

Describing Data
Version 7.2

DN1001058.1101

FOCUS� for S/390�

Cactus, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information Builders
logo, Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are registered
trademarks and EDA, iWay, and iWay Software are trademarks of Information Builders, Inc.

Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.
Allaire and JRun are trademarks of Allaire Corporation.
NOMAD is a registered trademark of Aonix.
UniVerse is a registered trademark of Ardent Software, Inc.
IRMA is a trademark of Attachmate Corporation.
Baan is a registered trademark of Baan Company N.V.
SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.
Impromptu is a registered trademark of Cognos.
Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compaq Computer
Corporation.
CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, and Ingres are registered trademarks of Computer Associates International, Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.
Paradox is a registered trademark of Corel Corporation.
StorHouse is a registered trademark of FileTek, Inc.
HP MPE/iX is a registered trademark of Hewlett Packard Corporation.
Informix is a registered trademark of Informix Software, Inc.
ACF/VTAM, AIX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVS/ESA, OS/2, OS/390, OS/400,
RACF, RS/6000, S/390, VM/ESA, VSE/ESA and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MVS, QMF, SQL/DS,
WebSphere, z/OS and z/VM are trademarks of International Business Machines Corporation.
INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.
Orbix is a registered trademark of Iona Technologies Inc.
Approach and DataLens are registered trademarks of Lotus Development Corporation.
ObjectView is a trademark of Matesys Corporation.
ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual FoxPro, Windows, and Windows NT are registered
trademarks of Microsoft Corporation.
Teradata is a registered trademark of NCR International, Inc.
Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
CORBA is a trademark of Object Management Group, Inc.
Oracle is a registered trademark and Rdb is a trademark of Oracle Corporation.
PeopleSoft is a registered trademark of PeopleSoft, Inc.
INFOAccess is a trademark of Pioneer Systems, Inc.
Progress is a registered trademark of Progress Software Corporation.
Red Brick Warehouse is a trademark of Red Brick Systems.
SAP and SAP R/3 are registered trademarks and SAP Business Information Warehouse and SAP BW are trademarks of SAP AG.
Silverstream is a trademark of Silverstream Software.
ADABAS is a registered trademark of Software A.G.
CONNECT:Direct is a trademark of Sterling Commerce.
Java and all Java-based marks, NetDynamics, Solaris, SunOS, and iPlanet are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.
PowerBuilder and Sybase are registered trademarks and SQL Server is a trademark of Sybase, Inc.
Unicode is a trademark of Unicode, Inc.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not all cases,
these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s intent to use any of
these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these names other than to
refer to the product described.
Copyright © 2001 by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form without the
written permission of Information Builders, Inc.

Printed in the U.S.A.

Describing Data

Preface
This documentation describes how to create the metadata for the data sources that your
FOCUS procedures will access in FOCUS Version 7.2. It is intended for database
administrators, application developers, or other information technology professionals
who will create the metadata used by FOCUS to access corporate data. This manual is
part of the FOCUS for S/390 documentation set.

References to MVS apply to all supported versions of the OS/390, z/OS™, and MVS
operating environments. References to VM apply to all supported versions of the
VM/ESA and z/VM™ operating environments.

The documentation set consists of the following components:

• The Creating Reports manual describes FOCUS Reporting environments and
features.

• The Describing Data manual explains how to create the metadata for the data
sources that your FOCUS procedures will access.

• The Developing Applications manual describes FOCUS Application Development
tools and environments.

• The Maintaining Databases manual describes FOCUS data management facilities
and environments.

• The Using Functions manual describes internal functions and user-written
subroutines.

• The Overview and Operating Environments manual contains an introduction to
FOCUS and FOCUS tools and describes how to use FOCUS in the VM/CMS and
MVS (OS/390) environments.

The users’ documentation for FOCUS Version 7.2 is organized to provide you with a
useful, comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities
and concepts are related, each chapter fully covers its respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and
conventions.

Preface

 Information Builders

How This Manual Is Organized
This manual is organized as follows:

Chapter/Appendix Contents

1 Understanding a Data
Source Description

Introduces Master Files and explains how to use
them.

2 Identifying a Data
Source

Documents how to describe general aspects of a data
source.

3 Describing a Group of
Fields

Documents how to describe groups of related fields
or segments of a data source.

4 Describing an
Individual Field

Documents how to describe specific field level
information of a data source.

5 Describing a Sequential,
VSAM, or ISAM Data
Source

Provides supplementary information specific to
sequential, VSAM, and ISAM data sources.

6 Describing a FOCUS
Data Source

Provides supplementary information specific to
FOCUS data sources.

7 Defining a Join in a
Master File

Describes how to create a new relationship between
any two segments that have at least one field in
common by joining them.

8 Checking and Changing
a Master File: CHECK

Describes how to use the CHECK command to
validate a data source description.

9 Accessing a FOCUS
Data Source: USE

Describes how to assign a logical name to a FOCUS
data source.

10 Providing Data Source
Security: DBA

Describes how to control access to a data source by
adding security attributes to the data source
description.

A Master Files and
Diagrams

Contains Master Files and diagrams of sample data
sources used in the documentation examples.

B Error Messages Describes how to access information about error
messages.

C User Exits for a
Non-FOCUS Data
Source

Describes how to read non-FOCUS data sources
with user-written procedures.

D Rounding in FOCUS Describes how FOCUS rounds numbers for each
numeric data type.

 Summary of New Features

Describing Data

Summary of New Features
The new FOCUS features and enhancements described in this documentation set are
listed in the following table.

New Feature Manual Chapter

Field-based Reformatting Creating Reports Chapter 1, Creating Tabular
Reports

Increased Report Width Creating Reports Chapter 1, Creating Tabular
Reports

ACROSS-TOTAL Creating Reports Chapter 4, Sorting Tabular
Reports

Tiles Creating Reports Chapter 4, Sorting Tabular
Reports

DEFINE FILE SAVE and
DEFINE FILE RETURN

Creating Reports Chapter 6, Creating
Temporary Fields

Forecast Creating Reports Chapter 6, Creating
Temporary Fields

Creating Comma-Delimited
Files

Creating Reports Chapter 11, Saving and
Reusing Report Output

Creating Tab-Delimited
Files

Creating Reports Chapter 11, Saving and
Reusing Report Output

Long Master File Names Creating Reports Chapter 11, Saving and
Reusing Report Output

JOIN WHERE Creating Reports Chapter 13, Joining Data
Sources

KEEPDEFINES Creating Reports Chapter 13, Joining Data
Sources

Long Master File Names Describing Data Chapter 1, Understanding a
Data Source Description

4K Alpha Fields Describing Data Chapter 4, Describing an
Individual Field

Extended Currency Symbol
Support

Describing Data Chapter 4, Describing an
Individual Field

Preface

 Information Builders

New Feature Manual Chapter

SUFFIX =
COMT/COMMA/TABT

Describing Data Chapter 5, Describing a
Sequential, VSAM, or ISAM
Data Source

AUTODATE Describing Data Chapter 6, Describing a
FOCUS Data Source

CDN Developing
Applications

Chapter 1, Customizing Your
Environment

CENT-ZERO Developing
Applications

Chapter 1, Customizing Your
Environment

Exit on Error Developing
Applications

Chapter 1, Customizing Your
Environment

KEEPDEFINES Developing
Applications

Chapter 1, Customizing Your
Environment

PCOMMA Developing
Applications

Chapter 1, Customizing Your
Environment

Unlimited -INCLUDEs Developing
Applications

Chapter 2, Managing an
Application With Dialogue
Manager

SQUEEZ Function Using Functions Chapter 3, Character
Functions

STRIP Function Using Functions Chapter 3, Character
Functions

TRIM Function Using Functions Chapter 3, Character
Functions

DYNAM ALLOC
LONGNAME

Overview and
Operating
Environments

Chapter 5, OS/390 and MVS
Guide to Operations

 Documentation Conventions

Describing Data

Documentation Conventions
The following conventions apply throughout this manual:

Convention Description

THIS TYPEFACE Denotes a command that you must enter in uppercase, exactly
as shown.

this typeface Denotes a value that you must supply.

{ } Indicates two choices from which you must choose one. You
type one of these choices, not the braces.

| Separates two mutually exclusive choices in a syntax line.
Type one of these choices, not the symbol.

[] Indicates optional parameters. None of them is required, but
you may select one of them. Type only the information within
the brackets, not the brackets.

underscore Indicates the default value.

... Indicates that you can enter a parameter multiple times. Type
only the information, not the ellipsis points.

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications
See the Information Builders Publications Catalog for the most up-to-date listing and
prices of technical publications, plus ordering information. To obtain a catalog, contact
the Publications Order Department at (800) 969-4636.

You can also visit our World Wide Web site, http://www.informationbuilders.com, to
view a current listing of our publications and to place an order.

Preface

 Information Builders

Customer Support
Do you have questions about FOCUS?

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 a.m. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities
and documentation. Please be ready to provide your six-digit site code number (xxxx.xx)
when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. It connects you to the tracking system and
known-problem database at the Information Builders support center. Registered users can
open, update, and view the status of cases in the tracking system, and read descriptions of
reported software issues. New users can register immediately for this service. The
technical support section of www.informationbuilders.com also provides usage
techniques, diagnostic tips, and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code number (xxxx.xx).

• The FOCEXEC procedure (preferably with line numbers).

• Master File with picture (provided by CHECK FILE).

 Customer Support

Describing Data

• Run sheet (beginning at login, including call to FOCUS), containing the following
information:

• ? RELEASE

• ? FDT

• ? LET

• ? LOAD

• ? COMBINE

• ? JOIN

• ? DEFINE

• ? STAT

• ? SET

• ? SET GRAPH

• ? USE

• For MVS, ? TSO DDNAME

• For VM, CMS QFI

• The exact nature of the problem:

• Are the results or the format incorrect; are the text or calculations missing or
misplaced?

• The error message and code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, FOCUS, your security
system, or an interface system changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For
example, if you are having problems joining two databases, have you tried executing
a query containing just the code to access the database?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or
production? Do you just have questions about functionality or documentation?

Preface

 Information Builders

User Feedback
In an effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual. Please
use the Reader Comments form at the end of this manual to relay suggestions for
improving the publication or to alert us to corrections. You can also use the Document
Enhancement Request Form on our Web site, http://www.informationbuilders.com.

Thank you, in advance, for your comments.

Information Builders Consulting and Training
Interested in training? Information Builders Education Department offers a wide variety
of training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes,
visit our World Wide Web site (http://www.informationbuilders.com) or call (800)
969-INFO to speak to an Education Representative.

Describing Data

Contents
1 Understanding a Data Source Description ...1-1

A Note About Data Source Terminology ...1-2
What Is a Data Source Description?...1-2
How an Application Uses a Data Source Description ..1-3
What Does a Master File Describe? ...1-3

Identifying a Data Source..1-3
Identifying and Relating a Group of Fields ...1-4
Describing a Field ...1-4

Creating a Data Source Description ...1-4
Creating a Master File and Access File Using an Editor...1-4

Naming a Master File ...1-5
Using Long Master File Names on OS/390...1-5
Member Names for Long Master File Names in OS/390..1-5

What Is in a Master File?..1-9
Improving Readability...1-10
Adding a Comment ...1-11
Editing and Validating a Master File...1-11

2 Identifying a Data Source ..2-1
Specifying a Data Source Name: FILENAME...2-2
Identifying a Data Source Type: SUFFIX ..2-2
Specifying a Physical File Name: DATASET..2-5

DATASET Behavior in FOCUS Data Sources ...2-5
DATASET Behavior in Fixed-Format Sequential Data Sources ..2-8
DATASET Behavior in VSAM Data Sources ..2-9

3 Describing a Group of Fields...3-1
Defining a Single Group of Fields..3-2

Understanding Segments...3-2
Understanding Segment Instances...3-3
Understanding Segment Chains ..3-3
Identifying Key Fields...3-4
Identifying a Segment: SEGNAME ..3-4

Identifying a Logical View: Redefining a Segment ...3-5
Relating Multiple Groups of Fields ..3-7

Facilities for Specifying Relationships..3-8
Identifying a Parent Segment: PARENT...3-8
Identifying the Type of Relationship: SEGTYPE ...3-9

Contents

 Information Builders

Logical Dependence: The Parent-Child Relationship ..3-9
Understanding Root Segments ..3-12
Understanding Descendant Segments ...3-12
Understanding Ancestral Segments...3-13

Logical Independence: Multiple Paths ...3-13
Understanding Multiple Paths ...3-14
Understanding Logical Independence ...3-15

Cardinal Relationships Between Segments ..3-15
One-to-One Relationships ..3-16

Where to Use One-to-One Relationships ..3-18
Implementing One-to-One Relationships in Relational Data Sources ..3-18
Implementing One-to-One Relationships in Sequential Data Sources ..3-18
Implementing One-to-One Relationships in FOCUS Data Sources ..3-18

One-to-Many Relationships..3-19
Implementing One-to-Many Relationships in Relational Data Sources..3-20
Implementing One-to-Many Relationships in VSAM and Sequential Data Sources3-21
Implementing One-to-Many Relationships in FOCUS Data Sources ...3-21

Many-to-Many Relationships ...3-22
Implementing Many-to-Many Directly ...3-22
Implementing Many-to-Many Indirectly...3-23

Recursive Relationships ...3-27
Relating Segments From Different Types of Data Sources..3-30
Rotating a Data Source: Alternate Views...3-31

Other Uses of an Alternate View...3-32
4 Describing An Individual Field ...4-1

Field Characteristics ...4-2
The Field’s Name: FIELDNAME ..4-3

Using a Long and Qualified Field Name...4-4
Using a Duplicate Field Name ..4-6
Rules for Evaluating a Qualified Field Name ...4-7

The Field’s Synonym: ALIAS..4-10
Implementing a Field Synonym ..4-11

The Displayed Data Type: USAGE..4-12
Data Type Formats ..4-13
Integer Format ...4-14
Floating-Point Double-Precision Format...4-14
Floating-Point Single-Precision Format ..4-15
Packed-Decimal Format ..4-15
Numeric Display Options..4-16
Extended Currency Symbol Display Options..4-17
Alphanumeric Format..4-20

 Contents

Describing Data

Date Formats ...4-21
Date Display Options ..4-22
Controlling the Date Separator..4-26
Date Translation ..4-26
Using a Date Field...4-27
Numeric Date Literals ...4-28
Date Fields in Arithmetic Expressions ..4-29
Converting a Date Field ..4-29
How a Date Field Is Represented Internally..4-30
Displaying a Non-Standard Date Format ..4-31
Date Format Support ...4-31
Alphanumeric and Numeric Formats With Date Display Options ..4-32
Date-Time Formats ...4-32
Describing a Date-Time Field ...4-33
Specifying a Date-Time Value ..4-38
Text Field Format..4-40

The Stored Data Type: ACTUAL ..4-41
The ACTUAL Attribute ..4-41

Null or MISSING Values: MISSING...4-44
Using a Missing Value ..4-45

Validating Data: ACCEPT ...4-46
Online Help Information: HELPMESSAGE..4-47

Setting a HELP (PF) Key ..4-48
Alternative Report Column Titles: TITLE ...4-49
Documenting the Field: DESCRIPTION ...4-50
Describing a Virtual Field: DEFINE ..4-51

Using a Virtual Field ...4-52
5 Describing a Sequential, VSAM, or ISAM Data Source ...5-1

Sequential Data Source Formats...5-2
What Is a Fixed-Format Data Source? ..5-2
What Is a Comma or Tab-Delimited Data Source? ...5-4
What Is a Free-Format Data Source? ..5-5
Rules for Maintaining a Free-Format Data Source..5-6

Standard Master File Attributes for a Sequential Data Source ...5-6
Standard Master File Attributes for a VSAM or ISAM Data Source ...5-7

Describing a Group Field ..5-7
Describing a Multiply Occurring Field in a Free-Format Data Source ..5-9

Contents

 Information Builders

Describing a Multiply Occurring Field in a Fixed-Format, VSAM, or ISAM Data Source.........................5-11
Using the OCCURS Attribute ...5-12
Describing a Parallel Set of Repeating Fields ...5-14
Describing a Nested Set of Repeating Fields ..5-15
Using the POSITION Attribute ...5-17
Specifying the ORDER Field ..5-19

Redefining a Field in a Non-FOCUS Data Source ...5-20
Extra-Large Record Length Support ..5-21
Describing Multiple Record Types...5-22

Describing a RECTYPE Field...5-23
Describing Positionally Related Records ..5-24
Ordering of Records in the Data Source..5-25
Describing Unrelated Records...5-27
Using a Generalized Record Type...5-31
Using an ALIAS in a Report Request ...5-34

Combining Multiply Occurring Fields and Multiple Record Types...5-35
Describing a Multiply Occurring Field and Multiple Record Types...5-35
Describing a VSAM Repeating Group With RECTYPEs...5-37
Describing a Repeating Group Using MAPFIELD...5-38

Establishing VSAM Data and Index Buffers..5-41
Using a VSAM Alternate Index ...5-42
Describing a Token-Delimited Data Source...5-45
Reading a Complex Data Source With a User-Written Procedure ...5-48

6 Describing a FOCUS Data Source ..6-1
Designing a FOCUS Data Source ..6-2

Data Relationships...6-2
Join Considerations ...6-3
General Efficiency Considerations..6-3
Changing a FOCUS Data Source ..6-4

Describing a Single Segment..6-5
Maximum Number of Segments ...6-5
Describing Keys, Sort Order, and Segment Relationships: SEGTYPE...6-5
Describing a Key Field..6-7
Describing Sort Order ...6-8
Understanding Sort Order ...6-8
Describing Segment Relationships..6-9
Storing a Segment in a Different Location: LOCATION ...6-9
Separating Large Text Fields ..6-11
Limits on the Number of LOCATION Files ...6-12
Timestamping a FOCUS Segment: AUTODATE...6-12

 Contents

Describing Data

Describing an Individual Field ...6-15
The ACCEPT Attribute ...6-15
The INDEX Attribute..6-16
Joins and the INDEX Attribute ...6-17
FORMAT and MISSING: Internal Storage Requirements..6-18

Describing Two-Gigabyte and Partitioned FOCUS Data Sources ...6-19
Partitioning a FOCUS Data Source...6-19
Intelligent Partitioning...6-20
Specifying an Access File in a FOCUS Master File..6-21
The FOCUS Access File ...6-22
FOCUS Access File Attributes..6-22
Describing Joined Data Sources..6-26

7 Defining a Join in a Master File ..7-1
Join Types...7-2
Static Joins Defined in the Master File: SEGTYPE = KU and KM ...7-3

Describing a Unique Join: SEGTYPE = KU...7-3
Using a Unique Join for Decoding ..7-6
Describing a Non-Unique Join: SEGTYPE = KM..7-7

Using Cross-Referenced Descendant Segments: SEGTYPE = KL and KLU ..7-10
Hierarchies of Linked Segments ...7-14

Dynamic Joins Defined in the Master File: SEGTYPE = DKU and DKM..7-15
Comparing Static and Dynamic Master File Defined Joins and the JOIN Command..................................7-17
Joining to One Cross-Referenced Segment From Several Host Segments...7-19

Joining From Several Segments in One Host Data Source ...7-19
Joining From Several Segments in Several Host Data Sources: Multiple Parents7-22
Recursive Reuse of a Segment ..7-23

8 Checking and Changing a Master File: CHECK ..8-1
CHECK Command Display ...8-3

Determining Common Errors..8-4
The PICTURE Option ..8-5
The HOLD Option..8-8

Specifying AS Names With the HOLD Option...8-10
TITLE, HELPMESSAGE, and TAG Attributes ...8-10
Virtual Fields in the Master File..8-11

9 Accessing a FOCUS Data Source: USE ..9-1
The USE Command..9-2
Specifying a Non-Default File ID ..9-5
Identifying New Data Sources to FOCUS..9-6
Accessing Data Sources in Read Only Mode ...9-8

Contents

 Information Builders

Concatenating Data Sources...9-9
Accessing Simultaneous Usage Data Sources ..9-12

Multi-Thread Configuration ..9-13
Using the LOCATION Attribute..9-14
Displaying the USE Options in Effect..9-14

10 Providing Data Source Security: DBA ...10-1
Introduction ..10-2
Implementing Data Source Security...10-3

Identifying the DBA: The DBA Attribute...10-5
Including the DBA Attribute in HOLD Files ..10-6
Identifying Users With Access Rights: The USER Attribute..10-9
Establishing User Identity ...10-10

Specifying Access Types: The ACCESS Attribute ..10-12
Types of Access ..10-13

Limiting Data Source Access: The RESTRICT Attribute..10-17
Restricting Access to Fields and Segments ...10-18
Restricting Values ...10-20
Restricting Values a User Can Write...10-22
Restricting Values a User Can Alter ...10-23
Restricting Both Read and Write Values...10-24

Placing Security Information in a Central Master File ...10-25
File Naming Requirements for DBAFILE ..10-27
Connection to Existing DBA System With DBAFILE ...10-28
Combining Applications With DBAFILE...10-28
Using Filters ..10-28
Summary of Security Attributes..10-29

Hiding the Restriction Rules: The ENCRYPT Command..10-30
Encrypting Data...10-31
Performance Considerations for Encrypted Data ..10-31
Restricting Existing Files ..10-32
Displaying the Decision Table ..10-32
Setting Passwords Externally ..10-34

FOCEXEC Security..10-34
Suppressing Password Display..10-35
Setting Passwords in Encrypted FOCEXECs..10-35
Defining Variable Passwords ..10-35
Encrypting and Decrypting FOCEXECs...10-36
Locking FOCEXEC Users Out of FOCUS ...10-36

 Contents

Describing Data

Program Accounting/Resource Limitation ...10-37
Program Accounting ...10-37
Activating a DBA User Program...10-38
Specifications for the User-Written Program ..10-38
Resource Limitation ..10-39
Usage Accounting and Security Exit Routine (UACCT) ..10-40

Absolute File Integrity..10-40

A Master Files and Diagrams...A-1
Creating Sample Data Sources ..A-2
The EMPLOYEE Data Source ..A-3

The EMPLOYEE Master File ..A-4
The EMPLOYEE Structure Diagram...A-5

The JOBFILE Data Source..A-6
The JOBFILE Master File ..A-6
The JOBFILE Structure Diagram...A-6

The EDUCFILE Data Source ..A-7
The EDUCFILE Master File ..A-7
The EDUCFILE Structure Diagram...A-7

The SALES Data Source ...A-8
The SALES Master File ...A-8
The SALES Structure Diagram..A-9

The PROD Data Source...A-10
The PROD Master File...A-10
The PROD Structure Diagram..A-10

The CAR Data Source ...A-11
The CAR Master File ...A-11
The CAR Structure Diagram..A-12

The LEDGER Data Source ...A-13
The LEDGER Master File..A-13
The LEDGER Structure Diagram ..A-13

The FINANCE Data Source ..A-14
The FINANCE Master File ..A-14
The FINANCE Structure Diagram...A-14

The REGION Data Source ..A-15
The REGION Master File ..A-15
The REGION Structure Diagram ...A-15

The COURSES Data Source ...A-16
The COURSES Master File ...A-16
The COURSES Structure Diagram ..A-16

Contents

 Information Builders

The EMPDATA Data Source ..A-17
The EMPDATA Master File ..A-17
The EMPDATA Structure Diagram...A-17

The EXPERSON Data Source...A-18
The EXPERSON Master File...A-18
The EXPERSON Structure Diagram..A-18

The TRAINING Data Source ..A-19
The TRAINING Master File ..A-19
The TRAINING Structure Diagram...A-19

The PAYHIST File..A-20
The PAYHIST Master File...A-20
The PAYHIST Structure Diagram ...A-20

The COMASTER File ...A-21
The COMASTER Master File..A-22
The COMASTER Structure Diagram ..A-23

The VideoTrk and MOVIES Data Sources ...A-24
VideoTrk Master File ...A-24
MOVIES Master File ...A-24
VideoTrk Structure Diagram..A-25
MOVIES Structure Diagram ..A-26

The VIDEOTR2 Data Source..A-26
The VIDEOTR2 Master File ..A-26
The VIDEOTR2 Access File..A-27
The VIDEOTR2 Structure Diagram...A-28

The Gotham Grinds Data Sources ...A-29
The GGDEMOG Data Source..A-29
The GGORDER Data Source...A-30
The GGPRODS Data Source ...A-31
The GGSALES Data Source ..A-32
The GGSTORES Data Source..A-33

B Error Messages .. B-1
Accessing Error Files .. B-2
Displaying Messages Online ... B-3

C User Exits for a Non-FOCUS Data Source..C-1
The Dynamic and Re-Entrant Private User Exit of the FOCSAM Interface ... C-2

Functional Requirements.. C-3
Implementation... C-4
The Master File .. C-4
The Access File .. C-4
Calling Sequence.. C-5
Work Area Control Block .. C-6

 Contents

Describing Data

User-coded Data Access Modules ... C-10
Re-Entrant VSAM Compression Exit: ZCOMP1.. C-12

Linking ZCOMP1 .. C-12
What Happens When You Use ZCOMP1 .. C-12
ZCOMP1 Parameter List.. C-13

D Rounding in FOCUS ...D-1
Data Storage and Display ..D-2

Integer Fields: Format I..D-3
Floating-Point Fields: Formats F and D ...D-3
Packed Decimal Format: Format P...D-4

Rounding in Calculations and Conversions...D-6
DEFINE and COMPUTE...D-9

Index ... I-1

Describing Data 1-1

CHAPTER 1

Understanding a Data Source Description

Topics:
• A Note About Data Source

Terminology

• What Is a Data Source Description?

• How an Application Uses a Data
Source Description

• What Does a Master File Describe?

• Creating a Data Source Description

• Naming a Master File

• What Is in a Master File?

Information Builders products provide a flexible data
description language, which you can use with many types of
data sources, including:

• Relational, such as DB2, Oracle, Sybase, and Teradata.

• Hierarchical, such as IMS and FOCUS.

• Network, such as CA-IDMS.

• Indexed, such as ISAM and VSAM.

• Sequential, both fixed-format and free-format.

• Multi-dimensional, such as Fusion.

You can also use the data description language and related
facilities to:

• Join different types of data sources to create a temporary
structure from which your request can read or write.

• Define a subset of fields or columns to be available to users.

• Logically rearrange a data source to access the data in a
different order.

Understanding a Data Source Description

1-2 Information Builders

A Note About Data Source Terminology
Different types of data sources make use of similar concepts, but refer to them
differently. For example, the smallest meaningful element of data is called a field by
many hierarchical database management systems and indexed data access methods, but
called a column by relational database management systems.

There are other cases in which a common concept is identified by a number of different
terms. For simplicity, we use a single set of standardized terms. For example, we usually
refer to the smallest meaningful element of data as a field, regardless of the type of data
source. However, when required for clarity, we use the term specific to a given data
source. Each time we introduce a new standard term, we define it and compare it to
equivalent terms used with different types of data sources.

What Is a Data Source Description?
When your application accesses a data source, it needs to know how to interpret the data
that it finds. Your application needs to know about:

• The overall structure of the data. For example, is the data relational, hierarchical, or
sequential? Depending upon the structure, how is it arranged or indexed?

• The specific data elements. For example, what fields are stored in the data source,
and what is the data type of each field—character, date, integer, or some other type?

To obtain the necessary information, your application reads a data source description.
The primary component of a data source description is called a Master File. A Master
File describes the structure of a data source and its fields. For example, it includes
information such as field names and data types.

For some data sources, an Access File supplements a Master File. An Access File
includes additional information that completes the description of the data source. For
example, it includes the full data source name and location. You need one Master File—
and, for some data sources, one Access File—to describe a data source.

 How an Application Uses a Data Source Description

Describing Data 1-3

How an Application Uses a Data Source Description
Master Files and Access Files are stored separately, apart from the associated data source.
Your application uses a data source’s Master File (and if required, the corresponding
Access File) to interpret the data source in the following way:

1. Identifies, locates, and reads the Master File for the data source named in a request.

If the Master File is already in memory, your application uses the memory image and
then proceeds to Step 4. If the Master File is not in memory, the application locates
the Master File on a storage device and loads it into memory, replacing any existing
Master File in memory. If your Master File references other data sources as
cross-referenced segments, or if a JOIN command is in effect for this file, the
cross-referenced Master Files are also read into memory.

2. Reads the security rules if Information Builders data source security (DBA) has been
specified for the data source and ensures that user access is based on any DBA
security specified.

3. Locates and reads the Access File for the data source named in the request, if that
data source requires an Access File.

4. Locates and reads the data source.
The data source contents are interpreted based on the information in the Master File
and, if applicable, the Access File.

What Does a Master File Describe?
A Master File enables you to:

• Identify the name and type of a data source.

• Identify and relate groups of fields.

• Describe individual fields.

Identifying a Data Source
In order to interpret data, your application needs to know the name you are using to
identify the data source and what type of data source it is. For example, is it a DB2 data
source, an Oracle data source, or a FOCUS data source?

For more information, see Chapter 2, Identifying a Data Source.

Understanding a Data Source Description

1-4 Information Builders

Identifying and Relating a Group of Fields
A Master File identifies and relates groups of fields that have a one-to-one
correspondence with each other—in Master File terms, a segment; in relational terms, a
table.

You can join data sources of the same type (using a Master File or a JOIN command) and
data sources of different types (using a JOIN command). For example, you can join two
DB2 data sources to a FOCUS data source, and then to a VSAM data source.

For more information about defining and relating groups of fields, see Chapter 3,
Describing a Group of Fields.

Describing a Field
Every field has several characteristics that you must describe in a Master File, such as
type of data and length or scale. A Master File can also indicate optional field
characteristics. For example, a Master File can specify if the field can have a missing
value, and can provide descriptive information for the field.

A Master File usually describes all of the fields in a data source. In some cases, however,
you can create a logical view of the data source in which only a subset of the fields is
available, and then describe only those fields in your Master File.

For more information, see Chapter 4, Describing an Individual Field.

Creating a Data Source Description
You can create a Master File and Access File for a data source in several ways. If the data
source:

• Has an existing description—such as a native schema or catalog, or a COBOL File
Description—you can use a tool to automatically generate the Master File and
Access File from the existing description.

• Does not have an existing description, you can create a Master File and (if
required) an Access File by coding them using Information Builders’ data source
description language, and specify their attributes using any text editor.

For more information about coding or specifying a Master File and Access File, see
Creating a Master File and Access File Using an Editor on page 1-4.

Creating a Master File and Access File Using an Editor
You can create a Master File and an Access File by coding them using a text editor. You
can do this in all Information Builders products. The information that you need about
Master File syntax is contained in this documentation. For information about Access File
syntax, see your data adapter documentation.

After editing a Master File, issue the CHECK FILE command to validate the new Master
File and to refresh your session’s image of it.

 Naming a Master File

Describing Data 1-5

Naming a Master File
Master File names for FOCUS and fixed format sequential data sources can be up to 64
characters long on MVS, UNIX, and Windows NT. Except where noted, this length is
supported in all functional areas that reference a Master File.

Using Long Master File Names on OS/390
In the OS/390 environment, file and member names are limited to eight characters.
Therefore, longer Master File names are assigned eight-character names to be used when
interacting with the operating system. You need to use the following to implement Master
File names longer that eight characters:

• A LONGNAME option for the DYNAM ALLOCATE command, which creates the
long Master File name and performs the allocation. This DYNAM option is
described in How to Allocate a Long Master File Name in OS/390 on page 1-7.

• An eight-character naming convention for member names associated with long
Master File names. This convention is described in Member Names for Long Master
File Names in OS/390 on page 1-5.

A long Master File attribute, $ VIRT, which contains the long name to be used when
interacting with the Master File and the operating system. This attribute is described in
How a Long Master File Name is Implemented in OS/390 on page1-6.

Member Names for Long Master File Names in OS/390
The DYNAM ALLOC command with the LONGNAME option automatically creates a
member for the long Master File name in the PDS allocated to ddname HOLDMAST.

The member name consists of three parts: a prefix consisting of the leftmost characters
from the long name, followed by a left brace character ({), followed by an index number.
This naming convention is in effect for all long Master Files allocated using DYNAM or
created using the HOLD command. The length of the prefix depends on how many long
names have a common set of leftmost characters:

• The first ten names that share six or more leftmost characters have a six-character
prefix and a one-character index number, starting from zero.

• Starting with the eleventh long name that shares the same leftmost six characters, the
prefix becomes five characters, and the index number becomes two characters,
starting from 00.

This process can continue until the prefix is one character and the index number is six
characters. If you delete one of these members from the HOLDMAST PDS, the member
name will be reused for the next new long name with the same prefix.

Understanding a Data Source Description

1-6 Information Builders

Example Long Master File Names and Corresponding Member Names
The following table lists sample long names with the corresponding member names that
would be assigned under OS/390.

Long Name Member Name

EMPLOYEES_ACCOUNTING EMPLOY{0

EMPLOYEES_DEVELOPMENT EMPLOY{1

EMPLOYEES_DISTRIBUTION EMPLOY{2

EMPLOYEES_FINANCE EMPLOY{3

EMPLOYEES_INTERNATIONAL EMPLOY{4

EMPLOYEES_MARKETING EMPLOY{5

EMPLOYEES_OPERATIONS EMPLOY{6

EMPLOYEES_PERSONNEL EMPLOY{7

EMPLOYEES_PUBLICATIONS EMPLOY{8

EMPLOYEES_RESEARCH EMPLOY{9

EMPLOYEES_SALES EMPLO{00

EMPLOYEES_SUPPORT EMPLO{01

Syntax How a Long Master File Name is Implemented in OS/390
To relate the short name to its corresponding long name, the first line of a long Master
File contains the following attribute:
$ VIRT=long_filename

where:
long_filename

Is the long name, up to 64 characters.

 Naming a Master File

Describing Data 1-7

Syntax How to Allocate a Long Master File Name in OS/390
DYNAM ALLOC DD ddname LONGNAME long_filename DS physical_filename

where:
ddname

Is the one- to eight-character member name of the Master File. It must be an existing
member of a PDS allocated to DD MASTER.

long_filename

Is the long Master File name. The DYNAM command creates a copy of the short
Master File in the PDS allocated to DD HOLDMAST. The member in HOLDMAST
conforms to the eight character naming convention for long names. The Master File
has the $ VIRT attribute on the top line, which contains the long name.

Note: The copy, not the member ddname, is the Master File used when you
reference the long name in a request.

physical_filename

Is the data set name of the FOCUS or fixed format sequential data source.

After you have allocated the long name, you can reference the data source using the long
Master File name or the short ddname.

Syntax How to Free an Allocation for a Long Master File Name
DYNAM FREE LONGNAME long_filename

where:
long_filename

Is the long Master File name.

After issuing the DYNAM FREE LONGNAME command, you can no longer reference
the data source using the long Master File name. However, you can reference it using the
short ddname that was specified in the DYNAM ALLOC command.

Understanding a Data Source Description

1-8 Information Builders

Example Using a Long Master File Name on OS/390
To reference the EMPLOYEE data source as EMPLOYEE_DATA, dynamically allocate
the long name:
DYNAM ALLOC DD EMPLOYEE LONGNAME EMPLOYEE_DATA -

 DS USER1.EMPLOYEE.FOCUS SHR REU

You can now issue a request using the long name:
TABLE FILE EMPLOYEE_DATA
PRINT CURR_SAL
BY LAST_NAME BY FIRST_NAME
END

The output is:
LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------
BANNING JOHN $29,710.00
BLACKWOOD ROSEMARIE $21,790.00
CROSS BARBARA $27,072.00
GREENSPAN MARY $9,010.00
IRVING JOAN $26,872.00
JONES DIANE $18,490.00
MCCOY JOHN $18,490.00
MCKNIGHT ROGER $16,110.00
ROMANS ANTHONY $21,130.00
SMITH MARY $13,210.00
 RICHARD $9,510.00
STEVENS ALFRED $11,010.00

In this example, the long Master File will exist in the HOLDMAST PDS as member
EMPLOY{0. The index number after the bracket depends on the number of existing long
Master Files containing the same first six leftmost characters. The content of the
EMPLOYEE_DATA Master File is virtually identical to the short Master File used in the
allocation. The only difference is the $ VIRT keyword on line one, which contains the
long name. The FILENAME parameter also contains the long name, up to 64 characters.
$ VIRT=EMPLOYEE_DATA
$ Created from EMPLOYEE MASTER
FILENAME=EMPLOYEE_DATA,
SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 .
 .
 .

 What Is in a Master File?

Describing Data 1-9

Reference Usage Notes for Long Master File Names
• The FOCUS Database Server (SU) is not supported on any platform.

• The DATASET attribute is not supported in a long Master File.

• The ACCESSFILE attribute is not supported with long Master Files.

• An external index is not supported.

• The LONGNAME option of the DYNAM command may only be issued from within
a FOCEXEC or RPC. It cannot be used to pre-allocate long Master Files in JCL or
CLISTS on OS/390.

• Long Master Files are not designed to be edited on OS/390. Each time the DYNAM
command is issued with the LONGNAME attribute, it overlays the existing member
in HOLDMAST. You must make any edits (such as the addition of fields or DBA
attributes, or use of the REBUILD utility) to an existing short Master File.

• ? FDT and ? FILE longfilename will show an internal DD alias of @000000n, where
n is less than or equal to the number of existing long file allocations. Use this internal
DDNAME in all queries that require a valid DDNAME, such as ? TSO DDNAME
queries or USE commands (OS/390 only).

• VM is not supported.

• Fusion is not supported.

What Is in a Master File?
A Master File describes a data source using a series of declarations:

• A data source declaration.

• A segment declaration for each segment within the data source.

• A field declaration for each field within a segment.
The specifications for an Access File are similar, although the details vary by type of data
source. The appropriate documentation for your data adapter indicates whether you
require an Access File and, if so, what the Access File attributes are.

Understanding a Data Source Description

1-10 Information Builders

Syntax How to Specify a Declaration
Each declaration specifies a series of attributes in the form
attribute = value, attribute = value, ... ,$

where:
attribute

Is a Master File keyword that identifies a file, segment, or field property. You can
specify any Master File attribute by its full name, its alias, or its shortest unique
truncation. For example, you can use the full attribute FILENAME or the shorter
form FILE.

value

Is the value of the attribute.
A comma follows each attribute assignment, and each field declaration ends with a dollar
sign ($). Commas and dollar signs are optional at the end of data source and segment
declarations.
Each declaration should begin on a new line. You can extend a declaration across as
many lines as you wish. For a given declaration you can put each attribute assignment on
a separate line, combine several attributes on each line, or include the entire declaration
on a single line. Each line can be a maximum of 80 characters long.
For more information on data source declarations, see Chapter 2, Identifying a Data
Source. For more information on segment declarations, see Chapter 3, Describing a
Group of Fields. For more information on field declarations, see Chapter 4, Describing
an Individual Field.

Note: In a Master File, the attribute name must be in English; the attribute value can be in
any supported national language.

Improving Readability
You can begin each attribute assignment in any position that you wish. You can include
blank spaces between the elements in a declaration. This makes it easy for you to indent
segment or field declarations to make the Master File easier to read. To position text, use
blank spaces, not the Tab character.

You can also include blank lines to separate declarations from each other. Blank spaces
and lines are not required and are ignored by the application.

Example Improving Readability With Blank Spaces and Blank Lines
The following declarations show how to improve readability by adding blank spaces and
blank lines within and between declarations:
• SEGNAME=EMPINFO, SEGTYPE=S1 ,$

 FIELDNAME=EMP_ID, ALIAS=EID, USAGE=A9 ,$

• SEGNAME=EMPINFO, SEGTYPE=S1 ,$

 FIELDNAME = EMP_ID, ALIAS = EID, USAGE = A9 ,$

• SEGNAME=EMPINFO,SEGTYPE=S1,$
 FIELDNAME = EMP_ID, ALIAS = EID, USAGE = A9 ,$

 What Is in a Master File?

Describing Data 1-11

Example Improving Readability by Extending a Declaration Across
Lines
The following example extends a field declaration across several lines:
FIELDNAME = MEMBERSHIP, ALIAS = BELONGS, USAGE = A1, MISSING = ON,
 DESCRIPTION = This field indicates the applicant's membership status,
 ACCEPT = Y OR N, FIELDTYPE = I,
 HELPMESSAGE = 'Please enter Y for Yes or N for No' ,$

Adding a Comment
You can add comments to any declaration by:

• Typing a comment in a declaration line after the terminating dollar sign.

• Creating an entire comment line by placing a dollar sign at the beginning of the line.

Adding a comment line terminates the previous declaration if it has not already been
terminated. Everything on a line following the dollar sign is ignored.

Comments placed after a dollar sign are useful only for those who view the Master File
source code.

Example Adding a Comment in a Master File
The following example contains two comments. The first comment follows the dollar
sign on the data source declaration. The second comment is on a line by itself after the
data source declaration.
FILENAME = EMPLOYEE, SUFFIX = FOC ,$ This is the personnel data source
$ This data source tracks employee salaries and raises
SEGNAME = EMPINFO, SEGTYPE = S1 ,$

Editing and Validating a Master File
After you manually create or edit a Master File, you should issue the CHECK FILE
command to validate it. CHECK FILE reads the new or revised Master File into memory
and highlights any errors in your Master File so that you can correct them before reading
the data source.

The CHECK FILE PICTURE command displays a diagram illustrating the structure of a
data source. You can also use this command to view information in the Master File, such
as names of segments and fields, and the order in which information is retrieved from the
data source when you run a request against it.

For more information, see Chapter 8, Checking and Changing a Master File: CHECK.

Describing Data 2-1

CHAPTER 2

Identifying a Data Source

Topics:

• Specifying a Data Source Name:
FILENAME

• Identifying a Data Source Type:
SUFFIX

• Specifying a Physical File Name:
DATASET

In order to interpret data, your application needs to know the
name you are using to identify the data source and what type of
data source it is. For example, is it a DB2 data source, a
Teradata data source, or a FOCUS data source?

In a Master File, you identify the name and the type of data
source in a data source declaration. A data source declaration
can include the following attributes:

• FILENAME, which identifies the name of the data source.

• SUFFIX, which identifies the type of data source.

• ACCESSFILE, which identifies the name of the optional
Access File for a FOCUS data source. See Chapter 6,
Describing a FOCUS Data Source.

• DATASET, which identifies the physical file name if your
data source has a non-standard name.

You can optionally specify a sliding date window that assigns a
century value to dates stored with two-digit years, using these
data source attributes:

• FDEFCENT, which identifies the century.

• FYRTHRESH, which identifies the year.

For more information on the sliding window technique, see
Working With Cross-Century Dates in the Developing
Applications manual.

Identifying a Data Source

2-2 Information Builders

Specifying a Data Source Name: FILENAME
The FILENAME attribute specifies the name of the data source described by the Master
File. This is the first attribute specified in a Master File. You can abbreviate the
FILENAME attribute to FILE.

Syntax How to Specify a Data Source Name
FILE[NAME] = data_source_name

where:

data_source_name

Is the name of the data source that the Master File describes. The name can be a
maximum of eight characters.

The file name must start with a letter, and the remaining characters can be any
combination of letters, numbers, and underscores (_).

Example Specifying a Data Source Name
The following example specifies the data source name EMPLOYEE:

FILENAME = EMPLOYEE

Identifying a Data Source Type: SUFFIX
The SUFFIX attribute identifies the type of data source you are using—for example, a
DB2 data source or a FOCUS data source. Based on the value of SUFFIX, the
appropriate data adapter is used to access the data source.

The SUFFIX attribute is required for most types of data sources. It is optional for a
fixed-format sequential data source. However, if you refer to a fixed-format sequential
data source in a JOIN command, then the SUFFIX attribute must be declared in the
Master File.

You can use the full attribute name FILESUFFIX, or the shorter form SUFFIX.

You can create your own data access module for any non-standard data source that
cannot be described using a standard Master File. In this case you would assign the name
of the data access module to the SUFFIX attribute in the Master File. Techniques for
identifying and using your own data access routines are described in Appendix C, User
Exits for a Non-FOCUS Data Source.

 Identifying a Data Source Type: SUFFIX

Describing Data 2-3

Syntax How to Identify a Data Source Type
[FILE]SUFFIX = data_source_type

where:

data_source_type

Indicates the type of data source or the name of a customized data access module.
The default value is FIX, which represents a fixed-format sequential data source.

Example Specifying the Type for a FOCUS Data Source
The following example specifies the data source type FOC, which represents a FOCUS
data source:

SUFFIX = FOC

Identifying a Data Source

2-4 Information Builders

Reference SUFFIX Values
The following table indicates the SUFFIX value for each data source type:

Data Source Type SUFFIX Value

ADABAS ADBSIN or ADBSINX
ADABAS (OpenVMS EDA 2.x and FOCUS 6.x)

CA-Datacom/DB DATACOM

CA-IDMS/DB IDMSR

CA-IDMS/SQL SQLIDMS

DB2 DB2 or SQLDS

Fixed-format sequential FIX This value is the default.
PRIVATE (for FOCSAM user exit)

FOCUS FOC

Free-format (also known as
comma-delimited) sequential

COM, COMMA, COMT

Fusion FUSION

IMS IMS

Millennium CPMILL or CPMILL2 (Release 2)
CPMILL3 (Release 3)

Model 204 M204IN

NOMAD NMDIN

Oracle SQLORA

SQL/DS SQLDS

SUPRA SUPRA

System 2000 S2K

Tab Delimited TABT

Teradata SQLDBC

Token Delimited DFIX

TOTAL TOTIN

VSAM VSAM

PRIVATE (for FOCSAM user exit)

Non-standard data source Name of the customized data access routine.

 Specifying a Physical File Name: DATASET

Describing Data 2-5

Specifying a Physical File Name: DATASET
You can add the DATASET attribute to the Master File to specify a physical location for
the data source to be allocated. In addition, the DATASET attribute permits you to
bypass the FOCUS search mechanism for default data source location. DATASET
eliminates the need to allocate data sources using JCL, FILEDEF, DYNAM, and USE
commands.

User allocation and system specific behavior is as follows:

Platform User allocation command

CMS FILEDEF

TSO DYNAM ALLOC or TSO ALLOC

Note:

• The MODIFY FIND function does not work with the DATASET attribute. To use
FIND with a data source, you must explicitly allocate the data source.

• You cannot use both the ACCESSFILE attribute and the DATASET attribute in the
same Master File. For information on the ACCESSFILE attribute, see Chapter 6,
Describing a FOCUS Data Source.

DATASET Behavior in FOCUS Data Sources
The DATASET attribute can be used only on the file level of the Master File. If the
Master File’s name is present in the USE list, or the user explicitly allocated the data file,
a warning is issued and the DATASET attribute is ignored.

If DATASET is used in a Master File whose data source is managed by the FOCUS
Database Server, the DATASET attribute is ignored on the server side because the
FOCUS Database Server does not read Master Files for servicing table requests.

The DATASET attribute in the Master File has the lowest priority:

• A user’s explicit allocation overrides the DATASET attribute if you first issue the
allocation command and then issue a CHECK FILE command to clear the previous
DATASET allocation.

• The USE command for FOCUS data sources overrides DATASET attributes and
explicit allocations.

An alternative to the DATASET attribute for allocating FOCUS data sources is an
Access File. For detailed information, see Chapter 6, Describing a FOCUS Data Source.

Note: If a DATASET allocation is in effect, a CHECK FILE command must be issued in
order to override it by an explicit allocation command. The CHECK FILE command will
de-allocate the allocation created by DATASET.

Identifying a Data Source

2-6 Information Builders

Syntax How to Use the DATASET Attribute
{DATASET|DATA}='filename [ON sinkname]'

where:

filename

Is the platform-dependent physical name of the data source.

sinkname

Indicates that the data source is located on the FOCUS Database Server. This
attribute is valid for FOCUS data sources.

In MVS, the syntax is:

{DATASET|DATA}='qualifier.qualifier ...'

or

{DATASET|DATA}='ddname ON sinkname'

In CMS, the syntax is:

{DATASET|DATA}='filename filetype filemode [ON sinkname]'

Example Allocating a FOCUS Data Source Using the DATASET Attribute
The following example illustrates how to allocate a FOCUS data source using the
DATASET attribute:

For MVS,

FILENAME=CAR,SUFFIX=FOC
DATASET='USER1.CAR.FOCUS'
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

For CMS,

FILENAME=CAR,SUFFIX=FOC
DATASET='CAR FOCUS A'
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

 Specifying a Physical File Name: DATASET

Describing Data 2-7

Example Allocating a Data Source For the FOCUS Database Server
The following example illustrates how to allocate a FOCUS data source with the
DATASET attribute using ON sink:

For MVS,

FILENAME=CAR,SUFFIX=FOC
DATASET='CAR ON SINK1'
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

Note: The ddname CAR is allocated by the FOCUS Database Server JCL.

For CMS,

FILENAME=CAR,SUFFIX=FOC
DATASET='CAR FOCUS A ON SINK1'
SEGNAME=ORIGIN,SEGTYPE=S1
FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
.
.
.

Identifying a Data Source

2-8 Information Builders

DATASET Behavior in Fixed-Format Sequential Data Sources
The DATASET attribute can be used only on the file level of the Master File and cannot
contain ON sink. If the DATASET attribute contains ON sink, an error message is issued
and the operation is terminated.

When FOCUS detects the DATASET attribute, FOCUS checks for an explicit allocation
of data for this Master File. If an explicit allocation exists, a warning message is issued
informing the user that the DATASET value has been overridden and the DATASET
attribute is ignored. If this Master File name is not allocated, an internal command is
issued to perform the allocation. This allocation is stored temporarily and is released
when a new Master File is used or when the FOCUS session terminates.

Syntax How to Use the DATASET Attribute With Fixed-Format Data
Sources
{DATASET|DATA}='filename'

where:

filename

Is the platform-dependent physical name of the data source.

The DATASET attribute in the Master File has the lowest priority:

• A user’s explicit allocation overrides DATASET attributes.

Note: If a DATASET allocation is in effect, a CHECK FILE command must be issued in
order to override it by an explicit allocation command. The CHECK FILE command will
de-allocate the allocation created by DATASET.

Example Allocating a Fixed-Format Data Source Using the DATASET
Attribute
The following examples illustrate how to allocate a fixed-format data source using the
DATASET attribute:

1. FILE=XX, SUFFIX=FIX, DATASET='SEQFILE1 DATA A'

 .
 .
 .
2. FILE=XX, SUFFIX=FIX, DATASET='USER1.SEQFILE1'

 .
 .
 .

 Specifying a Physical File Name: DATASET

Describing Data 2-9

DATASET Behavior in VSAM Data Sources
The DATASET attribute can be used on the file level of the Master File and cannot
contain ON sink. If the DATASET attribute contains ON sink, an error message is issued
and the operation is terminated.

When FOCUS detects the DATASET attribute, FOCUS checks for an explicit allocation
of data for this Master File. If an explicit allocation is found, a warning message is issued
informing the user that the DATASET value has been overridden and the DATASET
attribute is ignored. If this Master File name is not allocated, an internal command is
issued to perform the allocation. This allocation is stored temporarily and is released
when a new Master File is used or when the FOCUS session terminates.

The DATASET attribute may also appear on the field level of the Master File to specify
where to find an alternate index. Because of VSAM naming conventions (truncated to 8
characters), the name of the field alias will be used as the ddname. If a user allocation is
found for the Master File or alternate index ddname, the DATASET attribute is ignored
and a warning message issued.

Note: There is no limit on how many alternate indices you may have. It is also acceptable
for some alternate indices to have the DATASET attribute and others not. However, if a
file level DATASET attribute is missing, the field level DATASET will be ignored.

Syntax How to Use the DATASET Attribute With VSAM Data Sources
{DATASET|DATA}='filename'

where:

filename

Is the platform-dependent physical name of the data source or alternate index.

The DATASET attribute in the Master File has the lowest priority:

• A user’s explicit allocation overrides DATASET attributes.

Note: If a DATASET allocation is in effect, a CHECK FILE command must be issued in
order to override it by an explicit allocation command. The CHECK FILE command will
de-allocate the allocation created by DATASET.

Identifying a Data Source

2-10 Information Builders

Example Allocating a VSAM Data Source Using the DATASET Attribute
The following example illustrates how to allocate a VSAM data source on the file level
and for an alternate index:

FILE=EXERVSM1, SUFFIX=VSAM, DATASET='VSAM1.CLUSTER1',$
SEGNAME=ROOT , SEGTYPE=S0,$
 GROUP=KEY1 , ALIAS=KEY , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD1 , ALIAS=F1 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD2 , ALIAS=F2 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD3 , ALIAS=DD1 , FORMAT=A4, ACTUAL=A4 , FIELDTYPE = I ,
 DATASET='VSAM1.INDEX1' ,$
 FIELD=FLD4 , ALIAS=F4 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD5 , ALIAS=F5 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD6 , ALIAS=F6 , FORMAT=A4, ACTUAL=A4 ,$
 FIELD=FLD7 , ALIAS=F7 , FORMAT=A4, ACTUAL=A4 ,$

Describing Data 3-1

CHAPTER 3

Describing a Group of Fields

Topics:

• Defining a Single Group of Fields

• Identifying a Logical View:
Redefining a Segment

• Relating Multiple Groups of Fields

• Logical Dependence: The
Parent-Child Relationship

• Logical Independence: Multiple
Paths

• Cardinal Relationships Between
Segments

• One-to-One Relationships

• One-to-Many Relationships

• Many-to-Many Relationships

• Recursive Relationships

• Relating Segments From Different
Types of Data Sources

• Rotating a Data Source: Alternate
Views

In a data source, certain fields may have a one-to-one
correspondence and form a group. You can relate different
groups to each other. For some types of data sources you can
even define a logical view of a group—that is, a subset. You
identify these groups and relationships between these groups by
using attributes in the Master and Access File, as well as related
facilities such as the JOIN command.

Defining a group of fields is described in Defining a Single
Group of Fields on page 3-2. Relating these groups to each
other is described in Relating Multiple Groups of Fields on page
3-7.

These topics describe the general concepts and explain how to
implement them using Master File attributes. If your type of
data source also requires an Access File, see the appropriate
data adapter documentation for supplementary information
about defining groups and group relations in the Access File.

Describing a Group of Fields

3-2 Information Builders

Defining a Single Group of Fields
In a data source, certain fields may have a one-to-one correspondence: for each value of
a field, the other fields will have exactly one corresponding value. For example, consider
the EMPLOYEE data source:

• Each employee has one ID number and the number is unique to that employee.

• For each ID number—that is, for each employee—there is one first and last name,
one date hired, one department, and one current salary.

In the data source, a field represents each of these employee characteristics. The group of
fields represents the employee. In Master File terms, this group is called a segment.

Understanding Segments
While the term segment may not be familiar to you, the concept behind it is universal. A
segment is a group of fields that have a one-to-one correspondence with each other and
usually describe a group of related characteristics. In a relational data source, a segment
is equivalent to a table. Segments are the building blocks of larger data structures. You
can relate different segments to each other, and describe the new structures, as described
in Relating Multiple Groups of Fields on page 3-7.

ID# 199329144
John Banning
 .
 .
 .

works in Production dept.
earns $29,700

Real World

EMP_ID
LAST_NAME
FIRST_NAME
 .
 .
 .
DEPARTMENT
CURR_SAL
 .
 .
 .

Segment

(describes the
real world)

SEGNAME=EMPINFO

FIELDNAME=EMP_ID, ...

FIELDNAME=LAST_NAME, …

FIELDNAME=FIRST_NAME, …
 .
 .
 .

FIELDNAME=DEPARTMENT, …

FIELDNAME=CURR_SAL, …
 .
 .
 .

 Defining a Single Group of Fields

Describing Data 3-3

Understanding Segment Instances
While a segment is abstract—a description of data—the segment instances that
correspond to it are the actual data. Each instance is an occurrence of segment values
found in the data source. For a relational data source, an instance is equivalent to a row in
a table. In a single segment data source, a segment instance is the same as a record.

The relationship of a segment to its segment instances is illustrated in the following
diagram:

543729165
GREENSPAN
MARY
.
.
.

119329144
BANNING
JOHN
.
.
.

EMP_ID
LAST_NAME
FIRST_NAME
.
.
.

071382660
STEVENS
ALFRED
.
.
.

segment segment instances

Understanding Segment Chains
All of a segment’s instances that are descended from a single parent instance are
collectively known as a segment chain. In the special case of a root segment, which has
no parent, all of the root instances form a chain. The parent-child relationship is
discussed in Logical Dependence: The Parent-Child Relationship on page 3-9.

EM P_ ID
LA S T_N A M E
FIR S T_N A M E
.
.
.

EM PINFO

SA LINFO

117593129
JO N E S
D IA N E
.
.
.

82 /05 /28
$1,479.50

82/08/31
$1,540.00

82/06/30
$1,540.00

82/07/30
$1,540.00

P A Y_D A TE
G R O S S

segm ent
chain

You describe a segment using the SEGNAME and SEGTYPE attributes in the Master
File. The SEGNAME attribute is described in Identifying a Segment: SEGNAME on
page 3-4.

Describing a Group of Fields

3-4 Information Builders

Identifying Key Fields
Most segments also have key fields—that is, one or more fields that uniquely identify
each segment instance. In the EMPLOYEE data source, the ID number is the key
because each employee has one ID number, and no other employee has the same number.
The ID number is represented in the data source by the EMP_ID field.

If your data source uses an Access File, you may need to specify which fields serve as
keys by identifying them in the Access File. If the data source also happens to be a
relational data source, then in the Master File, the fields constituting the primary key
should be the first fields described for that segment—that is, their field declarations
should come before any others in that segment.

For FOCUS data sources, you identify key fields and their sorting order using the
SEGTYPE attribute in the Master File, as shown in Chapter 6, Describing a FOCUS
Data Source. You position the key fields as the first fields in their segment.

Identifying a Segment: SEGNAME
The SEGNAME attribute identifies the segment. It is the first attribute you specify in a
segment declaration. SEGNAME has an alias of SEGMENT.

You can give the segment any name consisting of up to eight characters. You will
probably want to make the Master File self-documenting by setting SEGNAME to
something meaningful to the user or the native file manager. For example, if you are
describing a DB2 table, you might want to assign the table name (or an abbreviation) to
SEGNAME.

In a Master File, each segment name must be unique. The only exception to this rule is in
a FOCUS data source, where cross-referenced segments in Master File defined joins can
have the same name as other cross-referenced segments in Master File defined joins. If
cross-referenced segments do have identical names, you can still refer to them uniquely
by using the CRSEGNAME attribute. See Chapter 7, Defining a Join in a Master File for
more information.

In a FOCUS data source, you cannot change the value of SEGNAME once data has been
entered into the data source. For all other types of data sources, you can change
SEGNAME as long as you also change all references to it—for example, any references
in the Master and Access File.

If your data source uses an Access File as well as a Master File, you must specify the
same segment name in both.

 Identifying a Logical View: Redefining a Segment

Describing Data 3-5

Syntax How to Identify a Segment
{SEGNAME|SEGMENT} = segment_name

where:

segment_name

Is the name you want to use to identify this segment. It can be up to a maximum of
eight characters long.

The first character must be a letter, and the remaining characters can be any
combination of letters, numbers, and underscores (_). Information Builders does not
recommend using other characters, because they may cause problems in some
operating environments or when resolving expressions.

Example Identifying a Segment
For example, if a segment corresponds to a relational table named TICKETS, and you
want to give the segment the same name, you could use the SEGNAME attribute in the
following way:

SEGNAME = TICKETS

Identifying a Logical View: Redefining a Segment
The segments that you define usually correspond to underlying groups in your data
source. For example, a segment could be a table in a relational data source.

However, you are not limited to using the segment as it was originally defined in the
native data source. You can define a logical view in which you include only a subset of
the segment’s fields (similar to a relational view), or else define the unwanted fields as
one or more filler fields. This technique can be helpful if, for example, you only want to
make some of the segment’s fields available to an application or its users.

You can use the following methods with the following types of data sources:

• Relational data sources. You can omit unwanted fields from the segment
description.

• Sequential and FOCUS data sources. You can define unwanted fields as one or
more filler fields.

If you want to explicitly restrict access at the file, segment, or field level based on user
ID, field values, and other characteristics, you can use the DBA facility, as described in
Chapter 10, Providing Data Source Security: DBA.

Describing a Group of Fields

3-6 Information Builders

Example Omitting Fields: Creating a Segment Subset
You can define a logical view for a relational data source by omitting the unwanted fields
from the segment’s description in the Master File. For example, consider the following
Master File for an Oracle table named EMPFACTS:

FILENAME = EMPFACTS, SUFFIX = SQLORA ,$
 SEGNAME = EMPFACTS, SEGTYPE = S0 ,$
 FIELDNAME = EMP_NUMBER, ALIAS = ENUM, USAGE = A9, ACTUAL = A9 ,$
 FIELDNAME = LAST_NAME, ALIAS = LNAME, USAGE = A15, ACTUAL = A15 ,$
 FIELDNAME = FIRST_NAME, ALIAS = FNAME, USAGE = A10, ACTUAL = A10 ,$
 FIELDNAME = HIRE_DATE, ALIAS = HDT, USAGE = I6YMD, ACTUAL = DATE ,$
 FIELDNAME = DEPARTMENT, ALIAS = DPT, USAGE = A10, ACTUAL = A10 ,$
 FIELDNAME = SALARY, ALIAS = SAL, USAGE = D12.2M, ACTUAL = D8 ,$
 FIELDNAME = JOBCODE, ALIAS = JCD, USAGE = A3, ACTUAL = A3 ,$
 FIELDNAME = OFFICE_NUM, ALIAS = OFN, USAGE = I8, ACTUAL = I4 ,$

If you develop an application that refers to only an employee’s ID and name, and you
want this to be reflected in the application’s view of the segment, you could code an
alternative Master File that names only the desired fields:

FILENAME = EMPFACTS, SUFFIX = SQLORA ,$
 SEGNAME = EMPFACTS, SEGTYPE = S0 ,$
 FIELDNAME = EMP_NUMBER, ALIAS = ENUM, USAGE = A9, ACTUAL = A9 ,$
 FIELDNAME = LAST_NAME, ALIAS = LNAME, USAGE = A15, ACTUAL = A15 ,$
 FIELDNAME = FIRST_NAME, ALIAS = FNAME, USAGE = A10, ACTUAL = A10 ,$

Example Redefining Fields: Creating a Filler Field
You can define a logical view for certain data sources such as a sequential or FOCUS
data source by defining the fields excluded from the view as one or more filler fields.
You would define the field’s format to be alphanumeric, its length to be the number of
bytes making up the underlying fields, and its name and alias to be blank. Field
declarations and length are discussed in detail in Chapter 4, Describing an Individual
Field.

For example, consider the EMPINFO segment of the EMPLOYEE data source:

SEGNAME = EMPINFO, SEGTYPE = S1 ,$
 FIELDNAME = EMP_ID, ALIAS = EID, USAGE = A9 ,$
 FIELDNAME = LAST_NAME, ALIAS = LN, USAGE = A15 ,$
 FIELDNAME = FIRST_NAME, ALIAS = FN, USAGE = A10 ,$
 FIELDNAME = HIRE_DATE, ALIAS = HDT, USAGE = I6YMD ,$
 FIELDNAME = DEPARTMENT, ALIAS = DPT, USAGE = A10 ,$
 FIELDNAME = CURR_SAL, ALIAS = CSAL, USAGE = D12.2M ,$
 FIELDNAME = CURR_JOBCODE, ALIAS = CJC, USAGE = A3 ,$
 FIELDNAME = ED_HRS, ALIAS = OJT, USAGE = F6.2 ,$

 Relating Multiple Groups of Fields

Describing Data 3-7

If you develop an application that refers to only an employee’s ID and name, and you
want this to be reflected in the application’s view of the segment, you could code an
alternative Master File that explicitly names only the desired fields:

SEGNAME = EMPINFO, SEGTYPE = S1 ,$
 FIELDNAME = EMP_ID, ALIAS = EID, USAGE = A9 ,$
 FIELDNAME = LAST_NAME, ALIAS = LN, USAGE = A15 ,$
 FIELDNAME = FIRST_NAME, ALIAS = FN, USAGE = A10 ,$
 FIELDNAME =, ALIAS =, USAGE = A29 ,$

Note that the filler field is defined as an alphanumeric field of 29 bytes, which is the
combined internal length of the fields it replaces: HIRE_DATE (4 bytes),
DEPARTMENT (10 bytes), CURR_SAL (8 bytes), CURR_JOBCODE (3 bytes), and
ED_HRS (4 bytes).

Relating Multiple Groups of Fields
Once you have described groups of fields—that is, segments—you can relate them to
each other to build more sophisticated data structures. You can:

• Describe physical relationships. If groups of fields are already physically related in
your data source, you can describe the relationship.

• Describe logical relationships. You can describe a logical relationship between any
two segments that have at least one field in common by joining them. The
underlying data structures remain physically separate, but they are treated as if they
were part of a single structure. The new structure can include segments from the
same or different types of data sources.

Note that if you are creating a new FOCUS data source, you can implement segment
relationships in several ways, depending upon your design goals, as described in
Chapter 6, Describing a FOCUS Data Source.

To describe a data structure containing several segments—whether it is a multi-segment
data source or several data sources that have been joined together—you need to be aware
of the following:

• Logical dependence between related segments.

• Logical independence between unrelated segments.

Describing a Group of Fields

3-8 Information Builders

Facilities for Specifying Relationships
There are several facilities for specifying relationships between segments. The use of a
Master and Access File to specify a relationship is fully documented in this chapter. The
JOIN command, which joins segments into a structure from which you can report, is
fully described in the Creating Reports manual.

Note that a related facility, the MATCH FILE command, enables you to implement many
different types of sophisticated relationships by first describing the relationship as a
series of extraction and merging conditions and then merging the related data into a new
single segment data source. The result is not a joined structure but an entirely new data
source that you can process further. The original data sources themselves remain
unchanged. The MATCH FILE command is documented in the Creating Reports
manual.

Identifying a Parent Segment: PARENT
The PARENT attribute identifies a segment’s parent. You specify the PARENT attribute
in the segment declaration of the Master File. Because a root segment has no parent, you
do not specify the PARENT segment when declaring a root.

Note that a parent segment must be declared in the Master File before any of its child
segments.

If the parent-child relationship is permanently implemented within the structure of the
data source, as, for example, within a FOCUS data source, then you cannot change the
parent attribute without changing the underlying structure of the data source. However, if
the parent-child relationship is temporary, as, for example, when you join several
relational tables in the Master File, then you can change the PARENT attribute.

Syntax How to Identify the Parent Segment
PARENT = segment_name

where:

segment_name

Is the name of the segment’s parent as previously declared in the Master File.

If you do not specify the PARENT attribute, it defaults to the value of the most
recently specified segment. If the PARENT attribute has not been specified in any
prior segment declarations in this Master File, the previous segment becomes the
parent.

Information Builders recommends using the PARENT attribute for unique segments
with a SEGTYPE of U.

 Logical Dependence: The Parent-Child Relationship

Describing Data 3-9

Example Identifying a Parent Segment
For example, in the EMPLOYEE data source, DEDUCT’s parent is SALINFO, and so
the segment declaration for DEDUCT includes the following attribute:

PARENT = SALINFO

Identifying the Type of Relationship: SEGTYPE
The SEGTYPE attribute specifies the type of relationship that a segment has to its parent.
SEGTYPE is part of the segment declaration and is used in different ways with different
types of data sources. For sequential, VSAM, and ISAM data sources, see Chapter 5,
Describing a Sequential, VSAM, or ISAM Data Source. For FOCUS data sources, see
Chapter 6, Describing a FOCUS Data Source. For other types of data sources, see the
appropriate data adapter documentation for details.

Logical Dependence: The Parent-Child Relationship
Logical dependence between segments is expressed in terms of the parent-child
relationship: a child segment is dependent upon its parent segment. This means that an
instance of the child segment can exist only if a related instance of the parent segment
exists. The parent segment has logical precedence in the relationship, and is retrieved
first when the data source is accessed.

Note that if the parent-child relationship is logical and not physical—that is, if it is
implemented as a join—it is possible to have a child instance without a related parent
instance. In this case, the child instance will not be accessible through the join, although,
of course, it will still be accessible independently.

If a join relates the parent and child segments, the parent is known as the host segment,
and the child is known as the cross-referenced segment. The fields on which the join is
based—that is, the matching fields in the host and cross-referenced segments—are
known respectively as the host and cross-referenced fields.

Describing a Group of Fields

3-10 Information Builders

Example A Simple Parent-Child Relationship
For example, in the EMPLOYEE data source, the EMPINFO and SALINFO segments
are related: EMPINFO identifies an employee by ID number, while SALINFO contains
the employee’s pay history. EMPINFO is the parent segment, and SALINFO is a child
segment dependent upon it. This relationship is illustrated by the fact that it is possible to
have an employee identified by ID and name for whom no salary information has been
entered—that is, the parent instance without the child instance; but it is meaningless to
have salary information for an employee if we do not know who the employee is—that
is, a child instance without the parent instance.

119329144
BANNING
JOHN
.
.
.

071382660
STEVENS
ALFRED
.
.
.

EMPINFO
parent
segment
instance

82/08/31
$2,475.00

SALINFO
child
segment
instance

82/07/31
$1,342.00

X

parent with child
is valid

parent without child
is valid

child without parent
is invalid

 Logical Dependence: The Parent-Child Relationship

Describing Data 3-11

Example Parent-Child Relationships With Multiple Segments
The same general parent-child relationships hold for data structures containing more than
two segments. For example, consider the following diagram of a portion of the
EMPLOYEE data source, containing the EMPINFO, SALINFO, and DEDUCT
segments. DEDUCT contains payroll deduction information for each paycheck.

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
.
.
.

EMPINFO

PAY_DATE
GROSS

DED_CODE
DED_AMT

SALINFO

DEDUCT

EMPINFO is related to SALINFO, and in this relationship EMPINFO is the parent
segment and SALINFO is the child segment. SALINFO is also related to DEDUCT. In
this second relationship, SALINFO is the parent segment and DEDUCT is the child
segment. Just as SALINFO is dependent upon EMPINFO, DEDUCT is dependent upon
SALINFO.

Describing a Group of Fields

3-12 Information Builders

Understanding Root Segments
The segment that has logical precedence over the entire data structure—the parent of the
entire structure—is called the root segment. The term root is used because a data
structure can branch like a tree, and the root segment, like the root of a tree, is the source
of the structure.

In this example, EMPINFO is the root; it has no parent, and all other segments in the
structure are its children directly (SALINFO) or indirectly (DEDUCT).

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
.
.
.

EMPINFO

PAY_DATE
GROSS

DED_CODE
DED_AMT

SALINFO

DEDUCT

root
segment

Understanding Descendant Segments
We refer to a segment’s direct and indirect children collectively as its descendant
segments. SALINFO and DEDUCT are descendants of EMPINFO. DEDUCT is also a
descendant of SALINFO. A descendant segment that has no children is called a leaf
segment (because the branching of the data structure tree ends with the leaf). DEDUCT is
a leaf.

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
.
.
.

EMPINFO

PAY_DATE
GROSS

DED_CODE
DED_AMT

SALINFO

DEDUCT leaf
segment

descendants
of EMPINFO

 Logical Independence: Multiple Paths

Describing Data 3-13

Understanding Ancestral Segments
We refer to a segment’s direct and indirect parents as ancestral segments. In our example,
SALINFO and EMPINFO are ancestors of DEDUCT.

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
.
.
.

EMPINFO

PAY_DATE
GROSS

DED_CODE
DED_AMT

SALINFO

DEDUCT

ancestors of DEDUCT

Logical Independence: Multiple Paths
A group of segments that are related to each other as a sequence of parent-child
relationships, beginning with the root segment and continuing down to a leaf, is called a
path. Because the path is a sequence of parent-child relationships, each segment is
logically dependent upon all of the segments higher in the path.

Example Understanding a Single Path
For example, in the following view of the EMPLOYEE data source, EMPINFO,
SALINFO, and DEDUCT form a path. An instance of DEDUCT (paycheck deductions)
can exist only if a related instance of SALINFO (the paycheck) exists, and the instance of
SALINFO (the employee’s paycheck) can exist only if a related instance of EMPINFO
(the employee) exists.

EMP_ID
LAST_NAME
FIRST_NAME
.
.
.

EMPINFO

PAY_DATE
GROSS

DED_CODE
DED_AMT

SALINFO

DEDUCT

one path

071382660
STEVENS
ALFRED
.
.
.

81/11/30
$833.33

FED
$70.83

Describing a Group of Fields

3-14 Information Builders

Understanding Multiple Paths
Now consider the full EMPLOYEE structure, which includes the EMPLOYEE data
source and the JOBFILE and EDUCFILE data sources that have been joined to it.

This is a multi-path data structure; there are several paths, each beginning with the root
segment and ending with a leaf. Every leaf segment in a data structure is the end of a
separate path.

EMP_ID
LAST_NAME
FIRST_NAME
.
.
.

EMPINFO

SALINFO

DEDUCT

BANK_NAME
BANK_CODE
.
.
.

DAT_INC
PCT_INC
SALARY

TYPE
ADDRESS_LN1
ADDRESS_LN2
.
.
.

PAY_DATE
GROSS

DATE_ATTEND
EMP_ID

JOBCODE
JOB_DESC

DED_CODE
DED_AMT

COURSE_CODE
COURSE_NAME

SKILLS
SKILL_DESC

SEC_CLEAR

EMPINFO
|

FUNTRAN

EMPINFO
|

PAYINFO
|

JOBSEG
|

SECSEG

EMPINFO
|

PAYINFO
|

JOBSEG
|

SKILLSEG

EMPINFO
|

ADDRESS

EMPINFO
|

SALINFO
|

DEDUCT

EMPINFO
|

ATTNDSEG
|

COURSEG

FUNDTRAN PAYINFO ADDRESS ATTNDSEG

COURSEGJOGSEG

SECSEG SKILLSEG

 Cardinal Relationships Between Segments

Describing Data 3-15

Understanding Logical Independence
The EMPLOYEE data structure has six paths. The paths begin with the EMPINFO
segment (the root), and end with:

• The FUNDTRAN segment

• The SECSEG segment

• The SKILLSEG segment

• The ADDRESS segment

• The DEDUCT segment

• The COURSEG segment

Each path is logically independent of the others. For example, an instance of DEDUCT is
dependent upon its ancestor segment instances SALINFO and EMPINFO; but the
ADDRESS segment lies in a different path, and so DEDUCT is independent of
ADDRESS.

This is because an employee’s deductions are identified by the paycheck from which
they came, so deduction information can be entered into the data source only if the
paycheck from which the deduction was made was entered first. However, deductions are
not identified by the employee’s address; an employee’s paycheck deduction can be
entered without the employee’s address being known, and conversely the employee’s
address can be entered before any paychecks and deductions have been entered into the
data source.

Cardinal Relationships Between Segments
The following types of cardinal relationships between groups of data are supported:

• One-to-one (1:1)

• One-to-many (1:M)

• Many-to-many (M:M)

You can define these relationships between:

• Instances of different segments.

• Instances of the same segment—that is, a recursive or bill-of-materials relationship.

• Segments from the same type of data source.

• Segments from different types of data sources. For example, between an Oracle table
and a FOCUS data source. Note that you can join different types of data sources only
by using the JOIN command, not by defining the join in the Master or Access File.

Describing a Group of Fields

3-16 Information Builders

• If you are using a network data source, you can also “rotate” the data source after
you have defined it, creating an alternate view that reverses some of the data
relationships and enables you to access the segments in a different order.

One-to-One Relationships
The fields in a segment have a one-to-one relationship with each other. Segments can
also exhibit a one-to-one relationship; each instance of a parent segment can be related to
one instance of a child segment, as shown in the following diagram. Because it is
one-to-one, it will never be related to more than one instance of the child. Of course, not
every parent instance needs to have a matching child instance.

The child in a one-to-one relationship is referred to as a unique segment. The term refers
to the fact that there can never be more than a single child instance.

One-to-One Relationship (1:1)

parent without child
is valid

parent with one child
is valid

parent with many children
is invalid

rrrr

 One-to-One Relationships

Describing Data 3-17

Example Understanding One-to-One Relationships
For example, in the EMPLOYEE data source, each EMPINFO segment instance
describes one employee’s ID number, name, current salary, and other related
information. Some employees have joined the Direct Deposit program, which deposits
their paycheck directly into their bank account each week. For these employees the data
source also contains the name of their bank and their account number.

Because only one set of bank information is needed for each employee (since each
employee’s paycheck is deposited into only one account), there is a one-to-one
relationship between employee ID fields and bank information fields. But because there
is limited participation in the Direct Deposit program, only some employees have bank
information; most of the employees do not need the bank fields.

The data source was designed with storage efficiency in mind, and so the bank fields
have been put into a separate segment called FUNDTRAN; space will be used for only
the banking information—that is, an instance of FUNDTRAN will only be created—if it
is needed. Compare this to including the banking fields in the parent segment
(EMPINFO); the EMPINFO segment for each employee would reserve space for the
banking fields, even though they would be empty in most cases.

EMPINFO 071382660
STEVENS
ALFRED
.
.
.

112847612
SMITH
MARY
.
.
.

119329144
BANNING
JOHN
.
.
.

BEST BANK
302161
.
.
.

FUNDTRAN

Describing a Group of Fields

3-18 Information Builders

Where to Use One-to-One Relationships
You can specify a segment as unique to enforce a one-to-one relationship when you
retrieve data.

When you retrieve data from a segment described as unique, the request treats the unique
segment as an extension of its parent. If the unique segment has multiple instances, the
request retrieves only one. If the unique segment has no instances, the request substitutes
default values for the missing segment’s fields: zero (0) for numeric fields, blank () for
alphanumeric fields, and the missing value for fields that have the MISSING attribute
specified. The MISSING attribute is described in Chapter 4, Describing an Individual
Field.

Implementing One-to-One Relationships in Relational Data Sources
You can describe this relationship by joining the tables in the Master File and specifying
a SEGTYPE of U for the child table. For more information on joining the tables in a
Master File, see the appropriate data adapter documentation. Alternatively, you can join
the tables by issuing the JOIN command without the ALL phrase and turning off the SQL
Optimization facility with the SET OPTIMIZATION command.

Implementing One-to-One Relationships in Sequential Data
Sources

You can specify this relationship between two records by issuing the JOIN command
without the ALL phrase.

Implementing One-to-One Relationships in FOCUS Data Sources
You can describe this relationship by specifying a SEGTYPE of U for the child segment
Alternately, you can join the segments by issuing the JOIN command without the ALL
phrase, or by specifying a unique join in the Master File using a SEGTYPE of KU (for a
static join) or DKU (for a dynamic join). All of these SEGTYPE values are described in
Chapter 6, Describing a FOCUS Data Source.

You can also describe a one-to-one segment relationship, in the Master File or using the
JOIN command, as a one-to-many relationship. This technique gives you greater
flexibility but does not enforce the one-to-one relationship when reporting or entering
data and does not use resources as efficiently.

 One-to-Many Relationships

Describing Data 3-19

One-to-Many Relationships
The most common relationship between two segments is the one-to-many relationship;
each instance of a parent segment can be related to one or more instances of a child
segment, as shown in the following diagram. Of course, not every parent instance needs
to have matching child instances.

One-to-Many Relationship (1:M)

parent without child
is valid

parent with one child
is valid

parent with many children
is valid

Describing a Group of Fields

3-20 Information Builders

Example Understanding One-to-Many Relationships
For example, in the EMPLOYEE data source, each EMPINFO segment instance
describes one employee’s ID number, name, current salary, and other related
information. Each SALINFO segment contains an employee’s gross salary for each
month. Most employees work for many months, and so the relationship between
EMPINFO and SALINFO is one-to-many.

EMPINFO 219984371
MCCOY
JOHN
.
.
.

119329144
BANNING
JOHN
.
.
.

112847612
SMITH
MARY
.
.
.

SALINFO 82/08/31
$1,540.00

82/08/31
$1,100.00

82/07/30
$1,100.00

82/06/30
$1,100.00

Implementing One-to-Many Relationships in Relational Data
Sources

You can describe this relationship by joining the tables in the Master File and specifying
a SEGTYPE of S0 for the child table. For more information on joining the tables in a
Master File, see the appropriate data adapter documentation. Alternately, you can join the
tables by issuing the JOIN command with the ALL phrase.

 One-to-Many Relationships

Describing Data 3-21

Implementing One-to-Many Relationships in VSAM and Sequential
Data Sources

You can describe a one-to-many relationship between a record and a group of multiply
occurring fields within the record.

• The OCCURS attribute specifies how many times the field (or fields) occur.

• The POSITION attribute specifies where in the record the field (or fields) occur if
they are not at the end of the record.

• The ORDER field determines the sequence number of an occurrence of a field.

• The PARENT attribute indicates the relationship between the singly and multiply
occurring fields.

The OCCURS and POSITION attributes and the ORDER field are all described in
Chapter 5, Describing a Sequential, VSAM, or ISAM Data Source.

You can describe a one-to-many relationship between different records by using a
RECTYPE field to indicate the type of each record, and the PARENT attribute to
indicate the relationship between the different records. RECTYPE fields are described in
Chapter 5, Describing a Sequential, VSAM, or ISAM Data Source.

You can also specify a one-to-many relationship between two records in different data
sources by issuing the JOIN command with the ALL phrase or defining the join in the
Master File. See the Creating Reports manual for information about the JOIN command,
and see Chapter 7, Defining a Join in a Master File, for information about joins in a
Master File.

Implementing One-to-Many Relationships in FOCUS Data Sources
You can describe this relationship by specifying a SEGTYPE of Sn or SHn for the child
segment Alternatively, you can join the segments by issuing the JOIN command with the
ALL phrase or by specifying a join in the Master File with a SEGTYPE of KM (for a
static join) or DKM (for a dynamic join). All of these SEGTYPE values are described in
Chapter 6, Describing a FOCUS Data Source.

Describing a Group of Fields

3-22 Information Builders

Many-to-Many Relationships
A less commonly used relationship is many-to-many; each instance of one segment can
be related to one or more instances of a second segment, and each instance of the second
segment can be related to one or more instances of the first segment. It is possible to
implement this relationship directly between two relational tables and indirectly between
segments of other types of data sources.

Implementing Many-to-Many Directly
A direct many-to-many relationship can exist between two relational tables. For example,
the STUDENT table contains one row for each student enrolled at a college, and the
CLASSES table contains one row for each class offered at the college. Each student can
take many classes, and many students can take each class. This is illustrated in the
following diagram:

STUDENT _ID LAST_NAME YEAR

437618

321710

521639

CRUZ

JAMES

SMITH

SENIOR

JUNIOR

FRESHMAN

COURSE _CODE TITLE

100257

113988

243631

294670

410329

BIOLOGY 7

HISTORY 3.1

HISTORY 8

ENGLISH 2

PHILOSOPHY 9

STUDENT (M)

CLASSES (M)

When the M:M relationship is seen from the perspective of either of the two tables, it
looks like a 1:M relationship: one student taking many classes (1:M from the perspective
of STUDENT), or one class taken by many students (1:M from the perspective of
CLASSES).

STUDENT _ID LAST_NAME YEAR

437618 CRUZ SENIOR

113988

243631

294670

410329

COURSE _CODE TITLE

100257 BIOLOGY 7

HISTORY 3.1

HISTORY 8

ENGLISH 2

PHILOSOPHY 9

STUDENT (1)

CLASSES (M)

CLASSES (1)

CRUZ

JAMES

SMITH

SENIOR

JUNIOR

FRESHMAN

437618

321710

521639

COURSE _CODE TITLE

100257 BIOLOGY 7

STUDENT (M)

STUDENT _ID LAST_NAME YEAR

 Many-to-Many Relationships

Describing Data 3-23

When you report from or update the tables, at any one time the M:M relationship is seen
from the perspective of one of the tables—that is, it sees a 1:M relationship. You decide
which table’s perspective to use by making that table the parent (host) segment, in the
Master File or JOIN command. You describe the join in the Master File or JOIN
command as you would for a standard one-to-many relationship.

Example Implementing Many-to-Many Directly
You could use the JOIN command to describe the relationship from the perspective of
the STUDENT table as follows:

JOIN STUDENT_ID IN STUDENT TO ALL STUDENT_ID IN CLASSES

You could describe the relationship from the perspective of the CLASSES table as
follows:

JOIN COURSE_CODE IN CLASSES TO ALL COURSE_CODE IN STUDENT

Implementing Many-to-Many Indirectly
Some non-relational data sources cannot represent a many-to-many relationship directly.
However, they can represent it indirectly, and you can describe it as such.

For example, consider the EMPINFO segment in the EMPLOYEE data source and the
CLASSES segment in a hypothetical SCHOOL data source. Each instance of EMPINFO
describes one employee, and each instance of CLASSES would describe one course.
Each employee can take many courses, and many employees can take each course, so
this is a many-to-many relationship.

071382660
STEVENS
ALFRED
.
.
.

112847612
SMITH
MARY
.
.
.

123764317
IRVING
JOAN
.
.
.

0617

Database
Design

2431

Basic
Reporting

9612

Advanced
Communications

Describing a Group of Fields

3-24 Information Builders

However, because some types of data sources cannot represent such a relationship
directly, we need to introduce a mediating segment called ENROLLED. This new
segment contains the keys from both of the original segments, EMP_ID and
CLASS_CODE, and, in a sense, it represents the relationship between the two original
segments. The new segment breaks up the M:M relationship into two 1:M relationships.
Each instance of EMPINFO can be related to many instances of ENROLLED (because
one employee can be enrolled in many classes), and each instance of CLASSES can be
related to many instances of ENROLLED (because one class can have many employees
enrolled in it).

This is illustrated in the following diagram.

071382660
STEVENS
ALFRED
.
.
.

9612

Advanced
Communications

071382660

0617

071382660

9612

ENROLLED

EMPINFO CLASSES

071382660

9612

123764317

9612

ENROLLED

 Many-to-Many Relationships

Describing Data 3-25

The next step is to make the mediating segment a child of one of the two original
segments. For example, you can design the SCHOOL data source so that CLASSES is
the root and ENROLLED is the child of CLASSES. Note that when ENROLLED was an
unattached segment it explicitly contained the keys (EMP_ID and CLASS_CODE) from
both original segments; now that we are making it part of the SCHOOL data source,
CLASS_CODE is implied by the parent-child relationship with CLASSES, and it can be
removed from ENROLLED. You can then join EMPINFO and ENROLLED together:

EMP_ID
LAST_NAME
FIRST_NAME
.
.
.

EMPINFO

EMP_ID

CLASS_CODE
CLASS_TITLE

ENROLLED

CLASSES

join on EMP_ID field

When the original M:M relationship is seen from this perspective, it looks like a 1:M:1
relationship. That is, one employee (EMPINFO) is enrolled many times (ENROLLED),
and each enrollment is for a single class (CLASSES).

When you report from or update the new structure, at any one time the relationship is
seen from the perspective of one of the original segments—in this case, from EMPINFO
or CLASSES. You decide which segment’s perspective to use by making that segment
the parent in the join. You describe the join using the JOIN command, or for FOCUS
data sources, alternately in the Master File. If you make the mediating segment, in this
case ENROLLED, the child (cross-referenced) segment in the join, you implement it as a
standard one-to-many relationship; if you make it the parent (host), you implement it as a
standard one-to-one join.

Describing a Group of Fields

3-26 Information Builders

For example, you could use the JOIN command to describe the relationship from the
perspective of the CLASSES segment—that is, making ENROLLED the join’s host—as
follows:

JOIN EMP_ID IN ENROLLED TO EMP_ID IN EMPINFO

The new structure looks like the following:

EMP_ID
LAST_NAME
FIRST_NAME
.
.
.

EMPINFO

EMP_ID

CLASS_CODE
CLASS_TITLE

ENROLLED

CLASSES

join on EMP_ID field

Another example that uses a join defined in the Master File is illustrated by the sample
FOCUS data sources EMPLOYEE and EDUCFILE. Here, ATTNDSEG is the mediating
segment between EMPINFO and COURSEG.

 Recursive Relationships

Describing Data 3-27

Recursive Relationships
Generally, you use one-to-one and one-to-many relationships to join two different
segments, usually in two different data sources. However, you can also join the same data
source to itself, and even the same segment to itself. This technique, which has many
useful applications, is called a recursive join.

Recursive joins are described in more detail in the Creating Reports manual.

Example Recursive Joins With a Single Segment
For example, assume that you have a single-segment data source called MANAGER,
which includes the ID number of an employee, the employee’s name, and the ID number
of the employee’s manager:

ID
NAME
MANAGER_ID

MANAGER

If you want to generate a report showing every employee’s ID number and name, and
every manager’s ID number and name, you would need to join the segment to itself. You
could issue the following command:

JOIN MANAGER_ID IN MANAGER TO ID IN MANAGER AS BOSS

which would create the following structure:

ID
NAME
MANAGER_ID

ID
BOSSNAME
BOSSMANAGER

Describing a Group of Fields

3-28 Information Builders

Note that you can uniquely refer to fields in cross-referenced segments by prefixing them
with the first four letters of the join name (BOSS in this example). The only exception is
the cross-referenced field, for which the alias is prefixed instead of the field name.

Once you have issued the join, you would be able to generate an answer set such as the
following:

ID NAME MANAGER_ID BOSSNAME
-- ---- ---------- --------

026255 JONES 837172 CRUZ
308743 MILBERG 619426 WINOKUR
846721 YUTANG 294857 CAPRISTI
743891 LUSTIG 089413 SMITH
585693 CAPRA 842918 JOHNSON

Example Recursive Joins With Multiple Segments
You can recursively join larger structures as well. For example, imagine a two-segment
data source called AIRCRAFT that stores a bill-of-materials for an aircraft company. The
root segment has the name and description of a part, and the child segment has the name
of a subpart. For each part, there can be many subparts.

PART

DESCRIPTION

SUBPART

1:M

 Recursive Relationships

Describing Data 3-29

While many of the larger parts are constructed of several levels of subparts, some of
these subparts, such as bolts, are used throughout aircraft at many different levels; giving
each occurrence of a subpart its own segment instance would produce much redundancy.
Instead, we can use the two-segment design shown previously, and then join the data
source to itself:

JOIN SUBPART IN AIRCRAFT TO PART IN AIRCRAFT AS SUB_PART

This produces the following data structure:

PART

SUB_DESCRIPT

PART

DESCRIPTION

SUBPART

SUB_PART

segments

1:M

1:1

1:M

SEATS

20” WIDTH

CABIN

114-SEAT CAPACITY

SEATS

BOLTS

segment instances

join on SUBPART field

Describing a Group of Fields

3-30 Information Builders

Relating Segments From Different Types of Data
Sources

The JOIN command enables you to join segments from different types of data sources,
creating temporary data structures that contain related information from otherwise
incompatible sources. For example, you could join two Oracle data sources to a FOCUS
data source to a VSAM data source, as illustrated in the following diagram.

Key
O = Oracle table
F = FOCUS segment
V = VSAM record

O

O

VF

F F

Joins between VSAM and fixed-format data sources are also supported in a Master File,
as described in Chapter 7, Defining a Join in a Master File.

For detailed information on using the JOIN command with different types of data
sources, see the Creating Reports manual.

 Rotating a Data Source: Alternate Views

Describing Data 3-31

Rotating a Data Source: Alternate Views
If you are using a network data source or certain hierarchical data sources such as
FOCUS, you can rotate the data source after you have described it, creating an alternate
view that changes some of the segment relationships and enables you to access the
segments in a different order. By customizing the access path in this way, you can enable
it to be accessed faster for a given application.

Example Rotating a Data Source
Regular view

A

CB

D

C

DA

B

Alternate view

1:M 1:M

1:M

1:1 1:M

1:M

You can even join hierarchical and/or network data sources together and then create an
alternate view of the joined structure, selecting the new root segment from the host data
source.

Using an alternate view can be very helpful when you want to generate a report using
record selection criteria based on fields found in a lower segment (such as segment C in
the previous diagram). You could report from an alternate view that makes this the root
segment; FOCUS will begin its record selection based on the relevant segment, and avoid
reading irrelevant ancestral segments.

Describing a Group of Fields

3-32 Information Builders

When you report from a data source using an alternate view, the data is accessed more
efficiently if both of the following conditions are satisfied:

• The field on which the alternate view is based is indexed. For FOCUS data sources,
the alternate view field must include INDEX = I in the Master File.

• You use the field in a record selection test, using the WHERE or IF phrases, and
make the selection criteria an equality or range test.

An alternate view can be requested on any segment in a data source, except a
cross-referenced segment. You request an alternate view with the TABLE command by
naming a field from the segment you wish to view as the new root segment. This field
may not be a virtual field. The only restriction on requesting an alternate view is that the
field on which it is requested must be a real field in the data source.

Other Uses of an Alternate View
The alternate view capability can be used effectively by the file designer in many
situations. Some ideas are:

• Data sources with active individual record maintenance. The data sources can be
structured for efficient update and management. For example, primary record keys
can be placed at the top of the data source, even though requests frequently screen
on other fields. The hierarchy does not assist in record selection, so views are used.

Consider a personnel system where the employee identity (SSN) is in the root
segment and the department number of the project an employee is working on is in a
descendant segment. Access to all employees in a given department is obtained using
the view from the department.

SSN
NAME
DATE_OF_BIRTH

PROJECT
DEPARTMENT View

Note that a given SSN can also be retrieved faster by using a view if the SSN values
are indexed.

 Rotating a Data Source: Alternate Views

Describing Data 3-33

• Individual record identified in descendant segments. You can use an alternate view
to access a detail segment that is deep in the hierarchy. Consider a sales analysis
situation. The data source has ample structure for AREA, PRODUCT TYPE, and
MONTH, but a request for a particular ORDER_NUM is easily handled by a view.

AREA

View for an ORDER_NUM

PRODTYPE

MONTH

ORDER_NUM
PRODUCT
QUANTITY

Note that in this view, ORDER_NUM is unique.

• Many missing instances of data. When a particular segment is often not available,
then screening on it means that fewer segments have to be examined. For instance, if
there are 10,000 occurrences of a parent segment, but only 2,000 of these have a
given child segment, it is faster to view the data source from the vantage point of the
2,000 when the given child is involved in the screening in the request.

For more information about using alternate views in report requests, see the Creating
Reports manual.

Describing a Group of Fields

3-34 Information Builders

Syntax How to Specify an Alternate View
To specify an alternate view, simply append a field name to the file name in the reporting
command, using the syntax:

TABLE FILE filename.fieldname

where:

filename

Is the name of the data source on which you are defining the alternate view.

fieldname

Is a field located in the segment that you are defining as the alternate root. The field
must be a real field, not a temporary field defined with the DEFINE attribute or the
DEFINE or COMPUTE commands.

If the field is declared in the Master File with the FIELDTYPE attribute set to I, and
you use the alternate view in a report, you must use the field in an equality selection
test (such as EQ) or range test.

Example Specifying an Alternative View
For example, if you want to report from the EMPLOYEE data source using an alternate
view that makes the DEDUCT segment an alternate root, you could issue the following
TABLE FILE command:

TABLE FILE EMPLOYEE.DED_CODE

Describing Data 4-1

CHAPTER 4

Describing An Individual Field

Topics:
• Field Characteristics

• The Field’s Name: FIELDNAME

• The Field’s Synonym: ALIAS

• The Displayed Data Type: USAGE

• The Stored Data Type: ACTUAL

• Null or MISSING Values: MISSING

• Validating Data: ACCEPT

• Online Help Information:
HELPMESSAGE

• Alternative Report Column Titles: TITLE

• Documenting the Field: DESCRIPTION

• Describing a Virtual Field: DEFINE

A field is the smallest meaningful element of data in a data
source, but it can exhibit a number of complex characteristics.
Master File attributes are used to describe these characteristics.

Describing An Individual Field

4-2 Information Builders

Field Characteristics
The Master File describes the following field characteristics:

• The name of the field described by the FIELDNAME attribute.

• Another name for the field—either its original name as defined to its native data
management system, or (for some types of data sources) a synonym of your own
choosing, or (in some special cases) a pre-defined value that tells how to interpret the
field—that you can use as an alternative name in requests. This alternative name is
defined by the ALIAS attribute.

• How the field stores and displays data, specified by the ACTUAL, USAGE, and
MISSING attributes.

The ACTUAL attribute describes the type and length of the data as it is actually
stored in the data source. For example, a field might be alphanumeric and 15
characters in length. Note that FOCUS data sources do not use the ACTUAL
attribute, and instead use the USAGE attribute to describe the data both as it is stored
in the data source and as it is formatted, since these are identical.

The USAGE attribute, which is also known by its alias, FORMAT, describes how
you want a field to be formatted when it displays in reports. You can also specify
edit options such as date formats, floating dollar signs, and zero suppression.

The MISSING attribute enables null values to be entered into and read from a field
in data sources that support null data, such as FOCUS data sources and most
relational data sources.

• The option that a field is virtual—that is, not stored in the data source—and has its
value derived from information already in the data source. Virtual fields are specified
by the DEFINE attribute.

• Optional field documentation for the developer, contained in the DESCRIPTION
attribute.

• Acceptable data-entry values for the field, specified by the ACCEPT attribute.

• Online help information about the field that an end user can display during an
application, as described by the HELPMESSAGE attribute.

• An alternative report column title for the field, described by the TITLE attribute.

• A 100-year window that assigns a century value to a two-digit year stored in the
field. Two attributes define this window, DEFCENT and YRTHRESH. For detailed
information, see the Developing Applications manual.

 The Field’s Name: FIELDNAME

Describing Data 4-3

The Field’s Name: FIELDNAME
You identify a field using FIELDNAME, the first attribute specified in a field declaration
in the Master File. You can assign any name to a field, regardless of its name in its native
data source. Likewise, for FOCUS data sources, you can assign any name to a field in a
new data source.

Your reporting applications may influence your choice of field name. When you generate
a report, each column title in the report defaults to the name of the field displayed in that
column, so it will help report readers if you assign meaningful field names. Of course,
you do not need to rely upon this default. You can specify a different column title within
a given report by using the AS phrase in that report request—as described in the Creating
Reports manual—or a different default column title for all reports by using the TITLE
attribute in the Master File, as described in Alternative Report Column Titles: TITLE on
page 4-49.

Syntax How to Identify the Field Name
FIELD[NAME] = field_name

where:
field_name

Is the name you want to use to identify this field. It can be a maximum of 66
characters. Some restrictions apply to names longer than 12 characters, as described
below. The name can include any combination of letters, digits, and underscores (_),
and should begin with a letter. Other characters are not recommended and may cause
problems in some operating environments or when resolving expressions.

It is recommended that you not use field names of the type Cn, En, and Xn (where n
is any sequence of one or two digits) because these can be used to refer to report
columns, HOLD file fields, and other special objects.

If you need to use special characters because of a field’s report column title, consider
using the TITLE attribute in the Master File to specify the title, as described in
Alternative Report Column Titles: TITLE on page 4-49.

Reference Usage Notes for FIELDNAME
Note the following rules when using FIELDNAME:

• Alias. FIELDNAME has an alias of FIELD.

• Changes. In a FOCUS data source, if the INDEX attribute has been set to I—that is,
if an index has been created for the field—you cannot change the field name. In all
other situations you can change the field name.

Describing An Individual Field

4-4 Information Builders

Using a Long and Qualified Field Name
In Master Files, field names and aliases can have a maximum length of 66 characters.
However, before defining a field name longer than 48 characters, you must consider how
the name will be referenced in requests.

Requests can qualify all referenced field names and aliases with file and/or segment
names. This technique is useful when duplicate field names exist across segments in a
Master File or in data sources that are joined. But, although the qualifiers and
qualification characters are valid only in requests, not in Master Files, the 66-character
maximum includes any qualifiers and qualification characters used with the field name in
requests. Therefore, if you define a 66-character name in the Master File, you cannot use
qualifiers with the name in a request.

The maximum of 66 characters includes the name of the field or alias, plus an
eight-character maximum for each field qualifier (Master File name and segment name),
plus a qualification character (usually a period) for each qualifier. You may use a unique
truncation of a 66-character name with a qualifier.

Temporary field names may also contain up to 66 characters. Text fields and indexed
fields in Master Files are limited to 12 characters. However, the aliases for text and
indexed fields may be up to 66 characters. Field names up to 66 characters are displayed
as column titles in TABLE reports if there is no TITLE attribute or AS phrase.

The default value for the SET FIELDNAME command, SET FIELDNAME=NEW,
activates long and qualified field names. The syntax is described in the Developing
Applications manual.

Syntax How to Specify a Qualified Field Name in a Request
[filename.][segname.]fieldname

where:
filename

Is the one- to eight-character name of the Master File or tag name. Tag names are
used with the JOIN and COMBINE commands.

segname

Is the one- to eight-character name of the segment in which the field resides.
fieldname

Is the name of the field.

Example Qualifying a Field Name
The fully qualified name of the field EMP_ID in the EMPINFO segment of the
EMPLOYEE data source is:
EMPLOYEE.EMPINFO.EMP_ID

 The Field’s Name: FIELDNAME

Describing Data 4-5

Syntax How to Change the Qualifying Character
SET QUALCHAR = qualcharacter

The period (.) is the default qualifying character. For further information about the SET
QUALCHAR command and valid qualifying characters (. : ! % | \) see the
Developing Applications manual.

Reference Restrictions for Long and Qualified Field Names
The following restrictions apply to field names and aliases longer than 12 characters (that
is, long names):

• Joins

You cannot use a long name to specify a join:

• In a JOIN command, you cannot use it for a cross-referenced field in a FOCUS
data source.

• In a multi-table Master File for a relational data source, you cannot use it for the
KEYFLD and IXFLD attributes in the Access File.

• Indexed fields and text fields in FOCUS data sources cannot have field names longer
than 12 characters. They can have long ALIAS names.

• The SQL Translator supports field names up to 48 characters.

• A field name specified in an alternate file view cannot be long or qualified.

• CHECK FILE

The CHECK FILE command’s PICTURE and HOLD options display the first 11
characters of long names within the resulting diagram or HOLD file. A caret (>) in
the 12th position indicates that the name is longer than the displayed portion.

• ?FF, ? HOLD, ? DEFINE

These display up to 31 characters of the name and display a caret (>) in the 32nd
character to indicate a longer field name.

Describing An Individual Field

4-6 Information Builders

Using a Duplicate Field Name
Field names are considered duplicates when you can reference two or more fields with
the same field name or alias. Duplication may occur:

• If a name appears multiple times within a Master File.

• In a JOIN between two or more Master Files, or in a recursive JOIN.

• If you issue a COMBINE and do not specify a prefix.

Duplicate fields (those having the same field name and alias) are not allowed in the same
segment. The second occurrence is never accessed, and the following message is
generated when you issue CHECK and CREATE FILE:
(FOC1829) WARNING. FIELDNAME IS NOT UNIQUE WITHIN A SEGMENT: fieldname

Duplicate field names may exist across segments in a Master File. To retrieve such a
field, you must qualify its name with the segment name in a request. If a field that
appears multiple times in a Master File is not qualified in a request, the first field
encountered in the Master File is retrieved.

Note: If a Master File includes duplicate field names for real fields and/or virtual fields,
the following logic is used when retrieving a field:

• If only virtual fields are duplicated, the last virtual field is retrieved.

• If only real fields are duplicated, the first real field is retrieved.

• If a Master File has both a real field and one or more virtual fields with the same
name, the last virtual field is retrieved.

• If a field defined outside of a Master File has the same name as a virtual or real field
in a Master File, the last field defined outside of the Master File is retrieved.

Reports can include qualified names as column titles. The SET QUALTITLES command,
discussed in the Developing Applications manual, determines whether reports display
qualified column titles for duplicate field names. With SET QUALTITLES=ON, reports
display qualified column titles for duplicate field names even when the request itself does
not specify qualified names. The default value, OFF, disables qualified column titles.

 The Field’s Name: FIELDNAME

Describing Data 4-7

Rules for Evaluating a Qualified Field Name
The following rules are used to evaluate qualified field names:

• The maximum field name qualification is filename.segname.fieldname. For example:
TABLE FILE EMPLOYEE
PRINT EMPLOYEE.EMPINFO.EMP_ID
END

includes EMP_ID as a fully qualified field. The file name, EMPLOYEE, and the
segment name, EMPINFO, are the field qualifiers.

Qualifier names can also be duplicated. For example:
FILENAME=CAR, SUFFIX=FOC
 SEGNAME=ORIGIN, SEGTYPE=S1
 FIELDNAME=COUNTRY, COUNTRY, A10, $
 SEGNAME=COMP, SEGTYPE=S1, PARENT=ORIGIN
 FIELDNAME=CAR, CARS, A16, $
 .
 .
 .

TABLE FILE CAR
PRINT CAR.COMP.CAR
END

This request prints the field with alias CARS. Both the file name and field name are
CAR.

• A field name can be qualified with a single qualifier, either its file name or its
segment name. For example:
FILENAME=CAR, SUFFIX=FOC
 SEGNAME=ORIGIN, SEGTYPE=S1
 FIELDNAME=COUNTRY, COUNTRY, A10, $
 SEGNAME=COMP, SEGTYPE=S1, PARENT=ORIGIN
 FIELDNAME=CAR, CARS, A16, $
 .
 .
 .

TABLE FILE CAR
PRINT COMP.CAR AND CAR.CAR
END

This request prints the field with alias CARS twice.

When there is a single qualifier, segment name takes precedence over file name.
Therefore, if the file name and segment name are the same, the field qualified by the
segment name is retrieved.

Describing An Individual Field

4-8 Information Builders

• If a field name begins with characters that are the same as the name of a prefix
operator, it may be unclear whether a request is referencing that field name or a
second field name prefixed with the operator. The value of the first field is retrieved,
not the value calculated by applying the prefix operator to the second field. In the
next example, there is a field whose unqualified field name is CNT.COUNTRY and
another whose field name is COUNTRY:
FILENAME=CAR, SUFFIX=FOC
 SEGNAME=ORIGIN, SEGTYPE=S1
 FIELDNAME=CNT.COUNTRY, ACNTRY, A10, $
 FIELDNAME=COUNTRY, BCNTRY, A10, $

TABLE FILE CAR
SUM CNT.COUNTRY
END

In this request, the string CNT.COUNTRY is interpreted as a reference to the field
named CNT.COUNTRY, not as a reference to the prefix operator CNT. applied to
the field named COUNTRY. Therefore, the request sums the field whose alias is
ACNTRY. Although the field name CNT.COUNTRY contains a period as one of its
characters, it is an unqualified field name. It is not a qualified name or a prefix
operator acting on a field name, neither of which is allowed in a Master File. The
request does not count instances of the field whose alias is BCNTRY.

• If a Master File has either a file name or segment name that is the same as a prefix
operator, the value of the field within the segment is retrieved in requests, not the
value calculated by applying the prefix operator to the field. For example:
FILENAME=CAR, SUFFIX=FOC
 SEGNAME=ORIGIN, SEGTYPE=S1
 FIELDNAME=COUNTRY, COUNTRY, A10, $
 SEGNAME=PCT, SEGTYPE=S1, PARENT=ORIGIN
 FIELDNAME=CAR, CARS, I2, $

TABLE FILE CAR
SUM PCT.CAR PCT.PCT.CAR
BY COUNTRY
END

This request sums the field with alias CARS first and then the percent of CARS by
COUNTRY.

 The Field’s Name: FIELDNAME

Describing Data 4-9

• When a qualified field name can be evaluated as a choice between two levels of
qualification, the field name with the higher level of qualification takes precedence.

In the following example, the choice is between an unqualified field name (the field
named ORIGIN.COUNTRY in the ORIGIN segment) and a field name with segment
name qualification (the field named COUNTRY in the ORIGIN segment). The field
with segment name qualification is retrieved:
FILENAME=CAR, SUFFIX=FOC
 SEGNAME=ORIGIN, SEGTYPE=S1
 FIELDNAME=ORIGIN.COUNTRY, OCNTRY, A10, $
 FIELDNAME=COUNTRY, CNTRY, A10, $

TABLE FILE CAR
PRINT ORIGIN.COUNTRY
END

This request prints the field with alias CNTRY. To retrieve the field with alias
OCNTRY, qualify its field name, ORIGIN.COUNTRY, with its segment name,
ORIGIN:
PRINT ORIGIN.ORIGIN.COUNTRY

• When a qualified field name can be evaluated as a choice between two field names
with the same level of qualification, the field with the shortest basic field name
length is retrieved. For example:
FILENAME=CAR, SUFFIX=FOC
 SEGNAME=CAR, SEGTYPE=S1
 FIELDNAME=CAR.CAR, CAR1, A10, $
 SEGNAME=CAR.CAR, SEGTYPE=S1, PARENT=CAR
 FIELDNAME=CAR, CAR2, A10, $

TABLE FILE CAR
PRINT CAR.CAR.CAR
END

In this example, it is unclear if you intend CAR.CAR.CAR to refer to the field
named CAR.CAR in the CAR segment or the field named CAR in the CAR.CAR
segment. (In either case, the name CAR.CAR is an unqualified name that contains a
period, not a qualified name. Qualified names are not permitted in Master Files.)

No matter what the intention, the qualified field name is exactly the same and there
is no obvious choice between levels of qualification.

Since the field with alias CAR2 has the shortest basic field name length, CAR2 is
printed. This is different from the prior example where the choice was between two
levels of qualification. To retrieve the CAR1 field, you must specify its alias.

Describing An Individual Field

4-10 Information Builders

The Field’s Synonym: ALIAS
You can assign every field an alternative name, or alias. A field’s alias may be its original
name as defined to its native data source, any name of your choosing, or in special cases,
a pre-defined value. The way in which you assign the alias is determined by the type of
data source and, in special cases, the role the field plays in the data source. Once it has
been assigned, you can use this alias in requests as a synonym for the regular field name.
You assign this alternative name using the ALIAS attribute.

Example Using a Field Synonym
In the EMPLOYEE data source, the name CURR_SAL is assigned to a field using the
FIELDNAME attribute, and the alternative name CSAL is assigned to the same field
using the ALIAS attribute:
FIELDNAME = CURR_SAL, ALIAS = CSAL, USAGE = D12.2M, $

Both names are equally valid within a request. The following TABLE requests illustrate
this—they are functionally identical, refer to the same field, and produce the same result:
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
END

TABLE FILE EMPLOYEE
PRINT CSAL BY EMP_ID
END

Note: In extract files (HOLD, PCHOLD), the field name is used to identify fields, not the
ALIAS.

 The Field’s Synonym: ALIAS

Describing Data 4-11

Implementing a Field Synonym
The value you assign to ALIAS must conform to the same naming conventions to which
the FIELDNAME attribute is subject, unless stated otherwise. You assign a value to
ALIAS in the following way for the following types of data sources:

• Relational data sources. ALIAS describes the field’s original column name as
defined in the relational table.

• Sequential data sources. ALIAS describes a synonym, or alternative name, that you
can use in a request to identify the field. You can assign any name as the alias; many
users choose a shorter version of the field’s primary name—for example, if the field
name is LAST_NAME, the alias might be LN. ALIAS is optional.

Note that ALIAS is used in a different way for sequenced repeating fields, where its
value is ORDER, as well as for RECTYPE and MAPVALUE fields when the data
source includes multiple record types. See Chapter 5, Describing a Sequential,
VSAM, or ISAM Data Source, for more information about using ALIAS.

• FOCUS data sources. ALIAS describes a synonym, or alternative name, that you
can use in a request to identify the field. You can assign any name as the alias; many
users choose a shorter version of the field’s primary name—for example, if the field
name is LAST_NAME, the alias might be LN. ALIAS is optional. See Chapter 6,
Describing a FOCUS Data Source, for more information about using ALIAS.
Aliases can be changed without rebuilding the data source. If an alias is referred to in
other data sources, similar changes may be needed in those Master Files.

Describing An Individual Field

4-12 Information Builders

The Displayed Data Type: USAGE
This attribute, which is also known as FORMAT, describes how you want a field to be
formatted when it displays in reports or is used in calculations.

For FOCUS data sources, which do not use the ACTUAL attribute, USAGE also
specifies how the field is to be stored. For other types of data sources, you will usually
want to assign a USAGE value that corresponds to the ACTUAL value, to identify the
field as the same data type used to store it in the data source. For instructions on which
ACTUAL values correspond to which USAGE values, see the documentation for the
specific data adapter. For sequential, VSAM, and ISAM data sources, see Chapter 5,
Describing a Sequential, VSAM, or ISAM Data Source.

In addition to selecting the data type and length, you can also specify display options
such as date formatting, floating dollar signs, and zero suppression. You can use these
options to customize how the field is displayed in reports.

Syntax How to Specify a Display Format
USAGE = tl[d]

where:
t

Is the data type. Valid values are A (alphanumeric), F (floating-point
single-precision), D (floating-point double-precision), I (integer), P (packed
decimal), D, W, M, Q, or Y used in a valid combination (date), and TX (text).

l

Is a length specification. Different data types have different length specifications.
See the section for each data type for more information. Note that you do not specify
a length for date format fields.

d

Is one or more display options. Different data types offer different display options.
See the section for each data type for more information.

The complete USAGE value cannot exceed eight characters.

The values that you specify for type and field length determine the number of print
positions allocated for displaying or storing the field. Display options only affect
displayed or printed fields. They are not active for non-display retrievals, such as extract
files.

Note: If a numeric field cannot be displayed with the USAGE format given (for example,
the result of aggregation is too large) asterisks are displayed.

Examples and additional information about each format type are provided in the section
for that type.

 The Displayed Data Type: USAGE

Describing Data 4-13

Reference Usage Notes for USAGE
Note the following rules when using USAGE:

• Alias. USAGE has an alias of FORMAT.

• Changes. For most data sources, you can change the type and length specifications
of USAGE only to other types and lengths valid for that field’s ACTUAL attribute.
You can change display options at any time.

For FOCUS data sources, you cannot change the type specification. You can change
the length specification for I, F, D, and P fields, because this affects only display, not
storage. You cannot change the decimal part of the length specification for P fields.
You can change the length specification of A (alphanumeric) fields only if you use
the REBUILD facility. You can change display options at any time.

Data Type Formats
You can specify several types of formats:

• Numeric. There are four types of numeric formats: integer, floating-point
single-precision, floating-point double-precision, and packed decimal. See Numeric
Display Options on page 4-16 for additional information about numeric formats.

• Alphanumeric.

• Date. The date format enables you to define date components such as year, quarter,
month, day, and day of week; to sort by date; to do date comparisons and arithmetic
with dates; and to automatically validate dates in transactions. Note that for some
applications, such as assigning a date value using the DECODE function, you may
wish to instead use alphanumeric, integer, or packed-decimal fields with date display
options which provide partial date functionality.

• Date-Time.

• Text.

Describing An Individual Field

4-14 Information Builders

Integer Format
You can use integer format for whole numbers—that is, any value composed of the digits
zero to nine, without a decimal point.

You can also use integer fields with date display options to provide limited date support.
This use of integer fields is described in the Alphanumeric and Numeric Formats with
Date Display Options on page 4-32.

The integer USAGE type is I. Display options are described in Numeric Display Options
on page 4-16. The format of the length specification is
n

where:
n

Is the maximum number of digits. The maximum integer size is 10 digits with I11
reserved for a negative sign. The maximum integer value displayed is 2147483647.

For example:

Format Display
I6 4316
I2 22
I4 -617

Floating-Point Double-Precision Format
You can use floating-point double-precision format for any number, including numbers
with decimal positions—that is, for any value composed of the digits zero to nine and an
optional decimal point.

The floating-point double-precision USAGE type is D. The compatible display options
are described in Numeric Display Options on page 4-16. The length specification format
is
t[.s]

where:
t

Is the maximum number of characters to be displayed, up to a maximum of 16,
including digits, a leading minus sign if the field will contain any negative values,
and an optional decimal point if you want one to be displayed.

s

Is the number of digits that will follow the decimal point.

For example:
Format Display
D8.2 3,187.54

D8 416

In the case of D8.2, the 8 represents the maximum number of places including the
decimal point and decimal places. The 2 represents how many of these eight places are
decimal places. The commas are automatically included in the display, and are not
counted in the total.

 The Displayed Data Type: USAGE

Describing Data 4-15

Floating-Point Single-Precision Format
You can use floating-point single-precision format for any number, including numbers
with decimal positions—that is, for any value composed of the digits 0 to 9, including an
optional decimal point. This format is intended for use with smaller decimal numbers.
Unlike floating-point double-precision format, its length cannot exceed nine positions.

The floating-point single-precision USAGE type is F. The compatible display options are
described in Numeric Display Options on page 4-16. The length specification format is
t[.s]

where:
t

Is the maximum number of characters to be displayed, up to a maximum of 9,
including digits, a leading minus sign if the field will contain any negative values,
and an optional decimal point if you want one to be displayed.

s

Is the number of digits that will follow the decimal point.

For example:

Format Display
F5.1 614.2
F4 318

Packed-Decimal Format
You can use packed-decimal format for any number, including decimal numbers—that is,
for any value composed of the digits zero to nine, including an optional decimal point.

You can also use packed-decimal fields with date display options to provide limited date
support. This use of packed-decimal fields is described in Alphanumeric and Numeric
Formats with Date Display Options on page 4-32.

The packed-decimal USAGE type is P. The compatible display options are described in
Numeric Display Options on page 4-16.

The length specification format is
m.n

where:
m

Is the maximum number of characters to be displayed, up to a maximum of 33
positions (which include a position for the sign and decimal point).

n

Is the number of digits that will follow the decimal point. It can be up to 31 digits.

For example:

Format Display
P9.3 4168.368
P7 617542

Describing An Individual Field

4-16 Information Builders

Numeric Display Options
Display options may be used to edit numeric formats in various ways. Display options
affect only how the data in the field is printed or displays on the screen. Display options
do not affect how the data is stored in your data source.

Edit Option Meaning Effect

% Percent sign Displays a percent sign along with numeric
data. Does not calculate the percent.

B Bracket negative Encloses negative numbers in parentheses.

c Comma suppress Suppresses the display of commas.
Used with numeric format options M and N
(floating and non-floating dollar sign) and data
format D (floating-point double-precision).

C Comma edit Inserts a comma after every third significant
digit, or a period instead of a comma if
continental decimal notation is in use.

DMY Day-Month-Year Displays alphanumeric or integer data as a date
in the form day/month/year.

E Scientific notation Displays only significant digits.

L Leading zeroes Adds leading zeroes.

M Floating $ (for US
code page)

Places a floating dollar sign $ to the left of the
highest significant digit.
Note: The currency symbol displayed depends
on the code page used.

MDY Month-Day-Year Displays alphanumeric or integer data as a date
in the form month/day/year.

N Fixed $ (for US
code page)

Places a dollar sign $ to the left of the field.
The symbol displays only on the first detail
line of each page.
Note: The currency symbol displayed depends
on the code page used.

R Credit (CR)
negative

Places CR after negative numbers.

S Zero suppress If the data value is zero, prints a blank in its
place.

T Month translation Displays the month as a three-character
abbreviation.

YMD Year-Month-Day Displays alphanumeric or integer data as a date
in the form year/month/day.

 The Displayed Data Type: USAGE

Describing Data 4-17

Extended Currency Symbol Display Options
Extended currency symbol format options allow you to display the following currency
symbols regardless of the code page used: US dollar, euro, British pound, and Japanese
yen. The extended currency symbol format options consist of two characters: an
exclamation point followed by one of the supported upper or lower case letters. An upper
case letter displays a floating currency symbol on each detail line. A lower case letter
displays a fixed currency symbol to the left of the field on the first detail line of each
report page. These options are valid for numeric formats (I, D, F, and P).

Use the following character combinations as the final two characters in any numeric
display format:

Display Option Description Example

!d Fixed dollar sign D12.2!d

!D Floating dollar sign D12.2!D

!e Fixed euro symbol F10.2!e

!E Floating euro symbol F10.2!E

!l Fixed British pound sign D12.1!l

!L Floating British pound sign D12.1!L

!y Fixed Japanese yen symbol I9!y

!Y Floating Japanese yen symbol I9!Y

Reference Usage Notes for Extended Currency Symbol Support
• The extended currency option must be the last option in the format.

• The extended currency option cannot be used in the same format specification as M
or N.

• In order to print the extended currency symbols, you must be sure they are supported
by the fonts accessible to your printer.

• Using a fixed currency symbol places the symbol only on the first line of each report
page. If you use field-based reformatting to display multiple currency symbols in one
report column, only the symbol associated with the first row displays. In this case,
you should use floating currency symbols.

• In TSO, when you display report output without HotScreen (SET SCREEN=OFF),
by default the extended currency symbols do not display because the terminal I/O
procedures translate all terminal output to characters that appear in USA EBCDIC
keyboard layouts and code charts. You can change this default behavior with the
SET TRANTERM = OFF command.

Describing An Individual Field

4-18 Information Builders

Example Displaying Extended Currency Symbols
The following request uses field-based reformatting to display the Japanese yen on the
report row that represents Japan, the British pound on the row that represents England,
and the euro on the row that represents Italy. Note that the comma inclusion display
option (C) in the format for England is specified prior to the currency option:
DEFINE FILE CAR
CFORMAT/A8 = DECODE COUNTRY('ENGLAND' 'F12.1C!L' 'JAPAN' 'D12!Y'
 ELSE 'D12.2!E');
END

TABLE FILE CAR
PRINT SALES/CFORMAT DEALER_COST/CFORMAT
BY COUNTRY
 WHERE COUNTRY EQ 'ENGLAND' OR 'JAPAN' OR 'ITALY'
 WHERE SALES GT 0
END

The output is:
COUNTRY SALES DEALER_COST
------- ----- -----------
ENGLAND £12,000.0 £11,194.0
ITALY €30,200.00 €16,235.00
JAPAN ¥78,030 ¥5,512

 The Displayed Data Type: USAGE

Describing Data 4-19

Example Using Numeric Display Options
The following table shows examples of the display options that are available for numeric
fields.

Option Format Data Display

Percent sign I2%
D7%
F3.2%

21
6148
48

21%
6,148%
48.00%

Comma suppression D6c
D7Mc
D7Nc

41376
6148
6148

41376
$6148
$ 6148

Comma inclusion I6C 41376 41,376

Zero suppression D6S 0

Bracket negative I6B -64187 (64187)

Credit negative I8R -3167 3167 CR

Leading zeroes F4L 31 0031

Floating dollar D7M 6148 $6,148

Non-floating dollar D7N 5432 $ 5,432

Scientific notation D12.5E 1234.5 0.123456D+04

Year/month/day I6YMD
I8YYMD

980421
19980421

98/04/21
1998/04/21

Month/day/year I6MDY
I8MDYY

042198
04211998

04/21/98
04/21/1998

Day/month/year I6DMY
I8DMYY

210498
21041998

21/04/98
21/04/1998

Month translation I2MT 07 JUL

Several display options can be combined, as shown:

Format Data Display

I5CB -61874 (61,874)

All of the options may be specified in any order. Options M and N (floating and
non-floating dollar sign) and data format D (floating-point double-precision)
automatically invoke option C (comma). Options L and S cannot be used together.
Option T (translate month) can be included anywhere in an alphanumeric or integer
USAGE specification that includes the M (month) display option. Date display options
(D, M, T, and Y), which cannot be used with floating-point fields, are described in
Alphanumeric and Numeric Formats with Date Display Options on page 4-32.

Describing An Individual Field

4-20 Information Builders

Alphanumeric Format
You can use alphanumeric format for any value to be interpreted as a sequence of
characters and composed of any combination of digits, letters, and other characters.

You can also use alphanumeric fields with date display options to provide limited date
support. This use of alphanumeric fields is described in Alphanumeric and Numeric
Formats with Date Display Options on page 4-32.

The alphanumeric USAGE type is A. The format of the length specification is n, where n
is the maximum number of characters in the field. You can have up to 3968 bytes in an
alphanumeric field in a FOCUS or FUSION file segment. You can have up to 4095 bytes
in a fixed format sequential data source. You may define the length in the Master File, a
DEFINE FILE command, or a COMPUTE command.

For example:

Format Display
A522 The minutes of today’s meeting were submitted...
A2 B3
A24 127-A429-BYQ-49

The standard numeric display options are not available for the alphanumeric data format.
However, alphanumeric data can be printed under the control of a pattern that is supplied
at run time. For instance, if a product code is to be displayed in parts, with each part
separated by a “-“, the following could be included in a DEFINE command:
PRODCODE/A11 = EDIT (fieldname,'999-999-999') ;

where:
fieldname

Is the existing field name, not the newly defined field name.

If the value is 716431014, PRODCODE will be displayed as 716-431-014. See the
Creating Reports manual for more information.

 The Displayed Data Type: USAGE

Describing Data 4-21

Reference Usage Notes for 4K Alphanumeric Fields
• Long alphanumeric fields cannot be indexed.

• For FOCUS and FUSION data sources, a segment still has to fit on a 4K page. Thus,
the maximum length of an alphanumeric field is dependent on the length of the other
fields within its segment.

• Long alphanumeric fields cannot be used in a CRTFORM.

• You can print or hold long alphanumeric fields but are unable to view them online.

• Long alphanumeric fields may be used as keys.

• Long alphanumeric fields are not supported in Hot Screen.

Date Formats
Date format enables you to define a field as a date and manipulate the field’s value and
display that value in ways appropriate to a date. Using date format, you can:

• Define date components such as year, quarter, month, day, and day of week, and
extract them easily from date fields.

• Sort reports into date sequence, regardless of how the date is displayed.

• Perform arithmetic with dates and compare dates without resorting to special
date-handling functions.

• Refer to dates in a natural way, such as JAN 1 1995, without regard to display or
editing formats.

• Automatically validate dates in transactions.

Describing An Individual Field

4-22 Information Builders

Date Display Options
The date format does not specify type or length. Instead, it specifies date component
options (D, W, M, Q, Y, and YY) and display options. These options are shown in the
following chart.

Display Option Meaning Effect

D Day Prints a value from 1 to 31 for the day.

M Month Prints a value from 1 to 12 for the month.

Y Year Prints a two-digit year.

YY Four-digit year Prints a four-digit year.

T Translate month or
day

Prints a three-letter abbreviation for months
in uppercase, if M is included in the
USAGE specification.

t Translate month or
day

Functions the same as uppercase T
(described above), except that the first
letter of the month or day is uppercase and
the following letters are lowercase.*

TR Translate month or
day

Functions the same as uppercase T
(described above), except that the entire
month or day name is printed instead of an
abbreviation.

tr Translate month or
day

Functions the same as lowercase t
(described above), except that the entire
month or day name is printed instead of an
abbreviation.*

Q Quarter Prints the quarter (1 - 4 if Q is specified by
itself, or Q1 - Q4 if it is specified together
with other date format items such as Y).

W Day-of-Week If it is included in a USAGE specification
with other date component options, prints a
three-letter abbreviation of the day of the
week in uppercase. If it is the only date
component option in the USAGE
specification, it prints the number of the
day of the week (1-7, Mon=1).

w Day-of-Week Functions the same as uppercase W
(described above), except that the first
letter is uppercase and the following letters
are lowercase.*

 The Displayed Data Type: USAGE

Describing Data 4-23

Display Option Meaning Effect

WR Day-of-Week Functions the same as uppercase W
(described above), except that the entire
day name is printed instead of an
abbreviation.*

wr Day-of-Week Functions the same as lowercase w
(described above), except that the entire
day name is printed instead of an
abbreviation.*

JUL Julian format Prints date in Julian format.

YYJUL

Julian format Prints a Julian format date in the format
YYYYDDD. The 7-digit format displays
the four-digit year and the number of days
counting from January 1. For example,
January 3, 2001 in Julian format is
2001003.

*Note: When using these display options, be sure they are actually stored in the Master
File as lowercase letters. To store characters in lowercase when using TED, you must
first issue the command CASE M on the TED command line.

The following combinations of date components are not supported in date formats:
I2D, A2D, I2M, A2M, I2MD, A2MD

Reference How Field Formats Y, YY, M, and W Are Stored
The Y, YY, and M formats are not smart dates. Smart date formats YMD and YYMD,
are stored as an offset from the base date of 12/31/1900. Smart date formats YM, YQ,
YYM, and YYQ are stored as an offset from the base date 01/1901. W formats are stored
as integers with a display length of one, containing values 1-7 representing the days of
the week. Y, YY, and M formats are stored as integers. Y and M have display lengths of
two. YY has a display length of four. When using Y and YY field formats, keep in mind
these two important points:

• The Y formats will not sort based on DEFCENT and YRTHRESH settings. A field
with a format of Y will not equal a YY field, as this is not a displacement, but a
4-digit integer.

• It is possible to use DEFCENT and YRTHRESH to convert a field from Y to YY
format.

Describing An Individual Field

4-24 Information Builders

Reference Date Literals Interpretation Table
This table illustrates the behavior of date formats. The columns indicate the number of
input digits for a date format. The rows indicate the usage or format of the field. The
intersection of row and column describes the result of input and format.

Date Format 1 2 3 4

YYMD * * CC00/0m/dd CC00/mm/dd

MDYY * * * *

DMYY * * * *

YMD * * CC00/0m/dd CC00/mm/dd

MDY * * * *

DMY * * * *

YYM CC00/0m CC00/mm CC0y/mm CCyy/mm

MYY * * * *

YM CC00/0m CC00/mm CC0y/mm CCyy/mm

MY * * 0m/CCyy mm/CCyy

M 0m mm * *

YYQ CC00/q CC0y/q CCyy/q 0yyy/q

QYY * * q/CCyy *

YQ CC00/q CC0y/q CCyy/q 0yyy/q

QY * * q/CCyy *

Q q * * *

JUL CC00/00d CC00/0dd CC00/ddd CC0y/ddd

YY 000y 00yy 0yyy yyyy

Y 0y yy * *

D 0d dd * *

W w * * *

 The Displayed Data Type: USAGE

Describing Data 4-25

Date Format 5 6 7 8

YYMD CC0y/mm/dd CCyy/mm/dd 0yyy/mm/dd yyyy/mm/dd

MDYY 0m/dd/CCyy mm/dd/CCyy 0m/dd/yyyy mm/dd/yyyy

DMYY 0d/mm/CCyy dd/mm/CCyy 0d/mm/yyyy dd/mm/yyyy

YMD CC0y/mm/dd CCyy/mm/dd 0yyy/mm/dd yyyy/mm/dd

MDY 0m/dd/CCyy mm/dd/CCyy 0m/dd/yyyy mm/dd/yyyy

DMY 0d/mm/CCyy dd/mm/CCyy 0d/mm/yyyy dd/mm/yyyy

YYM 0yyy/mm yyyy/mm * *

MYY 0m/yyyy mm/yyyy * *

YM 0yyy/mm yyyy/mm * *

MY 0m/yyyy mm/yyyy * *

M * * * *

YYQ yyyy/q * * *

QYY q/yyyy * * *

YQ yyyy/q * * *

QY q/yyyy * * *

Q * * * *

JUL CCyy/ddd * * *

YY * * * *

Y * * * *

D * * * *

W * * * *

Note:

• CC stands for two century digits provided by DFC/YRT settings.

• * stands for message FOC177 (invalid date constant).

• Date literals are read from right to left.

Describing An Individual Field

4-26 Information Builders

Controlling the Date Separator
You can control the date separators when the date is displayed. In basic date format, such
as YMD and MDYY, the date components are displayed separated by a slash character
(/). The same is true for the year-month format. Year-quarter format is displayed with the
year and quarter separated by a blank (for example, 94 Q3 or Q3 1994). The single
component formats display just the single number or name.

The separating character can be changed to a period, a dash, or a blank, or can even be
eliminated entirely. The following table shows the USAGE specifications that you can
use to change the separating character.

Format Display

YMD 93/12/24

Y.M.D 93.12.24

Y-M 93-12

YBMBD 93 12 24 (The letter B signifies blank spaces.)

Y|M|D 931224 (The concatenation symbol (|) eliminates the separation
character.)

Date Translation
Numeric months and days can be replaced by a translation, such as JAN, January, Wed,
or Wednesday. The translated month or day can be abbreviated to three characters or
fully spelled out. It can appear in either uppercase or lowercase. In addition, the day of
the week (for example, Monday) can be appended to the beginning or end of the date. All
of these options are independent of each other.

Translation Display

MT JAN

Mt Jan

MTR JANUARY

Mtr January

WR MONDAY

wr Monday

 The Displayed Data Type: USAGE

Describing Data 4-27

Example Using a Date Format
The following chart shows some sample USAGE and ACTUAL formats for data stored
in a non-FOCUS data source. The Value column shows the actual data value and the
Display column shows how the data is displayed.

USAGE ACTUAL Value Display

wrMtrDYY A6YMD 990315 Monday, March 15 1999

YQ A6YMD 990315 99 Q1

QYY A6YMD 990315 Q1 1999

YMD A6 990315 99/03/15

MDYY A6YMD 990315 03/15/1999

Note that the date attributes in the ACTUAL format specify the order in which the date is
stored in the non-FOCUS data source. If the ACTUAL format does not specify the order
of the month, day, and year, it will be inferred from the USAGE format.

Using a Date Field
A field formatted as a date is automatically validated when it is entered. It can be entered
as a natural date literal (for example, JAN 12 1999) or as a numeric date literal (for
example, 011299).

Natural date literals, by including spaces between date components and using
abbreviations of month names, enable you to specify a date in a natural, easily
understandable way. For example, April 25, 1999 can be specified as any of the
following natural date literals:
APR 25 1999
25 APR 1999
1999 APR 25

Natural date literals can be used in all date computations and all methods of data source
updating. Examples are shown in the following chart.
In WHERE screening WHERE MYDATE IS 'APR 25 1999'
In arithmetic expressions MYDATE - '1999 APR 25'
In computational date comparisons IF MYDATE GT '25 APR 1999'
In replies to MODIFY prompts MYDATE==> APR 25 1999
In comma-delimited data ...,MYDATE = APR 25 1999, ...

Note that natural date literals cannot be used to enter dates using FIDEL.

Describing An Individual Field

4-28 Information Builders

The following chart describes the format of natural date literals.

Literal Format

Year-month-day Four-digit year; uppercase three-character abbreviation, or
uppercase full name, of the month; and one- or two-digit day
of the month (for example, 1999 APR 25 or APRIL 25 1999).

Year-month Year and month as described above.

Year-quarter Year as described above, Q plus quarter number for quarter
(for example, 1999 Q3).

Month Month as described above.

Quarter Quarter as described above.

Day of week Three-character, uppercase abbreviation, or full, uppercase
name, of the day (for example, MON or MONDAY).

The date components of a natural date literal can be specified in any order, regardless of
their order in the USAGE specification of the target field. Date components are separated
by one or more blanks.

For example, if a USAGE specification for a date field is YM, a natural date literal
written to that field can include the year and month in any order. MAY 1999 and 1990
APR would both be valid literals.

Numeric Date Literals
Numeric date literals differ from natural date literals in that they are simple strings of
digits. The order of the date components in a numeric date literal must match the order of
the date components in the corresponding USAGE specification. In addition, the numeric
date literal must include all of the date components included in the USAGE specification.
For example, if the USAGE specification is DMY, then April 25 1999 must be
represented as:
250499

Numeric date literals can be used in all date computations and all methods of data source
updating.

 The Displayed Data Type: USAGE

Describing Data 4-29

Date Fields in Arithmetic Expressions
The general rule for manipulating date fields in arithmetic expressions is that date fields
in the same expression must specify the same date components. The date components can
be specified in any order, and display options are ignored. Valid date components are Y
or YY, Q, M, W, and D.

Note that arithmetic expressions assigned to quarters, months, or days of the week are
computed modulo 4, 12, and 7, respectively, so that anomalies like fifth quarters and
thirteenth months are avoided.

For example, if NEWQUARTER and THISQUARTER both have USAGE specifications
of Q, and the value of THISQUARTER is 2, then the following statement
NEWQUARTER = THISQUARTER + 3

gives NEWQUARTER a value of 1 (that is, the remainder of 5 divided by 4).

Converting a Date Field
Two types of conversion are possible: format conversion and date component conversion.
In the first case, the value of a date format field can be assigned to an alphanumeric or
integer field that uses date display options (see the following section); the reverse
conversion is also possible.

In the second case, a field whose USAGE specifies one set of date components can be
assigned to another field specifying different date components.

For example, the value of REPORTDATE (DMY) can be assigned to ORDERDATE
(Y); in this case, the year is being extracted from REPORTDATE. If REPORTDATE is
Apr 27 99, ORDERDATE is 99.

You can also assign the value of ORDERDATE to REPORTDATE; if the value of
ORDERDATE is 99, the value of REPORTDATE would be Jan 1 99. In this case,
REPORTDATE is given values for the missing date components.

Syntax How to Convert a Date Field
field1/format = field2;

where:
field1

Is a date format field, or an alphanumeric or integer format field using date display
options.

format

Is the USAGE (or FORMAT) specification of field1 (the target field).
field2

Is a date format field, or an alphanumeric or integer format field using date display
options. The format types (alphanumeric, integer, or date) and the date components
(YY, Y, Q, M, W, D) of field1 and field2 do not need to match.

Describing An Individual Field

4-30 Information Builders

How a Date Field Is Represented Internally
Date fields are represented internally as four-byte binary integers indicating the elapsed
time since the date format base date. For each field, the unit of elapsed time is that field’s
smallest date component.

For example, if the USAGE specification of REPORTDATE is MDY, then elapsed time
is measured in days, and internally the field contains the number of days elapsed between
the entered date and the base date. If you entered the numeric literal for February 13,
1964 (that is, 021364), and then printed the field in a report, 02/13/64 would be
displayed. If you used it in the equation
NEWDATE = 'FEB 28 1964' - REPORTDATE ;
DAYS/D = NEWDATE ;

then the value of DAYS would be 15. However, the internal representation of
REPORTDATE would be a four-byte binary integer representing the number of days
between December 31, 1900 and February 13, 1964.

Just as the unit of elapsed time is based on a field’s smallest date component, so too is the
base date. For example, for a YQ field, elapsed time is measured in quarters and the base
date is the first quarter of 1901. For a YM field, elapsed time is measured in months and
the base date is the first month of 1901.

In reports, to display blanks or the actual base date, use the SET DATEDISPLAY
command described in the Developing Applications manual. The default value, OFF,
displays blanks when a date matches the base date. ON displays the actual base date
value.

You do not need to be concerned with the date format’s internal representation, except to
note that all dates set to the base date display as blanks, and all date fields that are entered
blank or as all zeroes are accepted during validation and interpreted as the base date.
They will be displayed as blanks, but will be interpreted in date computations and
expressions as the base date.

 The Displayed Data Type: USAGE

Describing Data 4-31

Displaying a Non-Standard Date Format
By default, if a date field in a non-FOCUS data source contains an invalid date, a
message displays and the entire record fails to display in a report. For example, if a date
field contains ‘980450’ with an ACTUAL of A6 and a USAGE of YMD, the record
containing that field will not display. The SET ALLOWCVTERR command enables you
to display the rest of the record that contains the incorrect date.

Syntax How to Display a Non-Standard Date
SET ALLOWCVTERR = {ON|OFF}

where:
ON

Allows the display of a field containing an incorrect date.
OFF

Generates a diagnostic message if incorrect data is encountered, and does not display
the record containing the bad data. This is the default value.

When a bad date is encountered, ALLOWCVTERR sets the value of the field to either
MISSING or to the base date depending on whether MISSING=ON.

The following chart shows the results of interaction between DATEDISPLAY and
MISSING assuming ALLOWCVTERR=ON and the presence of a bad date.

 MISSING=OFF MISSING=ON

DATEDISPLAY=ON Displays Base Date 19001231 or 1901/1 .

DATEDISPLAY=OFF Displays Blanks .

DATEDISPLAY affects only how the base date is displayed. See the Developing
Applications manual for a description of DATEDISPLAY.

Date Format Support
Date format fields are used in special ways with the following facilities:

• Dialogue Manager. Amper variables can function as date fields if they are set to
natural date literals. For example:
-SET &NOW = 'APR 25 1960' ;
-SET &LATER = '1990 25 APR' ;
-SET &DELAY = &LATER - &NOW ;

In this case, the value of &DELAY is the difference between the two dates,
measured in days: 10,957.

• Extract files. Date fields in SAVB and unformatted HOLD files are stored as
four-byte binary integers representing the difference between the field’s face value
and the standard base date. Date fields in SAVE files and formatted HOLD files (for
example, USAGE WP) are stored without any display options.

• GRAPH. Date fields are not supported as sort fields in ACROSS and BY phrases.

• FML. Date fields are not supported within the RECAP statement.

Describing An Individual Field

4-32 Information Builders

Alphanumeric and Numeric Formats With Date Display Options
In addition to the standard date format, you can also represent a date by using an
alphanumeric, integer, or packed-decimal field with date display options (D, M, Y, and
T). Note, however, that this does not offer the full date support that is provided by the
standard date format.

Alphanumeric and integer fields used with date display options have some date
functionality when used with special date functions, as described in the Creating Reports
manual.

When representing dates as alphanumeric or integer fields with date display options, you
can specify the year, month, and day. If all three of these elements are present, then the
date has six digits (or eight if the year is presented as four digits) and the USAGE can be:

Format Display
I6MDY 04/21/98

I6YMD 98/04/21

P6DMY 21/04/98

I8DMYY 21/04/1998

A month’s number (1 to 12) can be translated to the corresponding month name by
adding the letter T to the format, immediately after the M. For instance:

Format Data Display
I6MTDY 05/21/98 MAY 21 98

I4MTY 0698 JUN 98

I2MT 07 JUL

If the date has only the month element, a format of I2MT will display the value 4 as APR,
for example. This is particularly useful in reports where columns or rows are sorted by
month. They will then appear in correct calendar order; for example, JAN, FEB, MAR,
because the sorting is based on the numerical, not alphabetical, values. (Note that without
the T display option, I2M would be interpreted as an integer with a floating dollar sign.)

Date-Time Formats
The date-time data type supports both the date and time, similar to the timestamp data
types available in many relational data sources.

Date-time fields are stored in eight or ten bytes, four digits for date and either four or six
digits for time, depending on whether the format specifies a microsecond.

See the Developing Applications manual for information on subroutines for manipulating
date-time fields.

 The Displayed Data Type: USAGE

Describing Data 4-33

Describing a Date-Time Field
In a Master File, The USAGE (or FORMAT) attribute determines how date-time field
values are displayed in report output and forms, and how they behave in expressions and
functions. For FOCUS data sources, it also determines how they are stored.

A new format type, H, describes date-time fields. The USAGE attribute for a date-time
field contains the H format code and can identify either the length of the field or the
relevant date-time display options.

The MISSING attribute for date-time fields can be ON or OFF. If it is OFF, and the
date-time field has no value, it defaults to blank.

Syntax How to Describe a Date-Time Field
The USAGE attribute can be one of the following:
USAGE = Hnn

USAGE = Htimefmt1

USAGE = Hdatefmt [separator] [timefmt2]

where:
Hnn

Is the USAGE value for a numeric date-time value without date-time display options.
This format is appropriate for use in alphanumeric HOLD files or transaction files.

nn is the field length, from 1 to 20, including up to eight characters for displaying the
date and up to nine or 12 characters for the time. For lengths less than 20, the date is
truncated on the right.

An eight-character date includes four digits for the year, two digits for the month,
and two digits for the day of the month, YYYYMMDD.

A nine-character time includes two digits for the hour, two digits for the minute, two
digits for the second, and three digits for the millisecond, HHMMSSsss. The
millisecond component represents the decimal portion of the second to three places.

A twelve-character time includes two digits for the hour, two digits for the minute,
two digits for the second, three digits for the millisecond, and three digits for the
microsecond, HHMMSSsssmmm. The millisecond component represents the
decimal portion of the second value to three places. The microsecond component
represents three additional decimal places beyond the millisecond value.

With this format, there are no spaces between the date and time components, no
decimal points, and no spaces or separator characters within either component. The
time must be entered using the 24-hour system. For example, the value
19991231225725333444 represents 1999/12/31 10:57:25.333444PM.

Describing An Individual Field

4-34 Information Builders

Htimefmt1

Is the USAGE format for displaying time only. Hour, minute, and second
components are always displayed separated by colons (:), with no intervening blanks.

Unless you specify one of the AM/PM time display options, the time component is
displayed using the 24-hour system.

When the format includes more than one time display option:

• The options must appear in the order hour, minute, second, millisecond,
microsecond.

• The first option must be either hour, minute, or second.

• No intermediate component can be skipped. That is, if hour is specified the next
option must be minute, it cannot be second.

The following table lists the valid time display options for a time-only USAGE
attribute. Assume the time value is 2:05:27.123456 a.m.

Option Meaning Effect

H hour (two digits)

If the format includes the option a or
A, the hour value is from 01 to 12.

Otherwise, the hour value is from 00
to 23, with 00 representing midnight.

Prints a two-digit hour. For
example:
USAGE = HH prints 02

h hour with zero suppression

If the format includes the option a or
A, the hour value is from 1 to 12.

Otherwise, the hour is from 0 to 23.

Displays the hour with zero
suppression. For example:
USAGE = Hh prints 2

I minute (two digits)

The minute value is from 00 to 59.

Prints the two-digit minute.
For example:
USAGE = HHI prints 02:05

i minute with zero suppression

The minute value is from 0 to 59.

Prints the minute with zero
suppression. Cannot be used
together with an hour format
(H or h). For example:
USAGE = Hi prints 5

S Second (two digits)

00 to 59

Prints the two-digit second.
For example:
USAGE = HHIS prints
02:05:27

 The Displayed Data Type: USAGE

Describing Data 4-35

Option Meaning Effect

s millisecond (three digits — after the
decimal point in the second)

000 to 999

Prints the second to three
decimal places. For example:
USAGE = HHISs prints
02:05:27.123

m microsecond (three additional digits
after millisecond)

000 through 999

Prints the second to six
decimal places. For example:
USAGE = HSsm prints
27.123456

A 12-hour time display with AM or PM
in upper case

Prints the hour from 01 to 12
followed by AM or PM. For
example:
USAGE = HHISA prints
02:05:27AM

a 12-hour time display with am or pm in
lower case

Prints the hour from 01 to 12
followed by am or pm. For
example:
USAGE = HHISa prints
02:05:27am

Hdatefmt

Is the USAGE format for displaying the date portion of the date-time field.

The date components can be in any of the following combinations and order:

• Year first combinations: Y, YY, YM, YYM, YMD, YYMD

• Month-first combinations: M, MD, MY, MYY, MDY, MDYY

• Day-first combinations: D, DM, DMY, DMYY

Describing An Individual Field

4-36 Information Builders

The date format can include the following display options as long as they conform to
the allowed combinations. In the following table, assume the date is February 5,
1999.

Option Meaning Example

Y 2-digit year 99

YY 4-digit year 1999

M 2-digit month (01 - 12) 02

MT Full month name February

Mt Short month name Feb

D 2-digit day 05

d Zero-suppressed day 5

k For formats in which month or day is
followed by year, and month is translated to a
short or full name, k separates the year from
the day with a comma and blank. Otherwise,
the separator is a blank.

USAGE = HMtDkYY

prints Feb 05, 1999

separator

Is a separator between the date components. The default separator is a slash (/).
Other valid separators are: period (.), hyphen (-), blank (B), or none (N). With
translated months, these separators can only be specified when the k option is not
used.

timefmt2

Is the format for a time that follows a date. Time is separated from the date by a
blank; time components are separated from each other by colons. Unlike the format
for time alone, a time format that follows a date format consists of at most two
characters: a single character to represent all of the time components to be displayed
and, optionally, one character for an AM/PM option.

 The Displayed Data Type: USAGE

Describing Data 4-37

The following table lists the valid options. Assume the date is February 5, 1999 and
the time is 02:05:25.444555 a.m.

Option Meaning Example

H Prints hour USAGE = HYYMDH prints
1999/02/05 02

I Prints hour:minute USAGE = HYYMDI prints
1999/02/05 02:05

S Prints hour:minute:second USAGE = HYYMDS prints
1999/02/05 02:05:25

s Prints
hour:minute:second.millisecond

USAGE = HYYMDs prints
1999/02/05 02:05:25.444

m Prints
hour:minute:second.microsecond

USAGE = HYYMDm prints
1999/02/05 02:05:25.444555

A Prints AM or PM. Uses the 12-hour
system and causes the hour to be
printed with zero suppression.

USAGE = HYYMDSA prints
1999/02/05 2:05:25AM

a Prints am or pm. Uses the 12-hour
system and causes the hour to be
printed with zero suppression.

USAGE = HYYMDSa prints
1999/02/05 2:05:25am

Note: Unless you specify one of the AM/PM time display options, the time
component is displayed using the 24-hour system.

Describing An Individual Field

4-38 Information Builders

Specifying a Date-Time Value
An external date-time value is a constant in character format from one of the following
sources:

• A sequential data source.

• Typed by an application user at a terminal or workstation.

• Used in an expression in a WHERE, IF, DEFINE, or a COMPUTE.

A date-time constant typed by an application user at a terminal or workstation, or a
date-time value as it appears in a character file has one of the following formats:
time_string [date_string]
date_string [time_string]

A date-time constant in a COMPUTE, DEFINE, or WHERE expression must have one of
the following formats:
DT(time_string [date_string])
DT(date_string [time_string])

A date-time constant in an IF expression has one of the following formats:
'time_string [date_string]'
'date_string [time_string]'

If the value contains no blanks or special characters, the single quotation marks are not
necessary. Note that the DT prefix is not supported in IF criteria.
where:
time_string

Cannot contain blanks. Time components are separated by colons and may be
followed by AM, PM, am, or pm. For example:
14:30:20:99 (99 milliseconds)
14:30
14:30:20.99 (99/100 seconds)
14:30:20.999999 (999999 microseconds)
02:30:20:500pm

Note that the second can be expressed with a decimal point or be followed by a
colon.

• If there is a colon after the second, the value following it represents the
millisecond. There is no way to express the microsecond using this notation.

• A decimal point in the second value indicates the decimal fraction of a second.
A microsecond can be represented using six decimal digits.

 The Displayed Data Type: USAGE

Describing Data 4-39

date_string

Can have one of the following three formats:

• Numeric string format is exactly four, six, or eight digits. Four-digit strings are
considered to be a year (century must be specified); the month and day are set to
January 1. Six and eight-digit strings contain two or four digits for the year,
followed by two for the month, and then two for the day. Because the
component order is fixed with this format, the DATEFORMAT setting
described in the Developing Applications manual is ignored.

If a numeric-string format longer than eight digits is encountered, it is treated as
a combined date-time string in the Hnn format described in Date-Time Formats
on page 4-32. The following are examples of numeric string date constants:
99
1999
19990201

• Formatted-string format contains a one or two-digit day, a one or two-digit
month, and a two or four-digit year separated by spaces, slashes, hyphens, or
periods. All three parts must be present and follow the DATEFORMAT setting
described in the Developing Applications manual. If any of the three fields is
four digits, it is interpreted as the year, and the other two fields must follow the
order given by the DATEFORMAT setting. The following are examples of
formatted-string date constants:
1999/05/20
5 20 1999
99.05.20
1999-05-20

• Translated-string format contains the full or abbreviated month name. The
year must also be present in four-digit or two-digit form. If the day is missing,
day 1 of the month is assumed; if present, it can have one or two digits. If the
string contains both a two-digit year and a two-digit day, they must be in the
order given by the DATEFORMAT setting. For example:
January 6 2000

Note:

• The date and time strings must be separated by at least one blank space. Blank
spaces are also permitted at the beginning and end of the date-time string.

• In each date format, two-digit years are interpreted using the [F]DEFCENT and
[F]YRTHRESH settings.

Describing An Individual Field

4-40 Information Builders

Text Field Format
FIELD = fieldname, ALIAS = aliasname, USAGE = TXnn[F],$

where:
fieldname

Is the name you assign the text field.
aliasname

Is an alternate name for the field name.
nn

Is the output display length in TABLE for the text field. The display length may be
between 1 and 256 characters.

F

Is used to format the text field for redisplay when TED is called using ON MATCH
or ON NOMATCH. When F is specified, the text field is formatted as TX80 and is
displayed. When F is not specified, the field is redisplayed exactly as entered.

For example, the text field in the COURSES data source is specified as:
FIELD = DESCRIPTION, ALIAS = CDESC, USAGE = TX50,$

All letters, digits, and special characters can be stored with this format. The following are
some sample text field formats.

Format Display

TX50 This course provides the DP professional with the skills
needed to create, maintain, and report from FOCUS data
sources.

TX35 This course provides the DP
professional with the skills needed
to create, maintain, and report
from FOCUS data sources.

The standard edit options are not available for the text field format.

 The Stored Data Type: ACTUAL

Describing Data 4-41

The Stored Data Type: ACTUAL
ACTUAL describes the type and length of data as it is actually stored in the data source.
While some data types, such as alphanumeric, are universal, others differ between
different types of data sources. Some data sources support unique data types. For this
reason, the values you can assign to the ACTUAL attribute differ for each type of data
source.

The ACTUAL Attribute
This attribute describes the type and length of your data as it actually exists in the data
source. The source of this information is your existing description of the data source
(such as a COBOL FD statement). The ACTUAL attribute is one of the distinguishing
characteristics of a Master File for non-FOCUS data sources. Since this attribute exists
only to describe the format of a non-FOCUS data structure, it is not used in the Master
File of a FOCUS data structure.

Syntax How to Specify the ACTUAL Attribute
ACTUAL = format

where format consists of values taken from the following tables.

The following table shows the codes for the types of data that can be read:

ACTUAL Type Meaning

DATE Four-byte integer internal format, representing the difference
between the date to be entered and the date format base date.

An Where n = 1-4095 for fixed-format sequential and VSAM data
sources and 1-256 for other non-FOCUS data sources.
Alphanumeric characters A-Z, 0-9, and the special characters in
the EBCDIC display mode.

D8 Double-precision, floating-point numbers, stored internally in
eight bytes.

F4 Single-precision, floating-point numbers, stored internally in four
bytes.

In Binary integers:
I1 = single-byte binary integer.
I2 = half-word binary integer (2 bytes).
I4 = full-word binary integer (4 bytes).

Pn Where n = 1-16. Packed decimal internal format. n is number of
bytes, each of which contains two digits, except for the last byte
which contains a digit and the sign (+ or -). For example, P6
means 11 digits plus a sign.

Describing An Individual Field

4-42 Information Builders

ACTUAL Type Meaning

Zn Where n = 1-31. Zoned decimal internal format. n is the number of
digits, each of which takes a byte of storage. The last digit
contains a digit and the sign.
If the field contains an assumed decimal point, represent the field
with an ACTUAL format of Zn and a USAGE format of Pm.d,
where m is the total number of digits in the display plus the
assumed decimal point, and d is the number of decimal places. m
must be at least 1 greater than the value of n. For example, a field
with ACTUAL=Z5 and one decimal place would need
USAGE=P6.1 (or P7.1, or greater).

Note:

• Unless your data source was created by a program, all of the characters will be
characters of either type A (alphanumeric) or type Z (zoned decimal).

• The ASQ. prefix is not valid for a packed field of any length.

Reference ACTUAL to USAGE Conversion
The following conversions from ACTUAL format to USAGE (display) format are
permitted:

ACTUAL USAGE

A A, D, F, I, P, date format

D D

DATE date format

F F

I I, date format

P P, date format

Z D, F, I, P

 The Stored Data Type: ACTUAL

Describing Data 4-43

Reference COBOL Picture to USAGE Format Conversion
The following table shows the USAGE and ACTUAL formats for COBOL, FORTRAN,
PL1, and Assembler field descriptions.

COBOL USAGE
FORMAT

BYTES OF
COBOL PICTURE

INTERNAL
STORAGE

ACTUAL
FORMAT

USAGE
FORMAT

DISPLAY
DISPLAY
DISPLAY
DISPLAY

X(4)
S99
9(5)V9
99

4
2
6
2

A4
Z2
Z6.1
A2

A4
P3
P8.1
A2

COMP
COMP
COMP*
COMP
COMP-1**

S9
S9(4)
S9(5)
S9(9)
—

4
4
4
4
4

I2
I2
I4
I4
F4

I1
I4
I5
I9
F6

COMP-2*** — 8 D8 D15

COMP-3
COMP-3
COMP-3

9
S9V99
9(4)V9(3)

8
8
8

P1
P2
P4

P1
P5.2
P8.3

FIXED
BINARY(7)
(COMP-4)

B or XL1 8 I4 I7

*Equivalent to INTEGER in FORTRAN, FIXED BINARY(31) in PL/1, and F in
Assembler.
**Equivalent to REAL in FORTRAN, FLOAT(6) in PL/1, and E in Assembler.
***Equivalent to DOUBLE PRECISION or REAL*8 in FORTRAN, FLOAT(16) in
PL/1, and D in Assembler.

Note:

• The USAGE lengths shown are minimum values. They may be larger if desired.
Additional edit options may also be added.

• In USAGE formats, an extra character position is required for the minus sign if
negative values are expected.

• PICTURE clauses are not permitted for internal floating-point items.

• USAGE length should allow for maximum possible number of digits.

• In USAGE formats, an extra character position is required for the decimal point.

For information about using ACTUAL with sequential, VSAM, and ISAM data sources,
see Chapter 5, Describing a Sequential, VSAM, or ISAM Data Source. For other types of
data sources, see the documentation for the specific data adapter. Note that FOCUS data
sources do not use the ACTUAL attribute, and instead rely upon the USAGE attribute to
specify both how a field is stored and how it is formatted.

Describing An Individual Field

4-44 Information Builders

Null or MISSING Values: MISSING
If a segment instance exists but no data has been entered into one of its fields, that field
has no value. Some types of data sources represent this absence of data as a blank space
() or zero (0), but others explicitly indicate an absence of data with a null indicator or as
a special null value. Null values (sometimes known as missing data) are significant in
reporting applications, especially those that perform aggregating functions such as
averaging.
If your type of data source supports missing data, as do FOCUS data sources and most
relational data sources, then you can use the optional MISSING attribute to enable null
values to be entered into and read from a field. MISSING plays a role when you:

• Create new segment instances. If no value is supplied for a field for which
MISSING has been set to ON, then the field is assigned a missing value.

• Generate reports. If a field with a null value is retrieved, the field value is not used
in aggregating calculations such as averaging and summing. If the report calls for the
field’s value to be displayed, a special character is displayed to indicate a missing
value. The default character is a period (.), but you can change it to any character
string you wish using the SET NODATA command, as described in the Developing
Applications manual.

Syntax How to Specify a Missing Value
MISSING = {ON|OFF}

where:
ON

Distinguishes a missing value from an intentionally entered blank or zero when
creating new segment instances and reporting.

OFF

Does not distinguish between missing values and blank or zero values when creating
new segment instances and reporting. This is the default value.

 Null or MISSING Values: MISSING

Describing Data 4-45

Reference Usage Notes for MISSING
Note the following rules when using MISSING:

• Alias. MISSING does not have an alias.

• Setting. It is recommended that you set the MISSING attribute to match the field’s
predefined null characteristic (whether the characteristic was explicitly set when the
data source was created, or set by default). For example, if a relational table column
has been created with the ability to accept null data, you should describe the field
with the MISSING attribute set to ON so that its null values are correctly interpreted.

This is not a consideration for FOCUS data sources, for which the field declaration
in the Master File both defines the field and describes it.

• Changes. You can change the MISSING attribute at any time. Note that changing
MISSING will not affect the actual stored data values that had been entered using the
old setting. However, it will affect how that data is interpreted: if null data is entered
when MISSING is set to ON, and then MISSING is switched to OFF, the data
originally entered as null will be interpreted as blanks (for alphanumeric fields) or
zeroes (for numeric fields). The only exception is FOCUS data sources, in which the
data originally entered as missing will be interpreted as the internal missing value for
that data type, which is described in Chapter 6, Describing a FOCUS Data Source.

Using a Missing Value
Consider the field values shown in the following four records:

 1 3

If you average these values without declaring the field with the MISSING attribute, a
value of zero will automatically be supplied for the two blank records. Thus, the average
of these four records will be (0+0+1+3)/4 or 1. If you set MISSING to ON, the two blank
records will not be used in the calculation, so the average will be (1+3)/2 or 2.

Missing values in a unique segment are also automatically supplied with a zero, a blank,
or a missing value depending on the MISSING attribute. What distinguishes missing
values in unique segments from others is that they are not stored. You do have to supply a
missing attribute for fields in unique segments on which you want to perform counts or
averages.

The Creating Reports manual contains a more thorough discussion of using null values
(sometimes called missing data) in reports. Included in the discussion are alternative
ways of distinguishing these values in reports, such as using the WHERE phrase with
MISSING selection operators, and creating virtual fields using the DEFINE FILE
command with the SOME or ALL phrase.

Describing An Individual Field

4-46 Information Builders

Validating Data: ACCEPT
ACCEPT is an optional attribute that you can use to validate data as it is entered into a
field from a MODIFY or FSCAN procedure. The ACCEPT test is applied immediately
after a CRTFORM, PROMPT, FIXFORM, or FREEFORM is processed after which
subsequent COMPUTE statements can manipulate the value. By including ACCEPT in a
field declaration you can define a list or range of acceptable field values. In relational
terms, you are defining the domain.

Note: Suffix VSAM and FIX data sources may use the ACCEPT attribute to specify
multiple RECTYPE values, which are discussed in Chapter 5, Describing a Sequential,
VSAM, or ISAM Data Source.

Syntax How to Validate Data
ACCEPT = list
ACCEPT = range
ACCEPT = FIND (field [AS name] IN file)

where:
list

Is a string of acceptable values. The syntax is:
value1 OR value2 OR value3...

For example, ACCEPT = RED OR WHITE OR BLUE. You can also use a blank as
an item separator. If the list of acceptable values runs longer than one line, continue
it on the next. The list is terminated by a comma.

range

Gives the range of acceptable values. The syntax is:
value1 TO value2

For example, ACCEPT = 150 TO 1000.
FIND

Verifies the incoming data against the values in another indexed field. This option is
available only for FOCUS data sources. See Chapter 6, Describing a FOCUS Data
Source, for more information.

Any value in the ACCEPT that contains an embedded blank (for example, Great Britain)
must be enclosed within single quotation marks. For example:
ACCEPT = SPAIN OR ITALY OR FRANCE OR 'GREAT BRITAIN'

If the ACCEPT attribute is included in a field declaration and the SET command
parameter ACCBLN has a value of OFF, blank () and zero (0) values will be accepted
only if they are explicitly coded into the ACCEPT. SET ACCBLN is described in the
Developing Applications manual.

 Online Help Information: HELPMESSAGE

Describing Data 4-47

Reference Usage Notes for ACCEPT
Note the following rules when using ACCEPT:

• Alias. ACCEPT does not have an alias.

• Changes. You can change the information in an ACCEPT attribute at any time.

• Virtual fields. You cannot use the ACCEPT attribute to validate virtual fields
created with the DEFINE attribute.

• HOLD files. If you wish the ACCEPT attribute to be propagated into the Master File
of a HOLD file, use the SET HOLDATTR command. HOLD files are discussed in
the Creating Reports manual.

• ACCEPT is used only in MODIFY procedures. It is useful for providing one central
validation list to be used by several procedures. The FIND function is useful when
the list of values is large or undergoes frequent change.

• The HELPMESSAGE attribute defines a message to display based on the results
of an ACCEPT test.

Online Help Information: HELPMESSAGE
HELPMESSAGE is an optional field attribute. It enables you to include a one-line text
message in the Master File. This text, or message, is displayed on one line in the TYPE
area of MODIFY CRTFORMs. For example, you can include a message that lists valid
values for a field, or one that provides information about the format of a field. The
specified message is displayed when:

• The value entered for a data source field is invalid according to the ACCEPT test for
the field.

• The value entered for a data source field causes a format error.

• The user places the cursor in the data entry area for a particular field and presses a
predefined PF key.

Syntax How to Include Online Help Information in a Master File
The syntax for the HELPMESSAGE attribute in the Master File is
FIELDNAME = name, ALIAS = alias, USAGE = format,
 HELPMESSAGE = text...,$

where:
text

Is one line of text, up to 78 characters long. All characters and digits are acceptable.
Text containing a comma must be enclosed within single quotation marks. Leading
blanks are ignored.

For example:
FIELDNAME = DEPARTMENT, ALIAS = DPT, USAGE = A10,
 ACCEPT = MIS PRODUCTION SALES,
 HELPMESSAGE = 'DEPARTMENT MUST BE MIS, PRODUCTION, OR SALES',$

Describing An Individual Field

4-48 Information Builders

The ACCEPT attribute for the DEPARTMENT field causes values entered for that field
to be tested. If the incoming value is not MIS, PRODUCTION, or SALES, a message is
displayed. Then the specified HELPMESSAGE text is displayed:
(FOC534) THE DATA VALUE IS NOT AMONG THE ACCEPTABLE VALUES FOR DEPARTMENT
DEPARTMENT MUST BE MIS, PRODUCTION, OR SALES

Note: Messages are displayed whether or not the HELPMESSAGE attribute is used. The
HELPMESSAGE attribute also causes a message to be displayed when a format error
occurs. For example, if the field HIRE_DATE is specified in the Master File as follows
FIELDNAME = HIRE_DATE, ALIAS = HDT, USAGE = YMD,
 HELPMESSAGE = THE FORMAT FOR HIRE_DATE IS YMD,$

and alphabetic characters are entered for this field on a CRTFORM, the following
message will appear on the screen:
FORMAT ERROR IN VALUE ENTERED FOR FIELD HIRE_DATE
 THE FORMAT FOR HIRE_DATE IS YMD

Note that the same message provided with the HELPMESSAGE attribute is displayed
when either a format error or a failed ACCEPT test occurs.

Setting a HELP (PF) Key
To see the HELPMESSAGE text for any field on the CRTFORM, use the SET command
to define a PF key for HELP before executing the MODIFY program. Use the following
(which is the alias for HELPMESSAGE) syntax
SET PFnn = HELP

where:
nn

Is the number of the PF key you wish to define.

To see a message for a field, position the cursor on the data entry area of that field and
press the PF key defined for HELP. If no message has been defined for the field, you will
see the following message:
NO HELP AVAILABLE FOR THIS FIELD

For a FOCUS data source, the HELPMESSAGE attribute can be changed without
rebuilding the data source.

 Alternative Report Column Titles: TITLE

Describing Data 4-49

Alternative Report Column Titles: TITLE
When you generate a report, each column title in the report defaults to the name of the
field displayed in that column. However, you can change the default column title by
specifying the optional TITLE attribute for that field.

Of course, you can always specify a different column title within an individual report by
using the AS phrase in that report request, as described in the Creating Reports manual.

Note that the TITLE attribute has no effect in a report if the field is used with a prefix
operator such as AVE. You can supply an alternative column title for fields used with
prefix operators by using the AS phrase.

Syntax How to Specify an Alternative Title
TITLE = 'text'

where:
text

Is any string of up to 64 characters. You can split the text across as many as five
separate title lines by separating the lines with a comma (,). You can include blanks
at the end of a column title by including a slash (/) in the final blank position. You
must enclose the string within single quotation marks if it includes commas or
leading blanks. For example,

FIELD = LNAME, ALIAS = LN, USAGE = A15, TITLE = 'Client,Name',$

replaces the default column heading, LNAME, with the following:
Client
Name

Reference Usage Notes for TITLE
Note the following rules when using TITLE:

• Alias. TITLE does not have an alias.

• Changes. You can change the information in TITLE at any time. You can also
override the TITLE with an AS name in a request or turn it off with the SET
TITLE=OFF command.

• Virtual fields. If you use the TITLE attribute for a virtual field created with the
DEFINE attribute, the semicolon (;) terminating the DEFINE expression must be on
the same line as the TITLE keyword.

• HOLD files. If you wish the TITLE attribute to be propagated into the Master File of
a HOLD file, use the SET HOLDATTR command. HOLD files are discussed in the
Creating Reports manual.

Describing An Individual Field

4-50 Information Builders

Documenting the Field: DESCRIPTION
DESCRIPTION is an optional attribute that enables you to provide comments and other
documentation for a field within the Master File. You can include any comment up to 78
characters in length.

Note that you can also add documentation to a field declaration, or to a segment or file
declaration, by typing a comment in the columns following the terminating dollar sign.
You can even create an entire comment line by inserting a new line following a
declaration and placing a dollar sign at the beginning of the line. The syntax and rules for
creating a Master File are described in Chapter 1, Understanding a Data Source
Description.

The DESCRIPTION attribute for a FOCUS data source can be changed at any time
without rebuilding the data source.

Syntax How to Supply Field Documentation
DESC[RIPTION] = text

where:
DESCRIPTION

Can be shortened to DESC. Abbreviating the keyword has no effect on its function.
text

Is any string of up to 78 characters. If the string contains a comma, the string must be
enclosed within single quotation marks.

For example:
FIELD=UNITS,ALIAS=QTY,USAGE=I6, DESC='QUANTITY SOLD, NOT RETURNED',$

Reference Usage Notes for DESCRIPTION
Note the following rules when using the DESCRIPTION attribute:

• Alias. The DESCRIPTION attribute has an alias of DEFINITION.

• Changes. You can change DESCRIPTION at any time.

• Virtual fields. If you use the DESCRIPTION attribute for a virtual field created with
the DEFINE attribute, the DESCRIPTION attribute must be on the same line as the
semicolon (;) terminating the DEFINE expression or, if there are other attributes in
the declaration (such as TITLE), on the last line of the declaration.

 Describing a Virtual Field: DEFINE

Describing Data 4-51

Describing a Virtual Field: DEFINE
DEFINE is an optional attribute used to create a virtual field for reporting. You can
derive the virtual field’s value from information already in the data source—that is, from
permanent fields. Some common uses of virtual data fields include:

• Computing new numerical values that are not on the data record.

• Computing a new string of alphanumeric characters from other strings.

• Classifying data values into ranges or groups.

• Invoking subroutines in calculations.

Virtual fields are available whenever the data source is used for reporting.

Syntax How to Define a Virtual Field
DEFINE fieldname/format = expression; [, attribute2, ...] $

where:
fieldname

Is the name of the virtual field. You can assign any name up to 66 characters long.
The name is subject to the same conventions as names assigned using the
FIELDNAME attribute. FIELDNAME is described in The Field’s Name:
FIELDNAME on page 4-3.

format

Is the field’s format. The format is specified in the same way as formats assigned
using the USAGE attribute, which is described in The Displayed Data Type: USAGE
on page 4-12. If you do not specify a format, it defaults to D12.2.

expression

Is a valid expression. Expressions are fully described in the Creating Reports
manual. The expression must end with a semicolon (;).

Note that when an IF-THEN phrase is used in the expression of a virtual field, it
must include the ELSE phrase.

attribute2

The declaration for a virtual field can include additional optional attributes, such as
TITLE and DESCRIPTION. Any additional attributes must be on the same line as
the semicolon that ends the DEFINE expression. An exception is made for the
DESCRIPTION attribute. However, if you put it on the final line of the declaration,
it does not need to be on the same line as the semicolon.

You can devote an entire line to these additional attributes by placing the semicolon
on the line following the DEFINE expression.

Place each DEFINE attribute after all of the field descriptions for that segment. For
example, the following shows how to define a field called PROFIT in the segment
CARS:
SEGMENT = CARS ,SEGTYPE = S1 ,PARENT = CARREC, $
 FIELDNAME = DEALER_COST ,ALIAS = DCOST ,USAGE = D7, $
 FIELDNAME = RETAIL_COST ,ALIAS = RCOST ,USAGE = D7, $
 DEFINE PROFIT/D7 = RETAIL_COST - DEALER_COST; $

Describing An Individual Field

4-52 Information Builders

Reference Usage Notes for Virtual Fields in a Master File
Note the following rules when using DEFINE:

• Alias. DEFINE does not have an alias.

• Changes. You can change the virtual field’s declaration at any time.

Using a Virtual Field
A DEFINE attribute cannot contain qualified field names on the left-hand side of the
expression. You can use the WITH phrase on the left-hand side to place the defined field
in the same segment as any real field you choose.

When FIELDNAME is set to OLD, a DEFINE attribute in a Master File can only refer to
fields in its own segment. In this case, if you want to create a virtual field that uses
information from several different segments, you will have to create it with a DEFINE
FILE command request prior to a report request as discussed in the Creating Reports
manual.

When FIELDNAME is set to NEW, expressions on the right-hand side of the DEFINE
can refer to fields from any segment in the same path. The expression on the right-hand
side of a DEFINE or REDEFINES statement in a Master File can contain qualified field
names.

A DEFINE attribute in a Master File can refer to only fields in its own path. If you want
to create a virtual field that derives its value from fields in several different paths, you
will have to create it with a DEFINE FILE command using an alternate view prior to a
report request, as discussed in the Creating Reports manual. The DEFINE FILE
command is also helpful when you wish to create a virtual field that will be used only
once, and you do not want to add a declaration for it to the Master File.

Virtual fields defined in the Master File are available whenever the data source is used
and are treated like other stored fields. Thus, a field defined in the Master File cannot be
cleared in your report request. A virtual field cannot be used for cross-referencing in a
join.

Note: Maintain does not support DEFINE attributes that have a constant value. Using
such a field in a Maintain procedure generates the following message:
(FOC03605) name is not recognized.

Describing Data 5-1

CHAPTER 5

Describing a Sequential, VSAM, or ISAM Data
Source

Topics:
• Sequential Data Source Formats

• Standard Master File Attributes for a
Sequential Data Source

• Standard Master File Attributes for a
VSAM or ISAM Data Source

• Describing a Multiply Occurring Field
in a Free-Format Data Source

• Describing a Multiply Occurring Field
in a Fixed-Format, VSAM, or ISAM
Data Source

• Redefining a Field in a Non-FOCUS
Data Source

• Extra-Large Record Length Support

• Describing Multiple Record Types

• Combining Multiply Occurring Fields
and Multiple Record Types

• Establishing VSAM Data and Index
Buffers

• Using a VSAM Alternate Index

• Describing a Token-Delimited Data
Source

• Reading a Complex Data Source
With a User-Written Procedure

You can describe and report from sequential, VSAM, and ISAM
data sources.

In a sequential data source, records are stored and retrieved in
the same order as they were entered.

With VSAM and ISAM data sources a new element is
introduced, the key or group key. A group key consists of one or
more fields and can be used to identify the various record types
in the data source. In the Master File representation of a data
source with different record types, each record type is assigned
its own segment.

Note: For VSAM and ISAM data sources, you must allocate (in
MVS) or DLBL (in DOS/VSE and VM) the Master File name to
the CLUSTER component of the data source.

Only ESDS and KSDS data sources are supported. If you wish
to retrieve data from RRDS VSAM data sources, you may code
your own access routine using SUFFIX=PRIVATE. See
Appendix C, User Exits for a Non-FOCUS Data Source for
details. For information about updating VSAM data sources, see
the FOCUS for S/390 VSAM Write Data Adapter User’s
Manual.

Describing a Sequential, VSAM, or ISAM Data Source

5-2 Information Builders

Sequential Data Source Formats
Sequential data sources formatted in the following ways are recognized:

• Fixed-format, in which each field occupies a pre-defined position in the record.

• Comma or tab-delimited, in which fields can occupy any position in a record and are
separated by a comma or a tab, respectively.
Free-format is a type of comma-delimited data source in which a record can span
multiple lines and is terminated by a comma-dollar sign (,$) character combination.

• Token delimited, in which the delimiter can be any combination of characters. For
information on describing token delimited files, see Describing a Token-Delimited
Data Source on page 5-45.

You can describe two types of sequential data sources:

• Simple. This is the most basic type, consisting of only one segment. It is supported
in all formats.

• Complex. This is a multi-segment data source. The descendant segments exist in the
data source as multiply occurring fields (which are supported in both fixed- and
free-format) or multiple record types (which are supported only in fixed-format).

What Is a Fixed-Format Data Source?
Fixed-format data sources are sequential data sources in which each field occupies a
pre-defined position in the record. You describe the record format in the Master File.

For example, a fixed-format record might look like this:
1352334556George Eliot The Mill on the Floss H

The simplest form of a fixed-record data source can be described by providing just field
declarations. For example, suppose you have a data source for a library that consists of
the following components:

• A number, like an ISBN number, that identifies the book by publisher, author, and
title.

• The name of the author.

• The title of the book.

• A single letter that indicates whether the book is hard- or soft-bound.

• The book’s price.

• A serial number that actually identifies the individual copies of the book in the
library (a call number).

• A synopsis of the book.

This data source can be described with the seven field declarations shown here:
FIELDNAME = PUBNO ,ALIAS = PN ,USAGE = A10 ,ACTUAL = A10 ,$
FIELDNAME = AUTHOR ,ALIAS = AT ,USAGE = A25 ,ACTUAL = A25 ,$
FIELDNAME = TITLE ,ALIAS = TL ,USAGE = A50 ,ACTUAL = A50 ,$
FIELDNAME = BINDING ,ALIAS = BI ,USAGE = A1 ,ACTUAL = A1 ,$
FIELDNAME = PRICE ,ALIAS = PR ,USAGE = D8.2N ,ACTUAL = D8 ,$
FIELDNAME = SERIAL ,ALIAS = SN ,USAGE = A15 ,ACTUAL = A15 ,$
FIELDNAME = SYNOPSIS,ALIAS = SYN ,USAGE = A150 ,ACTUAL = A150 ,$

 Sequential Data Source Formats

Describing Data 5-3

Note:
• Each declaration begins with the word FIELDNAME, and normally contains four

elements (a FIELDNAME, an ALIAS, a USAGE attribute, and an ACTUAL
attribute).

• ALIAS=, USAGE=, and ACTUAL= may be omitted as identifiers since they are
positional attributes following FIELDNAME.

• If you omit the optional ALIAS, its absence must be signaled by a second comma
between FIELDNAME and USAGE (FIELDNAME=PUBNO,,A10,A10,$).

• Both the USAGE and the ACTUAL attributes must be included. Failure to specify
both is a common cause of errors in describing non-FOCUS data sources (FOCUS
data sources do not have ACTUAL attributes).

• Each declaration can span multiple lines and must be terminated with a comma
followed by a dollar sign (,$). The LRECL for a Master File is 80. The RECFM for a
Master File is F.

• When using Maintain to read a fixed-format data source, the record length as
described in the Master File may not exceed the actual length of the data record (the
LRECL value).

You need to describe only those fields to which you intend to refer. This is very
significant when using existing data sources, because they frequently contain information
that you do not need for your requests. You describe only the fields you wish to include
in your reports or calculations and use filler fields to represent the rest of the logical
record length (LRECL) of the data source.

In the above example, the book synopsis is hardly necessary for most reports. The
synopsis can, therefore, be replaced with a filler field, as follows:
FIELDNAME = FILLER, ALIAS = FILL1, USAGE = A150, ACTUAL = A150,$

Fillers of this form may contain up to 4095 characters. If you need to describe larger
areas, use several filler fields together:
FIELDNAME = FILLER,,A256,A256,$
FIELDNAME = FILLER,,A200,A200,$

The field name FILLER is no different than any other field name. To prevent access to
the data in the field, you can use a blank field name. For example,
FIELDNAME =,,A200,A200,$

We recommend including file and segment attributes, even for simple data sources, to
complete your documentation. The example below shows the Master File for the library
data source with file and segment declarations added.
FILENAME = LIBRARY1, SUFFIX = FIX,$
SEGNAME = BOOKS, SEGTYPE = S0,$
 FIELDNAME = PUBNO ,ALIAS = PN ,USAGE = A10 ,ACTUAL = A10 ,$
 FIELDNAME = AUTHOR ,ALIAS = AT ,USAGE = A25 ,ACTUAL = A25 ,$
 FIELDNAME = TITLE ,ALIAS = TL ,USAGE = A50 ,ACTUAL = A50 ,$
 FIELDNAME = BINDING,ALIAS = BI ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = PRICE ,ALIAS = PR ,USAGE = D8.2N ,ACTUAL = D8 ,$
 FIELDNAME = SERIAL ,ALIAS = SN ,USAGE = A15 ,ACTUAL = A15 ,$
 FIELDNAME = FILLER ,ALIAS = FILL1 ,USAGE = A150 ,ACTUAL = A150 ,$

Describing a Sequential, VSAM, or ISAM Data Source

5-4 Information Builders

What Is a Comma or Tab-Delimited Data Source?
A comma-delimited data source is a sequential data source in which field values are
separated by commas. A tab-delimited data source is a sequential data source in which
field values are separated by tabs. Master Files for comma and tab-delimited sequential
data sources can have SUFFIX values of COM, COMT, or TABT.

Note that comma-delimited and tab-delimited data sources cannot participate in joins.

Reference Accessing SUFFIX=COM Data Sources
A Master File containing the attribute SUFFIX=COM can be used to access two styles of
comma-delimited sequential data sources:

• One style is called free-format and is described in What Is a Free-Format Data
Source? on page 5-5. Character values are not enclosed in double quotation marks,
and the comma-dollar sign character combination is the record terminator. With this
style of comma-delimited data source, records can span multiple lines. A field that
contains a comma as a character must be enclosed within single quotation marks.

• The second style is consistent with the current industry standard for
comma-delimited data sources. Character values are enclosed in double quotation
marks and the crlf (carriage-return, line-feed) character combination is the record
terminator. In addition, each input record must be completely contained on a single
input line. A double quotation mark within a field is identified by two consecutive
double quotation marks.

Note that the setting PCOMMA=ON is required in conjunction with the
SUFFIX=COM Master File when accessing this type of data source in order to
correctly interpret the double quotation marks around character values. Without this
setting, the double quotation marks are considered characters within the field, not
delimiters enclosing the field values.

Reference Accessing SUFFIX=COMT Data Sources
A Master File containing the attribute SUFFIX=COMT can be used to access
comma-delimited sequential data sources in which all of the following conditions are
met:

• The first record of the data source contains column titles. This record will be ignored
when the data source is accessed in a request.

• Character values are enclosed in double quotation marks. A double quotation mark
within a field is identified by two consecutive double quotation marks.

• Each record is completely contained on one line and terminated with the crlf
character combination.

 Sequential Data Source Formats

Describing Data 5-5

Reference Accessing SUFFIX=TABT Data Sources
A Master File containing the attribute SUFFIX=TABT can be used to access
tab-delimited sequential data sources in which all of the following conditions are met:

• The first record of the data source contains column titles. This record will be ignored
when the data source is accessed in a request.

• Character values are not enclosed in double quotation marks.

• Each record is completely contained on one line and terminated with the crlf
character combination.

What Is a Free-Format Data Source?
A common type of external structure is a comma-delimited sequential data source. These
data sources are a convenient way to maintain low volumes of data, since the fields in a
record are separated from one another by commas rather than being padded with blanks
or zeroes to fixed field lengths. Comma-delimited data sources must be stored as physical
sequential data sources.

The report request language processes free-format comma-delimited data sources the
same way it processes fixed-format data sources. The same procedure is used to describe
these data sources in a comma-delimited Master File. The only difference is that the file
suffix is changed to COM, as shown:
FILENAME = filename, SUFFIX = COM,$

Note: Free-format comma-delimited data sources do not have character fields enclosed in
double quotation marks and use the comma-dollar sign character combination as a record
terminator.
You can use the system editor to change values, add new records, and delete records.
Since the number of data fields on a line is variable, depending on the presence or
absence of fields and the actual length of the data values, a logical record may be one or
several lines. Hence, you need to use a terminator character to signal the end of the
logical record. This is a dollar sign following the last comma (,$). A section of
comma-delimited data might look like this:
PUBNO=1352334556, AUTHOR='Eliot, George',
TITLE='The Mill on the Floss', BINDING=H,$

The order in which the data values are described in the Master File plays an important
role in comma-delimited data sources. If the data values are typed in their natural order,
then only commas between the values are necessary. If a value is out of its natural order,
then it is identified by its name or alias and an equal sign preceding it, for example,
AUTHOR= ‘Eliot, George’.

Describing a Sequential, VSAM, or ISAM Data Source

5-6 Information Builders

Rules for Maintaining a Free-Format Data Source
If a logical record contains every data field, it will contain the same number of commas
used as delimiters as there are data fields. It will also have a dollar sign following the last
comma, signaling the end of the logical record. Thus, a logical record containing ten data
fields will contain ten commas as delimiters, plus a dollar sign record terminator.

A logical record may occupy as many lines in the data source as is necessary to contain
the data. A record terminator (,$) must follow the last physical field.

Each record need not contain every data field, however. The identity of a data field that
might be out of sequence can be provided in one of the following ways:

• You can use the field name, followed by an equal sign and the data value.

• You can use the field’s alias, followed by an equal sign and the data value.

• You can use the shortest unique truncation of the field’s name or alias, followed by
an equal sign and the data value.

• If a field name is not mentioned, it inherits its value from the prior record.

Thus, the following statements are all equivalent.
BI=H, PRICE=17.95,$
BI=H, PR=17.95,$
BI=H, P=17.95,$

Standard Master File Attributes for a Sequential Data
Source

Most standard Master File attributes—those described in Chapter 2, Identifying a Data
Source, Chapter 3, Describing a Group of Fields, and Chapter 4, Describing an
Individual Field—are used with sequential data sources in the standard way.

• SEGTYPE. The SEGTYPE attribute is ignored with free-format data sources.

The SEGTYPE value for fixed-format data sources defaults to S0. However, if you
use keyed retrieval, the SEGTYPE value depends on the number of keys and sort
sequence. See Chapter 6, Describing a FOCUS Data Source, for a description of the
SEGTYPE attribute. For a description of keyed retrieval from fixed format data
sources, see the Creating Reports manual.

• ACTUAL. The ACTUAL values for sequential data sources are described in
Chapter 4, Describing an Individual Field.

Note that file and segment declarations are optional for simple sequential data sources
that you will not join. However, they are recommended to make the data source
description self-documenting, and to give you the option of joining the data source in the
future.

 Standard Master File Attributes for a VSAM or ISAM Data Source

Describing Data 5-7

Standard Master File Attributes for a VSAM or ISAM
Data Source

Most standard Master File attributes—those described in Chapter 2, Identifying a Data
Source, Chapter 3, Describing a Group of Fields, and Chapter 4, Describing an
Individual Field—are used with VSAM and ISAM data sources in the standard way.

• SUFFIX. The SUFFIX attribute in the file declaration for these data sources has the
value VSAM or ISAM.

• SEGNAME. The SEGNAME attribute of the first or root segment in a Master File
for a VSAM or ISAM data source must be ROOT. The remaining segments can have
any valid segment name.

The only exception involves unrelated RECTYPEs, where the root SEGNAME must
be DUMMY.

All non-repeating data goes in the root segment. The remaining segments may have
any valid name from one to eight characters.

Any segment except the root is the descendant, or child, of another segment. The
PARENT attribute supplies the name of the segment that is the hierarchical parent or
owner of the current segment. If no PARENT attribute appears, the default is the
immediately preceding segment. The PARENT name may be one to eight characters.

• SEGTYPE. The SEGTYPE attribute should be S0 for VSAM data sources. (For a
general description of the SEGTYPE attribute, see Chapter 3, Describing a Group of
Fields.)

• GROUP. The keys of a VSAM or ISAM data source are defined in the segment
declarations as GROUPs consisting of one or more fields.

Describing a Group Field
A single segment data source may have only one key field, but it must still be described
with a GROUP declaration. The group must have ALIAS=KEY.

Groups can also be assigned simply to provide convenient reference names for groups of
fields. Suppose, for instance, that you have a series of three fields for an employee: last
name; first name; and middle initial. You use these three fields consistently to identify
the employee. You can identify the three fields in your Master File as a GROUP named
EMPINFO. Then, you can refer to these three linked fields as a single unit, called
EMPINFO. When using the GROUP feature for non-keys, the parameter ALIAS= must
still be used, but should not equal KEY.

For group fields you must supply both the USAGE and ACTUAL formats in
alphanumeric format. The length must be exactly the sum of the subordinate field
lengths.

The GROUP declaration USAGE attribute specifies how many positions to use to
describe the key in a VSAM KSDS data source. If a Master File does not completely
describe the full key at least once, the following warning message is returned:
(FOC1016) INVALID KEY DESCRIPTION IN MASTER FILE

Describing a Sequential, VSAM, or ISAM Data Source

5-8 Information Builders

The cluster key definition is compared to the Master File for length and displacement.

When you expand on the key in a RECTYPE data source, describe the key length in full
on the last non-OCCURS segment on each data path.

Do not describe a group with ALIAS=KEY for OCCURS segments.

If the fields that make up a group key are not alphanumeric fields, the format of the group
key is still alphanumeric, but its length is determined differently. The ACTUAL length is
still the sum of the subordinate field lengths. The USAGE format, however, is the sum of
the internal storage lengths of the subordinate fields. You determine these internal storage
lengths as follows:

• Fields of type I have a value of 4.

• Fields of type F have a value of 4.

• Fields of type P that are 8 bytes can have a USAGE of P15 or P16 (sign and decimal
for a total of 15 digits). Fields that are 16 bytes will have a USAGE of P17 or larger.

• Fields of type D have a value of 8.

• Alphanumeric fields have a value equal to the number of characters they contain as
their field length.

Note: Since all group fields must be defined in alphanumeric format, those that include
numeric component fields should not be used as verb objects in a report request.

Syntax How to Describe a VSAM Group Field
GROUP = keyname, ALIAS = KEY, USAGE = Ann, ACTUAL = Ann ,$

where:
keyname

Can have up to 66 characters.

Example Describing a VSAM Group Field
In the library data source, the first field, PUBNO, could be described as a group key. The
publisher’s number consists of three elements: a number that identifies the publisher, one
that identifies the author, and one that identifies the title. They can be described as a
group key, consisting of a separate field for each element if the data source were a
VSAM data structure. The Master File would look as follows:
FILE = LIBRARY5, SUFFIX = VSAM,$
SEGMENT = ROOT, SEGTYPE = S0,$
 GROUP = BOOKKEY , ALIAS = KEY, USAGE = A10 , ACTUAL = A10 ,$
 FIELDNAME = PUBNO , ALIAS = PN , USAGE = A3 , ACTUAL = A3 ,$
 FIELDNAME = AUTHNO , ALIAS = AN , USAGE = A3 , ACTUAL = A3 ,$
 FIELDNAME = TITLNO , ALIAS = TN , USAGE = A4 , ACTUAL = A4 ,$
 FIELDNAME = AUTHOR , ALIAS = AT , USAGE = A25 , ACTUAL = A25 ,$
 FIELDNAME = TITLE , ALIAS = TL , USAGE = A50 , ACTUAL = A50 ,$
 FIELDNAME = BINDING , ALIAS = BI , USAGE = A1 , ACTUAL = A1 ,$
 FIELDNAME = PRICE , ALIAS = PR , USAGE = D8.2N , ACTUAL = D8 ,$
 FIELDNAME = SERIAL , ALIAS = SN , USAGE = A15 , ACTUAL = A15 ,$
 FIELDNAME = SYNOPSIS, ALIAS = SY , USAGE = A150 , ACTUAL = A150 ,$
 FIELDNAME = RECTYPE , ALIAS = B , USAGE = A1 , ACTUAL = A1 ,$

 Describing a Multiply Occurring Field in a Free-Format Data Source

Describing Data 5-9

Example Describing a VSAM Group Field With Multiple Formats
GROUP = A, ALIAS = KEY, USAGE = A14, ACTUAL = A8 ,$
 FIELDNAME = F1, ALIAS = F1, USAGE = P6, ACTUAL=P2 ,$
 FIELDNAME = F2, ALIAS = F2, USAGE = I9, ACTUAL=I4 ,$
 FIELDNAME = F3, ALIAS = F3, USAGE = A2, ACTUAL=A2 ,$

The lengths of the ACTUAL attributes for subordinate fields F1, F2, and F3 total 8,
which is the length of the ACTUAL attribute of the group key. The display lengths of the
USAGE attributes for the subordinate fields total 17. However, the length of the group
key USAGE attribute is found adding their internal storage lengths as specified by their
field types: 8 for USAGE=P6, 4 for USAGE=I9, and 2 for USAGE=A2, for a total of 14.

Example Accessing a Group Field With Multiple Formats
When you use a group field with multiple formats in a query, you must account for each
position in the group, including trailing blanks or leading zeros. The following example
illustrates how to access a group field with multiple formats in a query:
GROUP = GRPB, ALIAS = KEY, USAGE = A8, ACTUAL = A8 ,$
 FIELDNAME = FIELD1, ALIAS = F1, USAGE = A2, ACTUAL = A2 ,$
 FIELDNAME = FIELD2, ALIAS = F2, USAGE = I8, ACTUAL = I4 ,$
 FIELDNAME = FIELD3, ALIAS = F3, USAGE = A2, ACTUAL = A2 ,$

The values in fields F1 and F3 may include some trailing blanks, and the values in field
F2 may include some leading zeros. When using the group in a query, you must account
for each position. Because FIELD2 is a numeric field, you cannot specify the IF criteria
as follows:
IF GRPB EQ 'A 0334BB'

You can eliminate this error by using a slash (/) to separate the components of the group
key:
IF GRPB EQ 'A/334/BB'

Note: Blanks and leading zeros are assumed where needed to fill out the key.

Describing a Multiply Occurring Field in a
Free-Format Data Source

Since any data field not explicitly referred to in a logical record continues to have the
same value it had the last time a value was assigned, up until the point a new data value is
entered, a free-format sequential data source can resemble a hierarchical structure. The
parent information need be entered only once, and it will carry over for each descendant
segment.

Describing a Sequential, VSAM, or ISAM Data Source

5-10 Information Builders

Example Describing a Multiply Occurring Field in a Free-Format Data
Source
Consider our example of a library data source. The information for two copies of The Sun
Also Rises, one hardcover and one paperback, can be entered as follows:
PUBNO=1234567890, AUTHOR='Hemingway, Ernest',
TITLE='The Sun Also Rises',
 BI=H,PR=17.95, $
 BI=S,PR=5.25, $

There are two values for binding and price, which both correspond to the same
publisher’s number, author, and title. In the Master File, the information that occurs only
once—the publisher’s number, author, and title—is placed in one segment and the
information that occurs several times in relation to this information is placed in a
descendant segment. Similarly, information that occurs several times in relation to the
descendant segment, such as an individual serial number for each copy of the book, is
placed in a segment that is a descendant of the first descendant segment, as shown in the
following diagram:

PUBINFO

BOOKINFO

SERIANO

Singly Occurring

Multiply Occurring

Multiply Occurring

PUBNO
AUTHOR
TITLE

BINDING
PRICE

SERIAL

You describe this data source with the following data source description:
FILENAME = LIBRARY4, SUFFIX = COM, $
SEGNAME = PUBINFO, SEGTYPE=S0, $
 FIELDNAME = PUBNO, ALIAS = PN, USAGE = A10, ACTUAL = A10, $
 FIELDNAME = AUTHOR, ALIAS = AT, USAGE = A25, ACTUAL = A25, $
 FIELDNAME = TITLE, ALIAS = TL, USAGE = A50, ACTUAL = A50, $
SEGNAME = BOOKINFO, PARENT = PUBINFO, SEGTYPE=S0, $
 FIELDNAME = BINDING, ALIAS = BI, USAGE = A1, ACTUAL = A1, $
 FIELDNAME = PRICE, ALIAS = PR, USAGE = D8.2N, ACTUAL = D8, $
SEGNAME = SERIANO, PARENT = BOOKINFO, SEGTYPE=S0, $
 FIELDNAME = SERIAL, ALIAS = SN, USAGE = A15, ACTUAL = A15, $

Note that each segment other than the first has a PARENT attribute. You use the
PARENT attribute to signal that you are describing a hierarchical structure.

 Describing a Multiply Occurring Field in a Fixed-Format, VSAM, or ISAM Data Source

Describing Data 5-11

Describing a Multiply Occurring Field in a
Fixed-Format, VSAM, or ISAM Data Source

Fixed-format sequential, VSAM, or ISAM data sources can have repeating fields.
Consider the following data structure:

A B C1 C2 C1 C2

Fields C1 and C2 repeat within this data record. C1 has an initial value, as does C2. C1
then provides a second value for that field, as does C2. Thus, there are two values for
fields C1 and C2 for every one value for fields A and B.

The number of times C1 and C2 occur does not have to be fixed. It can depend on the
value of a counter field. Suppose field B is this counter field. In the case shown above,
the value of field B is 2, since C1 and C2 occur twice. The value of field B in the next
record can be 7, 1, 0, or any other number you choose and fields C1 and C2 will occur
that number of times.

The number of times fields C1 and C2 occur can also be variable. In this case, everything
after fields A and B is assumed to be a series of C1s and C2s, alternating to the end of the
record.

You describe these multiply occurring fields by placing them in a separate segment.
Fields A and B are placed in the root segment. Fields C1 and C2, which occur multiply in
relation to A and B, are placed in a descendant segment. You use an additional segment
attribute, the OCCURS attribute, to specify that these segments represent multiply
occurring fields. In certain cases, you may also need a second attribute, called the
POSITION attribute.

Describing a Sequential, VSAM, or ISAM Data Source

5-12 Information Builders

Using the OCCURS Attribute
The OCCURS attribute is an optional segment attribute used to describe records
containing repeating fields or groups of fields. You define such records by describing the
singly occurring fields in one segment and the multiply occurring fields in a descendant
segment. The OCCURS attribute appears in the declaration for the descendant segment.

You can have several sets of repeating fields in your data structure. You describe each of
these sets of fields as a separate segment in your data source description. Sets of
repeating fields can be divided into two basic types: parallel and nested.

Syntax How to Specify a Repeating Field
OCCURS = occurstype

Possible values are:
n

Is an integer value showing the number of occurrences (from 1 to 4095).
fieldname

Names a field in the parent segment whose integer value contains the number of
occurrences of the descendant segment.

VARIABLE

Indicates that the number of occurrences varies from record to record. The number of
occurrences is computed from the record length (that is, if the field lengths for the
segment add up to 40, and 120 characters are read in, it means there are three
occurrences).

You place the OCCURS attribute in your segment declaration after the PARENT
attribute.

When different types of records are combined in one data source, each record type can
contain only one segment defined as OCCURS=VARIABLE. It may have OCCURS
descendants (if it contains a nested group), but it may not be followed by any other
segment with the same parent—that is, there can be no other segments to its right in the
hierarchical data structure. This restriction is necessary to ensure that data in the record is
interpreted unambiguously.

 Describing a Multiply Occurring Field in a Fixed-Format, VSAM, or ISAM Data Source

Describing Data 5-13

Example Using the OCCURS Attribute
Consider the following simple data structure:

A B C1 C2 C1 C2

You have two occurrences of fields C1 and C2 for every one occurrence of fields A and
B. Thus, to describe this data source, you place fields A and B in the root segment, and
fields C1 and C2 in a descendant segment, as shown here:

Occurs one time

Occurs two times

A
B

ONE

TWO

C1
C2

You describe this data source with the following data source description:
FILENAME = EXAMPLE1, SUFFIX = FIX, $
SEGNAME = ONE, SEGTYPE=S0, $
 FIELDNAME = A, ALIAS= , USAGE = A2, ACTUAL = A2, $
 FIELDNAME = B, ALIAS= , USAGE = A1, ACTUAL = A1, $
SEGNAME = TWO, PARENT = ONE, OCCURS = 2, SEGTYPE=S0, $
 FIELDNAME = C1, ALIAS= , USAGE = I4, ACTUAL = I2, $
 FIELDNAME = C2, ALIAS= , USAGE = I4, ACTUAL = I2, $

Describing a Sequential, VSAM, or ISAM Data Source

5-14 Information Builders

Describing a Parallel Set of Repeating Fields
Parallel sets of repeating fields are those that have nothing to do with one another (that is,
they have no parent-child or logical relationship). Consider the following data structure:

A1 A2 B1 B2 B1 B2 C1 C2 C1 C2 C1 C2

In this example, fields B1 and B2 and fields C1 and C2 repeat within the record. The
number of times that fields B1 and B2 occur has nothing to do with the number of times
fields C1 and C2 occur. Fields B1 and B2 and fields C1 and C2 are parallel sets of
repeating fields. They should be described in the data source description as children of
the same parent, the segment that contains fields A1 and A2. The following data structure
reflects their relationship:

Occurs one time

Occurs three times

THREE

ONE

C1
C2

A1
A2

B1
B2

TWO

Occurs two times

 Describing a Multiply Occurring Field in a Fixed-Format, VSAM, or ISAM Data Source

Describing Data 5-15

Describing a Nested Set of Repeating Fields
Nested sets of repeating fields are those whose occurrence in some way depends on one
another. Consider the following data structure:

A1 A2 B1 B2 C1 C1 B1 B2 C1 C1 C1

In this example, field C1 only occurs after fields B1 and B2 occur once. It occurs varying
numbers of times recorded by a counter field, B2. The one thing we know about this field
is you will not have a set of occurrences of C1 without it being preceded by an
occurrence of fields B1 and B2. Fields B1, B2, and C1 are a nested set of repeating fields.
They can be represented by the following data structure:

Must occur one time

Occurs two times

Number of occurrences depends on
B2. In this case, C1 occurs two times,
then three times, for a total of
five times.

ONE

TWO

THREE

A1
A2

B1
B2

C1

Since field C1 repeats with relation to fields B1 and B2, which repeat in relation to fields
A1 and A2, field C1 is described as a separate, descendant segment of Segment Two,
which is in turn a descendant of Segment One.

Describing a Sequential, VSAM, or ISAM Data Source

5-16 Information Builders

Example Describing Parallel and Nested Repeating Fields
The following data structure contains both nested and parallel sets of repeating fields.

A1 A2 B1 B2 C1 C1 C1 B1 B2 C1 C1 C1 C1 D1 D1 E1 E1 E1 E1

It produces the following data structure:

E1

FIVE

Number of occurrences depends on B2.
In this case, it occurs three times,
then four times, for a total of seven times.

THREE

C1

B1
B2

TWO

Occurs two times

FOUR

D1

ONE

A1
A2 Occurs one time

Number of occurrences depends on
A2. In this case, it occurs two times. Number of occurrences is variable.

In this case, it occurs four times.

You describe this data source with the following data source description. Notice that the
assignment of the PARENT attributes shows you how the occurrences are nested.
FILENAME = EXAMPLE3, SUFFIX = FIX,$
SEGNAME = ONE, SEGTYPE=S0,$
 FIELDNAME = A1 ,ALIAS= ,ACTUAL = A1 ,USAGE = A1 ,$
 FIELDNAME = A2 ,ALIAS= ,ACTUAL = I1 ,USAGE = I1 ,$
SEGNAME = TWO, SEGTYPE=S0, PARENT = ONE, OCCURS = 2 ,$
 FIELDNAME = B1 ,ALIAS= ,ACTUAL = A15 ,USAGE = A15 ,$
 FIELDNAME = B2 ,ALIAS= ,ACTUAL = I1 ,USAGE = I1 ,$
SEGNAME = THREE, SEGTYPE=S0, PARENT = TWO, OCCURS = B2 ,$
 FIELDNAME = C1 ,ALIAS= ,ACTUAL = A25 ,USAGE = A25 ,$
SEGNAME = FOUR, SEGTYPE=S0, PARENT = ONE, OCCURS = A2 ,$
 FIELDNAME = D1 ,ALIAS= ,ACTUAL = A15 ,USAGE = A15 ,$
SEGNAME = FIVE, SEGTYPE=S0, PARENT = ONE, OCCURS = VARIABLE,$
 FIELDNAME = E1 ,ALIAS= ,ACTUAL = A5 ,USAGE = A5 ,$

 Describing a Multiply Occurring Field in a Fixed-Format, VSAM, or ISAM Data Source

Describing Data 5-17

Note:

• Segments ONE, TWO, and THREE represent a nested group of repeating segments.
Fields B1 and B2 occur a fixed number of times, so OCCURS equals 2. Field C1
occurs a certain number of times within each occurrence of fields B1 and B2. The
number of times C1 occurs is determined by the value of field B2, which is a
counter. In this case, its value is 3 for the first occurrence of Segment TWO and 4 for
the second occurrence.

• Segments FOUR and FIVE consist of fields that repeat independently within the
parent segment. They have no relationship to each other or to Segment TWO except
their common parent, so they represent a parallel group of repeating segments.

• As in the case of Segment THREE, the number of times Segment FOUR occurs is
determined by a counter in its parent, A2. In this case, the value of A2 is two.

• The number of times Segment FIVE occurs is variable. This means that all the rest of
the fields in the record will be read (all those to the right of the first occurrence of
E1) as recurrences of field E1. To ensure that data in the record is interpreted
unambiguously, a segment defined as OCCURS=VARIABLE must be at the end of
the record. In a data structure diagram, it will be the right-most segment. Note that
there can be only one segment defined as OCCURS=VARIABLE for each record
type.

Using the POSITION Attribute
The POSITION attribute is an optional attribute used to describe a structure in which
multiply occurring fields with an established number of occurrences are located in the
middle of the record. You describe the data source as a hierarchical structure, made up of
a parent segment and at least one child segment that contains the multiply occurring
fields. The parent segment is made up of whatever singly occurring fields are in the
record, as well as one or more alphanumeric fields that appear where the multiply
occurring fields appear in the record. The alphanumeric field may be a dummy field that
is the exact length of the combined multiply occurring fields. For example, if you have
four occurrences of an eight-character field, the length of the field in the parent segment
will be 32 characters.

Syntax How to Specify the Position of a Repeating Field
The POSITION attribute is described in the child segment. It gives the name of the field
in the parent segment that specifies the starting position and overall length of the multiply
occurring fields. The syntax of the POSITION attribute is
POSITION = fieldname

where:
fieldname

Is the name of the field in the parent segment that defines the starting position and
overall length of the multiple field occurrences.

Describing a Sequential, VSAM, or ISAM Data Source

5-18 Information Builders

Example Specifying the Position of a Repeating Field
Consider the following data structure:

A1 Q1 Q1 Q1 Q1 A2 A3 A4

In this example, field Q1 repeats four times in the middle of the record. When you
describe this structure, you specify a field or fields that occupy the position of the four
Q1 fields in the record. You then assign the actual Q1 fields to a descendant, multiply
occurring segment. The POSITION attribute, specified in the descendant segment, gives
the name of the field in the parent segment that identifies the starting position and overall
length of the Q fields.

You would use the following Master File to describe this structure:
FILENAME = EXAMPLE3, SUFFIX = FIX,$
SEGNAME = ONE, SEGTYPE=S0,$
 FIELDNAME = A1 ,ALIAS= ,USAGE = A14 ,ACTUAL = A14 ,$
 FIELDNAME = QFIL ,ALIAS= ,USAGE = A32 ,ACTUAL = A32 ,$
 FIELDNAME = A2 ,ALIAS= ,USAGE = I2 ,ACTUAL = I2 ,$
 FIELDNAME = A3 ,ALIAS= ,USAGE = A10 ,ACTUAL = A10 ,$
 FIELDNAME = A4 ,ALIAS= ,USAGE = A15 ,ACTUAL = A15 ,$
SEGNAME = TWO, SEGTYPE=S0, PARENT = ONE, POSITION = QFIL, OCCURS = 4 ,$
 FIELDNAME = Q1 ,ALIAS= ,USAGE = D8 ,ACTUAL = D8 ,$

This produces the following structure:

Q1

ONEA1
QFIL
A2
A3
A4

TWO

If the total length of the multiply occurring fields is longer than 4095, you can use a filler
field after the dummy field to make up the remaining length. This is required because the
format of an alphanumeric field cannot exceed 4095 bytes.

Notice that this structure will work only if you have a fixed number of occurrences of the
repeating field. This means the OCCURS attribute of the descendant segment must be of
the type OCCURS=n. OCCURS=fieldname or OCCURS=VARIABLE will not work.

 Describing a Multiply Occurring Field in a Fixed-Format, VSAM, or ISAM Data Source

Describing Data 5-19

Specifying the ORDER Field
In an OCCURS segment, the order of the data may be significant. For example, the
values may represent monthly or quarterly data, but the record itself may not explicitly
specify the month or quarter to which the data applies.

If you wish to associate a sequence number with each occurrence of the field, you may
define an internal counter field in any OCCURS segment. A value is automatically
supplied that defines the sequence number of each repeating group.

Syntax How to Specify the Sequence of a Repeating Field
The syntax rules for an ORDER field are:

• It must be the last field described in an OCCURS segment.

• The field name is arbitrary.

• The ALIAS is ORDER.

• The USAGE is In, with any appropriate edit options.

• The ACTUAL is I4.

For example:
FIELD = ACT_MONTH, ALIAS = ORDER, USAGE = I2MT, ACTUAL = I4, $

Order values are 1, 2, 3, and so on, within each occurrence of the segment. The value is
assigned prior to any selection tests that might accept or reject the record, and so it can be
used in a selection test.

For example, to obtain data for only the month of June, type:
SUM AMOUNT...
WHERE ACT_MONTH IS 6

The ORDER field is a virtual field used internally. It does not alter the logical record
length (LRECL) of the data source being accessed.

Describing a Sequential, VSAM, or ISAM Data Source

5-20 Information Builders

Redefining a Field in a Non-FOCUS Data Source
Support is provided for redefining record fields in non-FOCUS data sources. This allows
a field to be described with an alternate layout.

Within the Master File, the redefined fields must be described in a separate unique
segment (SEGTYPE=U) using the POSITION=fieldname and OCCURS=1 attributes.

The redefined fields can have any user-defined name. ALIAS names for redefined fields
are not required.

Syntax How to Redefine a Field
SEGNAME = segname, SEGTYPE = U, PARENT = parentseg,
OCCURS = 1, POSITION = fieldname,$

where:
segname

Is the name of the segment.
parentseg

Is the name of the parent segment.
fieldname

Is the name of the first field being redefined. Use of the unique segment with
redefined fields helps avoid problems with multipath reporting.

A one-to-one relationship is established between the parent record and the redefined
segment.

Example Redefining a VSAM Structure
The following example illustrates redefinition of the VSAM structure described in the
COBOL file description where the COBOL FD is:
01 ALLFIELDS
 02 FLD1 PIC X(4) - this describes alpha/numeric data
 02 FLD2 PIC X(4) - this describes numeric data
 02 RFLD1 PIC 9(5)V99 COMP-3 REDEFINES FLD2
 02 FLD3 PIC X(8) - this describes alpha/numeric data

FILE = REDEF, SUFFIX = VSAM,$
SEGNAME = ONE, SEGTYPE = S0,$
 GROUP = RKEY, ALIAS = KEY,USAGE = A4 ,ACTUAL = A4 ,$
 FIELDNAME = FLD1,, USAGE = A4 ,ACTUAL = A4 ,$
 FIELDNAME = FLD2,, USAGE = A4 ,ACTUAL = A4 ,$
 FIELDNAME = FLD3,, USAGE = A8 ,ACTUAL = A8 ,$
SEGNAME = TWO, SEGTYPE = U, POSITION = FLD2, OCCURS = 1, PARENT = ONE ,$
 FIELDNAME = RFLD1,, USAGE = P8.2 ,ACTUAL = Z4 ,$

 Extra-Large Record Length Support

Describing Data 5-21

Reference Special Considerations for Redefining a Field
• Redefinition is a read-only feature and is used only for presenting an alternate view

of the data. It is not used for changing the format of the data.

• A field that is being redefined must be equal in length to the field that it is redefining
(same actual length).

• For non-alphanumeric fields, you must know your data. Attempts to print numeric
fields that contain alphanumeric data will produce data exceptions or errors
converting values. It is recommended that the first definition always be alphanumeric
to avoid conversion errors.

• More than one field can be redefined in a segment.

• Redefines are supported only for IDMS, IMS, VSAM, DB2, and FIX data sources.

Extra-Large Record Length Support
If the Master File describes a data source with OCCURS segments, and if the longest
single record in the data source is larger than 16K bytes, it is necessary to specify a larger
record size in advance.

To define the maximum record length, type:
SET MAXLRECL = nnnn

where nnnn is up to 32768.

For example, SET MAXLRECL=12000 allows handling of records that are 12000 bytes
long. Once you have entered the SET MAXLRECL command, you can obtain the current
value of the MAXLRECL parameter by using the ? SET command.

If the actual record length is longer than specified, retrieval is halted and the actual record
length is displayed in hexadecimal notation.

Describing a Sequential, VSAM, or ISAM Data Source

5-22 Information Builders

Describing Multiple Record Types
Fixed-format sequential, VSAM, and ISAM data sources can contain more than one type
of record. When they do, they can be structured in one of two ways.

• A positional relationship may exist between the various record types, with a record
of one type being followed by one or more records containing detailed information
about the first record.

If a positional relationship exists between the various record types, with a parent
record of one type followed by one or more child records containing detail
information about the parent, you describe the structure by defining the parent as the
root and the detail segments as descendants.

Some VSAM and ISAM data sources are structured so that descendant records relate
to each other through concatenating key fields. That is, the key fields of a parent
record serve as the first part of the key of a child record. In such cases, the segment’s
key fields must be described using a GROUP declaration. Each segment’s GROUP
key fields will consist of the renamed key fields from the parent segment plus the
unique key field from the child record.

• The records have no meaningful positional relationship, and records of varying
record types exist independently of each other in the data source.

If the records have no meaningful positional relationship, you have to provide some
means for interpreting the type of record that has been read. You do this by creating
a dummy root segment for the records.

In order to describe sequential data sources with several types of records, regardless of
whether they are logically related, use the PARENT segment attribute and the RECTYPE
field attribute. Any complex sequential data source is described as a multi-segment
structure.

Key-sequenced VSAM and complex ISAM data sources also use the RECTYPE attribute
to distinguish various record types within the data source.

A parent does not always share its RECTYPE with its descendants. It shares some other
identifying piece of information, such as the PUBNO in our example. This is the field
that should be included in the parent key, as well as all of its descendants’ keys, to relate
them.

When using the RECTYPE attribute in VSAM or ISAM data sources with group keys,
the RECTYPE field can be part of the segment’s group key only when it belongs to a
segment that has no descendants, or to a segment whose descendants are described with
an OCCURS attribute. In the Describing VSAM Positionally Related Records example on
page 5-26, the RECTYPE field is added to the group key in the SERIANO segment, the
lowest descendant segment in the chain.

 Describing Multiple Record Types

Describing Data 5-23

Describing a RECTYPE Field
When a data source contains multiple record types, there must be a field in the records
themselves that can be used to differentiate between the record types. You can find
information on this field in your existing description of the data source (for example, a
COBOL FD statement). This field must appear in the same physical location of each
record. For example, columns 79 and 80 could contain a different two-digit code for each
unique record type. You describe this identifying field with the field name RECTYPE.

Another technique for redefining parts of records is to use the MAPFIELD and
MAPVALUE attributes described in Describing a Repeating Group Using MAPFIELD
on page 5-38.

Syntax How to Specify a Record Type Field
The RECTYPE field must fall in the same physical location of each record in the data
source or the record will be ignored. The syntax to describe the RECTYPE field is
FIELDNAME = RECTYPE, ALIAS = value, USAGE = format, ACTUAL = format ,$

where:
value

Is the record type in alphanumeric format.
format

Is the data type of the field. In addition to RECTYPE fields in alphanumeric format,
RECTYPE fields in packed and integer formats (formats P and I) are supported.
Possible values are:

An (where n is 1-4095) indicates character data, including letters, digits, and other
characters.

In indicates ACTUAL (internal) format binary integers:
I1 = single-byte binary integer.
I2 = half-word binary integer (2 bytes).
I4 = full-word binary integer (4 bytes).

USAGE format can be I1 through I9, depending on the magnitude of the ACTUAL
format.

Pn (where n is 1-16) indicates packed decimal ACTUAL (internal) format. n is the
number of bytes, each of which contains two digits, except for the last byte which
contains a digit and the sign (+ or -). For example, P6 means 11 digits plus a sign.

If the field contains an assumed decimal point, represent the field with a USAGE
format of Pm.n, where m is the total number of digits, and n is the number of decimal
places. Thus P11.1 means an eleven-digit number with one decimal place.

Describing a Sequential, VSAM, or ISAM Data Source

5-24 Information Builders

Example Specifying the RECTYPE Field
The following field description describes a one-byte packed RECTYPE field containing
the value 1:
FIELD = RECTYPE, ALIAS = 1, USAGE = P1, ACTUAL = P1, $

This field description describes a three-byte alphanumeric RECTYPE field containing the
value A34:
FIELD = RECTYPE, ALIAS = A34, USAGE = A3, ACTUAL = A3,$

Describing Positionally Related Records
The following diagram shows a more complex version of the library data source
discussed previously.

PUBINFO

PLOTLINE

SYNOPSIS

RECTYPE
PUBNO
AUTHOR
TITLE

BOOKINFO

RECTYPE
BINDING
PRICE

SERIANO

RECTYPE
SERIAL

Information that is common to all copies of a given book (the identifying number, the
author’s name, and its title) has the same record type. They are all assigned to the root
segment in the Master File. The synopsis is common to all copies of a given book, but, in
this data source, it has been described as a series of repeating fields of ten characters each
in order to save space.

The synopsis is assigned to its own subordinate segment with an attribute of
OCCURS=VARIABLE in the Master File. Although there are segments that are shown
in the diagram to the right of the OCCURS=VARIABLE segment, the
OCCURS=VARIABLE segment is the right-most segment within its own record type.
Only segments with a RECTYPE that is different from the OCCURS=VARIABLE
segment can appear to its right in the structure. Note also that the OCCURS=VARIABLE
segment does not have a RECTYPE. This is because the OCCURS=VARIABLE
segment is part of the same record as its parent segment.

 Describing Multiple Record Types

Describing Data 5-25

Binding and price can vary among copies of a given title. For instance, the library may
have two different versions of Pamela, one a paperback costing $7.95, the other a
hardcover costing $15.50. These two fields are of a second record type, and are assigned
to a descendant segment in the Master File.

Finally, every copy of the book in the library will have its own identifying serial number,
which will be described in a field of record type S. In the Master File, this information is
assigned to a segment that is a child of the segment containing the binding and price
information.

You would use the following Master File to describe this data source:
FILENAME = LIBRARY2, SUFFIX = FIX,$
SEGNAME = PUBINFO, SEGTYPE = S0,$
 FIELDNAME = RECTYPE ,ALIAS = P ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = PUBNO ,ALIAS = PN ,USAGE = A10 ,ACTUAL = A10 ,$
 FIELDNAME = AUTHOR ,ALIAS = AT ,USAGE = A25 ,ACTUAL = A25 ,$
 FIELDNAME = TITLE ,ALIAS = TL ,USAGE = A50 ,ACTUAL = A50 ,$
SEGNAME = SYNOPSIS , PARENT = PUBINFO, OCCURS = VARIABLE, SEGTYPE = S0,$
 FIELDNAME = PLOTLINE ,ALIAS = PLOTL ,USAGE = A10 ,ACTUAL = A10 ,$
SEGNAME = BOOKINFO, PARENT = PUBINFO, SEGTYPE = S0,$
 FIELDNAME = RECTYPE ,ALIAS = B ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = BINDING ,ALIAS = BI ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = PRICE ,ALIAS = PR ,USAGE = D8.2N ,ACTUAL = D8 ,$
SEGNAME = SERIANO, PARENT = BOOKINFO, SEGTYPE = S0,$
 FIELDNAME = RECTYPE ,ALIAS = S ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = SERIAL ,ALIAS = SN ,USAGE = A15 ,ACTUAL = A15 ,$

Note that each segment, except the OCCURS segment, contains a field named RECTYPE
and that the ALIAS for the field contains a unique value for each segment (P, B, and S).
If a record in this data source is encountered with a RECTYPE other than P, B, or S, the
record will be ignored. The RECTYPE field must fall in the same physical location in
each record.

Ordering of Records in the Data Source
With sequential records, physical order determines parent/child relationships. Every
parent record need not have descendants. You can specify how you want data in missing
segment instances handled in your reports by using the SET command to change the ALL
parameter. The SET command is described in the Developing Applications manual.

In the structure shown in the example in Describing Positionally Related Records on
page 5-24, if the first record in the data source is not a PUBINFO record, the record is
considered to be a child without a parent. Any information allotted to the SYNOPSIS
segment will appear in the PUBINFO record. The next record may be a BOOKINFO or
even another PUBINFO (in which case the first PUBINFO is assumed to have no
descendants). Any SERIANO records are assumed to be descendants of the previous
BOOKINFO record. If a SERIANO record follows a PUBINFO record with no
intervening BOOKINFO, it is treated as if it has no parent.

Describing a Sequential, VSAM, or ISAM Data Source

5-26 Information Builders

Example Describing VSAM Positionally Related Records
Consider the following VSAM data source that contains three types of records. The
ROOT records have a key that consists of the publisher’s number, PUBNO. The
BOOKINFO segment has a key that consists of that same publisher’s number, plus a
hard- or soft-cover indicator, BINDING. The SERIANO segment key consists of the first
two elements, plus a record type field, RECTYPE.
FILENAME = LIBRARY6, SUFFIX = VSAM,$
SEGNAME = ROOT, SEGTYPE = S0,$
 GROUP=PUBKEY ,ALIAS=KEY ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=PUBNO ,ALIAS=PN ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=FILLER ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=RECTYPE ,ALIAS=1 ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=AUTHOR ,ALIAS=AT ,USAGE=A25 ,ACTUAL=A25 ,$
 FIELDNAME=TITLE ,ALIAS=TL ,USAGE=A50 ,ACTUAL=A50 ,$
SEGNAME=BOOKINFO, PARENT=ROOT, SEGTYPE=S0,$
 GROUP=BOINKEY ,ALIAS=KEY ,USAGE=A11 ,ACTUAL=A11 ,$
 FIELDNAME=PUBNO1 ,ALIAS=P1 ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=BINDING ,ALIAS=BI ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=RECTYPE ,ALIAS=2 ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=PRICE ,ALIAS=PR ,USAGE=D8.2N ,ACTUAL=D8 ,$
SEGNAME=SERIANO, PARENT=BOOKINFO, SEGTYPE=S0,$
 GROUP=SERIKEY ,ALIAS=KEY ,USAGE=A12 ,ACTUAL=A12 ,$
 FIELDNAME=PUBNO2 ,ALIAS=P2 ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=BINDING1 ,ALIAS=B1 ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=RECTYPE ,ALIAS=3 ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=SERIAL ,ALIAS=SN ,USAGE=A15 ,ACTUAL=A15 ,$
SEGNAME=SYNOPSIS, PARENT=ROOT, SEGTYPE=S0, OCCURS=VARIABLE,$
 FIELDNAME=PLOTLINE ,ALIAS=PLOTL ,USAGE=A10 ,ACTUAL=A10 ,$

Notice that the length of the key fields specified in the USAGE and ACTUAL attributes
of a GROUP declaration is the length of the key fields from the parent segments plus the
length of the added field of the child segment (RECTYPE field). In the example above,
the length of the GROUP key SERIKEY equals the length of PUBNO2 and BINDING1,
the group key from the parent segment, plus the length of RECTYPE, the field added to
the group key in the child segment. The length of the key increases as you traverse the
structure.

 Describing Multiple Record Types

Describing Data 5-27

In the sample data source, the repetition of the publisher’s number as PUBNO1 and
PUBNO2 in the descendant segments interrelates the three types of records. The data
source can be diagrammed as the following structure:

ROOT

PLOTLINE

SYNOPSIS

PUBKEY
PUBNO
FILLER
RECTYPE

BOOKINFO

BOINKEY
PUBNO
BINDING
RECTYPE

SERIANO

SERIKEY
PUBNO
BINDING1
RECTYPE

A typical query might request information on price and call numbers for a specific
publisher’s number:
PRINT PRICE AND SERIAL BY PUBNO
IF PUBNO EQ 1234567890 OR 9876054321

Since PUBNO is part of the key, the retrieval can be made quickly and the processing
continues. To further speed retrieval you could add search criteria based on the
BINDING field, which is also part of the key.

Describing Unrelated Records
Some VSAM and ISAM data sources do not have records that are related to one another.
That is, the VSAM or ISAM key of one record type is independent of the keys of other
record types. To describe data sources with unrelated records, you define a dummy root
segment. You make the record types descendants of a dummy root segment. The
following rules apply to the dummy root segment:

• The name of the root segment must be DUMMY.

• It must have only one field with an empty name and alias.

• The USAGE and ACTUAL attributes must both be A1.

All other non-repeating segments must point to the dummy root as their parent. Except
for the root, all non-repeating segments must have a RECTYPE and a PARENT attribute
and describe the full VSAM/ISAM key. If the data source does not have a key, the group
should not be described. RECTYPEs may be anywhere in the record.

Describing a Sequential, VSAM, or ISAM Data Source

5-28 Information Builders

Example Describing Unrelated Records Using a Dummy Root Segment
The library data source has three types of records: book information, magazine
information, and newspaper information. Since book information, magazine information,
and newspaper information have nothing in common, these three record types cannot be
described as parent records followed by detail records.

The data source might look like this:

BOOK MAGAZINE NEWSPAPER

A structure such as the following could also describe this data source:

NEWSPAPBOOK MAGAZINE

DUMMY

RECTYPE
PUBNO
AUTHOR
TITLE

RECTYPE
PER_NO
PER_NAME
VOL_NO

RECTYPE
NEW_NAME
NEW_DATE
NVOL_NO

The Master File for the structure in this example is:
FILENAME = LIBRARY3, SUFFIX = FIX,$
SEGMENT = DUMMY, SEGTYPE = S0,$
 FIELDNAME= ,ALIAS= ,USAGE = A1 ,ACTUAL = A1 ,$
SEGMENT = BOOK, PARENT = DUMMY, SEGTYPE = S0,$
 FIELDNAME = RECTYPE ,ALIAS = B ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = PUBNO ,ALIAS = PN ,USAGE = A10 ,ACTUAL = A10 ,$
 FIELDNAME = AUTHOR ,ALIAS = AT ,USAGE = A25 ,ACTUAL = A25 ,$
 FIELDNAME = TITLE ,ALIAS = TL ,USAGE = A50 ,ACTUAL = A50 ,$
 FIELDNAME = BINDING ,ALIAS = BI ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = PRICE ,ALIAS = PR ,USAGE = D8.2N ,ACTUAL = D8 ,$
 FIELDNAME = SERIAL ,ALIAS = SN ,USAGE = A15 ,ACTUAL = A15 ,$
 FIELDNAME = SYNOPSIS ,ALIAS = SY ,USAGE = A150 ,ACTUAL = A150,$
SEGMENT = MAGAZINE, PARENT = DUMMY, SEGTYPE = S0,$
 FIELDNAME = RECTYPE ,ALIAS = M ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = PER_NO ,ALIAS = PN ,USAGE = A10 ,ACTUAL = A10 ,$
 FIELDNAME = PER_NAME ,ALIAS = NA ,USAGE = A50 ,ACTUAL = A50 ,$
 FIELDNAME = VOL_NO ,ALIAS = VN ,USAGE = I2 ,ACTUAL = I2 ,$
 FIELDNAME = ISSUE_NO ,ALIAS = IN ,USAGE = I2 ,ACTUAL = I2 ,$
 FIELDNAME = PER_DATE ,ALIAS = DT ,USAGE = I6MDY ,ACTUAL = I6 ,$
SEGMENT = NEWSPAP, PARENT = DUMMY, SEGTYPE = S0,$
 FIELDNAME = RECTYPE ,ALIAS = N ,USAGE = A1 ,ACTUAL = A1 ,$
 FIELDNAME = NEW_NAME ,ALIAS = NN ,USAGE = A50 ,ACTUAL = A50 ,$
 FIELDNAME = NEW_DATE ,ALIAS = ND ,USAGE = I6MDY ,ACTUAL = I6 ,$
 FIELDNAME = NVOL_NO ,ALIAS = NV ,USAGE = I2 ,ACTUAL = I2 ,$
 FIELDNAME = ISSUE ,ALIAS = NI ,USAGE = I2 ,ACTUAL = I2 ,$

 Describing Multiple Record Types

Describing Data 5-29

Example Describing a VSAM Data Source With Unrelated Records
Consider another VSAM data source containing information on our library. This data
source has three types of records: book information, magazine information, and
newspaper information.

There are two possible structures:

• The RECTYPE is the beginning of the key. The key structure is:

RECTYPE B Book Code

RECTYPE M Magazine Code

RECTYPE N Newspaper Code

The sequence of records is:

Book

Book

Magazine

Magazine

Newspaper
Newspaper

Note the difference between the use of the RECTYPE here and its use when the
records are positionally related. In this case, the codes are unrelated and the database
designer has chosen to accumulate the records by type first (all the book information
together, all the magazine information together, and all the newspaper information
together), so the RECTYPE may be the initial part of the key.

• The RECTYPE is not in the beginning of the key or is outside of the key. The key
structure is:

Book Code

Magazine Code

Newspaper Code

The sequence of record types in the data source can be arbitrary.

Both types of file structure can be represented by the following structure:

NEWSPAPBOOK MAGAZINE

DUMMY

BOOKKEY
PUBNO
AUTHNO
TITLNO

MAGKEY
VOLNO
ISSUNO
PERDAT

MEWSKEY
NEWDAT
NVOLNO
NISUE

Describing a Sequential, VSAM, or ISAM Data Source

5-30 Information Builders

Example Describing a Key and a Record Type for a VSAM Data Source
With Unrelated Records
FILE=LIBRARY7, SUFFIX=VSAM,$
SEGMENT=DUMMY,$
 FIELDNAME= ,ALIAS= ,USAGE=A1 ,ACTUAL=A1 ,$
SEGMENT=BOOK,PARENT=DUMMY,SEGTYPE=S0,$
 GROUP=BOOKKEY ,ALIAS=KEY ,USAGE=A11 ,ACTUAL=A11 ,$
 FIELDNAME=PUBNO ,ALIAS=PN ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELDNAME=AUTHNO ,ALIAS=AN ,USAGE=A3 ,ACTUAL=A3 ,$
 FIELDNAME=TITLNO ,ALIAS=TN ,USAGE=A4 ,ACTUAL=A4 ,$
 FIELDNAME=RECTYPE ,ALIAS=B ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=AUTHOR ,ALIAS=AT ,USAGE=A25 ,ACTUAL=A25 ,$
 FIELDNAME=TITLE ,ALIAS=TL ,USAGE=A50 ,ACTUAL=A50 ,$
 FIELDNAME=BINDING ,ALIAS=BI ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=PRICE ,ALIAS=PR ,USAGE=D8.2N ,ACTUAL=D8 ,$
 FIELDNAME=SERIAL ,ALIAS=SN ,USAGE=A15 ,ACTUAL=A15 ,$
 FIELDNAME=SYNOPSIS,ALIAS=SY ,USAGE=A150 ,ACTUAL=A150 ,$
SEGMENT=MAGAZINE, PARENT=DUMMY, SEGTYPE=S0,$
 GROUP=MAGKEY ,ALIAS=KEY ,USAGE=A11 ,ACTUAL=A11 ,$
 FIELDNAME=VOLNO ,ALIAS=VN ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=ISSUNO ,ALIAS=IN ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=PERDAT ,ALIAS=DT ,USAGE=A6 ,ACTUAL=A6 ,$
 FIELDNAME=RECTYPE ,ALIAS=M ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=PER_NAME,ALIAS=PRN ,USAGE=A50 ,ACTUAL=A50 ,$
SEGMENT=NEWSPAP, PARENT=DUMMY, SEGTYPE=S0,$
 GROUP=NEWSKEY ,ALIAS=KEY ,USAGE=A11 ,ACTUAL=A11 ,$
 FIELDNAME=NEWDAT ,ALIAS=ND ,USAGE=A6 ,ACTUAL=A6 ,$
 FIELDNAME=NVOLNO ,ALIAS=NV ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=NISSUE ,ALIAS=NI ,USAGE=A2 ,ACTUAL=A2 ,$
 FIELDNAME=RECTYPE ,ALIAS=N ,USAGE=A1 ,ACTUAL=A1 ,$
 FIELDNAME=NEWNAME ,ALIAS=NN ,USAGE=A50 ,ACTUAL=A50 ,$

 Describing Multiple Record Types

Describing Data 5-31

Using a Generalized Record Type
If your fixed-format sequential, VSAM, or ISAM data source has multiple record types
that share the same layout, you can specify a single generalized segment that describes all
record types having the common layout. By using a generalized segment—also known as
a generalized RECTYPE—instead of one segment per record type, you reduce the
number of segments you need to describe in the Master File.

When you use a generalized segment, you identify RECTYPE values using the ACCEPT
attribute. You can assign any value you wish to the ALIAS attribute.

Syntax How to Specify a Generalized Record Type
FIELDNAME = RECTYPE, ALIAS = alias, USAGE = format, ACTUAL = format,
ACCEPT = {list|range} ,$

where:
RECTYPE

Is the required field name.

Note: Since the field name, RECTYPE, may not be unique across segments, you
should not use it in this way unless you qualify it. An alias is not required; you may
leave it blank.

alias

Is any valid alias specification. You can specify a unique name as the alias value for
the RECTYPE field only if you use the ACCEPT attribute. The alias can then be
used in a TABLE request as a display field, a sort field, or in selection tests using
either WHERE or IF.

list

Is a list of one or more lines of specific RECTYPE values for records that have the
same segment layout. The maximum number of characters allowed in the list is 255.
Each item in the list must be separated by either a blank or the keyword OR. If the
list contains embedded blanks or commas, it must be enclosed within single
quotation marks. The list may contain a single RECTYPE value.

For example:
FIELDNAME = RECTYPE, ALIAS = TYPEABC, USAGE = A1,
ACTUAL = A1, ACCEPT = A OR B OR C, $

range

Is a range of one or more lines of RECTYPE values for records that have the same
segment layout. The maximum number of characters allowed in the range is 255. If
the range contains embedded blanks or commas, it must be enclosed within single
quotation marks.

To specify a range of values, include the lowest value, the keyword TO, and the
highest value, in that order. For example:
FIELDNAME = RECTYPE, ALIAS = ACCTREC, USAGE = P3,
ACTUAL = P2, ACCEPT = 100 TO 200, $

Describing a Sequential, VSAM, or ISAM Data Source

5-32 Information Builders

Example Using a Generalized Record Type
To illustrate the use of the generalized record type in VSAM Master Files, consider the
following record layouts in the DOC data source. Record type DN is the root segment
and contains the document number and title. Record types M, I, and C contain
information about manuals, installation guides, and course guides, respectively. Notice
that record types M and I have the same layout.

Record Type DN:
---KEY---
+--+
DOCID FILLER RECTYPE TITLE
+--+

Record Type M:
--------KEY--------
+--+
MDOCID MDATE RECTYPE MRELEASE MPAGES FILLER
+--+

Record Type I:
--------KEY--------
+--+
IDOCID IDATE RECTYPE IRELEASE IPAGES FILLER
+--+

Record Type C:
--------KEY--------
+--+
CRSEDOC CDATE RECTYPE COURSENUM LEVEL CPAGES FILLER
+--+

 Describing Multiple Record Types

Describing Data 5-33

Without the ACCEPT attribute, each of the four record types must be described as
separate segments in the Master File. In particular, a unique set of field names must be
provided for record type M and for record type I, although they have the same layout.

The generalized RECTYPE capability enables you to code just one set of field names that
will apply to the record layout for both record type M and record type I. The ACCEPT
attribute can be used for any RECTYPE specification, even when there is only one
acceptable value.
FILENAME=DOC2, SUFFIX=VSAM,$
SEGNAME=ROOT, SEGTYPE=SO,$
 GROUP=DOCNUM, ALIAS=KEY, A5, A5,$
 FIELD=DOCID, ALIAS=SEQNUM, A5, A5, $
 FIELD=FILLER, ALIAS=, A5, A5, $
 FIELD=RECTYPE, ALIAS=DOCRECORD, A3, A3, ACCEPT =DN,$
 FIELD=TITLE, ALIAS=, A18, A18, $
SEGNAME=MANUALS, PARENT=ROOT, SEGTYPE=SO,$
 GROUP=MDOCNUM,ALIAS=KEY, A10, A10,$
 FIELD=MDOCID, ALIAS=MSEQNUM, A5, A5, $
 FIELD=MDATE, ALIAS=MPUBDATE, A5, A5, $
 FIELD=RECTYPE, ALIAS=MANUAL, A3, A3, ACCEPT = M OR I,$
 FIELD=MRELEASE, ALIAS=, A7, A7, $
 FIELD=MPAGES, ALIAS=, I5, A5, $
 FIELD=FILLER, ALIAS=, A6, A6, $
SEGNAME=COURSES, PARENT=ROOT, SEGTYPE=SO,$
 GROUP=CRSEDOC, ALIAS=KEY, A10, A10,$
 FIELD=CDOCID, ALIAS=CSEQNUM, A5, A5, $
 FIELD=CDATE, ALIAS=CPUBDATE, A5, A5, $
 FIELD=RECTYPE, ALIAS=COURSE, A3, A3, ACCEPT = C,$
 FIELD=COURSENUM, ALIAS=CNUM, A4, A4, $
 FIELD=LEVEL, ALIAS=, A2, A2, $
 FIELD=CPAGES, ALIAS=, I5, A5, $
 FIELD=FILLER, ALIAS=, A7, A7, $

Describing a Sequential, VSAM, or ISAM Data Source

5-34 Information Builders

Using an ALIAS in a Report Request
You can include an alias for the RECTYPE field if you use the ACCEPT attribute to
specify one or more RECTYPE values in the Master File. This enables you to use the
alias in a report request as a display field, as a sort field, or in selection tests using either
WHERE or IF.

Example Using a RECTYPE Value in a Display Command
You can display the RECTYPE values by including the alias as a display field. In this
example, the alias MANUAL displays the RECTYPE values M and I:
TABLE FILE DOC
PRINT MANUAL MRELEASE MPAGES
BY DOCID BY TITLE BY MDATE
END

 PAGE 1

 DOCID TITLE MDATE RECTYPE MRELEASE MPAGES
 ----- ----- ----- ------- -------- ------
 40001 FOCUS USERS MANUAL 8601 M 5.0 1800
 8708 M 5.5 2000
 40057 MVS INSTALL GUIDE 8806 I 5.5.3 66
 8808 I 5.5.4 66
 40114 CMS INSTALL GUIDE 8806 I 5.5.3 58
 8808 I 5.5.4 58

Example Using a RECTYPE Value in a WHERE Test
You can use the alias in a WHERE test to display a subset of records.
TABLE FILE DOC
PRINT MANUAL MRELEASE MPAGES
BY DOCID BY TITLE BY MDATE
WHERE MANUAL EQ 'I'
END

 PAGE 1

 DOCID TITLE MDATE RECTYPE MRELEASE MPAGES
 ----- ----- ----- ------- -------- ------
 40057 MVS INSTALL GUIDE 8806 I 5.5.3 66
 8808 I 5.5.4 66
 40114 CMS INSTALL GUIDE 8806 I 5.5.3 58
 8808 I 5.5.4 58

 Combining Multiply Occurring Fields and Multiple Record Types

Describing Data 5-35

Combining Multiply Occurring Fields and Multiple
Record Types

You can have two types of descendant segments in a single fixed-format sequential,
VSAM, or ISAM data source:

• Descendant segments consisting of multiply occurring fields.

• Additional descendant segments consisting of multiple record types.

Describing a Multiply Occurring Field and Multiple Record Types
In the data structure shown below, the first record—of type 01—contains several
different sequences of repeating fields, all of which must be described as descendant
segments with an OCCURS attribute. The data source also contains two separate records,
of types 02 and 03, which contain information that is related to that in record type 01.

The relationship between the records of various types is expressed as parent-child
relationships. The children that contain record types 02 and 03 do not have an OCCURS
attribute. They are distinguished from their parent by the field declaration where
field=RECTYPE.

01 T1 N1 B1 B2 C1 C1 C1 D1 D1 D1 D1 D1 D1 D1 B1 B2 C1 C1 D1 D1 D1 D1 D1 D1 D1

02 E1

03 F1

The data source description for this data source is:
FILENAME = EXAMPLE1, SUFFIX = FIX,$
SEGNAME = A, SEGTYPE=S0,$
 FIELDNAME = RECTYPE ,ALIAS = 01 ,USAGE = A2 ,ACTUAL = A2 ,$
 FIELDNAME = T1 ,ALIAS = ,USAGE = A2 ,ACTUAL = A1 ,$
 FIELDNAME = N1 ,ALIAS = ,USAGE = A1 ,ACTUAL = A1 ,$
SEGNAME = B, PARENT = A, OCCURS = VARIABLE, SEGTYPE=S0,$
 FIELDNAME = B1 ,ALIAS = ,USAGE = I2 ,ACTUAL = I2 ,$
 FIELDNAME = B2 ,ALIAS = ,USAGE = I2 ,ACTUAL = I2 ,$
SEGNAME = C, PARENT = B, OCCURS = B1, SEGTYPE=S0,$
 FIELDNAME = C1 ,ALIAS = ,USAGE = A1 ,ACTUAL = A1 ,$
SEGNAME = D, PARENT = B, OCCURS = 7, SEGTYPE=S0,$
 FIELDNAME = D1 ,ALIAS = ,USAGE = A1 ,ACTUAL = A1 ,$
SEGNAME = E, PARENT = A, SEGTYPE=S0,$
 FIELDNAME = RECTYPE ,ALIAS = 02 ,USAGE = A2 ,ACTUAL = A2 ,$
 FIELDNAME = E1 ,ALIAS = ,USAGE = A1 ,ACTUAL = A1 ,$
SEGNAME = F, PARENT = E, SEGTYPE=S0,$
 FIELDNAME = RECTYPE ,ALIAS = 03 ,USAGE = A2 ,ACTUAL = A2 ,$
 FIELDNAME = F1 ,ALIAS = ,USAGE = A1 ,ACTUAL = A1 ,$

Describing a Sequential, VSAM, or ISAM Data Source

5-36 Information Builders

It produces the following data structure:
A

RECTYPE
T1
N1

RECTYPE
E1

RECTYPE
F1

B

B1
B2

C1

C

E

F
D

D1

Five occurrences 14 total occurrences

Different
RECTYPE

Must occur one time

Occurs two times

Segments A, B, C, and D all belong to the same record type. Segments E and F each are
stored as separate record types.

Note:

• Segments A, E, and F are different records, related through their record types. The
record type attribute consists of certain prescribed values and is stored in a fixed
location in the records. The records are expected to be retrieved in a given order. If
the first record does not have a RECTYPE of 01, the record is considered to be a
child without a parent. The next record can have a RECTYPE of either 01 (in which
case the first record is considered to have no descendants except the OCCURS
descendants) or 02. A record with a RECTYPE of 03 can follow only a record with a
RECTYPE of 02 (its parent).

• The OCCURS descendants all belong to the record whose RECTYPE is 01. (This is
not a necessary condition; records of any type can have OCCURS descendants.)
Note that the OCCURS=VARIABLE segment, Segment B, is the right-most segment
within its own record type. If you look at the data structure, the pattern that makes up
Segment B and its descendants (the repetition of fields B1, B2, C1, and D1) extends
from the first mention of fields B1 and B2 to the end of the record.

• Although fields C1 and D1 appear in separate segments, they are actually part of the
repeating pattern that makes up the OCCURS=VARIABLE segment. Since they
occur multiple times within Segment B, they are each assigned to their own
descendant segment. The number of times field C1 occurs depends on the value of
field B2. In the example, the first value of field B2 is 3, the second, 2. Field D1
occurs a fixed number of times, 7.

 Combining Multiply Occurring Fields and Multiple Record Types

Describing Data 5-37

Describing a VSAM Repeating Group With RECTYPEs
Suppose you want to describe a data source that, schematically, looks like this:

A RECTYPE B C RECTYPE B C

A RECTYPE D RECTYPE D

You need to describe three segments in your Master File, with A as the root segment, and
segments for B, C, and D as two descendant OCCURS segments for A:

A

RECTYPE
B
C

RECTYPE
D

Each of the two descendant OCCURS segments in this example depends on the
RECTYPE indicator that appears for each occurrence.

All the rules of syntax for using RECTYPE fields and OCCURS segments also apply to
RECTYPEs within OCCURS segments.

Since each OCCURS segment depends on the RECTYPE indicator for its evaluation, the
RECTYPE must appear at the start of each OCCURS segment. This allows very complex
data sources to be described, including those with nested and parallel repeating groups
that depend on RECTYPEs.

Example Describing a VSAM Repeating Group With RECTYPEs
In this example, B/C, and D represent a nested repeating group, and E represents a
parallel repeating group.

A RECTYPE B C RECTYPE D RECTYPE E RECTYPE E

FILENAME=SAMPLE,SUFFIX=VSAM,$
SEGNAME=ROOT,SEGTYPE=S0,$
 GROUP=GRPKEY ,ALIAS=KEY ,USAGE=A8 ,ACTUAL=A8 ,$
 FIELD=FLD000 ,E00 ,A08 ,A08 ,$
 FIELD=A_DATA ,E01 ,A02 ,A02 ,$
SEGNAME=SEG001,PARENT=ROOT,OCCURS=VARIABLE,SEGTYPE=S0 ,$
 FIELD=RECTYPE ,A01 ,A01 ,ACCEPT=B OR C ,$
 FIELD=B_OR_C_DATA ,E02 ,A08 ,A08 ,$
SEGNAME=SEG002,PARENT=SEG001,OCCURS=VARIABLE,SEGTYPE=S0,$
 FIELD=RECTYPE ,D ,A01 ,A01 ,$
 FIELD=D_DATA ,E03 ,A07 ,A07 ,$
SEGNAME=SEG003,PARENT=ROOT,OCCURS=VARIABLE,SEGTYPE=S0 ,$
 FIELD=RECTYPE ,E ,A01 ,A01 ,$
 FIELD=E_DATA ,E04 ,A06 ,A06 ,$

Describing a Sequential, VSAM, or ISAM Data Source

5-38 Information Builders

Describing a Repeating Group Using MAPFIELD
In another possible combination of record indicator and OCCURS, a record contains a
record indicator that is followed by a repeating group. In this case, the record indicator is
in the fixed portion of the record, not in each occurrence. Schematically, the record
would appear like this:

A B record indicator (1) C D C D C D

A B record indicator (2) E E

The first record contains header information, values for A and B, followed by an
OCCURS segment of C and D that was identified by its preceding record indicator. The
second record has a different record indicator and contains a different repeating group,
this time for E.

The following diagram illustrates this relationship.

A
B

record indicator

When record indicator=2

C
D

E

When record indicator=1
Since the OCCURS segments are identified by the record indicator rather than the parent
A/B segment, you must use the keyword MAPFIELD. MAPFIELD identifies a field in
the same way RECTYPE does, but since the OCCURS segments will each have their
own values for MAPFIELD, the value of MAPFIELD is associated with each OCCURS
segment by means of a complementary field named MAPVALUE.

The following diagram illustrates this relationship:

A
B

MAPFIELD

C
D

When MAPFIELD=1

E
When MAPFIELD=2

MAPFIELD is assigned as the ALIAS of the field that will be the record indicator. You
can give this field any name.

 Combining Multiply Occurring Fields and Multiple Record Types

Describing Data 5-39

Syntax How to Describe a Repeating Group With MAPFIELD
FIELD = name, ALIAS = MAPFIELD, USAGE = format, ACTUAL = format,$

where:
name

The name you choose to provide for this field.
ALIAS

MAPFIELD is assigned as the alias of the field that will be the RECTYPE indicator.
USAGE

Follows the usual field format.
ACTUAL

Follows the usual field format.

The descendant segment values depend on the value of the MAPFIELD. They are
described as separate segments, one for each possible value of MAPFIELD, and all
descending from the segment that has the MAPFIELD. A special field, MAPVALUE, is
described as the last field in these descendant segments after the ORDER field, if one has
been used. The actual MAPFIELD value is supplied as the ALIAS of MAPVALUE.

Describing a Sequential, VSAM, or ISAM Data Source

5-40 Information Builders

Syntax How to Use MAPFIELD for a Descendant Repeating Segment in
a Repeating Group
FIELD = MAPVALUE, ALIAS = alias, USAGE = format, ACTUAL = format,
ACCEPT = {list|range} ,$

where:
MAPVALUE

Indicates that the segment depends on a MAPFIELD in its parent segment.
alias

Is the primary MAPFIELD identifier. If there is an ACCEPT list, this value is any
value in the ACCEPT list or range.

USAGE

Is the same format as the MAPFIELD format in the parent segment.
ACTUAL

Is the same format as the MAPFIELD format in the parent segment.
list

Is the list of one or more lines of specified MAPFIELD values for records that have
the same segment layout. The maximum number of characters allowed in the list is
255. Each item in the list must be separated by either a blank or the keyword OR. If
the list contains embedded blanks or commas, it must be enclosed within single
quotation marks ('). The list may contain a single MAPFIELD value.

For example:
FIELDNAME = MAPFIELD, ALIAS = A, USAGE = A1, ACTUAL = A1,
ACCEPT = A OR B OR C,$

range

Is a range of one or more lines of MAPFIELD values for records that have the same
segment layout. The maximum number of characters allowed in the range is 255. If
the range contains embedded blanks or commas, it must be enclosed in single
quotation marks (').

To specify a range of values, include the lowest value, the keyword TO, and the
highest value, in that order.

 Establishing VSAM Data and Index Buffers

Describing Data 5-41

Example Using MAPFIELD and MAPVALUE
Using the sample data source at the beginning of this section, the Master File for this data
source looks like this:
FILENAME=EXAMPLE,SUFFIX=FIX,$
SEGNAME=ROOT,SEGTYPE=S0,$
 FIELD =A , ,A14 ,A14 ,$
 FIELD =B , ,A10 ,A10 ,$
 FIELD =FLAG ,MAPFIELD ,A01 ,A01 ,$
SEGNAME=SEG001,PARENT=ROOT,OCCURS=VARIABLE,SEGTYPE=S0 ,$
 FIELD =C , ,A05 ,A05 ,$
 FIELD =D , ,A07 ,A07 ,$
 FIELD =MAPVALUE ,1 ,A01 ,A01 ,$
SEGNAME=SEG002,PARENT=ROOT,OCCURS=VARIABLE,SEGTYPE=S0 ,$
 FIELD =E , ,D12.2 ,D8 ,$
 FIELD =MAPVALUE ,2 ,A01 ,A01 ,$

Note: MAPFIELD can only exist on an OCCURS segment that has not been re-mapped.
This means that this segment definition cannot contain POSITION=fieldname.

MAPFIELD and MAPVALUE may be used with SUFFIX=FIX and SUFFIX=VSAM
data sources.

Establishing VSAM Data and Index Buffers
Two SET commands make it possible to establish DATA and INDEX buffers for
processing VSAM data sources online.

The AMP sub-parameters BUFND and BUFNI allow MVS BATCH users to enhance the
I/O efficiency of TABLE, TABLEF, MODIFY, and JOIN against VSAM data sources by
holding frequently used VSAM Control Intervals in memory, rather than on physical
DASD. By reducing the number of physical Input/Output operations, job throughput is
improved. The new SET commands allow users (in CMS, MVS/TSO, and MSO) to
realize similar performance gains in interactive sessions. In general, BUFND (data
buffers) increase the efficiency of physical sequential reads, whereas BUFNI (index
buffers) are most beneficial in JOIN or KEYED access operations.

Syntax How to Establish VSAM Data and Index Buffers
{MVS|CMS} VSAM SET BUFND {n|8}
{MVS|CMS} VSAM SET BUFNI {n|1}

where:
n

Is the number of data or index buffers. The default values are BUFND=8, BUFNI=1
(eight data buffers and one index buffer).

To determine how many buffers are in effect at any time, issue the query:
{MVS|CMS} VSAM SET ?

Describing a Sequential, VSAM, or ISAM Data Source

5-42 Information Builders

Using a VSAM Alternate Index
The use of alternate indexes (keys) with VSAM key-sequenced data sources is supported.
A key-sequenced VSAM data source consists of two components: an index component
and a data component. The data component contains the actual data records, while the
index component is the key used to locate the data records in the data source. Together,
these two components are referred to as the base cluster.

An alternate index is a separate, additional index structure that allows you to access
records in a KSDS VSAM data source based on a key other than the data source’s
primary key. For instance, you may usually use a personnel data source sequenced by
Social Security number, but have an occasional need to have the records retrieved sorted
by job description. The job description field might be described as an alternate index. An
alternate index must be related to the base cluster it describes by a path, which is stored in
a separate data source.

The alternate index is a VSAM structure and is, consequently, created and maintained in
the VSAM environment. It can, however, be described in your Master File, so that you
can take advantage of the benefits of an alternate index.

The primary benefit of these indexes is improved efficiency. You can use it as an
alternate, more efficient, retrieval sequence or you can take advantage of its potential
indirectly, with screening tests (IF...LT, IF...LE, IF...GT, IF...GE, IF...EQ,
IF...FROM...TO, IF...IS), which are translated into direct reads against the alternate
index. You can also join data sources with the JOIN command through this alternate
index.

It is not necessary to explicitly identify the indexed view in order to take advantage of the
alternate index. An alternate index is automatically used when described in the Master
File.

To take advantage of a specific alternate index during a TABLE request, provide an IF or
WHERE test on the alternative index field that meets the above criteria. For example:
TABLE FILE CUST
PRINT SSN
WHERE LNAME EQ 'SMITH'
END

As you will see in the Master File in Describing a VSAM Alternate Index on page 5-43,
the LNAME field is defined as an alternate index field. The records in the data source
will be retrieved according to their last names, and certain IF screens on the field
LNAME will result in direct reads. Note that if the alternate index field name is omitted,
the primary key (if there is any) will be used for a sequential or a direct read, and the
alternate indexes will be treated as regular fields.

 Using a VSAM Alternate Index

Describing Data 5-43

Alternate indexes must be described in the Master File as fields with FIELDTYPE=I. The
ALIAS of the alternate index field must be the file name allocated to the corresponding
path name. Alternate indexes can be described as GROUPs if they consist of portions
with dissimilar formats. Remember that ALIAS=KEY must be used to describe the
primary key.

Only one record type can be referred to in the request when alternate indexes are used,
but the number of OCCURS segments is unrestricted.

Note that the path name in the allocation will be different from both the cluster name and
the alternate index name.

If you are not sure of the path names and alternate indexes associated with a given base
cluster, you can use the IDCAMS utility. (See the IBM manual entitled Using VSAM
Commands and Macros for details.)

Example Describing a VSAM Alternate Index
Consider the following example:
FILENAME = CUST, SUFFIX = VSAM,$
SEGNAME = ROOT, SEGTYPE = S0,$
 GROUP = G, ALIAS = KEY, A10, A10,$
 FIELD = SSN, SSN, A10, A10 ,$
 FIELD = FNAME, DD1, A10, A10, FIELDTYPE=I,$
 FIELD = LNAME, DD2, A10, A10, FIELDTYPE=I,$

In this example, SSN is a primary key and FNAME and LNAME are alternate indexes.
The path data set must be allocated to the ddname specified in ALIAS= of your alternate
index field. In this Master File, ALIAS=DD1 and ALIAS=DD2 would each have an
allocation pointing to the path data set. FNAME and LNAME must have INDEX=I or
FIELDTYPE=I coded in the Master File. CUST must be allocated to the base cluster.

Describing a Sequential, VSAM, or ISAM Data Source

5-44 Information Builders

Example Using IDCAMS
The following example demonstrates how to use IDCAMS to find the alternate index and
path names associated with a base cluster named CUST.DATA:

First, find the alternate index names (AIX) associated with the given cluster.
IDCAMS input:
 LISTCAT CLUSTER ENTRIES(CUST.DATA) ALL

IDCAMS output (fragments):
 CLUSTER -------- CUST.DATA
 ASSOCIATIONS
 AIX ---------- CUST.INDEX1
 AIX ---------- CUST.INDEX2

This gives you the names of the alternate indexes (AIX): CUST.INDEX1 and
CUST.INDEX2.

Next, find the path names associated with the given AIX name.
IDCAMS input:
 LISTCAT AIX ENTRIES (CUST.INDEX1 CUST.INDEX2) ALL

IDCAMS output (fragments):
 AIX ---------CUST.INDEX1
 ASSOCIATIONS
 CLUSTER -- CUST.DATA
 PATH ------CUST.PATH1
 AIX ---------CUST.INDEX2
 ASSOCIATIONS
 CLUSTER -- CUST.DATA
 PATH ------CUST.PATH2

This gives you the path names: CUST.PATH1 and CUST.PATH2.

This information along with the TSO DDNAME command may be used to ensure the
proper allocation of your alternate index.

 Describing a Token-Delimited Data Source

Describing Data 5-45

Describing a Token-Delimited Data Source
You can read single segment sequential data sources in which fields are separated by any
type of delimiter.

Syntax How to Define a File With Delimiters
Delimiters must be defined in the Master File. The FILE declaration must include the
following attribute:
SUFFIX=DFIX

To use a delimiter that consists of a single non-printable character or of one or more
printable characters, the delimiter is defined as a field with the following attributes:
FIELDNAME=DELIMITER, ALIAS=delimiter, USAGE=ufmt, ACTUAL=afmt ,$

To use a delimiter that consists of multiple non-printable characters or a combination of
printable and non-printable characters, the delimiter is defined as a group:
GROUP=DELIMITER, ALIAS= , USAGE=ufmtg, ACTUAL=afmtg ,$
 FIELDNAME=DELIMITER, ALIAS=delimiter1, USAGE=ufmt1, ACTUAL=afmt1 ,$
 .
 .
 .
 FIELDNAME=DELIMITER, ALIAS=delimitern, USAGE=ufmtn, ACTUAL=afmtn ,$

where:
DELIMITER

Indicates that the field or group is used as the delimiter in the data source.
delimiter

Identifies a delimiter. For one or more printable characters, the value consists of the
actual characters. The delimiter must be enclosed in single quotation marks if it
includes characters used as delimiters in Master File syntax. For a non-printable
character, the value is the decimal equivalent of the EBCDIC or ASCII
representation of the character, depending on your operating environment.

ufmt, afmt

Are the USAGE and ACTUAL formats for the delimiter. Possible values are:

Type of delimiter USAGE ACTUAL

Printable characters An where n is the
number of
characters

An where n is the
number of characters

Non-printable character such as Tab I4 I1

Group (combination of printable and
non-printable characters, or multiple
non-printable characters)

Sum of the
individual
USAGE lengths

Sum of the individual
ACTUAL lengths

Describing a Sequential, VSAM, or ISAM Data Source

5-46 Information Builders

Reference Usage Notes for a Token-Delimited File
• If the delimiter is alphanumeric and the delimiter value contains special characters

(those used as delimiters in Master File syntax), it must be enclosed in single
quotation marks.

• Numeric (decimal) values may be used to represent any character, but are
predominantly used for non-printable characters such as Tab. The numeric values
may differ between EBCDIC and ASCII platforms.

• A delimiter is needed to separate field values. A pair of delimiters denotes a missing
or default field value.

• Trailing delimiters are not necessary except that all fields must be terminated with
the delimiter if the file resides in CMS or has fixed length records in MVS.

• Only one delimiter field/group is permitted per Master File.

• Token delimited files cannot be used in joins.

Example Defining a Delimiter
The following example shows a one-character alphanumeric delimiter:
FIELDNAME=DELIMITER, ALIAS=’,’ ,USAGE=A1, ACTUAL=A1 ,$

The following example shows a two-character alphanumeric delimiter:
FIELDNAME=DELIMITER, ALIAS=// ,USAGE=A2, ACTUAL=A2 ,$

The following example shows how to use the Tab character as a delimiter:
FIELDNAME=DELIMITER, ALIAS=05 ,USAGE=I4, ACTUAL=I1 ,$

The following example shows how to use a blank character described as a numeric
delimiter:
FIELDNAME=DELIMITER, ALIAS=64 ,USAGE=I4, ACTUAL=I1 ,$

The following example shows a group delimiter (Tab-slash-Tab combination):
GROUP=DELIMITER, ALIAS= ,USAGE=A9, ACTUAL=A3 ,$
 FIELDNAME=DEL1, ALIAS=05 ,USAGE=I4, ACTUAL=I1 ,$
 FIELDNAME=DEL2, ALIAS=/ ,USAGE=A1, ACTUAL=A1 ,$
 FIELDNAME=DEL3, ALIAS=05 ,USAGE=I4, ACTUAL=I1 ,$

 Describing a Token-Delimited Data Source

Describing Data 5-47

Example Separating Field Values for Missing Data
The following Master File shows the MISSING attribute specified for the CAR field:
FILE=DFIXF01 ,SUFFIX=DFIX
SEGNAME=SEG1 ,SEGTYPE=S0
 FIELDNAME=COUNTRY ,ALIAS=F1 ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=CAR ,ALIAS=F2 ,USAGE=A16 ,ACTUAL=A16 ,MISSING=ON, $
 FIELDNAME=NUMBER ,ALIAS=F3 ,USAGE=P10 ,ACTUAL=Z10 ,$
 FIELDNAME=DELIMITER ,ALIAS=',' ,USAGE=A1 ,ACTUAL=A1 ,$

In the source file, two consecutive comma delimiters indicate missing values for CAR:
GERMANY,VOLKSWAGEN,1111
GERMANY,BMW,
USA,CADILLAC,22222
USA,FORD
USA,,44444
JAPAN
ENGLAND,
FRANCE

The output is:
COUNTRY CAR NUMBER
GERMANY VOLKSWAGEN 1111
GERMANY BMW 0
USA CADILLAC 22222
USA FORD 0
USA . 44444
JAPAN . 0
ENGLAND 0
FRANCE . 0

Describing a Sequential, VSAM, or ISAM Data Source

5-48 Information Builders

Reading a Complex Data Source With a User-Written
Procedure

There are three ways you can read non-FOCUS data sources with user-written
procedures. All three are described in Appendix C, User Exits for a Non-FOCUS Data
Source.

• You can invoke a user exit contained in the FOCSAM Interface and combine simple
user written code with the Interface’s logical functions.

• You can also write an independent user routine to provide records to the report
writer.
The records, which can come from any source, are treated exactly as if they had
come from a FOCUS data source. The user routine must be coded as a subroutine in
FORTRAN, COBOL, BAL, or PL/I, and passes data to the report writer calling
program through arguments in the subroutine.
The user program is loaded automatically by the report writer. It is identified by its
file suffix, in the Master File. The suffix is of the form
SUFFIX = program_name

where program_name is the name of your user-written subroutine.
Thus if your Master File contains
FILE = ABC, SUFFIX = MYREAD

The program named MYREAD will be loaded and called to obtain data whenever
there is a TABLE, TABLEF, MATCH, or GRAPH command for data source ABC.

• A decompression exit is also available for compressed VSAM data sources and flat
data sources. This is called ZCOMP1. It uses SUFFIX=PRIVATE.

Describing Data 6-1

CHAPTER 6

Describing a FOCUS Data Source

Topics:
• Designing a FOCUS Data Source

• Describing a Single Segment

• Describing an Individual Field

• Describing Two-Gigabyte and
Partitioned FOCUS Data Sources

The following topics cover data description topics unique to
FOCUS data sources:

• Design tips. Provides some suggestions for people who are
designing a new FOCUS data source or changing the design
of an existing data source.

• Describing segments. Contains information about Master
File segment declarations for FOCUS data sources,
including defining segment relationships, keys, and sort
order using the SEGTYPE attribute, and storing segments
in different locations using the LOCATION attribute.
Chapter 7, Defining a Join in a Master File, explains how
to define static and dynamic joins in a Master File.

• Describing fields. Contains information about Master File
field declarations for FOCUS data sources, including the
FIND option of the ACCEPT attribute; indexing fields
using the INDEX attribute; and the internal storage
requirements of each data type defined by the FORMAT
attribute, and of null values described by the MISSING
attribute.

• Describing two-gigabyte and partitioned data sources.
Contains information about Master File and Access File
declarations for intelligently partitioned FOCUS data
sources.

Describing a FOCUS Data Source

6-2 Information Builders

Designing a FOCUS Data Source
The database management system enables you to create sophisticated hierarchical data
structures. The following sections provide information to help you design an effective
and efficient FOCUS data source and tell you how you can change the design after the
data source has been created.

Data Relationships
The primary consideration when designing a data source is the set of relationships among
the various fields. Before you create the Master File, you may wish to draw a diagram of
these relationships. Is a field related to any other fields? If so, is it a one-to-one or a
one-to-many relationship? If any of the data already exists in another data source, can
that data source be joined to this one?

In general, you can use the following guidelines:

• All information that occurs once for a given record should be placed in the root
segment or a unique child segment.

• Any information that can be retrieved from a joined data source should, in most
cases, be retrieved in this way, and not redundantly maintained in two different data
sources.

• Any information that has a many-to-one relationship with the information in a given
segment should be stored in a descendant of that segment.

• Related data in child segments should be stored in the same path; unrelated data
should be placed in different paths.

The following illustration summarizes the rules for data relationship considerations:

One to One
One to Many

Unrelated

Segtype=U

One to
Many

One to
Many

Related

One to One

 Designing a FOCUS Data Source

Describing Data 6-3

Join Considerations
If you plan to join one segment to another, remember that both the host and
cross-referenced fields must have the same format, and the cross-referenced field must be
indexed using the INDEX attribute. In addition, for a cross-reference in a Master File, the
host and cross-referenced fields must share the same name—that is, the name of both
fields, or the alias of both fields must be identical, or else the name of one field must be
identical to the alias of the other.

General Efficiency Considerations
A FOCUS data source reads the root segment first, then traverses the hierarchy to satisfy
your query. The smaller you make the root segment, the more root segment instances can
be read at one time, and the faster records can be selected to process a query.

You can also improve record substitution efficiency by setting AUTOPATH.
AUTOPATH is the automation of TABLE FILE ddname.fieldname syntax, where field
name is not indexed and physical retrieval starts at the field name segment. AUTOPATH
is described in the Developing Applications manual.

As with most information processing issues, there is a trade-off when designing an
efficient FOCUS data source: you need to balance the desire to speed up record retrieval,
by reducing the size of the root segment, against the need to speed up record selection, by
placing fields used in record selection tests as high in the data structure as possible. The
segment location of fields used in WHERE or IF tests has significant implications to the
processing efficiency of a request. When a field fails a record selection test, there is no
additional processing to that segment instance or its descendants. The higher the selection
fields are in a data structure, the fewer the number of segments that need to be read to
determine a record’s status.

After you have designed and created a data source, if you want to select records based on
fields that are low in the data structure, you can rotate the data structure to place those
fields temporarily higher by using an alternate view. Alternate views are discussed in
Chapter 3, Describing a Group of Fields. Using alternate views in report requests is
discussed in the Creating Reports manual.

Describing a FOCUS Data Source

6-4 Information Builders

The following guidelines will help you to design an efficient data structure:

• Limit the information in the root segment to what is necessary to identify the record
and to what is used often in screening conditions.

• Avoid unnecessary key fields. Segments with a SEGTYPE of S1 will be processed
much more efficiently than those with, for example, a SEGTYPE of S9.

• Index the first field of the segment (the key field) if the root segment of your data
source is SEGTYPE S1 for increased efficiency in MODIFY procedures that read
transactions from unsorted data sources (FIXFORM).

• Use segments with a SEGTYPE of SH1 when adding and maintaining data in date
sequence. A SEGTYPE of SH1 puts each new record at the beginning of the data
source, not at the end.

• If a segment contains fields frequently used in record selection tests, keep the
segment small by limiting it to key fields, selection fields, and other fields frequently
used in reports.

• Index fields on which you perform frequent searches of unique instances. When you
specify that a field be indexed, a table of data values and their corresponding
physical locations in the data source is constructed and maintained. Thus, indexing a
field speeds retrieval.

You can index any field you want, although it is advisable to limit the number of
indexes in a data source since each index requires additional storage space. You will
need to weigh the increase in speed against the increase in space.

Changing a FOCUS Data Source
Once you have designed and created a FOCUS data source, you can change some of its
characteristics simply by editing the corresponding attribute in the Master File. The
documentation for each attribute specifies whether it can be edited after the data source
has been created.

Some characteristics whose attributes cannot be edited can be changed if you rebuild the
data source using the REBUILD facility, as described in the Maintaining Databases
manual. You can also use REBUILD to add new fields to a data source.

 Describing a Single Segment

Describing Data 6-5

Describing a Single Segment
In a segment description, you can describe key fields, sort order, and segment
relationships.

You can code LOCATION segments in a Master File to expand the file size by pointing
to another physical file location.

You can also create a field to timestamp changes to a segment using AUTODATE.

Three additional segment attributes that describe joins between FOCUS segments,
CRFILE, CRKEY, and CRSEGNAME, are described in Chapter 7, Defining a Join in a
Master File.

Maximum Number of Segments
The number of segments cannot exceed 64.

Describing Keys, Sort Order, and Segment Relationships: SEGTYPE
FOCUS data sources use the SEGTYPE attribute to describe a segment’s key fields and
sort order, as well as the relationship of the segment to its parent.

The SEGTYPE attribute is also used with SUFFIX=FIX data sources to indicate a logical
key sequence for that data source. SEGTYPE is discussed in Chapter 3, Describing a
Group of Fields.

Syntax How to Describe a Segment
The syntax of the SEGTYPE attribute when used for a FOCUS data source is:
SEGTYPE = segtype

Valid values are:
SH[n]

Indicates that the segment’s instances are sorted from the highest value to the lowest
value, based on the value of the first n fields in the segment. n can be any number
from 1 to 99; if you do not specify it, it defaults to 1.

S[n]

Indicates that the segment’s instances are sorted from the lowest value to the highest
value, based on the value of the first n fields in the segment. n can be any number
from 1 to 255; if you do not specify it, it defaults to 1.

Describing a FOCUS Data Source

6-6 Information Builders

S0

Indicates that the segment has no key field and is therefore not sorted. New instances
are added to the end of the segment chain. Any search starts at the current position.

S0 segments are often used to store text for applications where the text will need to
be retrieved in the order entered and the application does not need to search for
particular instances.

b/ (blank)
Indicates that the segment has no key field and is therefore not sorted. New instances
are added to the end of the segment chain. Any search starts at the beginning of the
segment chain.

SEGTYPE = b/ segments are often used in situations where there are very few
segment instances and the information stored in the segment does not include a field
that can serve as a key.

Note that a root segment cannot be a b/ segment.
U

Indicates that the segment is unique—that is, it has a one-to-one relationship to its
parent. Note that a unique segment described with a SEGTYPE of U cannot have any
children.

KM

Indicates that this is a cross-referenced segment joined to the data source using a
static join defined in the Master File and has a one-to-many relationship to the host
segment. Joins defined in the Master File are described in Chapter 7, Defining a Join
in a Master File. The parent-child pointer is stored in the data source.

KU

Indicates that this is a cross-referenced segment joined to the data source using a
static join defined in the Master File and has a one-to-one relationship to the host
segment (that is, it is a unique segment). Joins defined in the Master File are
described in Chapter 7, Defining a Join in a Master File. The parent-child pointer is
stored in the data source.

DKM

Indicates that this is a cross-referenced segment joined to the data source using a
dynamic join defined in the Master File and has a one-to-many relationship to the
host segment. Joins defined in the Master File are described in Chapter 7, Defining a
Join in a Master File. The parent-child pointer is resolved at run-time and, therefore,
new instances can be added without rebuilding.

 Describing a Single Segment

Describing Data 6-7

DKU

Indicates that this is a cross-referenced segment joined to the data source using a
dynamic join defined in the Master File and has a one-to-one relationship to the host
segment (that is, it is a unique segment). Joins defined in the Master File are
described in Chapter 7, Defining a Join in a Master File. The parent-child pointer is
resolved at run-time and, therefore, new instances can be added without rebuilding.

KL

Indicates that this segment is described in a Master File-defined join as descending
from a KM, KU, DKM, or DKU segment in a cross-referenced data source and has a
one-to-many relationship to its parent.

KLU

Indicates that this segment is described in a Master File-defined join as descending
from a KM, KU, DKM, or DKU segment in a cross-referenced data source and has a
one-to-one relationship to its parent (that is, it is a unique segment).

Reference Usage Notes for SEGTYPE
Note the following rules when using the SEGTYPE attribute with a FOCUS data source:

• Alias. SEGTYPE does not have an alias.

• Changes. You can change a SEGTYPE of S[n] or SH[n] to S0 or b/. or increase the
number of key fields. To make any other change to SEGTYPE you need to use the
REBUILD facility. REBUILD is described in the Maintaining Databases manual.

Describing a Key Field
You use the SEGTYPE attribute to describe which fields in a segment are key fields. The
values of these fields determine how the segment instances are sequenced. The keys must
be the first fields in a segment. You can specify up to 255 keys in a segment that is sorted
from low to high (SEGTYPE = Sn), and up to 99 keys in a segment sorted from high to
low (SEGTYPE = SHn). To maximize efficiency, it is recommended that you specify
only as many keys as you need to make each record unique. You can also choose not to
have any keys (SEGTYPE = S0 and SEGTYPE = b/ (blank)).

Note: Text fields cannot be used as key fields.

Describing a FOCUS Data Source

6-8 Information Builders

Describing Sort Order
For segments that have key fields, you use the SEGTYPE attribute to describe the
segment’s sort order. You can sort a segment’s instances in two ways:

• Low to high. By specifying a SEGTYPE of Sn (where n is the number of keys), the
instances are sorted using the concatenated values of the first n fields, beginning with
the lowest value and continuing to the highest value.

• High to low. By specifying a SEGTYPE of SHn (where n is the number of keys), the
instances are sorted using the concatenated values of the first n fields, beginning with
the highest value and continuing to the lowest value.

Segments whose key is a date field often use a high-to-low sort order, since it
ensures that the segment instances with the most recent dates will be the first ones
encountered in a segment chain.

Understanding Sort Order
Suppose the following fields in a segment represent a department code and the
employee’s last name:

06345
Jones

19887
Smith

19887
Frank

23455
Walsh

21334
Brown

If you set SEGTYPE to S1, the department code becomes the key. (Note that two records
have duplicate key values in order to illustrate a point about S2 segments later in this
example; duplicate key values are not recommended for S1 and SH1 segments.) The
segment instances will be sorted as follows:

06345
Jones

19887
Smith

19887
Frank

21334
Brown

 23455
Walsh

If you change the field order to put the last name field before the department code and
leave SEGTYPE as S1, the last name becomes the key. The segment instances will be
sorted as follows:

Brown
21334

Frank
19887

Jones
06345

Smith
19887

Walsh
23455

Alternately, if you leave the department code as the first field, but set SEGTYPE to S2,
the segment will be sorted first by the department code and then by last name, as follows:

06345
Jones

19887
Frank

19887
Smith

21334
Brown

23455
Walsh

 Describing a Single Segment

Describing Data 6-9

Describing Segment Relationships
The SEGTYPE attribute describes the relationship of a segment to its parent segment:

• Physical one-to-one relationships are usually specified by setting SEGTYPE to U. If
a segment is described in a Master File defined join as descending from the
cross-referenced segment, then in the join description, SEGTYPE is set to KLU.

• Physical one-to-many relationships are specified by setting SEGTYPE to any valid
value beginning with S (such as S0, SHn, and Sn), to blank, or, if a segment is
described in a Master File defined join as descending from the cross-referenced
segment, to KL.

• One-to-one joins defined in a Master File are specified by setting SEGTYPE to KU
or DKU, as described in Chapter 7, Defining a Join in a Master File.

• One-to-many joins defined in a Master File are specified by setting SEGTYPE to
KM or DKM, as described in Chapter 7, Defining a Join in a Master File.

Storing a Segment in a Different Location: LOCATION
By default, all of the segments in a FOCUS data source are stored in one physical file.
For example, all of the EMPLOYEE data source’s segments are stored in the data source
named EMPLOYEE. If you wish, you can use the LOCATION attribute to specify that
one or more segments be stored in a physical file separate from the main data source file.
You can use a total of 64 LOCATION files per Master File (one LOCATION attribute
per segment, except for the root). This can be helpful if you want to create a data source
larger than the FOCUS limit for a single data source file, or if you want to store parts of
the data source in separate locations for security or other reasons.

There are at least two cases in which you may want to use the LOCATION attribute:

• Each physical file is individually subject to a maximum file size of two gigabytes.
You can use the LOCATION attribute to increase the size of your data source by
splitting it into several physical files, each one subject to the maximum size limit.
(You may also want to read Chapter 7, Defining a Join in a Master File, to see if it
would be more efficient to structure your data as several joined data sources.)

• You can also store your data in separate physical files to take advantage of the fact
that only the segments needed for a report must be present. Unreferenced segments
stored in separate data sources can be kept on separate storage media to save space or
implement separate security mechanisms. In some situations, the separation of the
segments into different data sources allows different disk drives to be used.

Divided data sources do require more careful file maintenance. You have to be especially
careful about procedures that are done separately to separate data sources, such as
backups. If you do backups on Tuesday and Thursday for two related data sources, and
you restore the FOCUS structure using the Tuesday backup for one half and the Thursday
backup for the other, there is no way of detecting this discrepancy.

The LOCATION attribute can be changed if the existing external file name (ddname) can
be changed.

Describing a FOCUS Data Source

6-10 Information Builders

Syntax How to Store a Segment in a Different Location
LOCATION = filename

where:
filename

Is the ddname of the file in which the segment is to be stored.

For example:
SEGNAME = HISTREC, SEGTYPE = S1, PARENT = SSNREC, LOCATION = HISTFILE, $

Example Specifying Location for a Segment
The following example illustrates the use of the LOCATION attribute:
FILENAME = PEOPLE, SUFFIX = FOC, $
SEGNAME = SSNREC, SEGTYPE = S1, $
 FIELD = SSN, ALIAS = SOCSEG, USAGE = I9, $
SEGNAME = NAMEREC, SEGTYPE = U, PARENT = SSNREC, $
 FIELD = LNAME, ALIAS = LN, USAGE = A25, $
SEGNAME = HISTREC, SEGTYPE = S1, PARENT = SSNREC,
LOCATION = HISTFILE, $
 FIELD = DATE, ALIAS = DT, USAGE = YMD, $
SEGNAME = JOBREC, SEGTYPE = S1, PARENT = HISTREC, $
 FIELD = JOBCODE, ALIAS = JC, USAGE = A3, $
SEGNAME = SKREC, SEGTYPE = S1, PARENT = SSNREC, $
 FIELD = SCODE, ALIAS = SC, USAGE = A3, $

This description groups the five segments into two physical files, as shown in the
following diagram:

JOBREC

HISTREC

SKRECNAMEREC

SSNREC
PEOPLE

HISTFILE
Note that the segment named SKREC, which contains no LOCATION attribute, is stored
in the PEOPLE data source. This occurs because if no LOCATION attribute is specified
for a segment, it is placed by default in the same file as its parent. In our example, you
could assign the SKREC segment to a different file by specifying the LOCATION
attribute in its declaration. However, it is strongly recommended that the LOCATION
attribute be specified and not allowed to default.

 Describing a Single Segment

Describing Data 6-11

Separating Large Text Fields
Text fields, by default, are stored in one physical file with non-text fields. However, as
with segments, a text field can be located in its own physical file or any combination of
text fields can share one or several physical files. You specify that you want a text field
stored in a separate file by using the LOCATION attribute in the field definition.

For example, the text for DESCRIPTION will be stored in a separate physical file named
CRSEDESC:
FIELD = DESCRIPTION, ALIAS = CDESC, USAGE = TX50, LOCATION = CRSEDESC ,$

Note: USAGE may equal TXnnF. “F” is used to format the text field for redisplay when
TED is called using ON MATCH or ON NOMATCH in MODIFY. For more
information, see the Maintaining Databases manual.

If you have more than one text field, each field can be stored in its own file, or several
text fields can be stored in one file.

In the following example, the text fields DESCRIPTION and TOPICS are stored in the
LOCATION file CRSEDESC. The text field PREREQUISITE is stored in another file,
PREREQS.
FIELD = DESCRIPTION , ALIAS = CDESC, USAGE = TX50, LOCATION = CRSEDESC,$
FIELD = PREREQUISITE, ALIAS = PREEQ, USAGE = TX50, LOCATION = PREREQS ,$
FIELD = TOPICS, ALIAS = , USAGE = TX50, LOCATION = CRSEDESC,$

As with segments, you might want to use the LOCATION attribute on a text field if it is
very long. However, unlike LOCATION segments, LOCATION files for text fields must
be present during a request, whether or not the text field is referenced.

The LOCATION attribute can be used independently for segments and for text fields.
That is, you can use the LOCATION attribute for a text field without using it for a
segment. You can also use the LOCATION attribute for both the segment and the text
field in the same Master File.

Note: Field names for text fields in FOCUS Master Files are limited to 12 characters;
however, alias names for these fields can be up to 66 characters.

Describing a FOCUS Data Source

6-12 Information Builders

Limits on the Number of LOCATION Files
There is a limit on the number of different location segments and text location files you
can specify. This limit is based on the number of entries allowed in the file directory table
(FDT) for FOCUS data sources. The FDT contains the names of the segments in the data
source, the names of indexed fields, and the names of location files for text fields. The
FDT can contain 189 entries of which up to 64 can represent segments and location files.
Each unique location file counts as one entry in the FDT.

For a given FOCUS data source, the maximum number of location files can be
determined by the following formula
Available FDT entries = 189 - (Segments + Indexes)

Location files = min (64, Available FDT entries)

where:
Location files

Is the maximum number of location segments and text location files (up to a
maximum of 64).

Segments

Is the number of segments in the Master File.
Indexes

Is the number of indexed fields.

For example, a ten-segment data source with 2 indexed fields would enable you to
specify up to 52 location segments and/or location files for text fields (189 - (10 + 2)).
Using the formula, the result would equal 177; however, the maximum number of text
location files must always be no more than 64.

Note: If you specify a text field with a LOCATION attribute, the main file will be
included in the text location file count.

Timestamping a FOCUS Segment: AUTODATE
Each segment of a FOCUS data source can have a timestamp field that records the date
and time of the last change to the segment. This field can have any name, but its USAGE
format must be AUTODATE. The field is populated each time its segment instance is
updated. The timestamp is stored as format HYYMDS and can be manipulated for
reporting purposes using any of the date-time functions.

In each segment of a FOCUS data source, you can define a field with USAGE =
AUTODATE. The AUTODATE field cannot be part of a key field for the segment.
Therefore, if the SEGTYPE is S2, the AUTODATE field cannot be the first or second
field defined in the segment.

The AUTODATE format specification is supported only for a real field in the Master
File, not in a DEFINE or COMPUTE command or a DEFINE in the Master File.
However, you can use a DEFINE or COMPUTE command to manipulate or reformat the
value stored in the AUTODATE field.

After adding an AUTODATE field to a segment, you must REBUILD the data source.
REBUILD will not timestamp the field. It will not have a value until a segment instance
is inserted or updated.

 Describing a Single Segment

Describing Data 6-13

If a user-written procedure updates the AUTODATE field, the user-specified value will
be overwritten when the segment instance is written to the data source. No message is
generated to inform the user that the value was overwritten.

The AUTODATE field can be indexed. However, it is recommended that you make sure
that the index is necessary because of the overhead needed to keep the index up to date
each time a segment instance changes.

If you create a HOLD file that contains the AUTODATE field, it will be propagated to
the HOLD file as a date-time field with the format HYYMDS.

Syntax How to Define an AUTODATE Field for a Segment
FIELDNAME = name, ALIAS = alias, {USAGE|FORMAT} = AUTODATE ,$

where:
name

Is any valid field name.
alias

Is any valid alias.

Example Defining an AUTODATE Field
The EMPDATE data source can be created by performing a REBUILD DUMP of the
EMPLOYEE data source and a REBUILD LOAD into the EMPDATE data source. The
Master File for EMPDATE is the same as the Master File for EMPLOYEE with the
FILENAME changed and the DATECHK field added:
FILENAME=EMPDATE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=DATECHK, ALIAS=DATE, USAGE=AUTODATE, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 .
 .
 .

Describing a FOCUS Data Source

6-14 Information Builders

To add the timestamp information to EMPDATE, run the following procedure:
SET TESTDATE = 20010715
TABLE FILE EMPLOYEE
PRINT EMP_ID CURR_SAL
ON TABLE HOLD
END

MODIFY FILE EMPDATE
FIXFORM FROM HOLD
MATCH EMP_ID
ON MATCH COMPUTE CURR_SAL = CURR_SAL + 10;
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT
DATA ON HOLD
END

You can then reference the AUTODATE field in a DEFINE or COMPUTE command, or
display it using a display command. The following request computes the number of days
difference between the date 7/31/2001 and the DATECHK field:
DEFINE FILE EMPLOYEE
DATE_NOW/HYYMD = DT(20010731);
DIFF_DAYS/D12.2 = HDIFF(DATE_NOW, DATECHK, 'DAY', 'D12.2');
END
TABLE FILE EMPDATE
PRINT DATECHK DIFF_DAYS
WHERE LAST_NAME EQ 'BANNING'
END

The output is:
DATECHK DIFF_DAYS
------- ---------
2001/07/15 15:10:37 16.00

Reference Usage Notes for AUTODATE
• PRINT * and PRINT.SEG.fld will print the AUTODATE field.

• To display the AUTODATE field on a CRTFORM, Winform, or in FSCAN, you
must explicitly reference the AUTODATE field name in the request. CRTFORM *
will not display the field. CRTFORM always treats the AUTODATE field as a
display only (D.) field.

• MODIFY FIXFORM and FREEFORM requests capture the system date/time per
transaction.

• SU updates the AUTODATE field per segment using the date and time on the
FOCUS Database Server.

• Maintain will process AUTODATE fields at COMMIT time.

• DBA is permitted on the AUTODATE field; however, when unrestricted fields in the
segment are updated, the system will update the AUTODATE field.

• The AUTODATE field does not support the following attributes: MISSING,
ACCEPT, and HELPMESSAGE.

 Describing an Individual Field

Describing Data 6-15

Describing an Individual Field
There are two field attributes that have special values or are unique to FOCUS data
sources: ACCEPT and INDEX (also known as FIELDTYPE). This section describes both
of these, and also documents the internal formats of each FORMAT data type and the
internal values with the MISSING attribute.

The ACCEPT Attribute
ACCEPT is an optional attribute that you can use to validate data that is entered into a
field using a MODIFY procedure. Its use with all types of data sources is described in
Chapter 4, Describing an Individual Field. However, ACCEPT has a special option,
FIND, that you can use only with FOCUS data sources. FIND enables you to verify
incoming data against values stored in another field.

Syntax How to Specify Data Validation
ACCEPT = list
ACCEPT = range
ACCEPT = FIND (sourcefield [AS targetfield] IN file)

where:
list

Is a list of acceptable values. This is described in Chapter 4, Describing an
Individual Field.

range

Gives the range of acceptable values. This is described in Chapter 4, Describing an
Individual Field.

FIND

Verifies the incoming data against the values in an index in a FOCUS data source.
sourcefield

Is the name of the field to which the ACCEPT attribute is being applied or any other
field in the same segment or path to the segment. This must be the actual field name,
not the alias or a truncation of the name.

AS targetfield

Is the name of the field that contains the acceptable data values. This field must be
indexed.

IN file

Is the name of the Master File describing the data source that contains the indexed
field of acceptable values.

Describing a FOCUS Data Source

6-16 Information Builders

The INDEX Attribute
You can index the values of a field by including the INDEX attribute, or its alias of
FIELDTYPE, in the field’s declaration. An index is an internally stored and maintained
table of data values and locations that speeds retrieval. You must create an index if you
want to:

• Join two segments. The cross-referenced field in a joined FOCUS data source must
be indexed, as described in Describing Single Segments on page XX (for joins
defined in a Master File), and the Creating Reports manual (for joins defined using
the JOIN command).

• Create an alternate view and make it faster, as described in Chapter 3, Describing a
Group of Fields.

• Use a LOOKUP function in MODIFY.

• Use a FIND function in MODIFY.

• Speed segment selection and retrieval based on the values of a given field, as
described for reporting in the Creating Reports manual.

Syntax How to Specify Field Indexing
The syntax of the INDEX attribute in the Master File is:
INDEX = I or FIELDTYPE = I

Text fields cannot be indexed. The maximum field name length for indexed fields is 12
characters.

For example:
FIELDNAME = JOBCODE, ALIAS = CJC, FORMAT = A3, INDEX = I, $

 Describing an Individual Field

Describing Data 6-17

Joins and the INDEX Attribute
In order for a segment to be cross-referenced with a static cross-reference, a dynamic
cross-reference, or a JOIN, at least one field in the cross-referenced segment must be
indexed. This field, called the cross-referenced field, shares values with a field in the host
data source. Only the cross-referenced segment requires an indexed field, shown as
follows:

EMPLOYEE File

JOBFILEEmployee ID

Last Name

First Name

Hire Date

Department

Job Code

Job Code

Job Description

FIELDTYPE = I

Other data sources locate and use segments through these indexes. Any number of fields
may be indexed on a segment, although it is advisable to limit the number of fields you
index in a data source.

The value for the field named JOBCODE in the EMPLOYEE data source is matched to
the field named JOBCODE in the JOBFILE data source by using the index for the
JOBCODE field in the JOBFILE data source, as follows:

0506070098
Jones
Jack
7/10/59
Accounting
A60

EMPLOYEE File

A60

JOB File

A60
Accountant

Indexes are stored and maintained as part of the FOCUS data source. The presence of the
index is crucial to the operation of the cross-referencing facilities. Any number of
external sources may locate and thereby share a segment because of it. New data sources
which have data items in common with indexed fields in existing data sources can be
added at any time.

Describing a FOCUS Data Source

6-18 Information Builders

Reference Usage Notes for INDEX
Note the following rules when using the INDEX attribute:

• Alias. INDEX has an alias of FIELDTYPE.

• Changes. If the INDEX attribute is removed from a field, or assigned a value of
blank, which is equivalent, the index will no longer be maintained. If you no longer
need the index, after you remove the INDEX attribute use the REORG option of the
REBUILD facility to recover space occupied by the index. REBUILD is described in
the Maintaining Databases manual.

If you wish to turn off indexing temporarily—for example, to load a large amount of
data into the data source quickly—you can remove the INDEX attribute before
loading the data, restore the index attribute, and then use the REBUILD command
with the INDEX option to create the index. This is known as post-indexing the data
source.

You can index the field after the data source has already been created and populated
with records by using the REBUILD facility with the INDEX option. A total of
seven indexes may be added to the data source after the file is created using
REBUILD INDEX. After seven indexes have been added to a data source in this
way, you must use the REORG option of the REBUILD facility before adding an
eighth. The following diagnostic message is issued if you attempt this:
(FOC720) THE NUMBER OF INDEXES ADDED AFTER FILE CREATION EXCEEDS 7

• Maximum number. The combined total of indexes, text fields, and segments cannot
exceed 189 (of which a maximum of 64 can be segments and text location files).

FORMAT and MISSING: Internal Storage Requirements
Some application developers find it useful to know how different data types and values
are represented and stored internally.

• Integer fields are stored as full-word (four byte) binary integers.

• Floating-point double-precision fields are stored as double-precision (eight byte)
floating-point numbers.

• Floating-point single-precision fields are stored as single-precision (four byte)
floating-point numbers.

• Packed-decimal fields are stored as 8 or 16 bytes and represent decimal numbers
with up to 31 digits.

• Date fields are stored as full-word (four byte) binary integers representing the
difference between the specified date and the date format’s base date of December
31, 1900 (or JAN 1901, depending on the date format).

• Alphanumeric fields are stored as characters in the specified number of bytes.

• Missing values are represented internally by a dot (.) for alphanumeric fields, and as
the value -9998998 for numeric fields.

 Describing Two-Gigabyte and Partitioned FOCUS Data Sources

Describing Data 6-19

Describing Two-Gigabyte and Partitioned FOCUS
Data Sources

The FOCUS data source size can be a maximum of two gigabytes per physical data file.
Through partitioning, one logical FOCUS data source can now span up to 500 gigabytes.

Note that this discussion applies to any FOCUS data source that has extended beyond one
gigabyte but has not reached the two-gigabyte limit.

In order to enable support for two-gigabyte data sources, you need to set the value of the
FOC2GIGDB parameter to ON in the FOCPARM profile.

Syntax How to Enable Two-Gigabyte Support
Issue the following command in the FOCPARM profile or, if the data source is running
on a FOCUS Database Server, in HLIPROF:
SET FOC2GIGDB = {ON|OFF}

where:
ON

Enables support for FOCUS data sources larger than one gigabyte. Note that an
attempt to use FOCUS data sources larger than one gigabyte in a release prior to
FOCUS Version 7.1 can cause data corruption.

OFF

Disables support for FOCUS data sources larger than one gigabyte. OFF is the
default value.

Partitioning a FOCUS Data Source
FOCUS data sources can consist of up to 250 physical files of up to two gigabytes each,
for a maximum of 500 gigabytes of real storage per logical data source. The horizontal
partition is a slice of the entire data source structure. Note, however, that the number of
physical files associated with one FOCUS data source is the sum of all of its partitions
and LOCATION files. This sum must be less than or equal to 250. FOCUS data sources
can grow in size over time, and can be repartitioned based on the requirements of the
application.

Note: You do not have to partition your data source. If you choose not to, your
application will automatically support FOCUS data sources larger than one gigabyte
when you set the FOC2GIGDB parameter to ON.

Describing a FOCUS Data Source

6-20 Information Builders

Intelligent Partitioning
The FOCUS data source supports intelligent partitioning, which means that each
horizontal partition contains the complete data source structure for specific data values or
ranges of values. Intelligent partitioning lets you not only separate the data into up to 250
physical two-gigabyte files, it allows you to create an Access File in which you describe,
using WHERE criteria, the actual data values in each partition. When processing a report
request, the selection criteria in the request are compared to the WHERE criteria in the
Access File to determine which partitions are required for retrieval.

To select applications that can benefit most from partitioning, look for applications that
employ USE commands to concatenate data sources or for data that lends itself to
separation based on data values or ranges of values, such as data stored by month or by
department. Intelligent partitioning functions like an intelligent USE. It looks at the
Access File when processing a report request to determine which partitions to read,
whereas the USE command reads all of the files on the list. This intelligence decreases
I/O and delivers significant performance benefits.

To take advantage of the partitioning feature, you must:

• Edit the Master File and add the ACCESSFILE attribute.

• Create the Access File using a text editor.

Concatenation of multiple partitions is supported for reporting only. You must load or
rebuild each physical partition separately. You can either create a separate Master File for
each partition to reference in the load procedure, or you can use the single Master File
created for reporting against the partitioned data source, if you:

• Issue an explicit allocation command to link the Master File to each partition in turn.

• Run the load procedure for each partition in turn.

Note: Report requests will automatically read all required partitions without user
intervention.

 Describing Two-Gigabyte and Partitioned FOCUS Data Sources

Describing Data 6-21

Specifying an Access File in a FOCUS Master File
To take advantage of the partitioning feature, you must edit the Master File and add the
ACCESSFILE attribute to identify the name of the Access File.

Syntax How to Specify an Access File for a Partitioned FOCUS Data
Source
FILENAME=fname, SUFFIX=FOC, ACCESS[FILE]=accessfile,
.
.
.

where:
fname

Is the file name of the partitioned data source.
accessfile

Is the name of the Access File. Note that this can be any valid name.

Example Master File for the VIDEOTR2 Partitioned Data Source
FILENAME=VIDEOTR2, SUFFIX=FOC,
ACCESS=VIDEOACX, $
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $
DEFINE DATE/I4 = HPART(TRANSDATE, 'YEAR', 'I4');

Describing a FOCUS Data Source

6-22 Information Builders

The FOCUS Access File
The Access File provides comprehensive metadata management for all FOCUS data
sources. It shields end users from the complex file storage and configuration details used
for efficient and transparent access to partitioned and distributed data sources.

The Access File describes how to locate, concatenate, join, and select the appropriate
physical data files for retrieval requests against one or more FOCUS data sources. Access
Files are optional except for retrieval requests using intelligent partitioning.

Every request supplies the name of a Master File. The Master File is read and the
declarations in it are used to access the data source. If the Master File includes an
ACCESSFILE attribute, FOCUS reads the named Access File and uses it to locate the
correct data sources. Each Master File can point to its own separate Access File, or
several Master Files can point to the same Access File. This flexibility makes it possible
to create one Access File that manages data access for an entire application. If the Master
File does not contain an ACCESSFILE attribute, FOCUS attempts to satisfy the request
with the Master File alone.
You can use an Access File to take advantage of the following data source features:

• Horizontal and vertical partitioning. A data source can consist of several separate
files, or partitions, each of which contains the data source records for a specific time
period, region, or other element. It can also have location files for individual
segments (vertical partitions). The Access File describes how to concatenate the
separate data sources.

• Joins. If joined data sources are partitioned, the Access File describes how to
concatenate the separate data sources in the join.

An Access File is required to take advantage of intelligent partitioning. Intelligent
partitioning places specific data values in each physical partition and uses the Access File
to describe the values in each partition. With this information, FOCUS optimizes data
access by retrieving only those partitions whose values are consistent with the selection
criteria in the request.

Note: On OS/390, the Access File must be a member of a data set concatenated in the
allocation for ddname ACCESS. On VM/ESA, the Access File must have the file type
ACCESS. FOCSQL cannot be used as the file type. The Access File has the same DCB
attributes as the Master File (LRECL=80, RECFM=FB, BLKSIZE=multiple of LRECL).

FOCUS Access File Attributes
The Access File can include the following attributes:

Attribute Synonyms Description
MASTERNAME MASTER A Master File entry.
DATANAME DATA The name of the physical file.
WHERE The WHERE criteria.
LOCATION A segment location.

Each Access File declaration begins with a MASTERNAME attribute that identifies the
Master File to which it applies. By including multiple MASTERNAME declarations, you
can use one Access File for multiple Master Files, and possibly for an entire application.

 Describing Two-Gigabyte and Partitioned FOCUS Data Sources

Describing Data 6-23

Syntax How to Create an Access File
MASTERNAME filename1
 DATANAME dataname1 [WHERE test1;]
 [LOCATION locationnamea DATANAME datanamea]
 .
 .
 .
 DATANAME dataname2 [WHERE test2;]
 [LOCATION locationnameb DATANAME datanameb]
 .
 .
 .
MASTERNAME filename2
 .
 .
 .

where:
MASTERNAME

Is the attribute that identifies the Master File name. MASTER is a synonym for
MASTERNAME.

filename1, filename2

Are names of Master Files. You can describe unrelated Master Files in one Access
File.

DATANAME

Is the attribute that identifies a physical file. DATA is a synonym for DATANAME.
dataname1, dataname2

Are the fully qualified physical file names of physical partition files, in the syntax
native to your operating environment.

test

Is a valid WHERE test. The following types of expressions are supported. You can
also combine any number of these expressions with the AND operator:
fieldname relational_operator value1 [OR value2 OR value3 ...]
fieldname FROM value1 TO value2 [OR value3 TO value4 ...]
fieldname1 FROM value1 TO value2 [OR fieldname2 FROM value3 TO value4 ...]

where:
fieldname, fieldname1, fieldname2

Are field names in the Master File.
relational_operator

Can be one of the following: EQ, NE, GT, GE, LT, LE.
value1, value2, value3, value4

Are valid values for their corresponding fields.
Note: If the test conditions do not accurately reflect the contents of the data sources,
you may get incorrect results from requests.

LOCATION

Is the attribute that identifies a separately stored segment.
locationnamea, locationnameb

Are the values of the LOCATION attributes from the Master File. Segment locations
must map one-to-one to horizontal partitions.

datanamea, datanameb

Are the fully qualified physical file names of the LOCATION files, in the syntax
native to your operating environment.

Describing a FOCUS Data Source

6-24 Information Builders

Example Describing an Intelligent Partition in a FOCUS Access File
The following Access File illustrates how to define intelligent partitions for the
VIDEOTR2 data source, in which data is grouped by date.

For MVS:
MASTERNAME VIDEOTR2
 DATANAME USER1.VIDPART1.FOCUS
 WHERE DATE EQ 1991;

 DATANAME USER1.VIDPART2.FOCUS
 WHERE DATE FROM 1996 TO 1998;

 DATANAME USER1.VIDPART3.FOCUS
 WHERE DATE FROM 1999 TO 2000;

For CMS:
MASTERNAME VIDEOTR2
 DATANAME 'VIDPART1 FOCUS A'
 WHERE DATE EQ 1991;

 DATANAME 'VIDPART2 FOCUS A'
 WHERE DATE FROM 1996 TO 1998;

 DATANAME 'VIDPART3 FOCUS A'
 WHERE DATE FROM 1999 TO 2000;

 Describing Two-Gigabyte and Partitioned FOCUS Data Sources

Describing Data 6-25

Example Describing an Intelligent Partition With a LOCATION File
Consider the following version of a SALES Master File. The CUSTDATA segment is
stored in a separate LOCATION file named MORECUST:
FILENAME=SALES, ACCESSFILE=XYZ,$
 SEGNAME=SALEDATA
 .
 .
 .
 SEGNAME=CUSTDATA, LOCATION=MORECUST,$

The corresponding Access File (XYZ) describes one partition for 1994 data, and another
partition for the 1993 data. Each partition has its corresponding MORECUST
LOCATION file:

For MVS:
MASTERNAME SALES
 DATANAME USER1.SALES94.FOCUS
 WHERE SDATE FROM '19940101' TO '19941231';
 LOCATION MORECUST
 DATANAME USER1.MORE1994.FOCUS

 DATANAME USER1.SALES93.FOCUS
 WHERE SDATE FROM '19930101' TO '19931231';
 LOCATION MORECUST
 DATANAME USER1.MORE1993.FOCUS

For CMS:
MASTERNAME SALES
 DATANAME 'SALES94 FOCUS A'
 WHERE SDATE FROM '19940101' TO '19941231';
 LOCATION MORECUST
 DATANAME 'MORE1994 FOCUS A'

 DATANAME 'SALES93 FOCUS A'
 WHERE SDATE FROM '19930101' TO '19931231';
 LOCATION MORECUST
 DATANAME 'MORE1993 FOCUS A'

Describing a FOCUS Data Source

6-26 Information Builders

Example Using a Partitioned Data Source
The following illustrates how to use a partitioned data source:
TABLE FILE VIDEOTR2
PRINT LASTNAME FIRSTNAME DATE
WHERE DATE FROM 1996 TO 1997
END

The output is:
LASTNAME FIRSTNAME DATE
-------- --------- ----
HANDLER EVAN 1996
JOSEPH JAMES 1997
HARRIS JESSICA 1997
HARRIS JESSICA 1996
MCMAHON JOHN 1996
WU MARTHA 1997
CHANG ROBERT 1996

There is nothing in the request or output that signifies that a partitioned data source was
used. However, only the second partition is retrieved, reducing I/O and enhancing
performance.

Describing Joined Data Sources
The Master File can describe cross-references to other Master Files. In simple cases, the
Master File alone may be sufficient for describing the cross-reference.
If one of the joined data sources is horizontally partitioned, only that data source needs an
Access File to implement the join.

However, when both of the joined data sources are horizontally partitioned, they can both
be described in one Access File or they can each be described in a separate Access File in
order to implement the join. Only the host data source is allowed to have WHERE criteria
in the Access File. If both the host and cross-referenced data sources have WHERE
criteria, a join may produce unexpected results.

 Describing Two-Gigabyte and Partitioned FOCUS Data Sources

Describing Data 6-27

Example Joining Two Partitioned Data Sources
Recall that the cross-referenced field in a join must be indexed. If the host data source is
partitioned, the cross-referenced data source must either contain the same number of
partitions as the host data source or only one partition.

For MVS:
MASTERNAME SALES
 DATANAME USER1.NESALES.FOCUS
 DATANAME USER1.MIDSALES.FOCUS
 DATANAME USER1.SOSALES.FOCUS
 DATANAME USER1.WESALES.FOCUS

MASTERNAME CUSTOMER
 DATANAME USER1.NECUST.FOCUS
 DATANAME USER1.MIDCUST.FOCUS
 DATANAME USER1.SOCUST.FOCUS
 DATANAME USER1.WECUST.FOCUS

For CMS:
MASTERNAME SALES
 DATANAME 'NESALES FOCUS A'
 DATANAME 'MIDSALES FOCUS A'
 DATANAME 'SOSALES FOCUS A'
 DATANAME 'WESALES FOCUS A'

MASTERNAME CUSTOMER
 DATANAME 'NECUST FOCUS A'
 DATANAME 'MIDCUST FOCUS A'
 DATANAME 'SOCUST FOCUS A'
 DATANAME 'WECUST FOCUS A'

Describing a FOCUS Data Source

6-28 Information Builders

Reference Usage Notes for a Two-Gigabyte FOCUS Data Source
• Concatenation of multiple partitions in one request is only valid for reporting. To

MODIFY or REBUILD a partitioned data source, you must explicitly allocate and
MODIFY, Maintain, or REBUILD one partition at a time.

• To sort a FOCUS data source that is larger than one gigabyte, on MVS you must
explicitly allocate ddname FOCSORT to a temporary file with enough space to
contain the data; on VM, you must have enough TEMP space available.

• To REBUILD a FOCUS data source that is larger than one gigabyte, on MVS you
must explicitly allocate ddname REBUILD to a temporary file with enough space to
contain the data; on VM you must have enough TEMP space available. It is strongly
recommended that you REBUILD/REORG in sections, to a new file, to avoid the
need to allocate large amounts of space to REBUILD. In the dump phase, use
selection criteria to dump a section of the data source. In the load phase, make sure
to add each new section after the first. To add to a data source in MVS, you must
issue the LOAD command with the following syntax:
LOAD NOCREATE

• If you create a FOCUS data source that is larger than one gigabyte using HOLD
FORMAT FOCUS, on MVS you must explicitly allocate ddnames FOC$HOLD and
FOCSORT to temporary files large enough to hold the data; on VM you must have
enough TEMP space available.

• The order of precedence for allocating data sources is as follows:

• A USE command in effect has the highest precedence. It overrides an Access
File or an explicit allocation for a data source.

• An Access File overrides an explicit allocation for a data source.

• A DATASET attribute cannot be used in the same Master File as an ACCESSFILE
attribute.

Describing Data 7-1

CHAPTER 7

Defining a Join in a Master File

Topics:

• Join Types

• Static Joins Defined in the Master
File: SEGTYPE = KU and KM

• Using Cross-Referenced Descendant
Segments: SEGTYPE = KL and KLU

• Dynamic Joins Defined in the Master
File: SEGTYPE = DKU and DKM

• Comparing Static and Dynamic
Master File Defined Joins and the
JOIN Command

• Joining to One Cross-Referenced
Segment From Several Host
Segments

You can describe a new relationship between any two segments
that have at least one field in common by joining them. The
underlying data structures remain physically separate, but
FOCUS treats them as if they were part of a single structure
from which you can report. This chapter describes how to
define a join in a Master File for FOCUS, fixed-format
sequential, and VSAM data sources. For information about
whether you can define a join in a Master File to be used with
other types of data sources see the appropriate data adapter
manual.

Defining a Join in a Master File

7-2 Information Builders

Join Types
You can join two data sources in the following ways:

• Dynamically using the JOIN command. The join lasts for the duration of the
FOCUS session (or until you clear it during the session) and creates a temporary
view of the data that includes all of the segments in both data sources. You can also
use the JOIN command to join two data sources of any type, including a FOCUS
data source to a non-FOCUS data source. The JOIN command is described in detail
in the Creating Reports manual.

• Statically within a Master File. This method is helpful if you want to access the
joined structure frequently: the link (pointer) information needed to implement the
join is permanently stored and does not need to be retrieved for each record during
each request, saving you time. Like a dynamic Master File defined join, it is always
available and retrieves only the segments that you specify. See Static Joins Defined
in the Master File: SEGTYPE = KU and KM on page 7-3. This is supported for
FOCUS data sources only.

Development Tip:

Some users find it helpful to prototype a database design first using dynamic joins—
implemented by issuing the JOIN command or within the Master File—and, once the
design is stable, to change the frequently-used joins to static joins defined in the Master
File, accelerating data source access. Static joins should be used when the target or
cross-referenced data source contents do not change. You can change dynamic joins to
static joins by using the REBUILD facility, as described in the Maintaining Databases
manual.

Note: Master File defined joins are sometimes referred to as cross-references.

 Static Joins Defined in the Master File: SEGTYPE = KU and KM

Describing Data 7-3

Static Joins Defined in the Master File: SEGTYPE = KU
and KM

Static joins allow you to relate segments in different FOCUS data sources permanently.
You specify static joins in the Master File of the host data source.

There are two types of static joins: one-to-one (SEGTYPE KU) and one-to-many
(SEGTYPE KM).

• You specify a one-to-one join, also known as a unique join, when you want to
retrieve at most one record instance from the cross-referenced data source for each
record instance in the host data source.

• You specify a one-to-many join when you want to retrieve any number of record
instances from the cross-referenced data source.

Describing a Unique Join: SEGTYPE = KU
In the EMPLOYEE data source, there is a field named JOBCODE in the PAYINFO
segment. The JOBCODE field contains a code that specifies the employee’s job.

The complete description of the job and other related information is stored in a separate
data source named JOBFILE. You can retrieve the job description from JOBFILE by
locating the record whose JOBCODE corresponds to the JOBCODE value in the
EMPLOYEE data source, as shown in the following diagram:

117593129
Jones
Diane
82/05/01
.
.
.

82/06/01
.04
$18,480.00
B03

B03
PROGRAMMER

JOGSEG

JOBFILE data sourceEMPLOYEE data source

PAYINFO

Defining a Join in a Master File

7-4 Information Builders

Using a join in this situation saves you the trouble of entering and revising the job
description for every record in the EMPLOYEE data source. Instead, you can maintain a
single list of valid job descriptions in the JOBFILE data source. Changes need be made
only once, in JOBFILE, and are reflected in all of the corresponding joined EMPLOYEE
data source records.

Implementing the join as a static join is most efficient because the relationship between
job codes and job descriptions is not likely to change.

Although the Employee Information and Job Description segments are stored in separate
data sources, for reporting purposes FOCUS treats the EMPLOYEE data source as
though it also contains the Job Description segment from the JOBFILE data source. The
actual structure of the JOBFILE data source is not affected. FOCUS will view the
EMPLOYEE data source as follows:

Employee ID
Last Name
First Name
Hire Date
Department
Job Code

Job Code
Job Description

EMPLOYEE File

Employee Information Segment

Job Description Segment
(Retrieved from JOBFILE)

 Static Joins Defined in the Master File: SEGTYPE = KU and KM

Describing Data 7-5

Syntax How to Specify a Static Unique Join
SEGNAME = segname, SEGTYPE = KU, PARENT = parent,
CRFILE = db_name, CRKEY = field, [CRSEGNAME = crsegname,] $

where:

segname

Is the name by which the cross-referenced segment will be known in the host data
source. You can assign any valid segment name, including the segment’s original
name in the cross-referenced data source.

parent

Is the name of the host segment.

db_name

Is the name of the cross-referenced data source. You can change the name without
rebuilding the data source.

field

Is the common name (field name and/or alias) of the host field and the
cross-referenced field. The field name or alias of the host field must be identical to
the field name of the cross-referenced field. You can change the field name without
rebuilding the data source as long as the SEGTYPE remains the same.

Both fields must have the same format type and length.

The cross-referenced field must be indexed (FIELDTYPE=I or INDEX=I).
crsegname

Is the name of the cross-referenced segment. If you do not specify this it defaults to
the value assigned to SEGNAME. After data has been entered into the
cross-referenced data source, you cannot change the crsegname without rebuilding
the data source.

The SEGTYPE value KU stands for keyed unique.

Defining a Join in a Master File

7-6 Information Builders

Example Creating a Static Unique Join
SEGNAME = JOBSEG, SEGTYPE = KU, PARENT = PAYINFO,
 CRFILE = JOBFILE, CRKEY = JOBCODE, $

The relevant sections of the EMPLOYEE Master File follow (for simplicity, fields and
segments not essential to the example are not shown):

FILENAME = EMPLOYEE, SUFFIX = FOC, $

SEGNAME = EMPINFO, SEGTYPE = S1, $
 .
 .
 .
SEGNAME = PAYINFO, SEGTYPE = SH1, PARENT = EMPINFO, $
 FIELDNAME = JOBCODE, ALIAS = JBC, FORMAT = A3, $
 .
 .
 .
SEGNAME = JOBSEG, SEGTYPE = KU, PARENT = PAYINFO, CRFILE = JOBFILE,
 CRKEY = JOBCODE, $

Note that you only have to give the name of the cross-referenced segment; the fields in
that segment are already known from the cross-referenced data source’s Master File
(JOBFILE in this example). Note that the CRSEGNAME attribute is omitted, since in
this example it is identical to the name assigned to the SEGNAME attribute.

The Master File of the cross-referenced data source, as well as the data source itself, must
be accessible whenever the host data source is used. There does not need to be any data
in the cross-referenced data source.

Using a Unique Join for Decoding
Decoding is the process of matching a code (such as the job code in our example) to the
information it represents (such as the job description). Because every code has only one
set of information associated with it, the join between the code and the information
should be one-to-one, that is, unique. You can decode using a join, as in our example, or
using the DECODE function with the DEFINE FILE command, as described in the
Creating Reports manual. The join method is recommended when there are a large
number of codes.

 Static Joins Defined in the Master File: SEGTYPE = KU and KM

Describing Data 7-7

Describing a Non-Unique Join: SEGTYPE = KM
You use a one-to-many join (that is, a non-unique join) when you have several instances
of data in the cross-referenced segment associated with a single instance in the host
segment. Using our EMPLOYEE example, suppose that you kept an educational data
source named EDUCFILE to track the course work employees were doing. One segment
in that data source, ATTNDSEG, contains the dates on which each employee attended a
given class. The segment is keyed by attendance date. The EMP_ID field, which
identifies the attendees, contains the same ID numbers as the EMP_ID field in the
EMPINFO segment of the EMPLOYEE data source.

If you want to see an employee’s educational record, you can join the EMP_ID field in
the EMPINFO segment to the EMP_ID field in the ATTNDSEG segment. You should
make this a one-to-many join, since you want to retrieve all instances of class attendance
associated with a given employee ID:

117593129
JONES
DIANE
82/05/01
.
.
.

EDUCFILE data sourceEMPLOYEE data source

82/10/28

117593129 82/07/26

117593129

Syntax How to Specify a Static Multiple Join
The syntax for describing one-to-many joins is similar to that for one-to-one joins
described in How to Specify a Static Unique Join, on page 7-5, except that you supply a
different value, KM (which stands for keyed multiple), for the SEGTYPE attribute, as
follows:

SEGTYPE = KM

Defining a Join in a Master File

7-8 Information Builders

Example Specifying a Static Multiple Join
SEGNAME = ATTNDSEG, SEGTYPE = KM, PARENT = EMPINFO,
 CRFILE = EDUCFILE, CRKEY = EMP_ID, $

The relevant sections of the EMPLOYEE Master File follow (nonessential fields and
segments are not shown):

FILENAME = EMPLOYEE, SUFFIX = FOC, $

SEGNAME = EMPINFO, SEGTYPE = S1, $
 FIELDNAME = EMP_ID, ALIAS = EID, FORMAT = A9, $
 .
 .
 .
SEGNAME = PAYINFO, SEGTYPE = SH1, PARENT = EMPINFO, $
 FIELDNAME = JOBCODE, ALIAS = JBC, FORMAT = A3, $
 .
 .
 .
SEGNAME = JOBSEG, SEGTYPE = KU, PARENT = PAYINFO, CRFILE = JOBFILE,
 CRKEY = JOBCODE, $
 .
 .
 .
SEGNAME = ATTNDSEG, SEGTYPE = KM, PARENT = EMPINFO, CRFILE = EDUCFILE,
 CRKEY = EMP_ID, $

 Static Joins Defined in the Master File: SEGTYPE = KU and KM

Describing Data 7-9

Within a report request, FOCUS treats both cross-referenced data sources, JOBFILE and
EDUCFILE, as though they are part of the EMPLOYEE data source. The data structure
resembles the following:

EMPLOYEE data source

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
DEPARTMENT
.
.
.

DAT_INC
PCT_INC
SALARY
JOBCODE

JOBCODE
JOB_DESC

DATE_ATTEND
EMP_ID

SH1

KU

KM

S1

Defining a Join in a Master File

7-10 Information Builders

Using Cross-Referenced Descendant Segments:
SEGTYPE = KL and KLU

When you join two data sources, you can access any or all of the segments in the
cross-referenced data source, not just the cross-referenced segment itself. These other
segments are sometimes called linked segments. From the perspective of the host data
source, all of the linked segments are descendants of the cross-referenced segment; it is
as though an alternate view had been taken on the cross-referenced data source to make
the cross-referenced segment the root. To access a linked segment, you only need to
declare it in the Master File of the host data source.

Syntax How to Identify Cross-Referenced Descendant Segments
SEGNAME = segname, SEGTYPE = {KL|KLU}, PARENT = parentname,
 CRFILE = db_name, [CRSEGNAME = crsegname,] $

where:

segname

Is the name assigned to the cross-referenced segment in the host data source.

KL

Indicates that this segment is a descendant segment in a cross-referenced data source
(as viewed from the perspective of the host data source), and has a one-to-many
relationship to its parent. KL stands for keyed-through linkage.

KLU

Indicates that this segment is a descendant segment in a cross-referenced data source
(as viewed from the perspective of the host data source), and has a one-to-one
relationship to its parent. KLU stands for keyed-through linkage, unique.

parentname

Is the name of the segment’s parent in the cross-referenced data source, as viewed
from the perspective of the host data source.

db_name

Is the name of the cross-referenced data source. You can change the name without
rebuilding the data source.

crsegname

Is the name of the cross-referenced segment. If you do not specify this it defaults to
the value assigned to SEGNAME.

 Using Cross-Referenced Descendant Segments: SEGTYPE = KL and KLU

Describing Data 7-11

Example Identifying Cross-Referenced Descendant Segments
SEGNAME = SECSEG, SEGTYPE = KLU, PARENT = JOBSEG, CRFILE = JOBFILE, $
SEGNAME = SKILLSEG, SEGTYPE = KL, PARENT = JOBSEG, CRFILE = JOBFILE, $

Note that you do not use the CRKEY attribute in a declaration for a linked segment, since
the common join field (which is identified by CRKEY) only needs to be specified for the
cross-referenced segment.

Example Using Cross-Referenced Descendant Segments
Consider our EMPLOYEE example. JOBFILE is a multi-segment data source:

JOBFILE data source
S1

JOBCODE
JOB_DESC

SEC_CLEAR SKILLS
SKILL_DESC

S1SECSEGU

JOBSEG

SKILLSEG

In your EMPLOYEE data source application, you may need the security information
stored in the SECSEG segment and the job skill information stored in the SKILLSEG
segment. Once you have created a join, you can access any or all of the other segments in
the cross-referenced data source using the SEGTYPE value KL for a one-to-many
relationship (as seen from the host data source), and KLU for a one-to-one relationship
(as seen from the host data source). KL and KLU are used to access descendant segments
in a cross-referenced data source for both static (KM) and dynamic (DKM) joins.

Defining a Join in a Master File

7-12 Information Builders

When FOCUS retrieves the JOBSEG segment from JOBFILE, it also retrieves all of
JOBSEG’s children that were declared with KL or KLU SEGTYPEs in the EMPLOYEE
Master File:

EMPLOYEE data source

S1

JOBCODE
JOB_DESC

SEC_CLEAR SKILLS
SKILL_DESC

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
DEPARTMENT
.
.
.

DAT_INC
PCT_INC
SALARY
JOBCODE

KLKLU

KU JOBSEG

SH1 PAYINFO KM

DATE_ATTEND
EMP_ID

EMPINFO

SKILLSEG

ATTNDSEG

SECSEG

 Using Cross-Referenced Descendant Segments: SEGTYPE = KL and KLU

Describing Data 7-13

Example Using Cross-Referenced Ancestral Segments
Remember that you can retrieve all of the segments in a cross-referenced data source,
including both descendants and ancestors of the cross-referenced segment. Ancestor
segments should be declared in the host Master File with a SEGTYPE of KLU, as a
segment can have only one parent and so, from the perspective of the host data source,
this is a one-to-one relationship.

Consider the EDUCFILE data source used in our example. The COURSEG segment is
the root and describes each course; ATTNDSEG is a child and includes employee
attendance information:

DATE_ATTEND
EMP_ID

COURSE_CODE
COURSE_NAME

EDUCFILE data source

S1 COURSEG

SH2

When you join EMPINFO in EMPLOYEE to ATTNDSEG in EDUCFILE, you can
access course descriptions in COURSEG by declaring it as a linked segment. From this
perspective, COURSEG is a child of ATTNDSEG:

EMPLOYEE data source

S1

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
DEPARTMENT
.
.
.

KM

DATE_ATTEND
EMP_ID

EMPINFO

COURSE_CODE
COURSE_NAME

KLU

ATTNDSEG

COURSEG

Defining a Join in a Master File

7-14 Information Builders

The sections of the EMPLOYEE Master File used in our examples follow (nonessential
fields and segments are not shown):

FILENAME = EMPLOYEE, SUFFIX = FOC, $

SEGNAME = EMPINFO, SEGTYPE = S1, $
 FIELDNAME = EMP_ID, ALIAS = EID, FORMAT = A9, $
 .
 .
 .
SEGNAME = PAYINFO, SEGTYPE = SH1, PARENT = EMPINFO, $
 FIELDNAME = JOBCODE, ALIAS = JBC, FORMAT = A3, $
 .
 .
 .
SEGNAME = JOBSEG, SEGTYPE = KU, PARENT = PAYINFO, CRFILE = JOBFILE,
 CRKEY = JOBCODE, $

SEGNAME = SECSEG, SEGTYPE = KLU, PARENT = JOBSEG, CRFILE = JOBFILE, $

SEGNAME = SKILLSEG, SEGTYPE = KL, PARENT = JOBSEG, CRFILE = JOBFILE, $

SEGNAME = ATTNDSEG, SEGTYPE = KM, PARENT = EMPINFO, CRFILE = EDUCFILE,
 CRKEY = EMP_ID, $

SEGNAME = COURSEG, SEGTYPE = KLU, PARENT = ATTNDSEG, CRFILE = EDUCFILE, $

Hierarchies of Linked Segments
A KL segment may lead to other KL segments. Graphically, this can be illustrated as:

D

C EG

A B

F

KLU KL KL

KL KL

KU

The letters on the arrows are the SEGTYPEs.

Note that segment G may either be a unique descendant of B or B’s parent.

 Dynamic Joins Defined in the Master File: SEGTYPE = DKU and DKM

Describing Data 7-15

Dynamic Joins Defined in the Master File: SEGTYPE =
DKU and DKM

You can define a dynamic join in a Master File using the SEGTYPE attribute. There are
two types of dynamic Master File defined joins: one-to-one (SEGTYPE DKU) and
one-to-many (SEGTYPE DKM).

• As with a static join, you specify a one-to-one join, also known as a unique join,
when you want to retrieve at most one record instance from the cross-referenced data
source for each record instance in the host data source.

• You specify a one-to-many join when you want to retrieve any number of record
instances from the cross-referenced data source.

The difference between static and dynamic joins has to do with storage, speed, and
flexibility:

• The links (pointers) for a static join are retrieved once and then permanently stored
in the host data source (and automatically updated as needed).

• The links for a dynamic join are not saved and need to be retrieved for each record
in each report request.

This makes static joins much faster than dynamic ones, but harder to change: you can
only redefine or remove a static join using the REBUILD facility, as described in the
Maintaining Databases manual. You can redefine or remove a dynamic join at any time
by editing the Master File.

Syntax How to Specify a Dynamic Join in a Master File
You specify a dynamic Master File defined join the same way that you specify a static
join (as described in How to Specify a Static Unique Join on page 7-5), except that the
value of the SEGTYPE attribute for the cross-referenced segment is DKU (standing for
dynamic keyed unique) for a one-to-one join, and DKM (standing for dynamic keyed
multiple) for a one-to-many join.

For example:

SEGNAME = JOBSEG, SEGTYPE = DKU, PARENT = PAYINFO,
 CRFILE = JOBFILE, CRKEY = JOBCODE, $

You declare linked segments in a dynamic join the same way that you do in a static join.
In both cases SEGTYPE has a value of KLU for unique linked segments, and KL for
non-unique linked segments.

Defining a Join in a Master File

7-16 Information Builders

Example Specifying a Dynamic Join in a Master File
The following Master File includes the relevant sections of EMPLOYEE and the
segments joined to it, but with the static joins replaced by dynamic joins (nonessential
fields and segments are not shown):

FILENAME = EMPLOYEE, SUFFIX = FOC, $

SEGNAME = EMPINFO, SEGTYPE = S1, $
 FIELDNAME = EMP_ID, ALIAS = EID, FORMAT = A9, $
 .
 .
 .
SEGNAME = PAYINFO, SEGTYPE = SH1, PARENT = EMPINFO, $
 FIELDNAME = JOBCODE, ALIAS = JBC, FORMAT = A3, $
 .
 .
 .
SEGNAME = JOBSEG, SEGTYPE = DKU, PARENT = PAYINFO, CRFILE = JOBFILE,
 CRKEY = JOBCODE, $

SEGNAME = SECSEG, SEGTYPE = KLU, PARENT = JOBSEG, CRFILE = JOBFILE, $

SEGNAME = SKILLSEG,SEGTYPE = KL, PARENT = JOBSEG, CRFILE = JOBFILE, $

SEGNAME = ATTNDSEG,SEGTYPE = DKM, PARENT = EMPINFO, CRFILE = EDUCFILE,
 CRKEY = EMP_ID, $

SEGNAME = COURSEG, SEGTYPE = KLU, PARENT = ATTNDSEG,CRFILE = EDUCFILE, $

 Comparing Static and Dynamic Master File Defined Joins and the JOIN Command

Describing Data 7-17

Comparing Static and Dynamic Master File Defined
Joins and the JOIN Command

If you wish to join two FOCUS data sources, you can choose between two types of joins
(static and dynamic) and two methods of defining the join (defined in the Master File and
defined by issuing the JOIN command).

• For a static join, the links, which point from a host segment instance to the
corresponding cross-referenced segment instance, are created once and then
permanently stored and automatically maintained in the host data source.

• For a dynamic join, the links are retrieved each time they are needed. This makes
static joins faster than dynamic ones, since the links only need to be established
once, but less flexible, as you can only redefine or remove a static join by using the
REBUILD facility. The REBUILD facility is described in the Maintaining Data
manual.

Among dynamic joins the JOIN command is easier to use in that you do not need to edit
the Master File each time you want to change the join specification, and you do not need
to describe each linked segment as it appears from the perspective of the host data
source. On the other hand, Master File defined dynamic joins enable you to omit
unnecessary cross-referenced segments.

You may find it efficient to implement frequently-used joins as static joins. You can
change static joins to dynamic, and dynamic to static, using the REBUILD facility.

Defining a Join in a Master File

7-18 Information Builders

The following chart compares implementing a static join defined in a Master File, a
dynamic join defined in a Master File, and a dynamic join defined by issuing the JOIN
command.

 Advantages Disadvantages

Static Join in
Master File

(SEGTYPE =
KU or KM)

Faster after first use: links are
created only once.

Always in effect.

Can select some linked
segments and omit others.

Must be specified before data
source is created or reloaded
using REBUILD.

Requires REBUILD utility to
change.

Requires four bytes of file
space per instance.

User needs to know how to
specify relationships for linked
segments (KL, KLU).

Dynamic Join in
Master File

(SEGTYPE =
DKU or DKM)

Can be specified at any time.

Always in effect. Does not
use any space in the data
source.

Can be changed or removed
as needed, without using the
REBUILD facility.

Can select some linked
segments and omit others.

Slower: links are retrieved for
each record in each report
request.

User needs to know how to
specify relationships for linked
segments (KL, KLU).

Dynamic Join
(using the JOIN
Command)

Can be specified at any time.

Does not use any space in the
data source. Can be changed
or removed as needed,
without using the REBUILD
facility.

User never needs to describe
relationships of linked
segments.

Slower: links are retrieved for
each record in each report
request.

JOIN command must be issued
in each session in which you
want the join to be in effect.

All linked segments are always
included, whether or not you
need them.

 Joining to One Cross-Referenced Segment From Several Host Segments

Describing Data 7-19

Joining to One Cross-Referenced Segment From
Several Host Segments

You may come upon situations where you need to join to one cross-referenced segment
from several different segments in the host data source. You may also find a need to join
to one cross-referenced segment from two different host data sources at the same time.
You can handle these data structures using Master File defined joins.

Joining From Several Segments in One Host Data Source
In an application, you may want to use the same cross-referenced segment in several
places in the same data source. Suppose, for example, that you have a data source named
COMPFILE that maintains data on companies you own:

COMPFILE data source

COMPANY

PRODUCT
PRODMGR

DIVISION
DIVMGR

PRODSEGDIVSEG

COMPSEG

The DIVSEG segment contains an instance for each division and includes fields for the
name of the division and its manager. Similarly, the PRODSEG segment contains an
instance for each product and the name of the product manager. You might want to
retrieve personal information for both the product managers and the division managers
from a single personnel data source, as shown below:

COMPFILE data source

COMPANY

PRODUCT
PRODMGR

DIVISION
DIVMGR

PRODSEGDIVSEG

COMPSEG
NAME
ADDRESS
DATE OF BIRTH

PERSFILE data source

Defining a Join in a Master File

7-20 Information Builders

You cannot retrieve this information with a standard Master File defined join because
there are two cross-reference keys in the host data source (PRODMGR and DIVMGR)
and in your reports you will want to distinguish addresses and dates of birth retrieved for
the PRODSEG segment from those retrieved for the DIVSEG segment.

FOCUS provides a way for you to implement a join to the same cross-referenced
segment from several segments in the one host data source: you can match the
cross-referenced and host fields from alias to field name and uniquely rename the fields.

The Master File of the PERSFILE might look like this:

FILENAME = PERSFILE, SUFFIX = FOC, $
SEGNAME = IDSEG, SEGTYPE = S1, $
 FIELD = NAME, ALIAS = FNAME, FORMAT = A12, INDEX=I, $
 FIELD = ADDRESS, ALIAS = DAS, FORMAT = A24, $
 FIELD = DOB, ALIAS = IDOB, FORMAT = YMD, $

You use the following Master File to join PERSFILE to COMPFILE. Note that there is
no record terminator ($) following the cross-referenced segment declaration (preceding
the cross-referenced field declarations).

FILENAME = COMPFILE, SUFFIX = FOC, $

SEGNAME = COMPSEG, SEGTYPE = S1, $
 FIELD = COMPANY, ALIAS = CPY, FORMAT = A40, $

SEGNAME = DIVSEG, PARENT = COMPSEG, SEGTYPE = S1, $
 FIELD = DIVISION, ALIAS = DV, FORMAT = A20, $
 FIELD = DIVMGR, ALIAS = NAME, FORMAT = A12, $

SEGNAME = ADSEG, PARENT = DIVSEG, SEGTYPE = KU,
 CRSEGNAME = IDSEG, CRKEY = DIVMGR, CRFILE = PERSFILE,
 FIELD = NAME, ALIAS = FNAME, FORMAT = A12, INDEX = I, $
 FIELD = DADDRESS, ALIAS = ADDRESS, FORMAT = A24, $
 FIELD = DDOB, ALIAS = DOB, FORMAT = YMD, $

SEGNAME = PRODSEG, PARENT = COMPSEG, SEGTYPE = S1, $
 FIELD = PRODUCT, ALIAS = PDT, FORMAT = A8, $
 FIELD = PRODMGR, ALIAS = NAME, FORMAT = A12, $

SEGNAME = BDSEG, PARENT = PRODSEG, SEGTYPE = KU,
 CRSEGNAME = IDSEG, CRKEY = PRODMGR, CRFILE = PERSFILE,
 FIELD = NAME, ALIAS = FNAME, FORMAT = A12, INDEX = I, $
 FIELD = PADDRESS, ALIAS = ADDRESS, FORMAT = A24, $
 FIELD = PDOB, ALIAS = DOB, FORMAT = YMD, $

DIVMGR and PRODMGR are described as CRKEYs. FOCUS automatically matches
their common alias, NAME, to the field name NAME in the PERSFILE data source. In
addition, the field declarations that follow the join information rename the ADDRESS
and DOB fields so that they can be referred to separately in reports. Their actual field
names in the PERSFILE are supplied as aliases.

 Joining to One Cross-Referenced Segment From Several Host Segments

Describing Data 7-21

Note that the NAME field cannot be renamed, since it is the common join field. It must
be included in the declaration along with the fields being renamed, as it is described in
the cross-referenced data source. That it cannot be renamed is not a problem, since its
ALIAS can be renamed, and, in any event, the field does not need to be used in reports:
because it is the join field, it contains exactly the same information as the DIVMGR and
PRODMGR fields.

The following conventions must be observed:

• The common join field’s FIELDNAME or ALIAS in the host data source must be
identical to its FIELDNAME in the cross-referenced data source.

• The common join field should not be renamed, but the alias can be changed. The
other fields in the cross-referenced segment can be renamed.

• Place field declarations for the cross-referenced segment after the cross-referencing
information in the Master File of the host data source, in the order in which they
actually occur in the cross-referenced segment. Omit the record terminator ($) at the
end of the cross-referenced segment declaration in the host Master File, as shown:

SEGNAME = BDSEG, PARENT = PRODSEG, SEGTYPE = KU,
 CRSEGNAME = IDSEG, CRKEY = PRODMGR, CRFILE = PERSFILE,
 FIELD = NAME, ALIAS = FNAME, FORMAT = A12 ,INDEX=I, $
 FIELD = PADDRESS, ALIAS = ADDRESS, FORMAT = A24 , $
 FIELD = PDOB, ALIAS = DOB, FORMAT = YMD , $

Defining a Join in a Master File

7-22 Information Builders

Joining From Several Segments in Several Host Data Sources:
Multiple Parents

At some point you may need to join to a cross-referenced segment from two different
host data sources at the same time. If you were to describe a structure like this as a single
data source, you would have to have two parents for the same segment, which is invalid.
You can, however, describe the information in separate data sources, using joins to
achieve a similar effect.

Consider an application that keeps track of customer orders for parts, warehouse
inventory of parts, and general part information. If this were described as a single data
source, it would be structured as follows:

CUSTOMER

ORDER

WAREHOUSE

STOCK

PRODINFO

You can join several data sources to create this structure. For example:

CUSTOMER

ORDER

PRODINFO

WAREHOUSE

STOCK

PRODINFOSTOCK

WAREHOUSE

ORDER

CUSTOMER

view from ORDERS data source: view from INVENTRY data source:

 Joining to One Cross-Referenced Segment From Several Host Segments

Describing Data 7-23

The CUSTOMER and ORDER segments are in the ORDERS data source, the
WAREHOUSE and STOCK segments are in the INVENTRY data source, and the
PRODINFO segment is stored in the PRODUCTS data source. Both the INVENTRY and
ORDERS data sources have one-to-one joins to the PRODUCTS data source. In the
INVENTRY data source, STOCK is the host segment; in the ORDERS data source,
ORDER is the host segment.

In addition, there is a one-to-many join from the STOCK segment in the INVENTRY
data source to the ORDER segment in the ORDERS data source, and a reciprocal
one-to-many join from the ORDER segment in the ORDERS data source to the STOCK
segment in the INVENTRY data source.

The joins among these three data sources can be viewed from the perspectives of both
host data sources, approximating the multiple-parent structure described earlier.

Recursive Reuse of a Segment
In rare cases, a data source may cross-reference itself. Consider the case of a data source
of products, each with a list of parts that compose the product, where a part may itself be
a product and have sub-parts. Schematically, this would appear as:

PRODUCT

PART

Defining a Join in a Master File

7-24 Information Builders

A FOCUS description for this case, shown for two levels of sub-parts, is:

PRODUCT

 A PART

A PRODUCT

B PART

B PRODUCT

KU

KL

KU

See the Creating Reports manual for more information on recursive joins.

Describing Data 8-1

CHAPTER 8

Checking and Changing a Master File: CHECK

Topics:

• CHECK Command Display

• The PICTURE Option

• The HOLD Option

Use the CHECK command to validate your Master Files. You
must always do this after writing the Master File. If you do not
issue the CHECK command, FOCUS may not update your
Master File with the changes that you just made. The CHECK
output highlights any errors in your Master File and allows you
to correct them before reading the data source. After making
any necessary corrections, use CHECK again to confirm that the
Master File is valid.

Checking and Changing a Master File: CHECK

8-2 Information Builders

Syntax How to Check Data Source Descriptions
CHECK FILE filename[.field] [PICTURE [RETRIEVE]] [DUPLICATE]
[HOLD [AS name][ALL]]

where:

filename

Is the name under which you created the Master File.

.field

Is used for an alternate view of the Master File.

PICTURE

Is an option that displays a diagram showing the complete data source structure. The
keyword PICTURE can be abbreviated to PICT. This option is explained in The
PICTURE Option, on page 8-5.

RETRIEVE

Alters the picture to reflect the order in which segments are retrieved when TABLE
or TABLEF commands are issued. Note that unique segments are viewed as logical
extensions of their parent segment. The keyword RETRIEVE can be abbreviated to
RETR.

DUPLICATE

Lists duplicate field names for the specified data source. The keyword DUPLICATE
can be abbreviated to DUPL.

HOLD

Generates a temporary HOLD file and HOLD Master File containing information
about fields in the data source. You can use this HOLD file to write reports. The AS
option specifies a field name for your data sources. The option is described and
illustrated in The HOLD Option, on page 8-8.

name

Is a name for the HOLD file and HOLD Master File.

ALL

Adds the values of FDEFCENT and FYRTHRESH at the file level and the values of
DEFCENT and YRTHRESH at the field level to the HOLD file.

 CHECK Command Display

Describing Data 8-3

CHECK Command Display
If your Master File contains syntactical errors, the CHECK command displays
appropriate error messages.

If the data source description has no syntactical errors, the CHECK command displays
the following message:

NUMBER OF ERRORS= 0
NUMBER OF SEGMENTS= n (REAL= n VIRTUAL= n)
NUMBER OF FIELDS= n INDEXES= n FILES= n
NUMBER OF DEFINES= n
TOTAL LENGTH OF ALL FIELDS = n

where:

NUMBER OF ERRORS

Indicates the number of syntactical errors in the Master File.

NUMBER OF SEGMENTS

Is the number of segments in the Master File, including cross-referenced segments.

REAL

Is the number of segments that are not cross-referenced. These segments have types
Sn, SHn, U, or blank.

VIRTUAL

Is the number of segments that are cross-referenced. These segments have types KU,
KLU, KM, KL, DKU, or DKM.

NUMBER OF FIELDS

Is the number of fields described in the Master File.

INDEXES

Is the number of indexed fields. These fields have the attribute FIELDTYPE=I or
INDEX=I in the Master File.

FILES

Is the number of data sources containing the fields.

NUMBER OF DEFINES

Is the number of virtual fields in the Master File. This message displays only if
virtual fields are defined.

TOTAL LENGTH

Is the total length of all fields as defined in the Master File by either the FORMAT
attribute (if the data source is a FOCUS data source) or the ACTUAL attribute (if the
data source is a non-FOCUS data source).

Checking and Changing a Master File: CHECK

8-4 Information Builders

Example Using the CHECK File Command
For example, entering the following command

CHECK FILE EMPLOYEE

produces the following information:

NUMBER OF ERRORS= 0
NUMBER OF SEGMENTS= 11 (REAL= 6 VIRTUAL= 5)
NUMBER OF FIELDS= 34 INDEXES= 0 FILES= 3
TOTAL LENGTH OF ALL FIELDS = 365

When you are using FOCUS online, this message displays on the terminal even if the
PRINT parameter is set to OFFLINE.

Determining Common Errors
• If the data source is a non-FOCUS data source, check the TOTAL LENGTH OF

ALL FIELDS that displays near the top of your screen to verify the accuracy of the
field lengths you have specified for the data source. One of the most common causes
of errors in generating reports from non-FOCUS data sources is incorrectly specified
field lengths. The number given as the total length of all fields should be equal to the
logical record length of the non-FOCUS data source.

In general, if the total length of all fields is not equal to the logical record length of
the non-FOCUS data source, you have specified the length of at least one field
incorrectly. Your external data may not be read correctly if you do not correct the
error.

• If the following warning message is generated

(FOC1829) WARNING. FIELDNAME IS NOT UNIQUE WITHIN A SEGMENT: fieldname

it is because duplicate fields (those having the same field names and aliases) are not
allowed in the same segment. The second occurrence is never accessed by FOCUS.

When the CHECK command is issued for a data source that has more than one field
of the same name within the same segment, a FOC1829 error message is generated
along with a warning indicating the duplicate field names, such as the following:

(FOC1829) WARNING. FIELDNAME IS NOT UNIQUE WITHIN A SEGMENT: BB
WARNING: FOLLOWING FIELDS CANNOT BE ACCESSED
BB IN SEGMENT SEGA (VS SEGB)

When the DUPLICATE option is added, the output contains a warning message like
the following:

WARNING: FOLLOWING FIELDS APPEAR MORE THAN ONCE
AA IN SEGMENT SEGB (VS SEGA)

 The PICTURE Option

Describing Data 8-5

The PICTURE Option
The PICTURE option displays a diagram of the FOCUS structure defined by the Master
File. Each segment is represented by a box. There are four types of boxes, which indicate
whether a segment (including the root segment) is non-unique or unique and whether it is
real or cross-referenced. The four types of boxes are:

 Real segments

Non-unique segment:
 segname
 num segtype

 *field1 **I
 *field2 **
 *field3 **
 *field4 **
 * **

Unique segment:
 segname
 num U

 *field1 *I
 *field2 *
 *field3 *
 *field4 *
 * *

 Cross-referenced segments

Non-unique segment:
 segname
 num KM (or KLM)

 :field1 ::K
 :field2 ::
 :field3 ::
 :field4 ::
 : ::
 :...........::
 :
 crfile

Unique segment
 segname
 num KU (or KLU)

 :field1 :K
 :field2 :
 :field3 :
 :field4 :
 : :
 :............:
 crfile

Checking and Changing a Master File: CHECK

8-6 Information Builders

where:

num

Is the number assigned to the segment in the FOCUS structure.

segname

Is the name of the segment.

segtype

Is the segment type for a real, non-unique segment: Sn, SHn, or N (for blank
segtypes).

field1 ...

Are the names of fields in the segment. Field names of 66 characters are truncated to
12 characters in CHECK FILE PICTURE operations.

I

Indicates an indexed field.

K

Indicates the key field in the cross-referenced segment.

crfile

Is the name of the cross-referenced data source if the segment is cross-referenced.

The diagram also shows the relationship between segments (see the following example).
Parent segments are shown above children segments connected by straight lines.

 The PICTURE Option

Describing Data 8-7

Example Using the CHECK FILE PICTURE Option
The following diagram shows the structure of the JOB data source joined to the
SALARY data source:

JOIN EMP_ID IN JOB TO EMP_ID IN SALARY
>
CHECK FILE JOB PICTURE
 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 1 VIRTUAL= 1)
 NUMBER OF FIELDS= 7 INDEXES= 0 FILES= 2
 TOTAL LENGTH OF ALL FIELDS= 86
SECTION 01
 STRUCTURE OF FOCUS FILE JOB ON 02/08/99 AT 12.33.04

 JOBSEG
 01 S1

*EMP_ID **
*FIRST_NAME **
*LAST_NAME **
*JOB_TITLE **
* **

 I
 I
 I
 I SALSEG
 02 I KU
..............
:EMP_ID :K
:SALARY :
:EXEMPTIONS :
: :
: :
:............:
JOINED SALARY

Checking and Changing a Master File: CHECK

8-8 Information Builders

The HOLD Option
The HOLD option generates a temporary HOLD file. HOLD files are explained in the
Creating Reports manual. This HOLD file contains detailed information regarding file,
segment, and field attributes, which you can display in reports using TABLE requests.

Certain fields in this HOLD file are of special interest. Unless otherwise noted, these
fields are named the same as attributes in Master Files; each field stores the values of the
similarly-named attribute. The fields can be grouped into file attributes, segment
attributes, and field attributes.

File Attributes:

FILENAME

SUFFIX

FDEFCENT, FYRTHRESH

Note that these attributes are included in the HOLD file, if they exist in the original
Master File and you specify the ALL option.

Segment Attributes:

SEGNAME

SEGTYPE

Note that this field does not indicate the number of segment key fields. Segment
types S1, S2, and so on are shown as type S. The same is true with segment type
SHn.

SKEYS

The number of segment key fields. For example, if the segment type is S2, SKEYS
has the value 2.

SEGNO

The number assigned to the segment within the FOCUS structure. This is displayed
in the picture.

LEVEL

The level of the segment within the FOCUS structure. The root segment is on Level
1, its children are on Level 2, and so on.

PARENT

CRKEY

FIELDNAME

 The HOLD Option

Describing Data 8-9

Field Attributes:

ALIAS

FORMAT

ACTUAL

Note that if you include the FORMAT field in the TABLE request, you should not
use the full field name FORMAT. Rather, you should use the alias USAGE or a
unique truncation of the FORMAT field name (the shortest unique truncation is FO).

DEFCENT, YRTHRESH

Note that these attributes are included in the HOLD file, if they exist in the original
Master File and you specify the ALL option.

Example Using the CHECK FILE HOLD Option
This sample FOCUS procedure creates a HOLD file describing the EMPLOYEE data
source. It then writes a report that displays the names of cross-referenced segments in the
EMPLOYEE data source, their segment types, and the attributes of their fields: field
names, aliases, and formats.

CHECK FILE EMPLOYEE HOLD
TABLE FILE HOLD
HEADING
"FIELDNAMES, ALIASES, AND FORMATS"
"OF CROSS-REFERENCED FIELDS IN THE EMPLOYEE DATA SOURCE"
" "
PRINT FIELDNAME ALIAS USAGE BY SEGNAME BY SEGTYPE
WHERE SEGTYPE CONTAINS 'K'
END

The output is:

PAGE 1

FIELDNAMES, ALIASES, AND FORMATS
OF CROSS-REFERENCED FIELDS IN THE EMPLOYEE DATA SOURCE

SEGNAME SEGTYPE FIELDNAME ALIAS FORMAT
------- ------ --------- ----- ------
ATTNDSEG KM DATE_ATTEND DA I6YMD
 EMP_ID EID A9
COURSEG KLU COURSE_CODE CC A6
 COURSE_NAME CD A30
JOBSEG KU JOBCODE JC A3
 JOB_DESC JD A25
SECSEG KLU SEC_CLEAR SC A6
SKILLSEG KL SKILLS A4
 SKILL_DESC SD A30

Checking and Changing a Master File: CHECK

8-10 Information Builders

Example Using the CHECK FILE HOLD ALL Option
Assume the Employee data source contains the following FILE declaration:

FILENAME = EMPLOYEE, SUFFIX = FOC, FDEFCENT = 19, FYRTHRESH = 50

The following request:

CHECK FILE EMPLOYEE HOLD ALL
TABLE FILE HOLD
PRINT FDEFCENT FYRTHRESH
END

produces the following output:

FDEFCENT FYRTHRESH
-------- ---------

 19 50

Specifying AS Names With the HOLD Option
An AS name may be provided for the temporary HOLD file generated by the CHECK
command. If a name is not specified, the default name is HOLD and FOCUS will replace
any existing default file.

Note:

• The AS name may not be longer than 8 characters, or FOCUS defaults to the name
HOLD and no warning is issued.

• When the AS option is specified in combination with other CHECK options, the AS
holdname specification must appear last.

TITLE, HELPMESSAGE, and TAG Attributes
When you use the HOLD option of the CHECK command, FOCUS places the TITLE
text in the TITLE field of the FLDATTR segment, the HELPMESSAGE text in the
HELPMESSAGE field of the FLDATTR segment, and the TAG names in the
TAGNAME field of the SEGATTR segment.

When no JOINs are in effect, or when a JOIN command is issued without a TAG name,
the TAGNAME field by default contains the name of the data source specified in the
CHECK command. When JOINs are issued in conjunction with the TAG name feature,
the TAGNAME field contains the TAG name for the host and cross-referenced data
sources.

 The HOLD Option

Describing Data 8-11

Virtual Fields in the Master File
With the HOLD option, virtual fields are placed in the segment in which they would be
stored if they were real fields in the data source. This is not necessarily the physical
location of the field in the Master File, but the lowest segment that must be accessed in
order to evaluate the expression defining the field. Fields whose values are not dependent
on retrieval default to the top segment. The value of FLDSEG in the FLDATTR segment
is zero for these fields. The format of FLDSEG is I2S in the Master File, which causes
zero to be displayed as blank in reports. FLDSEG may be dynamically reformatted in a
TABLE request (FLDSEG/I2) to force the display of zero.

Once data has been entered into a FOCUS data source, you can no longer make arbitrary
changes to the Master File. Some changes are entirely harmless and can be made at any
time; others are prohibited unless the data is reentered or the data source rebuilt. A few
others can be made if corresponding changes are made in several places.

You can use a system editor or TED to make permitted changes to the Master File. The
checking procedure, CHECK, should be used after any change.

Describing Data 9-1

CHAPTER 9

Accessing a FOCUS Data Source: USE

Topics:

• The USE Command

• Specifying a Non-Default File ID

• Identifying New Data Sources to
FOCUS

• Accessing Data Sources in Read
Only Mode

• Concatenating Data Sources

• Accessing Simultaneous Usage Data
Sources

• Using the LOCATION Attribute

• Displaying the USE Options in Effect

The USE command specifies the names and locations of
FOCUS data sources for the following conditions:

• Default naming conventions are not used.

• You need to protect data sources from change or
concatenate several similar data sources.

Note:

• For non-default naming conventions, you may be able to
use the DATASET attribute in the Master File instead of
the USE command. For detailed information, see Chapter 2,
Identifying a Data Source.

• You can use an Access File instead of a USE command to
concatenate FOCUS data sources. When a FOCUS data
source is partitioned, an Access File may be required for
efficient retrieval. For more information, see Chapter 6,
Describing a FOCUS Data Source.

Accessing a FOCUS Data Source: USE

9-2 Information Builders

The USE Command
When you issue a FOCUS command to access a FOCUS data source, such as TABLE
FILE filename, FOCUS searches for a Master File with the specified file name, and then
searches for a data source with the same file name in CMS or allocated to the same
ddname in MVS.

• In CMS FOCUS, the FOCUS data source has the default file type FOCUS and the
default file mode A.

For example, the command TABLE FILE EMPLOYEE uses the data source
EMPLOYEE FOCUS A for CMS or the data source allocated to ddname EMPLOYEE
for MVS.

If the FOCUS data source has a file ID different from these defaults, you must issue the
USE command to identify the data source, with its file specifications, and associate it
with a specific Master File.

The USE command specifies the names and locations of FOCUS data sources for the
following conditions:

• Default naming conventions are not used.

• You need to protect data sources from change or concatenate several similar data
sources.

When you identify FOCUS data sources with the USE command, a USE directory is
created, which is a list of data source definitions. When a USE directory is in effect,
FOCUS will locate data sources using the information in the directory, instead of
searching for the data source using default names. A USE directory enables you to access
up to 255 data sources. The USE directory applies only to FOCUS data sources.

 The USE Command

Describing Data 9-3

Syntax How to Issue a USE Command
USE action
fileid [READ|NEW] [AS mastername]

or

fileid AS mastername ON server READ

or

fileid LOCAL

or

fileid ON server
.
.
.
ind {WITH|INDEX} mastername
END

where:

action

Is one of the following:

ADD appends one or more new file IDs to the present directory. If you issue the USE
command without the ADD parameter, the list of data sources you specify replaces
the existing USE directory.

CLEAR erases the USE directory. The keyword END is not required with this option.
Any other options specified will be ignored.

REPLACE replaces an existing file ID in the USE directory. This option enables you to
change the file specification for the file ID and the options following the file ID.

fileid

Is any valid file name for the specific operating system.

For this platform... The file ID is...

For CMS Any valid file name, in filename filetype filemode format
containing your FOCUS data source.

For MVS A ddname allocated to the MVS data set containing your
FOCUS data source.

READ

Restricts data sources to read-only access.

NEW

Indicates that the data source has yet to be created.

AS mastername

Specifies the name of the Master File to be associated with the file ID.

Accessing a FOCUS Data Source: USE

9-4 Information Builders

ON server

Specifies the userid of the FOCUS Database Server (sink machine) that synchronizes
FOCUS data sources for use by multiple users on CMS, or the communications data
set of the FOCUS Database Server on MVS.

LOCAL

This option requires a previous directory entry for the file ID with the ON server
option. For CMS, accesses an SU data source directly through the operating system.
Before using this option you must link and access the minidisk on which the SU data
source resides in read-only mode.

For MVS, accesses an SU data source using the Multi-Threaded SU Reporting
Facility. Before using this option you must allocate the SU data source in SHR
mode.

ind

Is the file ID (on CMS) or ddname (on MVS) of an external index.

WITH|INDEX

Establishes the relationship between an external index and the component data
source. INDEX is a synonym for WITH.

The following options after the file ID are valid together:

READ and AS
NEW and AS
AS and ON and READ

Any other combination of options after the file ID is not valid.

Syntax How to Specify Multiple Data Sources
You can specify several data sources in one USE command, each with different
parameters. For example:

USE
fileid1 ON MULTID
fileid2 AS PRODUCTS
fileid3 READ AS ACCOUNTS
END

Syntax How to Erase the USE Directory
To erase the USE directory, enter the following command:

USE CLEAR

 Specifying a Non-Default File ID

Describing Data 9-5

Specifying a Non-Default File ID
If the FOCUS data source has a file ID other than the default, issue the USE command to
identify the data source, with its file specifications, and associate it with a specific Master
File.

Syntax How to Specify a Non-Default File ID
fileid AS mastername
END

where:

fileid

Is any valid file specification for the specific operating system.

mastername

Is name of the Master File name that will be associated with the file ID.

Example Specifying Different File Names
To read the data source with the name EMP026 described by the Master File
EMPLOYEE, enter this USE command:

For CMS: USE
EMP026 FOCUS A AS EMPLOYEE
END

For MVS: USE
EMP026 AS EMPLOYEE
END

After entering the USE command, you can read the EMP026 data source by entering the
command TABLE FILE EMPLOYEE.

Example Specifying Different File Types and Extensions
For CMS: To read the data source with the name EMP026 and a file type of

FOCUS on the A-disk, described by the Master File EMPLOYEE,
enter this USE command:

USE
EMP026 FOCUS A AS EMPLOYEE
END

After entering the USE command, you can read the EMP026 data source by entering the
command TABLE FILE EMPLOYEE.

Accessing a FOCUS Data Source: USE

9-6 Information Builders

Example Specifying Different File Locations
For CMS: To read the data source with the name EMP026 located on the F

disk, described by the Master File EMPLOYEE, enter this USE
command:

USE
EMP026 FOCUS F AS EMPLOYEE
END

The first data source in the USE directory defines the default file type and file mode for
the rest of the session or until you clear the USE directory. For example, if you later issue
the command TABLE FILE PRODUCT, FOCUS searches for the data source
PRODUCT FOCUS F even if you did not specify the data source in the USE command.
If you want to read both EMPLOYEE FOCUS F and PRODUCT FOCUS A, issue:

USE
EMP026 FOCUS F AS EMPLOYEE
PRODUCT FOCUS A
END

Since PRODUCT FOCUS A is the second entry in the USE directory, the default file
mode remains F.

Identifying New Data Sources to FOCUS
The parameter NEW in the USE command identifies data sources that do not exist yet.
When you identify a new data source, you can accept the default file specification
conventions or specify different ones.

In CMS, when you issue a MODIFY command specifying a data source that does not
exist, FOCUS creates the data source with a default file name, file type, and file mode.
You can issue the USE command with the NEW parameter to give the data source a file
ID other than the default.

For MVS, you must allocate the data source, with the MVS command ALLOCATE or
the FOCUS command DYNAM, before you issue the USE command.

 Identifying New Data Sources to FOCUS

Describing Data 9-7

Syntax How to Identify New Data Sources to FOCUS
USE
fileid NEW
END
CREATE file mastername

where:

fileid

Is any valid file specification for the operating system. The file ID will be assigned
to the data source later in the session when the actual create happens.

mastername

Is the name of the Master File associated with the data source.

If you omit the NEW parameter, a message is returned stating that the data source cannot
be found, and the USE command is not executed.

Example Identifying a New Data Source
To create the data source WAGES using the WAGES Master File, enter the following:

For CMS: USE
WAGES FOCUS F NEW
END
CREATE FILE WAGES

For MVS: USE
WAGES NEW
END
CREATE FILE WAGES

Accessing a FOCUS Data Source: USE

9-8 Information Builders

Accessing Data Sources in Read Only Mode
You can protect data sources from changes by issuing USE commands with the READ
parameter. Protected data sources can be read by various FOCUS tools and commands
such as MODIFY and SCAN, but cannot be changed.

Syntax How to Access a Data Source in Read Only Mode
USE
fileid READ
END

where:

fileid

Is any valid file specification for the operating system.

Example Accessing a Data Source in Read Only Mode
For example, to protect the data source EMPLOYEE, enter:

For CMS: USE
EMPLOYEE FOCUS A READ
END

For MVS: USE
EMPLOYEE READ
END

 Concatenating Data Sources

Describing Data 9-9

Concatenating Data Sources
If several FOCUS data sources are described by the same Master File, you can read all of
the data sources in one TABLE or GRAPH request by issuing a USE command that
concatenates all of the data sources.

Syntax How to Concatenate Data Sources
USE
fileid1 AS mastername
fileid2 AS mastername
.
.
fileidn AS mastername
END

where:

fileid1...

Are any valid file specifications, for the operating system, for the data sources being
concatenated.

mastername

Is the name of the Master File that describes the data sources.

Example Concatenating Data Sources to One Master File
For example, to read three FOCUS data sources: EMP024, EMP025, and EMP026, all
described by the Master File EMPLOYEE, issue the following USE command:

For CMS: USE
EMP024 FOCUS A AS EMPLOYEE
EMP025 FOCUS C AS EMPLOYEE
EMP026 FOCUS C AS EMPLOYEE
END

For MVS: USE
EMP024 AS EMPLOYEE
EMP025 AS EMPLOYEE
EMP026 AS EMPLOYEE
END

You can then read all three data sources with the command TABLE FILE EMPLOYEE.

Accessing a FOCUS Data Source: USE

9-10 Information Builders

Example Concatenating Multiple Master Files
You can concatenate data sources to several Master Files in one USE command. For
example, the following USE command concatenates the EMP01 and EMP02 data sources
to the Master File EMPLOYEE, and concatenates the SALES01 and SALES02 data
sources to the Master File SALES:

For CMS: USE
EMP01 FOCUS A AS EMPLOYEE
EMP02 FOCUS A AS EMPLOYEE
SALES01 FOCUS A AS SALES
SALES02 FOCUS A AS SALES
END

For MVS: USE
EMP01 AS EMPLOYEE
EMP02 AS EMPLOYEE
SALES01 AS SALES
SALES02 AS SALES
END

To read the EMP01 and EMP02 data sources, begin by entering

TABLE FILE EMPLOYEE

and to read the SALES01 and SALES02 data sources, begin by entering

TABLE FILE SALES

Example Concatenating Multiple Data Sources and a Single
Cross-Reference Data Source
To read multiple data sources having a cross-reference data source as one data source,
specify the host data sources in the USE command and then the cross-reference data
source.

For example, the data source EMPLOYEE is made up of two data sources EMP01 and
EMP02 that reference a common cross-reference data source EDUCFILE. To read the
two data sources together, enter the following USE command:

For CMS: USE
EMP01 FOCUS A AS EMPLOYEE
EMP02 FOCUS A AS EMPLOYEE
EDUCFILE FOCUS A
END

For MVS: USE
EMP01 AS EMPLOYEE
EMP02 AS EMPLOYEE
EDUCFILE
END

 Concatenating Data Sources

Describing Data 9-11

Example Concatenating Multiple Data Sources and Multiple
Cross-Reference Data Sources
If the EMPLOYEE data source consisted of two data sources, EMP01 and EMP02, and
each had its own cross-reference data source, ED01 and ED02, you can read all four data
sources in one command by entering this USE command where each host data source is
followed by its cross-reference.

You cannot specify a concatenated data source as the cross-referenced data source in a
JOIN command.

You can take an indexed view of a concatenated data source by creating an external
index data source and using the TABLE FILE filename.indexed_fieldname command.
For more information about indexed views, see the instructions for creating an external
index data source in the Maintaining Databases manual.

For CMS: USE
EMP01 FOCUS A AS EMPLOYEE
ED01 FOCUS A AS EDUCFILE
EMP02 FOCUS A AS EMPLOYEE
ED02 FOCUS A AS EDUCFILE
END

For MVS: USE
EMP01 AS EMPLOYEE
ED01 AS EDUCFILE
EMP02 AS EMPLOYEE
ED02 AS EDUCFILE
END

Accessing a FOCUS Data Source: USE

9-12 Information Builders

Accessing Simultaneous Usage Data Sources
In CMS, the FOCUS Database Server is a disconnected virtual machine that manages all
READ/WRITE operations to a FOCUS data source.

In MVS, the FOCUS Database Server is a batch job or started task managing all
READ/WRITE operations to a FOCUS data source.

Syntax How to Access Simultaneous Usage Data Sources
USE
fileid ON server
END

where:

fileid

In CMS, is the file name, file type, and file mode of the FOCUS data source
accessed by the disconnected virtual machine (FOCUS Database Server).

In MVS, is the ddname of the FOCUS data source allocated in the batch job or
started task.

Example Accessing an SU Data Source in CMS
If you want to use the EMPLOYEE FOCUS data source on the A-disk of the FOCUS
Database Server named myserver, code the following:

USE
EMPLOYEE FOCUS A ON MYSERVER
END

Example Accessing an SU Data Source in MVS
If you want to use the EMPLOYEE FOCUS data source allocated to the FOCUS
Database Server batch job or started task, two things must be done:

1. You must allocate a ddname to the communications data set that is allocated in the
FOCUS Database Server batch job or started task pointing to the ddname FOCSU.

For example,

DYNAM ALLOC FILE MYSERVER DS prefix.FOCSU.DATA SHR

2. You must issue the USE command for your data source allocated in the batch job or
started task.

USE
EMPLOYEE ON MYSERVER
END

 Accessing Simultaneous Usage Data Sources

Describing Data 9-13

Multi-Thread Configuration
Performance gains may be achieved by routing READ only requests directly to the data
source on disk instead of going through the FOCUS Database Server. This is called a
multi-thread configuration. It is accomplished with the USE command and the keyword
LOCAL.

Syntax How to Read SU Data Sources in a Multi-Thread Configuration
In CMS, first link and access the data source in READ only mode and issue the USE
LOCAL syntax:

CMS CP LINK MYSERVER 191 391 RR
CMS ACCESS 391 B
USE
EMPLOYEE FOCUS A ON MYSERVER
EMPLOYEE FOCUS B LOCAL
END

In MVS, allocate the FOCUS data source and issue the USE LOCAL syntax:

DYNAM ALLOC FILE EMPLOYEE DS prefix.EMPLOYEE.FOCUS SHR
DYNAM ALLOC FILE MYSERVER DS prefix.FOCSU.DATA SHR
USE
EMPLOYEE ON MYSERVER
EMPLOYEE LOCAL
END

For more information about Simultaneous Usage Mode, see your Simultaneous Usage
documentation.

Note:

• On a FOCUS Database Server, 255 data sources can be open at one time with 256
users connected.

• The READ option is available for accessing an SU data source with an alternate
Master File (using an AS name). For example:

USE EMP01 AS EMPLOYEE ON MULTID READ

In an SU environment, the READ option does not provide Read-only access. It is
required because alternate Master Files are not supported in SU for MODIFY and
MAINTAIN.

Accessing a FOCUS Data Source: USE

9-14 Information Builders

Using the LOCATION Attribute
The file type and physical location of a data source that is named by the LOCATION
attribute in the Master File, defaults to FOCUS in the local directory unless a USE
command is issued. If the physical data sources are on different disks or have different
file types, they must be listed in the USE list.

Displaying the USE Options in Effect
To display USE options in effect, enter the ? USE query in a stored procedure:

? USE

This query displays a list of data sources you specified with the USE commands, with
options currently in effect.

Example Displaying USE Options
A sample output from the ? USE command is:

? USE
 DIRECTORIES IN USE ARE:
 CAR
 EMPLOYEE
 JOBFILE
 EDUCFILE

Describing Data 10-1

CHAPTER 10

Providing Data Source Security: DBA

Topics:

• Introduction

• Implementing Data Source Security

• Specifying Access Types: The
ACCESS Attribute

• Limiting Data Source Access: The
RESTRICT Attribute

• Placing Security Information in a
Central Master File

• Hiding the Restriction Rules: The
ENCRYPT Command

• FOCEXEC Security

• Program Accounting/Resource
Limitation

• Absolute File Integrity

As Database Administrator, you can use FOCUS DBA security
features to provide security for any FOCUS data source. You
can use these security features to limit the number of records or
reads a user can request in a report. You can also create
user-written programs to perform program accounting on
FOCUS data sources. You can use the Usage Accounting and
Security Exit Routine (UACCT) to collect usage statistics and
data on attempted access violations.

You can also use DBA security features to provide security for
non-FOCUS data sources. However, the RESTRICT command
(Restricting Existing Files on page 10-32) is not available for
those data sources. Note that DBA security cannot protect a data
source from non-FOCUS access.

Providing Data Source Security: DBA

10-2 Information Builders

Introduction
The DBA facility provides a number of security options:

• You can limit the users who have access to a given data source using the USER
attribute discussed in Identifying Users With Access Rights: The USER Attribute on
page 10-9.

• You can restrict a user’s access rights to read, write, or update only using the
ACCESS attribute discussed in Specifying Access Types: The ACCESS Attribute on
page 10-12.

• You can restrict a user’s access to certain fields or segments using the RESTRICT
attribute discussed in Limiting Data Source Access: The RESTRICT Attribute on
page 10-17.

• You can ensure that only records that pass a validation test are retrieved using the
RESTRICT attribute discussed in Limiting Data Source Access: The RESTRICT
Attribute on page 10-17.

• You can limit the values a user can write to the data source or you can limit which
values a user can alter using the RESTRICT attribute discussed in Limiting Data
Source Access: The RESTRICT Attribute on page 10-17.

• You can point to passwords and restrictions stored in another Master File with the
DBAFILE attribute discussed in Placing Security Information in a Central Master
File on page 10-25.

• You can use the FOCUSID exit routine to let an external security system set the
FOCUS password.

• You can place security on FOCEXECs, which is discussed in FOCEXEC Security on
page 10-34.

Program accounting, resource limitation, and the UACCT exit routine are discussed in
Program Accounting/Resource Limitation on page 10-37.

Also, whenever a new data source is created, you have to decide whether or not to invoke
the FOCUS shadow paging feature, which guarantees the integrity of the data in the data
source. The shadow paging feature is discussed in Absolute File Integrity on page 10-40.

 Implementing Data Source Security

Describing Data 10-3

Implementing Data Source Security
You provide FOCUS security on a file-by-file basis. Implementing DBA security
features is a straightforward process in which you specify:

• The names or passwords of FOCUS users granted access to a data source.

• The type of access the user is granted.

• The segments, fields, or ranges of data values to which the user’s access is restricted.

The declarations (called security declarations) start following the END command in a
Master File and tell FOCUS that security is needed for the data source and what type of
security you want. Each security declaration can consist of one or several of the
following attributes:

• The DBA attribute gives the name or password of the Database Administrator for the
data source. The Database Administrator has unlimited access to the data source and
its Master File.

• The USER attribute identifies a user as a legitimate user of the data source. Only
users whose name or password is specified in the Master File of a FOCUS data
source with security placed on it have access to that data source.

• The ACCESS attribute defines the type of access a given user has. The four types of
access available are:

RW, which allows a user to both read and write to a data source.

R, which allows a user to read data in a data source only.

W, which allows a user to write new segment instances to a data source only.

U, which allows a user to update records in a data source only.

• The RESTRICT attribute specifies certain segments or fields to which the user is not
granted access. It can also be used to restrict the data values a user can see or
perform transactions on.

• The NAME and VALUE attributes are part of the RESTRICT declaration.

You describe your data source security by specifying values for these attributes in a
comma-delimited format, just as you specify any other attribute in the Master File.

The word END on a line by itself in the Master File terminates the segment and field
attributes and indicates that the access limits follow. If you place the word END in a
Master File, it must be followed by at least a DBA attribute.

Providing Data Source Security: DBA

10-4 Information Builders

Example Implementing Data Source Security
The following is a Master File that uses FOCUS security features:

FILENAME = PERS, SUFFIX = FOC,$
SEGMENT = IDSEG, SEGTYPE = S1,$
 FIELD = SSN ,ALIAS = SSN ,FORMAT = A9 ,$
 FIELD = FULLNAME ,ALIAS = FNAME ,FORMAT = A40 ,$
 FIELD = DIVISION ,ALIAS = DIV ,FORMAT = A8 ,$
SEGMENT=COMPSEG, PARENT=IDSEG, SEGTYPE=S1,$
 FIELD = SALARY ,ALIAS = SAL ,FORMAT = D8 ,$
 FIELD = DATE ,ALIAS = DATE ,FORMAT = YMD ,$
 FIELD = INCREASE ,ALIAS = INC ,FORMAT = D6 ,$
END
DBA=JONES76,$
USER=TOM ,ACCESS=RW, $
USER=BILL ,ACCESS=R ,RESTRICT=SEGMENT ,NAME=COMPSEG ,$
USER=JOHN ,ACCESS=R ,RESTRICT=FIELD ,NAME=SALARY ,$
 NAME=INCREASE ,$
USER=LARRY ,ACCESS=U ,RESTRICT=FIELD ,NAME=SALARY ,$
USER=TONY ,ACCESS=R ,RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=DIVISION EQ 'WEST' ,$
USER=MARY ,ACCESS=W ,RESTRICT=VALUE ,NAME=SALTEST,
 VALUE=INCREASE+SALARY GE SALARY,$
 NAME=HISTTEST,
 VALUE=DIV NE ' ' AND DATE GT 0,$

Reference Special Considerations
When using the JOIN command, it is possible to bypass the DBA information in a
FOCUS data source. This is a security exposure created because in a JOIN structure the
DBA information is read from the host Master File. This problem is solved by using the
DBAFILE feature discussed in Placing Security Information in a Central Master File on
page 10-25. All data sources in the joined structure will get security information as coded
in the DBAFILE.

 Implementing Data Source Security

Describing Data 10-5

Identifying the DBA: The DBA Attribute
The first security attribute should be a password that identifies the Database
Administrator. This password can be up to eight characters long. Since nothing else is
needed, this line is terminated by the usual delimiter (,$).

Note:

• Every data source having access limits must have a DBA.

• Groups of cross-referenced data sources must have the same DBA value.

• Partitioned data sources, which are read together in the USE command, must have
the same DBA value.

• The Database Administrator has unlimited access to the data source and all
cross-referenced data sources. Therefore, no field, segment, or value restrictions can
be specified with the DBA attribute.

• You cannot encrypt and decrypt Master Files or restrict existing data sources without
the DBA password.

• You should thoroughly test every security attribute before the data source is used. It
is particularly important to test the VALUE limits to make sure they do not contain
errors. Value tests are executed as if they were extra screening conditions or
VALIDATE statements typed after each request statement. Since users are unaware
of the value limits, errors caused by the value limits may confuse them.

Example Identifying the DBA Using the DBA Attribute
DBA=JONES76,$

Providing Data Source Security: DBA

10-6 Information Builders

Procedure Changing an Existing DBA Password
The DBA has the freedom to change any of the security attributes. If you change the
DBA password in the Master File, you must use the RESTRICT command for existing
data sources at the FOCUS command level (discussed in Restricting Existing Files on
page 10-32) to inform each FOCUS data source affected by the change. Unless this is
done, FOCUS will assume that the new description is an attempt to bypass the restriction
rules. You use the following procedure for each data source affected:

1. Edit the Master File, changing the DBA value from old to new.

2. Issue the command:

SET PASS=old_DBA_value

3. Issue the command:

RESTRICT
filename
END

4. Issue the command:

SET PASS=new_value

Note: See the Overview and Operating Environments manual for specific syntax of the
RESTRICT command for your operating environment.

Including the DBA Attribute in HOLD Files
With the SET HOLDSTAT command (described in the Developing Applications
manual), you can identify a data source containing DBA information and comments to
be automatically included in HOLD and PCHOLD Master Files.

For MVS, the data source must be a member in the PDS allocated to ddname MASTER or
ERRORS; for CMS, it must have file type MASTER or ERRORS. In both cases,
MASTER takes precedence over ERRORS.

The Information Builders-supplied file is named HOLDSTAT; user-specified
HOLDSTAT files can have any valid file name.

The HOLDSTAT file must contain a dollar sign ($) in column 1. The keyword
$BOTTOM in the file indicates there is DBA information to be added.

 Implementing Data Source Security

Describing Data 10-7

The following sample HOLDSTAT is included with FOCUS:

$===$
$ HOLD file created on &DATE at &TOD by FOCUS &FOCREL $
$ Database records retrieved= &RECORDS $
$ Records in the HOLD file = &LINES $
$===$

To include DBA information in HOLD Master Files, use the following syntax at the
bottom of the HOLDSTAT file:

$BOTTOM
END
DBA=...

Note: User-defined variables may not be included in the comments portion of the
HOLDSTAT file. Other DBA attributes can be included in the HOLDSTAT file as can
system variables.

All lines from the HOLDSTAT file that appear prior to $BOTTOM are placed at the top
of the HOLD Master File, before any file and field declarations. All lines that appear
after $BOTTOM are appended to the bottom of the HOLD Master File. Any Dialogue
Manager variables are replaced with the actual variable values.

Example Including Comments in a HOLD Master File
The following example illustrates the use of HOLDSTAT. The TABLE request is:

SET HOLDSTAT = ON
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME SALARY
BY EID
ON TABLE HOLD
END

It produces the HOLD Master File:

$==$
$ HOLD file created on 1999/05/20 at 17.58.10 by FOCUS 7.0 $
$ Database records retrieved= 19 $
$ Records in the HOLD file = 19 $
$==$
FILE = HOLD ,SUFFIX = FIX
SEGNAME = HOLD, SEGTYPE = S01
FIELDNAME = EMP_ID ,E01 ,A9 ,A12 ,$
FIELDNAME = LAST_NAME ,E02 ,A15 ,A16 ,$
FIELDNAME = FIRST_NAME ,E03 ,A10 ,A12 ,$
FIELDNAME = SALARY ,E04 ,D12.2M ,D08 ,$

Providing Data Source Security: DBA

10-8 Information Builders

Example Including DBA Attributes in a HOLD Master File
The next example illustrates the use of a user-specified file containing DBA information.
The HOLD Master File that is generated contains DBA information from the file name
specified in the SET HOLDSTAT command. The HOLDDBA Master File is:

$===$
$ HOLD file created on &DATE at &TOD by FOCUS &FOCREL $
$ Database records retrieved= &RECORDS $
$ Records in the HOLD file = &LINES $
$===$
$BOTTOM
END
DBA=MARY,$

The following TABLE request uses the HOLDDBA Master File:

SET HOLDSTAT = HOLDDBA
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME SALARY
BY EID
ON TABLE HOLD
END

The HOLD Master File that results is:

$===$
$ HOLD file created on 1999/05/20 at 17.58.10 by FOCUS 7.0 $
$ Database records retrieved= 19 $
$ Records in the HOLD file = 19 $
$===$
FILE = HOLD ,SUFFIX = FIX
SEGNAME = HOLD, SEGTYPE = S01
FIELDNAME = EMP_ID ,E01 ,A9 ,A12 ,$
FIELDNAME = LAST_NAME ,E02 ,A15 ,A16 ,$
FIELDNAME = FIRST_NAME ,E03 ,A10 ,A12 ,$
FIELDNAME = SALARY ,E04 ,D12.2M ,D08 ,$
END
DBA=MARY,$

 Implementing Data Source Security

Describing Data 10-9

Identifying Users With Access Rights: The USER Attribute
The USER attribute is a password that identifies the users who have legitimate access to
the data source. A USER attribute cannot be specified alone; it must be followed by at
least one ACCESS restriction (discussed in Specifying Access Types: The ACCESS
Attribute on page 10-12) to specify what sort of ACCESS the user is granted.

Before using a secured data source, a user must enter his or her password using the SET
PASS command. If that password is not included in the Master File, the user is denied
access to the data source. When the user does not have a password or has one that is
inadequate for the type of access requested, the following message is displayed:

(FOC047) THE USER DOES NOT HAVE SUFFICIENT ACCESS RIGHTS TO THE FILE:
filename

Syntax How to Set the USER Attribute
Any user whose name or password is not declared in the Master File is denied access to
that data source. The syntax of the USER attribute is

USER = name

where:

name

Is a password of up to eight characters for the user.

For example:

USER=TOM,...

You can specify a blank password. Such a password does not require the user to issue a
SET PASS= command. A blank password may still have access limits and is convenient
when a number of users have the same access rights. An example of setting a user’s
password to blank, and access to read only follows:

USER= , ACCESS=R,$

Providing Data Source Security: DBA

10-10 Information Builders

Establishing User Identity
A user must enter his or her password before using any FOCUS data source that has
security specified for it. A single user may have different passwords in different files. For
example, in file ONE, the rights of password BILL apply, but in file TWO, the rights of
password LARRY apply. Use the SET PASS command to establish the passwords.

Syntax How to Establish User Identity
SET {PASS|USER} = name [[IN {file|* [NOCLEAR]}] , name [IN file] ...]

where:

name

Is the user’s name or password.

file

Is the name of the Master File to which the password applies.

*

Indicates that name replaces all passwords active in all files.

NOCLEAR

Provides a way to replace all passwords in the list of active passwords while
retaining the list.

Example Establishing User Identity
In the following example, the password TOM is in effect for all data sources that do not
have a specific password designated for them:

SET PASS=TOM

For the next example, in file ONE the password is BILL, and in file TWO the password
is LARRY. No other files have passwords set for them:

SET PASS=BILL IN ONE, LARRY IN TWO

Here, all files have password SALLY except files SIX and SEVEN, which have
password DAVE:

SET PASS=SALLY, DAVE IN SIX
SET PASS=DAVE IN SEVEN

The password is MARY in file FIVE and FRANK in all other files:

SET PASS=MARY IN FIVE,FRANK

 Implementing Data Source Security

Describing Data 10-11

FOCUS maintains a list of the files for which a user has set specific passwords. To see
the list of files, issue:

? PASS

When the user sets a password IN * (all files), the list of active passwords collapses to
one entry with no associated file name. To retain the file name list, use the NOCLEAR
option.

In the next example, the password KEN replaces all passwords active in all files, and the
table of active passwords is folded to one entry:

SET PASS=KEN IN *

In the following, MARY replaces all passwords in the existing table of active passwords
(which consists of files NINE and TEN) but FRANK is the password for all other files.
The option NOCLEAR provides a shorthand way to replace all passwords in a specific
list:

SET PASS=BILL IN NINE,TOM IN TEN
SET PASS=MARY IN * NOCLEAR,FRANK

Note: The FIND function does not work with COMBINEd data sources secured with
different passwords.

Users must issue their passwords using the SET PASS command during each FOCUS
session in which they use a secured data source. They may issue their passwords at any
time before using the data source and can issue a different password afterward to access
another data source.

Providing Data Source Security: DBA

10-12 Information Builders

Specifying Access Types: The ACCESS Attribute
The ACCESS attribute specifies what sort of access a user is granted. Every security
declaration, except the DBA declaration, must have a USER attribute and an ACCESS
attribute.

The following is a complete security declaration, consisting of a USER attribute and an
ACCESS attribute.

USER=TOM, ACCESS=RW,$

This declaration gives Tom read and write (for adding new segment instances) access to
the data source.

You can assign the ACCESS attribute one of four values. These are:

ACCESS=R Read only
ACCESS=W Write only
ACCESS=RW Read the data source and write new segment instances
ACCESS=U Update only

Access levels affect what kind of FOCUS commands a user can issue. Before you decide
what access levels to assign to a user, you must consider what commands that user will
need. If a user does not have sufficient access rights to use a given command, the
following error message will be displayed:

(FOC047) THE USER DOES NOT HAVE SUFFICIENT ACCESS RIGHTS TO THE FILE:
filename

ACCESS levels determine what a user can do to the data source. You use the RESTRICT
attribute (discussed in Limiting Data Source Access: The RESTRICT Attribute on page
10-17) to limit the fields, values, or segments to which a user has access. Every USER
attribute must be assigned an ACCESS attribute. The RESTRICT attribute is optional;
without it, the user has unlimited access to fields and segments within the data source.

 Specifying Access Types: The ACCESS Attribute

Describing Data 10-13

Types of Access
The type of access granting use of various FOCUS commands is shown in the following
table. When more than one type of access is shown, any type of access marked will allow
the user at least some use of that command. Often, however, the user will be able to use
the command in different ways, depending on the type of access he or she is granted.

Types of Access

Command R W RW U DBA

CHECK X X X X X

CREATE X X

DECRYPT X

DEFINE X X X

ENCRYPT X

FSCAN X X X X

HLI X X

MAINTAIN X X X X

MATCH X X X

MODIFY X X X X

REBUILD X X

RESTRICT X

SCAN X X X

TABLE X X X

The CHECK Command
Users without the DBA password or read/write access are allowed limited access to the
CHECK command. However, when the HOLD option is specified, the warning ACCESS
LIMITED BY PASSWORD is produced, and restricted fields are propagated to the
HOLD file depending on the DBA RESTRICT attribute. Refer to Limiting Data Source
Access: The RESTRICT Attribute on page 10-17 for more information on the RESTRICT
attribute.

Providing Data Source Security: DBA

10-14 Information Builders

Reference RESTRICT Attribute Keywords
The RESTRICT attribute keywords affect the resulting HOLD file as follows:

FIELD

Fields named with the NAME parameter are not included in the HOLD file.

SEGMENT

The segments named with the NAME parameter are included, but fields in those
segments are not.

SAME

The behavior is the same as for the user named in the NAME parameter.

NOPRINT

Fields named in the NAME or SEGNAME parameter are included since the user can
reference these.

VALUE

Fields named in the VALUE parameter are included since the user can reference
these.

Note: RESTRICT=PROGRAM has no effect on CHECK FILE HOLD.

If you issue the CHECK command with the PICTURE option, the RESTRICT attribute
keywords affect the resulting picture as follows:

FIELD

Fields named with the NAME parameter are not included in the picture.

SEGMENT

The boxes appear for segments named with the NAME parameter, but fields in those
segments do not.

SAME

The behavior is the same as for the user named in the NAME parameter.

NOPRINT

This option has no effect on the picture.

VALUE

This option has no effect on the picture.

 Specifying Access Types: The ACCESS Attribute

Describing Data 10-15

The CREATE Command
Only users with the DBA password or read/write (RW) access rights can issue a
CREATE command.

The DECRYPT Command
Only users with the DBA password can issue a DECRYPT command.

The DEFINE Command
As with all reporting commands, a user need only have an access of R (read only) to use
the DEFINE command. An access of R permits the user to read records from the data
source and prepare reports from them. The only users who cannot use the DEFINE
command are those whose access is W (write only) or U (update only).

The ENCRYPT Command
Only users with the DBA password can use the ENCRYPT command.

Host Language Interface (HLI)
In order to have use of the Host Language Interface, a user must have read/write (RW)
access. With ACCESS=RW, FIELD and SEGMENT restrictions are active, but VALUE
restrictions are not. (See Limiting Data Source Access: The RESTRICT Attribute on page
10-17 for information on these restrictions.)

The password is placed in the File Control Block (FCB), words 19 and 29 (byte 73 to
80).

The MODIFY or MAINTAIN Command
Users with ACCESS=W, RW, or U can use the MODIFY or MAINTAIN command. In
MODIFY or MAINTAIN, access of U does not allow the user to use the INCLUDE and
DELETE actions; only UPDATE operations are permitted. Both ACCESS=RW and
ACCESS=W allow full use of all the MODIFY or MAINTAIN features. New instances
of data may be added to a data source and old ones deleted; existing values may be
updated. Users with ACCESS=R cannot use the MODIFY or MAINTAIN command.

Providing Data Source Security: DBA

10-16 Information Builders

The REBUILD Command
Only users with the DBA password or read/write (RW) access rights can issue the
REBUILD command.

The RESTRICT Command
Only users with the DBA password may use the RESTRICT command.

The FSCAN Facility
Users with ACCESS=RW have unlimited access to the data source, except for any
restrictions imposed by the RESTRICT or NAME attributes. Users with ACCESS=U can
display the entire data source, except for any restrictions imposed by the RESTRICT or
NAME attributes; however, users with ACCESS=U cannot input or delete instances and
can update non-key fields only. Users whose access to any portion of the data source is
limited to ACCESS=R cannot use FSCAN.

FSCAN honors DBA security restrictions on segments and fields; it prohibits display of
those segments and fields from which the user is restricted. FSCAN does not honor DBA
field value restrictions and displays all field values regardless of the user.

If the user has no access to a key field in the root segment, that user is blocked from
using FSCAN on the data source. If the user has no access to a segment, that segment is
not listed on the menu that appears when the user enters the CHILD command.

The SCAN Facility
The rules for accessing a data source are the same as for FSCAN except that, in addition,
users with ACCESS=W cannot use SCAN.

The TABLE or MATCH Command
A user who has access of R or RW may use the TABLE command. Users with access of
W or U may not.

 Limiting Data Source Access: The RESTRICT Attribute

Describing Data 10-17

Limiting Data Source Access: The RESTRICT Attribute
The ACCESS attribute determines what a user can do with a data source. The optional
RESTRICT attribute further restricts a user’s access to certain fields, values, or segments.

Syntax How to Limit Data Source Access
...RESTRICT=level, NAME={name|SYSTEM} [, VALUE=test],$

where:
level

Can be one of the following:
FIELD

Specifies that the user cannot access the fields named with the NAME
parameter.

SEGMENT

Specifies that the user cannot access the segments named with the NAME
parameter.

PROGRAM

Specifies that the program named with the NAME parameter will be called
whenever the user uses the data source (discussed in Program
Accounting/Resource Limitation on page 10-37).

SAME

Specifies that the user has the same restrictions as the user named in the NAME
parameter. No more than four nested SAME users are valid.

NOPRINT

Specifies that the field named in the NAME or SEGMENT parameter can be
mentioned in a request statement, but will not be displayed.

name
Is the name of the field or segment you wish to restrict. When used after NOPRINT,
this can only be a field name. NAME=SYSTEM, which can only be used with value
tests, restricts every segment in the data source, including descendant segments.
Multiple fields or segments can be specified by issuing the RESTRICT attribute
several times for one user.

VALUE
Specifies that the user can have access to only those values that meet the test
described in the test parameter.

test

Is the value test that the data must meet before the user can have access to it.

Note: For write access, if name is a segment name, a MATCH key ON
MATCH/NOMATCH is performed. For any other name, a validate is done without a
MATCH.

Example Limiting Data Source Access
USER=BILL ,ACCESS=R ,RESTRICT=SEGMENT ,NAME=COMPSEG,$

Providing Data Source Security: DBA

10-18 Information Builders

Restricting Access to Fields and Segments
The RESTRICT attribute identifies the segments or fields that the user will not be able to
access. Anything not named in the RESTRICT attribute will be accessible.

Without the RESTRICT attribute, the user has access to the entire data source. Users may
be limited to reading, writing, or updating new records, but every record in the data
source is available for the operation.

Syntax How to Restrict Access to Fields and Segments
The syntax to restrict access to a field or segment is

...RESTRICT=level, NAME=name,$

where:

level

Can be one of the following:

FIELD

Specifies that the user cannot access the fields named with the NAME
parameter.

SEGMENT

Specifies that the user cannot access the segments named with the NAME
parameter.

SAME

Specifies that the user has the same restrictions as the user named in the NAME
parameter.

NOPRINT

Specifies that the field named in the NAME or SEGMENT parameter can be
mentioned in a request statement but will not be displayed. When used after
NOPRINT, NAME can only be a field name.

name

Is the name of the field or segment you wish to restrict. When used after NOPRINT,
this can only be a field name.

NAME=SYSTEM, which can only be used with value tests, restricts every segment
in the data source, including descendant segments. Multiple fields or segments can
be specified by issuing the RESTRICT attribute several times for one user.

 Limiting Data Source Access: The RESTRICT Attribute

Describing Data 10-19

Note:

• If a field or segment is mentioned in the NAME attribute, it cannot be retrieved by
the user. If such a field or segment is mentioned in a request statement, it will be
rejected as beyond the user’s access rights. With NOPRINT, the field or segment can
be mentioned, but the data will not be displayed. The data will appear as blanks for
alphanumeric format or zeros for numeric fields.

• You can restrict multiple fields or segments by providing multiple RESTRICT
statements. For example, if you wish to restrict Harry from using both field A and
segment B, you issue the following access limits:

USER=HARRY, ACCESS=R, RESTRICT=FIELD , NAME=A,$
 RESTRICT=SEGMENT, NAME=B,$

• You can restrict as many segments and fields as you like.

• Using RESTRICT=SAME is a convenient way to reuse a common set of restrictions
for more than one password. If you specify RESTRICT=SAME and provide a user
name or password as it is specified in the USER attribute for the NAME value, the
new user will be subject to the same restrictions as the one named in the NAME
attribute. You can then add additional restrictions, as they are needed.

Example Restricting Access to a Segment
In the following example, Bill has read-only access to everything in the data source
except the COMPSEG segment:

USER=BILL ,ACCESS=R ,RESTRICT=SEGMENT ,NAME=COMPSEG,$

Example Reusing a Common Set of Access Restrictions
In the following example, both Sally and Harry have the same access privileges as BILL.
In addition, Sally is not allowed to read the SALARY field.

USER=BILL ,ACCESS=R ,RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=DIVISION EQ 'WEST', $

USER=SALLY ,ACCESS=R ,RESTRICT=SAME ,NAME=BILL,
 RESTRICT=FIELD ,NAME=SALARY,$

USER=HARRY ,ACCESS=R ,RESTRICT=SAME ,NAME=BILL, $

Note: A restriction on a segment also affects access to its descendants.

Providing Data Source Security: DBA

10-20 Information Builders

Restricting Values
You can also restrict the values to which a user has access by providing a test condition
in your RESTRICT attribute. The user is restricted to using only those values that satisfy
the test condition.

You can restrict values in one of two ways: you can restrict the values the user can read
from the data source, or you can restrict what the user can write to a data source. These
restrictions are two separate functions: one does not imply the other. You use the
ACCESS attribute to specify whether the values the user reads or the values the user
writes are restricted.

You restrict the values a user can read by setting ACCESS=R and RESTRICT=VALUE.
This type of restriction prevents the user from seeing any data values other than those
that meet the test condition provided in the RESTRICT attribute. A RESTRICT attribute
with ACCESS=R functions as an involuntary IF statement in a report request. Therefore,
the syntax for ACCESS=R value restrictions must follow the rules for an IF test in a
report request.

You restrict the values a user can write to a data source by setting ACCESS=W and
RESTRICT=VALUE. This type of restriction, which functions as a VALIDATE
command in MODIFY, limits the actual values a user can enter. Therefore, the syntax for
ACCESS=W value restrictions must follow the rules for a VALIDATE command in
MODIFY. You can also use ACCESS=W and RESTRICT=VALUE to limit the data
values in the data source for which a user can provide new values. When ACCESS=W,
the user can access all data values in the data source. The user will be prohibited from
entering certain values or new values for certain existing values.

If you want to prevent a user both from entering certain values and from seeing other
values, you must issue two RESTRICT attributes: one with ACCESS=W, which limits
the values a user can write or alter, and one with ACCESS=R, which limits the values the
user can see. ACCESS=RW is meaningless with a RESTRICT=VALUE statement.

Note: You can display a table listing users and their access privileges with the EX
DBATABLE command described in Displaying the Decision Table on page 10-32. For
DBATABLE to work properly, you must list all users who have no value restrictions
prior to users with value restrictions in the Master File.

Syntax How to Restrict Values a User Can Read
...ACCESS=R, RESTRICT=VALUE, NAME=name, VALUE=test,$

where:

name

Is the name of the segment on which you are performing the tests. To specify all
segments in the data source, specify NAME=SYSTEM.

test

Is the test being performed.

 Limiting Data Source Access: The RESTRICT Attribute

Describing Data 10-21

Example Restricting Values a User Can Read
USER=TONY ,ACCESS=R ,RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=DIVISION EQ 'WEST' ,$

With this restriction, Tony can only see records from the western division.

You type the test expression after VALUE=. The syntax of the test condition is the same
as that used by the TABLE command to screen records, except the word IF does not
precede the phrase. (Screening conditions in the TABLE command are discussed in the
Creating Reports manual.) Should several fields have tests performed on them, separate
VALUE attributes must be provided. Each test must name the segment to which it
applies. For example:

USER=DICK ,ACCESS=R ,RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=DIVISION EQ 'EAST' OR 'WEST',$
 NAME=IDSEG,
 VALUE=SALARY LE 10000,$

If a single test condition exceeds the allowed length of a line, it can be provided in
sections. Each section must start with the attribute VALUE= and end with the terminator
(,$). For example:

USER=SAM, ACCESS=R, RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=DIVISION EQ 'EAST' OR 'WEST',$
 VALUE=OR 'NORTH' OR 'SOUTH',$

Note: The second and subsequent lines of a value restriction must begin with the
keyword OR.

You can apply the test conditions to the parent segments of the data segments on which
the tests are applicable. Consider the following example:

USER=DICK ,ACCESS=R ,RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=DIVISION EQ 'EAST' OR 'WEST',$
 NAME=IDSEG,
 VALUE=SALARY LE 10000, $

The field named SALARY is actually part of a segment named COMPSEG. Since the
test is specified with NAME=IDSEG, however, the test is made effective for requests on
its parent, IDSEG. In this case, the request PRINT FULLNAME would only print the full
names of people who meet this test, that is, whose salary is less than or equal to $10,000,
even though the test is performed on a field that is part of a descendant segment of
IDSEG. If, however, the test was made effective on COMPSEG, that is,
NAME=COMPSEG, then the full name of everyone in the data source could be
retrieved, but with the salary information of only those meeting the test condition.

Providing Data Source Security: DBA

10-22 Information Builders

Restricting Values a User Can Write
If a user’s access rights are either W or U, VALUE tests used with the MODIFY
command validate new transactions. The format of the test conditions are those used in
the ON MATCH VALIDATE expressions of the MODIFY command, which is discussed
in the Maintaining Databases manual.

There are two different ways you can restrict the values a user can write to a data source:
you can restrict the values the user actually is allowed to enter, or you can restrict the
values that the user is allowed to change. You must supply an ACCESS=R restriction to
restrict the user from seeing certain data values in the data source.

The simplest type of write restriction is one that prevents the user from entering certain
values. Thus, it can be used to enforce editing restrictions. For instance, you use this type
of restriction to prevent MODIFY users from entering nonsensical values, such as a
salary of $10. You can also use this type of restriction to restrict the key values a user is
allowed to enter.

Syntax How to Restrict Values a User Can Write
...ACCESS=W, RESTRICT=VALUE, NAME=name, VALUE=test,$

where:

name

Is an arbitrary value used as the validate field name.

test

Is the test being performed.

This type of value test does not require data source values. Since it does not use the data
source, you can supply an arbitrary name for the NAME attribute. The expressions are
based entirely on transaction values and can be applied to the transaction immediately
after reading it.

Syntax How to Restrict Values a User Can Enter in a Segment
If your MODIFY procedure contains MATCH commands, you may want to restrict the
values a user can enter on a segment level by supplying a segment name for NAME=.
This creates a condition similar to an ON MATCH VALIDATE phrase.

...ACCESS=W, RESTRICT=VALUE, NAME=name, VALUE=test,$

where:

name

Is the name of the segment on which you perform the test.

test

Is the test being performed.

 Limiting Data Source Access: The RESTRICT Attribute

Describing Data 10-23

Example Restricting Values a User Can Write
This example prevents Chuck from entering a salary that is greater than 20,000 or less
than 5000. If you use an arbitrary value for NAME=, as shown above, you have created a
global restriction similar to the VALIDATE command in MODIFY.

(A) USER=CHUCK ,ACCESS=W ,RESTRICT=VALUE ,
 NAME=CHRANGE,
 VALUE=SALARY LT 20000 AND SALARY GT 5000,$

(B) USER=CHUCK ,ACCESS=W ,RESTRICT=VALUE ,NAME=COMPSEG,
 VALUE=SALARY LT 20000 AND SALARY GT 5000,$

The difference between the restriction created in example B and that created by example
A has to do with your MODIFY procedures. The conditions in the global restriction
created by example A are applied prior to MATCH logic in the MODIFY request. The
conditions created by example B are applied after your first ON MATCH condition right
before the action (UPDATE or DELETE) and can reference D. fields.

Restricting Values a User Can Alter
You can also restrict the values a user with ACCESS=W can alter. This type of
restriction is dependent on the values that are currently in the data source and prevents
the user from changing certain records. The user will be allowed to perform actions only
on the records that pass the validation test.

Syntax How to Restrict Values a User Can Alter
The syntax of this type of value test is

...ACCESS=W, RESTRICT=VALUE, NAME=name, VALUE=test,$

where:

name

Is the name of the segment on which you perform the test.

test

Is the test being performed.

Providing Data Source Security: DBA

10-24 Information Builders

Example Restricting Values a User Can Alter
USER=CHUCK ,ACCESS=U ,RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=D.DIVISION EQ 'EAST' ,$

The prefix D. in front of the field DIVISION signals the use of the data source value of
DIVISION. In this case, user Chuck can only change records of people who are in the
EAST division. If, instead, you use

VALUE=DIVISION EQ 'EAST'

for the value test, Chuck will be able to change any record he wants, but the only value
he can enter for the DIVISION field is EAST.

The segment name on which the test is to be applied is given as the NAME parameter. If
a request statement does not perform any action on this segment, the test itself is not
performed. This is true even if you are making changes to a segment that is a child of the
segment on which the test is performed.

The VALUE tests are added to any VALIDATE conditions that the MODIFY request
contains. Only transactions passing both the VALIDATE and VALUE tests are accepted
for processing.

Restricting Both Read and Write Values
In many cases it will prove useful to issue both ACCESS=W (for MODIFY) and
ACCESS=R (for TABLE) value restrictions for a user. This will both limit the values a
user can write to the data source and limit the data values that the user can actually see.
You do this by issuing a RESTRICT=VALUE attribute with ACCESS=R to prohibit the
user from seeing any values other than those specified in the test condition. You then
issue a RESTRICT=VALUE attribute with ACCESS=W that specifies the write
restrictions placed on the user. You cannot use ACCESS=RW to do this.

Example Restricting Both Read and Write Values
USER=TILLY ,ACCESS=R ,RESTRICT=VALUE ,NAME=IDSEG,
 VALUE=DIVISION EQ 'NORTH',$
 ACCESS=W ,RESTRICT=VALUE ,NAME=DIVTEST,
 VALUE=DIVISION EQ 'NORTH',$

Note: HLI requires ACCESS=RW.

 Placing Security Information in a Central Master File

Describing Data 10-25

Placing Security Information in a Central Master File
The DBAFILE attribute enables you to place all of the passwords and restrictions for
many Master Files in one central file. Each individual Master File points to this central
control file. Groups of Master Files with the same DBA password may share a common
DBAFILE which itself has the same DBA password.

There are several benefits to this technique. The primary ones are:

• Passwords only have to be stored once when they are applicable to a group of data
sources. This simplifies password administration.

• Data sources with different DBA passwords can now be JOINed or COMBINEd. In
addition, individual DBA information remains in effect for each data source in a
JOIN or COMBINE.

The central DBAFILE is a standard Master File. Other Master Files can use the password
and security restrictions listed in the central file by specifying its file name with the
DBAFILE attribute.

Note:

• All Master Files that specify the same DBAFILE have the same DBA password.

• The central DBAFILE may include additional attributes before the END statement
that signifies the presence of DBA information. The DBA password in the
DBAFILE is the same as the password in all the Master Files that refer to it. This
prevents individuals from substituting their own security. All of these Master Files
should be encrypted.

• The DBAFILE may contain a list of passwords and restrictions following the DBA
password. These passwords apply to all data sources that reference this DBAFILE.
In the example above, PASS=BILL, with ACCESS=R (read only), applies to all data
sources that contain the attribute DBAFILE=FOUR.

• After the common passwords, the DBAFILE may specify data source-specific
passwords and additions to general passwords. You implement this feature by
including FILENAME attributes in the DBA section of the DBAFILE (for example,
FILENAME=TWO). Consult File Naming Requirements for DBAFILE on page
10-27 for additional information about the FILENAME attribute.

• Data source-specific restrictions override general restrictions for the specified data
source. In the case of a conflict, passwords in the FILENAME section take
precedence. For example, a DBAFILE might contain ACCESS=RW in the common
section, but specify ACCESS=R for the same password by including a FILENAME
section for a particular data source.

• Value restrictions accumulate; all value restrictions must be satisfied before retrieval.
In the preceding example, note the two occurrences of PASS=JOE. JOE is a
common password for all data sources, but in FILENAME=THREE it carries an
extra restriction, RESTRICT=..., which applies only to data source THREE.

Providing Data Source Security: DBA

10-26 Information Builders

Syntax How to Place Security Attributes in a Central Master File
END
DBA=dbaname, DBAFILE=filename ,$

where:

dbaname

Is the same as the dbaname in the central file.

filename

Is the name of the central file.

You can specify passwords and restrictions in a DBAFILE that apply to every Master
File that points to that DBAFILE; you can also include passwords and restrictions for
specific Master Files by including FILENAME attributes in the DBAFILE.

Example Placing Security Attributes in a Central Master File
The following example shows a group of Master Files that share a common DBAFILE
named FOUR:

ONE MASTER
FILENAME=ONE
 .
 .
END
DBA=ABC, DBAFILE=FOUR,$

TWO MASTER
FILENAME=TWO
 .
 .
END
DBA=ABC, DBAFILE=FOUR,$

THREE MASTER
FILENAME=THREE
 .
 .
END
DBA=ABC,
DBAFILE=FOUR,$

 Placing Security Information in a Central Master File

Describing Data 10-27

FOUR MASTER
FILENAME=FOUR,$
SEGNAME=mmmmm,$
FIELDNAME=fffff,$
END
DBA=ABC,$
 PASS=BILL,ACCESS=R,$
 PASS=JOE,ACCESS=R,$
FILENAME=TWO,$
 PASS=HARRY,ACCESS=RW,$
FILENAME=THREE,$
 PASS=JOE,ACCESS=R,RESTRICT=...,$
 PASS=TOM,ACCESS=R,$

File Naming Requirements for DBAFILE
When a DBAFILE includes a FILENAME attribute for a specific Master File, the
FILENAME attribute in the referencing Master File must be the same as the FILENAME
attribute in the DBA section of the DBAFILE. This prevents users from renaming a
Master File to a name not known by the DBAFILE.

Example DBAFILE Naming Conventions
ONE MASTER
FILENAME=XONE
 .
 .
 .
END
DBA=ABC, DBAFILE=FOUR,$

FOUR MASTER
FILENAME=FOUR
 .
 .
 .
END
DBA=ABC,$
 .
 .
 .
FILENAME=XONE,$
 .
 .
 .

ONE MASTER is referred to in requests as TABLE FILE ONE. However, both ONE
MASTER and the DBA section of the DBAFILE, FOUR MASTER, specify
FILENAME=XONE.

Providing Data Source Security: DBA

10-28 Information Builders

Connection to Existing DBA System With DBAFILE
If there is no mention of the new attribute, DBAFILE, there will be no change in the
characteristics of an existing system. In the current system, when a series of data sources
is JOINed, the first data source in the list is the controlling data source. Its passwords are
the only ones examined. For a COMBINE, only the last data source’s passwords take
effect. All data sources must have the same DBA password.

In the new system, the DBA sections of all data sources in a JOIN or COMBINE are
examined. If DBAFILE is included in a Master File, then its passwords and restrictions
are read. To make the DBA section of a data source active in a JOIN list or COMBINE,
specify DBAFILE for that data source.

Once you start to use the new system, you should convert all of your Master Files. For
database administrators who want to convert existing systems but do not want a separate
physical DBAFILE, the DBAFILE attribute can specify the data source itself.

Example Connecting to an Existing DBA System With DBAFILE
FILENAME=SEVEN,
 SEGNAME=..
 FIELDNAME=...
 .
 .
 .
END
DBA=ABC,DBAFILE=SEVEN,$ (OR DBAFILE= ,$)
 PASS=...
 PASS=...

Combining Applications With DBAFILE
Since each data source now contributes its own restrictions, you can now JOIN and
COMBINE data sources that come from different applications and have different DBA
passwords. The only requirement is a valid password for each data source. You can
therefore grant access rights for one application to an application under the control of a
different DBA by assigning a password in your system.

Using Filters
You can assign screening conditions to a data source that are automatically applied to
any report request that accesses the data source. See the Creating Reports manual for
details.

 Placing Security Information in a Central Master File

Describing Data 10-29

Summary of Security Attributes
The following is a list of all the security attributes used in FOCUS:

Attribute Alias Maximum Length Meaning

DBA DBA 8 Value assigned is code name of
the Database Administrator
(DBA) who has unrestricted
access to the data source.

USER PASS 8 Values are arbitrary code names,
identifying users for whom
security restrictions will be in
force.

ACCESS ACCESS 8 Levels of access for this user.
Values are:

R read only
W write new segments only
RW read and write
U update values only

RESTRICT RESTRICT 8 Types of restrictions to be
imposed for this access level.
Values are:

SEGMENT

FIELD

VALUE

SAME

PROGRAM

NOPRINT

NAME NAME 66 Name of segment or field
restricted or of the program to be
called.

VALUE VALUE 80 Test expression which must be
true when RESTRICT=VALUE is
the type of limit.

DBAFILE DBAFILE 8 Names the Master File that
contains passwords and
restrictions to use.

Providing Data Source Security: DBA

10-30 Information Builders

Hiding the Restriction Rules: The ENCRYPT Command
Since the restriction information for a FOCUS data source is stored in its Master File,
you will want to encrypt the Master File in order to prevent users from examining the
restriction rules. Only the Database Administrator can encrypt a description. Thus, you
must set PASS=DBAname before you issue the ENCRYPT command. The syntax of the
ENCRYPT command varies from operating system to operating system. See the
Overview and Operating Environments manual for information on your operating
system.

Syntax How to Hide Restriction Rules: ENCRYPT Command
ENCRYPT FILE filename

where:

filename

Is the name of the file to be encrypted.

Example Encrypting and Decrypting Master Files
The following is an example of the complete procedure:

SET PASS=JONES76
ENCRYPT FILE PERS

The process can be reversed if you wish to change the restrictions. The command to
restore the description to a readable form is DECRYPT.

The DBA password must be issued with the SET command before the file can be
decrypted. For example:

SET PASS=JONES76
DECRYPT FILE PERS

 Hiding the Restriction Rules: The ENCRYPT Command

Describing Data 10-31

Encrypting Data
You may also use the ENCRYPT command within the Master File to encrypt some or all
of its segments. When encrypted files are stored on their external media (disk or tape)
they are secure from unauthorized examination.

Encryption takes place on the segment level; that is, the entire segment is encrypted. The
request for encryption is made in the Master File by setting the attribute ENCRYPT to
ON.

Example Encrypting Data
SEGMENT=COMPSEG, PARENT=IDSEG, SEGTYPE=S1, ENCRYPT=ON,$

You must specify the ENCRYPT attribute before you enter any data in the data source.
The message NEW FILE… must appear when the encryption is first requested.
Encryption cannot be requested later by a change to the Master File and cannot be
removed once it has been requested and any data has been entered in the data source.

Performance Considerations for Encrypted Data
There is a small loss in processing efficiency when data is encrypted. You can minimize
this loss by grouping the sensitive data fields together on a segment and making them a
separate segment of SEGTYPE=U, unique segment, beneath their original segment. For
example, suppose the data items on a segment are:

LASTNAME
FIRSTNAME
ADDRESS
SALARY
INCREASE
SEX
BIRTHDAY

sensitive
sensitive

They should be grouped as:

LASTNAME
FIRSTNAME
ADDRESS
SEX
BIRTHDAY

SEGTYPE=U ENCRYPT=ON

SALARY
INCREASE

Providing Data Source Security: DBA

10-32 Information Builders

Restricting Existing Files
When you write a new Master File for a new data source and include security limitations,
data added to the data source is automatically protected according to those rules. If you
write a new Master File for an already existing data source that contains no data (that is,
one in which the FOCUS MODIFY or MAINTAIN command produces the message
NEW FILE or one for which a CREATE FILE command must be issued in MVS) the
data will also be automatically protected. If, however, you have existing files to which
you want to add security limitations, you need to use the RESTRICT command. (Note:
This is not the RESTRICT attribute described in Limiting Data Source Access: The
RESTRICT Attribute on page 10-17.)

If an existing FOCUS data source has no DBA rules and you want to add DBA rules,
perform the following:

1. Edit the Master File and add the DBA rules.

2. Issue the RESTRICT command to write the DBA password to the data source.

Note: The RESTRICT command cannot be used for non-FOCUS data sources. See the
Overview and Operating Environments manual for specific syntax of the RESTRICT
command for your operating environment.

Displaying the Decision Table
When you enter security attributes for a Master File, FOCUS creates an internal decision
table that lists users and their access privileges. You can display the decision table
associated with a given data source whenever the Master File of the data source is not
encrypted. Since you have to decrypt your Master File when you change or augment
passwords, you can request a decision table picture to check your work. You can also
decrypt your Master File to check your decision table. In FOCUS, after you have
decrypted your file, type EX DBATABLE and provide the file name when prompted for
it.

 Hiding the Restriction Rules: The ENCRYPT Command

Describing Data 10-33

Syntax How to Display the Decision Table
EX DBATABLE filename, {LONG|SHORT}

where:

filename

Is the name of the Master File for which you want a decision table.

LONG

Displays 66 characters in the NAME column.

SHORT

Display 18 characters in the NAME column.

Note: The DBATABLE procedure is supplied with FOCUS. Contact your system
administrator if you cannot locate it.

Example Displaying the Decision Table
The following example displays the decision table:

Providing Data Source Security: DBA

10-34 Information Builders

Setting Passwords Externally
Passwords can also be set automatically by an external security system such as RACF®,
CA-ACF2®, or CA-Top Secret®. Passwords issued this way are set when FOCUS is first
entered and may be permanent (that is, not alterable by subsequent SET USER, SET
PASS or -PASS commands); or they may be default passwords that can be subsequently
overridden; or they may be permanent for some users, defaults for other users, and not
set at all for yet other users.

The advantage of setting FOCUS passwords externally is that the password need not be
known by the user, does not require prompting, and does not have to be embedded in a
PROFILE FOCEXEC or an encrypted FOCEXEC.

Passwords set this way must match the passwords specified in the Master Files of the
data sources being accessed.

See your installation documentation for FOCUSID installation instructions.

FOCEXEC Security
Most data security issues are best handled by the FOCUS DBA facility. Nevertheless,
some additional data security facilities are incorporated within Dialogue Manager. These
are:

• Suppressing password display.

• Setting passwords in encrypted FOCEXECs.

• Defining variable passwords.

• Encrypting and decrypting FOCEXECs.

• Locking FOCEXEC users out of FOCUS.

External security systems can also set passwords through the FOCUSID exit routine.

 FOCEXEC Security

Describing Data 10-35

Suppressing Password Display
The NODISPLAY attribute can be used in combination with -CRTFORM and -PASS to
create a password prompt with no display of the input characters.

Syntax How to Suppress Password Display
<.NODISP.&mypass

Example Suppressing Password Display
Consider the following example, in which the attribute .NODISP before the variable
instructs the system to accept the response, but not display it, and to set the password to
the value that was altered:

-SET &MYPASS = '12345678' ;
-CRTFORM
-" ENTER YOUR PASSWORD <.NODISP.&MYPASS "
SET PASS = &MYPASS

Setting Passwords in Encrypted FOCEXECs
Passwords can be set within FOCEXECs and tied to different portions of FOCEXECs
according to this syntax:

-PASS password

Since -PASS is a Dialogue Manager command, it executes immediately and is not sent to
the FOCSTACK. This means that the user need not issue the password with the SET
command. It also means that the password is not visible to anyone. Of course, the
procedure must be encrypted so that printing the procedure cannot reveal the password.

Defining Variable Passwords
The Dialogue Manager command -PASS can have a variable attached to it as well as a
literal. The syntax is:

-PASS &value

For example:

-PASS &MYPASS
-PASS &VAL.ENTER YOUR PASSWORD.

This command is only visible when you edit the FOCEXEC. It does not appear when the
ECHO option is ALL and is not printed in a batch run log.

Providing Data Source Security: DBA

10-36 Information Builders

Encrypting and Decrypting FOCEXECs
You may want to keep the actual text of a stored FOCEXEC confidential while allowing
users to execute the FOCEXEC. You may want to do this either because there is
confidential information stored in the FOCEXEC or because you do not want the
FOCEXEC changed by unauthorized users. You can protect a stored FOCEXEC from
unauthorized users with the ENCRYPT command.

Any user can execute an encrypted FOCEXEC, but you must decrypt the FOCEXEC to
view it. Only a user with the DBA password can decrypt the FOCEXEC.

Syntax How to Encrypt and Decrypt FOCEXECs
You use the following procedure to encrypt the FOCEXEC named SALERPT:

SET PASS = DOHIDE
ENCRYPT FILE SALERPT FOCEXEC

Anyone can execute the FOCEXEC by typing EX SALERPT. The FOCEXEC can only
be viewed by decrypting it, as follows:

SET PASS = DOHIDE
DECRYPT FILE SALERPT FOCEXEC

Encrypted FOCEXECs cannot be echoed (that is, have their commands displayed on the
terminal), so &ECHO has no effect.

Locking FOCEXEC Users Out of FOCUS
Users can normally respond to a Dialogue Manager value request with QUIT and return
to the FOCUS command level. In situations where it is important to prevent users from
entering or returning to FOCUS, the environment can be locked and QUIT can be
deactivated by entering in a FOCEXEC:

-SET &QUIT=OFF;

With QUIT deactivated, any attempt to leave the Dialogue Manager environment will
produce an error message. Following the error message, the user will be reprompted for
the needed value.

A user may still terminate the session from inside a locked environment by responding to
a prompt with:

QUIT FOCUS

This returns the user to the operating system, not to the FOCUS command level.

The default setting for &QUIT is ON.

 Program Accounting/Resource Limitation

Describing Data 10-37

Program Accounting/Resource Limitation
In addition to controlling access to a data source, FOCUS security features can be used
for program accounting and limiting the amount of computer resources a given user can
use. When you specify RESTRICT=PROGRAM in the Master File, you automatically
call a user-written program to monitor various people’s use of the data source. You can
also use value tests to limit the number of records that can be requested, thus limiting
waste that may result from a user requesting unwanted data.

Additionally, the Usage Accounting and Security Exit Routine (UACCT) provides
information on usage statistics and attempted violations to FOCUS data source security,
as well as to external security systems.

Program Accounting
You can use FOCUS security attributes to specify that a user-written program be called
immediately after a TABLE or GRAPH command has completed, but before the report is
printed. You activate this user-written program by assigning the value PROGRAM to the
RESTRICT attribute. The program is passed the statistics of the run (that is, number of
records retrieved, lines of sorted results) and the identity of each data field that was
active in the run. You can use this user program exit to:

• Monitor the retrieval activity for particular data sources. For instance: number of
requests, number of records retrieved, distribution of usage by user category (by
userid or password identity).

• Monitor the usage frequency of items in a data source.

• Perform usage accounting based on values such as number of records retrieved.

• Provide another level of security in which the user program exit determines whether
the report should be displayed.

The accounting aspects of this feature are enforceable only for the TABLE and GRAPH
commands, not the TABLEF command.

Providing Data Source Security: DBA

10-38 Information Builders

Activating a DBA User Program
You activate a DBA user program by adding the following attributes to the security
section of any Master File for each user that you want the program to monitor

USER=name, ACCESS=R, RESTRICT=PROGRAM,
NAME=pgmname, VALUE=returncode,$

where:

name

Is the arbitrary code name used to identify the user (8 bytes).

pgmname

Is the name of the user-written program (8 bytes).

returncode

Must be matched with the DBA name (8 bytes).

For example:

USER=PETER, ACCESS=R, RESTRICT=PROGRAM,
NAME=PETER1, VALUE=D76,$

You can specify other restrictions for the users mentioned in addition to calling the
program.

Specifications for the User-Written Program
The user program must be coded as a subroutine in a language that can be dynamically
linked at FOCUS execution time in the operating environment. COBOL is acceptable in
all environments, as are PL/I and Assembler. Languages acceptable for different
environments are covered in the Overview and Operating Environments manual.

Six arguments are supplied to the user program. The first five of these are computed by
FOCUS, the last is returned by the user program to FOCUS. The value of the last
argument is matched to a value provided in the DBA section of the Master File. The
purpose of this is to prevent a spurious program of the same name from being substituted
for the real one. If the DBA value and the retrieval value do not match, the report is not
printed and FOCUS exits immediately.

 Program Accounting/Resource Limitation

Describing Data 10-39

The arguments to the call are:

Argument Format Length Description

FILEID Alpha 18 bytes The name of the data source.

NUMB Int 4 bytes The number of data and defined fields in
the data source.

ACT Bit String 8 byte units Each bit is associated with a data field. A
value of 1 means active for the request.

RECORDS Int 4 bytes Number of records retrieved.

LINES Int 4 bytes Number of records (not including options
such as headings, footings, and page
numbers) to be printed.

RETVALUE Alpha 8 bytes Returned by user program to be matched
with DBA-supplied value.

Resource Limitation
You can make a VALUE condition for some overall limitation on retrieval ability. For
instance, you can limit the maximum number of records a user can retrieve in a single
TABLE request. This restriction can be activated if a selected segment is referred to in
the request, or it can be active for every request.

Record limitation is added by the phrase

RESTRICT=VALUE ,NAME= {segname|SYSTEM} ,VALUE=RECORDLIMIT EQ n,$

where:

n

Is an integer greater than 0.

For example:

USER=TILLY, ACCESS=R, RESTRICT=VALUE, NAME=SYSTEM,
VALUE=RECORDLIMIT EQ 1000, $

or

USER=TILLY, ACCESS=R, RESTRICT=VALUE, NAME=COMPSEG,
VALUE=RECORDLIMIT EQ 1000, $

The second example will limit the number of records retrieved only if fields from
segment COMPSEG are referred to in the report request.

For non-FOCUS data sources, READLIMIT EQ can be used exactly as RECORDLIMIT
EQ to set an automatic maximum on the number of successful reads issued for sequential
data sources or the number of calls made to an external file system.

Providing Data Source Security: DBA

10-40 Information Builders

Usage Accounting and Security Exit Routine (UACCT)
The Usage Accounting and Security Exit Routine (UACCT) provides information for an
installation:

• To log FOCUS usage after FOCUS commands which access data, such as TABLE,
MODIFY, or MATCH.

• To capture attempted violations of the DBA provisions in the Master File.

• To trap violations detected by external security systems.

The distributed copy of FOCUS contains a dummy version of the UACCT exit routine.
To use a working version of UACCT, you must install it as described in your installation
documentation.

Absolute File Integrity
FOCUS can perform shadow paging to guarantee the integrity of any FOCUS data source
created. This option does require extra disk space, so it is up to the Database
Administrator to decide whether Absolute File Integrity is necessary for the data source.

FOCUS shadow paging is accomplished by checkpoints and directory pages, which, in
one stroke, change the shadow pages into current database pages. Basically, FOCUS
creates a shadow image of a FOCUS data source, with each FOCUS page having a
corresponding shadow page. At any point, one of the data source images has complete
data integrity, regardless of what happens to the other. Therefore, the data integrity of a
FOCUS data source will never be compromised by a system crash or other
circumstances.

Absolute File Integrity is available for FOCUS data sources in all operating system
environments. (Because CMS automatically provides shadow paging, invoking the
FOCUS facility for Absolute File Integrity is generally not necessary under CMS.)

Note: IBM no longer guarantees data integrity for file mode A6 as of VM/SP6. FOCUS
can still shadow the data source correctly but IBM does not guarantee integrity on these
data sources.

 Absolute File Integrity

Describing Data 10-41

Syntax How to Invoke Absolute File Integrity
To invoke Absolute File Integrity in FOCUS, before creating the data source with the
CREATE FILE command issue the following command

SET SHADOW = value

where:

value

Can be one of the following:

OFF
Does not invoke Absolute File Integrity. This is the default value.

ON
Invokes Absolute File Integrity.

OLD
Invokes the use of the shadow technology available in FOCUS releases prior to
7.0 (before the size limit for FOCUS data sources was increased). This means
fewer pages are shadowed. If your FOCUS data source was created with this
option, the maximum number of pages is 63,551. If this limit is exceeded,
FOCUS displays the (FOC198) error message.

Procedure How to Invoke Absolute File Integrity for Existing Data Sources
If the data source has already been created, take the following steps to invoke Absolute
File Integrity:

1. Specify the REBUILD, REORG, and DUMP options with the REBUILD command.

2. Invoke the Absolute File Integrity facility with the SET SHADOW=ON command.

3. Create the FOCUS data source with the CREATE FILE command.

4. Specify the REBUILD, REORG, and LOAD options with the REBUILD command.

Describing Data A-1

APPENDIX A

Master Files and Diagrams

Topics:

• Creating Sample Data Sources

• The EMPLOYEE Data Source

• The JOBFILE Data Source

• The EDUCFILE Data Source

• The SALES Data Source

• The PROD Data Source

• The CAR Data Source

• The LEDGER Data Source

• The FINANCE Data Source

• The REGION Data Source

• The COURSES Data Source

• The EMPDATA Data Source

• The EXPERSON Data Source

• The TRAINING Data Source

• The PAYHIST File

• The COMASTER File

• The VideoTrk and MOVIES Data
Sources

• The VIDEOTR2 Data Source

• The Gotham Grinds Data Sources

This appendix contains data source descriptions and structure
diagrams for the examples used throughout the documentation.

Master Files and Diagrams

A-2 Information Builders

Creating Sample Data Sources
You can create the sample data sources on your user ID by executing the procedures
specified below. These FOCEXECs are supplied with FOCUS. If they are not available
to you or if they produce error messages, contact your systems administrator.

To create these files, first make sure you have read access to the Master Files.

Data Source Load Procedure Name

EMPLOYEE,
EDUCFILE, and
JOBFILE

Under CMS enter:

EX EMPTEST

Under MVS, enter:

EX EMPTSO

These FOCEXECs also test the data sources by generating
sample reports. If you are using Hot Screen, remember to press
either Enter or the PF3 key after each report. If the
EMPLOYEE, EDUCFILE, and JOBFILE data sources already
exist on your user ID, the FOCEXEC will replace the data
sources with new copies. This FOCEXEC assumes that the
high-level qualifier for the FOCUS data sources will be the
same as the high-level qualifier for the MASTER PDS that was
unloaded from the tape.

SALES
PROD

EX SALES
EX PROD

CAR none (created automatically during installation)

LEDGER
FINANCE
REGION
COURSES
EXPERSON

EX LEDGER
EX FINANCE
EX REGION
EX COURSES
EX EXPERSON

EMPDATA
TRAINING

EX LOADEMP
EX LOADTRAI

PAYHIST none (PAYHIST DATA is a sequential data source and is
allocated during the installation process)

COMASTER none (COMASTER is used for debugging other Master Files)

VideoTrk and
MOVIES

EX LOADVTRK

VIDEOTR2 EX LOADVID2

Gotham Grinds EX LOADGG

 The EMPLOYEE Data Source

Describing Data A-3

The EMPLOYEE Data Source
The EMPLOYEE data source contains data about a company’s employees. Its segments
are:

• EMPINFO, which contains employee IDs, names, and positions.

• FUNDTRAN, which specifies employees’ direct deposit accounts. This segment is
unique.

• PAYINFO, which contains the employee’s salary history.

• ADDRESS, which contains employees’ home and bank addresses.

• SALINFO, which contains data on employees’ monthly pay.

• DEDUCT, which contains data on monthly pay deductions.

The EMPLOYEE data source also contains cross-referenced segments belonging to the
JOBFILE and EDUCFILE files, described later in this appendix. The segments are:

• JOBSEG (from JOBFILE), which describes the job positions held by each employee.

• SECSEG (from JOBFILE), which lists the skills required by each position.

• SKILLSEG (from JOBFILE), which specifies the security clearance needed for each
job position.

• ATTNDSEG (from EDUCFILE), which lists the dates that employees attended
in-house courses.

• COURSEG (from EDUCFILE), which lists the courses that the employees attended.

Master Files and Diagrams

A-4 Information Builders

The EMPLOYEE Master File

 The EMPLOYEE Data Source

Describing Data A-5

The EMPLOYEE Structure Diagram
 STRUCTURE OF FOCUS FILE EMPLOYEE ON 09/15/00 AT 10.16.27

 EMPINFO

 01 S1

 *EMP_ID **

 *LAST_NAME **

 *FIRST_NAME **

 *HIRE_DATE **

 * **

 I

 +-----------------+-----------------+-----------------+-----------------+

 I I I I I

 I FUNDTRAN I PAYINFO I ADDRESS I SALINFO I ATTNDSEG

 02 I U 03 I SH1 07 I S1 08 I SH1 10 I KM

 ************** ************** ************** **************

 *BANK_NAME * *DAT_INC ** *TYPE ** *PAY_DATE ** :DATE_ATTEND ::

 *BANK_CODE * *PCT_INC ** *ADDRESS_LN1 ** *GROSS ** :EMP_ID ::K

 *BANK_ACCT * *SALARY ** *ADDRESS_LN2 ** * ** : ::

 *EFFECT_DATE * *JOBCODE ** *ADDRESS_LN3 ** * ** : ::

 * * * ** * ** * ** : ::

 ************** *************** *************** *************** :............::

 ************** ************** ************** :

 I I I EDUCFILE

 I I I

 I I I

 I JOBSEG I DEDUCT I COURSEG

 04 I KU 09 I S1 11 I KLU

 **************

 :JOBCODE :K *DED_CODE ** :COURSE_CODE :

 :JOB_DESC : *DED_AMT ** :COURSE_NAME :

 : : * ** : :

 : : * ** : :

 : : * ** : :

 :............: *************** :............:

 I JOBFILE ************** EDUCFILE

 I

 +-----------------+

 I I

 I SECSEG I SKILLSEG

 05 I KLU 06 I KL

 :SEC_CLEAR : :SKILLS ::

 : : :SKILL_DESC ::

 : : : ::

 : : : ::

 : : : ::

 :............: :............::

 JOBFILE :

 JOBFILE

Master Files and Diagrams

A-6 Information Builders

The JOBFILE Data Source
The JOBFILE data source contains information on a company’s job positions. Its
segments are:

• JOBSEG describes what each position is. The field JOBCODE in this segment is
indexed.

• SKILLSEG lists the skills required by each position.

• SECSEG specifies the security clearance needed, if any. This segment is unique.

The JOBFILE Master File

The JOBFILE Structure Diagram

 The EDUCFILE Data Source

Describing Data A-7

The EDUCFILE Data Source
The EDUCFILE data source contains data on a company’s in-house courses. Its segments
are:

• COURSEG contains data on each course.

• ATTNDSEG specifies which employees attended the courses. Both fields in the
segment are key fields. The field EMP_ID in this segment is indexed.

The EDUCFILE Master File

The EDUCFILE Structure Diagram

Master Files and Diagrams

A-8 Information Builders

The SALES Data Source
The SALES data source records sales data for a dairy company (or a store chain). Its
segments are:

• STOR_SEG lists the stores buying the products.

• DAT_SEG contains the dates of inventory.

• PRODUCT contains sales data for each product on each date. Note the following
about fields in this segment:

• The PROD_CODE field is indexed.

• The RETURNS and DAMAGED fields have the MISSING=ON attribute.

The SALES Master File

 The SALES Data Source

Describing Data A-9

The SALES Structure Diagram
SECTION 01

 STRUCTURE OF FOCUS FILE SALES ON 01/05/96 AT 14.50.28

 STOR_SEG
 01 S1

 *STORE_CODE **
 *CITY **
 *AREA **
 * **
 * **

 I
 I
 I
 I DATE_SEG
 02 I SH1

 *DATE **
 * **I
 * **
 * **
 * **

 I
 I
 I
 I PRODUCT
 03 I S1

 *PROD_CODE **I
 *UNIT_SOLD **
 *RETAIL_PRICE**
 *DELIVER_AMT **
 * **

Master Files and Diagrams

A-10 Information Builders

The PROD Data Source
The PROD data source lists products sold by a dairy company. It consists of one
segment, PRODUCT. The field PROD_CODE is indexed.

The PROD Master File

The PROD Structure Diagram

 The CAR Data Source

Describing Data A-11

The CAR Data Source
The CAR data source contains specifications and sales information for rare cars. Its
segments are:

• ORIGIN lists the country that manufactures the car. The field COUNTRY is
indexed.

• COMP contains the car name.

• CARREC contains the car model.

• BODY lists the body type, seats, dealer and retail costs, and units sold.

• SPECS lists car specifications. This segment is unique.

• WARANT lists the type of warranty.

• EQUIP lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

The CAR Master File

Master Files and Diagrams

A-12 Information Builders

The CAR Structure Diagram

 The LEDGER Data Source

Describing Data A-13

The LEDGER Data Source
The LEDGER data source lists accounting information. It consists of one segment, TOP.
This data source is specified primarily for FML examples. Aliases do not exist for the
fields in this Master File, and the commas act as placeholders.

The LEDGER Master File

 The LEDGER Structure Diagram

Master Files and Diagrams

A-14 Information Builders

The FINANCE Data Source
The FINANCE data source contains financial information for balance sheets. It consists
of one segment, TOP. This data source is specified primarily for FML examples. Aliases
do not exist for the fields in this Master File, and the commas act as placeholders.

The FINANCE Master File

The FINANCE Structure Diagram

 The REGION Data Source

Describing Data A-15

The REGION Data Source
The REGION data source lists account information for the east and west regions of the
country. It consists of one segment, TOP. This data source is specified primarily for FML
examples. Aliases do not exist for the fields in this Master File, and the commas act as
placeholders.

The REGION Master File

The REGION Structure Diagram

Master Files and Diagrams

A-16 Information Builders

The COURSES Data Source
The COURSES data source describes education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

The COURSES Master File

The COURSES Structure Diagram

 The EMPDATA Data Source

Describing Data A-17

The EMPDATA Data Source
The EMPDATA data source contains organizational data about a company’s employees.
It consists of one segment, EMPDATA. Note the following:

• The PIN field is indexed.

• The AREA field is a temporary one.

The EMPDATA Master File

The EMPDATA Structure Diagram

Master Files and Diagrams

A-18 Information Builders

The EXPERSON Data Source
The EXPERSON data source contains personal data about individual employees. It
consists of one segment, ONESEG.

The EXPERSON Master File

The EXPERSON Structure Diagram

 The TRAINING Data Source

Describing Data A-19

The TRAINING Data Source
The TRAINING data source contains training course data for employees. It consists of
one segment, TRAINING. Note the following:

• The PIN field is indexed.

• The EXPENSES, GRADE, and LOCATION fields have the MISSING=ON
attribute.

The TRAINING Master File

The TRAINING Structure Diagram

Master Files and Diagrams

A-20 Information Builders

The PAYHIST File
The PAYHIST data source contains the employees’ salary history. It consists of one
segment, PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format
sequential file.

The PAYHIST Master File

The PAYHIST Structure Diagram

 The COMASTER File

Describing Data A-21

The COMASTER File
The COMASTER file is used to display the file structure and contents of each segment in
a data source. Since COMASTER is used for debugging other Master Files, a
corresponding FOCEXEC does not exist for the COMASTER file. Its segments are:

• FILEID lists file information.

• RECID lists segment information.

• FIELDID lists field information.

• DEFREC lists a description record.

• PASSREC lists read/write access.

• CRSEG lists cross-reference information for segments.

• ACCSEG lists DBA information.

Master Files and Diagrams

A-22 Information Builders

The COMASTER Master File

 The COMASTER File

Describing Data A-23

The COMASTER Structure Diagram

Master Files and Diagrams

A-24 Information Builders

The VideoTrk and MOVIES Data Sources
The VideoTrk data source tracks customer, rental, and purchase information for a video
rental business. It can be joined to the MOVIES data source. VideoTrk and MOVIES are
used in examples that illustrate the use of the Maintain facility.

VideoTrk Master File
FILENAME=VIDEOTRK, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

MOVIES Master File
FILENAME=MOVIES, SUFFIX=FOC
SEGNAME=MOVINFO, SEGTYPE=S1
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
 FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
 FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
 FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
 FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
 FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
 FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
 FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

 The VideoTrk and MOVIES Data Sources

Describing Data A-25

VideoTrk Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/21/99 AT 12.25.19

 CUST
 01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

 I
 I
 I
 I TRANSDAT
 02 I SH1

*TRANSDATE **
* **
* **
* **
* **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
 ************** **************

Master Files and Diagrams

A-26 Information Builders

MOVIES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE MOVIES ON 05/21/99 AT 12.26.05

 MOVINFO
 01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

The VIDEOTR2 Data Source
The VIDEOTR2 data source tracks customer, rental, and purchase information for a
video rental business. It is similar to VideoTrk but is a partitioned data source with both
a Master and Access File and with a date-time field.

The VIDEOTR2 Master File
FILENAME=VIDEOTR2, SUFFIX=FOC,
ACCESS=VIDEOACX, $
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
 FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $
 DEFINE DATE/I4 = HPART(TRANSDATE, 'YEAR', 'I4');

 The VIDEOTR2 Data Source

Describing Data A-27

The VIDEOTR2 Access File
On CMS,

MASTER VIDEOTR2
 DATANAME 'VIDPART1 FOCUS A'
 WHERE DATE EQ 1991;

 DATANAME 'VIDPART2 FOCUS A'
 WHERE DATE FROM 1996 TO 1998;

 DATANAME 'VIDPART3 FOCUS A'
 WHERE DATE FROM 1999 TO 2000;

On MVS, the data set names include your user ID as the high-level qualifier:

MASTER VIDEOTR2
 DATANAME userid.VIDPART1.FOCUS
 WHERE DATE EQ 1991;

 DATANAME userid.VIDPART2.FOCUS
 WHERE DATE FROM 1996 TO 1998;

 DATANAME userid.VIDPART2.FOCUS
 WHERE DATE FROM 1999 TO 2000;

Master Files and Diagrams

A-28 Information Builders

The VIDEOTR2 Structure Diagram
 STRUCTURE OF FOCUS FILE VIDEOTR2 ON 09/27/00 AT 16.45.48

 CUST
 01 S1

 *CUSTID **
 *LASTNAME **
 *FIRSTNAME **
 *EXPDATE **
 * **

 I
 I
 I
 I TRANSDAT
 02 I SH1

 *TRANSDATE **
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
 ************** **************
 *TRANSCODE ** *MOVIECODE **I
 *QUANTITY ** *COPY **
 *TRANSTOT ** *RETURNDATE **
 * ** *FEE **
 * ** * **
 *************** ***************
 ************** **************

 The Gotham Grinds Data Sources

Describing Data A-29

The Gotham Grinds Data Sources
Gotham Grinds is a group of data sources that contain information about a specialty items
company.

The GGDEMOG Data Source
The GGDEMOG data source contains demographic information about the customers of
Gotham Grinds, a company that sells specialty items like coffee, gourmet snacks, and
gifts. It consists of one segment, DEMOG01.

The GGDEMOG Master File

Master Files and Diagrams

A-30 Information Builders

The GGDEMOG Structure Diagram

The GGORDER Data Source
The GGORDER data source contains order information for Gotham Grinds. It consists of
two segments, ORDER01 and ORDER02, respectively.

The GGORDER Master File

 The Gotham Grinds Data Sources

Describing Data A-31

The GGORDER Structure Diagram

The GGPRODS Data Source
The GGPRODS data source contains product information for Gotham Grinds. It consists
of one segment, PRODS01.

The GGPRODS Master File

Master Files and Diagrams

A-32 Information Builders

The GGPRODS Structure Diagram

The GGSALES Data Source
The GGSALES data source contains sales information for Gotham Grinds. It consists of
one segment, SALES01.

The GGSALES Master File

 The Gotham Grinds Data Sources

Describing Data A-33

The GGSALES Structure Diagram

The GGSTORES Data Source
The GGSTORES data source contains information for each of Gotham Grinds’ 12 stores
in the United States. It consists of one segment, STORES01.

The GGSTORES Master File

Master Files and Diagrams

A-34 Information Builders

The GGSTORES Structure Diagram

Describing Data B-1

APPENDIX B

Error Messages

Topics:

• Accessing Error Files

• Displaying Messages Online

If you need to see the text or explanation for any error message,
you can display it online in your FOCUS session or find it in a
standard FOCUS ERRORS file. All of the FOCUS error
messages are stored in eight system ERRORS files.

Error Messages

B-2 Information Builders

Accessing Error Files
For CMS, the ERRORS files are:

• FOT004 ERRORS

• FOG004 ERRORS

• FOM004 ERRORS

• FOS004 ERRORS

• FOA004 ERRORS

• FSQLXLT ERRORS

• FOCSTY ERRORS

• FOB004 ERRORS

For MVS, these files are the following members in the ERRORS PDS:

• FOT004

• FOG004

• FOM004

• FOS004

• FOA004

• FSQLXLT

• FOCSTY

• FOB004

 Displaying Messages Online

Describing Data B-3

Displaying Messages Online
To display a message online, issue the following query command at the FOCUS
command level

? n

where n is the message number.

The message number and text will display along with a detailed explanation of the
message (if one exists). For example, issuing the following command

? 210

displays the following:

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:

An alphabetic character has been found where all numerical digits are
required.

Describing Data C-1

APPENDIX C

User Exits for a Non-FOCUS Data Source

Topics:

• The Dynamic and Re-Entrant Private
User Exit of the FOCSAM Interface

• User-coded Data Access Modules

• Re-Entrant VSAM Compression Exit:
ZCOMP1

This appendix describes three ways to read non-FOCUS data
sources with user-written procedures.

User Exits for a Non-FOCUS Data Source

C-2 Information Builders

The Dynamic and Re-Entrant Private User Exit of the
FOCSAM Interface

The FOCSAM Interface contains a user exit that can be invoked as an alternative to the
lowest-level retrieval routines that are part of the interface. This interface is responsible
for data access to VSAM and QSAM structures. The Master File would specify
SUFFIX=VSAM or SUFFIX=FIX. This exit makes it possible to combine user-written
code, devoid of any dependence on internal FOCUS structures, with the logical retrieval
functions of the FOCSAM Interface, such as record selection logic, treatment of missing
records in multi-record files, JOINS between various types of files, and so forth. The
major features of the GETPRV exit are as follows:

1. Through the CONTEXT parameter, the exit supports reentrancy, providing the
benefit of reduced storage requirements as well as enhanced invocation performance.

2. Support for multiple concurrent exit processors is provided through an Access File
where a user exit module can be named on a per Master File basis.

3. The user exit is dynamically called at execution time, avoiding the need to modify
FOCUS after each upgrade or application of maintenance. There is no need for
link-edits to FOCUS.

4. An initialization call allows the exit code to perform initial housekeeping.

5. The QUALIF parameter supports the options (O) OPEN file, (R) OPEN request
(position), (C) CLOSE, and (F) Fin of FOCUS. These control options are in addition
to the (S), (G), and (E) read options.

6. The exit supports multiple positions on the same file.

 The Dynamic and Re-Entrant Private User Exit of the FOCSAM Interface

Describing Data C-3

Functional Requirements
Functionally, the private code is a substitute for retrieval calls typically used against, but
not limited to, key-sequenced VSAM data sources and can be used against any data
source that can be represented as such a file. The private code need not deal with any
intra-record structures represented by OCCURS clauses, nor with the translation of
FOCUS IF conditions into lower-level criteria. Both of these functions are performed by
the driving logic in the FOCSAM Interface.

The user-written code must be able to do the following:

1. Obtain a record, given a full value of the key. The key is presumed to be unique
(direct read).

2. Obtain a record that is greater than or equal to a given value of the full or partial key
(generic read).

3. Obtain the next logical record, starting from the current position in the file
(sequential read). Successive sequential reads must return records that are in
ascending sequence (bit by bit) on the key field.

4. Direct and generic reads that retrieve records must establish the starting position in
the file for subsequent sequential reads. Direct reads that fail to retrieve the requested
records need not establish these positions.

5. For the open file request (O), it must logically or physically open the file.

6. If the logical end-of-file is reached as a result of a sequential read, an end-of-file
signal must be returned. Subsequent sequential reads must return end-of-file signals
rather than error indications, for example, when processing a JOIN.

7. A ‘close’ function must be provided that results in the release of all resources and
loss of position in the file, so that subsequent open requests succeed.

8. Successive close calls must be innocuous. Be prepared to close a file that is already
closed.

9. A unique area must be obtained, for example, GETMAIN, and maintained using the
CONTEXT parameter on a per DDNAME basis.

10. The code must be serially reusable and reentrant. It must be linked AMODE 31.

User Exits for a Non-FOCUS Data Source

C-4 Information Builders

Implementation
The Dynamic GETPRV exit is linked as a separate module and loaded or called from
FOCUS.

The Master File
The Master File for data to be accessed using this user exit is exactly the same as the
description of any other data source read by the FOCSAM Interface except that the
SUFFIX must specify PRIVATE. All other READ ONLY features of the FOCSAM
Interface are fully supported.

Example Sample Master File
FILE=filename, SUFFIX=PRIVATE,$
SEGNAME=ROOT , SEGTYPE=S0,$
 GROUP=keyname , ALIAS=KEY , USAGE=xx, ACTUAL=xx ,$
 FIELD=fieldname1, ALIAS=aliasname1, USAGE=xx, ACTUAL=xx ,$
 FIELD=fieldname2, ALIAS=aliasname2, USAGE=xx, ACTUAL=xx ,$

Note: SUFFIX=PRIVATE. No other options will invoke the exit.

The Access File
An Access File is required and provides a pointer to the actual name of the private exit.
The PDS used for the Access File must be allocated to DDNAME ACCESS.

Example Sample Access File
MODNAME=pgmname,$

Example Allocating an Access File
//ACCESS DD DSN=access.file.pds.name,DISP=SHR

 The Dynamic and Re-Entrant Private User Exit of the FOCSAM Interface

Describing Data C-5

Calling Sequence
The user-coded retrieval routine is written as a standalone program. There are no
limitations to program name other than standard IBM rules. We recommend that the
program be written in a language that fully supports reentrancy, such as ASSEMBLER or
C. The parameter list is as follows:

NCHAR

Full-word binary integer, posted by the exit. A positive number indicates the length
in bytes of the record obtained; zero indicates no record or end-of-file (there is no
difference). Must be non-zero for every successful read. Used by read options (S),
(E), and (G). Do not modify the pointer. Instead, modify the location addressed by
the pointer.

DDNAME

8-byte character argument, posted by FOCSAM, corresponding to the FOCUS file
name for the generated report. For example, TABLE FILE CAR results in
DDNAME CAR, left-justified and blank-padded. Used for all options except (F). Do
not modify this parameter.

ABUFF

Full-word binary integer, posted by the exit; the absolute address of the record
obtained by this call. Used with all read options (S), (E), and (G). Do not modify this
pointer. Instead, modify the location addressed by the pointer.

RC

Full-word binary integer return code, posted by the exit. Zero indicates no error:
non-zero indicates some type of error. Used with all options. Do not modify the
pointer. Instead, modify the location addressed by the pointer.

KEY

Full-word binary integer posted by FOCSAM, containing the full value of the key
for direct or generic reads. Not significant for sequential reads. The key value is left
justified and less than 255 bytes long.

Note that the exit must know the true key length and its format. Used with options
(E) and (G). Do not modify this parameter.

User Exits for a Non-FOCUS Data Source

C-6 Information Builders

OPT

Four-byte character argument, posted by FOCSAM, indicating the type of call. Do
not modify this parameter. The OPTions are as follows:

READ OPTIONS

'S ' =sequential read.

'E ' =direct read (EQ).

'G ' =generic read (GE).

CONTROL OPTIONS

'O ' =OPEN file.

'R ' =OPEN request (position) used for recursive JOINs.

'C ' =CLOSE file.

'F ' =FIN for FOCUS -- final housekeeping should be done here.

These control and read arguments must include three trailing blanks.

CONTEXT

Full-word binary integer, posted by FOCSAM, which points to a work area
described below. Do not modify this parameter.

Note: The parameters passed to the exit are not delimited with the final parameter having
the high-order bit set on. Make sure that your program does not scan for this high-order
bit.

Work Area Control Block
EYECATCH

An eight- character string containing the literal 'PRIVATE '.

PFMCB

Full-word binary integer, posted by the exit. Generally set during OPTion (O)
processing by the exit program and returned unchanged by subsequent FOCSAM
calls. This parameter is generally used to point to the dynamic work areas used to
maintain reentrancy.

PFACB

Full-word binary integer, posted by the exit. Generally set during OPTion (O)
processing by the exit program and returned unchanged by subsequent FOCSAM
calls for OPTions (C), (R), (E), (G), and (S) and is unique by DDNAME. This is
generally used as a physical file context. This parameter is not valid for OPTion (F).

PFRPL

Full-word binary integer, posted by the exit. Generally set during OPTion (R)
processing by the exit program and returned unchanged by subsequent FOCSAM
calls for OPTions (E), (G), and (S) and is unique for each view within the above
PFACB parameter. This is generally used for logical file context.

This parameter is not valid for OPTion (F).

 The Dynamic and Re-Entrant Private User Exit of the FOCSAM Interface

Describing Data C-7

KEYLENF

Full-word binary integer, posted by the exit. Generally set during OPTion (O)
processing by the exit program and should contain the whole key length for the file.

KEYLENR

Full-word binary integer, posted by the exit. Generally set during OPTions (G) and
(E) processing by the exit program and should contain the actual key length for a
direct read.

ERRTEXT

Full-word binary integer, posted by the exit. Should contain the absolute starting
address of a message. FOCUS displays this message if the RC parameter returned by
the exit is non-zero and for OPTions (E), (G), and (S).

ERRTEXTL

Full-word binary integer, posted by the exit. It should contain the length of the above
ERRTEXT message.

INDEX

Full-word binary integer, posted by FOCSAM.

This option contains the index # by which to access the file.

0 Primary key in Master File in Master -- KEY-DKEY

1,2,e Secondary indexes in the Master File

tc KEY1-DKEY1 or KEY2-DKEY2, and so on, and INDEX=I

RESERVE1

Full-word binary integer, reserved for future use.

USERID

Full-word binary integer, posted by FOCSAM. This userid will only be present if
found in the central site security environment.

RESERVE2

Full-word binary integer, reserved for future use.

User Exits for a Non-FOCUS Data Source

C-8 Information Builders

Example Sample Assembler DSECT

GETPRVPL DS 0F
NCHAR@ DS A
DDN@ DS A
ABUF@ DS A
RC@ DS A
KEY@ DS A
OPT@ DS A
CONTEXT@ DS A
 TITLE 'GETPRV CONTEXT'
CONTEXTD DSECT
EYE DS CL8 eye catcher literal
PFMCB@ DS A handle
PFACB@ DS A file open handle
PFRPL@ DS A file retrieval handle
KEYLEN_F DS F key length for file
KEYLEN_R DS F key length for this request
RETTEXT@ DS A pointer to returned message
LRETTEXT DS F length of returned message
INDEX DS F index for file access - 0 primary 1... secondary
 DS A reserved
USERID DS CL8
 DS 2F reserved
 SPACE 1

Example Sample C Declaration Required For Invoking FFUN Function
/*
control block for additional info
*/
typedef struct getprv_inf_s {
char eye[8]; /* I: eye catcher "PRIVATE "*/
Pvoid pfmcb; /* o: p' to handle forgetprv */
 /* set up by user at first option O */
 /* I: p' to handle for getprv */
 /* passed to user by all other calls*/
Pvoid pfacb; /* o: p' to handle for file */
 /* set up by user at option O */
 /* i: p' to handle for file */
 /* passed to user at option C,R,E,G,S */
Pvoid pfrpl; /* o: p' to handle for request */
 /* set up by user at option R */
 /* i: p' to handle for request */
 /* passed to user at option E,G,S */
long keylen_fil; /* I: key length (whole) for the file . */
 /* used at option O . */
long keylen_req; /* I: key length for the direct read request*/
 /* used at direct read options G,E */
char *rettext; /* O: a'native db error msg text */
long lrettext; /* O: l'native db error msg text */

 The Dynamic and Re-Entrant Private User Exit of the FOCSAM Interface

Describing Data C-9

long index; /* I:index # by which to access file :
 = 0 - primary key
 in master - KEY|DKEY
 = 1,2,... - secondary indexes
 in master - KEY1|DKEY1 or KEY2|DKEY2 ...
 and INDEX=I */
long res1[1]; /* reserved */
char userid[8]; /* user id */
long res2[2]; /* reserved* /
} getprv_inf_t;
/*

*/
typedef void FFUN getprv_t (
 long *nchar /* out: length of data record read. =0 */
 /* if eof or no rec found {*/
 /* used in all read options S,E,G */
,char *ddn /* in : ddname to read */
 /* used in all options except F */
,char **abuf /* out: a' buffer */
 /* used in all read options S,E,G */
,long *rc /* out" return code. = 0 if ok */
 /* used in all options */
,char *key /* in: key value for read */
 /* used in read options E,G */
,char *opt /* in: read option : */
 /* S sequential read */
 /* G GE read */
 /* E EQ read */
 /* control options */
 /* O open file */
 /* R open request (position)*/
 /* C close file */
 /* F fin of focus */
,getprv_inf_t * /* in/out other info .see above */
);
#endif

User Exits for a Non-FOCUS Data Source

C-10 Information Builders

User-coded Data Access Modules
A user routine may be written to provide records to the FOCUS report writer from any
non-standard data source that cannot be directly described to FOCUS using the Master
File. The record, which can come from any data source, is treated by FOCUS exactly as
if it had come from a FOCUS data source. The user routine must be coded as a subroutine
in FORTRAN, COBOL, BAL, or PL/I, and must pass data to the FOCUS calling
program through arguments in the subroutine.

The user program is loaded automatically by the report writer and is identified by the file
suffix, in the Master File. For example, if the Master File contains:

FILE = ABC, SUFFIX = MYREAD

FOCUS will load and call the program named MYREAD to obtain data whenever there is
a TABLE, TABLEF, MATCH, or GRAPH command against file ABC.

The record returned to FOCUS must correspond to a segment instance in the Master File.
The layout of the fields in this record corresponds to the ACTUAL formats specified in
the Master File for each segment.

It is the responsibility of the user program to determine which segment to pass to FOCUS
if the Master File contains more than one segment. FOCUS will traverse the hierarchy in
a top-to-bottom, left-to-right sequence; if the user routine can anticipate which segment
FOCUS expects to be given, the number of rejected segments will decrease and the
retrieval efficiency will increase.

In FORTRAN, the subroutine MYREAD would be coded as follows:

SUBROUTINE MYREAD (LCHAR, BUF, OFFSET, RECTYP, NERRX, CSEG, REGI, NFIND,
MATCH, IGNOR, NUMFLD, NUMLEV, CVT)

where:

LCHAR

(4 byte integer) If LCHAR > 0, LCHAR is the number of characters in the record
passed back to FOCUS. If LCHAR = 0, the user routine is telling FOCUS that an
end-of-file has been encountered and the retrieval is complete. If LCHAR = -N, the
user routine is telling FOCUS that the buffer contains an error message of length N,
to be printed out, and that the user routine should not be called again. LCHAR = -1 is
reserved for Information Builders’ use.

BUF

This parameter is a 4096 byte buffer provided by FOCUS to receive the record from
the user routine.

 User-coded Data Access Modules

Describing Data C-11

OFFSET

(4 byte integer) If the user routine puts data in BUF, OFFSET should be set to 0 each
time the user routine is called. If the user routine provides its own buffer or buffers,
OFFSET is the address of the user’s buffer minus the address of BUF. A utility
called IADDR is provided to compute an address. In FORTRAN, for example, one
could code:

OFFSET = IADDR (MYBUF) - IADDR (BUF)

RECTYP

(4 byte integer) The number of the FOCUS segment corresponding to the record
being presented to FOCUS, set by the routine. These numbers correspond to either
the list obtained by issuing '? FILE filename' or the field SEGNO resulting from a
CHECK FILE filename HOLD.

NERRX

(4 byte integer) Flag set by FOCUS. If NERRX < 0, FOCUS is directing the user
routine to shut down (for example, close all files) and not provide any more records.
On return, FOCUS will not call the subroutine again.

CSEGX REGI NFIND MATCH

Reserved for Information Builders’ use.

IGNOR

(4 byte integer) FOCUS will reject any segment whose number (see RECTYP) is
greater than or equal to IGNOR. IGNOR is set by FOCUS, based on the segments
referenced in the request, but may be reset by the user routine.

NUMFLD NUMLEV

Reserved for Information Builders. Use CVT.

On CMS, FOCUS will look for MYREAD TEXT on any accessed CMS minidisk. If
MYREAD TEXT is not found, FOCUS will then look for a member MYREAD within all
TXTLIB files currently pointed at by a GLOBAL TXTLIB command.

On TSO, the MYREAD object code, and any other routine that it calls, must be
link-edited into a load module whose member name in the load library is MYREAD. This
load library can be allocated as ddname USERLIB or concatenated with the STEPLIB
program library.

User Exits for a Non-FOCUS Data Source

C-12 Information Builders

Re-Entrant VSAM Compression Exit: ZCOMP1
This re-entrant ZCOMP1 exit works with compressed VSAM and sequential files. It
requires an initial call to ZCOMP0 for initial housekeeping and a USERWD parameter to
anchor storage.

The ZCOMP1 user exit was designed to provide an exit that can be user-supplied in order
to decrypt coded fields, expand compressed records, and accomplish any other type of
user-specific data manipulation required. This exit is designed to access all files readable
by the FOCSAM Interface. It is the user’s responsibility to write and maintain this exit.

There are no special Master File requirements. SUFFIX can equal VSAM (for KSDS or
ESDS files), FIX (for sequential files), or PRIVATE (for file access through the
GETPRV user exit).

Linking ZCOMP1
After you write a ZCOMP1 user exit, it must be linked with VVSET. This process of
linking ZCOMP1 into VVSET can be accomplished by using the GENFSAM EXEC (for
VM), or the GENFSAM JCL (for MVS) that is found in the FOCCTL.DATA data set.
Note that GENFSAM is designed to link in both ZCOMP1and GETPRV user exits at the
same time. Should you only be implementing one of them, the VM EXEC generates the
correct linkage to the routine required, whereas in the MVS JCL, the appropriate lines in
the GENFSAM member must be commented out (these would be the INCLUDE
OBJECT statements). ZCOMP1 can be linked re-entrant if you plan to use the USERWD
parameter.

What Happens When You Use ZCOMP1
The FOCSAM Interface reads the record for the allocated data source. Upon a successful
read, FOCSAM calls ZCOMP0, if it exists, with the parameters listed below so that
initial housekeeping can be performed. All subsequent calls are to ZCOMP1 with the
same parameter list.

The ZCOMP1 exit is responsible for determining what to do with the parameter
information it receives. The DDNAME can be used to determine whether the associated
data source needs to be decompressed or not. If not, the user exit typically moves
A(IRECLEN) to A(ORECLEN) and A(A(IREC)) to A(A(OREC)) and returns to
FOCSAM with a zero A(STATCODE). If decompression or any other processing is
required, it is the responsibility of the user exit to do so.

After the user exit has completed its processing, it should return with either the
A(ORECLEN), A(A(OREC)) and a zero status code or with a non-zero status code which
gives the following message:
(FOC1150) ZCOMP DECOMPRESS ERROR: status

Note: This error terminates a TABLE request.

 Re-Entrant VSAM Compression Exit: ZCOMP1

Describing Data C-13

ZCOMP1 Parameter List
Parameter Description Length

A(STATCODE)* Pointer to fullword binary status code 4 byte integer

A(DDNAME) Pointer to 8 byte file name in use 8 byte character

A(USERID) Reserved for future use 8 byte character

A(IRECLEN) Pointer to length of original record 4 byte integer

A(A(IREC)) Pointer to pointer to original record 4 byte integer

A(ORECLEN)* Pointer to length of revised record 4 byte integer

A(A(OREC))* Pointer to pointer to revised record 4 byte integer

A(USERWD)** Pointer to fullword 4 byte integer

* The user supplies these parameters.
** This parameter can be used to anchor user storage for re-entrant processing.
Note: Never modify the primary pointers, but rather the pointers or values they point to.

Note that upon entry to ZCOMP1, the ORECLEN and OREC parameters are NULL. It is
the responsibility of the user to fill these in correctly.

While processing the FOCUS FIN command, a call is placed to the ZCOMP2 entry point,
which provides the user with the ability to do any other global cleanup required.

The parameters returned by ZCOMP1 are not validated. It is the responsibility of the user
routine to ensure that valid addresses and lengths are returned to FOCUS from ZCOMP1.

Unpredictable results occur if incorrect parameters are passed back from the routine.

Describing Data D-1

APPENDIX D

Rounding in FOCUS

Topics:

• Data Storage and Display

• Rounding in Calculations and
Conversions

This appendix describes how FOCUS numeric fields store and
display data, how rounding occurs in calculations, and what
happens in conversion from one format to another.

Rounding in FOCUS

D-2 Information Builders

Data Storage and Display
Values are rounded before storage or before display, depending on the format. Integer
fields (format I) and packed decimal fields (format P) are rounded before they are stored.
Floating-point fields (formats F and D) are stored as entered and rounded for display.

When a final decimal digit is less than 5, the data value rounds down. A data value with a
final digit of 5 or greater rounds up. The following rounding algorithm is used:

1. The incoming value is multiplied by 10.

2. This multiplication repeats the same number of times as the number of decimal
places in the target format. For example, if 123.78 is input to a packed decimal field
with one decimal place, it is multiplied by 10 once:

1237.8

3. Next, 0.5 is added if the incoming value is positive or subtracted if the incoming
value is negative:

1237.8 + 0.5 = 1238.3

or, if the input value was -123.78,

-1237.8 - 0.5 = -1238.3

4. The value is truncated, and the decimal is shifted to the left.

123.8

or, if the original value was negative,

-123.8

The following chart illustrates the rounding differences between FOCUS numeric field
formats. Subsequent topics discuss these differences in detail.

Format Type Format Input Stored Display

I Integer I3 123.78 0124 124

F Floating-Point
Single-Precision

F3
F5.1

123.78
123.78

123.7800
123.7800

124
123.8

D Floating-Point
Double-Precision

D3
D5.1

123.78
123.78

123.780000000000
123.780000000000

124
123.8

P Packed P3
P5.1

123.78
123.78

0000124
00001238

124
123.8

 Data Storage and Display

Describing Data D-3

Integer Fields: Format I
An integer value entered with no decimal places is stored as entered.

When a value with decimal places is entered into an integer field using a transaction, that
value is rounded, and the result is stored. If the fractional portion of the value is less than
0.5, the value is rounded down; if the fractional portion of the value is greater than or
equal to 0.5, the value is rounded up. For example, if a value entered in a CRTFORM is
123.78, the value stored is 124.

However, if an integer field is computed, the decimal portion of the resulting value is
truncated, and the integer portion of the answer is stored (or printed). For example, if the
result of a calculation is 123.78, the value stored is 123.

Floating-Point Fields: Formats F and D
Format type F describes single-precision floating-point numbers stored internally in 4
bytes. Format F is comparable to COBOL COMP-1. Format type D describes
double-precision floating-point numbers stored internally in 8 bytes. Format D is
comparable to COBOL COMP-2.

Formats F and D store as many decimal places as are input, up to the limit of the field’s
storage. Floating-point fields are stored in a logarithmic format. The first byte stores the
exponent; the remaining 3 or 7 bytes store the mantissa, or value.

When the number of decimal places input is greater than the number of decimal places
specified in the format, F and D field values are stored as they are input, up to the limit of
precision. These values are rounded for display according to the field format. For
example, if 123.78 is entered in a floating-point field with one decimal place, 123.78 is
stored, and 123.8 is displayed.

Format D is more accurate than format F for larger numbers, since D fields can store up
to 15 significant digits, and F fields are not accurate beyond 8 digits.

For floating-point fields (format D or F), the stored values of decimal numbers are in
hexadecimal and may convert to a value very slightly less than the actual decimal
number. When the final digit is 5, these numbers may round down instead of up.

Rounding in FOCUS

D-4 Information Builders

Packed Decimal Format: Format P
In packed-decimal format (format type P), each byte contains two digits, except the last
byte, which contains a digit and the sign (D for negative numbers, C for positive). Packed
fields are comparable to COBOL COMP-3.

Packed field values are rounded to the number of digits specified in the field format
before they are stored.

When the number of decimal places input is greater than the number that can be stored, P
field values are rounded first, then stored or displayed.

Packed fields are precisely accurate when sufficient decimal places are available to store
values. Otherwise, since values are rounded before being stored, accuracy cannot be
improved by increasing the number of digits displayed. For example, if 123.78 is input to
a packed field with 1 decimal place, 123.8 is stored. If the field’s format is then changed
to P6.2 using a COMPUTE or DEFINE, 123.80 will be displayed. If the field’s format is
changed to P6.2 in the Master File, 12.38 is displayed.

Example Storage and Display
For floating-point fields (format D or F), the stored values of decimal numbers are in
hexadecimal and may convert to a value very slightly less than the actual decimal
number. When the final digit is 5, these numbers may round down instead of up.

The following example shows an input value with two decimal places, which is stored as
a packed field with two decimal places, a packed field with one decimal place, and a D
field with one decimal place:

Master File

FILE=FIVE, SUFFIX=FOC
 SEGNAME=ONLY, SEGTYPE=S1,$
 FIELD=PACK2,,P5.2,$
 FIELD=PACK1,,P5.1,$
 FIELD=DOUBLE1,,D5.1,$

 Data Storage and Display

Describing Data D-5

Program to Load Data

This MODIFY creates a file with three fields: a P field with two decimal places, a P field
with one decimal place, and a D field with one decimal place. The same data values are
then loaded into each field.

CREATE FILE FIVE

MODIFY FILE FIVE
FIXFORM PACK2/5 PACK1/5 DOUBLE1/5
MATCH PACK2
 ON MATCH REJECT
 ON NOMATCH INCLUDE
DATA
1.05 1.05 1.05
1.15 1.15 1.15
1.25 1.25 1.25
1.35 1.35 1.35
1.45 1.45 1.45
1.55 1.55 1.55
1.65 1.65 1.65
1.75 1.75 1.75
1.85 1.85 1.85
1.95 1.95 1.95
END

TABLE Request

This TABLE request prints the values and a total for all three fields.

TABLE FILE FIVE
PRINT PACK2 PACK1 DOUBLE1
ON TABLE SUMMARIZE
END

The following report results:

PAGE 1

PACK2 PACK1 DOUBLE1
----- ----- -------
 1.05 1.1 1.0
 1.15 1.2 1.1
 1.25 1.3 1.3
 1.35 1.4 1.3
 1.45 1.5 1.4
 1.55 1.6 1.5
 1.65 1.7 1.6
 1.75 1.8 1.8
 1.85 1.9 1.8
 1.95 2.0 1.9

TOTAL
15.00 15.5 15.0

Rounding in FOCUS

D-6 Information Builders

The PACK2 values are not rounded. They are stored and displayed as they were entered.
For example, 1.15 is stored internally as:

00 00 00 00 00 00 11 5C

The PACK1 values are rounded when stored and also when displayed. For example, the
incoming value 1.15 is rounded to 1.2, and stored internally as:

00 00 00 00 00 00 01 2C

All of the DOUBLE1 values, except 1.25 and 1.75, are stored as repeating decimals in
hex. For example, 1.15 is stored internally as:

41 12 66 66 66 66 66 66

The 41 in the first byte is equivalent to 64 in hex plus the exponent. The last seven bytes
are the mantissa as converted to hex by the S/390.

The DOUBLE1 values 1.25 and 1.75 are not repeating decimals internally. They are
terminating decimals in hex, so they round up, when displayed, to 1.3 and 1.8
respectively. For example, 1.25 is stored internally as:

41 14 00 00 00 00 00 00

Since the PACK1 values are rounded up before they are stored, the PACK1 total is 0.5
higher than the PACK2 total. The D field total is the same as the PACK2 total because
the D field values are stored as input, and then rounded for display.

Rounding in Calculations and Conversions
All computations are done in floating-point arithmetic. Packed fields are converted to D
internally, then back to P.

When a field with decimal places is computed to an integer field, the decimal places are
truncated, and the resulting value is the integer part of the input value.

When a field with decimal places is computed from one format to another, two
conversions take place:

1. First the field is converted internally to floating-point notation.

2. Second, the result of this conversion is converted to the specified format. At this
point, the rounding algorithm described previously is applied.

 Rounding in Calculations and Conversions

Describing Data D-7

Example Redefining Field Formats
The following example illustrates some differences in the way packed fields,
floating-point fields, and integer fields are stored and displayed. It also shows database
values redefined to a format with a larger number of decimal places.

Master File

FILE=EXAMPLE, SUFFIX=FOC
 SEGNAME=ONLY, SEGTYPE=S1,$
 FIELD=PACKED2,,P9.2,$
 FIELD=DOUBLE2,,D9.2,$
 FIELD=FLOAT2,, F9.2,$
 FIELD=INTEGER,,I9 ,$

Program to Load Data

This MODIFY creates a file with four fields: a P field with two decimal places, a D field
with two decimal places, an F field with two decimal places, and an integer field. The
same data values are then loaded into each field.

CREATE FILE EXAMPLE

MODIFY FILE EXAMPLE
FIXFORM PACKED2/9 X1 DOUBLE2/9 X1 FLOAT2/9 X1 INTEGER/9
MATCH PACKED
 ON MATCH REJECT
 ON NOMATCH INCLUDE
DATA
1.6666666 1.6666666 1.6666666 1.6666666
125.16666 125.16666 125.16666 125.16666
5432.6666 5432.6666 5432.6666 5432.6666
4.1666666 4.1666666 4.1666666 4.1666666
5.5 5.5 5.5 5.5
106.66666 106.66666 106.66666 106.66666
7.2222222 7.2222222 7.2222222 7.2222222
END

Rounding in FOCUS

D-8 Information Builders

Report Request

A DEFINE command creates temporary fields that are equal to PACKED2, DOUBLE2,
and FLOAT2, with redefined formats containing four decimal places instead of two.
These DEFINE fields illustrate the differences in the way packed fields and floating-point
fields are stored and displayed.

The request prints the values and a total for all four database fields, and for the three
DEFINE fields.

DEFINE FILE EXAMPLE
PACKED4/P9.4=PACKED2;
DOUBLE4/D9.4=DOUBLE2;
FLOAT4/D9.4=FLOAT2;
END

TABLE FILE EXAMPLE
PRINT PACKED2 PACKED4 DOUBLE2 DOUBLE4 FLOAT2 FLOAT4 INTEGER
ON TABLE SUMMARIZE
END

The resulting report follows:

PAGE 1

 PACKED2 PACKED4 DOUBLE2 DOUBLE4 FLOAT2 FLOAT4 INTEGER
 ------- ------- ------- ------- ------ ------ -------
 1.67 1.6700 1.67 1.6667 1.67 1.6667 2
 125.17 125.1700 125.17 125.1667 125.17 125.1667 125
 5432.67 5432.6700 5,432.67 5,432.6666 5432.66 5,432.6641 5433
 4.17 4.1700 4.17 4.1667 4.17 4.1667 4
 5.50 5.5000 5.50 5.5000 5.50 5.5000 6
 106.67 106.6700 106.67 106.6667 106.67 106.6667 107
 7.22 7.2200 7.22 7.2222 7.22 7.2222 7

TOTAL
 5683.07 5683.0700 5,683.06 5,683.0555 5683.04 5,683.0529 5684

In this example, the PACKED2 sum is an accurate sum of the displayed values, which
are the same as the stored values. The PACKED4 values and total are the same as the
PACKED2 values.

The DOUBLE2 sum looks off by .01; it is not the sum of the printed values but a rounded
sum of the stored values. The DEFINEd DOUBLE4 values show that the DOUBLE2
values are actually rounded from the stored values. The DOUBLE4 values and sum show
more of the decimal places from which the DOUBLE2 values are rounded.

The FLOAT2 total seems off by .03. Like the DOUBLE2 total, the FLOAT2 total is a
rounded total of the stored FLOAT2 values. F fields are not accurate beyond 8 digits, as
the FLOAT4 column shows.

The integer sum is an accurate total. Like packed fields, the storage values and displayed
values are the same.

 Rounding in Calculations and Conversions

Describing Data D-9

DEFINE and COMPUTE
DEFINE and COMPUTE may give different results for rounded fields. DEFINE fields
are treated like database fields, while COMPUTE fields are calculated on the results of
the display command in the TABLE request. The following example illustrates this
difference:

DEFINE FILE EXAMPLE
DEFP3/P9.3=PACKED2/4;
END

TABLE FILE EXAMPLE
PRINT PACKED2 DEFP3
COMPUTE COMPP3/P9.3=PACKED2/4;
ON TABLE SUMMARIZE
END

The following report results:

PAGE 1

 PACKED2 DEFP3 COMPP3
 ------- ----- ------
 1.67 .417 .417
 125.17 31.292 31.292
 5432.67 1358.167 1358.167
 4.17 1.042 1.042
 5.50 1.375 1.375
 106.67 26.667 26.667
 7.22 1.805 1.805

TOTAL
 5683.07 1420.765 1420.767

The DEFP3 field is the result of a DEFINE. The values are treated like database field
values. The printed total, 1420.765, is the sum of the printed DEFP3 values, just as the
PACKED2 total is the sum of the printed PACKED2 values.

The COMPP3 field is the result of a COMPUTE. The printed total, 1420.767, is
calculated from the total sum of PACKED2 (5683.07 / 4).

Describing Data I-1

Index
Symbols

$ VIRT attribute, 1-5 to 1-6

$BOTTOM keyword, 10-6 to 10-8

&QUIT variable, 10-36

? USE command, 9-14

A

A data type, 4-20

Absolute File Integrity, 10-40 to 10-41
implementing, 10-41
shadow paging, 10-40 to 10-41

ACCBLN parameter, 4-46

ACCEPT attribute, 4-46 to 4-47, 6-15
FOCUS data sources, 6-15

ACCEPTBLANK parameter, 4-46

ACCESS attribute, 10-12

Access File attributes, 6-22
DATANAME, 6-22 to 6-25
LOCATION, 6-22 to 6-25
MASTERNAME, 6-22 to 6-25
WHERE, 6-22 to 6-25

Access Files, 1-2, 3-8, 6-22
applications and, 1-3
creating, 1-4
for FOCSAM interface, C-4
identifying, 6-21
specifying segment names, 3-4
VIDEOTR2, A-27

ACCESSFILE attribute, 2-1, 6-21
DATASET attribute and, 2-5

accounting, 10-37
resource limitation, 10-37
UACCT exit routine, 10-40

ACTUAL attribute, 4-41

ACTUAL format, 4-42 to 4-43, 5-45

AIX (alternate index names) for VSAM data
sources, 5-44

ALIAS attribute, 4-10 to 4-11

aliases of fields, 4-10 to 4-11

ALLOWCVTERR parameter, 4-31

alphanumeric data type, 4-20 to 4-21

alternate column titles, 4-49

alternate file views, 3-31 to 3-32, 3-34
CHECK FILE command and, 8-2

alternate index names (AIX) for VSAM data
sources, 5-44

alternate indexes for VSAM data sources, 5-42 to
5-44

ancestral segments, 3-13

applications and data descriptions, 1-2 to 1-3, 2-1

AS phrase, 8-10
CHECK HOLD option, 8-10

attributes, 10-2
database security, 10-2

AUTODATE field, 6-5, 6-12 to 6-14

AUTOPATH parameter, 6-3

B

base date, 4-30

blank lines between declarations, 1-10

blank spaces in declarations, 1-10

BUFND parameter, 5-41

BUFNI parameter, 5-41

Index

I-2 Information Builders

C

calculations on dates, 4-29

CAR data source, A-11

CHECK FILE command, 8-2, 8-4
DBA and, 10-13
DEFINE fields and, 8-11
external data sources and, 8-4
HELPMESSAGE attribute and, 8-10
HOLD ALL option, 8-8 to 8-10
HOLD option, 8-8 to 8-10
long field names and, 4-5
non-FOCUS data sources and, 8-4
PICTURE option, 8-5, 8-7
TAG attribute and, 8-10
TITLE attribute and, 8-10
virtual fields and, 8-11

child segments, 3-8

CLUSTER component, 5-1

column title substitutions, 4-49

columns in relational tables, 1-2

COMASTER data source, A-21

COMBINE command, 10-25
data security, 10-25 to 10-26, 10-28

comma-delimited data sources, 5-2, 5-4
repeating fields, 5-9 to 5-10

commands, 7-17
CHECK FILE, 8-2, 8-4
JOIN, 7-17
USE, 9-1 to 9-5
user access levels, 10-13

comments in Master Files, 1-11

common errors in Master Files, 8-4

COMPUTE command, D-9
rounding, D-9

concatenation, 9-9 to 9-11
data sources, 9-9 to 9-11

converting date values, 4-29

COURSES data source, A-16

CREATE command, 10-15

creating data descriptions, 1-4

cross-referenced relationships, 3-9

cross-referenced segments, 7-10 to 7-11, 7-13
joining to, 7-19, 7-22
recursive join structures, 7-23

currency symbols, 4-17 to 4-18

D

D data type, 4-14

data access, 9-8
levels of, 10-12, 10-17
read-only, 9-8
security attributes, 10-2
via a user-coded routine, C-10

data buffers for VSAM data sources, 5-41

data descriptions, 1-1 to 1-2, 2-1
applications and, 1-3
creating, 1-4
field declarations, 1-4, 4-2
field relationships, 1-4
file declarations, 1-3, 2-1
Master Files, 1-3, 1-9

data display, D-2, D-4

data encryption, 10-31
performance considerations, 10-31

data relationships, 3-13
alternate views, 3-31 to 3-32, 3-34
describing, 3-7
logical, 3-7
many-to-many, 3-22 to 3-23
multiple paths, 3-14
one-to-many, 3-19 to 3-20
one-to-one, 3-16 to 3-17
parent-child, 3-9 to 3-10
physical, 3-7
recursive, 3-27 to 3-28
root, 3-12
single paths, 3-13

 Index

Describing Data I-3

data security, 10-1, 10-3 to 10-4
access levels, 10-12, 10-17
central Master File, 10-25 to 10-26
CHECK FILE command and, 10-13
COMBINE command and, 10-25 to 10-26, 10-28
encrypting Master Files, 10-30
encrypting segments, 10-31
filters, 10-28
JOIN command and, 10-25 to 10-26, 10-28
passwords, 10-10
RESTRICT command, 10-32
restricting access, 10-18 to 10-24
special considerations, 10-4

data source declarations, 2-1

data source security, 9-8
read-only access, 9-8

data source types, 2-4

data sources, 1-1, 3-4, 6-26
concatenating, 9-9 to 9-11
describing field relationships, 1-4
describing fields, 1-4, 4-2
describing files, 1-2 to 1-3
documenting, 1-11
FOCUS, 3-4
identifying, 2-1
joining, 6-26
partitioning, 6-26
relational, 3-2
rotating the structure, 3-31 to 3-32, 3-34
USE command, 9-1 to 9-3

data storage, D-2, D-4

data types, 4-12 to 4-13, 4-41 to 4-43, 6-18
alphanumeric, 4-20 to 4-21
date display options, 4-22
date storage, 4-23
dates, 4-21, 4-27 to 4-28, 4-32
date-time, 4-32 to 4-33, 4-38
floating-point double-precision, 4-14
floating-point single-precision, 4-15
integer, 4-14
internal representation, 6-18
numeric display options, 4-16, 4-19
packed-decimal, 4-15
text, 4-40

database administration. See DBA

database descriptions, 1-1 to 1-2
applications and, 1-3
creating, 1-4
field declarations, 1-4, 4-2
field relationships, 1-4
file declarations, 1-3
Master Files, 1-3, 1-9

DATANAME attribute, 6-22 to 6-25

DATASET attribute, 2-1, 2-5
fixed-format sequential data sources, 2-8
FOCUS data sources, 2-5 to 2-7
priority, 2-5
VSAM data sources, 2-9 to 2-10

date calculations, 4-29

date conversions, 4-29

date data types, 4-21, 4-27 to 4-28, 4-32
calculations, 4-29
converting values, 4-29
Dialogue Manager and, 4-31
display options, 4-22
extract files and, 4-31
graph considerations, 4-31
internal representation, 4-30
literals, 4-24, 4-27 to 4-28
non-standard formats, 4-31
RECAP command and, 4-31
separators, 4-26
storage, 4-23
translation, 4-26

date display options, 4-22

date literals, 4-24, 4-27 to 4-28

date separators, 4-26

date translation, 4-26

DATEDISPLAY parameter, 4-30
ALLOWCVTERR and, 4-31

DATEFORMAT parameter, 4-38

date-time data type, 4-32 to 4-33, 4-38

DBA (database administration), 10-1
security, 10-1

Index

I-4 Information Builders

DBA attributes, 10-2

DBA decision table, 10-20
displaying, 10-32 to 10-33

DBA security, 10-6 to 10-8
HOLD files, 10-6 to 10-8

DBAFILE attribute, 10-25 to 10-26
file naming requirements, 10-27

DBATABLE command, 10-20, 10-32 to 10-33

debugging Master Files, 8-3

decimal data types, 4-14 to 4-15

declarations in Master Files, 1-10
documenting, 1-11
improving readability, 1-10 to 1-11

DECRYPT command, 10-15
user access to, 10-15

DEFCENT attribute, 4-2, 8-2
CHECK FILE command and, 8-2, 8-8
date-time data type and, 4-38

DEFINE attribute, 4-51 to 4-52, 8-11
CHECK HOLD option, 8-10

DEFINE command, 10-15
rounding, D-9
user access to, 10-15

DEFINITION attribute, 4-50

delimiters, 5-45 to 5-47

DESC attribute, 4-50

descendant segments, 3-12, 6-2
FOCUS data sources, 6-2

describing data sources, 1-1 to 1-2
Access Files, 1-2
field declarations, 1-4, 4-2
field relationships, 1-4
file declarations, 1-3
Master Files, 1-2

DESCRIPTION attribute, 4-50

designing FOCUS data sources, 6-2 to 6-3

display formats for fields, 4-12 to 4-13
alphanumeric, 4-20 to 4-21
currency display options, 4-17 to 4-18
date display options, 4-22
date storage, 4-23
dates, 4-21, 4-27 to 4-28, 4-32
date-time, 4-32 to 4-33, 4-38
floating-point double-precision, 4-14
floating-point single-precision, 4-15
integer, 4-14
numeric display options, 4-16, 4-19
packed-decimal, 4-15
text, 4-40

display options, 4-12 to 4-13
currency symbols, 4-17 to 4-18
date, 4-22
numeric, 4-16, 4-19

documenting data sources, 1-11

documenting fields, 4-50

double-precision fields, D-3
rounding, D-3

double-precision floating-point data type, 4-14

DUMMY root segments, 5-27 to 5-30

duplicate field names, 4-4 to 4-7
CHECK FILE command and, 8-2, 8-4

DUPLICATE option to CHECK FILE command,
8-2, 8-4

DYNAM ALLOCATE command, 1-5, 1-7 to 1-8

DYNAM command, 1-9

DYNAM FREE LONGNAME command, 1-7

dynamic join structures, 7-15 to 7-16
comparing with static, 7-17

 Index

Describing Data I-5

E

edit options, 4-12 to 4-13
date, 4-22
numeric, 4-16, 4-19

EDUCFILE data source, A-7

EMPDATA data source, A-17

EMPLOYEE data source, A-3

ENCRYPT attribute, 10-31

ENCRYPT command, 10-30
user access to, 10-15

entry-sequenced data sources (ESDS), 5-1

error checking of Master Files, 8-3

error files, B-1
CMS, B-2
MVS, B-2

error messages, B-1
displaying, B-3

ESDS (entry-sequenced data sources), 5-1

exits, C-1
FOCSAM interface, C-2
functional requirements, C-3
UACCT, 10-40
ZCOMP1, C-12

EXPERSON data source, A-18

external data sources, 8-4
checking Master Files, 8-4

extract files, 8-2
CHECK FILE command and, 8-2, 8-8 to 8-10

F

F data type, 4-15

FDEFCENT attribute, 2-1, 8-2
CHECK FILE command and, 8-2, 8-8
date-time data type and, 4-38

field aliases, 4-10 to 4-11

FIELD attribute, 4-3

field attributes, 6-15
FOCUS data sources, 6-15

field formats, 4-12 to 4-13, 4-41 to 4-43, D-6
alphanumeric, 4-20 to 4-21
date display options, 4-22
date storage, 4-23
dates, 4-21, 4-27 to 4-28, 4-32
date-time, 4-32 to 4-33, 4-38
floating-point double-precision, 4-14
floating-point single-precision, 4-15
integer, 4-14
numeric display options, 4-16, 4-19
packed-decimal, 4-15
redefining, D-6 to D-7
text, 4-40

field names, 4-3 to 4-7
CHECK FILE command and, 8-2, 8-4
qualified, 4-9

FIELD option to RESTRICT attribute, 10-14

field values, 10-20 to 10-21
restricting access to, 10-20 to 10-24
validating, 4-46 to 4-47

FIELDNAME attribute, 4-3

FIELDNAME parameter, 4-4

Index

I-6 Information Builders

fields, 1-2, 3-5, 4-1
defining groups, 3-2
describing, 1-4, 4-2
documenting, 4-50
filler, 3-6
key, 3-4
naming, 4-3 to 4-7
redefining, 5-20 to 5-21
repeating, 5-2, 5-9, 5-11, 5-35
restricting access to, 10-18 to 10-19

FIELDTYPE attribute, 6-16, 6-18

FILE attribute, 2-2

file descriptions, 1-1 to 1-2
applications and, 1-3
creating, 1-4
field declarations, 1-4, 4-2
field relationships, 1-4
file declarations, 1-3
Master Files, 1-3, 1-9

file security, 9-8
read-only access, 9-8

file specifications, 9-5 to 9-6
changing with USE command, 9-5 to 9-6

FILENAME attribute, 2-1 to 2-2

files, 10-40
absolute integrity, 10-40 to 10-41

FILESUFFIX attribute, 2-2 to 2-3

filler fields, 3-6, 5-2

filters, 10-28
data security, 10-28

FINANCE data source, A-14

FIND function, 2-5
DATASET attribute and, 2-5

FIND option to ACCEPT attribute, 6-15

fixed-format data sources, 5-2
generalized record types, 5-31 to 5-32
multiple record types, 5-22 to 5-24, 5-34 to 5-35
nested repeating fields, 5-15 to 5-16
order of repeating fields, 5-19
parallel repeating fields, 5-14, 5-16
position of repeating fields, 5-17 to 5-18
positionally related records, 5-24 to 5-25
repeating fields, 5-11 to 5-13, 5-35
unrelated records, 5-27 to 5-28

floating-point double-precision data type, 4-14

floating-point fields, 4-14
rounding, D-2 to D-3

floating-point single-precision data type, 4-15

FOC2GIGDB parameter, 6-19

FOCSAM interface, C-2
Access Files, C-4
calling sequence, C-5
user exits, C-2
work area control block, C-6, C-8
ZCOMP1 user exit, C-12

FOCUS data sources, 3-4, 6-1
ACCEPT attribute, 6-15
allocating, 6-28
changing, 6-4
data type representation, 6-18
designing, 6-2 to 6-3
field attributes, 6-15
FIND option, 6-15
FORMAT attribute, 6-18
INDEX attribute, 6-16, 6-18
internal storage lengths, 6-18
joining, 6-3
key fields, 6-7
LOCATION attribute, 6-9 to 6-12
MISSING attribute, 6-18
partitioning, 6-19 to 6-21, 6-24 to 6-25
rebuilding, 6-28
segment relationships, 6-9
segment sort order, 6-8
segments, 6-5
SEGTYPE attribute, 6-5, 6-7
sorting, 6-28
support for, 6-19

 Index

Describing Data I-7

FOCUS data sources (continued)
USE command, 9-1 to 9-3

FORMAT attribute, 4-12 to 4-13

free-format data sources, 5-2, 5-5 to 5-6
repeating fields, 5-9 to 5-10

FSCAN command, 10-16
user access to, 10-16

FYRTHRESH attribute, 2-1, 8-2
CHECK FILE command and, 8-2, 8-8
date-time data type and, 4-38

G

generalized record types, 5-31 to 5-32

GETPRV exit, C-2

GGDEMOG data source, A-29

GGORDER data source, A-30

GGPRODS data source, A-31

GGSALES data source, A-32

GGSTORES data source, A-33

Gotham Grinds data sources, A-29
GGDEMOG, A-29
GGORDER, A-30
GGPRODS, A-31
GGSALES, A-32
GGSTORES, A-33

group keys, 5-1, 5-7 to 5-9

groups of fields, 3-2

H

H data type, 4-32 to 4-33, 4-38

help PF keys, 4-48

HELPMESSAGE attribute, 4-47
CHECK HOLD and, 8-10

HLI (Host Language Interface), 10-15
user access to, 10-15

HOLD ALL option to CHECK FILE command,
8-2, 8-8 to 8-10

HOLD files, 10-6 to 10-8
DBA security, 10-6 to 10-8

HOLD option to CHECK FILE command, 8-2, 8-8
to 8-10

HOLDSTAT files, 10-6 to 10-8
DBA security, 10-6 to 10-8

Host Language Interface (HLI), 10-15
user access to, 10-15

host segments, 3-9, 7-19

I
I data type, 4-14

IDCAMS utility, 5-42, 5-44

identifying fields, 3-4

INDEX attribute, 6-16, 6-18
joining data sources, 6-17

index buffers for VSAM data sources, 5-41

indexed data sources, 3-21

instances, 3-3, 3-8

integer data type, 4-14

integer fields, D-3
rounding, D-2 to D-3

internal representation of data types, 6-18

internal representation of dates, 4-30

ISAM data sources, 5-1
describing, 5-7
generalized record types, 5-31 to 5-32
group keys, 5-7 to 5-9
multiple record types, 5-22 to 5-24, 5-34 to 5-35
nested repeating fields, 5-15
order of repeating fields, 5-19
parallel repeating fields, 5-14
position of repeating fields, 5-17 to 5-18
positionally related records, 5-24 to 5-25
repeating fields, 5-11 to 5-13, 5-35
unrelated records, 5-27 to 5-28

Index

I-8 Information Builders

J

JOBFILE data source, A-6

JOIN command, 7-17
data security, 10-25 to 10-26, 10-28
long field names and, 4-5

join structures, 3-8, 7-1
between different file types, 3-30
comparing, 7-17
cross-referenced segments, 3-9, 7-10, 7-11, 7-13,

7-19
defined in Master File, 7-3, 7-15 to 7-16
dynamic, 7-15 to 7-16
host segments, 3-9
linked segments, 7-10 to 7-11, 7-13
many-to-many relationships, 3-22 to 3-23
non-unique, 7-3, 7-7 to 7-8
recursive, 3-27 to 3-28, 7-23
static, 7-3, 7-17
types, 7-2
unique, 7-3, 7-5 to 7-6

joining data sources, 6-26
FOCUS, 6-3
INDEX attribute, 6-17
partitioned, 6-27

K

key fields, 3-4, 6-7
FOCUS data sources, 6-7

key-sequenced data sources (KSDS), 5-1

KSDS (key-sequenced data sources), 5-1

L

leaf segments, 3-9, 3-12

LEDGER data source, A-13

linked segments, 7-10 to 7-11, 7-13
hierarchies, 7-14

literals for dates, 4-24, 4-27 to 4-28

load procedures, A-1 to A-2

LOCATION attribute, 6-9 to 6-12, 6-22 to 6-25,
9-14

location files, 6-12

logical dependence, 3-9

logical independence, 3-13

logical views, 3-5

long alphanumeric fields, 4-21

long field names, 4-4 to 4-7
alternate file views and, 4-5
indexed fields and, 4-5
temporary fields, 4-51

long names, 1-5
Master Files, 1-5 to 1-9

LONGNAME option, 1-5, 1-7 to 1-9

M
MAINTAIN command, 10-15

user access to, 10-15

many-to-many relationships, 3-22 to 3-23

MAPFIELD alias, 5-38 to 5-41

MAPVALUE fields, 5-38 to 5-41

Master Files, 1-2 to 1-3, 1-9, 3-2, 10-16
allocating data sources, 2-5
applications and, 1-3
changing, 8-1
changing names, 9-5 to 9-6
changing names with USE command, 9-5
checking, 8-1, 8-3
common errors, 8-4
creating, 1-4
creating filler fields, 3-6
declarations, 1-10
defining joins, 7-3, 7-15 to 7-16
diagrams, 8-5, 8-7
documenting, 1-11
encrypting, 10-30
for FOCSAM interface, C-4
identifying parent segments, 3-8 to 3-9
improving readability, 1-10 to 1-11
long names, 1-5 to 1-9

 Index

Describing Data I-9

Master Files (continued)
names of data sources, 2-2
naming, 1-5
one-to-many relationships, 3-21
samples, A-1 to A-2
security attributes, 10-2
segment relationships, 3-9
segments, 3-3
statistics, 8-2, 8-8
types of data sources, 2-2 to 2-3
user access to, 10-16
validating, 1-11

MASTERNAME attribute, 6-22 to 6-25

MISSING attribute, 4-44 to 4-45
ALLOWCVTERR and, 4-31

missing values, 4-44 to 4-45, 5-47

MODIFY command, 10-15
user access to, 10-15

MOVIES data source, A-24

multi-path data sources, 3-14

multiple groups of fields, 3-2

multiple paths, 3-13 to 3-14

multiple record types, 3-21, 5-22 to 5-24, 5-34 to
5-35, 5-37

multiple segments, 3-9, 3-11

multiply occurring fields, 5-2, 5-9 to 5-13, 5-35,
5-37

MAPFIELD and MAPVALUE, 5-38 to 5-41
nested, 5-15 to 5-16
order, 5-19
parallel, 5-14, 5-16
position, 5-17 to 5-18
record length, 5-21

multi-segment records, 3-7

multi-threads, 9-13
USE command, 9-13

N
naming conventions, 1-5

Master Files, 1-5

naming fields, 4-3 to 4-7

National Language Support (NLS), 1-10

nested repeating fields, 5-15 to 5-16

NLS (National Language Support), 1-10

non-FOCUS data sources, 8-4
checking Master Files, 8-4

non-unique join structures, 7-7
specifying, 7-8

NOPRINT option to RESTRICT attribute, 10-14

null values, 4-44 to 4-45

numbers, D-1
rounding, D-1

numeric data types, 4-13
display options, 4-16, 4-19
floating-point double-precision, 4-14
floating-point single-precision, 4-15
integer, 4-14
packed-decimal, 4-15

numeric display options, 4-16, 4-19

numeric fields, D-1

O

OCCURS attribute, 3-21, 5-12 to 5-13, 5-16

one-to-many relationships, 3-19 to 3-20

one-to-many segment relationships, 6-2
FOCUS data sources, 6-2, 6-9

one-to-one relationships, 3-16 to 3-17

one-to-one segment relationships, 6-2
FOCUS data sources, 6-2, 6-9

online help, 4-47
displaying, 4-47 to 4-48

ORDER fields, 5-19

Index

I-10 Information Builders

P

P data type, 4-15

packed-decimal data type, 4-15

packed-decimal fields, 4-15
rounding, D-2, D-4

parallel repeating fields, 5-14, 5-16

PARENT attribute, 3-8 to 3-9

parent segments, 3-8 to 3-9, 3-13

parent-child relationships, 3-9 to 3-10

partitioned data sources, 6-26, 6-28
joining, 6-27

partitioning FOCUS data sources, 6-19 to 6-21,
6-24 to 6-25

PASS command, 10-9 to 10-10

-PASS command, 10-35

passwords, 10-6
changing, 10-6
setting externally, 10-34
suppressing display, 10-35
variable, 10-35

paths, 3-15, 3-31
multiple, 3-14
single, 3-13

paths in data sources, 6-2
FOCUS data sources, 6-2

PAYHIST data source, A-20

PF keys for help, 4-48

physical relationships, 3-7

PICTURE option to CHECK FILE command, 8-2,
8-5, 8-7

POSITION attribute, 3-21, 5-17 to 5-18

positionally related records, 5-24 to 5-26

PRIVATE suffix for FOCSAM interface, C-4

procedures, 10-34
encrypting, 10-36
load, A-1 to A-2
security, 10-34

PROD data source, A-10

program accounting, 10-1, 10-37
activating, 10-38

PROGRAM option to RESTRICT attribute, 10-37

Q

QUALCHAR parameter, 4-5

qualification character, 4-5

qualified field names, 4-4 to 4-7, 4-9
levels of qualification, 4-9
temporary fields, 4-52

R

read/write access, 10-12

reading non-FOCUS data sources, 5-48

read-only access, 9-8, 10-12

REBUILD command, 10-16
user access to, 10-16

record length in sequential data sources, 5-21

record types, 5-2
generalized, 5-31 to 5-32
multiple, 5-22 to 5-24, 5-34 to 5-35, 5-37

RECTYPE fields, 3-21 to 5-24, 5-31 to 5-32, 5-34
to 5-35, 5-37

MAPFIELD and MAPVALUE, 5-38 to 5-41

recursive join structures, 3-27 to 3-28, 7-23

redefining field formats, D-6 to D-7

redefining fields in non-FOCUS data sources, 5-20
to 5-21

REGION data source, A-15

 Index

Describing Data I-11

relational data sources, 3-5
logical views, 3-5
omitting fields, 3-6

repeating fields, 5-2, 5-9 to 5-13, 5-35, 5-37
MAPFIELD and MAPVALUE, 5-38 to 5-41
nested, 5-15 to 5-16
order, 5-19
parallel, 5-14, 5-16
position, 5-17 to 5-18
record length, 5-21

resource limitation, 10-37

resource management, 10-37, 10-39

RESTRICT attribute, 10-17
options, 10-14
PROGRAM, 10-37

RESTRICT command, 10-32
user access to, 10-16

restricting access, 10-18 to 10-19
to fields, 10-18 to 10-19
to segments, 10-18 to 10-19

RETRIEVE option to CHECK FILE command, 8-2

root segments, 3-12, 6-2
alternate, 3-31 to 3-32, 3-34
FOCUS data sources, 6-2

rounding numbers, D-1
COMPUTE fields, D-9
DEFINE fields, D-9
double-precision fields, D-3
floating-point fields, D-2 to D-3
in calculations, D-6
integer fields, D-2 to D-3
packed-decimal fields, D-2, D-4

S

SALES data source, A-8 to A-9

SAME option to RESTRICT attribute, 10-14

sample data sources, A-2
CAR, A-11
COMASTER, A-21
COURSES, A-16
creating, A-1 to A-2
EDUCFILE, A-7
EMPDATA, A-17
EMPLOYEE, A-3
EXPERSON, A-18
FINANCE, A-14
Gotham Grinds data sources, A-29
JOBFILE, A-6
LEDGER, A-13
MOVIES, A-24
PAYHIST, A-20
PROD, A-10
REGION, A-15
SALES, A-8 to A-9
TRAINING, A-19
VIDEOTR2, A-26
VideoTrk, A-24

SCAN command, 10-16
user access to, 10-16

security, 10-1, 10-3 to 10-4
access levels, 10-12, 10-17
encrypting data segments, 10-31
encrypting Master Files, 10-30
encrypting procedures, 10-36
FOCUS procedures, 10-34
FOCUSID routine, 10-34
identifying users, 10-9
locking users out of FOCUS, 10-36
passwords, 10-10, 10-34
program accounting, 10-37
read-only access, 9-8
RESTRICT command, 10-32
storing DBA information centrally, 10-25 to

10-26
UACCT exit routine, 10-40
user program specifications, 10-38

Index

I-12 Information Builders

security attributes, 10-2, 10-29
ACCESS, 10-12
DBA, 10-5
DBAFILE, 10-25 to 10-26
RESTRICT, 10-17
USER, 10-9

segment chains, 3-3

segment instances, 3-3

SEGMENT option to RESTRICT attribute, 10-14

segments, 1-4, 3-2
ancestral, 3-13
child, 3-8
cross-referenced, 3-9
descendant, 3-12
encrypting, 10-31
host, 3-9
key fields, 3-4
leaf, 3-12
logical views, 3-5
naming, 3-4 to 3-5
one-to-one relationships, 3-16
parent, 3-8 to 3-9
restricting access to, 10-18 to 10-19
root, 3-12
storing, 6-10
timestamping, 6-12 to 6-14
unique, 3-16

SEGNAME attribute, 3-3
VSAM and ISAM considerations, 5-7

SEGTYPE attribute, 3-3, 3-9, 8-5
displaying, 8-5
FOCUS data sources, 6-5, 6-7 to 6-8
sequential data source considerations, 5-6
VSAM considerations, 5-7

separators for dates, 4-26

sequential data sources, 5-1 to 5-2, 5-4 to 5-5, 5-45
to 5-46

describing, 5-6
fixed format, 5-2
free format, 5-5 to 5-6
generalized record types, 5-31 to 5-32
multiple record types, 5-22 to 5-24, 5-34 to 5-35
multiply occurring fields, 5-21

sequential data sources (continued)
nested repeating fields, 5-15 to 5-16
order of repeating fields, 5-19
parallel repeating fields, 5-14, 5-16
position of repeating fields, 5-17 to 5-18
positionally related records, 5-24 to 5-25
record length, 5-21
repeating fields, 5-9 to 5-13, 5-35
unrelated records, 5-27 to 5-28

SET parameters, 6-3
ACCBLN, 4-46
ACCEPTBLANK, 4-46
ALLOWCVTERR, 4-31
AUTOPATH, 6-3
DATEDISPLAY, 4-30
DATEFORMAT, 4-38
FIELDNAME, 4-4
FOC2GIGDB, 6-19
PASS, 10-9 to 10-10
QUALCHAR, 4-5
TRANTERM, 4-17
USER, 10-9 to 10-10

shadow pages, 10-40 to 10-41
implementing, 10-41

Simultaneous Usage, 9-12
USE command, 9-12

single-precision floating-point data type, 4-15

smart dates, 4-23

specifying an Access File in a Master File, 6-21

SQL Translator and long field names, 4-5

static join structures, 7-3
comparing with dynamic, 7-17

storage of date data types, 4-23

structure diagrams, A-1 to A-2

subroutines, C-10
user-coded for data access, C-10

SUFFIX attribute, 2-1 to 2-3, C-4
PRIVATE, C-4
values, 2-4
VSAM and ISAM, 5-7

 Index

Describing Data I-13

SUFFIX=COM attribute, 5-4

SUFFIX=COMT attribute, 5-4

SUFFIX=TABT attribute, 5-5

T

tab-delimited data sources, 5-2, 5-4 to 5-5

TABLE command, 10-16
user access to, 10-16

TAG attribute and CHECK HOLD, 8-10

temporary fields, 4-51
creating, 4-51 to 4-52
long field names and, 4-5, 4-51
qualified field names, 4-52

TRANTERM parameter, 4-17

text data type, 4-40
long field names and, 4-5

text fields, 6-11
storing, 6-11

time stamps, 6-12

timestamp data type, 4-32 to 4-33, 4-38

TITLE attribute, 4-49
CHECK HOLD and, 8-10

token-delimited data sources, 5-2, 5-45 to 5-47

TRAINING data source, A-19

translation of dates, 4-26

TX data type, 4-40

U

UACCT exit routine, 10-40

unique join structures, 7-3, 7-5 to 7-6
decoding with, 7-6

unique segments, 3-16

unrelated records, 5-27 to 5-30

update access, 10-12

usage accounting of resources, 10-40

USAGE attribute, 4-12 to 4-13

USAGE format, 4-42 to 4-43, 5-45

USE command, 9-1 to 9-4
alternate file specifications, 9-5 to 9-6
clearing, 9-4
data source concatenation, 9-9 to 9-11
displaying options, 9-14
file modes, 9-5 to 9-6
file names, 9-5 to 9-6
file types, 9-5 to 9-6
multiple data sources, 9-4
multi-threads, 9-13
new data sources, 9-6 to 9-7
read-only access, 9-8
Simultaneous Usage, 9-12

USER attribute, 10-9

user exits, C-1
FOCSAM interface, C-2
functional requirements, C-3
ZCOMP1, C-12

user programs, 10-38
activating, 10-38
specifications, 10-38

user-coded data access routines, C-10

user-written procedures, 5-48

user-written subroutines, 10-37
program accounting, 10-37

V

validating field values, 4-46 to 4-47

validating Master Files, 1-11

VALUE option to RESTRICT attribute, 10-14,
10-20 to 10-24

variables, 10-35
in passwords, 10-35

VIDEOTR2 data source, A-26

VideoTrk data source, A-24

Index

I-14 Information Builders

views, 3-5

virtual fields, 4-51
creating, 4-51 to 4-52
long field names and, 4-51
qualified field names, 4-52

virtual fields in Master Files and CHECK HOLD,
8-11

VSAM data sources, 5-1
alternate indexes, 5-42 to 5-44
data buffers, 5-41
describing, 5-7
FOCSAM interface user exit, C-2
generalized record types, 5-31 to 5-32
group keys, 5-7 to 5-9
IDCAMS utility, 5-42, 5-44
index buffers, 5-41
multiple record types, 5-22 to 5-24, 5-34 to 5-35,

5-37
nested repeating fields, 5-15 to 5-16
order of repeating fields, 5-19
parallel repeating fields, 5-14, 5-16
position of repeating fields, 5-17 to 5-18
positionally related records, 5-24 to 5-26
repeating fields, 5-11 to 5-13, 5-35, 5-37
unrelated records, 5-27 to 5-30

VSAM data sources (continued)
ZCOMP1 parameters, C-13
ZCOMP1 user exit, C-12

W

WHERE attribute, 6-22 to 6-25

work area control block, C-6, C-8

write-only access, 10-12

Y

Y2K attributes in Master Files, 4-2
date-time data type, 4-38

Year 2000 attributes in Master Files, 4-2
date-time data type, 4-38

YRTHRESH attribute, 4-2, 8-2
CHECK FILE command and, 8-2, 8-8
date-time data type and, 4-38

Z

ZCOMP1 user exit, C-12
linking, C-12
parameters, C-13

Reader Comments
In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections. Identify
specific pages where applicable. You can contact us through the following methods:

Mail: Documentation Services – Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html

Name: __

Company: ___

Address: __

Telephone: ___ Date:______________________________

E-mail: ___

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Describing Data DN1001058.1101
Version 7.2

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Describing Data DN1001058.1101
Version 7.2

	Preface
	Contents
	1. Understanding a Data Source Description
	A Note About Data Source Terminology
	What Is a Data Source Description?
	How an Application Uses a Data Source Description
	What Does a Master File Describe?
	Identifying a Data Source
	Identifying and Relating a Group of Fields
	Describing a Field

	Creating a Data Source Description
	Creating a Master File and Access File Using an Editor

	Naming a Master File
	Using Long Master File Names on OS/390
	Member Names for Long Master File Names in OS/390

	What Is in a Master File?
	Improving Readability
	Adding a Comment
	Editing and Validating a Master File

	2. Identifying a Data Source
	Specifying a Data Source Name: FILENAME
	Identifying a Data Source Type: SUFFIX
	Specifying a Physical File Name: DATASET
	DATASET Behavior in FOCUS Data Sources
	DATASET Behavior in Fixed-Format Sequential Data Sources
	DATASET Behavior in VSAM Data Sources

	3. Describing a Group of Fields
	Defining a Single Group of Fields
	Understanding Segments
	Understanding Segment Instances
	Understanding Segment Chains
	Identifying Key Fields
	Identifying a Segment: SEGNAME

	Identifying a Logical View: Redefining a Segment
	Relating Multiple Groups of Fields
	Facilities for Specifying Relationships
	Identifying a Parent Segment: PARENT
	Identifying the Type of Relationship: SEGTYPE

	Logical Dependence: The Parent-Child Relationship
	Understanding Root Segments
	Understanding Descendant Segments
	Understanding Ancestral Segments

	Logical Independence: Multiple Paths
	Understanding Multiple Paths
	Understanding Logical Independence

	Cardinal Relationships Between Segments
	One-to-One Relationships
	Where to Use One-to-One Relationships
	Implementing One-to-One Relationships in Relational Data Sources
	Implementing One-to-One Relationships in Sequential Data Sources
	Implementing One-to-One Relationships in FOCUS Data Sources

	One-to-Many Relationships
	Implementing One-to-Many Relationships in Relational Data Sources
	Implementing One-to-Many Relationships in VSAM and Sequential Data Sources
	Implementing One-to-Many Relationships in FOCUS Data Sources

	Many-to-Many Relationships
	Implementing Many-to-Many Directly
	Implementing Many-to-Many Indirectly

	Recursive Relationships
	Relating Segments From Different Types of Data Sources
	Rotating a Data Source: Alternate Views
	Other Uses of an Alternate View

	4. Describing An Individual Field
	Field Characteristics
	The Field’s Name: FIELDNAME
	Using a Long and Qualified Field Name
	Using a Duplicate Field Name
	Rules for Evaluating a Qualified Field Name

	The Field’s Synonym: ALIAS
	Implementing a Field Synonym

	The Displayed Data Type: USAGE
	Data Type Formats
	Integer Format
	Floating-Point Double Precision Format
	Floating-Point Single Precision Format
	Packed-Decimal Format
	Numeric Display Options
	Extended Currency Symbol Display Options
	Alphanumeric Format
	Date Formats
	Date Display Options
	Controlling the Date Separator
	Date Translation
	Using a Date Field
	Numeric Date Literals
	Date Fields in Arithmetic Expressions
	Converting a Date Field
	How a Date Field Is Represented Internally
	Displaying a Non-Standard Date Format
	Date Format Support
	Alphanumeric and Numeric Formats With Date Display Options
	Date-Time Formats
	Describing a Date-Time Field
	Specifying a Date-Time Value
	Text Field Format

	The Stored Data Type: ACTUAL
	The ACTUAL Attribute

	Null or MISSING Values: MISSING
	Using a Missing Value

	Validating Data: ACCEPT
	Online Help Information: HELPMESSAGE
	Setting a HELP (PF) Key

	Alternative Report Column Titles: TITLE
	Documenting the Field: DESCRIPTION
	Describing a Virtual Field: DEFINE
	Using a Virtual Field

	5. Describing a Sequential, VSAM, or ISAM Data Source
	Sequential Data Source Formats
	What Is a Fixed-Format Data Source?
	What Is a Comma or Tab-Delimited Data Source?
	What Is a Free-Format Data Source?
	Rules for Maintaining a Free-Format Data Source

	Standard Master File Attributes for a Sequential Data Source
	Standard Master File Attributes for a VSAM or ISAM Data Source
	Describing a Group Field

	Describing a Multiply Occurring Field in a Free-Format Data Source
	Describing a Multiply Occurring Field in a Fixed-Format, VSAM, or ISAM Data Source
	Using the OCCURS Attribute
	Describing a Parallel Set of Repeating Fields
	Describing a Nested Set of Repeating Fields
	Using the POSITION Attribute
	Specifying the ORDER Field

	Redefining a Field in a Non-FOCUS Data Source
	Extra-Large Record Length Support
	Describing Multiple Record Types
	Describing a RECTYPE Field
	Describing Positionally Related Records
	Ordering of Records in the Data Source
	Describing Unrelated Records
	Using a Generalized Record Type
	Using an ALIAS in a Report Request

	Combining Multiply Occurring Fields and Multiple Record Types
	Describing a Multiply Occurring Field and Multiple Record Types
	Describing a VSAM Repeating Group With RECTYPEs
	Describing a Repeating Group Using MAPFIELD

	Establishing VSAM Data and Index Buffers
	Using a VSAM Alternate Index
	Describing a Token-Delimited Data Source
	Reading a Complex Data Source With a User-Written Procedure

	6. Describing a FOCUS Data Source
	Designing a FOCUS Data Source
	Data Relationships
	Join Considerations
	General Efficiency Considerations
	Changing a FOCUS Data Source

	Describing a Single Segment
	Maximum Number of Segments
	Describing Keys, Sort Order, and Segment Relationships: SEGTYPE
	Describing a Key Field
	Describing Sort Order
	Understanding Sort Order
	Describing Segment Relationships
	Storing a Segment in a Different Location: LOCATION
	Separating Large Text Fields
	Limits on the Number of LOCATION Files
	Timestamping a FOCUS Segment: AUTODATE

	Describing an Individual Field
	The ACCEPT Attribute
	The INDEX Attribute
	Joins and the INDEX Attribute
	FORMAT and MISSING: Internal Storage Requirements

	Describing Two-Gigabyte and Partitioned FOCUS Data Sources
	Partitioning a FOCUS Data Source
	Intelligent Partitioning
	Specifying an Access File in a FOCUS Master File
	The FOCUS Access File
	FOCUS Access File Attributes
	Describing Joined Data Sources

	7. Defining a Join in a Master File
	Join Types
	Static Joins Defined in the Master File: SEGTYPE = KU and KM
	Describing a Unique Join: SEGTYPE = KU
	Using a Unique Join for Decoding
	Describing a Non-Unique Join: SEGTYPE = KM

	Using Cross-Referenced Descendant Segments: SEGTYPE = KL and KLU
	Hierarchies of Linked Segments

	Dynamic Joins Defined in the Master File: SEGTYPE = DKU and DKM
	Comparing Static and Dynamic Master File Defined Joins and the JOIN Command
	Joining to One Cross-Referenced Segment From Several Host Segments
	Joining From Several Segments in One Host Data Source
	Joining From Several Segments in Several Host Data Sources: Multiple Parents
	Recursive Reuse of a Segment

	8. Checking and Changing a Master File: CHECK
	CHECK Command Display
	Determining Common Errors

	The PICTURE Option
	The HOLD Option
	Specifying AS Names With the HOLD Option
	TITLE, HELPMESSAGE, and TAG Attributes
	Virtual Fields in the Master File

	9. Accessing a FOCUS Data Source: USE
	The USE Command
	Specifying a Non-Default File ID
	Identifying New Data Sources to FOCUS
	Accessing Data Sources in Read Only Mode
	Concatenating Data Sources
	Accessing Simultaneous Usage Data Sources
	Multi-Thread Configuration

	Using the LOCATION Attribute
	Displaying the USE Options in Effect

	10. Providing Data Source Security: DBA
	Introduction
	Implementing Data Source Security
	Identifying the DBA: The DBA Attribute
	Including the DBA Attribute in HOLD Files
	Identifying Users With Access Rights: The USER Attribute
	Establishing User Identity

	Specifying Access Types: The ACCESS Attribute
	Types of Access
	The CHECK Command
	The CREATE Command
	The DECRYPT Command
	The DEFINE Command
	The ENCRYPT Command
	Host Language Interface (HLI)
	The MODIFY or MAINTAIN Command
	The REBUILD Command
	The RESTRICT Command
	The FSCAN Facility
	The SCAN Facility
	The TABLE or MATCH Command

	Limiting Data Source Access: The RESTRICT Attribute
	Restricting Access to Fields and Segments
	Restricting Values
	Restricting Values a User Can Write
	Restricting Values a User Can Alter
	Restricting Both Read and Write Values

	Placing Security Information in a Central Master File
	File Naming Requirements for DBAFILE
	Connection to Existing DBA System With DBAFILE
	Combining Applications With DBAFILE
	Using Filters
	Summary of Security Attributes

	Hiding the Restriction Rules: The ENCRYPT Command
	Encrypting Data
	Performance Considerations for Encrypted Data
	Restricting Existing Files
	Displaying the Decision Table
	Setting Passwords Externally

	FOCEXEC Security
	Suppressing Password Display
	Setting Passwords in Encrypted FOCEXECs
	Defining Variable Passwords
	Encrypting and Decrypting FOCEXECs
	Locking FOCEXEC Users Out of FOCUS

	Program Accounting/Resource Limitation
	Program Accounting
	Activating a DBA User Program
	Specifications for the User-Written Program
	Resource Limitation
	Usage Accounting and Security Exit Routine (UACCT)

	Absolute File Integrity

	Appendix A: Master Files and Diagrams
	Creating Sample Data Sources
	The EMPLOYEE Data Source
	The EMPLOYEE Master File
	The EMPLOYEE Structure Diagram

	The JOBFILE Data Source
	The JOBFILE Master File
	The JOBFILE Structure Diagram

	The EDUCFILE Data Source
	The EDUCFILE Master File
	The EDUCFILE Structure Diagram

	The SALES Data Source
	The SALES Master File
	The SALES Structure Diagram

	The PROD Data Source
	The PROD Master File
	The PROD Structure Diagram

	The CAR Data Source
	The CAR Master File
	The CAR Structure Diagram

	The LEDGER Data Source
	The LEDGER Master File
	The LEDGER Structure Diagram

	The FINANCE Data Source
	The FINANCE Master File
	The FINANCE Structure Diagram

	The REGION Data Source
	The REGION Master File
	The REGION Structure Diagram

	The COURSES Data Source
	The COURSES Master File
	The COURSES Structure Diagram

	The EMPDATA Data Source
	The EMPDATA Master File
	The EMPDATA Structure Diagram

	The EXPERSON Data Source
	The EXPERSON Master File
	The EXPERSON Structure Diagram

	The TRAINING Data Source
	The TRAINING Master File
	The TRAINING Structure Diagram

	The PAYHIST File
	The PAYHIST Master File
	The PAYHIST Structure Diagram

	The COMASTER File
	The COMASTER Master File
	The COMASTER Structure Diagram

	The VideoTrk and MOVIES Data Sources
	VideoTrk Master File
	MOVIES Master File
	VideoTrk Structure Diagram
	MOVIES Structure Diagram

	The VIDEOTR2 Data Source
	The VIDEOTR2 Master File
	The VIDEOTR2 Access File
	The VIDEOTR2 Structure Diagram

	The Gotham Grinds Data Sources
	The GGDEMOG Data Source
	The GGDEMOG Master File
	The GGDEMOG Structure Diagram

	The GGORDER Data Source
	The GGORDER Master File
	The GGORDER Structure Diagram

	The GGPRODS Data Source
	The GGPRODS Master File
	The GGPRODS Structure Diagram

	The GGSALES Data Source
	The GGSALES Master File
	The GGSALES Structure Diagram

	The GGSTORES Data Source
	The GGSTORES Master File
	The GGSTORES Structure Diagram

	Appendix B: Error Messages
	Accessing Error Files
	Displaying Messages Online

	Appendix C: User Exits for a Non-FOCUS Data Source
	The Dynamic and Re-Entrant Private User Exit of the FOCSAM Interface
	Functional Requirements
	Implementation
	The Master File
	The Access File
	Calling Sequence
	Work Area Control Block

	User-coded Data Access Modules
	Re-Entrant VSAM Compression Exit: ZCOMP1
	Linking ZCOMP1
	What Happens When You Use ZCOMP1
	ZCOMP1 Parameter List

	Appendix D: Rounding in FOCUS
	Data Storage and Display
	Integer Fields: Format I
	Floating-Point Fields: Formats F and D
	Packed Decimal Format: Format P

	Rounding in Calculations and Conversions
	DEFINE and COMPUTE

	Index

