
called the host field. These two fields link the host segment to the cross-referenced
segment. The LOOKUP function uses the cross-referenced field, which isindexed,
to locate a specific segment instance.

When using the LOOKUP function, the MODIFY request reads a transaction value for
the host field. The LOOKUP function then searches the cross-referenced segment for an
instance containing this value in the cross-referenced field:

« |f there are no instances of the value, the function sets areturn variable to 0. If you
use the field specified by the LOOKUP function in the request, the field assumes a
value of blank if alphanumeric and O if numeric.

» If there areinstances of the value, the function sets the return variable to one and
retrieves the value of the specified field from the first instance it finds. There can be
more than one if the cross-referenced segment type is KM, DKM, or if you specified
the ALL keyword in the JOIN command

Data Source and Decoding Functions

Syntax

Example

4-10

How to Read Cross-Referenced FOCUS Files
rcode = LOOKUP(f/ el d)

where:
rcode

Isavariable you specify to receive areturn code value. The value returned is 1 if the
LOOKUP function can locate a cross-referenced segment instance, O if the function

cannot.
field

Isthe name of the field that you want to retrievein the cross-referenced file. If the

field name also exists in the host file, you must qualify it here.

Note: No spaces are permitted between LOOKUP and the left parenthesis.

Reading Cross-Referenced FOCUS Files

Suppose you wish to update the amount of classroom hours employees have spent.
Because of a new system of accounting, employees taking classes after January 1, 1985
are to be credited with 10% more classroom hours than their records indicate.

The employee IDs (EMP_ID) and classroom hours (ED_HRS) are located in the host
segment. The class dates (DATE_ATTEND) are located in the cross-referenced segment.
The shared field is the employee ID field.

Thefile structure is shown in this diagram:

COURSE_NAME

EMP_ID
ED_HRS
EMP_ID
BANK_NAME DAT_INC TR ATTEND TYPE PAY_DATE
COURSE_CODE DED._CODE

Information Builders

LOOKUP: Retrieving a Value From a Cross-Referenced File

Using Functions

Therequest is:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D ED_HRS

COVPUTE
EDTEST = LOOKUP(DATE_ATTEND) ;
COVPUTE
ED HRS = | F DATE_ATTEND GE 820101 THEN ED HRS * 1.1

ELSE ED HRS;
MATCH EMP_I D
ON MATCH UPDATE ED_HRS
ON NOVATCH REJECT
DATA

A sample execution of this request might go as follows:

1. Therequest prompts you for an employee ID and number of class hours. Y ou enter
the 1D 117593129 and 10 class hours.

2. The LOOKUP function locates the first instance in the cross-referenced segment
containing the employee ID 117593129. Since the instance exists, the function
returnsa l to the EDTEST variable. Thisinstance lists the class date as 821028
(October 28, 1982).

3. The LOOKUP function retrieves the value 821028 for the DATE_ATTEND field.

4. The COMPUTE statement tests the value of the DATE_ATTEND field. Since
October 28, 1982 is after January 1, 1982, the statement increases the incoming
ED HRSvalue from 10 to 11 hours.

5. Therequest updates the classroom hours for employee 117593129 using the new
ED HRSvaue.

4-11

Data Source and Decoding Functions

Example Using a Data Source Value in a Segment to Search a File

Y ou may use a data source value in a specific host segment instance to search the
cross-referenced segment. To do this, prepare the request this way:

* Inthe MATCH statement that selects the host segment instance, activate the host
field. This can be done with the ACTIVATE phrase.

* Inthe same MATCH statement, place the LOOKUP function after the ACTIVATE
phrase.

This request displays the employee I Ds, dates of salary raises, employee names, and the
position each employee held after the raise was granted:

e Theemployee IDs and names (EMP_ID) are in the root segment.
* Thedate of raise (DAT_INC) isin the descendant host segment.
e Thejobtitlesarein the cross-referenced segment.

» Theshared field is JOBCODE. Y ou never enter any job codes; the values are all
stored in the data source.

Therequest is:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D DAT_I NC
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE
MATCH DAT_I NC
ON NOVATCH REJECT
ON MATCH ACTI VATE JOBCODE
ON MATCH COVPUTE
RTN = LOOKUP(JOB_DESC) ;
ON MATCH TYPE

"EMPLOYEE | D <EMP_I D"

" DATE | NCREASE: <DAT_I NC'

" NAME: <D. FI RST_NAME <D. LAST_NAME"
" PCSI Tl ON: <JOB_DESC'

DATA
A sample execution might execute as follows:

1. Therequest prompts you for an employee ID and date of pay raise. You enter
employee | D 071382660 and date of raise 820101 (January 1, 1982).

2. Therequest locates the instance containing the ID 071382660, then locates the child
instance containing the date of raise 820101.

3. Thischild instance contains the job code A07. The ACTIVATE statement activates
this value, making it available to the LOOKUP function.

4-12 Information Builders

LOOKUP: Retrieving a Value From a Cross-Referenced File

Using Functions

4. The LOOKUP function locates the job code AO7 in the cross-referenced segment. It
returnsa 1 into the RTN variable and retrieves the corresponding job description of
SECRETARY.

5. Therequest displaysthe values using a TY PE statement:

EMPLOYEE | D 071382660

DATE | NCREASE: 82/ 01/ 01

NAME: ALFRED STEVENS
PCSI TI ON: SECRETARY

Note: You may also need to activate the host field if you are using the LOOKUP function
within aNEXT statement. This request, similar to the previous one except for the NEXT
statement, displays the latest position held by a particular employee.

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE
NEXT DAT_I NC
ON NONEXT REJECT
ON NEXT ACTI VATE JOBCODE
ON NEXT COMPUTE
RTN = LOOKUP(JOB_DESC) ;
ON MATCH TYPE

"EMPLOYEE | D <EMP_I D"

"DATE OF PCSI TI ON: <DAT_I NC'

" NAME: <D. FI RST_NAME <D. LAST_NAME"
" PCSI Tl ON: <JOB_DESC'

DATA

4-13

Data Source and Decoding Functions

Example

4-14

Using the LOOKUP Function in a VALIDATE Command

When you use the LOOKUP function, you may want to reject transactions containing
values for which there is no corresponding instance in the cross-reference segment. To do
this, place the function in aVALIDATE statement. If the function cannot locate the
instance in the cross-referenced segment, it sets the value of the return variable to 0. This
causes the request to reject the transaction.

The following request updates an employee’ s classroom hours (ED_HRS). If the
employee attended classes on or after January 1, 1982, the request increases the number
of classroom hours by 10%. The classroom attendance dates are stored in a
cross-referenced segment (field DATE_ATTEND). The shared field is the employee ID.
Therequest isasfollows:

MODI FY FI ELD EMPLOYEE
PROVPT EMP_I D ED_HRS

VALI DATE
TEST_DATE = LOOKUP(DATE_ATTEND) :
COVPUTE
ED HRS = | F DATE_ATTEND GE 820101 THEN ED HRS * 1.1

ELSE ED_HRS;
MATCH EMP_I D
ON MATCH UPDATE ED_HRS
ON NOVATCH REJECT
DATA

If the employee is not recorded in the cross-referenced segment, then the employee has
never attended a class. This means that a transaction recording the employee’ s classroom
hoursisan error and should be rejected.

Thisisthe purpose of the LOOKUP function in the VALIDATE statement. If the
function cannot locate an employee’ s record in the cross-referenced segment, it returns a
0tothe TEST_DATE field. This causes the request to reject the transaction.

Information Builders

LOOKUP: Retrieving a Value From a Cross-Referenced File

Using the Extended LOOKUP Function

Syntax

Using Functions

If the function cannot locate a value of the host field in the cross-referenced segment, you
may specify that the LOOKUP function locates the next highest or lowest
cross-referenced field value in the cross-referenced segment by using an extended syntax.
To use this LOOKUP feature, the index must have been created on FOCUS Release 4.5
or later with the INDEX parameter set to NEW (the binary tree scheme). To determine
what type of index your file uses, enter the ? FDT command.

Note that fields retrieved by the LOOKUP function do not require the D. prefix to be
displayed in TY PE statements. FOCUS treats the field values as transaction values that
are not active.

How to Use the Extended LOOKUP Function

COVPUTE

rcode = LOOKUP(fi el d action)

where:

rcode
Isavariable you specify to receive areturn code value. (The value the variable
receives depends on the outcome of the function below.)

field
Is the name of the field you want to usein MODIFY computations. If the field name
also existsin the host file, you must qualify it here.

action
Specifies the action the request takesif there is no cross-referenced segment instance
corresponding to the host field value. Valid actions are the following:
EQ causes the LOOKUP function to take no further action if an exact match is not
found. If amatch isfound, the value of rcodeis set to 1; otherwise, it isset to 0. This
isthe default.

GE causes the LOOKUP function to locate the instance with the next highest value of
the cross- referenced field. The value of rcodeis set to 2.

LE causes the LOOKUP function to locate the instance with the next lowest value of
the indexed field. The value of rcodeis set to -2.

Note that there can be no space between LOOKUP and the |eft parenthesis.

The following table summarizes the value of rcode, depending on which instance the
LOOKUP function locates:

Value Action

1 Exact cross-referenced value located

2 Next highest cross-referenced value located
-2 Next lowest cross-referenced value located
0 Cross-referenced field value not |located

4-15

CHAPTER 5

Date and Time Functions

Topics:
* Using Standard Date and Time
Functions

* Using Legacy Date Functions

Using Functions

Date and time functions manipul ate date and time values. There
are two types of date and time functions:

e Standard date and time functions for use with non-legacy
dates. For details see Using Standard Date and Time |

[Functionslon page 5-2.

* Legacy date functions for use with legacy dates. For more
information see Using Legacy Date Functionsion page
5-32.

Note: If you are have datesin a phanumeric or numeric fields
that contain date display options, you must use legacy date
functions.

5-1

Date and Time Functions

Using Standard Date and Time Functions

When using standard date and time functions, you need to understand the settings that
alter the behavior of these functions, aswell as what formats are acceptable and how to
supply valuesin these formats.

Y ou can affect the behavior of date and time functions in the following ways:

Reference

5-2

Define which days of the week are work days and which are not. Then, when you
use adate function, dates that are not work days are ignored. For details see

Business Dayshn page 5-3.

Determine whether to display leading zeros when a date function in Dialogue
Manager returns a date with leading zeros. For details see Enabling Leading Zeros |
For Date and Time Functions in Dialogue Manager [on page 5-5.

Component Names and Values for Use With Date-Time
Functions

The following component names and values are supported as arguments for the date-time
functions that require you to specify a component name as an argument:

Component Name Valid Values
year 0001-9999
quarter 1-4
nont h 1-12
day- of - year 1-366
day Or day- of - nont h 1-31 (The two names for the component are equivalent.)
week 1-53
weekday 1-7 (Sunday-Saturday)
hour 0-23
m nut e 0-59
second 0-59
mllisecond 0-999
m crosecond 0-999999
Notes:

In those arguments that give you a choice of 8 or 10 characters, use 8 for processing
values without microseconds and 10 when the field value includes microseconds.

The last argument is aways a USAGE format that indicates the data type returned by
the function. The type may be A (alpha), | (integer), D (double precision), DATE
(smart date), or H (date-time).

Information Builders

Using Standard Date and Time Functions

Specifying Work Days

Example

Syntax

Example

Using Functions

Y ou can determine which days are work days and which are not. Work days affect the
DATEADD, DATEDIF, and DATEMOV functions. Y ou can specify work daysin the
following ways:

» Specifying business days. For details see Setting Business Days on page 5-3.

e Specifying holidays. For details seeon page 5-4.

Setting Business Days

Business days are traditionally Monday through Friday, but not every business has this
schedule. Y ou can determine which days are considered business days and which days
are not. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday and Saturday, you can tailor business day units to reflect that schedule.

Then when you use DATEADD, DATEDIF, or DATEMOV, these functions ignore dates
that are not business days.

How to Set Business Days
SET BUSDAYS = sntwutfs
where:

smwtfs
Isthe seven-character list of days that represents your business week. Thelist hasa
position for each day from Sunday to Saturday.

» |If youwant aday of the week to be a business day, enter the first letter of that
day in that day’s position.

* If youwant aday of the week not to be a business day, enter an underscore ()
in that day’s position.

If aletter isnot inits correct position, or if you replace aletter with a character other

than an underscore, you receive an error message.

Setting Business Days to Reflect Your Work Week

The following designates work days as Sunday, Tuesday, Wednesday, Friday, and
Saturday:

SET BUSDAYS = S_TWFS

5-3

Date and Time Functions

Example

Reference

Procedure

Example

Setting Holidays

Y ou can specify alist of dates that are designated as holidaysin your company. These
dates are excluded when using functions that perform cal culations based on working
days. For example, if Thursday in agiven week is designated as a holiday, the next
working day after Wednesday is Friday.

In order to define alist of holidays, you must:

1. Createahaliday file. You create a holiday filein atext editor.

2. Select the holiday file by issuing the SET command with the HDAY parameter in a
report request.

Rules for Creating a Holiday File

The following guidelines must be followed in order for the holiday file to work:
+ Datesmust bein YYMD format.

» Dates must be listed in chronological order.

» Each date must be onits own line.

e Anoptiona description of the holiday may be included, separated from the date by a
space.

» Each year for which data exists must be represented in the holiday file. Calling a date
function with a date value outside the range of the holidays file returns a zero on
business day requests.

How to Create a Holiday File

1. Inatext editor, create alist of dates designated as holidays. For details on thisfile,
see Rules for Creating a Holiday File on page 5-3.

2. Savethefile
e In 0S/390 thisfile should be a member in ERRORSs called HDA'Y xxxXx.
* InCMSthelist should be HDAY xxxx ERRORS.
where;
XXXX
Isastring of text four characters long.

Creating a Holiday File

The following file establishes holidays:

19910325 TEST HOLI DAY
19911225 CHRI STVAS

Information Builders

Using Standard Date and Time Functions

Syntax

Example

Syntax

How to Select the Holiday File
SET HDAY = xxxx
where:

XXXX
Isthe part of the name of the holiday file after HDAY . This string must be four
characterslong.

Using a Holiday File
Thefollowing isthe HDAY TEST file and establishes holidays:

19910325 TEST HOLI DAY
19911225 CHRI STMAS

The following request uses the HDAY TEST file in its calcul ations:

SET BUSDAYS = SMIWFS

SET HDAY = TEST

TABLE FI LE MOVl ES

PRI NT TI TLE RELDATE

COVPUTE NEXTDATE/ YMD = DATEADD(RELDATE, 'BD, 1);
WHERE RELDATE GE ' 19910101’

END

How to View the Current Setting of HDAY
? SET HDAY

Enabling Leading Zeros For Date and Time Functions in Dialogue

Manager

Syntax

Using Functions

If you use a date and time function in Dialogue Manager that returns a numeric integer
format, Dialogue Manager truncates any leading zeros. For example, if your function
returns the value 000101 (indicating January 1, 2000), Dialogue Manager will truncate
the leading zeros and use 101, producing an incorrect date. To avoid this problem, you
can use the LEADZERO parameter.

How to Set the Display of Leading Zeros
SET LEADZERO = { ON| OFF}
where:
N
Allows the display of leading zeros.
OFF
Truncates leading zeros. Thisis the default.

5-5

Date and Time Functions

Example

Displaying Leading Zeros
The following request uses the AY M function to add one month to the input date of
December 1999.

-SET & N = '9912";
-SET &OUT = AYM &N, 1, '14");
- TYPE &OUT

Using the default setting, thisyields:

1

This represents the date of January 2000 incorrectly. Modifying the request by adding the
LEADZERO parameter

SET LEADZERO = ON

-SET &N = '9912";

-SET &OUT = AYM &N, 1, '14');
- TYPE &OUT

resultsin the following:
0001
This correctly indicates January 2000.

Note: LEADZERO only supports expressions that make adirect call to afunction.
Expressions that have nesting or other mathematical functions truncate leading zeros. For
example

-SET &OUT = AYM &N, 1, '14')/100;
will always truncate leading zeros.

DATEADD: Adding or Subtracting a Date Unit to or From a Date

5-6

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The DATEADD function adds a unit to or subtracts a unit from adate format. A unit can
be any of the following:

* Year.

e Month. If your calculation using the month unit creates an invalid date, DATEADD
correctsit by using the last day of the month. For example, adding one month to
October 31 yields November 30, not November 31 since November has 30 days.

 Day.
* Weekday. When using the weekday unit, DATEADD does not count Saturday and
Sunday. For example, if you add one day to a Friday, the result is Monday.

» Businessday. When using the business day unit, DATEADD usesthe BUSDAY S
parameter setting and holiday file to determine which days are working days and
disregards the rest. Thismeansthat if Monday is not a working day, then one
business day past a Sunday is Tuesday. See etting Business Days|on page 5-3 for
more information.

Information Builders

Using Standard Date and Time Functions

Syntax

Example

Example

Using Functions

The DATEADD function cannot be used with Dialogue Manager. DATEADD requires
dates to be in date format; Dialogue Manager interprets a date as al phanumeric or
numeric.

Note: You add or subtract non day-based dates (for example YM, Y Q) directly without
using DATEADD.

How to Add or Subtract a Date Unit to or From a Date
DATEADD(date, 'wunit', #units)
where:

dat e
Date

Is any day-based new date, for example, YYMD, MDY, or JUL.
uni t

Alphanumeric

Can be one of the following:

Y indicates ayear unit.

Mindicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.
#uni ts
I nteger

Is the number of date units you wish to add to or subtract from date. If this number is
not awhole unit, it is rounded down to the next largest integer.

Rounding With DATEADD

The number of units passed to DATEADD is always awhole unit. For example
DATEADD(DATE, 'M, 1.999)

adds one month because the number of unitsislessthan two.

Using Weekday Units

If you use weekday units and use a Saturday or Sunday as your date, DATEADD changes
the day to Monday. The functions

DATEADD(Sat ur day, 'WD', 1)

and

DATEADD(Sunday, ‘WD, 1)

both yield Tuesday as a result because Saturday and Sunday are not business days, so
DATEADD beginswith Monday and adds one, yielding Tuesday.

5-7

Date and Time Functions

Example Adding Days to a Date

In this example, three weekdays are added to HIRE_DATE. DATECVT converts
HIRE_DATE to YYMD format and stores the result in NEW_DATE. DATEADD then
adds three weekdaysto NEW_DATE.

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAME AND HI RE_DATE AND COMPUTE

NEW DATE/ YYMD=DATECVT(H RE_DATE, '16YMD, 'YYMD);

HI RE_DATE_PLUS_THREE/ YYMD=DATEADD(NEW DATE, 'WD', 3);

BY LAST_NAME
VHERE DEPARTMENT EQ 'M S ;

END

The output is:

LAST_NANME FI RST_NAME H RE_DATE NEW DATE H RE_DATE_PLUS THREE
BLACKWOCD ROSEMAR! E 82/04/01 1982/04/01 1982/ 04/ 06
CROSS BARBARA 81/11/02 1981/11/02 1981/11/05
GREENSPAN MARY 82/04/01 1982/04/01 1982/ 04/ 06
JONES DI ANE 82/05/01 1982/05/01 1982/ 05/ 06
MCCOY JOHN 81/07/01 1981/07/01 1981/07/06

SM TH MARY 81/07/01 1981/07/01 1981/07/06

Note: In some cases, DATEADD added more than three days, because otherwise
HIRE DATE PLUS THREE would have been on aweekend.

Example Determining if a Date is a Business Day

In the following example, DATEADD determines which valuesin the TRANSDATE
field of the VIDEOTRK data source do not represent business days.

DATEADD adds zero daysto TRANSDATE using the business day unit. If
TRANSDATE does not represent a business day, DATEADD returns the next business
day, which is not the same as TRANSDATE.

DEFI NE FI LE VI DEOTRK

DATEX/ YMD = DATEADD(TRANSDATE, 'BD , 0);

DATEI NT/ | 8YYMD = DATECVT(TRANSDATE, ' YMD ,'|8YYMD);
END

TABLE FI LE VI DEOTRK

SUM TRANSDATE NOPRI NT

COVPUTE DAYNAME/ A8 = DOWKL(DATEI NT, DAYNAME); AS 'Day of Week'
BY TRANSDATE AS ' Dat e’

VWHERE TRANSDATE NE DATEX

END
The output is:
Dat e Day of Week

91/ 06/ 22 SATURDAY
91/ 06/ 23 SUNDAY
91/ 06/ 30 SUNDAY

5-8 Information Builders

Using Standard Date and Time Functions

DATECVT: Converting a Date Format

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain
The DATECVT function converts date formats within applications without requiring

intermediate calculations. If an invalid format is supplied, DATECVT returnsazero or a
blank.

Syntax How to Convert a Date Format
DATECVT(date, 'infnt', 'outfnt')
where:

dat e
Date

Is the date whose format you wish to change. If you supply an invalid date,
DATECVT returns a zero value. When performing the conversion, an indate with an
old format obeys any DEFCENT and Y RTHRESH values supplied for that field.

i nfnt
Alphanumeric
Is one of the following:

* A new date format (for example, YYMD, YQ, M, DMY, JUL) that matches the
format of indate. It can also be the format of the output value enclosed within
single quotes.

e Anold dateformat (for example, I6YMD or ABMDYY).

* A non-date format (such as 18 or A6). A non-date format in the infmt parameter
functions as an offset from the base date of a Y YMD field (12/31/1900).

The format of the field for which the value is being calculated must have the same
format as outfmt.

out fmt
Alphanumeric

Is one of the following:

e A new date format (for example, YYMD, YQ, M, DMY, JUL) that matches the
format of indate. It can also be the format of the output value enclosed within
single quotes.

e Anold dateformat (for example, I6YMD or ABMDYY).

* A non-date format (such as 18 or A6). A non-date format in the outfmt parameter
receives an offset from the base date of a YYMD field (12/31/1900).

The format of the field for which the value is being calculated must have the same
format as outfmt.

Using Functions 5-9

Date and Time Functions

Example Converting a DMY Date to YYMD

For example,

fiel d DW = DATECVT(/ndate, 'YYMD , 'DW');

If the value of indate is 19991231 then field is set to the offset, which is 311299. Indates
with old formats obey any DEFCENT and YRTHRESH values implied for that field
when performing the conversion.

Example Converting a Field to Date Format
In this example, DATECVT converts HIRE_DATE from 16YMD format to dates
formatted as YYMD.

TABLE FI LE EMPLOYEE
PRI NT FI RST_NAME AND H RE_DATE AND COMPUTE
NEW HI RE_DATE/ YYMD=DATECVT(Hl RE_DATE, '16YMD , 'YYMD);

BY LAST_NAME

WHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAME FI RST_NAME H RE_DATE NEW HI RE_DATE
BLACKWOOD ROSEMARI E 82/04/01 1982/ 04/ 01
CROSS BARBARA 81/11/02 1981/ 11/ 02
GREENSPAN MARY 82/04/01 1982/ 04/ 01
JONES DI ANE 82/ 05/ 01 1982/ 05/ 01
MCCOY JOHN 81/07/01 1981/ 07/ 01
SM TH MARY 81/07/01 1981/ 07/01

DATECVT aso supplies a century for HIRE_DATE according to the DEFCENT and
YRTHRESH parameter settings.

5-10 Information Builders

Using Standard Date and Time Functions

DATEDIF: Finding the Difference Between Two Dates

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain
The DATEDIF function returns the difference between two dates in units. A unit can be
any of the following:

* Year. Using the year unit with DATEDIF yieldsthe inverse of DATEADD. If
adding one year to date X creates date Y, then the count of years between date X and
date Y must be one year. Note that adding one year to February 29 produces the date
February 28.

* Month. Using the month unit with DATEDIF yields the inverse of DATEADD. If
adding one month to date X creates date Y, then the count of months between date X
and date Y must be one month. Theruleisif the to-date is the end-of-month, then the
month difference may be rounded up (in absolute terms) to guarantee the inverse
rule.

« Day.

* Weekday. If you use the weekday unit, DATEDIF does not count Saturday and
Sunday when adding days. This means that the difference between a Friday and
Monday is one day.

» Businessday. When using the business day unit, DATEDIF usesthe BUSDAY S
parameter setting and holiday file to determine which days are working days and
disregardsthe rest. Thismeansthat if Monday is not aworking day, the difference
between Friday and Tuesday is one day. See Setting Business Days|on page 5-3 for
more information.

DATEDIF returns awhole number. If the difference between two dates is not awhole
number, DATEDIF rounds down to the next largest integer. For example, the number of
years between March 2, 2001 and March 1, 2002 would be zero. If the ending dateis
before the starting date, DATEDIF returns a negative number.

If you use month units, and one or both of your input datesis the end of the month,
DATEDIF takes thisinto account. This means that the difference between January 31 and
April 30 isthree months, not two months.

Note: You add or subtract non day-based dates (for example YM, Y Q) directly without
using DATEDIF.

Using Functions 5-11

Date and Time Functions

Syntax

Example

Example

5-12

How to Return the Difference Between Two Dates
DATEDI F(from date, to _date, 'unit’)
where:

from dat e
Date

Is the starting date from which to calculate the difference.

to_date
Date

Isthe ending date from which to calculate the difference.
uni t

Alphanumeric

Is one of the following, enclosed in single quotation marks:

Y indicates ayear unit.

Mindicates a month unit.

Dindicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

Rounding With DATEDIF

The following expression
DATEDI F(19960302, 19970301, 'Y')

calculates the difference between March 2, 1996 and March 1, 1997. It returns a zero
because the difference isless than ayear.

Using Month Calculations

The following expressions

DATEDI F(19990228, 19990128, 'M)

DATEDI F(19990228, 19990129, 'M)

DATEDI F(19990228, 19990130, 'M)

DATEDI F(19990228, 19990131, 'M)

all return aresult of minus one month.
Additional examples:

DATEDI F(March31, May31, 'M) yields2.
DATEDI F(Mar ch31, May30, 'M) Yields1 (because May 30 is not the end of the month).
DATEDI F(March31, April30, 'M) yields1.

Information Builders

Using Standard Date and Time Functions

Example Determining the Number of Weekdays Between Two Dates

In this example, DATEDIF determines the number of weekdays between the datesin
NEW_HIRE_DATE and NEW_DAT_INC.

TABLE FI LE EMPLOYEE
PRI NT FI RST_NANE AND

COVPUTE NEW HI RE_DATE/ YYMD = DATECVT(HI RE_DATE, '16YMD, 'YYMD); AND
COVPUTE NEW DAT_| NG/ YYMD = DATECVT(DAT_INC, 'I6YMD, 'YYMD); AND
COVPUTE WDAYS_HI REDY | 8=DATEDI F(NEW HI RE_DATE, NEW DAT_INC, 'WD);

BY LAST_NAME

| F WDAYS_HI RED NE 0

WHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME NEW H RE_DATE NEWDAT_INC WDAYS_HI RED
I RVI NG JOAN 1982/ 01/ 04 1982/ 05/ 14 94
MCKNI GHT ROGER 1982/ 02/ 02 1982/ 05/ 14 73
SM TH RI CHARD 1982/ 01/ 04 1982/ 05/ 14 94
STEVENS ALFRED 1980/ 06/ 02 1982/ 01/ 01 414

ALFRED 1980/ 06/ 02 1981/ 01/ 01 153

Using Functions 5-13

Date and Time Functions

DATEMOV: Moving a Date to a Significant Point

Syntax

5-14

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain
The DATEMOV function moves a date to a significant point on the calendar.
DATEMOQV works with date format only.

How to Move a Date to a Significant Point
DATEMOV(dat e, 'nove-point'")
where:

dat e
Date

Is the date you wish to move. This date can be any new date format aslong asit
includes a day component. For example, MDY'Y can be used but MY'Y cannot be.

nmove- poi nt
Alphanumeric

Isthe significant point to which you wish to move. Aninvalid point resultsin azero
being returned. Valid points to which to move the date are:

EOmis the end of month.

BOMis the beginning of month.
EOQisthe end of quarter.
BOQis the beginning of quarter.
EOY isthe end of year.

BOY isthe beginning of year.
Eowis the end of week.

BOwis the beginning of week.
NVD is the next weekday.

NBD is the next business day.
PWD is the prior weekday.

PBD is the prior business day.
WD- isaweekday or earlier.

BD- isabusinessday or earlier.
WD+ is aweekday or later.

BD+ isabusiness day or later.
Aninvalid point resultsin a zero being returned.

Note: When using a business day calculation, the result is affected by the days specified
asworking days.

Information Builders

Using Standard Date and Time Functions

Example

Using Functions

Determining Significant Move Points for a Field

The following sets the business days to Monday, Tuesday, Wednesday, and Thursday.
DATEMOV determines significant move points for HIRE_DATE.

SET BUSDAY = _MIWI__

TABLE FI LE EMPLOYEE

PRI NT

COVPUTE NEW DATE/ YYMD = DATECVT(H RE_DATE, 'I6YMD, 'YYMD); AND
COVPUTE NEW DATE/ WI' = DATECVT(H RE_DATE, 'I16YMD, 'YYMD); AS ' DOW AND
COVPUTE NWD/ WI' = DATEMOV(NEW DATE, 'NWD); AND

COVPUTE PWD/ WI' = DATEMOV(NEW DATE, ' PWD); AND

COVPUTE WDP/ WI' = DATEMOV(NEW DATE, 'WD+'); AS 'WD+' AND

COVPUTE WDM WI' = DATEMOV(NEW DATE, 'WD-'); AS 'WD-' AND

COVPUTE NBD/ WI' = DATEMOV(NEW DATE, 'NBD); AND

COWPUTE PBD/ WI' = DATEMOV(NEW DATE, 'PBD); AND

COVPUTE WBP/ WI' = DATEMOV(NEW DATE, 'BDt+'); AS 'WB+' AND

COVPUTE VBM WI' = DATEMOV(NEW DATE, 'BD-'); AS 'WB-' BY LAST_NAME NOPRI NT
HEADI NG

"Exanpl es of DATEMOV'

"Busi ness days are Mnday, Tuesday, Wdnesday, + Thursday "

"START DATE..... | MOVE PONTS. ... "
VWHERE DEPARTMENT EQ 'M S';
END

The output is:

Exanpl es of DATEMOV
Busi ness days are Monday, Tuesday, \Wednesday, + Thursday

START DATE..... | MOVE PONTS.
NEW DATE DOV ND PW W+ WD- NBD PBD BD+ BD-

1982/04/01 WED THU TUE WED WED SUN TUE WED WED
1981/11/02 SUN MON THU SUN SUN MON WED SUN SUN
1982/04/01 WED THU TUE WED WED SUN TUE WED WED
1982/05/01 FRI MON WED SUN THU MON TUE SUN WED
1981/07/01 TUE WED MON TUE TUE WED MON TUE TUE
1981/07/01 TUE WED MON TUE TUE WED MON TUE TUE

5-15

Date and Time Functions

Example

Determining the End of the Week

In this example, DATEMOV determines the date for the end of the week for the dates in
NEW_DATE, and stores the results in the EOW field.

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAME AND

COVPUTE NEW DATE/ YYNDWI = DATECVT(H RE_DATE, 'I6YMD , 'YYMDWI'); AND
COVPUTE EOW YYMDWI = DATEMOV(NEW DATE, ' EOW);

BY LAST_NAME

VWHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME NEW DATE EOW

BANNI NG JOHN 1982 AUG 1, SUN 1982 AUG 6, FRI
| RVI NG JOAN 1982 JAN 4, MON 1982 JAN 8, FRI
MCKNI GHT ROGER 1982 FEB 2, TUE 1982 FEB 5, FRI
ROVANS ANTHONY 1982 JUL 1, THU 1982 JUL 2, FRI
SM TH Rl CHARD 1982 JAN 4, MON 1982 JAN 8, FRI
STEVENS ALFRED 1980 JUN 2, MON 1980 JUN 6, FRI

HADD: Incrementing a Date-Time Field

Syntax

5-16

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HADD function increments a date-time field by a given number of units.

How to Increment a Date-Time Field

HADD (dtfield, 'conponent', increment, [ength, 'fornat')

where:

difiel d
Is the date-time value to increment. Y ou can supply the name of adate-timefield, a
date-time constant, or an expression that returns a date-time value.

conponent
Isthe name of the component to be incremented, enclosed in single quotation marks.
For alist of these components see Component Names and Values for Use With |
Date-Time Functions|on page 5-2.

i ncrement
Is the number of units by which to increment the specified component. Y ou can

supply the actual value, the name of a numeric field that contains the value, or an
expression that returns the value.

Information Builders

Using Standard Date and Time Functions

Example

lengt h
gls the length of the returned date-time value. Valid values are:
8 for time values to include milliseconds.
10 for time values to include microseconds.
fornat

Isthe format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Incrementing the Month Component of a Date-Time Field

In the following, HADD adds two monthsto the valuesin the TRANSDATE field.
TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COMPUTE

ADD_MONTH HYYMDS = HADD (TRANSDATE, ' MONTH , 2, 8, 'HYYMDS');

WHERE DATE EQ 2000

END

The output is:

CUSTI D DATE-TI ME ADD_MONTH

1118 2000/ 06/ 26 05:45 2000/ 08/26 05:45:00
1237 2000/ 02/ 05 03:30 2000/ 04/05 03:30: 00

If necessary, the day is adjusted to be valid for the resulting month.

HCNVRT: Converting a Date-Time Field to Alphanumeric Format

Using Functions

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HCNVRT function converts a date-time field to al phanumeric format for use with
operators such as EDIT, CONTAINS, and LIKE.

5-17

Date and Time Functions

Syntax

Example

5-18

How to Convert a Date-Time Field to Alphanumeric Format

HCNVRT (value, '(fmt)', length, 'outputfnt')

where:

val ue
Is the date-time value to convert. Y ou can supply the name of adate-timefield, a
date-time constant, or an expression that returns a date-time value.

ft
Isthe USAGE format of the date-time field being converted, enclosed in parentheses
and single quotation marks. The format must be a date-time format (data type H).

/ engt h
Is the length of the alphanumeric field being returned. Y ou can supply the actual
value, the name of a numeric field that contains the value, or an expression that
returns the value. If length is smaller than the number of characters needed to display
the alphanumeric field, ablank field is returned.

out put f nt
Alphanumeric

Isthe format of the returned alphanumeric value, enclosed in single quotation marks.

Converting a Date-Time Field to Alphanumeric Format

In the following, HCNVRT converts the TRANSDATE field to a phanumeric format.

TABLE FI LE VI DECTR2
PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE

ALPHA_DATE_TI MEL/ A20 = HONVRT (TRANSDATE, ' (HL7)', 17, 'A20');
ALPHA_DATE_TI ME2/ A20 = HCNVRT (TRANSDATE, ' (HYYMDS)', 20, 'A20');
VWHERE DATE EQ 2000

END

The output is:

CUSTID DATE- TI ME ALPHA_DATE TI ME1 ALPHA_DATE TI ME2
1118 2000/ 06/ 26 05:45 20000626054500000 2000/ 06/ 26 05: 45: 00
1237 2000/ 02/ 05 03:30 20000205033000000 2000/ 02/ 05 03: 30: 00

Information Builders

Using Standard Date and Time Functions

HDATE: Converting the Date Portion of a Date-Time Field to a Date

Format
Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS, Windows
NT/2000
Available Languages: reporting, Maintain
The HDATE function extracts the date portion of a date-time field, convertsit to adate

format, and returns the result in the format Y'Y MD. The result can then be converted to
other date formats.

Syntax How to Convert the Date Portion of a Date-Time Field to a
Date Format
HDATE (dtfield, ' YYND)
where:

dtfield

Is the date-time value. Y ou can supply the name of adate-time field, a date-time
constant, or an expression that returns a date-time value.

Example Converting the Date Portion of a Field to a Date Format

In the following, HDATE converts the date portion of the TRANSDATE field to the date
format YYMD.

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME© AND COVPUTE
TRANSDATE_DATE/ YYMD = HDATE(TRANSDATE, ' YYMD);
WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME TRANSDATE_DATE

1118 2000/ 06/ 26 05:45 2000/ 06/ 26
1237 2000/ 02/ 05 03:30 2000/ 02/ 05

Using Functions 5-19

Date and Time Functions

HDIFF: Finding the Number of Units Between Two Date-Time Values

Syntax

Example

5-20

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain
The HDIFF function calculates the number of boundaries of a given type crossed
between two dates.

How to Find the Number of Units Between Two Date-Time
Values

HDI FF (dtval uel, dtval ue2, ' conponent', ' fornmat')

where:

dtval uel
Isthe ending date-time value. Y ou can supply the name of adate-timefield, a
date-time constant, or an expression that returns a date-time value.

dtval ue2
Isthe starting date-time value. Y ou can supply the name of adate-timefield, a
date-time constant, or an expression that returns a date-time value.

conponent
Is the name of the component to be used in the calculation, enclosed in single
guotation marks. If the unit is weeks, the WEEKFIRST setting is used in the
calculation.

format
Isthe format of the result, enclosed in single quotation marks. The format must be
double-precision format.

Finding the Number of Days Between Two Date-Time Fields

In the following, HDIFF finds the number of days between the ADD_MONTH and
TRANSDATE fields.

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE

ADD_MONTH HYYMDS = HADD (TRANSDATE, ' MONTH , 2, 8, 'HYYMDS');
DI FF_DAYS/ D12.2 = HDI FF(ADD_MONTH, TRANSDATE, 'DAY', 'D12.2');
WHERE DATE EQ 2000

END

The output is:

CUSTID DATE- TI NE ADD_MONTH DI FF_DAYS
1118 2000/ 06/ 26 05:45 2000/ 08/ 26 05: 45: 00 61. 00
1237 2000/ 02/ 05 03:30 2000/ 04/ 05 03: 30: 00 60. 00

Information Builders

Using Standard Date and Time Functions

HDTTM: Converting a Date field to a Date-Time Field

Syntax

Example

Using Functions

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain
The HDTTM function converts a date field to a date-time field. The time portion is set to
midnight.

How to Convert a Date Field to a Date-Time Field
HDTTM (date, /ength, format)

where:

dat e

Isthe date value to be converted. Y ou can supply the name of a date field, adate
constant, or an expression that returns a date value.

/ength
gls the length of the returned date-time value. Valid values are:
8 for time values including milliseconds.
10 for time values including microseconds.
format

Isthe format of the returned date-time value. The format must be a date-time format
(datatype H).

Converting a Date Field to a Date-Time Field

In the following, HDTTM converts the date field TRANSDATE_DATE to adate-time
field.

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE
TRANSDATE_DATE/ YYMD = HDATE(TRANSDATE, ' YYMD);
DT2/ HYYMDI A = HDTTM TRANSDATE_DATE, 8, ' HYYMDI A');
WHERE DATE EQ 2000

END
The output is:

CUSTID DATE- TI NE TRANSDATE_DATE DT2

1118 2000/ 06/ 26 05: 45 2000/ 06/ 26 2000/ 06/ 26 12: 00AM
1237 2000/ 02/ 05 03:30 2000/ 02/ 05 2000/ 02/ 05 12: 00AM

5-21

Date and Time Functions

HGETC: Storing the Current Date and Time in a Date-Time Field

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000 NT/2000

Available Languages:. reporting, Maintain

The HGETC function stores the current date and time in adate-time field. If millisecond

or microsecond values are not available in your operating environment, the value
returned for these componentsis zero.

Syntax How to Store the Current Date and Time in a Date-Time Field
HGETC (/ength, ' fornat')
where:
/ engt h

Isthe length of the returned date-time value. Valid values are:
8 for time values including milliseconds.
10 for input time values including microseconds.

format

Isthe format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Example Storing the Current Date and Time in a Date-Time Field

In the following, HGETC stores the current date and timein field DT2:
TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE- TIME AND COMPUTE

DT2/ HYYNDm = HGETC(10, ' HYYNDM) ;

VWHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI NE DT2

1118 2000/ 06/ 26 05:45 2000/ 10/ 03 15:34: 24. 000000
1237 2000/ 02/ 05 03:30 2000/ 10/03 15: 34: 24. 000000

5-22 Information Builders

Using Standard Date and Time Functions

HHMMSS: Returning the Current Time

Syntax

Example

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain
The HHMMSS function retrieves the current time from the operating system and returns

the time as an eight-character string, separating the hours minutes and seconds with
periods for reporting and colons for Maintain.

Note:
e &TOD returnsthe current time of day.

» Compiled MODIFY procedures must use the HHMMSS function to obtain the time;
they cannnot use the & TOD variable. The & TOD variable is made current only
when you execute a MODIFY, SCAN, or FSCAN procedure.

How to Retrieve the Current Time

HHMWVBS(out fi el d)

where:

outfield
Alphanumeric
Isthe name of the field to which the timeis returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Displaying the Current Time

The following retrieves the current time and displays it in areport footing:

TABLE FI LE EMPLOYEE

SUM CURR_SAL AS ' TOTAL SALARI ES' AND COVPUTE
NOWTI ME/ A8 = HHMVBS(NOWTT ME) ; NOPRI NT

BY DEPARTMENT

FOOTI NG

"SALARY REPORT RUN AT TI ME <NOW ME"

END

The output is:
DEPARTMENT ~ TOTAL SALARI ES

M S $108, 002. 00
PRCDUCTI ON $114, 282. 00

SALARY REPORT RUN AT TI ME 15.21. 14

5-23

Date and Time Functions

HINPUT: Converting an Alphanumeric String to a Date-Time Value

Syntax

Example

5-24

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain

The HINPUT function converts an a phanumeric string to a date-time value.

How to Convert an Alphanumeric String to a Date-Time Value

HI NPUT (/nputlength, 'inputstring , length, 'Hfnt")

where:

i nput | engt h
Is the length of the alphanumeric string to convert. Y ou can supply the actua value,
the name of a numeric field that contains the value, or an expression that returns the
value.

i nputstring
I's the al phanumeric string to convert. Y ou can supply the actual string enclosed in
single quotation marks, the name of an alphanumeric field, or an expression that
returns an al phanumeric value. The alphanumeric string can consist of any valid
date-time input value as described in Describing Data.

/ engt h
Isthe length of the returned date-time value. Valid values are:

8 for time values down to milliseconds.
10 for time values down to microseconds.

Hf mt
Isthe format of the returned date-time value, enclosed in single quotation marks.

Converting an Alphanumeric String to a Date-Time Value

In the following request, HCNVRT convertsthe TRANSDATE field to a phanumeric
format, and then HINPUT converts the alphanumeric string to a date-time value.

TABLE FI LE VI DECTR2
PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE

ALPHA_DATE_TI ME/ A20 = HCNVRT (TRANSDATE, ' (HL7)', 17, 'A20');
DT_FROM ALPHA/ HYYMDS = HI NPUT(14, ALPHA DATE TIME, 8, ' HYYMDS);
VWHERE DATE EQ 2000

END

The output is:

CUSTID DATE- TI NE ALPHA_DATE_TI ME DT_FROM ALPHA

1118 2000/ 06/ 26 05: 45 20000626054500000 2000/ 06/ 26 05: 45: 00
1237 2000/ 02/ 05 03:30 20000205033000000 2000/ 02/ 05 03: 30: 00

Information Builders

Using Standard Date and Time Functions

HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight

Syntax

Example

Using Functions

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain

The HMIDNT function changes the time portion of a date-time field to midnight (all
zeroes). Thisfunction can be used for testing date-time fields for a given date.

How to Set the Time Portion of a Date-Time Field to Midnight
HM DNT (value, length, 'format')
where:
val ue
Is adate-time value. Y ou can supply the name of adate-time field, a date-time
constant, or an expression that returns a date-time value.
/ engt h
Isthe length of the returned date-time value. Valid values are:
8 for time values down to milliseconds.
10 for time values down to microseconds.
format

Isthe format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Setting the Time to Midnight

In the following request, HMIDNT sets the time portion of the TRANSDATE field to
midnight.

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE
TRANSDATE_M D_24/ HYYMDS HM DNT(TRANSDATE, 8, ' HYYMDS');
TRANSDATE_M D_12/ HYYMDSA = HM DNT(TRANSDATE, 8, ' HYYMDSA');
WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI NE TRANSDATE_M D_24 TRANSDATE_M D_12

1118 2000/ 06/ 26 05:45 2000/ 06/26 00:00: 00 2000/ 06/26 12:00: 00AM
1237 2000/ 02/ 05 03:30 2000/ 02/05 00: 00: 00 2000/ 02/05 12: 00: 00AM

5-25

Date and Time Functions

HNAME: Extracting a Date-Time Component in Alphanumeric

Format

Syntax

5-26

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS, Windows
NT/2000
Available Languages: reporting, Maintain

The HNAME function extracts a specified component from a date-time field and returns
it in alphanumeric format.

How to Extract a Date-Time Component in Alphanumeric
Format

HNAMVE (val ue, 'conponent', fornat)

where:

val ue

Is the date-time value. Y ou can supply the name of adate-time field, a date-time
constant, or an expression that returns a date-time value.

conponent
Is the name of the component to be extracted, enclosed in single quotation marks.
See [Component Names and Values for Use With Date-Time Functionsjon page 5-2
for alist of supported components.

format
I's the a phanumeric format of the returned component, enclosed in single quotation
marks. All other components are converted to strings of digitsonly. The year is
always four digits, and the hour assumes the 24-hour system.

Information Builders

Using Standard Date and Time Functions

Example

Example

Using Functions

Extracting the Week Component From a Field

In the following request, HNAME extracts the week in al phanumeric format from the
TRANSDATE field. Changing the WEEKFIRST setting changes the value of the
extracted component.

SET WEEKFI RST = 7

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE- TI MEE AND COVPUTE
VEEK_COVPONENT/ A10 = HNAME(TRANSDATE, 'WEEK', ' A10')
WHERE DATE EQ 2000

END
When WEEKFIRST is set to 7, the output is:
CUSTID DATE- TI NE VEEEK_COVPONENT

1118 2000/ 06/ 26 05:45 26
1237 2000/ 02/ 05 03:30 05
When WEEKFIRST is set to 3, the output is:

CUSTID DATE-TI ME WVEEK_COVPONENT

1118 2000/ 06/ 26 05:45 25
1237 2000/ 02/ 05 03:30 05

Extracting the Day Component From a Date-Time Field

In the following request, HNAME extracts the day in a phanumeric format from the
TRANSDATE field.

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE- TIME AND COMPUTE

DAY_COMPONENT/ A2 = HNAVME(TRANSDATE, ' DAY', 'A2');

WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME DAY_COMPONENT

1118 2000/ 06/ 26 05:45 26
1237 2000/ 02/ 05 03:30 05

5-27

Date and Time Functions

HPART: Returning a Date-Time Component in Numeric Format

Syntax

Example

5-28

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain

The HPART function extracts a specified component from adate-time field and returns it
in numeric format.

How to Return a Date-Time Component in Numeric Format

HPART (val ue, ' conponent', ' fornat')

where:

val ue
Is the date-time value. Y ou can supply the name of adate-time field, a date-time
constant, or an expression that returns a date-time value.

conponent
Is the name of the component to be extracted, enclosed in single quotation marks.
See Component Names and Values for Use With Date-Time Functions|on page 5-2
for alist of supported components.

format
Isthe integer format of the returned component, enclosed in single quotation marks.
The year is always four digits, and the hour assumes the 24-hour system.

Extracting the Day Component in Numeric Format From a
Date-Time Field

In the following request, HPART extracts the day in integer format from the
TRANSDATE field.

TABLE FI LE VI DEOCTR2
PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE

DAY_COMPONENT/ | 2 = HPART(TRANSDATE, 'DAY', '12');
VWHERE DATE EQ 2000

END

The output is:

CUSTID DATE- TI NE DAY_COVPONENT

1118 2000/ 06/ 26 05: 45 26

1237 2000/ 02/ 05 03: 30 5

Information Builders

Using Standard Date and Time Functions

HSETPT: Inserting a Component Into a Date-Time Field

Syntax

Example

Using Functions

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages:. reporting, Maintain

The HSETPT function inserts the numeric value of a specified component into a
date-time field.

How to Insert a Component Into a Date-Time Field

HSETPT (dtfield, 'conponent', value, [ength, 'format')

where:

difield
Is the date-time value. Y ou can supply the name of adate-time field, a date-time
constant, or an expression that returns a date-time value.

conponent
Is the name of the component to be inserted, enclosed in single quotation marks. See
IComponent Names and Values for Use With Date-Time Functions|on page 5-2 for a
list of supported components.

val ue
Isthe numeric value to use for the requested component. Y ou can supply the actual
value, the name of anumeric field that contains the value, or an expression that
returns the value.

l engt h
Isthe length of the returned date-time value. Valid values are:
8 for time values down to milliseconds.
10 for time values down to microseconds.

format

Isthe format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Inserting the Day Component Into a Date-Time Field

In the following request, HSETPT inserts the day into the ADD_MONTH field.

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME© AND COVPUTE

ADD_MONTH HYYMDS = HADD (TRANSDATE, 'MONTH , 2, 8, 'HYYMDS);
I NSERT_DAY/ HYYMDS = HSETPT(ADD_MONTH, ' DAY', 28, 8, 'HYYMDS');
WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI NE ADD_MONTH | NSERT_DAY

1118 2000/ 06/ 26 05:45 2000/ 08/26 05:45:00 2000/08/28 05:45:00
1237 2000/ 02/ 05 03:30 2000/ 04/05 03:30:00 2000/04/28 03:30:00

5-29

Date and Time Functions

HTIME: Converting the Time Portion of a Date-Time Field to a

Number

Syntax

Example

5-30

Available Operating Systems: AS/400, OpenVMS, 0S/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HTIME function converts the time portion of a date-time field to a numeric number

of milliseconds if the first argument is 8, or microseconds if the first argument is 10. To
include microseconds, the input date-time field must be a 10-byte field.

How to Convert the Time Portion of a Date-Time Field to a
Number
HTI ME (/ength, value, 'format')
where:
/ engt h
Isthe length of the input date-time value. Valid values are:
8 for time values down to milliseconds.
10 for input time values down to microseconds.
val ue
I's the date-time value from which to extract the time. Y ou can supply the name of a
date-time field, a date-time constant, or an expression that returns a date-time value.
fornat
Isthe format of the returned number of milliseconds or microseconds, enclosed in
single quotation marks. The format must be a double-precision format.

Converting the Time Portion of a Date-Time Field to a Number

In the following regquest, HTIME converts the time portion of the TRANSDATE field to
the number of milliseconds.

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COMPUTE

M LLI SEC/ D12. 2 = HTI ME(8, TRANSDATE, 'DI12.2');

WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME M LLI SEC

1118 2000/ 06/ 26 05: 45 20, 700, 000. 00
1237 2000/ 02/ 05 03: 30 12, 600, 000. 00

Information Builders

Using Standard Date and Time Functions

TODAY: Returning the Current Date

Syntax

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The TODAY function retrieves the current date from the system in the format
MM/DD/YY or MM/DD/YYYY. The TODAY function aways returns a date that is

current. Therefore, if you are running an application late at night, you may want to use
the TODAY function. Y ou can remove the embedded slashes using the EDIT function.

Y ou can aso retrieve the date in the same format (separated by slashes) by using the
system variable & DATE. Y ou can retrieve the date without the slashes using the system
variables & YMD, & MDY, and & DMY. The system variable & DATEfnt retrieves the
datein a specified format.

How to Retrieve the Current Date
TODAY(out fi el d)
where:

outfield
Alphanumeric, at least A8

Isthe name of the field to which the current date in MM/DD/YY[YY] format is
returned, or the format of the output value enclosed in single quotation marks. The
following determines the format:

* |f DATEFNS=ON and the format is A8 or A9, TODAY returns the 2-digit year.

e |f DATEFNS=ON and the format is A10 or greater, TODAY returns the 4-digit
year.

* |f DATEFNS=OFF, TODAY returnsthe 2-digit year, regardless of the format of
outfield.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

5-31

Date and Time Functions

Example

Displaying the Current Date

In the following request, TODAY retrieves the current date and storesit in the DATE
field. The DATE field is then used to display the date in areport heading.

DEFI NE FI LE EMPLOYEE
DATE/ A10 W TH EMP_I D=TODAY(DATE) ;

END

TABLE FI LE EMPLOYEE

SUM CURR_SAL BY DEPARTMENT
HEADI NG

"PAGE <TABPAGENO "

"SALARY REPORT RUN ON <DATE

END
The output is:

PAGE 1

SALARY REPORT RUN ON 12/13/1999
DEPARTMENT CURR_SAL

MS $108, 002. 00

PRCDUCTI ON $114, 282. 00

Using Legacy Date Functions
The functions listed in this topic are legacy functions. These functions were created for
use with datesin integer, packed decimal, or alphanumeric format.

The following is the difference between a date format (formerly called a smart date) and
alegacy date:

5-32

A date format refersto an internally stored integer that represents the number of days
between area date value and a base date (either December 31, 1900, for dates with
YMD or YYMD format; or January 1901, for dateswith YM, YYM, YQ, or YYQ
format). A Master File does not specify a data type or length for a date format;
instead, it specifies display options such as D (day), M (month), Y (2-digit year), or
YY (4-digit year). For example, MDY'Y in the USAGE (aso known as FORMAT)
attribute of a Master Fileisadate format. A real date value such as March 5, 1999,
displays as 03/05/1999, and isinternally stored as the offset from December 31,
1900.

A legacy date refersto an integer, packed decimal, or a phanumeric format with date
edit options, such as I6YMD, A6MDY, I8YYMD, or ABMDY'Y. For example,
ABMDY is a6-byte alphanumeric string; the suffix MDY indicates how Information
Builders will return the data in the field. The sample value 030599 displays as
03/05/99.

Information Builders

Using Legacy Date Functions

Using Legacy Versions of Date Functions

Syntax

All date functions have been rewritten to support dates for the year 2000 and later. The
old versions of these functions may not work correctly with dates after December 31,
1999. However, in some cases you may want to use the old version of the function, for
example, if you do not use year 2000 dates. Y ou can “turn off” the new versions with the
DATEFNS parameter.

For details of how the DATEFNS parameter affects a specific function, see the
description of the function.

How to Activate Legacy Date Functions
SET DATEFNS = { ON| OFF}

where:

N

 Activates the functions that support dates for the year 2000 and beyond. Thisvalueis
the default.
OFF

Deactivates the functions that support dates for the year 2000 and beyond.

Using Dates With Two and Four-Digit Years

Example

Using Functions

Legacy date functions accept dates with two or four digit years. Four digit years that
display the century, such as 2000 and 1900, can be used if their formats are specified as
I8YYMD, P8YYMD, D8YYMD, F8YYMD, or A8YYMD. Two-digit years that do not
specify the century can utilize the DEFCENT and Y RTHRESH parameters to assign
century valuesif the field has alength of six (for example, I6YMD). For information on
these parameters see Customizing Your Environment in Developing Applications.

Using Four-Digit Years

The following example illustrates how to use the EDIT function to assign dates with
four-digit years. It then converts these dates to Julian and Gregorian formats.

DEFI NE FI LE EMPLOYEE

DATE/ | 8YYMD = EDI T(' 19' | EDI T(HI RE_DATE)) ;

JDATE/ | 7 = JULDAT(DATE, 'I17');

GDATE/ | 8 = GREGDT(JDATE, '18');

END

TABLE FI LE EMPLOYEE

PRI NT DATE JDATE GDATE

END

The output is:
DATE JDATE GDATE

1996/ 01/01 1996001 19960101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
1999/ 12/ 31 1999365 19991231

5-33

Date and Time Functions

Example

5-34

Using Two-Digit Years

The following example shows how to return an eight-digit date from the AYMD function
when the input argument has a six-digit date legacy format. Since DEFCENT is 19 and
YRTHRESH is 50, year values from 50 through 99 are interpreted as 1950 through 1999,
and year values from 00 through 49 are interpreted as 2000 through 2049:

SET DEFCENT=19, YRTHRESH=50

TABLE FI LE DATE

PRI NT D2_I 6YMD AND COVPUTE

NEWDATE/ | 8YYNMD=AYMD(D2_I1 6YMD, 1,'18");
END

The DEFCENT and YRTHRESH values create a 100-year window as follows:
(e < YRTHRESHE50 2-------ssmcmmmmmmmm- 99

Cent ur y=DEFCENT+1 (20) Cent ur y=DEFCENT (19)
The output is:
D2_I| 6YMD NEWDATE

97/ 09/ 16 1997/ 09/ 17
00/ 02/ 29 2000/ 03/ 01
01/ 02/ 28 2001/ 03/ 01
00/ 02/ 28 2000/ 02/ 29

Information Builders

Using Legacy Date Functions

AYM: Adding or Subtracting Months to or From Dates

Syntax

Using Functions

Available Operating Systems: 0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages: reporting, Maintain

The AYM function adds and subtracts months from dates in year-month format. Y ou can
convert adate to this format by using the CHGDAT function or the EDIT function.

How to Add or Subtract Months to or From Dates
AYM i/ ndat e, nonths, outfield)
where:
[ndat e
Numeric
Isthe input date in year-month format. If the date is not valid, AYM returns a 0.
mont hs
Integer
I's the number of months you are adding or subtracting from the date. To subtract
months, use a negative number.
outfield
I nteger
Is the name of the field to which the resulting date in year-month format is returned,
or the format of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Tip:
If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the

date by 100 to convert to year-month format and set the result to an integer. This causes
the day portion of the date, which is now after the decimal point, to be dropped.

5-35

Date and Time Functions

Example Adding Months to a Date

The following request adds six months to the hire date of employees. AYM takesa
starting date that you supply (in this case, HHRE_ MONTH, in YM format), and uses a
monthly interval that you supply (in this case, 6), to determine aresulting date
(AFTERBMONTHS, alsoin YM format).

Note that the COMPUTE command converts the dates from year-month-day to
year-month formats by dividing the dates by 100.

TABLE FI LE EMPLOYEE

PRI'NT HI RE_DATE AND COVPUTE

H RE_MONTH | 4YM = HI RE_DATE/ 100 ;

AFTER6MONTHS/ | 4YM = AYM H RE_MONTH, 6, AFTERGMONTHS) ;
BY LAST_NAVME BY Fl RST_NAVE

WHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NANME FI RST_NAME H RE_DATE H RE_MONTH AFTER6MONTHS
BLACKWOCD ROSEMAR! E 82/ 04/ 01 82/ 04 82/ 10
CROSS BARBARA 81/ 11/ 02 81/11 82/ 05
GREENSPAN MARY 82/ 04/ 01 82/ 04 82/ 10
JONES DI ANE 82/ 05/ 01 82/ 05 82/ 11
MCCOY JOHN 81/ 07/ 01 81/ 07 82/ 01
SM TH MARY 81/ 07/ 01 81/ 07 82/ 01

5-36 Information Builders

Using Legacy Date Functions

AYMD: Adding or Subtracting Days to or From Dates

Syntax

Using Functions

Available Operating Systems.0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages: reporting, Maintain
The AYMD function takes a valid date in year-month-day format and adds or subtracts a

given number of days from the date. Y ou can convert a date to this format using the
CHGDAT function or EDIT function.

If the addition or subtraction of days crosses forward or back into a century, the century
digits of the output year are adjusted.

How to Add or Subtract Days to or From Dates

AYMX / ndat e, days, outfield)

where;

[ndat e
Integer
Isthe input date in year-month-day format or the field that contains the input date. If
indate is afield name, it must refer to afield with 16, I6YMD, 18, I8Y YMD, P6,

P6YMD, F6, F6YMD, D6, or D6YMD format. If the date is not valid, the function
returns a 0.

days
Integer
Isthe number of daysyou are adding to indate. To subtract days, use a negative
number.
outfield
16, I6YMD, 18, or I8YYMD

Isthe name of the field to which the resulting date is returned, or the format of the
output value enclosed in single quotation marks. If indate is afield, both fields must
have the same format.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

5-37

Date and Time Functions

Example Adding Days to a Date

The following request adds 35 daysto the hire date of employees. AYMD takes the date
in HIRE_DATE and uses the interval 30 to calculate a new date, and saves the result in
AFTER35DAYS.

TABLE FI LE EMPLOYEE

PRI'NT HI RE_DATE AND COVPUTE

AFTER35DAYS/ | 6YND = AYMD(HI RE_DATE, 35, AFTER35DAYS);
BY LAST_NAVE BY Fl RST_NAVE

WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END
The output is:

LAST_NANME FI RST_NAME H RE_DATE AFTER35DAYS
BANNI NG JOHN 82/ 08/ 01 82/ 09/ 05
I RVI NG JOAN 82/ 01/ 04 82/ 02/ 08
MCKNI GHT ROGER 82/ 02/ 02 82/ 03/ 09
ROVANS ANTHONY 82/ 07/ 01 82/ 08/ 05
SM TH Rl CHARD 82/ 01/ 04 82/ 02/ 08
STEVENS ALFRED 80/ 06/ 02 80/ 07/ 07

CHGDAT: Changing Date Formats
Available Operating Systems: 0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages: reporting, Maintain

The CHGDAT function rearranges the year, month, and day portions of dates and
converts dates between long and short date formats. Long formats contain the year,
month, and day; short formats contain one or two of these elements, such as year and
month, or just day. A format can be longer if four digits are used for the year (for
example, 1987), or shorter if only the last two digits are used (for example, 87).

The format of the date to be converted and the resulting date contain the following
characters in any combination:

D Days in the month (01 through 31).
M Months in the year (01 through 12).

YIYl Year. OneY indicates a two-digit date (such as 94); two Y’ sindicate a
four-digit date (such as 1994).

If you want to spell out the month rather than use a number for the month, you can
append one of the following to the format of the resulting date:

T Displays the month as a three-letter abbreviation.
X Displays the full name of month.

Any other character in the format isignored.

5-38 Information Builders

Using Legacy Date Functions

Syntax

Using Functions

If you are converting a date from short to long format (for example, from year-month to
year-month-day), the function supplies the portion of the date missing in the short format,
as shown in the following table:

Portion of Date Missing Portion Supplied by the Function
Day (that is, from YM to YMD) Last day of the month.

Month (that is, from Y to YM) The month 12 (December).

Year (that is, from MD to YMD) The year 99.

Converting year from short to long form | If DATEFNS=0N, the century will be
(that is, from YMD to YYMD) determined by the 100-year window

defined by DEFCENT and YRTHRESH.
See Working With Cross-Century Dates
in Developing Applications for details on
DEFCENT and YRTHRESH.

If DATEFNS=0OFF, the year 19xx, where
xx isthe last two digitsin the year.

How to Change Date Formats
CHGCDAT("' o/ dformat', ' newformat', indate, outfield)
where:

' ol df or mat'
A5

Isthe format of the input date.
' newf ornat'

A5

Isthe format of the converted date.
/ ndat e

Alphanumeric

Isthe input date. If the date isin numeric format, change it to al phanumeric format

using the EDIT function. If the input date isinvalid, the function returns spaces.
outfield

Alphanumeric or A17

Isthe name of the field to which the converted date is returned, or the format of the

output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Tip:
Since CHGDAT returns the date in alphanumeric format with 17 characters, you can use

the EDIT function to truncate this field to a shorter field or to convert the date to numeric
format.

5-39

Date and Time Functions

Example Converting a Numeric Date to Its Full Name

In this example, CHGDAT takes a date that you supply (in this case, DATE) in YMD
format and convertsit to aresulting date (NEWDATE) in MDY'Y X format.

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND COVPUTE

ALPHA_H RE/ A6 = EDI T(H RE_DATE); NOPRI NT AND COWPUTE

H RE_MDY/ A17 = CHGDAT(' YMD , 'MDYYX' , ALPHA H RE, 'Al7');
BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME H RE_DATE H RE_MDY

BANNI NG JOHN 82/08/01 AUGUST 01 1982

| RVI NG JOAN 82/01/04 JANUARY 04 1982
MCKNI GHT ROGER 82/02/ 02 FEBRUARY 02 1982
ROVANS ANTHONY 82/07/01 JULY 01 1982

SM TH Rl CHARD 82/01/04 JANUARY 04 1982
STEVENS ALFRED 80/06/02 JUNE 02 1980

DA Functions: Converting a Date to an Integer
Available Operating Systems: All
Available Languages:. reporting, Maintain
The DA functions convert dates to the number of days between the date and December
31, 1899. By converting dates to the number of days, you can add and subtract dates and
calculate the interval s between them. Y ou can convert the results back to date format by
using the DT functions discussed in DT Functions. Converting an Integer to a Date on
page 5-67.

There are six DA functions; each one accepts dates in a different format.

5-40 Information Builders

Using Legacy Date Functions

Syntax

Example

Using Functions

How to Convert a Date to an Integer
function(indate, outfield)
where:
function
Is one of the following:
DADMY converts dates in day-month-year format.
DADYM converts dates in day-year-month format.
DAMDY converts dates in month-day-year format.
DAMYD converts dates in month-year-day format.
DAYDM converts dates in year-day-month format.
DAYMD converts dates in year-month-day format.
[ndat e
Numeric
Isthe input date or afield that contains the date. The date is truncated to an integer
before conversion. The date format is determined by the function, as explained
above.
To specify the year, enter only the last two digits; the function assumes the century
component. If the dateisinvalid, the function returns a 0.
outfield
Alphanumeric
Is the name of the field to which the number of daysthis century isreturned, or the
format of the output value enclosed in single quotation marks.
Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Calculating the Difference Between Two Dates

The following example shows the number of days elapsed between the time employees
get raises and the time they were hired. DAYMD takes two dates that you supply (in this
case, DAT_INC and HIRE_DATE) in YMD format, converts both to the number of days
since December 31, 1899, and subtracts the smaller from the larger:

TABLE FI LE EMPLOYEE

PRI NT DAT I NC AS ' RAI SE DATE AND COMPUTE

DAYS H RED/ | 8 = DAYMX DAT_INC, '18') - DAYMX H RE_DATE, '18');
BY LAST_NAME BY FI RST_NAME

I F DAYS_H RED NE 0

WHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END
The output is:

LAST_NAME FI RST_NAME RAI SE DATE DAYS_HI RED
| RVI NG JOAN 82/ 05/ 14 130
MCKNI GHT ROGER 82/ 05/ 14 101
SM TH RI CHARD 82/ 05/ 14 130
STEVENS ALFRED 82/ 01/ 01 578

81/ 01/ 01 213

5-41

Date and Time Functions

DMY, MDY, YMD: Calculating the Difference Between Two Dates
Available Operating Systems: All
Available Languages: reporting, Maintain

The DMY, MDY, and YMD functions cal cul ate the difference between two datesin
integer, alphanumeric, or packed format.

Syntax How to Calculate the Difference Between Two Dates
function(begi n, end)
where:
function

Is one of the following:
Dy calculates the difference between two dates in day-month-year format.
MDY calculates the difference between two dates in month-day-year format.
YMD calculates the difference between two dates in year-month-day format.
begi n
Numeric
I's the beginning date. Y ou may supply the actual date or the name of afield that
contains the date.
end
Numeric

Isthe end date. Y ou may supply the actual date or the name of afield that contains
the date.

Example Calculating the Number of Days Between Two Dates

The following request cal culates the number of days between an employee’ s start date
and first pay raise. YMD takesthe datesin HIRE_DATE and DAT_INC, and calculates
the number of days between them.

TABLE FI LE EMPLOYEE

SUM HI RE_DATE FST. DAT_I NC AS ' FI RST PAY, | NCREASE' AND COVPUTE
DI FF/ 14 = YVMD(H RE_DATE, FST.DAT_INC) ; AS 'DAYS, BETVEEN

BY LAST_NAME BY FI RST_NAME

WHERE DEPARTMENT EQ 'M S ;

END

The output is:
FI RST PAY DAYS

LAST_NAME FI RST_NAME HI RE_DATE | NCREASE BETWEEN
BLACKWOCD ROSEMARI E 82/ 04/01 82/04/01 0
CRCSS BARBARA 81/11/02 82/04/09 158
GREENSPAN MARY 82/04/01 82/06/11 71
JONES DI ANE 82/05/01 82/06/01 31
MCCOY JOHN 81/07/01 82/01/01 184
SM TH MARY 81/07/01 82/01/01 184

5-42 Information Builders

Using Legacy Date Functions

DOWK and DOWKL: Finding the Day of the Week

Syntax

Example

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain
The DOWK and DOWKL functions find the day of the week that corresponds to a date.

The DOWK function returns the day as a 3-letter abbreviation; the DOWKL function
displays the full name of the day.

How to Find the Day of the Week

DOWK(7 ndat e, outfield)

or

DOWKL(7 ndat e, outfield)

where;

/ ndat e
Numeric
Isthe input date in year-month-day format. If the date is not valid, the function
returns spaces. If the date specifies a 2-digit year and DEFCENT and Y RTHRESH
values have not been set, the function assumes the 20th century.

outfield
DOWK: A4
DOWKL: A12

Isthe name of the field to which the day of the week is returned, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Finding the Day of the Week

In this example, DOWK uses the argument in HIRE_DATE to determine the day of the
week employees were hired, and stores the result in DATED.

TABLE FI LE EMPLOYEE
PRINT EMP_I D AND HI RE_DATE AND COMPUTE
DATEDY A4 = DOWK(HI RE_DATE, DATED);
WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:
EMP_I D HI RE_DATE DATED

071382660 80/ 06/ 02 MONN
119265415 82/01/04 MN
119329144 82/08/01 SUN
123764317 82/01/04 MN
126724188 82/07/01 THU
451123478 82/02/02 TUE

5-43

Date and Time Functions

DT Functions: Converting an Integer to a Date

Syntax

5-44

Available Operating Systems: All
Available Languages: reporting, Maintain

The DT functions convert an integer representing the days elapsed since December 31,
1899 to the corresponding date. The DT functions are useful when you are performing
arithmetic on a date converted to the number of days (see DA Functions. Converting a_|
Date to an I nteger jon page 5-40). The DT functions convert the result back to date
format.

There are six DT functions. Each one converts a number into a date of adifferent format.

How to Convert Integers to Dates
function(number, outfield)
where:

function
Is one of the following:

DTDMY converts numbers to day-month-year dates.
DTDYMconverts numbers to day-year-month dates.
DTMDY converts numbers to month-day-year dates.
DTMYD converts numbers to month-year-day dates.
DTYDMconverts numbers to year-day-month dates.
DTYMD converts numbers to year-month-day dates.

nunber
Numeric
Isthe number of days since December 31, 1899. The number is truncated to an
integer.
outfield
Integer
Isthe name of the field to which the corresponding date is returned, or the format of

the output value enclosed in single quotation marks. The date format is determined
by the function being used.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Information Builders

Using Legacy Date Functions

Example

Using Functions

Converting an Integer to a Date

The following takes a date that has been converted to the number of days (34650) and
convertsit back to the corresponding date, in month-day-year format. DAYMD takes the
argument HIRE_DATE, determines how many days have passed since December 31,
1899, and stores the result in NEWF. Then DTMDY takes NEWF, converts the result
back to adate, this time with afour-digit year, and stores the result in
NEW_HIRE_DATE.

-* THI' S PROCEDURE CONVERTS H RE_DATE, WHICH IS I N | 6YMD FORVAT,
-* TO A DATE I N | 8MDYY FORMNAT.

-* FIRST | T USES THE DAYMD FUNCTI ON TO CONVERT HI RE_DATE

-* TO A NUMBER CF DAYS.

-* THEN I T USES THE DTMDY FUNCTI ON TO CONVERT TH S NUMBER OF
-* DAYS TO | 8MDYY FORNAT

*

DEFI NE FI LE EMPLOYEE
NEWE/ 1 8 W TH EMP_I D=DAYMX HI RE_DATE, NEWF) ;

NEW H RE_DATE/ | SMDYY W TH EMP_| D=DTNMDY(NEWF, NEW H RE_DATE) ;
END

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE NEW HI RE_DATE

BY FN BY LN

WHERE DEPARTMENT EQ ‘M S

END

The output is:

FI RST_NAME LAST_NAME HI RE_DATE NEW H RE_DATE

BARBARA CROSS 81/ 11/ 02 11/ 02/ 1981

DI ANE JONES 82/ 05/ 01 05/ 01/ 1982

JOHN MCCOY 81/ 07/ 01 07/ 01/ 1981

MARY GREENSPAN 82/ 04/ 01 04/ 01/ 1982
SM TH 81/ 07/ 01 07/ 01/ 1981

ROSEMARI E BLACKWOOD 82/ 04/ 01 04/ 01/ 1982

5-45

Date and Time Functions

GREGDT: Converting From Julian to Gregorian Format
Available Operating Systems: All
Available Languages: reporting, Maintain
The GREGDT function converts dates in Julian format to year-month-day format. Dates
in Julian format are five- or seven-digit numbers. The first two or four digits are the year;
the last three digits are the number of the day counting from January 1. For example,
January 1, 1999 in Julian format is either 99001 or 1999001.

Depending on the format of the output, GREGDT converts a Julian date to either YMD
or YYMD format, using the DEFCENT and YRTHRESH settings.

GREGDT returns dates in the following format:

DATEFNS setting 16 or |7 format I8 format or greater
ON YMD YYMD
OFF YMD YMD
Syntax How to Convert Julian Format Dates to Gregorian Format
GRECDT(/ ndat e, outfield)
where:
[ndat e
Numeric

Isthe Julian date, which is truncated to an integer before conversion. Each value
must be a 5- or 7-digit number after truncation. Thefirst two or four digits represent
the year, the last three digits must be between 001 and 365 (366 for aleap year). If
the dateisinvalid, the function returns a 0.

outfield
16 or larger
Is the name of the field to which the date in year-month-day format is returned, or
the format of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

5-46 Information Builders

Using Legacy Date Functions

Example

Converting a Date to a Julian and a Gregorian Date

In this example, GREGDT takes the argument JULIAN and convertsitto YYMD
(Gregorian) format.

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND

COWPUTE JULI AN/ 15 = JULDAT(H RE_DATE, JULIAN); AND
COVPUTE GREG DATE/ 18 = GREGDT(JULI AN, '18");

BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END
The output is:

LAST_NAME FI RST_NAME H RE_DATE JULIAN GREG DATE
BANNI NG JOHN 82/08/01 82213 19820801
| RVI NG JOAN 82/01/04 82004 19820104
MCKNI GHT ROGER 82/02/02 82033 19820202
ROVANS ANTHONY 82/07/01 82182 19820701
SM TH Rl CHARD 82/01/04 82004 19820104
STEVENS ALFRED 80/06/02 80154 19800602

Notice that GREGDT determines the century (using the DEFCENT and YRTHRESH
Settings).

JULDAT: Converting a Date From Gregorian to Julian Format

Using Functions

Available Operating Systems: All

Available Languages: reporting, Maintain

The JULDAT function converts a date from year-month-day format to Julian (year-day)
format. A date in Julian format is afive- or seven-digit number. The first two or four

digits are the year, the last three digits are the number of the day counting from January
1. For example, January 1, 1999 in Julian format is either 99001 or 1999001.

Depending on the format of the output, JULDAT usesthe DEFCENT and YRTHRESH
parameter settings to convert adate to either YYNNN or YYYYNNN format.

JULDAT returns dates in the following format:

DATEFNS setting I5or 16 format |7 format or greater
ON YYNNN YYYYNNN (JULDAT uses
the DEFCENT and

YRTHRESH settings to
determine the century, if
necessary).

OFF YYNNN YYNNN

5-47

Date and Time Functions

Syntax How to Convert a Gregorian Date to a Julian Date
JULDAT(/ ndate, outfield)
where:
i ndat e
Numeric
Isthe date or field containing the date in year-month-day format (YMD or YYMD).
outfield
Integer at least 15
Isthe field to which the Julian date is returned, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Converting a Gregorian Date to a Julian Date

In this example, JULDAT takes the argument HIRE_DATE and convertsit to Julian
format.

TABLE FI LE EMPLOYEE

PRI'NT HI RE_DATE AND

COWPUTE JULI AN/ 17 = JULDAT(H RE_DATE, JULIAN);
BY LAST_NAVME BY Fl RST_NAVE

WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END
The output is:

LAST_NAME FIRST_NAME H RE_DATE JULI AN

BANNI NG JOHN 82/ 08/ 01 1982213

I RVI NG JOAN 82/ 01/ 04 1982004

MCKNI GHT ROGER 82/ 02/ 02 1982033
ROVANS ANTHONY 82/07/01 1982182

SM TH RI CHARD 82/ 01/ 04 1982004
STEVENS ALFRED 80/ 06/ 02 1980154
Notice that JULDAT determines the century (using the DEFCENT and YRTHRESH
settings).

5-48 Information Builders

Using Legacy Date Functions

YM: Calculating Elapsed Months

Syntax

Using Functions

Available Operating Systems: All
Available Languages: reporting, Maintain
The YM function cal culates the number of months that elapse between two dates. The

dates must be in year-month format. Y ou can convert a date to this format by using the
CHGDAT function or the EDIT function.

How to Calculate Elapsed Months
YM frondat e, todate, outfield)
where;
frondat e
Numeric

Isthe starting date in year-month format (for example, 14Y M). If the date is not
valid, the function returns a0.

t odat e
Numeric
Isthe ending date in year-month format. If the date is not valid, the function returns a
0.

outfield
I nteger
Isthe name of the field to which the number of months between the two datesis
returned, or the format of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Tip:
If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the

date by 100 to convert to year-month format and set the result to an integer. This causes
the day portion of the date, which is now after the decimal point, to be dropped.

5-49

Date and Time Functions

Example

5-50

Calculating the Difference in Months Between Two Dates

In the following example, YM takes the arguments HIRE_DATE/100 and
DAT_INC/100, calculates the difference in months between the two dates, and stores the
resultsin MONTHS _HIRED.

Note that the COMPUTE expression converts the dates from year-month-day to
year-month format by dividing the dates by 100.

TABLE FI LE EMPLOYEE
PRI NT DAT I NC AS ' RAI SE DATE AND COMPUTE

HI RE_MONTH | 4YM = H RE_DATE/ 100; NOPRI NT AND COMPUTE
MONTH_| NC/ | 4YM = DAT_I NG/ 100; NOPRI NT AND COMPUTE
MONTHS_HI REDY 1 3 = YM H RE_MONTH, MONTH_INC, '13');
BY LAST_NAME BY FI RST_NAME BY HI RE_DATE

I F MONTHS_HI RED NE 0

WHERE DEPARTMENT EQ 'M S' ;

END

The output is:

LAST_NAVE FI RST_NAME H RE_DATE RAI SE DATE MONTHS HI RED
CROSS BARBARA 81/ 11/ 02 82/ 04/ 09 5
GREENSPAN MARY 82/ 04/ 01 82/ 06/ 11 2
JONES DI ANE 82/ 05/ 01 82/ 06/ 01 1
MCCOY JOHN 81/07/01 82/ 01/ 01 6
SM TH MARY 81/ 07/ 01 82/ 01/ 01 6

Information Builders

CHAPTER 6

Format Conversion Functions

Topics:

* |Alphabetical List of Format
Conversion Functions

Using Functions

Format conversion functions convert fields from one format to
another.

6-1

Format Conversion Functions

ATODBL: Converting an Alphanumeric String to
Double-Precision Format

Procedure

6-2

Available Operating Systems: 0S/390, VM/CMS

Available Languages: reporting, Maintain

The ATODBL function converts a number from alphanumeric to double-precision
format.

The ATODBL function is useful when executing a-RUN command in Dialogue
Manager. All numeric argumentsin Dialogue Manager are stored in alphanumeric
format. However, these arguments must be converted to double-precision format for use
with afunction. The -SET command automatically converts these arguments, but the
-RUN command does not. Therefore, you must convert each numeric argument into
double-precision format and storeit in a Dialogue Manager variable, which isused as a
function argument.

For other applications, the EDIT function performs this conversion. Since the EDIT
function cannot store double-precision numbersin Dialogue Manager variables, you must
call the ATODBL function to convert the arguments.

How to Convert an Alphanumeric String to Double-Precision
Format With the -RUN Command
To usethe ATODBL function in Dialogue Manager, perform these steps:
1. Definethe output variable as 8 byteslong. The syntax is
- SET &outfield = ' 12345678" ;
where:

&out field
Isthe output variable. The variable name must be eight characters long, enclosed
in single quotation marks.

2. Cdl the ATODBL function from an operating system -RUN command. The syntax is

-{CvB| TSO WS} RUN ATCDBL, number, inlength, &outfield

where;

CMB| TSQ| WS
Is the operating system.

nunber
Alphanumeric
I's the number you want to convert. This can be a numeric constant, or avariable
that contains the number. The number can be up to 15 byteslong and can

contain asign and adecimal point but no other character; if it does, the function
returnsaO.

Information Builders

ATODBL: Converting an Alphanumeric String to Double-Precision Format

Syntax

Using Functions

i nl ength
Alphanumeric
Isthe number of bytesin number. The maximum valueis 15.
Note: This must be a character string.
outfield
A8
Isthe variable defined in step 1.

How to Convert an Alphanumeric String to Double-Precision

Format From a FOCUS Command

ATODBL(nunber, inlength, outfield)

where:

nunber
Alphanumeric
I's the number you want to convert. This can be a numeric constant, or afield or
variable that contains the number. The number can be up to 15 byteslong and can
contain asign and adecimal point but no other characters; if it does, the function
returnsa.

i nl ength
Alphanumeric
I's the number of bytesin number. The maximum valueis 15. If you are specifying
thisfield as a numeric constant, enclose it in single quotation marks.

outfield
Double-Precision
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.
Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

6-3

Format Conversion Functions

Example Converting an Alphanumeric Value to a Double-Precision
Number With MODIFY

In the following example, the Master File contains the MISSING attribute for the
CURR_SAL field. If you do not enter avalue for thisfield, it isinterpreted as the default
value, aperiod.

FI LENAVE=EMPLOYEE, SUFFI X=FOC
SEGNAVE=EMPI NFO, SEGTYPE=S1
FI ELDNAVE=EMP_I D, ALI AS=EI D, FORVAT=A9, $

FI ELDNAVE=CURR_SAL, ALI AS=CSAL, FORVAT=D12. 2M M SSI NG=ON, $

In the following procedure, ATODBL converts the value entered for TCSAL to
double-precision format.

MODI FY FI LE EMPLOYEE

COWPUTE TCSAL/ Al2=;

PROVWPT EI D

MATCH EI D

ON NOVATCH REJECT

ON MATCH TYPE " EMPLOYEE <D. LAST_NAME <D. FI RST_NAME"

ON MATCH TYPE "ENTER CURRENT SALARY OR 'N' A" | F NOT AVAI LABLE"

ON MATCH PROVPT TCSAL

ON MATCH COVPUTE

CSAL M SSI NG ON=I F TCSAL EQ ' NN A' THEN M SSI NG
ELSE ATODBL(TCSAL,'12','D12.2");

ON MATCH TYPE " SALARY NOW <CSAL"

DATA

6-4 Information Builders

ATODBL: Converting an Alphanumeric String to Double-Precision Format

A sample execution follows:

EMPLOYEEFOCUS A ON 11/14/96 AT 13.42.55
DATA FOR TRANSACTI ON 1

EMP_I D =
071382660
EMPLOYEE STEVENS ALFRED
ENTER CURRENT SALARY OR 'N A" | F NOT AVAI LABLE
TCSAL =
n/a
SALARY NOW
DATA FOR TRANSACTI ON 2

EMP_I D =
112847612

EMPLOYEE SM TH MARY

ENTER CURRENT SALARY OR ‘N A" | F NOT AVAI LABLE

TCSAL =
45000
SALARY NOW $45, 000. 00
DATA FOR TRANSACTION 3
EMP_I D =
end
TRANSACTI ONS: TOTAL = 2 ACCEPTED= 2 REJECTED= 0
SEGMVENTS: I NPUT = 0 UPDATED = 0 DELETED = 0
The procedure processes as follows:
1. For thefirst transaction, the procedure prompts for an employee ID. 071382660 is
entered.
2. The procedure displays the last and first name of the employee, STEVENS
ALFRED.
3. Then it promptsyou for acurrent salary. N/A is entered.
4. A period displays.
5. For the second transaction, the procedure prompts you for an employee ID.
112847612 is entered.
6. The procedure displays the last and first name of the employee, SMITH MARY.
7. Then it promptsyou for acurrent salary. 45000 is entered.
8. $45,000.00 displays.

Using Functions

6-5

Format Conversion Functions

Example

Converting an Alphanumeric Field to Double-Precision Format

In this example, ATODBL converts the EMP_ID field into double-precision format and
storestheresultin D_EMP_ID.

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND FI RST_NANE AND

EMP_I D AND

COVPUTE D_EMP | DY D12. 2 = ATCDBL(EMP_ID, '09', D EMP_ID);
WHERE DEPARTMENT EQ 'M S' ;

END

The output is:

LAST_NAVE FI RST_NAME EMP_I D D EMP_ID
SM TH MARY 112847612 112, 847, 612. 00
JONES DI ANE 117593129 117, 593, 129. 00
MCCOY JOHN 219984371 219, 984, 371. 00
BLACKWOOD ROSEMARI E 326179357 326, 179, 357. 00
GREENSPAN MARY 543729165 543, 729, 165. 00
CROSS BARBARA 818692173 818, 692, 173. 00

EDIT: Converting the Format of a Field

6-6

Available Operating Systems: 0S/390, UNIX, VM/CMS, Windows NT/2000
Available Languages: reporting
The EDIT function converts an alphanumeric field that contains numeric charactersto

numeric format, or converts a numeric field to alphanumeric format. Thisis useful when
you need to manipulate afield using a command that requires a particular format.

When you use EDIT to assign the converted value to a field, the format of the new field
must correspond to the format of the returned value. For example, if you use EDIT to
convert anumeric field to alphanumeric format, and then assign the resulting value to an
alphanumeric field, you must give the new field an alphanumeric format as follows:

DEFI NE ALPHAPRI CE/ A6 = EDI T(PRI CE);

When the EDIT function encounters a symbol, it deals with it in the following way:

* When converting an alphanumeric field to numeric format, a sign or decimal point in
the field is acceptable and remains in the value stored in the numeric field.

* When converting afloating-point or packed-decimal field to alphanumeric format,
EDIT removes the sign, the decimal point, and any number to the right of the
decimal point. It then right-justifies the remaining digits and adds leading zeros to
the specified field length. Also, converting a number with more than nine significant
digitsin floating-point or packed-decimal format may produce an incorrect result.

The EDIT function can also extract characters from or add characters to an a phanumeric
string. For more information, see Chapter 3, Character Functions.

Information Builders

EDIT: Converting the Format of a Field

Syntax

Example

Using Functions

How to Convert Field Formats
EDI T(7/ el dnane) ;
where:
fiel dnanme
Alphanumeric or Numeric
Isthe field name enclosed in parentheses.

Converting From Numeric Format to Alphanumeric Format

In the following example, EDIT converts HIRE_DATE to alphanumeric format.
CHGDAT isthen able to use the field, which it expects to be in alphanumeric format.

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND COVPUTE

ALPHA _HI RE/ A17 = EDI T(H RE_DATE); NCPRI NT AND COWVPUTE
HI RE_MDY/ A17 = CHGDAT(' YMD', 'MDYYX , ALPHA H RE,' Al17');
BY LAST_NAVE BY Fl RST_NAVE

WHERE DEPARTMENT EQ 'M S

END

The output is:

LAST_NANME FI RST_NAME H RE_DATE H RE_MDY
BLACKWOCD ROSEMAR! E 82/04/01 APRIL 01 1982
CROSS BARBARA 81/11/02 NOVEMBER 02 1981
GREENSPAN MARY 82/04/01 APRIL 01 1982
JONES DI ANE 82/05/01 MAY 01 1982
MCCOY JOHN 81/07/01 JULY 01 1981

SM TH MARY 81/07/01 JULY 01 1981

6-7

Format Conversion Functions

FTOA: Converting a Number to Alphanumeric

Format

Available Operating Systems: All
Available Languages: reporting, Maintain

The FTOA function converts a number up to 16 digits long from numeric format to
alphanumeric format. It retains the decimal positions of a number and right-justifies it
with leading spaces. Y ou can also add edit options to a number converted by FTOA.

Syntax How to Convert a Number to Characters

FTOA(nunber, ' (fornat)', outfield)

where:

number
Numeric
I's the number to be converted. This can be the number, or the field containing the
number.

"(format) '
Alphanumeric
Isthe format of the number asit is stored in numeric format, enclosed in both single
guotation marks and parentheses. Only single-precision floating point and
double-precision formats are supported. Include any edit options that you want to
appear in the output.
If you are using afield for this argument, specify the field name without quotation
marks or parentheses. The valuesin the field must be enclosed in parentheses.

outfield
Alphanumeric
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The length of this argument must be greater than the

length of number and must account for edit options and a possible negative sign. The
D format automatically supplies commas.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

6-8 Information Builders

HEXBYT: Converting a Number to a Character

Example

Converting From Numeric to Alphanumeric Format

In this example, FTOA converts the GROSS field from double-precision to alphanumeric
format, and stores the result in ALPHA_GROSS.

TABLE FI LE EMPLOYEE
PRI NT GROSS AND COVPUTE

ALPHA_GROSS/ Al4 = FTOA(GRCSS, ' (D12.2)', ALPHA GRCSS);
BY HI GHEST 1 PAY_DATE NOPRI NT

BY LAST_NAME

VWHERE GROSS GT 800 AND GROSS LT 2300

END

The output is:

LAST_NAME GROSS ALPHA_GROSS
BLACKWOOD $1, 815. 00 1, 815. 00
CROSS $2, 255. 00 2, 255.00
I RVI NG $2, 238.50 2,238.50
JONES $1, 540. 00 1, 540. 00
MCKNI GHT $1, 342. 00 1, 342.00
ROVANS $1, 760. 00 1, 760. 00
SM TH $1, 100. 00 1, 100. 00
STEVENS $916. 67 916. 67

HEXBYT: Converting a Number to a Character

Using Functions

Available Operating Systems: AS/400, HP, OpenVMS, 0S/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages:. reporting, Maintain

The HEXBYT function obtains the ASCII or EBCDIC character equivalent of a decimal
integer value. This function returns a single alphanumeric character in the ASCII or
EBCDIC character set. Y ou can use this function to produce characters that are not on
your keyboard, similar to the CTRAN function.

The display of special characters depends upon your software and hardware; not all
special characters may display. Printable EBCDIC and ASCII characters and their integer
equivalents are listed in character charts. If you are using the Hot Screen facility, some
unusual characters cannot be displayed. If Hot Screen does not support the character you
chose, enter the commands

SET SCREEN = OFF

RETYPE

and redisplay the output which will appear as regular terminal output.

6-9

Format Conversion Functions

Syntax

Example

6-10

How to Convert a Number to a Character
HEXBYT(/ nput, out put)
where:
i nput
Numeric

Isthe decimal valueto be trandated to a single character. A value greater than 255 is
treated as the remainder of input divided by 256.

out put
Alphanumeric

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Determining the Decimal Value of a Character

In this example, HEXBY T converts LAST _INIT_CODE into aletter and stores the result
in LAST_INIT.

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND

COVPUTE LAST | NI T_CODE/ 13 = BYTVAL(LAST_NAME, '13');
COVPUTE LAST I NI T/ Al = HEXBYT(LAST | NI T_CODE, LAST INIT);
VWHERE DEPARTMENT EQ 'M S' ;

END
The output for an ASCII platform is:

LAST_NAME LAST_INIT_CODE LAST_INIT
SM TH 83 S

JONES 74

MCCOY 7 M
BLACKWOOD 66 B
GREENSPAN 71 G

CROSS 67 C

The output for an EBCDIC platform is:
LAST_NAME LAST_INIT_CODE LAST_INIT
SM TH 226 S

JONES 209 J

MCCOY 212 M
BLACKWOOD 194 B
GREENSPAN 199 G

CROSS 195 C

Information Builders

HEXBYT: Converting a Number to a Character

Example

Using Functions

Inserting Braces in S/390

In the following example, HEXBY T converts the value 192 into its character equivalent
which is aleft brace, and the value 208 to its character equivalent which isaright brace.
If the value of CURR_SAL islessthan 12000, the valuein LAST_NAME isenclosed in

braces.
DEFI NE FI LE EMPLOYEE

BRACE/ AL7 = HEXBYT(192, 'Al') | LAST_NAMVE | HEXBYT(208, 'Al');

BNAME/ A17 = | F CURR_SAL LT 12000 THEN BRACE
ELSE LAST_NAME;

END

TABLE FI LE EMPLOYEE

PRI NT BNAME CURR_SAL BY EMP_I D

END
The output is:

EMP_I D BNANVE CURR_SAL
071382660 { STEVENS } $11, 000. 00
112847612 SM TH $13, 200. 00
117593129 JONES $18, 480. 00
119265415 {SM TH } $9, 500. 00
119329144 BANNI NG $29, 700. 00
123764317 | RVING $26, 862. 00
126724188 ROVANS $21, 120. 00
219984371 MOCOY $18, 480. 00
326179357 BLACKWOOD $21, 780. 00
451123478 MOKNI GHT $16, 100. 00
543729165 { GREENSPAN } $9, 000. 00
818692173 CROSS $27, 062. 00

6-11

Format Conversion Functions

ITONUM: Converting a Large Binary Integer to

Double-Precision Format
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000
Available Languages: reporting, Maintain
The ITONUM function converts large binary integersin a non-FOCUS data source to
double-precision format. Some programming languages and some non-FOCUS data
storage systems use large binary integer formats. However, large binary integers (more
than 4 bytesin length) are not supported in the Master File syntax so require conversion

to double-precision format. The user specifies how many of the rightmost bytesin the
input string are significant, and the result is an 8-byte double-precision field.

Syntax How to Convert Large Binary Integers to Double-Precision
Format
| TONUM maxbytes, infield, outfield)
where:

maxbyt es
Numeric

I's the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignoresthe left-most 3 bytes.

6 ignoresthe left-most 2 bytes.

7 ignoresthe left-most byte.
infield

A8

Isthe field that contains the binary number. Both the USAGE and ACTUAL formats
of the field must be A8.

outfield
Numeric

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format must be Dn or Dn.d.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

6-12 Information Builders

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

Example Converting a Large Binary Integer to Double-Precision Format

Suppose a binary number in an external file has the following COBOL format:
PIC 9(8)V9(4) COWP

It isdefined in the EUROCAR Master File asafield called BINARYFLD. Itsfield
formats are USAGE=A8 and ACTUAL=AS, sinceits length is greater than 4 bytes.

The following request converts the field to double-precision format:

DEFI NE FI LE EURCCAR

MYFLD/ D12.2 = | TONUM 6, BI NARYFLD, MYFLD);
END

TABLE FI LE EUROCCAR

PRI NT MYFLD BY CAR

END

ITOPACK: Converting a Large Binary Integer to

Packed-Decimal Format

Available Operating Systems: AS/400, OpenVMS, 0OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The ITOPACK function converts large binary integersin anon-FOCUS data source to
packed-decimal format. Some programming languages and some non-FOCUS data
storage systems use double-word binary integer formats. These are similar to the
single-word binary integers used by FOCUS, but they allow larger numbers. However,
large binary integers (more than 4 bytes in length) are not supported in the Master File
syntax so require conversion to packed format. The user specifies how many of the
rightmost bytesin the input string are significant, and the output is an 8-byte packed field
of up to 15 significant numeric positions (for example, P15 or P16.d).

Limit:

For a field defined as ‘PIC 9(15) COMP’ or the equivalent (15 significant digits), the
maximum number that can be translated is 167,744,242,712,576.

Using Functions 6-13

Format Conversion Functions

Syntax How to Convert a Large Binary Integer to Packed-Decimal
Format
| TOPACK(maxbytes, infield, outfield)
where:

maxbyt es
Numeric

I's the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes (up to 11 significant points).
6 ignoresthe left-most 2 bytes (up to 14 significant points).
7 ignores the left-most byte (up to 15 significant points).
infield
A8
Isthe field that contains the binary number. Both the USAGE and ACTUAL formats
of the field must be A8.
outfield
Numeric
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format must be specified as Pn or Pn.d.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Converting a Large Binary Integer to Packed-Decimal Format
Suppose a binary number in an external file has the following COBOL format:
PI C 9(8)V9(4) COW
It is defined to FOCUS in the EUROCAR Master File asafield called BINARYFLD. Its
field formats are USAGE=A8 and ACTUAL=AS, sinceits length is greater than 4 bytes.

The following request converts the field to packed decimal :

DEFI NE FI LE EURCCAR

PACKFLD/ P14. 4 = | TOPACK(6, BI NARYFLD, PACKFLD);
END

TABLE FI LE EUROCAR

PRI NT PACKFLD BY CAR

END

6-14 Information Builders

ITOZ: Converting a Number to Zoned Format

ITOZ: Converting a Number to Zoned Format

Syntax

Using Functions

Available Operating Systems: AS/400, HP, OpenVM S, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain
The ITOZ function converts numbers in numeric format to zoned format. Although a

reguest cannot process zoned numbers, it can write zoned fields to extract files for use by
external programs.

How to Convert to Zoned Format
| TQZ(out I engt h, nunber, outfield)
where:
out ! ength
Numeric

Isthe length of number in bytes. The maximum number of bytesis 15. The last byte
includes the sign.

number
Numeric
Isthe number to be converted, or the field that contains the number. The number is
truncated to an integer beforeit is converted.

outfield
Alphanumeric

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

6-15

Format Conversion Functions

Example

6-16

Converting a Number to Zoned Format

The following request prepares an extract file containing employee IDs and salaries in

zoned format for a COBOL program. The request is:

DEFI NE FI LE EMPLOYEE
ZONE_SAL/ A8 = | TOZ(8, CURR SAL, ZONE_SAL);
END

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL ZONE_SAL BY EMP_ID
ON TABLE SAVE AS SALARI ES

END
Theresulting extract fileis:
NUVMBER OF RECORDS | N TABLE= 12 LI NES= 12

EBCDI C RECORD NAMED SALARI ES

FI ELDNANE ALI AS FORMAT
EMP_I D EI D A9
CURR_SAL CSAL D12. 2M
ZONE_SAL A8
TOTAL

29

DCB USED W TH FI LE SALARI ES | S DCB=(RECFM=FB, LRECL=00029, BLKSI ZE=00580)

If you remove the SAVE command, the output is:

EMP_I D CURR SAL ZONE_SAL
071382660 $11, 000. 00 0001100{
112847612 $13, 200. 00 0001320{
117593129 $18, 480. 00 0001848{
119265415 $9, 500. 00 0000950{
119329144 $29, 700. 00 0002970{
123764317 $26, 862.00 00026868
126724188 $21, 120.00 0002112{
219984371 $18, 480. 00 0001848{
326179357 $21,780.00 0002178{
451123478 $16, 100. 00 0001610{
543729165 $9, 000. 00 0000900{
818692173 $27,062.00 00027068

Note: Theleft bracein EBCIDIC is CO; thisindicates a positive sign and afinal digit of
0. The capital B in EBCIDIC is C2; thisindicates a positive sign and afinal digit of 2.

Information Builders

PCKOUT: Writing Packed Numbers of Different Lengths

PCKOUT: Writing Packed Numbers of Different
Lengths

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The PCKOUT function enables a request to write packed numbers of different lengths to
an extract file. When arequest saves a packed field in an extract file, it writesit asan 8-

or 16-byte field regardless of its format specifications. With the PCKOUT function, you
can vary the field’ s length between 1 to 16 bytes.

Syntax How to Write Packed Numbers of Different Lengths
PCKQUT(/ nfi el d, outlength, outfield
where:
infield
Numeric
Istheinput field that contains the values. The field can be in packed, integer,

floating-point or double-precision format. If the field is not in integer format, its
values are rounded to the nearest integer.

outl ength
Numeric
Isthe length of outfield from 1 to 16 bytes.
outfield
Alphanumeric
Isthe field to which the result is returned, or the format of the output value enclosed

in single quotation marks. The function returns the field as alphanumeric although it
contains packed data.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Using Functions 6-17

Format Conversion Functions

Example Writing Packed Numbers of Different Lengths

In the following example, PCKOUT converts the CURR_SAL field to a5 byte packed
field and stores the resultsin SHORT_SAL.

DEFI NE FI LE EMPLOYEE
SHORT_SAL/ A5 = PCKOUT(CURR SAL, 5, SHORT_SAL):
END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME SHORT_SAL HI RE_DATE

ON TABLE SAVE

END

The output is:

>
NUMBER OF RECORDS | N TABLE= 12 LINES= 12

EBCDI C RECORD NAMED SAVE

FI ELDNAME ALl AS FORVAT LENGTH
LAST_NAME LN Al5 15
SHORT_SAL A5 5

HI RE_DATE HDT | 6YMD 6
TOTAL 26

DCB USED W TH FI LE SAVE I'S DCB=(RECFM=FB, LRECL=00026, BLKSI ZE=00520)

6-18 Information Builders

UFMT: Converting Alphanumeric to Hexadecimal

UFMT: Converting Alphanumeric to Hexadecimal

Syntax

Using Functions

Available Operating Systems: AS/400, OpenVMS, 0S/390, VM/CMS
Available Languages: reporting, Maintain
The UFMT function converts charactersin an alphanumeric field to their hexadecimal

(HEX) representation. This function is useful for examining data of unknown format. As
long as the length of the data is known, its content can be examined.

How to Convert Alphanumeric to Hexadecimal
UFMI(st ring, inlength, outfield)
where:
string
Alphanumeric
Is the value to be converted. This can be an alphanumeric string enclosed in single
guotation marks, or the field that contains the string.
i nl ength
Numeric
Isthe length of string.
outfield
Alphanumeric

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format of outfield must be alphanumeric and have a
length that is twice as long asinlength.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

6-19

Format Conversion Functions

Example Converting an Alphanumeric Field to Hexadecimal

In the following example, UFMT converts each value in JOBCODE to its hexadecimal
representation, and stores the result in the HEXCODE field.

DEFI NE FI LE JOBFI LE

HEXCODE/ A6 = UFMT(JOBCODE, 3, HEXCODE);
END

TABLE FI LE JOBFI LE

PRI NT JOBCCDE HEXCCODE

END

The output is:
JOBCODE HEXCODE

A01 ClFOF1
AO2 CLFOF2
AO7 CLFOF7
Al12 CLlF1F2
Al4 CLlF1F4
Al5 CLF1F5
Al6 ClF1F6
Al7 CLF1F7
BO1 C2FOF1
B0O2 C2FOF2
BO3 C2FOF3
BO4 C2FOF4
B14 C2F1F4

6-20 Information Builders

CHAPTER 7
Numeric Functions

Topics:
* |Alphabetical List of Numeric
Functions

Using Functions

Numeric functions perform calculations on numeric constants
and fields.

7-1

Numeric Functions

ABS: Calculating Absolute Value

Syntax

Example

7-2

Available Operating Systems: All
Available Languages: reporting, Maintain
The ABS function returns the absolute value of its argument.

How to Calculate Absolute Value
ABS(ar gunent)
where:

ar gument
Numeric

Isthe value for which the absolute value is returned. This can be the value, the name
of afield that contains the value, or an expression that returns the value. If you use
an expression, make sure you use parentheses as needed to ensure the correct order
of evaluation.

Calculating Absolute Value

In the following example, the COMPUTE command creates the DIFF field. The ABS
function then cal culates the absolute value of DIFF.

TABLE FI LE SALES

PRINT UNI T_SOLD AND DELI VER AMI AND

COVPUTE DI FF/ 15 = DELIVER AMI - UNIT_SOLD, AND
COVPUTE ABS DI FF/ 15 = ABS(DI FF);

BY PROD_CODE

VWHERE DATE LE ' 1017";

END

The output is:
PRCD_CODE UNIT_SOLD DELIVER AMI DI FF ABS DI FF

B10 30 30 0 0
B17 20 40 20 20
B20 15 30 15 15
c17 12 10 -2 2
D12 20 30 10 10
El 30 25 -5 5
E3 35 25 -10 10

Information Builders

ASIS: Distinguishing Between a Blank and a Zero

ASIS: Distinguishing Between a Blank and a Zero

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, Windows NT/2000
Available Languages:. reporting
The ASIS function distinguishes between a blank and a zero in Dialogue Manager. It

differentiates between numeric string constants or variables defined as numeric strings,
and fields defined simply as numeric.

For details on the ASIS function, see Chapter 3, Character Functions.

BAR: Producing Bar Charts
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000
Available Languages:. reporting, Maintain
The BAR function enables you to produce horizontal bar charts.

A bar chart plots bars consisting of repeating characters for a printed field. Optionally,
you can create a scale to clarify the meaning of abar chart. Thisis done by replacing the
title of the column where the bar is stored with a scale.

Syntax How to Produce Bar Charts
BAR(barl engt h, infield, maxvalue, 'char', outfield)
where:
bar !l engt h
Numeric

I's the maximum length of the bar in characters. If this value isless than or equal to 0,
the function does not return a bar.

infield
Numeric
Isthe field you wish to illustrate as a bar chart.
maxval ue
Numeric
I's the maximum value of abar. This value should be greater than the maximum

value stored in infield. If an infield value is larger than maxvalue, the function uses
maxvalue and returns a bar at maximum length.

" char'
Alphanumeric
Is the repeating character that creates the bars enclosed in single quotation marks. If

more than one character is specified, only the first character is used to create the
bars.

Using Functions 7-3

Numeric Functions

outfield
Alphanumeric

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The output field must be large enough to contain a bar at
maximum length as defined by barlenth.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Creating a Bar Chart

In the following example, BAR creates a bar chart for the CURR_SAL field, and stores
the output in SAL_BAR. The bar created can be no longer than 30 characters long, and
the value it represents can be no greater than 30,000.

TABLE FI LE EMPLOYEE
PRI NT CURR_SAL AND COVPUTE

SAL_BAR/ A30 = BAR(30, CURR SAL, 30000, '=', SAL_BAR):
BY LAST_NAME BY FI RST_NAVE
WHERE DEPARTMENT EQ ' PRODUCTI ON

END

The output is:

LAST_NAMVE FI RST_NAVE CURR_SAL SAL_BAR

BANNI NG JOHN $29, 700. 00

| RVI NG JOAN $26, 862. 00

MCKNI GHT ROGER $16, 100. 00 ================
ROVANS ANTHONY $21, 120. 00

SM TH RI CHARD $9, 500. 00

STEVENS ALFRED $11, 000. 00

7-4 Information Builders

BAR: Producing Bar Charts

Example

Using Functions

Creating a Bar Chart With a Scale

In the following example, BAR creates a bar chart for the CURR_SAL field. It then
replaces the field name SAL_BAR with ascale using the AS phrase.

Note: If you are running this request on a platform where the default font is proportional,
use a non-proportional font or issue SET STY LE=OFF before running the request.

SET STYLE=OFF

TABLE FI LE EMPLOYEE

HEADI NG

"CURRENT SALARI ES OF EMPLOYEES | N PRODUCTI ON DEPARTMENT"
"GRAPHED | N THOUSANDS OF DOLLARS'

PRI NT CURR_SAL AS ' CURRENT SALARY'
AND COVPUTE
SAL_BAR/ A30 = BAR(30, CURR SAL, 30000, '=', SAL BAR);
AS
: 5 10 15 20 25
BY LAST_NAME AS ' LAST_NANE
BY FI RST_NAME AS ' FI RST_NAME
WHERE DEPARTMENT EQ ' PRODUCTI ON ;
END

The output is:

CURRENT SALARI ES OF EMPLOYEES | N PRCDUCTI ON DEPARTMENT
GRAPHED | N THOUSANDS CF DOLLARS

30, - Fmm e oo

LAST_NAVE FIRST NAVE CURRENT SALARY = ----c-nemmnbomonbomondomant
BANNI NG JOHN $29, 700. 00

I RVI NG JOAN $26, 862. 00

MCKNI GHT ROGER $]_6’ 100. 00 ================

ROVANS ANTHONY $21, 120. 00

SM TH RI CHARD $9,500. 00 ==========

STEVENS ALFRED $11, 000. 00 ===========

7-5

Numeric Functions

CHKPCK: Validating Packed Fields

Available Operating Systems: All

Available Languages: reporting, Maintain

The CHKPCK function validates that packed fields (if they are available on your
platform) are in packed format. The function prevents data exceptions that occur when

requests read packed fields from files containing values that are not valid packed
numbers.

To use the CHKPCK function, use these steps.
1. Ensurethat the Master File (FORMAT, USAGE, and ACTUAL attributes), or the
MODIFY FIXFORM command describing the file defines the field as alphanumeric,

not packed. This does not change the field data, which remains packed, but it enables
the request to read the data without causing data exceptions.

2. Cdl the CHKPCK function to examine the field. The function returns its output to a
field defined as packed. If the value it examinesis avalid packed number, the
function returns the value; if it is not packed, it returns an error code.

Syntax How to Validate Packed Fields
CHKPCK(/ nl ength, infield, error, outfield)
where:
i nl ength
Numeric
Isthe length of the field to be validated. This can be between 1 and 16 bytes.
infield
Alphanumeric
Isthe field to be validated. The field is described as alphanumeric, not packed.
error
Numeric

Isthe error code that the function returns if avalue is not packed. Choose an error
code outside the range of data. The error code isfirst truncated to an integer, then
converted to packed format. However, the error code may appear on areport with a
decimal point because of the format of the output field.

outfield
Packed

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

7-6 Information Builders

CHKPCK: Validating Packed Fields

Example Validating Packed Data
First
Prepare a data source that includes invalid packed data. The following creates the
TESTPACK file, which contains the PACK_SAL field that is defined as an a phanumeric
field but contains packed data. The invalid data contained in TESTPACK isreturned as
AAA.
DEFI NE FI LE EMPLOYEE
PACK_SAL/ A8 = | F EMP_I D CONTAINS ' 123'
THEN ' AAA' ELSE PCKOUT(CURR_SAL, 8, 'A8');
END
TABLE FI LE ENMPLOYEE
PRI NT DEPARTMENT PACK_SAL BY EMP_I D

ON TABLE SAVE AS TESTPACK
END

Theresultis:

>
NUMBER OF RECORDS | N TABLE= 12 LINES= 12

{ EBCDI C| ALPHANUMERI C} RECORD NAMED TESTPACK

FI ELDNAME ALl AS FORVAT LENGTH
EMP_I D ElI D A9 9
DEPARTMENT DPT A10 10
PACK_SAL A8 8
TOTAL 27

[DCB USED W TH FI LE TESTPACK | S DCB=(RECFM=FB, LRECL=00027, BLKSI ZE=00540)]
>

Second

Create a Master File for the TESTPACK data source. Define the PACK_SAL field as
alphanumeric in the USAGE and ACTUAL attributes. The following is the Master File;

FILE = TESTPACK, SUFFIX = FIX

FIELD = EMP_ID ,ALI AS = EI D, FORVAT = A9 , ACTUAL = A9 ,$
FI ELD = DEPARTMENT, ALI AS = DPT, FORVAT = A10, ACTUAL = Al0, $
FIELD = PACK_SAL ,ALIAS = PS , FORVAT = A8 ,ACTUAL = A8 ,$

Using Functions 7-7

Numeric Functions

DMOD, FMOD, and IMOD: Calculating the

Last

Create areport request that uses the CHKPCK function to validate the valuesin the
PACK_SAL field. Thefollowing validates the valuesin the PACK_SAL field, and stores
the output in the GOOD_PACK field. Vauesthat are not in packed format will return the

error code -999.

DEFI NE FI LE TESTPACK

GOOD_PACK/ PBCM = CHKPCK(8, PACK_SAL, -999, GOOD_PACK);
END

TABLE FI LE TESTPACK

PRI NT DEPARTMENT GOCD_PACK BY EMP_I D

END

The output is:

EMP_I D DEPARTVENT GOOD_PACK
071382660 PRODUCTI ON $11, 000
112847612 M S $13, 200
117593129 M S $18, 480
119265415 PRODUCTI ON $9, 500
119329144 PRODUCTI ON $29, 700
123764317 PRODUCTI ON -$999
126724188 PRODUCTI ON $21, 120
219984371 M'S $18, 480
326179357 MS $21, 780
451123478 PRODUCTI ON -$999
543729165 M S $9, 000
818692173 M S $27, 062

Remainder From a Division

7-8

Available Operating Systems: All
Available Languages: reporting, Maintain

The MOD functions calculate the remainder from a division. There are three MOD
functions which differ in the format in which they return the remainder:

» DMOD returns the remainder as a decimal number.
* FMOD returns the remainder as a floating-point number.
e IMOD returns the remainder as an integer.

The three functions use the following formula:
renai nder = dividend - | NT(dividendl divisor) * divisor

Information Builders

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

Syntax

Example

Using Functions

How to Calculate the Remainder From a Division
function(dividend, divisor, outfield)
where:
function
Is one of the following:
I MOD Returns the remainder as an integer.
FMOD Returns the remainder as a floating-point number.
DMOD Returns the remainder as a decimal number.
di vi dend
Numeric
I's the number being divided.
di vi sor
Numeric
I's the number dividing the dividend.

outfield
Numeric
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format is determined by the result returned by the
specific function.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Calculating the Remainder of a Division

In the following example, IMOD divides ACCTNUMBER by 1000, and returns the
remainder to LAST3_ACCT.

TABLE FI LE EMPLOYEE

PRI NT ACCTNUVBER AND

COWPUTE LAST3_ACCT/ | 3L = | MOD(ACCTNUMBER, 1000, LAST3_ACCT);
BY LAST_NAME BY FI RST_NAME

VWHERE (ACCTNUMBER NE 000000000) AND (DEPARTMENT EQ "M S');
END

The output is:

LAST_NAME FI RST_NAME ACCTNUMBER LAST3_ACCT
BLACKWOCD ROSEMARI E 122850108 108
CRCSS BARBARA 163800144 144
GREENSPAN MARY 150150302 302
JONES DI ANE 040950036 036
MCCOY JOHN 109200096 096
SM TH MARY 027300024 024

7-9

Numeric Functions

EXP: Raising “e” to the Nth Power

Syntax

Example

7-10

Available Operating Systems: All

Available Languages: reporting, Maintain

The EXP function raises the value “€”’ (approximately 2.72) to any power you specify.
Thisfunction is the inverse of the LOG function, which returns an argument’ s logarithm.

The EXP function calculates the answer by adding terms of an infinite series. If aterm
adds less than .000001 percent to the sum, the function ends the calculation and returns
the result as a double-precision number.

How to Raise “e” to the Nth Power
EXP(pover, outfield)
where:
pover
Numeric
Isthe power that “€” is being raised to.
outfield
Double-precision
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Raising “e” to the Nth Power

In the following example, EXP raises“€e" to the power designated by the & POW
variable, specified as 3 here. The result is then rounded to the nearest integer with the .5
rounding constant.

-SET &POW = ' 3';
-SET &RESULT = EXP(&POW ' D15.3") + 0.5;
-TYPE E TO THE &POW PONER | S APPROXI MATELY &RESULT

The output is:
E TO THE 3 POVER | S APPROXI MATELY 20

Information Builders

EXPN: Evaluating a Number in Scientific Notation

EXPN: Evaluating a Number in Scientific Notation

Syntax

Using Functions

Available Operating Systems: AS/400, OpenVM S, OS/390, Windows NT/2000
Available Languages:. reporting
The EXPN function evaluates an argument expressed in scientific notation.

How to Evaluate a Number in Scientific Notation
EXPN(n. nn {E| D} {+]-} p)

where:

n. nn

Is anumeric constant that consists of a whole number component, followed by a
decimal point, followed by a fractional component.

{El O}
Denotes scientific notation. E and D are interchangeable.

p
I's the power of 10 to which you want to raise the number. Y ou may supply the actual
value, the name of afield that contains the value, or an expression that returns the
value. The expression can also invoke afunction.

For example, you can use scientific notation to express 103 as:
1. 03E+2

Then

EXPN(1. 03+2)

returns 103 as the result.

7-11

Numeric Functions

INT: Finding the Greatest Integer

Syntax

Example

7-12

Available Operating Systems: All
Available Languages: reporting, Maintain
The INT function returns the integer part of an argument.

How to Calculate the Greatest Integer

I NT(ar gunent)

where:

ar gument
Numeric
Is the value on which the function operates. Y ou may supply the actual value, the
name of afield that contains the value, or an expression that returns the value. If you

use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

Calculating the Greatest Integer in a Field

In the following example, INT returns the greatest integer inthe DED_AMT field.

TABLE FI LE EMPLOYEE
SUM DED_AMT AND COVPUTE

| NT_DED_AMTI/ | 9=I NT(DED_AMT) ;

BY LAST_NAME BY FI RST_NAVE

VWHERE (DEPARTMENT EQ 'M S') AND (PAY_DATE EQ 820730);

END

The output is:

LAST_NAVE FI RST_NANMVE DED_AMI | NT_DED_AMT
BLACKWOOD ROSEMAR! E $1, 261. 40 1261
CROSS BARBARA $1, 668. 69 1668
GREENSPAN MARY $127.50 127
JONES DI ANE $725. 34 725
SM TH MARY $334. 10 334

Information Builders

LOG: Calculating the Natural Logarithm

LOG: Calculating the Natural Logarithm

Syntax

Example

Using Functions

Available Operating Systems: AS/400, HP, OpenVM S, 0S/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain
The LOG function returns the natural logarithm of an argument.

How to Calculate the Natural Logarithm

LOGE ar gunent)

where:

ar gunent
Numeric
Is the value on which the function operates. Y ou may supply the actual value, the
name of afield that contains the value, or an expression that returns the value. If you

use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation. If you enter an argument less than or equal to 0, LOG returns 0.

Calculating the Natural Logarithm

In the following example, LOG calculates the logarithm of the CURR_SAL field.

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL AND COVPUTE

LOG CURR SAL/ D12.2 = LOG CURR SAL);
BY LAST_NAME BY FI RST_NANE

WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END
The output is:

LAST_NANME FI RST_NAME CURR_SAL LOG_CURR_SAL
BANNI NG JOHN $29, 700. 00 10. 30
I RVI NG JOAN $26, 862. 00 10. 20
MCKNI GHT ROGER $16, 100. 00 9. 69
ROVANS ANTHONY $21, 120. 00 9. 96
SM TH Rl CHARD $9, 500. 00 9.16
STEVENS ALFRED $11, 000. 00 9.31

7-13

Numeric Functions

MAX and MIN: Finding the Maximum or Minimum

Value

Syntax

Example

7-14

Available Operating Systems: All
Available Languages: reporting, Maintain

The MAX and MIN functions return the maximum or minimum value, respectively, from
alist of arguments.

How to Find the Maximum or Minimum Value
{MAX| M N} (argurent1, argument?2, ...)
where:
MAX
Returns the maximum value.
M N
Returns the minimum value.
argunent 1, argunent 2
Numeric
Are the values on which the function operates. Y ou may supply the actua value, the
name of afield that contains the value, or an expression that returns the value. If you

use an expression, use parentheses as needed to ensure the correct order of
evaluation.

Determining the Minimum Value

In the following example, MIN returns either the value from the ED_HRS field or the
value 30, whichever islower.

TABLE FI LE EMPLOYEE
PRI NT ED_HRS AND COMPUTE

M N_EDHRS 30/ D12. 2=M N(ED_HRS, 30):
BY LAST_NAME BY FI RST_NAVE

WWHERE DEPARTMENT EQ 'M S' ;

END

The output is:

LAST_NAVE FI RST_NAME ED_HRS M N_EDHRS_30
BLACKWOOD ROSEMARI E 75. 00 30. 00
CROSS BARBARA 45.00 30. 00
GREENSPAN MARY 25.00 25.00
JONES DI ANE 50. 00 30. 00
MCCOY JOHN .00 .00
SM TH MARY 36. 00 30. 00

Information Builders

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

PRDNOR and PRDUNI: Generating Reproducible

Random Numbers

Available Operating Systems: All

Available Languages: reporting, Maintain

The PRDNOR and PRDUNI functions generate reproducible random numbers:

Using Functions

PRDNOR generates reproducible double-precision random numbers that are
normally distributed with an arithmetic mean of 0 and a standard deviation of 1. If
you use the PRDNOR function to generate a large set of numbers, it has the
following properties:

The numbersin the set lie roughly on abell curve, as shown in the following
figure. The bell curve is highest at the 0 mark, which means that there are more
numbers close to 0 than farther away.

Frequency
of
Occurrence

-4 -3 -2 -1 0 1 2 3 4
Random Number Generated

The average of the setiscloseto 0.

The set can contain numbers of any size, but most of the numbers are between 3
and -3.

PRDUNI generates reproducible double-precision random numbers uniformly
distributed between 0 and 1 (that is, any random number it generates has an equal
probability of being anywhere between 0 and 1).

7-15

Numeric Functions

Syntax

7-16

How to Use PRDNOR and PRDUNI to Generate Random

Numbers

{ PRDNOR| PRDUNI } (seed, outfield)

where:

PRDNOR
Generates reproducible normally distributed random numbers with an arithmetic
mean of 0 and a standard deviation of 1.

PRDUNI
Generates reproducible random numbers uniformly distributed between 0 and 1.

seed
Numeric
Isthe seed or thefield that contains the seed, up to nine bytes. The seed is truncated
to an integer. Using the same seed will always produce the same set of humbers.
Note: Inthe PRDUNI function, VM/CMS behavior differs from OS/390 behavior. In
VM/CMS, the seed number changes upon multiple executions as the function is
reloaded. In OS/390, the function is loaded once. To keep the function loaded for the
duration of the session, we recommend assigning the function to atemporary field
using a DEFINE command. The function remains loaded in memory until the
DEFINE iscleared.

outfield
Double-precision
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.
Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Information Builders

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

Example Generating Reproducible Random Numbers

In this example, PRDNOR assigns random numbers and stores them in RAND. These
values are then used to randomly pick five employee records identified by the valuesin
the LAST NAME and FIRST NAME fields. The seed is 40. To produce a different set of
numbers, change the seed.

DEFI NE FI LE EMPLOYEE

RAND/ D12. 2 W TH LAST_NAME = PRDNCR(40, RAND);

END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND FI RST_NAME
BY H GHEST 5 RAND

END
The output is:
RAND LAST_NAMVE FI RST_NAME
1.38 STEVENS ALFRED
1.12 MOCOY JOHN
.55 SM TH Rl CHARD
.21 JONES DI ANE
.01 IRVING JOAN

Using Functions 7-17

Numeric Functions

RDNORM and RDUNIF: Generating Random Numbers

Available Operating Systems: All

Available Languages: reporting, Maintain

The RDNORM and RDUNIF functions generate random numbers:

« RDNORM generates double-precision random numbers that are normally distributed
with an arithmetic mean of 0 and a standard deviation of 1. If you use the RDNORM
function to generate a large set of numbers (between 1 and 32768), it hasthe
following properties:

e Thenumbersin the set lie roughly on a bell curve, as shown in the following
figure. The bell curve is highest at the 0 mark, which means that there are more
numbers close to 0 than farther away.

Frequency
of
Occurrence

-4 -3 -2 -1 0 1 2 3 4
Random Number Generated

» Theaverage of the setiscloseto 0.
* The set can contain numbers of any size, but most of the numbers are between 3
and -3.

* RDUNIF generates double-precision random numbers uniformly distributed between
0 and 1 (that is, any random number it generates has an equal probability of being
anywhere between 0 and 1).

7-18 Information Builders

RDNORM and RDUNIF: Generating Random Numbers

Syntax

Example

Using Functions

How to Use RDNORM and RDUNIF to Generate Random
Numbers

{ RDNORM RDUNI F} (out fi el d)

where:

RDNCRM
Generates normally distributed random numbers with an arithmetic mean of 0 and a
standard deviation of 1.

RDUNI F
Generates random numbers uniformly distributed between 0 and 1.

outfield
Double-precision
Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Generating Random Numbers

In this example, RDNORM assigns random numbers and stores them in RAND. These
values are then used to randomly choose five employee records identified by the valuesin
the LAST NAME and FIRST NAME fields.

DEFI NE FI LE EMPLOYEE

RAND/ D12. 2 W TH LAST_NAME = RDNORM RAND) ;
END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND FI RST_NAME
BY H GHEST 5 RAND

END
The request produces output similar to the following:
RAND LAST_NAMVE FI RST_NAME

.65 CROSS BARBARA

.20 BANNI NG JOHN

.19 IRVING JOAN

.00 BLACKWOCD ROSEMARI E
-.14 GREENSPAN MARY

7-19

Numeric Functions

SQRT: Calculating the Square Root

Syntax

Example

7-20

Available Operating Systems: All
Available Languages: reporting, Maintain
The SQRT function calculates the square root of an argument.

How to Calculate the Square Root
SQRT(argurnent)
where:
ar gument
Numeric

Is the value for which the square root is calculated. Y ou may supply the actual value,
the name of afield that contains the value, or an expression that returns the value. If
yOU Use an expression, use parentheses as needed to ensure the correct order of
evaluation.

Calculating Square Root of Movies’ List Price

In the following example, SQRT cal culates the square root of LISTPR.

TABLE FILE MOV ES
PRI NT LI STPR AND COMPUTE
SQRT_LI STPR/ D12. 2 = SQRT(LI STPR);

BY TITLE

WHERE CATEGORY EQ ' MUSI CALS' ;

END

The FOCUS output is:

TITLE LI STPR SQRT_LI STPR
ALL THAT JAZZ 19. 98 4. 47
CABARET 19. 98 4. 47
CHORUS LINE, A 14.98 3.87
FI DDLER ON THE ROOF 29.95 5. 47

Information Builders

CHAPTER 8
System Functions

Topics:

* |Alphabetical List of System Functions

Using Functions

System functions call the operating system to obtain information

about the operating environment or to use a system service.

8-1

System Functions

FEXERR: Retrieving an Error Message
Available Operating Systems: AS/400, OpenVMS, S/390, UNIX, VM/CMS, Windows
NT/2000
Available Languages: reporting, Maintain
The FEXERR function retrieves an error message. This function is especially useful in
procedures using commands that suppress the display of output messages.

Error messages may consist of up to four lines of text; the first line contains the message
and the remaining three may contain a detailed explanation, if one exists. The FEXERR
function retrieves the first line of the error message.

Syntax How to Retrieve an Error Message

FEXERR(error, ' A72")

where:

error
Numeric
Isthe error number, up to five digitslong.

FAT2!
Isthe format of the output value, enclosed in single quotation marks. The format is
A72 because the maximum length of a FOCUS error message is 72 characters.

Note: In Maintain, you must supply the field name instead.

Example Retrieving an Error Message

In the following example, FEXERR retrieves the error message whose humber is
contained in the & ERR variable, in this case 650. The result is stored in afield with the
format A72.

-SET &ERR = 650;
- SET &&MSGVAR = FEXERR(&ERR, 'A72');
- TYPE &NMSGVAR

The output is:
(FOOB50) THE DI SK IS NOT ACCESSED

8-2 Information Builders

FINDMEM: Finding a Member of a Partitioned Data Set

FINDMEM: Finding a Member of a Partitioned Data

Set

Syntax

Using Functions

Available Operating Systems: 0S/390
Available Languages: reporting, Maintain
The FINDMEM function, used on OS/390 or batch only, determines if a specific member

of a partitioned data set (PDS) exists. Thisfunction is especially useful in Dialogue
Manager procedures.

In order to use this function, the PDS must be allocated to a ddname because the ddname
is specified in the function call. Y ou can search multiple partitioned data sets with one
function call if the partitioned data sets are concatenated to one ddname.

How to Find a Member of a Partitioned Data Set
FI NDVEM ddnarne, nenber, outfi el d)
where:
ddnane
A8

Is the ddname to which the PDS is allocated. This argument must be eight characters
long or be avariable. If you are using aliteral for this argument, encloseit in single
guotation marks. If the literal islessthan eight characters, pad it with trailing blanks.

nmenber
A8

Is the member you are searching for. This argument must be eight characters long. If
you are using aliteral for thisargument that has less than eight characters, pad the
literal with trailing blanks.

outfield
Al

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The result is one of the following:

Y indicates the member exists in the PDS.
N indicates the member does not exist in the PDS.

E indicates an error occurred. This can occur because the data set is not all ocated to
the ddname, or the data set allocated to the ddnameis not aPDS (and may be a
sequential file).

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

8-3

System Functions

Example Finding the Member of a Partitioned Data Set

In the following example, FINDMEM searches for the EMPLOY EE Master File in the
PDS alocated to ddname MASTER, and returns the result to afield with the format A1l.

- SET &FI NDCODE = FI NDMEM ' MASTER ', ' EMPLOYEE' , 'Al');
-1 F &1 NDCODE EQ ' N GOTO NOVEM

-1 F &1 NDCODE EQ ' E' GOTO NOPDS;

- TYPE MEMBER EXI STS, RETURN CODE = &FI NDCCODE

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL BY LAST_NAME BY FI RST_NAME

WHERE RECORDLIM T EQ 4

END

-EXIT

- NOVEM

- TYPE EMPLOYEE NOT FOUND | N MASTER FI LE PDS

-EXIT

- NOPDS

- TYPE ERROR OCCURRED | N SEARCH

-TYPE CHECK | F FILE I S A PDS ALLOCATED TO DDNAME MASTER
-EXIT

The output is:
MEMBER EXI STS, RETURN CODE = Y

> NUVBER OF RECORDS | N TABLE= 4 LINES= 4
LAST_NANE FI RST_NAVE CURR_SAL
JONES DI ANE $18, 480. 00
SM TH MARY $13, 200. 00
Rl CHARD $9, 500. 00
STEVENS ALFRED $11, 000. 00

8-4 Information Builders

GETPDS: Determining if a Member of a Partitioned Data Set Exists

GETPDS: Determining if a Member of a Partitioned
Data Set Exists

Syntax

Using Functions

Available Operating Systems: 0S/390
Available Languages: reporting, Maintain
The GETPDS function determines if a specific member of a partitioned data set (PDS)

exists, and returns the PDS name. This function is especially useful in Dialogue Manager
procedures.

In order to use this function, the PDS must be allocated to a ddname because the ddname
is specified in the function call. Y ou can search multiple partitioned data sets with one
function call if the partitioned data sets are concatenated to one ddname.

Note: The FINDMEM function is ailmost identical to the GETPDS function, except that
the GETPDS function provides either the PDS name or different status codes.

How to Determine if a Member Exists
GETPDS(ddnarne, nenber, outfield)
where:
ddnane
A8

Is the ddname to which the PDS is allocated. This argument must be an eight
character literal enclosed in single quotation marks, or avariable that contains the
ddname. If the literal islessthan eight characters long, you must pad it with trailing
blanks.

nmenber

A8

Is the member you are searching for. This argument must be eight characters long. If
you are using aliteral for thisargument that has less than eight characters, you must
pad the literal with trailing blanks.

outfield
Ad4

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The value returned to outfield is one of the following:

PDS nare isthe PDS name that contains the specified member, if it exists.
*Disreturned if the ddnameis not assigned (allocated) to a data set.
*Misreturned if the member does not exist in the PDS.

*E isreturned if an error occurs. This can happen because the data set allocated to the
ddname is not a PDS (and may be a sequential file).

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

8-5

System Functions

Example

8-6

Determining if a Member Exists

In the following example, GETPDS searches for the member specified by &« MEMBER in
the PDS specified by & DDNAME, and returns the result to the & PNAME variable.

- SET &DDNAME = ' MASTER

- SET &VEMBER = ' EMPLOYEE' ;

- SET &PNAME = '

- SET &PNAME = GETPDS(&DDNAME, &VEMBER, ' Ad44') ;
-1 F &PNAME EQ ' *D THEN GOTO DDNOAL;

-1 F &PNAME EQ ' *M THEN GOTO MEMNOF,

-1 F &PNAME EQ ' *E' THEN GOTO DDERRCR;

*

- TYPE MEMBER &VEMBER | S FOUND | N
-TYPE THE PDS &PNAME
- TYPE ALLOCATED TO &DDNAME

*

-EXIT
- DDNOAL

*

- TYPE DDNAME &DDNAME NOT ALLOCATED

*

-EXIT
- MEIVNOF

*

- TYPE MEMBER &VEMBER NOT FOUND UNDER DDNAME &DDNAMVE
-EXIT
- DDERROR

*

- TYPE ERROR | N GETPDS; DATA SET PROBABLY NOT A PDS.

*

-EXIT
Output similar to the following is produced:

MEMBER EMPLOYEE |'S FOUND I N
THE PDS USERL. MASTER. DATA
ALLOCATED TO MASTER

Information Builders

GETPDS: Determining if a Member of a Partitioned Data Set Exists

Example

Using Functions

Using GETPDS With TED

In the following example, GETPDS searches for the member specified by &« MEMBER in
the PDS specified by & DDNAME, and returns the result to the value specified by
&PNAME. Then the TED editor enables you to edit the member. The ddnames are
allocated earlier in the session: the production PDS is allocated to the ddname MASTER,;
your local PDS to ddname MY MASTER.

-* |f the MASTER file in question is in the 'production' pds, it nust

-* be copied to a 'local' pds, which has been allocated previously to the
-* ddname MYMASTER bef ore any changes can be made.

-* Assune the MASTER in question is supplied via a -CRTFORM with

-* a length of 8 characters, as &VEMBER

*

-SET &DDNAME = ' MASTER ' ;
- SET &VEMBER = &MEMBER,
- SET &PNAME = '
- SET &PNAME = GETPDS(&DDNANVE, &VEMBER, ' Ad4') ;
-IF &NAME EQ '*D OR'*M OR '*E THEN GOTO DDERROR,
_*
DYNAM ALLOC FI LE XXXX DA -
&PNAME MEMBER &MVEMBER SHR
DYNAM COPY XXXX MYNMASTER MEMBER &VEMBER
- RUN
TED MYMASTER(&VEMBER)
-EXIT

*

- DDERROR

*

-TYPE Error in CGETPDS; Check allocation for &DDNAME for
- TYPE proper allocation.

SEXIT
Earlier in the FOCUS session, allocate the ddnames:

> > tso alloc f(naster) da(' prod720.nnaster.data') shr
> > tso alloc f(nymaster) da('userl.naster.data') shr

8-7

System Functions

Example

8-8

After you execute the procedure, specify the EMPLOY EE member. The member is

copied to your local PDS and you enter TED.
PLEASE SUPPLY VALUES REQUESTED

MEMBER= > enpl oyee

MYMASTER(EMPLOYEE) S| ZE=37 LI NE=0

00000 * * * TOP OF FILE * * *
00001 FI LENAME=EMPLOYEE, SUFFI X=FOC
00002 SEGNAME=EMPI NFO, SEGTYPE=S1

00003 FI ELDNAVE=EMP_I D, ALl AS=EI D, FORVAT=A9, $
00004 FI ELDNAVE=LAST_NAME, ALl AS=LN, FORVAT=A15, $
00005 FI ELDNAVE=FI RST_NAME, ALI AS=FN, FORVAT=AL10, $
00006 FI ELDNAVE=HI RE_DATE, ALl AS=HDT, FORVAT=I 6 YMD, $
00007 FI ELDNAVME=DEPARTMENT, ALl AS=DPT, FORVAT=AL10, $

Using GETPDS With Query Commands

Suppose you wanted to review the attributes of the PDS that contains a specific member.
This Dialogue Manager procedure searches for the EMPLOY EE member in the PDS
allocated to the ddname MASTER and, based on its existence, allocates the PDS name to
the ddname TEMPMAST. Dialogue Manager system variables are used to display the

attributes.

- SET &DDNAME = ' MASTER

- SET &VEMBER = ' EMPLOYEE' ;

- SET &PNAME = '

- SET &PNAME = GETPDS(&DDNAME, &VEMBER, ' Ad44') ;

-IF &PNAME EQ '*D OR '*M OR '*E THEN GOTO DDERROR

*

DYNAM ALLOC FI LE TEMPMAST DA -
&PNAME SHR
- RUN
-? WS DDNAVE TEMPMAST
-TYPE The data set attributes include:
-TYPE Data set nane is: &DSNAMVE
-TYPE Vol une is: & OLSER
-TYPE Disposition is: &DI SP
-EXIT

*

- DDERRCOR
-TYPE Error in CETPDS; Check allocation for &DDNAME for
- TYPE proper allocation.

-EXIT

Information Builders

GETUSER: Retrieving a User ID

A sample execution follows:

> THE DATA SET ATTRI BUTES | NCLUDE:
DATA SET NAME | S: USER1. VASTER. DATA
VOLUME | S: USERMO

DI SPCSITION I S: SHR
>

When you execute this procedure, it searches the PDS allocated to ddname MASTER for
the member EMPLOY EE. Since the procedure locates the member, it displays the
attributes for the MASTER PDS.

GETUSER: Retrieving a User ID

Available Operating Systems: All
Available Languages:. reporting, Maintain
The GETUSER function retrieves the user 1D of the connected user.

In OS/390 FOCUS, it can also retrieve the name of an S/390 batch job if you run it from
the batch job. To retrieve alogon 1D for M SO, use the MSOINFO function described in
the FOCUS for IBM Mainframe Multi-Session Option Installation and Technical
Reference Guide.

Syntax How to Retrieve a User ID
GETUSER(out fi el d)
where;

outfield
A8

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The field must be 8 bytes long.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Using Functions 8-9

System Functions

Example

Retrieving a User ID

In the following example, GETUSER retrieves the user ID of the person executing the
request.

DEFI NE FI LE EMPLOYEE

USERI D/ A8 W TH EMP_I D = GETUSER(USERI D) ;

END

TABLE FI LE EMPLOYEE

SUM CURR_SAL AS ' TOTAL SALARI ES'

BY DEPARTNMENT

HEADI NG

" SALARY REPORT RUN FROM USERI D: <USERI D'

END
The output is:
SALARY REPORT RUN FROM USERI D: USERL

DEPARTMENT TOTAL SALARI ES

M S $108, 002. 00
PRODUCTI ON $114, 282. 00

HHMMSS: Returning the Current Time

8-10

Available Operating Systems: All
Available Languages:. reporting, Maintain
The HHMMSS function retrieves the current time from the operating system and returns

the time as an eight-character string, separating the hours minutes and seconds with
periods for reporting and colons for Maintain.

For details on the HHMMSS functions, see Chapter 5, Date and Time Functions.

Information Builders

MVSDYNAM: Passing a DYNAM Command to the Command Processor

MVSDYNAM: Passing a DYNAM Command to the
Command Processor

Syntax

Using Functions

Available Operating Systems: 0S/390
Available Languages: reporting, Maintain
The MVSDYNAM function transfers a FOCUS DY NAM command to the DY NAM

command processor. Thisis useful to pass allocation commands to the processor in
compiled MODIFY procedures after the CASE AT START command.

How to Pass a DYNAM Command to the Command Processor
MSDYNAM conmand, [ength, outfield)
where:

conmmand
Alphanumeric

Isthe DY NAM command. This can be the command enclosed in single quotation
marks, or afield or variable that contains the command. The function converts
lowercase input to uppercase.

/ engt h
Numeric

Isthe length of the command in characters, between 1 and 256.

outfield
14

Isthe field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

MVSDY NAM returns one of the following codes:

0 indicatesthe DYNAM command transferred and executed successfully.
posi tive numper isSthe error number corresponding to a FOCUS error.
negat i ve numper iSthe error number corresponding to DYNAM failure.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

8-11

System Functions

Example

8-12

Passing a DYNAM Command to the Processor

In the following request, MVSDYNAM transfers the DY NAM FREE command to the
processor. Query commands display the results before and after the DYNAM FREE
command is specified. The successful return code of zero (0) is stored in the RESfield.

-* THE RESULT OF ? TSO DDNAME CAR W LL BE BLANK AFTER ENTERI NG
-* '"FREE FILE CAR AS YOUR COMVAND
DYNAM ALLOC FI LE CAR DS USERL. CAR FOCUS SHR REUSE
? TSO DDNAME CAR
- RUN
- PROWT &XX. ENTER A SPACE TO CONTI NUE.
MODI FY FI LE CAR
COWPUTE LI NE/ A60=;
RES/14 = 0;
CRTFCRM
" ENTER DYNAM COMVAND BELOW "
" <LI NB>"
COVPUTE
RES = MVSDYNAM LI NE, 60, RES);
GOTO DI SPLAY

CASE DI SPLAY
CRTFORM LI NE 1
" THE RESULT OF DYNAM WAS <D. RES"
GOTO EXIT
ENDCASE
DATA
END
? TSO DDNAME CAR

Thefirst query command displays the allocation that results from the DY NAM
ALLOCATE command.

DDNANVE CAR

DSNAVE USER1. CAR. FOCUS
DI SP SHR

DEVI CE DI SK

VOLSER USERWN

DSORG PS

RECFM F

SECONDARY 100

ALLOCATI ON BLOCKS

BLKSI ZE 4096
LRECL 4096
TRKTOT 8
EXTENTSUSED 1
BLKSPERTRK 12
TRKSPERCYL 15
CYLSPERDI SK 2227
BLKSWRI TTEN = 96
FOCUSPACGES = 8
ENTER A SPACE TO CONTI NUE >

Information Builders

TODAY: Returning the Current Date

Type one space and press the Enter key to continue. Then enter the DY NAM FREE
command. (The DYNAM keyword is assumed.)

ENTER DYNAM COVIVAND BELOW
free file car

The function successfully transfers the DY NAM FREE command to the processor and
the return code displays.

THE RESULT OF DYNAM WAS 0

Press the Enter key to continue. The second query command indicates that the allocation
has been freed.

DDNANVE
DSNAVE

DI SP

DEVI CE
VOLSER
DSCORG

RECFM
SECONDARY
ALLOCATI ON
BLKSI ZE
LRECL
TRKTOT
EXTENTSUSED
BLKSPERTRK
TRKSPERCYL
CYLSPERDI SK
BLKSWRI TTEN
>

5

* % % %

[cNeoNeoNeoNeoNoNeNo]

TODAY: Returning the Current Date

Available Operating Systems: All
Available Languages: reporting, Maintain

The TODAY function retrieves the current date from the system in the format
MM/DD/YY or MM/DD/YYYY for reporting, and in YY/MM/DD or YYYY/MM/DD
for Maintain.

For details on the TODAY function, see Chapter 5, Date and Time Functions.

Using Functions 8-13

APPENDIX A

Creating Your Own Subroutines

Topics:

. |Process Overviewl

. |Considerati0ns for Writing Subroutines

. |Compi|ation and Storagel

. |Testing the Subroutinel

¢ |Example of a Custom Subroutine: The
MTHNAM Subroutine

. Subroutines Written in REXX

Using Functions

This topic discusses how to create your own private
collection of subroutines to use with FOCUS.

Creating Your Own Subroutines

Process Overview

The process of creating a subroutine involves four steps:

1. Writethe subroutine for FOCUS the same way you would for a program. Use any
language that supports subroutine calls; among the most common languages are
FORTRAN, COBOL, PL/I, Assembler, and C.

2. Storethe subroutine in a separate file; do not include it in the main program.

3. Compilethe subroutine. In OS/390, link-edit it; in VM/CMS, add the subroutine to a
load library using the GENSUBLL command.

4. Test the subroutine; specify it in a FOCUS command, report request, or procedure.

For example, suppose you write a program named INTCOMP that calculates the amount
of money in an account earning sSimple interest. The program reads a record, testsif the
datais acceptable, and then calls a subroutine called SIMPLE that computes the amount
of money. The program and the subroutine are stored together in the samefile.

The program and the subroutine shown here are written in pseudocode (a method of
representing computer code in a general way):

Begi n program | NTCOVP.
Execute this loop until end-of-file.
Read next record, fields: PRI NCPAL, DATE_PUT, YRRATE.
If PRINCPAL is negative or greater than 100, 000,
rej ect record.
If DATE_PUT is before January 1, 1975, reject record.
If YRRATE is negative or greater than 20% reject record.
Cal | subroutine SIMPLE (PRI NCPAL, DATE_PUT, YRRATE, TOTAL).
Print PRI NCPAL, YEARRATE, TOTAL.
End of | oop.
End of program

Subroutine SI MPLE (AMOUNT, DATE, RATE, RESULT).
Retrieve today's date fromthe system

Let NO _DAYS = Days from DATE until today's date.
Let DAY_RATE = RATE / 365 days in a year.

Let RESULT = AMOUNT * (NO_DAYS * DAY _RATE + 1).
End of subroutine.

A-2 Information Builders

Considerations for Writing Subroutines

If you move the SIMPLE subroutine into afile separate from the main program and
compileit, you can call the subroutine from FOCUS. The following report request shows
how much money employees would accrue if they invested their salaries in accounts
paying 12%:
TABLE FI LE EMPLOYEE
PRI NT LAST_NAME DAT_I NC SALARY AND COMPUTE

| NVESTEDY D10. 2 = SI MPLE (SALARY, DAT_INC, 0.12, |NVESTED);

BY EMP_ID
END

Note: The subroutine is designed to return only the amount of the investment, not
today’s date. Thisis because a subroutine can return only a single value to FOCUS each
timeitiscaled.

Considerations for Writing Subroutines

When you write a subroutine for FOCUS, there are requirements and limits that you need
to consider. The topic provides information about:

* Naming conventions

e Argument considerations

* Programming considerations
e Language considerations

* A programming technique that uses entry points. Entry points enable you to use one
algorithm to produce different results.

» A programming technique that allows multiple subroutine calls. Multiple calls
enabl e the subroutine to process more than 28 arguments.

Naming Conventions

The subroutine name may consist of up to eight characters, unless the language you are
using to write the subroutine supports a shorter naming convention. Each character can
be aletter or number. The first character of the name must be aletter (A-Z). Special
symbols are not permitted.

Using Functions A-3

Creating Your Own Subroutines

Argument Considerations
When you create your arguments, consider these points:

e Theargument maximum. Subroutine callsin FOCUS may contain up to 28
arguments. However, you can bypass this restriction if you create a subroutine that
accepts multiple calls, as described in Programming Technique: Subroutines With |
More Than 28 Argumentsion page A-9.

* Typesof arguments. Subroutine calls can serve as arguments in other subroutine
calls or in FOCUS functions. For types of acceptable arguments and rules, see
Chapter 2, Accessing and Invoking a Function.

e Input arguments. FOCUS passes input arguments to subroutines using standard
conventions. Register 1 pointsto the list of argument addresses. Each addressisa
full word.

« Output arguments. Subroutines may return only one output argument to the
FOCUS request. Place this argument last in the subroutine argument list. Y ou can
choose any format for the output argument except in Dialogue Manager statements.

e Internal processing. When you specify values for arguments and FOCUS passes the
arguments to a subroutine,

* Alphanumeric arguments remain unchanged.

e Numeric arguments are converted to 8-byte, double-precision data (except in
-CMS RUN and -MV S RUN statements and amper variables, as discussed
below).

Various languages represent double-precision fields as declarations:

Language Declaration

Assembler DS, D

C Double

COBOL COMP-2

FORTRAN REAL*8

PL/I DECIMAL FLOAT (16)

A-4 Information Builders

Considerations for Writing Subroutines

Dialogue Manager requirements. If you are writing a subroutine specifically for
Dialogue Manager, you may need to code your subroutine to perform conversion for
these situations:

Operating system -RUN statements. FOCUS passes all arguments from -CMS
RUN, -TSO RUN, and -MV S RUN statements as alphanumeric data. If your
subroutine requires numeric arguments, you may choose to have your
subroutine convert these arguments into numeric format. Otherwise, the user
can use the ATODBL subroutine to convert the arguments into double-precision
format before passing them to the subroutine. The ATODBL subroutineis
described in Chapter 6, Format Conversion Functions.

Operating system -RUN statements and output argument format. If the
subroutineis called from a-CMS or -TSO RUN statement, the output argument
is stored in the output variable in numeric format. Since FOCUS cannot
interpret data stored in Dialogue Manager variablesin numeric format, the data
isunreadable. To prevent this, have your subroutine convert the output value
into a character string.

-SET and output argument format. If the output argument is in numeric format,
the -SET statement truncates the output value to an integer, convertsit to a
character string, and stores the value in a specified amper variable. To prevent
this, have your subroutine convert the output value into a character string. This
enables the numeric value to be passed to Dialogue Manager without being
truncated to an integer.

Programming Considerations

When you plan your programming requirements, consider these paints:

Using Functions

Write the subroutine as a proper subroutine, not as a function.

If the subroutine initializes variables, it must initialize them each time it is executed
(serid reusahility).

Since asingle FOCUS request may execute a subroutine hundreds or even thousands
of times, code the subroutine as efficiently as possible.

If you create your own subroutinesin text files or text libraries, the subroutine must
be 31-bit addressable.

A-5

Creating Your Own Subroutines

Language Considerations

Language considerations include:
e Available memory.

If you write the subroutine in alanguage that brings libraries into memory (for
example, FORTRAN and COBOL), the libraries reduce the amount of memory
available to the subroutine.

 FORTRAN input/output operations (1/0).

In VM/CMS, FOCUS does not support FORTRAN input/output operations. If a
subroutine written in FORTRAN must read or write data, write the 1/O portionsin a
separate subroutine in another language.

In TSO, FOCUS does support FORTRAN input/output operations.
* PL/I notes:
* Do not use the RETURNS attribute.
* Include the following attribute in the procedure (PROC) statement:
OPTI ONS (COBOL)
e Declare alphanumeric arguments received from FOCUS requests as
CHARACTER (1)

where n isthe field length as defined by the FOCUS request. Do not use the
VARYING attribute.

e Declare numeric arguments received from FOCUS requests as
DECI MAL FLOAT (16)

or
BI NARY FLOAT (53)

A-6 Information Builders

Considerations for Writing Subroutines

e Theformat of the output argument to be returned to the FOCUS request depends
on how the format is described in the DEFINE or COMPUTE commands:

FOCUS Format

PL/l Declaration

An

CHARACTER (1) (Do not usethe VARYING attribute.)

BI NARY FI XED (31)

F

DECI MAL FLOAT (6) Or Bl NARY FLOAT (21)

DECI MAL FLOAT (16) Of Bl NARY FLOAT (53)

DECI MAL FI XED (15) (for small packed numbers, 8
bytes)

DECI MAL FI XED (31) (for large packed numbers, 16
bytes)

* Declare variables that are not arguments with the STATIC attribute. This avoids
dynamically allocating these variables every time the subroutine is executed.

* Clanguage notes:

* Do not return avaue with the return statement.

» Declare double-precision fields as ‘double’.

e Theformat of the output parameter to be returned to the FOCUS request
depends on how the format is defined in the request, as shown by the chart

below:

FOCUS Format

C Declaration

An

char *xxx n

(Note: Alphabetical fields are not terminated with a
null byte and, therefore, cannot be processed by
many of the string manipulation subroutinesin the
run-time library.)

long *xxx

float *xxx

doubl e *xxx

T|O| T

No equivalentin C.

Using Functions

Creating Your Own Subroutines

Programming Technique: Entry Points

Example

Normally, subroutines are executed starting from their first statement. However, they can
be executed starting from any placein their code if you designate that place as an entry
point. (How you designate entry points depends on the language you are using.) Each
entry point has a name.

To execute a subroutine at an entry point, specify the entry name in the subroutine call
instead of the subroutine name. The general syntax is:

{subroutine|l entrypoint} (inputl, input2 ...{' fornat'|outfield})

Entry points enable a subroutine to use one basic algorithm to produce different results.
For example, the DOWK subroutine cal cul ates the days of the week on which datesfall.
When you specify the subroutine name DOWK, you obtain a 3-letter abbreviation of the
day. If you specify the entry name DOWKL, you obtain the full name. The calculation,
however, isthe same.

Entry Point Example

This exampleillustrates how entry points work. The FTOC subroutine, written in
pseudocode below, converts Fahrenheit temperatures to Centigrade. The entry point
FTOK (designated by the Entry statement) sets a flag that causes 273 to be subtracted
from the Centigrade temperature (Kelvin temperature). The subroutineis:

Subroutine FTOC (FAREN, CENTI).

Let FLAG = 0.

Go to | abel X

Entry FTOK (FAREN, CENTI).

Let FLAG = 1.

Label X

Let CENTI = (5/9) * (FAREN - 32).

If FLAG = 1 then CENTI = CENTI - 273.
Ret ur n.

End of subroutine.

Here is ashorter way to write the subroutine. Notice that the kelv output argument listed
for the entry point is different from the centi output argument listed at the beginning of
the subroutine:

Subroutine FTOC (FAREN, CENTI).
Entry FTOK (FAREN, KELV).

Let CENTI = (5/9) * (FAREN - 32).
KELV = CENTI - 273.

Ret ur n.

End of Subroutine.

To obtain the Centigrade temperature, specify the subroutine name FTOC in the
subroutine call. For example;

CENTI GRADH D6. 2 = FTOC (TEMPERATURE, CENTI GRADE)

Information Builders

Considerations for Writing Subroutines

To aobtain the Kelvin temperature, specify the entry name FTOK in the subroutine call.
For example:

KELVIN D6. 2 = FTOK (TEMPERATURE, KELVIN ;

Note: In VM/CMS, subroutines can be executed from their entry points only if the
subroutines are stored in libraries. Y ou must specify these librariesin the GLOBAL
command, as described in VM/CMS; Compilation and Storagejon page A-13.

Programming Technique: Subroutines With More Than 28

Arguments

Using Functions

Subroutine call syntax cannot specify more than 28 arguments, including the output
argument. To process more than 28 arguments, you must write the subroutine so that the
user can specify two or more call statementsto pass the arguments to the subroutine.

We recommend the following technique for writing subroutines with multiple call
statements:

1. Divide the subroutine into segments. Each segment will receive the arguments
passed by one corresponding subroutine call.

The argument list in the beginning of your subroutine must represent the same
number of arguments in the subroutine call, including a call number argument and
an output argument.

Y ou may process some of the arguments as dummy arguments if you have an
unegual number of arguments. For example, if you divide 32 arguments among six
segments, the each segment processes six arguments; the sixth segment processes
two arguments and four dummy arguments.

2. Include a statement at the beginning of the subroutine that reads the call number
(first argument) and branches to a corresponding segment. Each segment processes
the arguments from one call. (For example, number 1 branchesto the first segment,
number 2 to the second segment, and so on.)

3. Have each segment store the arguments it receives in other variables (which can be
processed by the last segment) or accumulate them in arunning total.

End each segment with a statement returning control back to the FOCUS request
(RETURN statement).

4. The last segment returns the final output value to the FOCUS request.

Creating Your Own Subroutines

Syntax

A-10

The following sample of pseudocode illustrates the four steps:

Subroutine nane (num J/inputl, input2, input3, inputd, outfield).
If NUMis 1 then goto |abel ONE
el se goto | abel TWOD

Label ONE.
Let variable = inputl + input?2.
Ret urn.

Label TWO

LET outfield = variable + input3 + input4
Return

End of subroutine

Note: You can aso use the entry point technique, described in Programming Technique: |
Entry Pointslon page A-8, to write subroutines that process more than 28 arguments.

How to Use Subroutines With Multiple Call Statements

To use a subroutine that requires more than 28 arguments, you must specify two or more
call statements to pass the arguments to the subroutine.

The syntax for calling a subroutine with multiple call statementsis

durmy = subroutine (1, groupl, dunmmy);
dunmy = subroutine (2, group2, dummy);

outfield = subroutine (n, groupn, outfield);
where:

dunmny
Is either the name of a dummy field or its format, enclosed in single quotation
marks. It must have the same format as the outfield argument.

Note: Do not specify the dummy argument for the last call statement; use the outfield
argument.

subrouti ne
I's the name of the subroutine, up to eight characters long, depending on your
programming language.

Isanumber that identifies each subroutine call. It must be the first argument in each
subroutine call. The subroutine uses this call number to branch to segments of code.

groupl. ..
Are lists of input arguments passed by each subroutine call. Each group contains the
same number of arguments, but no more than 26 arguments.
26 + call number + output =28

Information Builders

Considerations for Writing Subroutines

Example

Using Functions

outfield
Isthe output field that contains the value returned by the subroutine. It isthe
fieldname of the field that contains the output or the format of the output value,
enclosed in single quotation marks, depending on the application. It islast argument
inthelast cal.

Note:

» Each subroutine call contains the same number of arguments. Thisis because the
argument list in each call must correspond to the argument list in the beginning of
the subroutine. The last call may contain several dummy arguments.

e Subroutines may require additional arguments as determined by the programmer
who created the subroutine.

Creating a Subroutine With 32 Input Arguments

This exampleillustrates how to create a subroutine with 32 input arguments using the
recommended technique. It also shows how the subroutine is specified in a DEFINE
command.

The ADD32 subroutine, written in pseudocode, sums 32 numbers. It is divided into six
segments, each of which adds six numbers from a subroutine call. (The total number of
input argumentsis 36 but the last four are dummy arguments.) The sixth segment adds
two arguments to the SUM variable and returns the final output value. The sixth segment
does not process any values supplied for the four dummy arguments.

A-11

Creating Your Own Subroutines

The subroutineis:
Subroutine ADD32 (NUM A, B,

C D E F TOTAL).

If NUMis 1 then goto |abel ONE

else if NUMis 2 then goto | abel TWO
else if NUMis 3 then goto | abel THREE
else if NUMis 4 then goto | abel FOUR
else if NUMis 5 then goto | abel FIVE
el se goto | abel SIX

Label ONE.

Let SUOM= A+ B+ C+ D+ E F.
Ret ur n.

Label TWO

Let SUAM=SUM+ A+ B+ C+ D+ E + F
Return

Label THREE

Let SUM=SUM+ A+ B+ C+ D+ E + F
Return

Label FOUR

Let SUAM=SUM+ A+ B+ C+ D+ E + F
Return

Label FIVE

Let SUAM=SUM+ A+ B+ C+ D+ E + F
Return

Label SIX

LET TOTAL = SUM + A + B

Return

End of subroutine

To use the ADD32 subroutine, list al six call statements; each call specifying six
numbers. The last four numbers, represented by zeroes, are dummy arguments. In this
example, the DEFINE command stores the total of the 32 numbersin the SUM32 field.

DEFI NE FI LE EMPLOYEE

DUMWY/ D10 = ADD32 (1, 5, 7,
DUMWY/ D10 = ADD32 (2, 5, 16,
DUMWY/ D10 = ADD32 (3, 17,
DUMWY/ D10 = ADD32 (4, 28, 3,
DUMWY/ D10 = ADD32 (5, 8, 19,
SUMB2/ D10 = ADD32 (6, 3, 27,
END

A-12

13, 9, 4, 2, DUMWY);

2, 9, 28, 3, DUMW);

12, 8, 4, 29, 6, DUMWY);

22, 7, 18, 1, DUMWY);
7, 25, 15, 4, DUMWY);
0, 0, 0, 0, SUMB2);

Information Builders

Compilation and Storage

Compilation and Storage

Once you have written your subroutine, you need to compile and store it. Thistopic
discusses compiling and storing your subroutine for VM/CM S and OS/390.

VM/CMS: Compilation and Storage

On VM/CMS, compile the subroutine and use the GENSUBLL command to add the
compiled object code to aload library (filetype LOADLIB). Enter:

GENSUBLL ?

to display for online information about the command. Do not store subroutine in the
FUSELIB load library (FUSELIB LOADLIB), asit may be overwritten when your site
installs the next release of FOCUS.

Y ou may also compile the subroutine and store the compiled object code either as a text
file (filetype TEXT), or asamember in atext library (filetype TXTLIB). Do not store it
in the FUSELIB text library (FUSELIB TXTLIB), asit may be overwritten when your
site installs the next release of FOCUS.

Individual text files are easier to maintain and control. Text libraries, on the other hand,
enable you to build different entry points into the subroutine (as shown in
[Technique: Entry Points|on page A-8). Note that there are two VM/CM S commands
regarding text libraries:

* TheTXTLIB command alows you to create, add to, and delete text libraries.

e The GLOBAL TXTLIB command allows users to specify text libraries to gain
access to their subroutines.

If the subroutine iswritten in PL/I, append this line at the end of the text file
ENTRY subrouti ne

where:

subrouti ne
I's the name of the subroutine. Y ou can do this using your system editor.

Make sure that any subroutines that your subroutine calls are also compiled and placed in
text filesor libraries.

Using Functions A-13

Creating Your Own Subroutines

0S/390: Compilation and Storage

On 0S/390, compile and link-edit the subroutine and store the module in aload library.
If your subroutine calls other subroutines, compile and link-edit al the subroutines
together in a single module.

If the subroutine is written in PL/I, include this link-editor control statement when
link-editing the subroutine

ENTRY subrouti ne
where:

subrouti ne
Is the name of the subroutine.

Do not store the subroutine in the FUSEL IB load library (FUSELIB.LOAD), asit may be
overwritten when your site installs the next release of FOCUS.

Testing the Subroutine

Once you have successfully compiled your subroutine, access it and test it. In order to
access the subroutine, you need to issue the GLOBAL command for VM/CMS or the
ALLOCATE command for OS/390.

If an error occurs during your testing, check to see if the error isin the FOCUS request or
in the subroutine. If you are uncertain about its source, apply this test:

1. Writeadummy subroutine that has the same arguments but only returns a constant.
2. Execute the request with the dummy subroutine.

If the request executes the dummy subroutine normally, the error isin your
subroutine. If the request still generates an error, the error isin the request.

If you intend to make your subroutine available to other users, be sure to document what
your subroutine does, what the arguments are, what formats they have, and in what order
they must appear in the FOCUS subroutine call.

A-14 Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

Example of a Custom Subroutine: The MTHNAM

Subroutine

Using Functions

Thistopic illustrates how a subroutine can be written in FORTRAN, COBOL, PL/I, BAL
Assembler, and C, and then executed in a FOCUS request. The subroutine, called
MTHNAM, converts a number from 1 to 12 to the full name of the corresponding month
(from January to December).

The subroutine performs the following:

1.

The subroutine receives the input argument from the FOCUS request as a
double-precision number.

It adds .000001 to the number. This compensates for rounding errors. (Rounding
errors can occur since floating-point numbers are approximations and may be
inaccurate in the last significant digit.)

It moves the number into an integer field.
If the number islessthan 1 or greater than 12, it changes the number to 13.

It defines a 13-element array containing the names of the months. The last element is
an error message.

It setsthe index of the array equal to the number in the integer field. It then places
the corresponding array element into the output argument. If the number is 13, the
argument contains the error message.

It passes the output argument back to FOCUS.

A-15

Creating Your Own Subroutines

The MTHNAM Subroutine Written in FORTRAN
ThisisaFORTRAN version of the MTHNAM subroutine. Thefields are:

A-16

M|

H

I's the doubl e-precision number passed by FOCUS.

MONTH
Is the name of the month passed back to FOCUS. Since the character string
‘September’ contains nine letters, MONTH is a 3-element array. The subroutine
passes the three elements back to FOCUS; FOCUS concatenates them into one field.

Isa2-dimensional, 13 by 3 array containing the names of the months. The last three
elements contain the error message.

I MTH
Isthe integer representing the month.

The programis:

+ 4+ A+

SUBROUTI NE MTHNAM (MTH, MONTH)

REAL* 8 MTH

I NTEGER*4 NMONTH(3), A(13, 3), | MTH

DATA
AC 1,1)/ IANU /., A(1,2)/'ARY '/, A(1,
A 2,1)/'FEBR /, A(2,2)/'UARY' [, A(2,
A 3,1)/'MARC /, A(3,2)/'H '/, Al 3,
AL 4,1)/"APRI'/, Al 4,2)/'L '/, Al 4,
A 5,1)/ ' MAY '/, A(5,2)/ I, A(5,
A 6,1)/ " JUNE /, Al 6,2)/" I, A(6,
AC 7,1)/030LY 1, A(7,2)0¢ AT,
A 8,1)/'AUGU /, A(8,2)/'ST '/, Al 8,
A(9,1)/'SEPT'/, A(9,2)/'EMBE /, A(9,
A(10,1)/' OCTO /, A(10,2)/'BER '/, A(10,
A(11,1)/' NOVE /, A(11,2)/'MBER /, A(11,
A(12,1)/' DECE /, A(12,2)/' MBER /, A(12,
A(13,1)/'**ER /, A(13,2)/' ROR*'/, A(13,

| MTHEMTH+0. 000001

IF (IMH .LT. 1 .OR IMMH.GT. 12) | MH=13

DO 1 1=1,3
MONTH(1) =A(I MTH, ')

RETURN
END

3)/
3)/"
3)/
3)/"
3)/
3)/"
3)/
3)/"

3)/'R

3)/"
3)/
3)/"
3) /" *

~ e e — — e e e~~~ ~

Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

The MTHNAM Subroutine Written in COBOL

Using Functions

Thisisa COBOL version of the MTHNAM subroutine. The fields are:

MONTH- TABLE
Isafield containing the names of the months and the error message.

M1 NE

Isa13-element array that redefinesthe MONTH-TABLE field. Each element (called
A) contains the name of a month; the last element contains the error message.

Isone element in the MLINE array.

I X
Isan integer field that indexes MLINE.

| MTH
Isthe integer representing the month.

MIH
I's the double-precision number passed by FOCUS.

MONTH
I's the name of the month passed back to FOCUS.

A-17

Creating Your Own Subroutines

A-18

The programis:

| DENTI FI CATI ON DI VI SI ON
PROGRAM | D. MIHNAM

ENVI RONVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.

SOURCE- COVPUTER
OBJECT- COVPUTER

DATA DI

VI SI ON.

WORKI NG- STORAGE SECTI ON.
01 MONTH- TABLE

05
05
05
05
05
05
05
05
05
05
05
05
05
01

05 M.INE OCCURS 13 TI MES | NDEXED BY I X

01

FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER
FI LLER

Pl C X(9)
PI C X(9)
Pl C X(9)
PI C X(9)
Pl C X(9)
PI C X(9)
PI C X(9)
PI C X(9)
Pl C X(9)
PI C X(9)
PI C X(9)
PI C X(9)
Pl C X(9)

| BM 370
| BM 370.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

" JANUARY

' FEBRUARY ' .
' MARCH .
" APRI L .
" MAY .
" JUNE .
"JULY
"AUGUST .
' SEPTEMBER .
' OCTOBER .
' NOVEMBER ' .
' DECEMBER ' .
" FERROR*' .

M.I ST REDEFI NES MONTH- TABLE

10 A
I MTH

PIC X(9).

PI C S9(5) COMP.

LI NKAGE SECTI ON.

01
01

MIH
MONTH

COVP- 2.
PIC X(9).

PROCEDURE DI VI SI ON USI NG MIH, MONTH

BEG 1.

ADD 0. 000001 TO MrIH.
MOVE MIH TO | MTH.
IF IMH< +1 OR > 12

SET I X

ELSE

SET I X

TO +13

TO | MTH

MOVE A (1X) TO MONTH.
GOBACK.

Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

The MTHNAM Subroutine Written in PL/I

ThisisaPL/I version of the MTHNAM subroutine. The fields are:

MIHNUM
I's the doubl e-precision number passed by FOCUS.

FULLMTH
I's the name of the month passed back to FOCUS.

MONTHNUM
Isthe integer representing the month.

MONTH_TABLE

A 13-element array containing the names of the months. The last element contains
the error message.

The programis:

MTHNAM PROC(MTHNUM FULLMTH) OPTI ONS(COBOL) ;
DECLARE MIHNUM DECI MAL FLOAT (16) ;
DECLARE FULLMIH CHARACTER (9) ;
DECLARE MONTHNUM FI XED BIN (15,0) STATIC ;
DECLARE MONTH_TABLE(13) CHARACTER (9) STATIC
INT (' JANUARY' ,
* FEBRUARY ,
" MARCH |,
"APRIL',
CMAY
" JUNE',
TJULY
" AUGUST' ,
* SEPTEMBER
* OCTOBER
* NOVEMBER ,
* DECEMBER ,
'k ok ERR(Rk*') :
MONTHNUM = MTHNUM + 0. 00001 ;
IF MONTHNUM < 1 MONTHNUM > 12 THEN
MONTHNUM = 13 ;
FULLMTH = MONTH_TABLE(MONTHNUM) ;
RETURN;
END MTHNAM

Using Functions A-19

Creating Your Own Subroutines

The MTHNAM Subroutine Written in BAL Assembler
ThisisaBAL Assembler version of the MTHNAM subroutine.

A-20

PGS

I NVALI D

*

VALI D

*

START
ST™M
BALR
USI NG

L
LD
LE
LPER
AW
AW
STD
L
™
BNO
LCR

LR
C
BNP
C
BNP
LA

LM
BR

0

14, 12, 12(13)
12,0

* 12

3,0(0, 1)
4,=D 0.0'
6,0(0, 3)

4,6

4, =D 0.00001'
4, DZERO

4, FPNUM

2, FPNUM4

0(3), B 10000000

PCS
2,2

3,2
2, =F 0"

I NVALI D
2, =F' 12"
VALI D
3,13(0, 0)

2,2
2,=F 9

6, MTH(3)
4,4(0,1)
0(9, 4), 0(6)

14, 12, 12(13)
14

save registers
| oad base reg

| oad addr of first arg into R3
clear out FPR4 and FPR5
FP nunber in FPR6

abs value in FPR4

add roundi ng const ant
shift out fraction

nove to nenory

integer part in R2

check sign of original no
branch if positive

conpl ement if negative

copy nonth nunmber into R3

is it zero or |ess?

yes. so invalid

is it greater than 127

no. so valid

set R3 to point to item @3 (error)

clear out R2
multiply by shift in table

get addr of itemin R6
get addr of second arg in R4
move in text

recover regs
return

Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

oD al i gnnent

D floating point number
X' 4E00000000000000" shi ft constant
CL9' dummyi t em month table
CL9" JANUARY'

CL9' FEBRUARY'

CL9" MARCH

CL9' APRI L'

CL9" MAY'

CL9" JUNE'

CL9" JULY'

CL9" AUGUST

CL9' SEPTEMBER

CL9' OCTOBER

CL9' NOVEMBER

CL9' DECEMBER

CL9' ** ERROR**'

MTHNAM

FPNUM
DZERO
MI'H

BEEEBEBEEBEEEEEEEE8HH

m
Z
O

The MTHNAM Subroutine Written in C
ThisisaC language version of the MTHNAM subroutine.

voi d nmt hnan(doubl e *, char *);

voi d nt hnan(nt h, nont h)

doubl e *nt h;

char *nonth;

{

char *nnonth[13] = {"January "
"February "
"Mar ch
"April
" May
"June ",
"July
" August
" Sept enber ",
"Qct ober ",
"Novenber ",
"Decenber ",
"**Error**"},;

int inth, |oop;

inmth = *nth + .00001;

inmth = (inth <1} inth > 12 ? 13 : inth);
for (loop=0;1o00p < 9;| 00p++)

mont h[1 oop] = nnonth[inth-1] [l oop];

}

Using Functions A-21

Creating Your Own Subroutines

The MTHNAM Subroutine Called by a FOCUS Request

A-22

The following example demonstrates how a FOCUS request uses the MTHNAM

subroutine. The DEFINE command extracts the month portion of the pay date and
executes the MTHNAM subroutine to convert it into the full name of the month. The

nameis stored in the PAY_MONTH field. The report request prints the monthly pay of

Alfred Stevens.

Therequest isas follows:

DEFI NE FI LE EMPLOYEE
MONTH_NUM M = PAY_DATE;

PAY_NMONTH A12 = MTHNAM (MONTH NUM PAY_MONTH) ;
END

TABLE FI LE EMPLOYEE

PRI NT PAY_MONTH GROSS

BY EMP_I D BY FI RST NAME BY LAST_NANE

BY PAY_DATE

IF LN I'S STEVENS

END

This request produces the following report:

EMP_I D FI RST NAME LAST_NAME PAY_DATE PAY_MONTH
071382660 ALFRED STEVENS 81/11/30 NOVEMBER
81/12/ 31 DECEMBER
82/ 01/ 29 JANUARY
82/ 02/ 26 FEBRUARY
82/ 03/ 31 MARCH
82/ 04/ 30 APRI L
82/ 05/ 28 MAY
82/ 06/ 30 JUNE
82/ 07/ 30 JULY
82/ 08/ 31 AUGUST

Information Builders

Subroutines Written in REXX

Subroutines Written in REXX

A FOCUS request can call user-written subroutines coded in REXX. These routines, also
called FUSREXX macros, provide a4GL option to the languages supported for
user-written subroutines.

Using REXX Subroutines

Syntax

Using Functions

REXX subroutines are supported in the VM/CM S and OS/390 environments:

* InVM/CMS, aFUSREXX macro can contain either REXX source code or compiled
REXX code created by running the source code through the REXX compiler. In
addition, you can load either type of FUSREX X macro into memory using the
EXECLOAD command. The compilation and load process reduces the CPU
requirements and increases speed. Compilation also is a security tool, making private
information difficult to read.

* In 0S/390, FOCUS supports source versions of REXX subroutines only.

Because of CPU requirements, the use of FUSREXX routinesin large production jobs
should be monitored carefully.

The following notes apply to the examplesin thistopic:

e REXX versions are not necessarily the same in all operating environments.
Therefore, some of the examples may use REXX functionsthat are not availablein
your environment.

» TheREXX codeislisted, but not fully explained. See your REXX documentation
for information about REXX instructions and functions.

How to Call a REXX User-Written Subroutine

In a DEFINE FILE command:
DEFI NE FI LE f//enane

fiel dnamel { An| |\ n} = subname(inlenl, inparni, ..., outlen, outparm,;

END

In a DEFINE attribute in the Master File:

DEFI NE fiel dnamel { An| | n} = subname(inlenl, inparni, ..., outlen, outparm,
Ina COMPUTE command:

fieldnamel { An| | n} = subname(inlenl, inparml, ..., outlen, outparnmn,;

In a Dialogue Manager -SET command:

- SET &var = subname(inlenl, inparml, ..., outlen, outparm,;

A-23

Creating Your Own Subroutines

where:

fi el dnane
Is the name of the field to receive the return value.

An| I n
Isthe format of the field to receive return value.

subnane
Is the name of the REXX routine.

inlenl, inparml ...
Are the input parameters. Each parameter consists of a pair of values: alength and
an alphanumeric parameter value. Y ou can supply the name of an alphanumeric
field, an alphanumeric literal, or an expression that resolves to an a phanumeric
value. Up to 13 input parameter pairs are supported by FOCUS. Each parameter
value can be up to 256 bytes long.

Note: Dialogue Manager converts input parameters that consist of numeric digitsto
decimal format, regardless of their original datatype. Therefore, you cannot pass
numeric input parametersto a REXX routine using -SET.

out !l en, outparm
Isthe output parameter pair, consisting of alength and areturn value. In most cases,
the return value should be alphanumeric, but integer return values are also
supported. The return value can be the name of the field or Dialogue Manager
variable to which the valueis returned or its USAGE format enclosed in single
guotation marks. The return value can be a minimum of one byte long and a
maximum (for an alphanumeric value) of 256 bytes.

Note: If the value returned isinteger, outlen must be 4 because FOCUS reserves
four bytesfor integer fields.

&var
Isthe name of the Dialogue Manager variable to receive the return value.

A-24 Information Builders

Subroutines Written in REXX

REXX subroutines:

» Requireinput datato be character and should return character output. Integer return
values are also supported, but the output length in the subroutine call must be four.
FOCUS has a 256-byte limit on character variables. Thislimit also appliesto
FUSREXX routines. FUSREXX routines return variable length data. For this reason,
you must supply the length of the input arguments and the maximum length of the
output data.

» Do not require any input parameters, but do require one return parameter, which
must return at least one byte of data. It is possible for a FUSREXX function to need
no input, such as a function that returns USERID.

» Do not support floating-point numbers (REXX does not have native floating-point
conversion routines). All numeric fields should be converted to character format
with no commas using a FOCUS function such as EDIT before being passed to the
FUSREXX routine. This prevents FOCUS from converting numbers to floating point
before passing them to the FUSREXX routine.

* Arenot supported in Dialogue Manager -CMS RUN commands.

e OnVM/CMS, the FILETY PE of REXX user-written functionsis FUSREX X; they
can be stored on any accessed disk.

e On 0S/390, DDNAME FUSREXX must be allocated to a PDS, and that library will
be searched before other OS/390 libraries.

e The search order for subroutinesis:
1. FUSREXX
2. Standard VM/CMS or OS/390 search order.

Using Functions A-25

Creating Your Own Subroutines

Example

A-26

Returning the Day of the Week

The FUSREXX routine DOW returns the day of the week an employee was hired. The
routine passes one input parameter pair and one return field pair.

DEFI NE FI LE EMPLOYEE

AHDT/ A6 = EDI T(HI RE_DATE) ;

DAY_OF WEEK/ A9 W TH AHDT= DOW 6, AHDT, 9, DAY_OF_WEEK) ;
END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME HI RE_DATE DAY_OF_ \EEK
END

1. Theinput field issix byteslong. Datais passed in field AHDT. The hire dateis
converted to an alphanumeric field.

2. Thereturn field is up to nine byteslong and isnamed DAY _OF WEEK.
The output is:

LAST_NAME H RE_DATE DAY_OF_WEEK
STEVENS 80/ 06/ 02 Monday

SM TH 81/07/01 Wednesday
JONES 82/ 05/ 01 Saturday
SM TH 82/ 01/ 04 Monday
BANNI NG 82/ 08/ 01 Sunday

I RVI NG 82/ 01/ 04 Monday
ROVANS 82/ 07/ 01 Thursday
MCCOY 81/07/01 Wednesday
BLACKWOCD 82/ 04/ 01 Thursday
MCKNI GHT 82/ 02/ 02 Tuesday
GREENSPAN 82/ 04/ 01 Thursday
CROSS 81/11/02 Monday

The FUSREXX macro is displayed below. The FUSREXX routine reads the input date,
reformatsit to MM/DD/YY format, and returns the day of the week using a REXX
DATE call.

/* DOWroutine. Return WEEKDAY from YYMVDD fornmat date */
Arg ynd .
Return Date('W, Transl ate(' 34/56/12',ynd, "' 123456'),' U)

Information Builders

Subroutines Written in REXX

Example

Using Functions

Returning Text Format

The REXX function called in this request returns the number of copies of each classic
movie in text format. It passes one input parameter and one return field.

TABLE FI LE MOVl ES

PRI NT TI TLE AND COVPUTE

ACOPI ES/ A3 = EDI T(COPI ES); AS ' COPI ES'

AND COWPUTE

TXTCOPI ES/ A8 = NUMCNT(3, ACCPI ES, 8, TXTCCPI ES) ;
VWHERE CATEGCRY EQ ' CLASSIC

END

1. Theinput field is 3 byteslong. Datais passed in field ACOPIES. The COPIESfield
is converted to an alphanumeric field.

2. Thereturn field isup to 8 byteslong and is named TXTCOPIES.
The output is:

TITLE COPIES TXTCOPI ES
EAST OF EDEN 001 One
Cl TI ZEN KANE 003 Thr ee
CYRANO DE BERGERAC 001 One
MARTY 001 One
MALTESE FALCON, THE 002 Two
GONE W TH THE W ND 003 Three
ON THE WATERFRONT 002 Two
MJTI NY ON THE BOUNTY 002 Two
PHI LADELPHI A STCRY, THE 002 Two
CAT ON A HOT TI N ROOF 002 Two
CASABLANCA 002 Two

The FUSREXX macrois:

/* NUMCNT routine. Pass a nunber fromO to 10 and return a character val ue
*/

Arg nunbr
data = 'Zero One Two Three Four Five Six Seven Ei ght N ne Ten'
nunbr = nunbr + 1 /* so 0 equals 1 elenent in array */

Ret urn Wor d(dat a, nunbr)

A-27

Creating Your Own Subroutines

Example

A-28

PR

Passing Multiple Arguments

The following example shows how to pass multiple arguments to a FUSREXX routine. It
isan interest calculation using the present salary for the employee and the employee start
date to calculate a present value. It passes four input parameters and one return field.

DEFI NE FI LE EMPLOYEE

AHDT/ A6 = EDI T(H RE_DATE) ;
ACSAL/ A12 = EDI T(CURR SAL) ;

DCSAL/ D12. 2 = CURR SAL ;

PV/ A12 = | NTEREST(6, AHDT, 6, &MD , 3, 6.5', 12, ACSAL, 12, PV)
END

TABLE FI LE EMPLOYEE
PRI'NT LAST_NAME FI RST_NAME HI RE_DATE DCSAL PV

END
1

Thefirst input field is six byteslong. Datais passed in field AHDT. The hire date is
converted to an alphanumeric field.

The current salary is converted to an alphanumeric field for use in the interest
calculation.

The current salary is converted to a double-precision field to include commas and a
decimal point in the output.

The second input field is six byteslong. Datais passed as a FOCUS character
variable &YMD in YYMMDD format.

Thethird input field is a character value of 6.5, which is 3 byteslong to account for
the decimal point in the character string.

The fourth input field is 12 bytes long. This passes the character field ACSAL.
Thereturn field isup to 12 byteslong and is named PV.

The output is:

LAST_NAME FI RST_NAME HI RE_DATE DCSAL PV
STEVENS ALFRED 80/ 06/ 02 11, 000. 00 14055. 14
SM TH MARY 81/ 07/ 01 13, 200. 00 15939. 99
JONES DI ANE 82/ 05/ 01 18, 480. 00 21315. 54
SM TH Rl CHARD 82/ 01/ 04 9, 500. 00 11155. 60
BANNI NG JOHN 82/ 08/ 01 29, 700. 00 33770. 53
I RVI NG JOAN 82/ 01/ 04 26, 862. 00 31543. 35
ROMANS ANTHONY 82/ 07/ 01 21,120.00 24131.19
MCCOY JOHN 81/ 07/ 01 18, 480. 00 22315. 99
BLACKWOCD ROSEMARI E 82/ 04/ 01 21,780.00 25238. 25
MCKNI GHT ROGER 82/ 02/ 02 16, 100. 00 18822. 66
GREENSPAN MARY 82/ 04/ 01 9, 000. 00 10429. 03
CROSS BARBARA 81/ 11/ 02 27,062. 00 32081. 82

Information Builders

Subroutines Written in REXX

Example

Using Functions

PR

The FUSREXX macro is displayed below. The REXX format command is used to format
the return value.

/* Sinple | NTEREST program dates are yymdd fornmat */
Arg start_date, now_dat e, percent, open_bal ance,

begin = Date(' B, Transl ate(' 34/56/12',start_date, ' 123456'),' U)
stop = Date('B',Translate('34/56/12',now date, "' 123456'),"'U)
val now = open_bal ance * (((stop - begin) * (percent / 100)) / 365)

Ret urn For mat (val now, 9, 2)

Accepting Multiple Tokens in Parameters

FUSREXX routines can accept multiple tokens in a parameter. The following procedure
passes employee information (pay date and monthly gross pay) as separate tokensin the
first parameter. It passes three input parameters and one return field.

DEFI NE FI LE EMPLOYEE

COWPID/A256 = FN| * ' | LN| * * | DPT| ' ' | EID;

APDY A6 = EDI T(PAY_DATE) ;

APAY/ A12 = EDI T(MD_PAY) ;

OKARAI SE/ A1 = OKARAI SE(256, COWPI D, 6, APD, 12, APAY, 1, OKARAI SE) ;
END

TABLE FI LE EMPLOYEE

PRI NT EMP_I D FI RST_NAME LAST_NAME DEPARTMENT
| F OKARAI SE EQ ' 1'

END

1. Thefirstinput field is 256 bytes long. Datais passed in field COMPID. COMPID is
the concatenation of several character fields passed as the first parameter. Each of
the other parameters is a single argument.

2. Thesecond input field is six byteslong. Datais passed in field APD. The pay dateis
converted to an alphanumeric field.

3. Thethird input field is 12 byteslong. Datais passed in field APAY. The monthly
gross pay is converted to an aphanumeric field.

4. Thereturn field is up to one byte long and is named OK4RAISE.

The output is:
EMP_I D FI RST_NAME LAST_NAME DEPARTMENT

071382660 ALFRED STEVENS PRCDUCTI ON

A-29

Creating Your Own Subroutines

Example

A-30

n

The FUSREXX macro is displayed below. Commas separate FUSREXX parameters. The
ARG command specifies multiple variable names before the first comma and, therefore,
separates the first FUSREX X parameter into separate REXX variables, using blanks as
delimiters between the variables.

/* OKARAI SE routine. Parse separate tokens in the 1st parm then nore parns
*/

Arg fname | name dept enpid, pay_date, gross_pay,

If dept = ' PRODUCTI ON & pay_date < '820000'
Then retvalue = '1'
El se retvalue = '0'

Return retval ue

FUSREXX routines should use the REXX RETURN function to return datato FOCUS.
REXX EXIT isacceptable, but is generally used to end an EXEC, not a FUNCTION.

Correct Not as O ear

/* Some FUSREXX function */ /* Anot her FUSREXX function */
Arg input Arg input

SOMe I exx process ... SOMe r exx process ...

Return data_to_Focus Exit O

Returning an Integer Value

It is possible for REXX to return avalue that is not character format. The following
example shows how REXX returns an integer value. This example also shows how the
format of the integer field is used asthe last field in the return argument. It passes two
input fields and one return field. The FUSREX X routine NUMDAY S returns the number
of days between hire date and date of increase. Note that the return value for an integer is
always four byteslong.

DEFI NE FI LE EMPLOYEE

AHDT/ A6 = EDI T(HI RE_DATE) ;

ADI /A6 = EDI T(DAT_INC) ;

BETVEEN/ | 6 = NUVDAYS(6, AHDT, 6, ADI , 4,' 16') ;

END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME H RE_DATE DAT_I NC BETWEEN
I F BETVEEN NE 0O

END

1. Thefirstinput field issix byteslong. Datais passed in field AHDT. The hire dateis
converted to an alphanumeric field.

2. Thesecond input field is six byteslong. Datais passed in field ADI. The date of
increase is converted to an aphanumeric field.

3. Thereturn field is up to six byteslong and is named BETWEEN.

Information Builders

Subroutines Written in REXX

Example

Using Functions

The output is:

LAST_NAME H RE_DATE DAT_INC BETWEEN
STEVENS 80/ 06/ 02 82/ 01/ 01 578
STEVENS 80/ 06/ 02 81/01/01 213
SM TH 81/07/01 82/01/01 184
JONES 82/ 05/ 01 82/ 06/ 01 31
SM TH 82/ 01/ 04 82/ 05/ 14 130
I RVI NG 82/ 01/ 04 82/ 05/ 14 130
MCCOY 81/07/01 82/01/01 184
MCKNI GHT 82/ 02/ 02 82/ 05/ 14 101
GREENSPAN 82/ 04/ 01 82/ 06/ 11 71
CROSS 81/11/02 82/ 04/ 09 158

The FUSREXX macro is displayed below. The return value is converted from REXX
character to HEX and formatted to be four bytes long.
/* NUMDAYS routine. Return nunber of days between 2 dates in yymdd fornat
*/
/* The value returned will be in hex fornat

*/
Arg first, second

basel
base2

Date(' B, Transl ate(' 34/56/12' ,first,' 123456'),' U)
Date(' B', Transl ate(' 34/56/ 12' , second, ' 123456'),' U)

Return D2C(base2 - basel, 4)

Returning a Date Field From a FUSREXX Macro

FOCUS smart date fields contain the integer number of days since the base date
12/31/1900. REX X has a date function that can accept and return several types of date
formats, including one called Base format (‘B’) that contains the number of days since
the REXX base date 01/01/0001 (Jan. 1 of the Year 1).

Because input arguments must be al phanumeric, you cannot pass a smart date field to a
REXX subroutine. Therefore, you can either:

e Passthe REXX routine an aphanumeric field with date display options and have it
return a smart date value, if you account for the number of days difference between
the FOCUS base date and the REX X base date and convert the result to integer.

» Passthe REXX routine a smart date value converted to a phanumeric format. With
this technique, you must account for the difference in base dates for both the input
and output.

A-31

Creating Your Own Subroutines

The following example uses the technique of passing the subroutine an alphanumeric
field with date display options. The FUSREXX macro called DATEREX1 takes two
input arguments: an alphanumeric datein A8Y YMD format and a number of daysin
character format. It returns a smart date in Y'Y MD format that represents the input date
plus the number of days. The FOCUS format A8YYMD corresponds to the REXX
Standard format (*S').

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX1 routine. Add indate (format A8YYMD) to days */
Arg indate, days .
Return D2C(Date(' B ,indate,'S)+ days - 693959, 4)

The following request uses the DATEREX 1 macro to calculate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of daysto add. Because HIRE_DATE isin 16YMD format, it must be converted
to A8YYMD before being passed to the macro:

TABLE FI LE EMPLOYEE
PRI'NT LAST_NAME FI RST_NAME HI RE_DATE

AND COWPUTE

ADATE/ YYMD = H RE_DATE; NOPRI NT
AND COWPUTE

| NDATE/ ASYYMD= ADATE; NOPRI NT
AND COWPUTE

NEXT_DATE/ YYMD = DATEREXL(8, | NDATE, 3, ' 365" , 4, NEXT_DATE) ;
BY LAST_NAME NOPRI NT
END

Theoutput is:

LAST_NANE FIRST_NAME H RE_DATE NEXT_DATE
BANNI NG JOHN 82/08/01 1983/ 08/01
BLACKWOCD ROSEMARI E 82/04/01 1983/04/01
CRCSS BARBARA 81/11/02 1982/11/02
GREENSPAN MARY 82/04/01 1983/ 04/ 01
| RVI NG JOAN 82/01/04 1983/ 01/ 04
JONES DI ANE 82/05/01 1983/ 05/ 01
MCCOY JOHN 81/07/01 1982/07/01
MCKNI GHT ROGER 82/02/02 1983/ 02/ 02
ROVANS ANTHONY 82/07/01 1983/07/01
SM TH MARY 81/07/01 1982/07/01
SM TH Rl CHARD 82/01/04 1983/ 01/ 04
STEVENS ALFRED 80/06/02 1981/ 06/ 02

A-32 Information Builders

Subroutines Written in REXX

Using Functions

The following example uses the technique of passing the subroutine a smart date
converted to alphanumeric format. The FUSREXX macro called DATEREX?2 takes two
input arguments: an alphanumeric number of days that represents a smart date, and a
number of daysto add. It returns a smart datein YYMD format that represents the input
date plus the number of days. Both the input date and output date are in REXX base date
(‘B’) format.

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX2 routine. Add indate (original fornmat YYMD) to days */
Arg indate, days .
Return D2C(Date(' B',indate+693959,'B') + days - 693959, 4)

The following request uses the DATEREX?2 macro to calculate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of daysto add. Because HIRE_DATE isin 16YMD format, it must be converted
to an alphanumeric number of days before being passed to the macro:

TABLE FI LE EMPLOYEE
PRI'NT LAST_NAME FI RST_NAME HI RE_DATE

AND COWPUTE

ADATE/ YYMD = H RE_DATE; NOPRI NT
AND COWPUTE

| NDATE/ A8 = EDI T(ADATE); NOPRI NT
AND COWPUTE

NEXT_DATE/ YYMD = DATEREX2(8, | NDATE, 3, ' 365" , 4, NEXT_DATE) ;
BY LAST_NAME NOPRI NT
END

The report output is the same as that produced by the DATEREX 1 macro.

A-33

Creating Your Own Subroutines

Compiling FUSREXX Macros in VM/CMS

A-34

The SUM2 FUSREX X macro takes two amounts as input and returns the sum in integer
format:
/* SUM2 routine. Add anmpbuntl to ampbunt2 and return as integer */

Arg antl, ant2 .
Return D2C(ant1l + ant 2, 4)

To compile and compress this FUSREXX macro in VM/CMS, issue the following
command. Note that the file identifier must be in upper case:

rexxconp SUM2 FUSREXX A (condense
A FILELIST of SUM2* A liststhe following files:

Suwe CFUSREXX Al F 1024 2 1 1/31/00 12:07:19
Suwe LISTING Al V 121 42 1 1/31/00 12:07:19
Suwe FUSREXX Al F 80 3 1 1/31/00 12:04:19

Thefile SUM2 FUSREXX isthe original sourcefile. The file SUM2 CFUSREXX isthe
compiled version. To call the compiled version in a FOCUS request, you must rename it
to have the file type FUSREXX. The file SUM2 LISTING details the results of the
compilation.

To use the compiled version in a FOCUS request, issue the following commands. The
EXECLOAD command, which loads the routine into memory and improves
performance, is optional:

renane sun? fusrexx a ssun? fusrexx a
renane sunR cfusrexx a sun? fusrexx a
execl oad sun fusrexx a

Then, in FOCUS, issue the following request:

TABLE FI LE EMPLOYEE
PRI NT CSAL AND COVPUTE

ASAL/ A12 = EDI T(CSAL);

AVOUNT/ A4 = ' 1000" ;

TOTSAL/ 16 = SUMR(12, ASAL, 4, AMOUNT, 4, TOTSAL);
END

Information Builders

Subroutines Written in REXX

Using Functions

The output is:

CURR_SAL ASAL

$11, 000
$13, 200
$18, 480

00
00
00

$9, 500. 00

$29, 700
$26, 862
$21, 120
$18, 480
$21, 780
$16, 100

00
00
00
00
00
00

$9, 000. 00

$27, 062

00

000000011000
000000013200
000000018480
000000009500
000000029700
000000026862
000000021120
000000018480
000000021780
000000016100
000000009000
000000027062

A-35

Index

A

ABS function, 7-2

accessing functions, 2-14
function libraries, 2-14, 2-16 to 2-18
FUSELIB LOAD library, 2-16
05/390, 2-14t0 2-16
TSO, 2-15
UNIX, 2-16
VM/CMS, 2-16 to 2-17

alphanumeric format, 5-24
converting, 5-24, 6-6, 6-19

alphanumeric strings, 6-2
converting, 6-2 to 6-4, 6-6

ARGLEN function, 3-2
argument formats, 2-4
argument order, 2-5
argument types, 2-3

arguments, 2-3, 2-5
functions as, 2-11
length, 2-4, 3-2

ASCII values, 6-9
ASISfunction, 3-3, 7-3
Assembler language, A-4

ATODBL function, 6-2 to 6-4, 6-6
-RUN command, 6-2

AYM function, 5-35 to 5-36
AYMD function, 5-37 to 5-38

B

BAL Assembler language, A-20
MTHNAM subroutine, A-20

bar charts, 7-3
scales, 7-3, 7-5

Using Functions

BAR function, 7-3to 7-5
batch alocation, 2-14
bit strings, 3-5to 3-6

bits, 3-4 to 3-5
evaluating, 3-4

BITSON function, 3-4 to 3-5
BITVAL function, 3-5to 3-6
branching, 2-8

BUSDAY S parameter, 5-3

business days, 5-3
setting, 5-3

BYTVAL function, 3-7

C

C language, A-4
MTHNAM subroutine, A-21

character functions, 1-3, 3-1
ARGLEN, 3-2
ASIS, 3-3
BITSON, 3-4
BITVAL, 3-5
BYTVAL, 3-7
CHKFMT, 3-8
CTRAN, 3-11
CTRFLD, 3-17
EDIT, 3-19
GETTOK, 3-20
LCWORD, 3-22
LJUST, 3-24
LOCASE, 3-25
OVRLAY, 3-27
PARAG, 3-29
POSIT, 3-31
RJUST, 3-32
SOUNDEX, 3-33
SQUEEZ, 3-35
STRIP, 3-36
SUBSTR, 3-37

Index

character functions (continued)
TRIM, 3-39
UPCASE, 3-40

character strings, 3-8
adding, 3-19to 3-20
centering, 3-17 to 3-18
checking format, 3-8 to 3-10
comparing, 3-33 to 3-34
converting, 3-22 to 3-26, 3-40 to 3-42, 5-24
deleting characters, 3-36 to 3-37
deleting leading or trailing occurrences, 3-39
extracting, 3-19 to 3-22, 3-31 to 3-32, 3-38
extracting characters, 3-19
extracting substrings, 3-37
justifying, 3-24 to 3-25, 3-32 to 3-33
overlaying, 3-27 to 3-28
reducing blanks, 3-35

characters, 3-7
substituting, 3-11 to 3-14, 3-16
trandating, 3-7, 3-11

CHGDAT function, 5-38 to 5-40
CHKFMT function, 3-8 to 3-10
CHKPCK function, 7-6 to 7-7

COBOL language, A-4
MTHNAM subroutine, A-17

commands, 2-5
functions and, 2-5
GLOBAL, A-14

compiling subroutines, A-13
0S/390, A-14
VM/CMS, A-13

components, 5-2

COMPUTE command, 2-6
-IF command, 2-6

CTRAN function, 3-11 to 3-14, 3-16
CTRFLD function, 3-17 to 3-18

custom subroutines, A-15

D

DADMY function, 5-40
DADYM function, 5-40
DAMDY function, 5-40
DAMY D function, 5-40

data source functions, 1-6, 4-1
FIND, 4-5
LAST, 4-7
LOOKUP, 4-9

datavalues, 4-1
decoding, 4-2
retrieving, 4-7, 4-9
verifying, 4-5

date and time functions, 1-7, 5-1
DATEADD, 5-6
DATECVT, 5-9
DATEDIF, 5-11
DATEMOV, 5-14
Dialogue Manager, 5-5
HADD, 5-16
HCNVRT, 5-17
HDATE, 5-19
HDIFF, 5-20
HDTTM, 5-21
HGETC, 5-22
HHMMSS, 5-23
HINPUT, 5-24
HMIDNT, 5-25
HNAME, 5-26
HPART, 5-28
HSETPT, 5-29
HTIME, 5-30
legacy date functions, 1-7, 1-10, 5-32
settings, 5-1
TODAY, 5-31

DATEADD function, 5-3, 5-6 to 5-8
DATECVT function, 5-9to 5-10
DATEDIF function, 5-3, 5-11 to 5-13
DATEFNS parameter, 5-33
DATEMOV function, 5-3, 5-14 to 5-16

Information Builders

Index

date-time functions, 5-2

date-time values, 5-1
adding, 5-6, 5-35, 5-37
calculating, 5-11
calculating difference, 5-42, 5-49
converting, 5-9, 5-17, 5-19, 5-21, 5-24, 5-28,
5-30, 5-38, 5-40, 5-44, 5-46 to 5-47
extracting components, 5-26
finding day of week, 5-43
incrementing afield, 5-16
inserting numeric values, 5-29
legacy dates, 5-32
moving, 5-14
returning, 5-23, 5-31
setting to midnight, 5-25
storing, 5-22
subtracting, 5-6, 5-35, 5-37

DAY DM function, 5-40
DAY MD function, 5-40, 5-41
DECODE function, 4-2 to 4-4

decoding functions, 4-1
DECODE, 4-2

DEFCENT parameter and, 5-33
deleting function libraries, 2-19

Dialogue Manager, 2-6
ASISfunction, 3-3
date and time functions, 5-5
leading zeros, 5-5

Dialogue Manager commands, 2-6
functions and, 2-6
-IF command, 2-8
-RUN, 2-9
-SET, 2-7

DMOD function, 7-8, 7-9
DMY function, 5-42
DOWK function, 5-43
DOWKL function, 5-43
DTDMY function, 5-44
DTDYM function, 5-44

Using Functions

DTMDY function, 5-44 to 5-45

DTMYD function, 5-44

DTYDM function, 5-44

DTYMD function, 5-44

Dynamic Language Environment Support, 2-20

E

EBCDIC values, 6-9
EDIT function, 3-19, 3-20, 6-6 to 6-7

error messages, 8-2
retrieving, 8-2

EXP function, 7-10
EXPN function, 7-11

external functions, 1-2

F

FEXERR function, 8-2

FIND function, 4-5, 4-6
FINDMEM function, 8-3, 8-4
FMOD function, 7-8 to 7-9

FOCUS commands, 2-5
functions and, 2-5

format conversion functions, 1-12, 6-1
ATODBL, 6-2
EDIT, 6-6
FTOA, 6-8
HEXBYT, 6-9
ITONUM, 6-12
ITOPACK, 6-13
ITOZ, 6-15
PCKOUT, 6-17
UFMT, 6-19

format conversions, 6-1

FORTRAN language, A-4
MTHNAM subroutine, A-16

four-digit years, 5-33

Index

FTOA function, 6-8, 6-9
function argument types, 2-3
function arguments, 2-3 to 2-5

function libraries, 2-17
adding, 2-19
deleting, 2-19
searching, 2-17 to 2-18

functions, 1-1to 1-2, 2-1to 2-2
arguments and, 2-3
assigning resultsto avariable, 2-7
character, 1-3
commands and, 2-7 to 2-10, 2-13 to 2-14
COMPUTE command, 2-6
data source, 1-6, 4-1
date and time, 1-7, 5-1
decoding, 4-1
Dialogue Manager commands and, 2-6
external, 1-2
FOCUS commands and, 2-5
format conversion, 1-12, 6-1
-IF command, 2-8
IF criteriag, 2-11
interna, 1-2
numeric, 1-13, 7-1
system, 1-15, 8-1
types, 1-3

functions as arguments, 2-11
FUSREXX macros, A-34
compiling in VM/CMS, A-34

G

GETPDS function, 8-5to 8-8
GETTOK function, 3-20 to 3-22
GETUSER function, 8-9 to 8-10
GLOBAL command, A-14
GREGDT function, 5-46 to 5-47

H

HADD function, 5-16 to 5-17

-4

HCNVRT function, 5-17 to 5-18
HDATE function, 5-19

HDAY parameter, 5-4 to 5-5
HDIFF function, 5-20

HDTTM function, 5-21
HEXBYT function, 6-9to 6-11
HGETC function, 5-22
HHMMSS function, 5-23, 8-10
HINPUT function, 5-24
HMIDNT function, 5-25
HNAME function, 5-26 to 5-27

holiday file, 5-4 to 5-5
rules, 5-4

holidays, 5-4
setting, 5-4

HPART function, 5-28
HSETPT function, 5-29
HTIME function, 5-30

-IF command, 2-8
functions and, 2-8 to 2-9

IF criterig, 2-11

IMOD function, 7-8to 7-9
INT function, 7-12

integer format, 5-44

integers, 5-44
converting to dates, 5-44 to 5-45

internal functions, 1-2

invoking functions, 2-2

ITONUM function, 6-12 to 6-13
ITOPACK function, 6-13 to 6-14
ITOZ function, 6-15 to 6-16

Information Builders

Index

J

JULDAT function, 5-47 to 5-48

L

LAST function, 4-7 to 4-8
LCWORD function, 3-22 to 3-23

leading zeros, 5-5
displaying, 5-6
LEADZERO parameter, 5-5t0 5-6

legacy date functions, 1-7, 1-10, 5-32 to 5-33
AYM, 5-35
AYMD, 5-37
CHGDAT, 5-38
DADMY, 5-40
DADYM, 5-40
DAMDY, 5-40
DAMYD, 5-40
DAYDM, 5-40
DAYMD, 5-40
DEFCENT parameter and, 5-33
DMY, 5-42
DOWK, 5-43
DOWKL, 5-43
DTDMY, 5-44
DTDYM, 5-44
DTMDY, 5-44
DTMYD, 5-44
DTYDM, 5-44
DTYMD, 5-44
GREGDT, 5-46
JULDAT, 5-47
MDY, 5-42
YM, 5-49
YMD, 5-42
YRTHRESH parameter and, 5-33

legacy dates, 5-32
legacy versions, 5-33
LJUST function, 3-24, 3-25

load libraries, 2-15
0S/390, 2-15t0 2-16

Using Functions

LOCASE function, 3-25 to 3-26
LOG function, 7-13

LOOKUP function, 4-9, 4-10, 4-12
extended function, 4-14 to 4-15

M

MAX function, 7-14
MDY function, 5-42
MIN function, 7-14

MTHNAM subroutine, A-15
BAL Assembler language, A-20
C language, A-21
COBOL language, A-17
FOCUS requests, A-22
FORTRAN language, A-16
PL/I language, A-19

MVSDYNAM function, 8-11, 8-12

N

number of arguments, 2-5

numeric format, 7-1
converting, 5-28, 6-8, 6-12 to 6-13, 6-15

numeric functions, 1-13, 7-1
ABS, 7-2
ASIS, 7-3
BAR, 7-3
CHKPCK, 7-6
DMOD, 7-8
EXP, 7-10
EXPN, 7-11
FMQOD, 7-8
IMOD, 7-8
INT, 7-12
LOG, 7-13
MAX, 7-14
MIN, 7-14
PRDNOR, 7-15
PRDUNI, 7-15
RDNORM, 7-18
RDUNIF, 7-18
SQRT, 7-20

Index

numeric values, 6-9, 7-2
calculating, 7-2, 7-8, 7-20
converting to characters, 6-10 to 6-11
finding greatest integer, 7-12
generating random, 7-15, 7-18
maximum, 7-14
minimum, 7-14
raising to a power, 7-10
returning logarithm, 7-13

O

OVRLAY function, 3-27, 3-28

P
packed fields, 7-6
validating, 7-6

packed numbers, 6-17
extract filesand, 6-17

PARAG function, 3-29, 3-30

partitioned data sets, 8-3
members, 8-3, 8-5

PCKOUT function, 6-17 to 6-18

PL/I language, A-4
MTHNAM subroutine, A-19

POSIT function, 3-31, 3-32
PRDNOR function, 7-15to 7-17
PRDUNI function, 7-15to 7-16

R

RDNORM function, 7-18 to 7-19
RDUNIF function, 7-18 to 7-19

RECAP command, 2-13
functions and, 2-13 to 2-14

REXX subroutines, A-23
RJUST function, 3-32 to 3-33

-RUN command, 2-9
ATODBL function, 6-2
functions and, 2-9 to 2-10

S

scientific notation, 7-11
-SET command, 2-7

SET parameters, 5-3
BUSDAYS, 5-3
DATEFNS, 5-33
HDAY, 5-4, 5-5
LEADZERO, 5-5

SOUNDEX function, 3-33 to 3-34
SQRT function, 7-20
SQUEEZ function, 3-35

storing subroutines, A-13
0S5/390, A-14
VM/CMS, A-13

strings, 3-19
alphanumeric, 3-19

STRIP function, 3-36 to 3-37

subroutines, A-1, A-2
compiling, A-13
creating, A-1, A-2
custom, A-15
MTHNAM, A-15
REXX, A-23
storing, A-13
testing, A-14
writing, A-3

SUBSTR function, 3-37 to 3-38

substrings, 3-31
extracting, 3-31 to 3-32, 3-38

Information Builders

Index

system functions, 1-15, 8-1
FEXERR, 8-2
FINDMEM, 8-3
GETPDS, 8-5
GETUSER, 8-9
HHMMSS, 8-10
MVSDYNAM, 8-11
TODAY, 8-13

T

TODAY function, 5-31 to 5-32, 8-13
TRIM function, 3-39 to 3-40

TSO allocation, 2-15

two-digit years, 5-33, 5-34

U

UFMT function, 6-19 to 6-20
UPCA SE function, 3-40 to 3-42

user I1Ds, 8-9
retrieving, 8-9

\%

variables, 2-7
functions and, 2-7

Using Functions

VM/CMS environment, 2-16
FUSREXX macros, A-34

wW

WHEN criteria, 2-12
functions and, 2-12

WHERE criteria, 2-11
functions and, 2-11

work days, 5-3
specifying, 5-3, 5-4

writing subroutines, A-3
arguments, A-4
language considerations, A-6
naming conventions, A-3
programming, A-5, A-8 to A-11

Y

Y M function, 5-49 to 5-50
YMD function, 5-42
Y RTHRESH parameter, 5-33

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert usto corrections. |dentify

specific pages where applicable. Y ou can contact us through the following methods:

Mail:

Fax:
E-mail:
Web form:

Name:

Documentation Services — Customer Support
Information Builders, Inc.

Two Penn Plaza

New York, NY 10121-2898

(212) 967-0460
books_info@ibi.com

http://www.informationbuilders.com/bookstore/derf.html

Company:

Address:

Telephone:

E-mail:

Date:

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898

(212) 736-4433

FOCUS for S/390 Using Functions

Version 7.2

DN1001140.1101

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

FOCUS for S/390 Using Functions DN1001140.1101
Version 7.2

	Preface
	Contents
	1. Introducing Functions
	Using Functions
	Types of Functions
	Character Functions
	Data Source and Decoding Functions
	Date and Time Functions
	Format Conversion Functions
	Numeric Functions
	System Functions

	2. Accessing and Invoking a Function
	Invoking a Function
	Using an Argument in a Function
	Argument Types
	Argument Formats
	Argument Length
	Number and Order of Arguments

	Using a Function in a FOCUS Command
	Using a Calculation or Compound IF Command With a COMPUTE Command

	Using a Function With a Dialogue Manager Command
	Assigning the Result of a Function to a Variable
	Using a Function in a -IF Command
	Using a Function in an Operating System -RUN Command

	Using a Function in Another Function
	Using a Function in WHERE or IF Criteria
	Using a Function in WHEN Criteria
	Using a Function in a RECAP Command
	Accessing a Function
	Storing and Accessing a Function on OS/390
	Storing and Accessing a Function on UNIX
	Storing and Accessing a Function on VM/CMS
	Searching for a Function Library
	Adding and Deleting a Subroutine Library

	Dynamic Language Environment Support

	3. Character Functions
	ARGLEN: Measuring the Length of a String
	ASIS: Distinguishing Between a Space and a Zero
	BITSON: Determining If a Bit is On or Off
	BITVAL: Evaluating a Bit String a Binary Integer
	BYTVAL: Translating a Character to a Decimal Value
	CHKFMT: Checking the Format of a String
	CTRAN: Translating One Character to Another
	CTRFLD: Centering a Character String
	EDIT: Extracting or Adding Characters
	GETTOK: Extracting a Substring (Token)
	LCWORD: Converting a String to Mixed Case
	LJUST: Left-Justifying a String
	LOCASE: Converting Text to Lowercase
	OVRLAY: Overlaying a Substring Within a String
	PARAG: Dividing Text Into Smaller Lines
	POSIT: Finding the Beginning of a Substring
	RJUST: Right-Justifying a String
	SOUNDEX: Comparing Strings Phonetically
	SQUEEZ: Reducing Multiple Blanks to a Single Blank
	STRIP: Removing a Character From a String
	SUBSTR: Extracting a Substring
	TRIM: Removing Leading and Trailing Occurrences
	UPCASE: Converting Text to Uppercase

	4. Data Source and Decoding Functions
	DECODE: Decoding Values
	FIND: Verifying the Existence of an Indexed Field
	LAST: Retrieving the Preceding Value
	LOOKUP: Retrieving a Value From a Cross-Referenced File
	Using the Extended LOOKUP Function

	5. Date and Time Functions
	Using Standard Date and Time Functions
	Specifying Work Days
	Enabling Leading Zeros For Date and Time Functions in Dialogue Manager
	DATEADD: Adding or Subtracting a Date Unit to or From a Date
	DATECVT: Converting a Date Format
	DATEDIF: Finding the Difference Between Two Dates
	DATEMOV: Moving a Date to a Significant Point
	HADD: Incrementing a Date-Time Field
	HCNVRT: Converting a Date-Time Field to Alphanumeric Format
	HDATE: Converting the Date Portion of a Date-Time Field to a Date Format
	HDIFF: Finding the Number of Units Between Two Date-Time Values
	HDTTM: Converting a Date field to a Date-Time Field
	HGETC: Storing the Current Date and Time in a Date-Time Field
	HHMMSS: Returning the Current Time
	HINPUT: Converting an Alphanumeric String to a Date-Time Value
	HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight
	HNAME: Extracting a Date-Time Component in Alphanumeric Format
	HPART: Returning a Date-Time Component in Numeric Format
	HSETPT: Inserting a Component Into a Date-Time Field
	HTIME: Converting the Time Portion of a Date-Time Field to a Number
	TODAY: Returning the Current Date

	Using Legacy Date Functions
	Using Legacy Versions of Date Functions
	Using Dates With Two and Four-Digit Years
	AYM: Adding or Subtracting Months to or From Dates
	AYMD: Adding or Subtracting Days to or From Dates
	CHGDAT: Changing Date Formats
	DA Functions: Converting a Date to an Integer
	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	DOWK and DOWKL: Finding the Day of the Week
	DT Functions: Converting an Integer to a Date
	GREGDT: Converting From Julian to Gregorian Format
	JULDAT: Converting a Date From Gregorian to Julian Format
	YM: Calculating Elapsed Months

	6. Format Conversion Functions
	ATODBL: Converting an Alphanumeric String to Double-Precision Format
	EDIT: Converting the Format of a Field
	FTOA: Converting a Number to Alphanumeric Format
	HEXBYT: Converting a Number to a Character
	ITONUM: Converting a Large Binary Integer to Double-Precision Format
	ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format
	ITOZ: Converting a Number to Zoned Format
	PCKOUT: Writing Packed Numbers of Different Lengths
	UFMT: Converting Alphanumeric to Hexadecimal

	7. Numeric Functions
	ABS: Calculating Absolute Value
	ASIS: Distinguishing Between a Blank and a Zero
	BAR: Producing Bar Charts
	CHKPCK: Validating Packed Fields
	DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
	EXP: Raising “e” to the Nth Power
	EXPN: Evaluating a Number in Scientific Notation
	INT: Finding the Greatest Integer
	LOG: Calculating the Natural Logarithm
	MAX and MIN: Finding the Maximum or Minimum Value
	PRDNOR and PRDUNI: Generating Reproducible Random Numbers
	RDNORM and RDUNIF: Generating Random Numbers
	SQRT: Calculating the Square Root

	8. System Functions
	FEXERR: Retrieving an Error Message
	FINDMEM: Finding a Member of a Partitioned Data Set
	GETPDS: Determining if a Member of a Partitioned Data Set Exists
	GETUSER: Retrieving a User ID
	HHMMSS: Returning the Current Time
	MVSDYNAM: Passing a DYNAM Command to the Command Processor
	TODAY: Returning the Current Date

	Appendix A: Creating Your Own Subroutines
	Process Overview
	Considerations for Writing Subroutines
	Naming Conventions
	Argument Considerations
	Programming Considerations
	Language Considerations
	Programming Technique: Entry Points
	Programming Technique: Subroutines With More Than 28 Arguments

	Compilation and Storage
	VM/CMS: Compilation and Storage
	OS/390: Compilation and Storage

	Testing the Subroutine
	Example of a Custom Subroutine: The MTHNAM Subroutine
	The MTHNAM Subroutine Written in FORTRAN
	The MTHNAM Subroutine Written in COBOL
	The MTHNAM Subroutine Written in PL/I
	The MTHNAM Subroutine Written in BAL Assembler
	The MTHNAM Subroutine Written in C
	The MTHNAM Subroutine Called by a FOCUS Request

	Subroutines Written in REXX
	Using REXX Subroutines
	Compiling FUSREXX Macros in VM/CMS

	Index

