Infarmation

m-ld
l emi

FOCUS® for S/390°

Developing Applications
Version 7.1

DN1001057.1100

Contents

. CUSLOMIZING YOUr ENVIFONMENToveoveeeeeeeeereeeeeeeseiseeseeeeeeseeeseessessssessesssessesesseessssssssesssesnesesssssnees 1-1
[THE SET COMMANG..........ooveeeveeeieeeeeseeseeseeseesseseesseseeseeseeseeseessessesseseessesesssesesssssnessesssssssssssesssesssssssssssessssene 1-2
SET ParaMELEr SYNLAX..........c.veiveveireeeseeseeseeseessessesseseesseseessessessessssseseessesssssssssssssssssssssssssssssesssessssessssssessssess 1-3

P QUENYING YOUr ENVIFONMENToooeveeeeeeeeeeseeseeseeseeseeseesaeseessessessessessesnesseseessesnessesesssesnsssssnssnesssssssnsesens 2-1
USING QUENY COMMENGSceoveoverreeceeeseeseeseeesesseseeseessesnssssssssseesssssessssssssessssesnssssssesssssssesssssessessessessess 2-2
Displaying COMDINE SITUCIUIES...............c..c.vveeeeeeeeeereeseseeseseeseesseseeseessessessessesseseessessesssssessesseessssessssssesssnene 2-3
DiSplayiNg VIrtUBl FIEIASc.ovovoeeeeeeeeeseeeieeeeeesieseeseseseeseseeseeseesseseesseseesneseessesnesnesnessesneesessessesnsesssneee 2-4
Displaying the Currency Data SOUICE iN EFfECL................c.oveeveeveereereseeeresseeseseesseseessessessessesseeseeseesescssssesseneens 2-5
Displaying AVaIlADIE FIElSo.cuveeereeeeeeeeeseeseeseeseeseeseeeieseseseseeseeseeseeseessessessessessesseesessessssnsesesnens 2-5
Displaying the File DIr€CtOry TaDIE............c.vueureeeereeeeseeeeseeseeseeseseestseesseseesseseessessessessessesseesesnessesnsesesneens 2-6
Displaying Field INformation fOr @aMaSLEr Fil€.............c.cvvvveeerrrrerreersresrssessssessessessessessesseessssessssssesseneens 2-4
Displaying Data SOUICE SEALISHCS.c..vvereerrsrsrersrsersssesseeseesesseesesssesssssssssesessssssesssscersesssssessessessessens 2-9

Determining the Percentage of File DiSorganiZation............cocueeerereirenseseneseseese e 2-11
Displaying DEFINE FUNCHONS.................ccovveieeeeesieseesressessessessessessessessessessessesssssssssssessssnssssssssssssessssssesesses 2-11
DiSplaying HOLD FIEIUS...........ccovecveeveereereereeeeereesesreeeesssseesessessesseesessessssssesssnsessessesssssssssnsessscsessessessessesseses 2-12
DiSplaying JOIN SEUCKUIES...............cveevereereereereeseesessessessesseseesssssesssssssssessessasssssessssscssssansessssssessessessesseses 2-13
Displaying National Language SUDPOTT.................c..c.ererereerermessessessessessessessesssssessessessessessesssssessessessessesees 2-14
Displaying LET SUBSHIULIONSc..cverveereerrrersersensesrssensessessessessseseesssssesssssessessessesssssanssscssssessessessesseses 2-14
Displaying Information ADOUL LOBAE FIlES................c.oveeveereeeerreereereseesreseeeressessessessessessesnessssnessssneesseseeseenes 2-15
Displaying EXplanations Of EFTOr MESSAOES..................vveerreerrereeseeseesseseessesseseesseseeseessessessessessessessesseesesees 2-15
Querying Which PTFs Have Been Applied for a Specific REIEASE.ocovevevveveeveseresrsrsesrseesnenes 2-16
Displaying the REIEESE NUMDEYc..ovvveeveeeeereereersreeressessessessessesseseeesssseessessessssssssssssssssssssessessessesseses 2-17
DiSplaying ParamEter SEtINGS............c..oveveereererreeeerrereerssesessessesseesseseessessesssssessessesssssesssssessscsessessersessesseses 2-17
Displaying Graph ParaMELErS................cc.oceoveveeeeieeieeseeeeessessessessessessessessessessessessessessessessessesssssessesssssssssssesees 2-21
Displaying COMMEANG SLALISHCS.cveverrerrerrerrerrrserrssesssesseesessesseesssssesssssessessessessesssnsesssnsessessessessesseses 2-27
Displaying Information About the SU MaChiNe................c.oueveeveeveereererreseeeresresseseesseseeseesneseessesseesesceeseesesnes 2-24
Displaying Global Variable VEAIUES..................ceeeeeeeeeeeeeseeseeseseseseseeseseeseeseessessesnessessessesnesnesseseessesees 2-25
Displaying StyleSheet Parameter SEtiNGS.................vu.evoreeererrerrseseseeseessessessessessessessessessessessessessessessesees 2-26
Displaying Data Sources SPeCified With USEc..c.euevrrereerereeseereeresseesessessessesssssesssssesssssssssessessenes 2-26

Developing Applications

Contents

B Using FUNctions and SUBIOULINEScccciiiiiiiii st 3-1
What Is the Difference Between a Function and a SUDFOULINE?...................coveveeereereerrereeseesreseessesneseeesesnens. 3-Z
TYPES Of FUNCHONS 8NGO SUDIOULINESvveveeeerreerenreesesesessesseessesssssssssssesssssssnssessssssesssssessssenssessceans 33

Bit FUNCLIONS aNA SUDIOULINESoviiiiiiiieceie sttt st sttt st st 3-3
Character FUNCtioNs and SUDIOULINES.........cciirieiiiieeniereeesie ettt st sttt st e b e sne 34
Data Source FUNCLIONS @Nd SUDIOULINES.........coiiieirereeenie ettt 3-6
Date FUNCLIONS aNd SUDIOULINES.c.coiiiieirieeeie ettt st s bbbt st 3-6
Decoding FUNCLiONS @and SUDIOULINES..........ooueiiririeieie et s s 3-10
Format Conversion FUNctions and SUDIOULINES............ooiiiiiiiireeee e e 311
Numeric FUNCLIONS 8N SUDFOULINEScouiiiiiiiiieee ettt s s 312
System FUNCtions and SUDIOULINES..........c.ooiiiiiieeeee ettt s 3-13
Date FUNCtion and SUBTOULING SEEINGSc.cvreieeeeerereeeeereseeseesesseseesesseseesesseseeseeseseeseeseseeseesesessessesesses 3-14
Using Legacy Versions of Date SUDIOULINES............coveiririeininierie s e 314
Setting BUSINESS DAY UNITS....ccueiiiiiie ettt sae st s e e b e e b bt e se e e e s e seesbesneaneees 3-15
SEING HONIAAYS ..ottt bttt e et e b s be b e st eae e b e besaesbe e e et es 3-16
Enabling Leading Zeros For Date Subroutinesin Dialogue Managercocevererenenenenieeseeseeseeens 317
Subrouting COMMANG (Call) SYNEAX.............c..verreererreereeeeesseseeessesseessesssesssssseesssssnssesssesssssssssesssesessarsaees 3-18
Types of Argumentsin SUDFOULINE CallSccevviiiiie et snenneens 3-19
Rules for Argumentsin SUBrOUINE CallS.........viveereeierce e s 3-20
Using Subrouting Callsin FOCUS FUNCLIONS........c.coiiiiiieieseseseseeeeseseese e sesne e eseeseenesnsesenns 321
Using Subroutine Callsin DEFINE, COMPUTE, and VALIDATE Commands............ccoceeereeerneenns 3-22
Using Subroutine CallsSin WHERE and [F TESIS.c..ooiiiee e e 3-23
Using Subroutine Callsin -SET Control COMMANGS.........ceiererieeiierieriese st sreseeee e sre e seeeeseeneas 3-23
Using Subroutine Callsin -1F and |F Branching Commands.............cccoererineneninieneeieeseee e 3-24
Operating System -RUN COMMEBNGSecvierrereeieriereseseseesseeesseesseseessessesseesesssessessessessesssssesssessenes 3-26
Using Subrouting CallSin WHEN Critelia.......c.cceiirereiiseieceseeeeesees e se e e e e see e sse e sresnes 3-27
Using Subroutine Callsin RECAP COMMANCS...........cooevirieieiireeereseesesesreseesseseessesessessesseeseesessees 3-28
Storing and Accessing EXternal SUDFOULINES...................o..cuoveeveeeerereereereseeseeseseeseeseseeseeseseesseseseesesseseesesseseeses 3-30
Storing and Accessing SUDIOULINES ON IMV'S ... e e 3-30
Dynamic Language ENVironmMent SUPPOITcccooiiiiireieeeeieee et e e et sbe e ee e e e sneas 3-32
Storing and Accessing Subroutines 0N VIM/CIMSo e e 3-34
[Alphabetical List of FUNCEiONS aN0 SUDFOULINES..................ouveereieereereceeseeeeseseeeesseeseesseseeseseesessessesesnesesens 3-34
ABS: Calculating ADSOIULE VEIUE........ccooviieicierereere s 3-36
ARGLEN: Measuring Argument LeNnGth ..o s 3-37
ASIS: Distinguishing Between aBlank and & ZEr0..........ccooeereeieieriine et 3-38
ATODBL: Converting Alphanumeric Strings to a Double-Precision Numberccoceoeeeiennnene. 3-39
AYM: Adding or Subtracting Months to Or FrOm DaLeS.........ccccvirerieeiienieiene e 3-43
AYMD: Adding or Subtracting DaySt0o or From DateS...........cceceereereerereseseseseeeeseeseese e sesesseseens 345
BAR: ProduCing Bar ChartS..........cucueieieiisisie st sees et se et e e snessesnesneeneenens 3-47
BITSON: Determining If BitS Are On OF Off........coviiiiiiceeecescre et enen 3-49
BITVAL: Evaluating Bit Strings as Binary INTEQErS........vveeeerererie e e s seeeeeseesee e sre e sseeseeneenes 3-50
BYTVAL: Trandating a Character to [ts ASCII or EBCDIC COUE........cccooemiirerierieniene e 3-52

Information Builders

Contents

CHGDAT: Changing Dat FOMMELS........cciueeereerieseseesiestesteseeseeseeseessesesssessessessessessesssesssssessessessesssenes 3-53
CHKFMT: Checking String FOIMEL.........cccveieieeieeresesese e sres e eseeseeseeseesee e saeesessesaeeeseessesesssessesseenes 3-56
CHKPCK: Validating Packed Fields...........ccooiiiiiiieeee e s s 3-59
CTRAN: Trandating One Character t0 ANONEYooiiiiiiiee e e 3-62
CTRFLD: Centering & CharaCter SEFMNQ.......ccoeeeereeieierie ettt sre e e s 3-68
DA Subroutines: Converting a Dateto an INtEOENcccoeiiririreiereeee e e 3-70
DATEADD: Adding or Subtracting Date Unitsto or From aDate.........cccccceveveveriesesesesesesieeeeneens 3-72
DATECVT: Converting Dat€ FOIMELS........cc.ciierireieseseseseeseesseseessessessessessessessesssessessessesssssessessessenns 3-77
DATEDIF: Finding the Difference BEtWeen TWO DaESccoveeereereresesesesresreeeeeeseesee e seessesnesnens 3-78
DATEMOV: Moving Datesto a SignifiCant POINL...........ccccueeereererinern s seeseseseeseesee e s sse e snens 3-80
DECODE: DECOUING VAIUES.......oiuiiieiteieeeiieieiie ettt sttt e e se st sae s be et sae e e e e eese e besaesbesaeeneaneans 3-83
DMY, MDY, YMD: Calculating the Difference Between TWO Dates.........ccccovevererenerienenieeneeieneens 3-86
DOWK and DOWKUL: Finding the Day Of the WEeEK............ccoiiiiiiieeee e 3-88
DT Subroutines: Converting an INteger t0 @ DEE...........cccoiiieiiienereeee e 3-89
EDIT: Converting the Format of @FIeldocviiiiieeecees e 391
EDIT: Extracting or Adding CharaCters.........cuevereieieseseceeieeeseestese s se e e esaesseste e snesseseensnneens 3-93
EXP: RaiSiNG “€" t0 the Nt POWESccueieeeecescse st e s eneeneens 3-95
EXPN: Evaluating SCientific NOtAtONcccviiiiiiricieecesees st et sre e eneeneens 3-96
FEXERR: Retrieving FOCUS ErrOr MESSAgES.......couiruiruereeeeeeiesiesie et siesiesseeeeseesesseestesaesresaesnesnnans 3-96
FINDMEM: Finding a Member of aPartitioned Data Stcccoererieienenenesenese e 397
FTOA: Converting a Number to Alphanumeric FOrMALccoceiiiireninierere e 3-100
GETPDS: Determining if a Member of a Partitioned Data Set EXiStS......cocooereeieeienine e 3-101
GETTOK: Getting a TOKEN From @ StHNQ....ccveieeeieeeereeeeeeeseeseseeseesieseessessessesseseessesssssessessessessessens 3-106
GETUSER: REeVING thE USEY IDoiviiiiieceiceeeee ettt ettt a et sne e enean 3-108
GREGDT: Converting From Julian to Gregorian FOrMaLcccovvvvereeerieereseseeseseseesseseeeeseenens 3-109
HADD: Incrementing aDate-Time Field........cccooeie i 3-112
HCNVRT: Converting a Date-Time Field to Alphanumeric FOrmatccoovveenenienerneeienesesee 3-113
HDATE: Converting the Date Portion of a Date-Time Field to aDate Formatccoccvcvnevenennene 3-114
HDIFF: Finding the Number of Units Between Two Date-Time ValUesS.........ocoeverenerienieenieneeiens 3-115
HDTTM: Converting a Date field to aDate-Time Field.........cocoeiiiiiii e 3-116
HEXBY T: Converting a NUmMbEr t0 @ CharaCter..........ccvveeeeereeresesese s se e seeseesee s eneenes 3-117
HGETC: Storing the Current Date and Timein aDate-Time Field.......cccccovvvvevevceecccencse e 3-119
HHMMSS: Returning the CUITENt TIMEeceeieiererese e see e e st se e e sne e sne e 3-120
HINPUT: Converting an Alphanumeric String to aDate-Time ValUe.........ccccvvveeveeceerereenieseseeseens 3121
HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight ..o 3-122
HNAME: Extracting a Date-Time Component in Alphanumeric FOrmat.............ccooeveeevenenencnenienn 3-123
HPART: Returning a Date-Time Component in NUMEeric FOrmat..........cccoverereieneneseneneeeeeeeens 3-125
HSETPT: Inserting a Component Into aDate-Time Field ..o 3-126
HTIME: Converting the Time Portion of aDate-Time Field to aNumbercccceevevevvnievcnnnenn, 3-127
IMOD, FMOD, and DMOD: Calculating the Remainder From aDiViSioncccccceevevevvniesesennnen 3-128
INT: Finding the Greatest INTEQENcovvie ettt st sne e e e 3-129
ITONUM: Converting Large Binary Integers to Double-PreCiSionccccevevevvveneseesceeeeseseeniens 3-130
ITOPACK: Converting Large Binary Integersto Packed-Decimal Formatoocoeeeernecieicniennne 3132
ITOZ: Converting to ZONEA FOMMELcc.ereiieieieie sttt st se e e b 3-134
JULDAT: Converting From Gregorian to Julian FOrmMatccooererenienieienesese e 3-135
LAST: Retrieving the Preceding ValUE..........coooiiiiiiiiieeee et s e 3-137

Developing Applications

Contents

LCWORD: Converting Lettersin aWord to MixXed CaSe.........ccovvrereeiereeresinsesieseeeeseeseeseessessennes 3-138
LIUST: LEft-JUSHITYING @ SENQ c.veveivieieieeeeecree et es e se ettt ese e eaeseesaessesnesnesnneneennnns 3-140
LOCASE: Converting TEXt 10 LOWEICASE.ccceeerirrierie it sterieeteeee et sbe e see e e be e sbe e eneeneens 3-142
LOG: Calculating the Natural Logarithim............ccooiiiiiiiie e e 3-143
MAX and MIN: Finding the Maximum or Minimum ValUe............ccoceiireriniinene e 3-144
MVSDYNAM: PassingaDYNAM Command to the Command Processor..........ccocevererererieeiennenns 3-145
OVRLAY:: Overlaying a Substring Within @ String.......ccccecerererinneseseeeeressese e seeseesee e seenes 3-149
PARAG: Dividing Text INt0 SMaller LINES.......ccccvviieiiiicireeeseese e seenee e e enseneens 3-152
PCKOUT: Writing Packed Numbers of Different Lengths...........ccocevoeeirieecenisiesie e 3-154
POSIT: Finding SUDSLIHNG POSITIONc..cciieiisiese st ree et se e s et see e e snesnesneeneeneens 3-156
PRDNOR, PRDUNI, RDNORM, and RDUNIF: Generating Random Numbers............ccccceverenenene 3-158
RIUST: Right-JUSHITYING @ SEINGctiitiieieeieeee ettt s s b e een 3-161
SQRT: Calculating the SQUAre ROOL..........coeiiiieie e st 3-163
SUBSTR: EXIraCting & SUDSEIINGcveiueetirieeieieseese sttt s b e s e e b et e b ene e 3-164
TODAY : Returning the CUITENE DALEccvveeeeeeeeciere e s eteseeeeseesee e et sse e eaesees e seessessesneenes 3-166
UFMT: Converting Alphanumeric to HEXadeCimalcceverevinie i 3-168
UPCASE: Converting Text t0 UPPEICASEccuecvereeeeiereesesersteseessessesseeseseessessesssssessessessssssesssssesseses 3-170
YM: Calculating Elapsed MONENS........ccov i sre e 3-174

“ Managing Applications With DIialoguE MaNAGETcwvereereerrereereeeeeesresseseesseessssnesseesseesessenees 4-1
Overview of Dialogue Manager Capabilitiesc.o..oveeveereereereeerereereesreseeesseseeeeseeseessssssensessssssessereaees 4-2
Overview of Dialogue Manager Variables..........ccooiiiiiiiienieeee et s 4-6
Creating and StOMNG PrOCEAUIES.................c.vuveeeerereereereseeseeseseeseeseseeseesessseesessseesessessesessssesesseseesessssessesesses 4-§
S IRt """, 4-7
CONrOHiNG ACCESS 1O DBLAL....cueeueeeeierierie ettt ettt st sbesbesae e st e se e beseesbesbesaesbesaeeseenbesbesaeeneeneans 4-7
Including COMMENES N A PTOCEUUIEoeveeeieeeeceeseeceeseeseeseeseeseesseseesseseesneseessesnesnessessesneesesnesneseeesesnene 4-g
Overview of Dialogue Manager COMMENGS.................cueeererereieerereseseesesseseesesseseesesseseesesseseeseeseseeseesesesces 4-9
Bending aMessage t0 the USEr: -TYPEc.cieeeieeeeeeceseeseesestseeseeeeseeseseseesessessesesseseeseseessesessesessesesens 4-11
Controlling Execution: -RUN, -EXIT, a0 -QUITccouiierrerreireseeieeseeseeseeseeseeseeseessessessessesnessessessessesees 4-12
Executing Stacked Commands and Continuing the Procedure: -RUN...........c.cooeiiiininininieeee e, 4-12
Executing Stacked Commands and Exiting the Procedure: -EXITccvoveeeveneninvesnneceeeeeesee e 4-13
Canceling Execution of the Procedure: ~QUIT ..o iiiiieiieieecee et ae s e nes 4-15

I el """, 4-14
“GOT O PrOCESSINGceueeeertestesueeteeieeueeeeseateseesbesaeeaeese e e asbeseesbesbesaesaeeaeaneeasebeabesaeebesseane e e ansesaesbeeneanseen 4-16
(001 07e 01N glo I 1 o = £ T PR 4-19
Using Operators and FUNCLIONS N =IF TESES......ccuiiiiiiie i s 4-20
Screening ValUES With —1F TESIS. ..ot et st s 4-20
Testing the Status Of @ QUETYcveiiiire st e e st resae s e e e e e aensesneenaeneens 4-24
S """, 4-24
[o g To TE= 1 oo o SRS 4-27
USING EXPIESSIONS: ~SETcoocvveeeieeeeceeseeeeeseeseessessessessessessessessessessessessessessessseseen 4-27
Computing @NEW VariaDl€.......ccueieeie e et s e et e s b e e e 4-28

Information Builders

Contents

USING the DECODE FUNCLIONotiiiisiisecte st et ete et e e se e e saestesnesseesesseensensessessesnesneenss 4-29
USING the EDIT FUNCHION ...t et e e s ne st e e e e e e eaesneeneeneenees 4-30
USING the TRUNCATE FUNCLION ..ottt sttt et e e e be e saesbeeneas 4-31
Controlling @L00P WIth =SET ...ttt st e e e st sae b e 4-32
S 1] o= B T (U RRR 4-33
CalliNG 8 SUDIOULINE. ...ttt et a e s a et e et e b e s b e s aesbe s st eme e e e besaeebeeneaneees 4-33
Tt M Sl """, 4-34
Establishing Startup CONitioNS.........ccvieririeice s e sre e ene e enes 4-36
Incorporating MUItiPle PrOCEAUIES..........ccuieeeeeeeieieses e st st s e e s et se e e e e sessesresreeneenenns 4-37
Nesting Procedures With -INCLUDEcoiiiieie et et s 4-40
USING EXEC ... ittt ettt s st e s e b et e s e st et e st b et e st st et e sessenbe e nsesbenseneane 4-41
Developing an Open-ENded ProCeAUIE...........c.oiiiiree e st 4-41
Debugging With & ECHOc..oiuiiiieeee ettt b e bbbt bt ebe e e 4-42
Testing Dialogue Manager Command Logic With & STACKccvvviivireeerese e 4-43
Locking Procedure Users Out Of FOCUScociiieiie et e sne st en 4-44
WIHEING 1O FIIES: -WRITE.....oe ittt sttt et e s ae st e s e e e e e e aesneereeneenes 4-45
N e e """, 4-49
Querying the Values of Variables..........coci e e e s e 4-51
LOCEI VAITADIES ...ttt b e bbb ae st et e e et se e e b e saeene e e eneas 4-52
GlODEl VATADIES. ...ttt bbbt bt e b et e e e e se e be et b e e e et ee 4-53

Y S 0= VA= o= 4-54
SEAISHCA VAITADIES. ...t e et sttt sttt st e st 4-60

S oL o Y A - o] = 4-62
Using Variables to Alter COMMEANGS........ccueeereerereireresieseseeeeseesieseeseesesaessesseesseseessessessessessessesseenses 4-63
Evaluating aVariable IMMEdIAtElYccouiiiee e e 4-63
CoNCAENaLiNG VarialIES.........coeieie ettt e e a et e e e b et b et e 4-65
Supplying Values for VariableSat RUN TIME.............c.ov.vvvveeeeereeeeeseesseeessseeseessesssessesseessesssensessssessessarsnes 4-66
Supplying Values Without Prompting.........cceeeeieeiererine e sesessesseeseesee e e seessessesseesseseessesesssessesssenes 4-68
Supplying Values With -DEFAULTS.......ccci ettt see e snesre s eneenes 4-70
SUPPIYING VAIUES WIth =SETeeiecieesise sttt s e st e e e sre e snesresneeneenes 4-71
SUPPIYING VAlUES With -READ ..ottt st se b et s b e eae e 4-72
Direct Prompting With -PROMPT ..ottt s e st sbe e 4-73
Full-Screen Data Entry With -CRTFORMooiiiiiiie et se s 4-75
Selecting Data From Menus and Windows With -WINDOW ... 4-75
01 1T o I 0] 110 1 o SRS 4-75
VErifyiNg INPULE VAIUES.......ccei ettt st et sa e se e e enaeneentesnesneeneenees 4-76
Dialogue Manager QUICK REFEFENCEcccuieieeeeeeeeeeeieeseeseerseeseeeseesesseseeseneseeseeneseeseeseseesesnesessessesesses 4-84
System DefaultS and LIMITSo.eiieeee ettt ettt see e 4-97

B DEfiNING 8 WO SUDSHTULION...........ovocvereeeeceeeresseesisseseeeseesseeseesseeseesneseeesseesesessssssssssnsssesssssesesssnssesesseaees 5-1
[THE LET COMMENG...........oooveiveeeeeieereesieseeseeseeseeseesiesseseesseseeseeseessessessessessssssssssnsesessessssnsesssnsesssssssssssesssnsssens 5-2
Y Rt e """, 5-5
NIt e """ 5-1

Developing Applications

Contents

MUIEIDIE-TING SUBSHEULION. ...t seeseeseeseessesseseeseeenesnesnessesneenesseenesnssessesneesssnessssnsesesnese 5-9
RECUISIVE SUBSHTULION.........voovevevereeeseeeseevesseesesseesessessesnsessssessesnsenssnsesssssessessessensesssssensessesssssessessessessessassees 5-g
Using LET Substitution in @ COMPUTE or DEFINE COMMANGcoovevereereereerereeereeseereseeeneseeeneeean. 5-9
Checking CUrrent LET SUDSHTULIONSoc.oveveeeeresieseesiessesiesseseesseseessessessessessessessessessesssssesssenssseesesees 5-10
Interactive LET QUENY: LET ECHOcoveveeeeeeeeeeeeseeeseseseeseeseesseseessesnesnesnesnesnesnesnesnesnesnesnesnesnessesees 5-10
ClEANNG LET SUDSHTULIONS............vecvevevereeveereeseesesseesessesseesessessesssessessessessessessessessesssssesssnsesssssesssssessessesseses 5-11
Baving LET SUBSHIULIONS IN @ FIIE...........o.oveeveeeeeeeeereeeeeseesieseeseeseesseseessessesnessesnesnesnessesneenesseenesnessessesnessesees 5-12
IASSIgNING Phrases t0 FUNCHON KEYS..............c.veeeivereeeeeseesseseessessessessessessesseseesnesnessessessesnessessessessessssnessesees 5-12
B Enhancing AppPliCation PerfOrMaNCE..............c.cuveeeveeereeeereeseeseeseeseseeseesseseessessesseseesseseessssnessessessesnessens 6-1
FOCUS FBGIITIESvocvovecveveeereeevesiensessessssssssessssssssssnsesssssssssssesssssssssssssssssesnscsseessssesssssessessesssssessassns 6-2
IS T e e N1 oo 6-2
Loading Master Files, FOCUS Procedures, and ACCESS FIlES..........coveiiiireinenee e 6-4
Loading a Compiled MODIFY REQUESL........cieiiirieeriereee sttt e 6-5
L0oading aMODIFY REUESLcccueiiierieitistesecteeeestes e stestessestesseeseeseesses e seessessessessesssensesssnsessessessesnennes 6-6
Displaying Information About Loaded FilES.........cccvvviiiiiiricesce e s 6-6
COMPIliNG AMODIFY REQUESL.............cveveererreereereeressessesseesessessesssesssssssssssessessesssssessesssssssssssssssssessessessessees 6-1
Accessing a FOCUS Data SOUrCE (MV S ONIY)ovuveeeeereeeeeeeseeseseseeseeseeseeseessessessessessessessessessessesnessese 6-9
USING IMINTO ettt st bbb ae e ae et e e e e see e b e s bt ehe e Rt et et e seeebesbeebeeneeneenes 6-9
Determining if a Previous Command Used MINIOcccviieiiiiniernsese e seese e 6-10

[7 WOrking With Cross-CentUry DALeS..............c.veeeeevereereerereeeseseeseseseesessseesseseesseseesseseesssssessessessessessens 7-1
When Do Y ou Use the Sliding Window TEChNIGUE?.................cv.veeveeeerereereseeereseessessessessessesseesseseessessessenens 7-2
[The Sliding WindOW TECHNIGUE................c.oveveereeeeeereeseeseeseeseeseeseeseeseesseseessessesneseessessessessessesseesessessssnsesssnene 7-2
Defining 8 STdiNG WINOOWcooiiiiiiiieieieseeee et et sr e 7-3
Creating a Dynamic Window Based 0n the CUMENt Y €&ccuviieererieene et 7-4
Applying the Sliding WindoW TECANIGUE................veveeveeeeeeeeeeereereeresseesesssesessessessessesssssssnsessesassssesesesssseens 7-5
When to Supply Settings for DEFCENT and YRTHRESHcccocoiiiiive e 7-5
(D= (A= LT F= o] o ISR 7-6
Defining a Global WindOW With SETc..cueveeveereeeeeersreeeeeseseeessesssessesssessessssesssssssesssssossesssssssesseceees 7-1
Defining a Dynamic Global Window With SETooouiieeieieeceeseeceeseeseeseeseeseeseeseeseessessessesneseesneseesnenees 7-1Q
Ruerying the Current Global Value of DEFCENT and YRTHRESH.............cc.ocoveveveeeereeeeeeeeeneeeeereseeenenes 7-12
Defining aFile-Level or Field-Level Window in aMaster File..............c..ocvuvveveereeveeveeseeseieerereeresieneans 7-13
Defining aWindow fOr @ Virtual FIEI0..............c.oovveeveeeeeeeseesisesesrsesesseseessesseseesnessesnessesnesnessesnessesees 7-2Q
Defining a Window for @ CAlCUIAIEN VAUc..ovecveereeeerereerersrseesrssessessessessessesseesessessssseesssseesesces 7-26
Additional SUPPOTt TOr CroSS-CENEUNY DALESceveveereeeeresreeresseereseeesesseesssneessssessssnesssssssssessessessessenes 7-31
B EUFO CUITENCY SUPPOM c......ceoveoveeeeeeeeseeeseeseeeeeeseesneeseesseesssssssssesessssssnesssssessssssssssssnssessssssessssessesesssssneen 8-1

Information Builders

Contents

JNEEGIating the EUFO CUITENCYcecveeeieeeeeeesceseeseeseeseeseeseessesseseeseesseseesnessesnesnessessesssssessesssessssessssssessssesns 8-7
S L IS e """, 8-
Preparing FOCUS t0 Process CUITENCY CONVEISIONS....................ceeeceereseeseerereeseeseseseeseseessesesseseesesseseeseseeses 8-4
Creating the CUITENCY Dala SOUICE........coueiuiiueriieieiereesie ettt sae e s seesbeseesbesaesbe s e sseeeeseesbesaesbessesneeneans 8-4
Identifying Fields That Contain CUrENCY Dala.........ccoeiueiuirierierierie et e 8-6
IActivating the CUITENCY DEEA SOUICE.................oveveivereeieeseeseeseeseeseeseeseesseseessessesseseessessessessessesssessssessssssesessess 8-9
Querying the Currency Data SOUTCE N EFFECc.ovuveeeeereeceeeeseeceetseeeeseseeeeseseeeeseseseesesnseeseseeneeneseees 8-9
e O LA """, 8-10
9 Designing Windows With WindOW PAINTEYc.cceueeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeseeseeseeseeseesseseesseseeseeseens 9-1
FOUEFOTUCHION ...t eeeseeenessesneseeenesneeneseesnesnsenessesneseesnessssnssneesesnssnssnessesssesssssssssnsessssees 9-7
How Do Window APPRlICaEIONS WOIK?c..cceieieceieeeeesee et e e st ee e see st s snesneeneenes 9-3

T el L AN s """, 9-4
Types of WIiNAOWS Y OU Can CrEaLE.........cc.oiiiiiiiiereeieeee ettt e e et s b e se et et saesaesneeneas 9-5
Creating WINAOWS......c.eoiiiiee ettt et b et e e e b e b e b e s bt e ae e e e e e beseesbesaesbeeneeneenes 9-14
Integrating Windows and the FOCEXEC..............o.oueuivereseeseeseeseeseessessessessessessesseseessessessessessessessessessesees 9-21
Transferring Control in Window ApPPliCAIONS.........cccceriiiiieiesereeesesese e srese e see e s sre e eneeeens 9-22
RELUIN VBIUBS. ...ttt bbbttt bbb bt ne s be bt ene 9-24
GO0 VBIUES. ...ttt ettt sttt st b e s bbbt b et bt bt e bt s b et b e b et e b e s b e ne e bt s beneene s be it e 9-25
WiINAOW SyStemM Var@hl S ..ottt et et s sne e 9-26
Testing FUNCLION KEY VAIUES ..ottt ettt e e et saeenee e 9-26
Executing a Window From the FOCUS PrOMPLcoeiiririeieee e s 9-28
[Tutorial: A MenU-DIVEN APPIICAIION.oveveivereeereeeereeseesreseeseeseesseseeseessessessesseseesnesnesnessessesnessesneesesees 9-29
Creating the Application FOCEXECcccviiiieieeesese s sese e e seeseesae st sse s enaesee e saesressnsneenes 9-31
Creating the WINAOW FIlE ..ottt e e nne s r e e e enee s 9-33
(Sl 1Rl R L= YN o] 1o o) o S 9-51

T o e T e e 9-51
INVOKING WINAOW PAINTEN ...ttt st st e e et e b e aeeneeean 9-52
=011 VY= o O ST U TR OO 9-53

= T 1Y < o USRS 9-54
WINAOW CFEBLON IMENUeveitiieieete ettt sttt st st b et b et e b et e b et e eb e b e tenennas 9-57
WiINAOW DESIGN SCIEENeeuieiectistesteeteeeeee e ste e et e e e aestesresbesaesse e e esseseseestessesseeseensesesrentesaesrenneenees 9-59

RVAY T gl (o VT @ o) T0] S 1Y = 9-61
(0 TR AT= SR Y = o TP 9-72
[Transferring WinOOW FIlES.................o..ovoveeveeeeeeeeeeseeseeseseesessessessesseseessessessessessessessesnessesnesnesnessesssssesnsesesees 9-75
(O Lo I T I =0 = S 1 (=S 9-76
Transferring the File to the New ENVIFONMENL...........cccviiiiiireeeeece s eneens 9-77
Editing the Transfer Fil......cuiiie et ne b e ene e e enees 9-77
Compiling the TraNSFEr FilE ..o e e e e e e eneees 9-83

N el e 1 """ A-1
Creating SAMPIE DAta SOUICES.............c.vureeereeeeereeeereeseeseeseesesesesesseseessesseseessessesssssessesssssessessssssssessessens A-2

Developing Applications

Contents

[ThE EMPLOY EE DBIASOUICE..............oeoeeereeeeereseereseeseeseeseeseeseneseseesesesesesessessnssensesssssssesssssssssessessens A-3
LI S O N = = g 1= S A-4
The EMPLOY EE StruCtUre DI@Qram......cceeeieeeieseeeeeeesee e seesieseestessesseeseessssessessessessessessssssessessessessenses A-5

[THE JOBFILE DEIA SOUICE..............eeeeeeeeceeeereseereseeseereseesesseseeseesesessessesessessesessessesessesseresseseesesseseesesseseerees A-6
The JOBFILE MASLEr FilE.....ueciieieee ettt ettt st et et e bt e e be et e sneesreesreesreenneenns A-6
The JOBFILE StrUCLUIE DIBgIaM......c.coiuiiiiieiieeteseeieeee e see sttt sbe e se e seesbe b saesbe e e e e e e e neasaeseeeas A-6

[ThE EDUCKEILE DBEA SOUICE............oeeeeeereeereeeseeeseesieseeseseeseeseseeseessesseseesseseessessssssssssssssessesssssessessessens A-1
The EDUCKILE MASLEN Fil€...cue ettt sttt e e e st st e e enaennenes A-7
The EDUCFILE StruCtUre DIiagraM......c.ccceeeiesieseeeeeeeeeeeseesestestessessesseessesessessessessessesssesssssessessessenses A-7

[THE SALES DAL SOUICE..........o.oeeeereeeeeeeeeseeseereseeseseseeseeseseeseesessesessessesessessesessessesessessesessessesesseseesesseseesees A-§
The SALES MASIEN Fil ...ttt ettt et e et eeaeeste e te e sreesreenneenns A-8
The SALES SIrUCIUIE DIBOIAM ..ottt sttt ie et se b e bbb eae e e e e seenas A-9

[THE PROD DBIA SOUICE.............oveveeeeerereseseseseesiseeseseeseeseeseeseesseseessessesssssesssssssessssssssssssessssssssssssssseenes A-10
The PROD MESLEN Fil€......ciuiiieieeceiieceeestes ettt e ettt re e e e e naen e seestesaesneeneensensennens A-10
The PROD StrUCLUIE DIiagIaM........ccueiuereresieriesteseeseeeeseesteseestessessessesseesessssssesssssessessessessessesssessensessens A-10

R e """, A-11
LSO N R =S (= g 1 = S A-11
The CAR SEIUCIUrE DIGOIAIM......ccueieiieiesteste ettt et be bt e e e e e e se e besbesbe st saeene e e anbesaeas A-12

[THE LEDGER DA SOUICEeoeceeeceereseeeeeseseeseereseseeseseeseseeseesesseseesessesesessesesesseseesesseseesessessesessseeses A-13
The LEDGER MASLEr FilE.....c.ciuicuiiecieesiise sttt sae et te e st aesaen e saestesnesnesneeneansennens A-13
The LEDGER StrucCture DIaQramc.cceeeieieeeeeeeeeseeseeseseestessessessesseessesesssesssssessesssssessssssssssssensessens A-13

[THE FINANCE DALA SOUICE.ovovereeeeereesereseseesereeseseeseeseeseessseeseessesssssesssssesssssesssssssssssessssssssssssseees A-14
The FINANCE MASIE FilE ..ottt st et e re et e e be et e snaesaeesnnas A-14
The FINANCE SEUCIUIE DIGQIaIM.......oiiieirieieeeteee ettt sttt e e b e besae b e saesaesnse e aneeseeas A-14

[THE REGION DELA SOUICE..........eeeereseecereseeseeseseseesestesesseseesesseseesesseseesessessesesseseesessesssseseseesessssesesssseeses A-15
The REGION MASIEN FIlEiiieieeceeeeceeestes ettt e e s e e sne st e snesneeneeeensennens A-15
The REGION SHUCEUIE DIAGIAIMocueiiirieiteiie ettt ettt sbe st e e se e e stestesbesaesbe s e eneenseneaeeseens A-15

[ThE COURSES DIA SOUICE...........ovoeeeceeeeeereeeeeseesieseeseesesesesesessessssesesssessssssssessesssssesssssesssessssssssseaees A-16
The COURSES MASIES Fl@ ...ttt re e s ae e aeebe e saeesanas A-16
The COURSES StruCture DIiagramcceiueieeeeeeeeeeeeseeieseessessessessessessessesssessssssssessessessesssssessessessenns A-16

[THE EMPDATA DALA SOUICE............eeeeeereseeeeeseseeseeeestseeseseesesseseesessesesesseseesesseseesessessesesseseesessssesessseeses A-11
The EMPDATA MESEN FilE...euiceeieeciceseee ettt e et e e et st aesnesrenneeneennens A-17
The EMPDATA SIrUCLUIE DIBgIaMccuiiiiieieeeteseeieeee ettt st se e s e b sbe s b e eneesaaseesbeseeas A-17

[The EXPERSON DEEA SOUICE..............oveeereeeeeresereseresesesessessssssessessessssssssessessessesssssssssssssssesssssssanes A-19
The EXPERSON MaStEr Fil@.....cceieeieiesise ettt st s e e e s ae st sne st sneeneeneenseseens A-18
The EXPERSON StrUCtUIre DIiagram.......cccceeierieierreeeeeieeeeseeseessessessessessesseesessesssssesssssessessessesssessensens A-18

[THE TRAINING DALA SOUICE.............eceeeeereseeceeseeeeseeeeseeseeseseeseseeseesessessesessessesessesseseesessessesessssesssesessseeses A-19
The TRAINING MaESLEr FIlE......ciiii ettt et s s e s r e et s ae e et et e e beentesneesreesnnas A-19
The TRAINING SErUCLUIE DIBOIAMccuiiiiieeiieeteeeeiee et ettt ee et sae b e ene e e e e abe e A-19

Y e TR E ST — A-20

Information Builders

Contents

ThEe PAY HIST MEBSIEE FIlE....cuiieiiiicerie sttt A-20
The PAYHIST StrUCLUrE DIagramc.ccveeieiieieeceeeeeeeeseeseeseseestessestesseeseeseeseensessessessessessesssessssssnsensessnns A-20
YO N = S = —— A-21
The COMASTER MAStEr Fil€.....c.ciiieiiiiiieie ettt sa et ae et s eaenes A-22
The COMASTER StruCture DIAQIaIMcceiieieieeieeieieeie ettt e e e st e sbe e saesseeeaneeseans A-23
[The VideoTrk and MOV IES DA SOUICES..............c.vecereeeereesereeserseseesesseseeseeseseeseesesseseesesseseesessessesessseeses A-24
VIdEOTIK MBSIES Il ...t bttt st A-24
MOVIES MASEEN Fil@ ..ueviieeie et et sttt et st sttt bbb A-24
VideOTrK SEHUCLUIE DIAGIAIM......ccueiieiieiertete ettt ettt st st s be et e e e be s e e be et sb e s e eneesa e abesaea A-25
MOVIES SEUCLUIE DIGGIAIMcveiteie ettt st se e st st ae b et e e e e e se e be e b e saesneeneeneeneeses A-26

[ThE VIDEOTR2 DA SOUICE.............oeeeeeereereereseereeseereseseeseesseseessssesseseesssssessssssssessesssssssssssesssesssssessaees A-26
The VIDEOTR2 MBS FIlE....c.cciiiieiiiiiiete ettt st st A-26
The VIDEOTR2 ACCESS FIl@....c.eiiiiiieiriiete ettt A-27
The VIDEOTR2 StUCLUIE DIagraM........cceivereeeeeeeeeeseeseesieseestessessessesssesessessessessessessessessessessessessessens A-28
[The GOtham GriNAS DAta SOUICES...............c.cuvueeereeereseeseseeseseeseeseeseesesesssesesensssssssssessnsssssseenes A-29
The GGDEMOG DEta SOUICE.......coieeieiereinteiteetesieeieeeeseeieseestestesbe bt s e ese s e esessessesbesaesbesaesnesssensaseseeas A-29
The GGORDER DELA SOUICE.....c.cieeeeiereete st atesieetteieeseaaeseestestesbesbessesseseessesessesbesaesbesaesnessssnsanseseens A-30
The GGPRODS DA SOUICEcueivieeririiietesteseetestesestesesesseseesessessesessessssesseesseseesessessssessessesessensensenes A-31
The GGSALES DBLA SOUICEcueivieeiiriirietesieeetesies sttt st sbe e s esbe s b s eeeseseesesseseenesseseenessessansenes A-32
The GGSTORES DELA SOUICE.......ccuirveuertiietesiieetesieeetesteesseseesessessesessessesessessesessessssessenessessenessessensenes A-33

B ETTOr IMESSA0ES . 1-v.rvesrresseeesaeesssaeessseeessseeesaeeeseeess 0848818840888 88 B-1
N L= 0 L= B-2
Displaying MESSAGES ONlINE..............coeveeeereeeeeeeeeeesesieseeseeseseeseeseeseseessesesessseesseseessssssseseessessesssseseseans B-3
C Creating Your OWN SUBFOULINEScc.ouoveeeeeeieeereeeeeseeeeseeseeseseeseeseeseeseesessesseseeseessessessessessesseseessesees C-1
O N T hTT/”, C-2
Considerations fOr WIiting SUBIOULINES...................o..vevveereereeseereeseeseeseeseeseessesseseessessessessessessessessessesseseeseens c-3
N@MING CONVENTIONS.......etitiitietieiete ettt se et ee b e s aeeaeeeese e besbeebesaeemeeeesseabesbesbesneenesneensanseseens C-3
ArgUMENT CONSIAEIALTONS. ... eeieie ittt ettt sttt b et e e e e besae b e aeeae e e e s eeeseesbesaesbeenesneensensenbeses C-3
Programming CONSIAEIAtONS.coueiireieceeeeeesestes e se st se e esaesee e sresre s e esaessestestesressesneeneenseneensnseens C-5

(= TgTo (07T T @0 g TS Lo (= - 1o RS C-5
Programming Technique: ENtry POINESccoviiiiiii ettt e e e Cc-7
Programming Technique: Subroutines With More Than 28 ArgumeNtS.........cccccevevieveserieeeeseesennneens C-9
COMPIlELON N0 SEOTAGE..........oveeeeeeeeeeereeeeseeeeseeseeseeseeseseseseseeseessseeseessesseseeseessesssssessesssssssssssseeseaees C-17
CMS: ComMPIilation @N0 SEOFBOE........ceueeeeeereerierte st stereeiee e see e see st sbe st eeeeseesbesbesbesbesneeneeeanseseseeas C-12
MV'S: Compilation @nd SEOFAQEccveeeeeererese et see et ere e e e e st sne e e eneeneeneeneeneenes C-13
R LS T """, C-13
Example of a Custom Subroutine: The MTHNAM SUDIOULINE...............c.ooeerereereeeereeeeereseseerseeseseseeeenes C-14
The MTHNAM Subroutine Written in FORTRAN ... e C-15
The MTHNAM Subroutineg Written in COBOLcciiiiiiiiere e C-16
The MTHNAM Subrouting WITEEN 1N PL/oo.oiiiieee et C-18

Developing Applications

Contents

The MTHNAM Subroutine Written in BAL ASSEMBIEN ..o C-19

The MTHNAM Subrouting WIHEN iN Cooeiiirirereeesee e C-20

The MTHNAM Subroutine Called by @ FOCUS REQUESEcoveiverierierireeeenie et Cc-21

Yo T N e A RT L T —— C-27
USING REXX SUDMOULINES ...ttt sttt sttt sttt se et sb e saeene e et e C-22
Compiling FUSREXX MaCroSin CIMS........cooiiiiieiiseceeeee e e s e st e e sentesee st e snessesnesnsenenns C-32

[T [-1

Information Builders

Cactus, EDA, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, Information Builders, the Information Builderslogo, SmartMode, SNAPpack,
TableTalk, and Web390 are registered trademarks and Parlay, SiteAnalyzer, SmartMart, and WebFOCUS are trademarks of Information
Builders, Inc.

Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.

NOMAD is aregistered trademark of Aonix.

UniVerseis aregistered trademark of Ardent Software, Inc.

IRMA is atrademark of Attachmate Corporation.

Baan is aregistered trademark of Baan Company N.V.

SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.

Impromptu is a registered trademark of Cognos.

Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compag Computer
Corporation.

CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, and Ingres are registered trademarks of Computer Associates International, Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.

Paradox is aregistered trademark of Corel Corporation.

StorHouse is aregistered trademark of FileTek, Inc.

HP MPE/iX is aregistered trademark of Hewlett Packard Corporation.

Informix is aregistered trademark of Informix Software, Inc.

Intel is aregistered trademark of Intel Corporation.

ACF/VTAM, AlX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MV S, 0S/2, 0S/400,
RACF, RS/6000, /390, VM/ESA, and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MVS/ESA, QMF, SQL/DS, VM/XA
and WebSphere are trademarks of International Business Machines Corporation.

INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.

Orbix is aregistered trademark of lona Technologies Inc.

Approach and Datalens are registered trademarks of Lotus Development Corporation.

ObjectView is atrademark of Matesys Corporation.

ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visua Basic, Visual C++, Visua FoxPro, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.

Teradatais aregistered trademark of NCR International, Inc.

Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
NetWare and Novell are registered trademarks of Novell, Inc.

CORBA isatrademark of Object Management Group, Inc.

Oracleis aregistered trademark and Rdb is atrademark of Oracle Corporation.

PeopleSoft is aregistered trademark of PeopleSoft, Inc.

INFOAccess is atrademark of Pioneer Systems, Inc.

Progressis aregistered trademark of Progress Software Corporation.

Red Brick Warehouse is atrademark of Red Brick Systems.

SAP and SAP R/3 are registered trademarks and SAP Business |nformation Warehouse and SAP BW are trademarks of SAP AG.
Silverstream is atrademark of Silverstream Software.

ADABAS isaregistered trademark of Software A.G.

CONNECT:Direct isatrademark of Sterling Commerce.

Java, JavaScript, NetDynamics, Solaris, and SunOS are trademarks of Sun Microsystems, Inc.

PowerBuilder and Sybase are registered trademarks and SQL Server is atrademark of Sybase, Inc.

UNIX isaregistered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not all
cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’'s intent to
use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these
names other than to refer to the product described.

Copyright © 2000, by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed inthe U.SA.

Preface

This documentation describes FOCUS Application Development tools and environments

for FOCUS® Version 7.1. This manual is intended for any FOCUS user. It is part of the
FOCUS for S/390 documentation set.

The documentation set consists of the following components:

» The Overview and Operating Environments manual contains an introduction to
FOCUS and FOCUS tools and describes how to use FOCUS in the VM/CM S and
MV'S (0S/390) environments.

» The Creating Reports manual describes FOCUS Reporting environments and
features.

e The Describing Data manual explains how to create the metadata for the data
sources that your FOCUS procedures will access.

» The Developing Applications manual describes FOCUS Application Devel opment
tools and environments.

e The Maintaining Databases manual describes FOCUS data management facilities
and environments.

The users’ documentation for FOCUS Version 7.1 is organized to provide you with a
useful, comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities
and concepts are related, each chapter fully covers its respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and
conventions.

Referencesto MV S apply to al supported versions of the OS/390 and MV S operating
environments.

Developing Applications

Preface

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents
1 Customizing Your Lists commands you use to control output, work
Environment areas, and many other FOCUS features.
2 Querying Your Describes how to use query commands to retrieve
Environment information about the FOCUS environment.
3 Using Functions and Describes how to use the functions and subroutines
Subroutines available for manipulating numeric, date, and
aphanumeric values.
4 Managing Applications | Describes how to make report procedures more
With Dialogue dynamic by using Dialogue Manager control
Manager statements and variables.
5 Defining a Word Describes how to define string substitutions that can
Substitution be used in FOCUS report requests.
6 Enhancing Application | Describes FOCUS facilities for increasing the speed
Performance of your application.
7 | Working With Describes techniques for assigning a century to dates
Cross-Century Dates stored with two-digit years.
8 Euro Currency Support | Describes how to perform currency conversions
according to the rules established by the European
Union.
9 Designing Windows Describes how to create FOCUS windows and menus
With Window Painter that work in conjunction with a FOCEXEC.
A | Master Filesand Contains Master Files and diagrams of sample data
Diagrams sources used in the documentation exampl es.
B Error Messages Describes how to obtain additional information about
error messagesin FOCUS.
C | Creating Your Own Describes how to write subroutines that can be called
Subroutines from FOCUS.

Information Builders

Summary of New Features

Summary of New Features

The new FOCUS features and enhancements described in this documentation set are

listed in the following table.

New Feature

Manual

Chapter

Aggregating and Sorting
Report Columns

Creating Reports

Chapter 4, Sorting Tabular
Reports

DEFINE Functions

Creating Reports

Chapter 6, Creating
Temporary Fields

Reporting From
Independent Paths

Creating Reports

Chapter 5, Selecting Records
for Your Report

HOLD FORMAT
INTERNAL

Creating Reports

Chapter 11, Saving and
Reusing Report Output

Increased Display Fields
Support

Creating Reports

Chapter 1, Creating Tabular
Reports

Embedding Text Fieldsin
Headings

Creating Reports

Chapter 9, Customizing
Tabular Reports

REXX Subroutines Developing Appendix C, Creating Your
Applications Own Subroutines

Dialogue Manager Developing Chapter 4, Managing

TRUNCATE Function Applications Applications With Dialogue

Manager

CRTFORM HTML Developing Chapter 1, Customizing Your

Trandation Applications Environment

Two-Gigabyte and Describing Data Chapter 7, Describing

Partitioned FOCUS FOCUS Data Sources

Database Support

Token Delimited Files

Describing Data

Chapter 5, Describing
Sequential Data Sources

DATASET in Master File

Describing Data

Chapter 2, Identifying a Data
Source

Date-Time Data Type

Describing Data

Chapter 4, Describing
Individual Fields

Comma Suppress Edit
Option

Describing Data

Chapter 4, Describing
Individual Fields

Developing Applications

Preface

New Feature

Manual Chapter

Percent Edit Option

Describing Data Chapter 4, Describing
Individual Fields

Using FILEDEF to Create | Overview and Chapter 4, CMS Guideto
Extract Files Operating Operations
Environments

Documentation Conventions

The following conventions apply throughout this manual:

Convention

Description

TH S TYPEFACE

Denotes a command that you must enter in uppercase, exactly
as shown.

this typeface

Denotes a value that you must supply.

Indicates two choices. Y ou must type one of these choices, not
the braces.

Separates two mutually exclusive choicesin a syntax line.
Type one of these choices, not the symbol.

Indicates optional parameters. None of them is required, but
you may select one of them. Type only the information within
the brackets, not the brackets.

under score

Indicates the default value.

Indicates that you can enter a parameter multiple times. Type
only the information, not the ellipsis points.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

See the Information Builders Publications Catalog for the most up-to-date listing and
prices of technical publications, plus ordering information. To obtain a catalog, contact
the Publications Order Department at (800) 969-4636.

You can aso visit our World Wide Web site, http://www.informationbuilders.com, to
view acurrent listing of our publications and to place an order.

Information Builders

Customer Support

Customer Support

Do you have questions about FOCUS?

Call Information Builders Customer Support Service (CSS) at (800) 736-6130 or

(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 am. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities
and documentation. Please be ready to provide your six-digit site code number (3xxx.xx)
when you call.

Y ou can aso access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. It connects you to the tracking system and
known-problem repository at the Information Builders support center. Registered users
can open, update, and view the status of cases in the tracking system and read
descriptions of reported software issues. New users can register immediately for this
service. Thetechnical support section of www.informationbuilders.com also provides
usage techniques, diagnostic tips, and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse, or call (800) 969-INFO.

Information You Should Have

To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

* Your six-digit site code number (XXxX.XX).

e The FOCEXEC procedure (preferably with line numbers).

e Master Filewith picture (provided by CHECK FILE).

* Run sheet (beginning at login, including call to FOCUS), containing the following

information:

e 7?RELEASE
e ?FDT

e ?LET

e ?LOAD

« ?COMBINE
« ?JOIN

« 7?DEFINE

e ?STAT

Developing Applications

Preface

« ?SET/?SET GRAPH
« ?USE
» ?TSODDNAME ORCMSFILEDEF

e The exact nature of the problem:

» Aretheresults or the format incorrect; are the text or calculations missing or
misplaced?

» Theerror message and code, if applicable.
» Isthisrelated to any other problem?

» Hasthe procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

» What release of the operating system are you using? Hasit, FOCUS, your security
system, or an interface system changed?

» Isthisproblem reproducible? If so, how?

» Haveyou tried to reproduce your problem in the simplest form possible? For
example, if you are having problems joining two databases, have you tried executing
aquery containing just the code to access the database?

* Doyou have atracefile?

* How isthe problem affecting your business? Isit halting development or
production? Do you just have questions about functionality or documentation?

User Feedback

In an effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual. Please
use the Reader Comments form at the end of this manual to relay suggestions for
improving the publication or to alert usto corrections. Y ou can also use the Document
Enhancement Request Form on our Web site, http://www.informationbuilders.com.

Thank you, in advance, for your comments.

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers awide variety
of training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes,
visit our World Wide Web site (http://www.informationbuilders.com) or call (800)
969-INFO to speak to an Education Representative.

Information Builders

CHAPTER 1

Customizing Your Environment

Topics:

« [he SET Command|

. EET Parameter Syntax

Developing Applications

The SET command enables you to change parameters that

govern your FOCUS environment. These parameters control
output, work areas, the Hot Screen facility and other FOCUS

features.

1-1

Customizing Your Environment

The SET Command

Syntax

Syntax

The SET command enables you to customize both the application development and
runtime environment. It controls the way that reports and graphs display on the screen or
printer; the content of reports and graphs; data retrieval characteristics that affect
performance; and system responses to end user requests.

How to Set Parameters
SET paraneter = option[, paranmeter = option,...]
where:

par amet er

I's the FOCUS setting you wish to change.

option
Is one of a number of options available for each parameter.

You can set several parameters in one command by separating each with a comma.

Y ou may include as many parameters as you can fit on one line. Repeat the SET keyword
for each new line.

How to Set Parameters in a Request

Many SET commands that change system defaults can be issued from within TABLE and
GRAPH requests. SET used in this manner is temporary, affecting only the current
request. The syntax is

ON { TABLE| GRAPH} SET paraneter value [AND paraneter value ...]
where:

par anmet er
I's the system default you wish to change.

val ue
I's an acceptable value that will replace the default value.

Information Builders

SET Parameter Syntax

Example Setting Parameters in a Request

For example,

TABLE FI LE EMPLOYEE
PRI'NT CURR_SAL BY EMP_ID
ACROSS DEPARTMENT

ON TABLE SET NODATA NONE
END

changes the default NODATA character for missing data from a period to the word
NONE.

SET commands that cannot be issued from within TABLE include ASNAMES, BINS,
and HOLDATTR.

SET Parameter Syntax

This topic alphabetically lists the SET parameters that control the environment with a
description and their syntax.

Parameter: ACCBLN

Description: Accepts blank or zero values for fields with ACCEPT commandsin
the Master File (see the Describing Data manual).

Syntax: SET ACCBLN = { QN OFF}
where:
N

Accepts blank and zero values for fields with ACCEPT
commands unless blank or zero values are explicitly coded in the
list of acceptable values. Thisvalue isthe default.

OFF
Does not accept blank and zero values for fields with ACCEPT
commands unless blank or zero values are explicitly coded in the
list of acceptable values.

Parameter: AGGR[RATI O

Description: Determines the ratio of aggregation based on retrieved records and
the final size of the answer set.

Syntax: SET AGGR[RATI = {n| 9}
where:

n
Isthe ratio of aggregation. The default valueis 9.

Developing Applications 1-3

Customizing Your Environment

Parameter: ALL
Description: Handles missing segment instancesin areport.
Syntax: SET ALL = {ON| OFF| PASS}

where:

ON

Includes missing segment instancesin areport when fieldsin the

segment are not screened by WHERE or IF criteriain the request.
The missing field values are denoted by the NODATA character,

set with the NODATA parameter (see NODATA).

OFF
Omits missing segment instances from areport. Thisvalueisthe
defaullt.

PASS
Includes missing segment instancesin areport regardless of
WHERE or IF criteriain the request. This option is not supported
when MULTIPATH = COMPOUND (see MULTIPATH).

1-4 Information Builders

SET Parameter Syntax

Parameter: ALLONCVTERR

Description: This parameter applies to non-FOCUS data sources when converting
from the way the date is stored (ACTUAL attribute) to the way it is
formatted (FORMAT or USAGE attribute).

Controls the display of arow of datathat contains an invalid date
format (formerly called a smart date). When it is set to ON, the
invalid date format is returned as the base date or a blank, depending
on the settings for the MISSING and DATEDISPLAY parameters.

Syntax: SET ALLOACVTERR = { ON| OFF}

where:

N
Displays arow of datathat contains an invalid date format. When
ALLOWCVTERR isset to ON, the display of invalid datesis
determined by the settings of the MISSING attribute and
DATEDISPLAY command.

o |f DATEDISPLAY and MISSING are set to OFF, ablank is
returned.

» |If DATEDISPLAY isset to OFF, and MISSING is set to
ON, the value of the NODATA character (aperiod, by
default) isreturned (see NODATA).

» If DATEDISPLAY and MISSING are set to ON, the value
of the NODATA character (a period, by default) is returned.

» |If DATEDISPLAY issetto ON, and MISSING is set to
OFF, the base date is returned (either December 31, 1900,
for dateswith YMD or YYMD format; or January 1901, for
dateswith YM, YYM, YQ, or YYQ format).

OFF
Does not display arow of datathat contains an invalid date
format and generates an error message. This value is the default.

Developing Applications 1-5

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

ASNAMES

Controls the FIELDNAME attribute in aHOLD Master File. When
an AS phraseisused in a TABLE request, the specified literal is
used as afield namein aHOLD file. Also controls how field names
are specified for the values of an ACROSS field when aHOLD file
is created.

SET ASNAMES = { ON| OFF| FOCUS}

where:

N
Uses the AS phrase for the field name, and controls the way
ACROSS fields are named in HOLD filesin any format.

OFF
Does not use the AS phrase for the field name, or affect the way
ACROSS fields are named.

FOCUS
Uses the AS phrase for the field name, and controls the way
ACROSS fields are named in HOLD files only. Thisvalueisthe
defaullt.

AUTO NDEX

Retrieves data faster by automatically taking advantage of indexed
fieldsin most cases where TABLE requests contain equality or range
tests on those fields. Applies only to FOCUS data sources.

AUTOINDEX is never performed when the TABLE request
contains an aternate file view, for example, TABLE FILE
filename.filename. Indexed retrieval is not performed when the
TABLE request contains BY HIGHEST or BY LOWEST phrases
and AUTOINDEX is ON.

SET AUTOI NDEX = { ON| OFF}

where:

N
Uses indexed retrieval when possible.

OFF
Uses indexed retrieval only when explicitly specified viaan
indexed view, for example, TABLE FILE filename.fieldname.
Thisvalueis the defaullt.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

AUTOPATH

Dynamically selects an optimal retrieval path for accessing a
FOCUS data source by analyzing the data source structure and the
fields referenced, and choosing the lowest possible segment as the
entry point. Use AUTOPATH only if your field is not indexed.

SET AUTOPATH = { ON| OFF}
where:

N
Dynamically selects an optimal retrieval path. Thisvalueisthe
defaullt.

OFF

Uses sequential dataretrieval. The end user controls the retrieval
path through filename.segname.

AUTOSTRATEGY

Determines when FOCUS stops the search for akey field specified

inaWHERE or IF test. When set to ON, the search ends when the
key field isfound, optimizing retrieval speed. When set to OFF, the
search continues to the end of the data source.

SET AUTOSTRATEGY = { ON| OFF}

where:
N
Stops the search when amatch is found. This value is the defaullt.
OFF
Searches the entire data source.
AUTOTABLEF

Avoids creating the internal matrix based on the features used in the
query. Avoiding internal matrix creation reduces internal overhead
costs and yields better performance.

SET AUTOTABLEF = {ON| OFF}

where:
oN

Does not create an internal matrix. This value is the default.

OFF
Creates an internal matrix.

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

BI NS

Specifies the number of pages of core (blocks of 4,096 bytes) used
for data source buffers. Y ou can vary BINS from 13 to 63 pages
depending on the size of your core. The default is roughly two-thirds
of the core remaining after you start FOCUS.

SET BINS = n

where:

n
I's the number of core pages used for data source buffers. Valid
values are 13 to 63.

BLKCALC
This parameter applies only to MVS.

Enabl es system-determined blocking for HOLD files written to
DASD; files written to tape have BLKSIZE 32760, the
operating-system maximum.

The SET BLKCALC command must be issued before the TABLE
request and cannot be set within a request.

SET BLKCALC = { NEW OLD}
where:

NEW
Calculates optimal blocking factors for both 3380 and 3390
device types. Thisvalue is the default.

oD
Uses the method of calculating BLKSIZE that was used prior to
FOCUS Release 6.8.

BUSDAYS

Specifies which days are considered business days and which days
are not if your business does not follow the traditional Monday
through Friday week.

SET BUSDAYS = week
where:

week
Is SMTWTFS, representing the days of the week. Any day that
you do not wish to designate as a business day must be replaced
with an underscore in that day’s designated place.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

BYPANEL
This parameter applies only to HOT SCREEN.

Controlsthe repetition of BY fields on panels. When BY PANEL is
specified, the maximum number of panelsis 99. When BY PANEL is
OFF, the maximum number of panelsisfour.

SET BYPANEL = option
where:

option
Is one of the following:

ONrepeats BY field values on panels.
OFF does not repeat field values on panels.
0 does not divide column between panels.
n repeats n columns on each panel.
BYSCROLL
This parameter applies only to HOT SCREEN.

Scrolls report headings and footers scroll along with the report
contents.

SET {BYSCROLL| BYPANELSCROL} = { ON| OFF}

where:

N
Scrolls report headings and footings along with report contents.

OFF
Does not scroll report headings and footings along with report
contents.

BOTTOMVARG N

This command applies to PostScript and PDF report formats.
Sets the bottom boundary, in inches, of report contents on a page.
SET BOTTOMMARGI N = {n| .25}

where:

n
I's the bottom margin, in inches, for report contents on a page.
The default is .25 inches.

Customizing Your Environment

Parameter: CACHE

Description: Stores 4K FOCUS data source pages in memory and buffers them
between the data source and BINS.

When a procedure calls for aread of a data source page, FOCUS
first searches BINS, then cache memory, and then the data source on
disk. If the page is found in cache, FOCUS does not have to perform
an |/O to disk.

When a procedure calls for awrite of a data source page, the pageis
written from BINS to disk. The updated pageis also copied into
cache memory so that the cache and disk versions remain the same.
Unlike reads, cache memory does not save disk 1/Os for write
procedures.

FOCSORT pages are a so written to cache; when the cache becomes
full, they are written to disk. For optimal results, set cache to hold
the entire data source plus the size of FOCSORT for the request. To
estimate the size of FOCSORT for agiven request, issuethe ? STAT
command (discussed in Chapter 8, Euro Currency Support, then add
the number of SORTPAGES listed to the number of data source
pages in memory. Issue a SET CACHE command for that amount. If
cacheis set to 50, 50 4K pages of contiguous storage are allocated to
cache. The maximum number of cache pages can be set at
installation. For more information, see Technical Memo 7838.1,
Setting the Maximum Number of Cache Pages.

To clear the CACHE setting issue a SET CACHE = n command.
This command flushes the buffer; that is, everything in cache
memory islost.

Syntax: SET CACHE = {0| n}
where:
0
Allocates no space to cache; cacheisinactive. Thisvaueisthe
defaullt.

I's the number of 4K pages of contiguous storage allocated to
cache memory. The minimum is two pages; the maximum is
determined by the amount of memory available.

1-10 Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

CARTESI AN
Appliesto requests containing PRINT or LIST.

Generates areport containing all combinations of non-related data
instances in the case of a multi-path request. ACROSS cancels this
parameter.

SET CARTESI AN = { ON| OFF}

where:

N
Generates areport with non-related records.

OFF
Disables the Cartesian product. This value is the default.

CDN

Specifies punctuation used in numerical notation. When set to ON, a
comma marks the decimal position, and periods separate groups of
three significant digits.

Continental Decimal Notation (CDN) is supported for output in
TABLE requests. It is not supported in DEFINE or COMPUTE
commands.

SET {CDN| EUROPE} = { ON| OFF}
where:

N
Uses CDN. For example, the number 3,045,000.76 is represented
as 3.045.000,76.

OFF
Turns CDN off. For example, the number 3,045,000.76 is
represented as 3,045,000.76. This value is the default.

1-11

Customizing Your Environment

1-12

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

COLUMNSCROLL

Enables you to scroll by column within the panels of areport
provided that the report is wider than the screen width.

SET COLUMNSCROLL = {ON| OFF}
where:

ON
Enables column scrolling to the right and |eft by pressing the
PF10 key and the PF11 key, respectively. To scroll up and down
within the same column, use the PF7 key and the PF8 keys.

OFF
Disables column scrolling. This value is the defaullt.

COUNTW DTH

Expands the default format of COUNT fields from a 5-byte integer
to a 9-byte integer.

SET { COUNTW DTH| LI STW DTH} = { ON| OFF}

where:

N
Expands the default format of COUNT fields from a five-byte
integer to a nine-byte integer.

OFF
Does not expand the default format of COUNT fields from a
five-byte integer to a nine-byte integer. This value is the default.

COVPUTE

Compiles al COMPUTE calculationsin DEFINE commands and
MODIFY requestsinto machine code at request time; uses this code
to perform calculations at run time.

SET COMPUTE = { NEW OLD}
where:

NEW
Specifies the new, compiled logic. NEW is the defaullt.

oD
Forces al calculationsinto the old logic until the FOCUS session
isover, or the SET COMPUTE command is reset.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

DATEDI SPLAY

Controls the display of a base date. Previously, TABLE always
displayed a blank when a date read from a file matched the base date
or afield with a smart date format had the value 0. The following
shows the base date for each supported date format:

For mat Base Date

YMD and YYMD | 1900/12/31

YM and YYM 1901/01
YQandYYQ 1901/Q1

JUL and YYJUL 00/365 and 1900/365

Note: Y ou cannot set DATEDISPLAY with the ON TABLE
command.

SET DATEDI SPLAY = { ON| OFF}

where:

ON
Displays the base date if the data is the base date value.

OFF
Displays a blank if the date is the base date value. Thisvalueis
the defaullt.

DATEFNS

L oads the year 2000-compliant versions of the FUSEL B
subroutines.

SET DATEFNS = { O\ OFF}
where:

N
Loads the year 2000-compliant versions of the FUSELIB
subroutines. This valueis the default.

oD
Uses non-year 2000-compliant subroutines.

1-13

Customizing Your Environment

Parameter: DATEFORNVAT

Description: Specifies the order of the date components (month/day/year) when
date-time values are entered in the formatted string and trandated
string formats. It makes a value'sinput format independent of the
format of the variable to which it is being assigned.

Syntax: SET DATEFORMAT = dat ef nt

where:

dat ef nt
Can be one of the following: MDY, DMY, YMD, or MYD. The
U.S. English default format isMDY .

Parameter: DATETI ME

Description: Setstime and date in reports. This command is useful for
determining (statically or dynamically) exactly when your report was
run. You can display the DATETIME value using any FOCUS date
variable, for example, YMD, MDY, TOD, etc. If DATETIME isnot
set, the behavior of the FOCUS date variables remain the same.

Syntax: SET DATETI ME = option

where:

option
Is one of the following:

STARTUP Is the time and date when you began your
FOCUS session. This setting is the defaullt.

CURRENT| NOW Changes each time it is interrogated. For
example, if your batch job starts before
midnight at 11:59 P.M., it won’t complete until
the next day. If DATETIME is set to
NOWI|CURRENT, any referenceto the
variable gives the current date, not the date
when the job started.

RESET Freezes the date and time of the current run for
the rest of the session or until another SET
DATETIME command isissued.

1-14 Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

DEFCENT

Defines a default century globally or on afield-level for an
application that does not contain an explicit century. DEFCENT is
used in conjunction with YRTHRESH to interpret the current
century according to the given values. When assigned globally, the
time span created by these parameters appliesto every 2-digit year
used by the application unless you specify file-level or field-level
values. (See YRTHRESH.)

Note: This same result can be achieved by including the
FDEFCENT and FYRTHRESH attributes in the Master File.

SET DEFCENT = {cc| 19}
where:

ccC
Is the default century. If you do not supply avalue, cc defaultsto
19, for the twentieth century.

DI SPLAY

Is the PC display mode selection.

SET DI SPLAY = { OFF| PCCOLOR| PCMONG}
where:

option

Is one of the following:

OFF No display mode is selected. Thisvalueisthe
defaullt.
PCCOLCR The display mode is color.
PCMONO The display mode is black and white.
1-15

Customizing Your Environment

Parameter: DTSTRI CT

Description: Controls how much error checking is done on date-time values when
they are input by users, read from an alphanumeric transaction file,
displayed, or used in user-written subroutines.

Syntax: SET DTSTRICT = {ON| OFF}

where:
oN

Invokes strict processing. This means that whenever a date-time
valueisinput by a user, read from a transaction file, displayed, or
returned by a subroutine it is checked to make sure that the value
represents avalid date and time. For example, a numeric month
must be between 1 and 12, and the day must be within the
number of days for the specified month. ON is the default value.

If you attempt to enter a value that violates thisrule, the
following message displays:
(FOC177) | NVALI D DATE CONSTANT: dt_const ant

OFF
Does not invoke strict processing. Any date-time component can
have any value within the constraint of the number of decimal
digits allowed; for example, the month value can be 00 or 13 or
99, but not 115. Furthermore, the values do not have to be
consistent; for example, any month in any year can have 30 or 31

days.
Parameter: EMPTYREPORT
Description: Controls the output generated when a TABLE request retrieves zero
records.

EMPTYREPORT is not supported with TABLEF. When a TABLEF
reguest retrieves zero records, an empty report is always generated.

Syntax: SET EMPTYREPORT = { ON| OFF}
where:

N
Generates an empty report when zero records are found.

OFF
Does not generate an empty report when zero records are found.
OFF is the defaullt.

1-16 Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Developing Applications

ESTRECORDS

Passes the estimated number of records to be sorted in the request.
FOCUS queries using external sorts and including the parameter
‘FILSZ=En’' can diminish FOC909 errors. This parameter enables
the sorting algorithms to estimate SORTWORK space requirements
for each sort parameter request.

In order to make an accurate estimate for your ESTRECORDS
setting, it is suggested that you run the report without an external sort
in order to get arecord count. If an attempt is madeto SET
ESTRECORDS from the FOCUS prompt, FOCPARM, or PROFILE
FOCEXEC the following error is generated:

SET ESTRECORDS = n

(FOC36210) THE SPECI FI ED PARAMETER CAN ONLY BE SET ON
TABLE: ESTRECORDS

ESTRECORDS can only be set with the ON TABLE SET command
within the TABLE, MATCH, or GRAPH request.

For CMS/SyncSort the ‘ FILSZ=En’ parameter isignored. Therefore,
SET ESTRECORDS n has no effect.

SET ESTRECORDS = n

where:

n
I's the estimated number of records to be sorted.

1-17

Customizing Your Environment

Parameter: EURCFI LE

Description: Activates the data source that contains information for the currency
you want to convert. This setting can be changed during a session to
access a different currency data source. This parameter cannot be
issued in areport request.

Note: You cannot set any additional parameters on the sameline as
EUROFILE. FOCUS ignores any other parameters specified on the
same line.

Syntax: SET EURCFI LE = {ddnane| OFF}
where:

ddnane
Is the name of the Master File for the currency data source you
want to use. The ddname must refer to a read-only data source
accessible by FOCUS. Thereis no default value.

OFFDeactivat% the current currency data source and removes it from
memory.
Parameter: EXTAGGR
Description: Uses external sorts to perform aggregation.
Syntax: SET EXTAGGR = { ON| OFF| NOFLOAT}
where:
ON

Uses external sorts to perform aggregation.

OFF
Does not allow aggregation by an external sort.

NOFLOAT
Allows aggregation if there are no floating data fields present.

Parameter: EXTHOLD
Description: Enables you to create HOLD files using an external sort.
Syntax: SET EXTHOLD = { ON| OFF}

where:

ON

Creates HOLD files using an external sort.

OFF
Does not create HOLD files using an external sort.

1-18 Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

EXTSORT

Cadlls an external sort for use with the TABLE, MATCH, and
GRAPH commands.

If the report can be processed entirely in memory, external sorting
does not occur. In order to determine if the report can be processed
in memory, issue the ? STAT query after the TABLE, MATCH, or
GRAPH command, and check the value of the SORT USED
parameter. For additional information, see the Creating Reports
manual.

SET EXTSORT = {ON| OFF}

where:
oN

Enables FOCUS to pass records that are retrieved to an external
sort. Thisvalue is the default.

OFF
Uses the FOCUS internal sorting procedure.

EXTTERM

Enables the use of extended terminal attributes.
SET EXTTERM = { ON| OFF}

where:

ON

Enables the use of attributes. This value is the default.

OFF
Disables the use of attributes.

FI ELDNAVE

Controls the use of long field names (66 characters).
SET FI ELDNAME = { NEW NOTRUNC| OLD}

where:

NEW
Supports long field names.

NOTRUNC
Does not support unigue truncations.

oD
Turns off support for long field names.

1-19

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

1-20

FI LE[NAME]

Specifies afile to be used, by default, in commands. When you set a
default file name, you can use that file without specifying its name.

SET FI LE[NAME] = fil enane

where:

filenane
Is adefault file to be used in commands.

FI LTER
Activates and deactivates filters.

The SET FILTER command islimited to one line. To activate more
filtersto fit on one line repeat the SET FILTER command.

SET FILTER = {*|filter [filter]} INfile {ON CFF}

where:

*

Denotes all declared filters. This valueis the default.

ON
Activates the filter. The maximum number of filters set ON for a
fileislimited by the number of IF/WHERE commands in these
filters and should not exceed the standard FOCUS limit of
IF/WHERE commands in any single TABLE request.

OFF
Deactivates the filter. This value is the default.

filter
Isthe name of afilter as declared in the NAME = syntax of the
FILTER FILE block.

Information Builders

SET Parameter Syntax

Parameter: FI XRETRI EVE

Description: FOCUS HOLD files support keyed retrieval, which can greatly
reduce the |Osincurred in reading extract files. The performance
gains are accomplished by using the SEGTY PE= parameter in the
Master File as alogical key for sequential files. It allows you to stop
theretrieval process when an equality test on this field holds true.
This changes former behavior, as the interface previoudly read all of
the records from the QSAM file and then passed them to FOCUS to
apply the screening conditions when creating the final report.

Syntax: SET {FI XRETRI VE| FI XF} = { QN OFF}
where:
N
Stops the retrieval process when an equality test on this field
holds true.
OFF
Does not stop the retrieval process when an equality test on this
field holds true.
Parameter: FOC144
Description: Tells FOCUS to suppress warning message FOC144, which reads:
“Warning: Testing in Independent sets of Data.”
Syntax: SET FOC144 = { NEW OLD}
where:
NEW

—Displ ays the FOC144 warning message. This valueis the default.

oD
Suppresses the FOC144 warning message.

Developing Applications 1-21

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

1-22

FOC2G GDB

Enables two-gigabyte FOCUS data sources. Must be set in the
FOCPARM nprdfile.

SET FOC2G GDB = { ON| OFF}
where:

N
Enables support for FOCUS data sources larger than one-
gigabyte. Note that an attempt to use FOCUS data sources larger
than one-gigabyte in arelease prior to FOCUS Version 7.1 can
cause database corruption.

OFF
Disables support for FOCUS data sources larger than one-
gigabyte. OFF is the default value.

FOCALLOC
This parameter applies only to MVS.

Automatically allocates of FOCUS files. Allocation is done based on
Prefix.Master. FOCUS. The DISP will be SHR.

SET { FOCALLOC| FALLOC} = { ON| OFF}
where:

N
Automatically allocates FOCUS files.

OFF
Does not automatically allocate FOCUS files. Thisvalueisthe
default.

FOCSTACK

I's the amount of core in thousands of bytes used by FOCSTACK, the
stack of FOCUS commands from FOCEXECs awaiting execution.
The maximum value of FOCSTACK depends on your current region
size. You can aso specify the parameter as FOCSTACK SIZE.

SET FOCSTACK = {n| 8}
where:

n
I's the amount of core in thousands of bytes used by FOCSTACK.
The default valueis 8.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

HDAY

Activates the holiday file that is used in conjunction with the data
functions DATEDEIF, DATEMOV, DATECVT, and DATEADD.

This setting is by default not set at all.
SET HDAY = string
where:

string
Isthe part of the name of the holiday file after HDAY. This string
must be four characterslong.

HLI SUTRACE

Used for debugging, records the last 20 events that the FOCUS
Database Server (formerly called the sink machine) performed. The
information is written to memory and is intended for use when
reading a dump of the SU address space. This setting may only be
set inthe SU profile, HLIPROF.

SET HLI SUTRACE = { ON| OFF}

where:

N
Records the last 20 events that the FOCUS Database Server
performed. This valueis the default.

OFF
Does not record the last 20 events that the FOCUS Database
Server performed.

HLI SUDUMP

This setting is only used for debugging FOCUS Database Server
problems and may only be set in the SU profile, HLIPROF.

SET HLI SUDUMP = n
where:

n
When set to 99999, a dump of the FOCUS Database Server
address space will occur for any error on the server. The user
abend code is set to 275. The user code will also be set to the
error number.

1-23

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

1-24

HOLDATTR] S]

Includesthe TITLE and ACCEPT attributes from the original
Master File in the HOLD Master File. This setting does not affect
the way fields are named in the HOLD Master File.

SET HOLDATTR = { ON| OFF| FOCUS}

where:

N
Includes the TITLE attribute from the original Master Filein
HOLD Master Filesfor HOLD files of any format. The ACCEPT
attribute isincluded in the HOLD Master File when the HOLD
fileisin FOCUS format.

OFF
Does not include the TITLE or ACCEPT attributes from the
original Master File in the HOLD Master File.

FOCUS
Includesthe TITLE and ACCEPT attributesin HOLD Master
Fileswhen the HOLD fileisin FOCUS format. This value isthe
default.

HOLDLI ST

Determines what fieldsin areport request are included in the HOLD
file.

SET HOLDLI ST = { PRI NTONLY| ALL}

where:

PRI NTONLY
Includes only those fieldsin the HOLD file that are specified in
the report request.

ALL
Includes all verb object fields referenced in arequest in the
HOLD file, including both computed fields and fields referenced
ina COMPUTE command. Thisvalueis the default. (OLD may
be used as a synonym for ALL.)

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

HOLDSTAT

Includes the comments and DBA information in HOLD Master
Files. Thisinformation is found in the HOLDSTAT ERRORSfile
supplied by Information Builders, or in a user-specified file.

SET HOLDSTAT = { ON| OFF| nane}

where:

ON
Derives comments and DBA information from the holdstat.mas
or errorsmasfilein UNIX and NT. In MV, thisinformation is
derived from the member HOLDSTAT in the PDS allocated to
the ddname MASTER or ERRORSin MVS.

COFF
Does not include information from the HOLDSTAT filein the
HOLD Master File. Thisvaue is the default.

nane
Specifiesa HOLDSTAT file, created by the end user, whose
information isincluded in the HOLD Master File.

HOTVENU

Automatically displays the Hot Screen PF key legend at the bottom
of the Hot Screen report.

SET HOTMENU = { ON| OFF}
where:

N
Displays the PF key legend.

OFF
Does not display the PF key legend. To see the PF key legend,
the user must press PF1. OFF is the default.

1-25

Customizing Your Environment

Par ameter:
Description:

Syntax:

Parameter:
Description:

Syntax:

Parameter:

Description:

Syntax:

1-26

| BMLE
Determines whether LE preinitialization is on or off.
SET I BMLE = { OFF| ON}

where:

OFF
Does not invoke preinitialization. Thisvalueisthe default and is
required for C++ and FORTRAN subroutines. It isthe
recommended setting for COBOL subroutines that should use the
COBOL option RTEREUS (ON).

Invokes preinitialization and is arequirement for PL/l and C
subroutines.

Note: Mixed-mode applications calling both LE and non-LE
subroutines in the same FOCEXEC or FOCUS session are not
supported and may produce unpredictable results.

| MVEDTYPE

Used with TOE, tells FOCUS where to send line mode outpuit.
SET | MVEDTYPE = {ON| OFF}

where:

N
Sends all line mode output, such as -TY PE, to the Output
Window asit is executed, line by line.

OFF
Buffers all line mode output. The output appears in the Output
Window as a new full screen. Thisvalue is the default.

I MBS

Tells FOCUS whether to use the new version of the IMS interface.
The new version is for releases after 6.8 PUT level 9406.

SET I M = { NEW OLD}
where:

NEW
Isthe new version of the IMS interface. Thisvalueis the default.

oD
Isthe version of IMS interface prior to release 6.8 PUT level
9406.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

I NDEX

The indexing scheme used for indexes (fields specified with
FIELDTY PE=I keywords in the Master Files).

SET | NDEX [TYPE] = {NEW OLD}
where:

NEW
Creates abinary tree index. This value is the default.

oD
Creates a hash index.

JA NOPT

Allows the joining of two filesthat contain different numeric data
types.

SET JO NOPT = {NEW OLD}

where:

NEW
Allows the joining of files that contain different numeric data
types.

oD

Does not alow the joining of files that contain different numeric
data types.

1-27

Customizing Your Environment

Parameter: LANG UAGE]
Description: Specifies the National Language Support (NLS) environment.
Syntax: SET LANG UAGE] = val ue

where:

val ue

Is alanguage from the following list. The ID, name, or
abbreviation can be used to specify the language.

These TERM values support DBCS. The default value for TERM
isIBM 3270, which does not support DBCS.

ID Name Abbreviation
1 ENGLI SH AMVE
1 AVENGLI SH AMVE
20 ARABI C ARB
359 BULGARI AN BLG
416 CANFRENCH CFR
34 CATALAN CAT
85 S- CHI NESE PRC
86 T- CHI NESE ROC
45 DANI SH DAN
31 DUTCH DUT
358 FI NNI SH FI N
32 FLEM SH FLM
33 FRENCH FRE
49 GERVAN GER
30 GREEK GRE
972 HEBREW HEB
91 HI NDI | ND
36 HUNGARI AN HUN
354 | CELANDI C I CL
39 | TALI AN I TA
81 JAPANESE JPN
10081 JAPANESE- E* JPN
82 KOREAN KOR

1-28 Information Builders

SET Parameter Syntax

ID Name Abbreviation
47 NORVEG AN NOR
48 POLI SH POL
351 PORTUGUESE POR
7 RUSSI AN RUS
38 SLOVENI AN SLO
34 SPANI SH SPA
46 SWEDI SH SVE
66 THAI THA
90 TURKI SH TUR
44 UKENGLI SH UKE

*To specify JAPANESE-E, you can use the ID or the full name,
but not the abbreviation JPN.

In addition, when you select JAPANESE-E, make sure that the
TERM parameter is set to avalue that supports DBCS. See
TERM for values that support DBCS.

Parameter: LEADZERO

Description: Leading zeros are truncated in Dialogue Manager strings. The
subroutines in FOCUS, when called in Dialogue Manager, may
return anumeric result. If the format of the result isYMD and
contains a 00 for the year, the 00 is truncated.

Syntax: SET LEADZERO = { ON| OFF}
where:

N
Allows the display of leading zerosif they are present.

OFF
Truncates leading zerosif they are present.

Developing Applications 1-29

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

1-30

LEFTMARG N

This parameter applies only to PostScript and PDF formats.
Sets the left boundary for report contents on a page.

SET LEFTMARG N = {val ue| . 250}

where:

val ue
Isthe left boundary of report contents on a page. The default is
.25 inches.

LI NES

Sets the maximum number of lines of printed output that appear on a
page, from the heading at the top to the footing on the bottom. If this
valueisless than the value set for PAPER, the difference provides a
bottom margin. FOCUS never puts more lines on a page than the
LINES parameter specifies, but may put less. The value of LINES
can range between 1 and 999999; specify 999999 for continuous
forms.

Note: When you use SKIP-LINE in areport, aways set LINES to at
least one less than the value for PAPER. This avoids unintentional
page beaks at the bottom of the page.

When the STYLESHEET parameter isin effect, the setting for
LINESisignored.

SET LINES = {n| 57}
where:

n
I's the maximum number of lines of printed output that appear on
apage. The default valueis 57.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

MASTER
This parameter applies only to the FUSION option.

New Master Files pass for blank delimited Master Files, which use
the new FUSION syntax.

SET MASTER = { NEW OLD}
where:

NEW
Passes a new Master File for ablank delimited Master File,
which uses the new FUSION syntax.

abD
Does not pass a new Master File for a blank delimited Master
File. Thisvalue isthe default.

MAXLRECL

Defines the maximum record length for an external file with
OCCURS segments. The default is 0. However, FOCUS can read a
16K recl by default. This may be set to a maximum of 32K.

SET MAXLRECL = {n| 0}
where:

n
I's the maximum record length for an external file with OCCURS
segments. The default valueis 0.

MESSAGE

Controls the display of informational messages.
SET {MESSAGE| MBG} = {QN| OFF}

where:

N
Displays informational messages. This value is the defaullt.

OFF
Suppresses both informational messages and carets that appear
when FOCUS executes commands in procedures. FOCUS till
displays error messages, and the carets that prompt for input.

1-31

Customizing Your Environment

1-32

Parameter:

Description:

Syntax:

M N O
This parameter applies only to MVS.

Improves performance by reducing /O operations up to fifty percent
when accessing FOCUS data sources under MV S. Thisis a buffering
technique.

With FOCUS data sources that are not disorganized, MINIO can
greatly reduce the number of 1/0O operations for TABLE and
MODIFY commands. The actual 1/O reduction will vary depending
on data source structure and average number of children segments
per parent segment. By reducing I/O operations, elapsed time for
TABLE and MODIFY commands also drop.

SET M NI O = {ON| OFF}
where:
oN

* Does ot read a block more than once; the number of reads
performed will be the same as the number of tracks present. This
resultsin an overall reduction in elapsed times when reading and

writing. Thisvalueisthe default.

OFF
Disables MINIO.

Information Builders

SET Parameter Syntax

Parameter:
Description:
Syntax:

Parameter:

Description:

Syntax:

Developing Applications

MULTI PATH
Controls testing on independent paths.
SET MULTI PATH = {SI MPLE| COVPOUND}

where:
S| MPLE
Includes a parent segment in the report output if:
e It hasat least one child that passes its screening conditions.
* Itlacksany referenced child on a path, but the child is
optional (seethe Creating Reports manual).
SIMPLE is the default value for FOCUS for S/390.

The (FOC144) warning message is generated when a request
screens data in a multi-path report.

(FOC144) WARNI NG, TESTI NG | N | NDEPENDENT SETS OF DATA:

COVPOUND
Includes a parent in the report output if it has all of its required
children (see the Creating Reports manual). The COMPOUND
setting does not generate the (FOC144) warning message.
COMPOUND isthe default value for EDA and WebFOCUS.

The segment ruleis applied level by level as FOCUS descends the
data source/view hierarchy. That is, a parent segment’s existence
depends on the child segment’ s existence and the child segment
depends on the grandchild’ s existence, and so on for the full data
source tree.

NCDATA

Determines the character string that indicates missing datain a
report. The NODATA parameter can be abbreviated to NA.

SET { NODATA| NA} = {string]|.}
where:

string
Isthe character string that indicates missing datain reports. The
default is a period.

1-33

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

1-34

ONLI NE- FMT

Determines the format of report output. StyleSheet reports are
generated in PostScript format. Styled reports can only be printed on
a PostScript printer.

SET ONLI NE- FMI = { STANDARD| POSTSCRI PT}

where:

STANDARD
Produces the report as un-styled character-based output. This
valueis the default.

POSTSCRI PT
Saves the report output to a PostScript file with the name
PSOUT. In MV, the PostScript formatted report output isin a
variable length PDS allocated to the ddname PS. In CMSS, the
output isin afile with the file type PS. The parameters set with
the SET STYLESHEET command are in effect. PS can be used
as a synonym for POSTSCRIPT.

ORI ENTATI ON

This parameter applies to PostScript and PDF report formats.
Specifies the page orientation for styled reports.

SET ORI ENTATI ON = { PORTRAI T| LANDSCAPE}

where:

PORTRAI T
Displays the pagein portrait style. Thisvalue is the defaullt.

LANDSCAPE
Displays the page in landscape style.

Information Builders

SET Parameter Syntax

Par ameter:
Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

PAGE] - NUM
Controls the numbering of output pages.
SET PAGE[-NUM = option

option
Is one of the following:

N Displays the page humber on the upper left-hand
corner of the page. Thisvalueisthe default.

OFF Suppresses page humbering.

NOPAGE Suppresses page breaks, causing the report to be
printed as a continuous page. When PAGE is set to
NOPAGE, the LINES parameter controls where
column headings are printed.

ToP Omitsthe line at the top of each page of the report
output for the page number and the blank line that
followsit. Thefirst line of report output contains the
heading, if one was specified, or the column titles if
thereis no heading.

Note: The settings ON, TOP, and OFF include the carriage
control character 1 in the first column of each page.

PAGESI ZE

Specifies the page size for printed output. For optimal report
appearance, the actual paper size must match your setting for
PAGESIZE. If it does not, your report or your report will be cropped
or contain extra blank spaces.

SET PAGESI ZE = si ze
where:

si ze
Specifies the page size. If the actual paper size does not match
the PAGESI ZE setting, your report will either be cropped of
contain extra blank space. The options are:

LETTER Setsthe page sizeto 8.5 x 11
inches.
ENVEL OPE- PERSONAL Setsthe page size to 3.625 x 6.5
inches.
ENVEL OPE- MONARCH Setsthe page sizeto 3.875x 7.5
inches.
1-35

Customizing Your Environment

1-36

ENVELOPE- 9

ENVELGOPE- 10

ENVELOCPE- 11

ENVELOPE- 12

ENVELCPE- 14

STATEMENT

EXECUTI VE

GERVAN- STANDARD- FANFCOLD

GERVAN- LEGAL - FANFOLD

FQLI O

LEGAL

10X14

TABLO D

US- STANDARD- FANFOLD

Sets the page size to 3.875 x
8.875 inches.

Setsthe page sizeto 4.125x 9.5
inches.

Setsthe page sizeto 4.5 x
10.375 inches.

Setsthe page sizeto 4.5 x 11
inches.

Setsthe pagesizeto5x 11.5
inches.

Setsthe page sizeto 5.5x 8.5
inches.

Setsthe page sizeto 7.5 x 10.5
inches.

Setsthe page sizeto 8.5 x 12
inches.

Setsthe page sizeto 8.5 x 13
inches.

Setsthe page sizeto 8.5 x 13
inches.

Setsthe page sizeto 8.5 x 14
inches.

Setsthe page sizeto 10 x 14
inches.

Setsthe page sizeto 11 x 17
inches.

Setsthe page sizeto 17 x 22
inches.

Setsthe page sizeto 22 x 34
inches.

Setsthe page sizeto 34 x 44
inches.

Sets the page size to 14.875 x
11 inches.

Information Builders

SET Parameter Syntax

Developing Applications

LEDGER

ENVELGOPE- DL

ENVELOPE- | TALY

ENVELCOPE- C6

ENVELOPE- C65

ENVELOPE- C5

ENVELOPE- B5

ENVEL OPE- B6

B5

QUARTO

ENVELOPE- C4

ENVELCPE- B4

ENVELOPE- C3

Setsthe page sizeto 17 x 11
inches.

Setsthe page sizeto 4.3 x 8.6
inches.

Setsthe page sizeto 4.3x 9.1
inches.

Setsthe page sizeto 4.5 x 6.375
inches.

Setsthe pagesizeto 4.5x 9
inches.

Setsthe page sizeto 5.8 x 8.25
inches.

Setsthe page sizeto 6.4 x 9
inches.

Setsthe page sizeto 6.9 x 9.8
inches.

Setsthe page sizeto 6.9 x 4.9
inches.

Setsthe page sizeto 7.2 x 10.1
inches.

Setsthe page sizeto 8.25x 11.7
inches.

Setsthe page sizeto 8.5 x 10.8
inches.

Setsthe page sizeto 9 x 12.75
inches.

Setsthe page sizeto 9.8 x 13.9
inches.

Setsthe page sizeto 9.8 x 13.9
inches.

Setsthe page sizeto 11.7 x 16.8
inches.

Setsthe page sizeto 12.75 x 18
inches.

1-37

Customizing Your Environment

Parameter: PANEL

Description: Sets the maximum line width, in characters, of areport panel for a
screen or printer. If report output exceeds this value, the output is
partitioned into several panels. For example, if you set PANEL to
80, the first 80 characters of arecord appear on the first panel, the
second 80 characters appear on the second panel, and so on.

When printing a report to your screen, the ideal value for the
PANEL parameter is the width of your screen (usually 80). When
printing to your printer, the ideal value for PANEL isthe print width
of your printer (usually 132). If PANEL islarger or setto 0, long
report lines wrap around the screen or page.

When the BY PANEL parameter is OFF, areport can be divided into
amaximum of four panels. If SET BY PANEL has a value other than
OFF, the report may be divided into 99 panels.

When the STYLESHEET parameter isin effect, PANEL isignored.
Syntax: SET PANEL = {0| n}
where:

n
I's the maximum line width, in characters, of areport panel.

0
Does not divide the report into panels. Long report lines wrap
around the screen or page. Thisvalue is the defaullt.

1-38 Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

PAPER

Specifies the physical length of the paper, in lines, for printed
output. You derive this value by multiplying the length of the paper,
in inches, by the number of lines printed per inch. For example, if
your printer prints six lines per inch on standard 11 inch forms,
PAPER should be set to 66. If you are placing afooting at the
bottom of the page, this value should be less; in this case, 62. Valid
values for PAPER are numbers between 1 and 999999. Specify
999999 for continuous forms.

Note: When the STYLESHEET parameter is in effect, the setting
for PAPER isignored.

SET PAPER = {n| 66}
where:

n
Isthe length of paper, in lines, for printed output. Valid values
are numbers between 1 and 999999. The value 999999 denotes
the use of continuous forms. The default value is 66.

PASS

Enables user access to a data source or stored procedure protected
by Information Builders security.

SET PASS = password [IN fil enane]
where:

passwor d
I's the password that allows access to data sources protected by
Information Builders database security.

fil ename
Isthe FOCUS data source or stored procedure protected by
security.

1-39

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

1-40

PAUSE

Pauses before displaying a FOCUS report on the terminal. When you
use a printing terminal, this parameter allows you to adjust the paper
before printing the report.

When the SCREEN parameter is ON, the PAUSE parameter is set
ON (until you set the PAUSE parameter to OFF). If you set the
SCREEN parameter to OFF, the PAUSE parameter is set to OFF.
Note that you can change the PAUSE parameter without affecting
the SCREEN parameter.

This setting does not affect offline printing (routing output to a
system printer).

SET PAUSE = {ON| OFF}

where:

N
Pauses before displaying a FOCUS report. Thisvalueisthe
defaullt.

OFF
Does not pause before displaying a FOCUS report.

PFNnn

Assigns afunction to the PF key specified by nn, enabling you to
change the current PF key setting when using FIDEL (and also,
under certain conditions, within the Window facility).

The current settings are displayed by the ? PFKEY command.
SET PFnn = function
where:

nn
Isthe PF key you are assigning a function to.

function
Is the function to assign to the PF key specified by PFnn.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

PREFI X
This parameter applies only to MVS.

Specifies the prefix of existing data sets automatically allocated by
FOCUS.

SET PREFI X = prefix
where:

prefix
Specifies of the prefix of existing data sets automatically
allocated by FOCUS. The default setting in TSO is your user 1D;
the default setting in batch is FOCUS.

PRI NT
Specifies the report output destination.

Y ou can enter ONLINE and OFFLINE as separate commands that
have the same effect as specifying ONLINE and OFFLINE as
PRINT settings.

SET PRI NT = { ONLI NE| OFFLI NE}
where:

ONLI NE
Prints report output to the terminal.

OFFLI NE
Prints report output to the system printer.

1-41

Customizing Your Environment

Parameter: PRI NTPLUS

Description: Introduces enhancements to the display aternatives offered by the
FOCUS Report Writer. To force abreak at a specific spot, you must
use NOSPLIT.

PRINTPLUS is not supported with StyleSheets. Problems may be
encountered if HOTSCREEN is set to OFFLINE.

Syntax: SET { PRI NTPLUS| PRTPLUS} = { ON| OFF}

where:
oN

Handles the PAGE-BREAK internally to provide the correct
spacing of pages, NOSPLIT is handled internally and you can
perform RECAPsin cases where pre-specified conditions are
met. Additionally, a Report SUBFOOT now prints above the

footing instead of below it. ON isthe default.

OFF
Does not support StyleSheets.

1-42 Information Builders

SET Parameter Syntax

Par ameter:
Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

QUALCHAR
Specifies the qualifying character to be used in qualified field names.
SET QUALCHAR = {character]|.}

where:

character
Isavalid qualifying character. They include:

period (hex 4B)

: colon (hex 7A)
! exclamation point (hex 5A)
% percent sign (hex 6C)
! broken vertical bar (hex 6A)
\ backdash (hex EO)

The period is the default character. The use of the other
qualifying characters listed above is restricted; they should not be
used with 66-character field names.

If the qualifying character is a period, you can use any of the
other characters listed above as part of afield name. If you
change the default qualifying character to a character other than
the period, then you cannot use that character in afield name.

InVM, if the TERM tabchar is ON or if the CMSINPUT
command includes the broken vertical bar (hex 6A), then the
broken vertical bar cannot be the qualifying character. To query
INPUT, type Q INPUT at the CM S prompt.

QUALTI TLES

Uses qualified column titles in report output when duplicate field
names exist in aMaster File. A qualified column title distinguishes
between identical field names by including the segment name.

SET QUALTI TLES = {ON| OFF}
where:

N
Uses qualified column titles when duplicate field names exist and
FIELDNAME is set to NEW.

OFF
Disables qualified column titles. This valueis the defaullt.

1-43

Customizing Your Environment

Parameter: REBUI LDVBG
Description: Allowsfor direct control over the frequency with which REBUILD
iSsues messages.
Syntax: SET {REBU LDVS@E REMSG = n
where:
n
Is any number.
Parameter: RECAP- COUNT
Description: Includes lines containing a value created with RECAP when

counting the number of lines per page for printed output. The
number of lines per page is determined by the LINES parameter.

Syntax: SET RECAP- COUNT = {ON| OFF}
where:

ON
Counts lines containing a value created with RECAP.

OFF
Does not count lines containing a value created with RECAP.
Thisvalueisthe default.

Parameter: RECORDLI M T

Description: Limits the number of records retrieved.

Syntax: SET RECORDLIM T = {n| RECORDLI M T}
where:

n
I's the maximum number of records to be retrieved.

RECORDLI M T
Respects explicit RECORDLIMIT values only.

1-44 Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

RI GHTMARG N
This parameter appliesto PostScript and PDF report formats.
Sets the right boundary for report contents on a page.

SET RI GHTMARG N = {val ue| . 25}

where:

val ue
Is the right boundary of report contents on a page. The default
valueis .25 inches.

RPAGESET

Controls how the number of lines per printed page is determined
when output contains text created with SUBFOOT and afield value
created with RECAP.

SET RPAGESET = { NEW OLD}

where:

NEW
Sets the number of lines per page equal to the LINES value plus
two plus the number of the highest BY field with a SUBFOOT.

anb
Works asin release 6.0. OLD isthe default.

SAVEVATRI X

Preserves the internal matrix and keeps it available for subsequent
RETY PE, HOLD, SAVE, SAVB, and REPLOT commands when
followed by Dialog Manager commands.

SET SAVEMATRI X = {ON| OFF}
where:
oN

Saves the last internal matrix generated. This valueis the default.

OFF
Does not guarantee that the internal matrix will be available.

1-45

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

1-46

SBORDER
Generates a solid border on the screen for full-screen mode.

If the screen appears to be generated incorrectly, it is possible that
the terminal does not support this new feature; change the setting to
OFF to correct the situation.

The amper variable & FOCSBORDER contains the value of the
SBORDER setting. & FOCSBORDER may be included in the
Dialogue Manager -TY PE command.

SET SBORDER = { ON| OFF}

where:

oN
Enables solid borders. This value is the default.

OFF
Enables dashed (nonsolid) borders.

SCREEN
Selects the Hot Screen facility.

When the SCREEN parameter is ON, the PAUSE parameter is set
ON (until you set the PAUSE parameter OFF). If you set the
SCREEN parameter OFF, the PAUSE parameter is set OFF. Note
that you can change the PAUSE parameter without affecting the
SCREEN parameter.

SET SCREEN = { ON| OFF| PAPER}
where:

N

Activates the Hot Screen facility. Thisvalue isthe default.
OFF

Deactivates the Hot Screen facility.

PAPER
Activates the Hot Screen facility and causes FOCUS to use the
settings for LINES and PAPER parameters to format screen
display.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

SHADOW

Activates the Absolute File Integrity feature.
SET SHADOW [PAGE] = {ON| OFF| OLD}
where:

N
Activates the Absolute File Integrity feature. The maximum
number of pages shadowed is 256K .

OFF
Deactivates the Absolute File Integrity feature. OFF isthe
defaullt.

oD
Indicates that your FOCUS file was created before Release 7.0.
This means that the maximum number of pages shadowed is
63,551.

SHI FT
Controls the use of “shift” strings.
SET SHI FT = {ON| OFF}

where:

N
Specifies a shift string for Hebrew or DBCS (double-byte
character support).

COFF
Indicates that SHIFT is not in effect. OFF is the defaullt.

1-47

Customizing Your Environment

Parameter:

Description:

Syntax:

Par ameter:
Description:

Syntax:

1-48

SORTLI B
This parameter applies only to FOCUS VM/CMS.
Tells FOCUS which sort packageisinstalled at your site.

SET SORTLIB = option

where:

option
Is one of the following:
VIVSORT Isthe VM SORT sort package.
SYNCSORT Isthe SYNCSORT sort package.
DFSORT Isthe DFSORT sort package.

S| TEDEFI NED Use SITEDEFINED if not VM SORT,
SYNCSORT, or DFSORT. This sort package
must beinstalled in SORTLIB TXTLIB in
order for FOCUS to find it.

SPACES

Sets the number of spaces between columnsin areport.
SET SPACES = {AUTQ n}

where:

AUTO
Automatically places either one or two spaces between columns.
Thisvalueis the default.

I's the number of spaces to place between columns of areport.
Valid values are integers between 1 and 8.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

SQLTOPTTF

Enables the SQL Translator to generate TABLEF commands instead
of TABLE commands.

SET SQLTOPTTF = {ON| OFF}
where:

ON
Generates TABLEF commands when possible. For example, a
TABLEREF command is generated if thereis no JOIN or
GROUP BY command.

OFF
Always generates TABLE commands. This valueis the default.

SQUEEZE
This parameter applies only to the StyleSheet feature.

Determines the column width in report output. The column width is
based on the size of the data value or column title, or on the field
format defined in the Master File.

SET SQUEEZE = { O\ OFF}
where:
oN

Assigns column widths based on the widest data value or widest
column title, whichever islonger. This value is the default.

OFF
Assigns column widths based on the field format specified in the
Master File. This value pads the column width to the length of the
column title or field format descriptions, whichever is greater.

1-49

Customizing Your Environment

Parameter:

Description:

Syntax:

1-50

2

STYLE[SHEET]

Controls the format of report output by accepting or rejecting
StyleSheet parameters. These parameters specify formatting options
such as page size, orientation, and margins.

SET STYLE[SHEET] = {styl esheet | O\ OFF}

where:

styl esheet

Is the name of the StyleSheet file. For UNIX and NT, thisisthe
name of the StyleSheet file without the file extension .sty. For
MVS, thisis the member name in the PDS alocated to ddname
FOCSTYLE by aDYNAM command.

For a PDF or PostScript report, FOCUS uses the page layout
settings for UNITS, TOPMARGIN, BOTTOMMARGIN,
LEFTMARGIN, RIGHTMARGIN, PAGESIZE,
ORIENTATION, and SQUEEZE; the settings for LINES,
PAPER, PANEL, and WIDTH areignored.

Creates an HTML table using the default proportional font
defined in the end user’s browser. This value is the default.

For a PDF or PostScript report, FOCUS uses the page layout
settings for UNITS, TOPMARGIN, BOTTOMMARGIN,
LEFTMARGIN, RIGHTMARGIN, PAGESIZE,
ORIENTATION, and SQUEEZE; the settings for LINES,
PAPER, PANEL, and WIDTH areignored.

OFF

Creates a pre-formatted report using the default fixed font
defined in the end user’s browser.

For a PDF or Postscript report, FOCUS uses the settings for
LINES, PAPER, PANEL, and WIDTH; the settings for UNITS,
TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN,
RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE
are ignored.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:
Description:
Parameter:
Description:
Parameter:

Description:

Syntax:

Developing Applications

SUWPREFI X

When an external sort product performs aggregation of alphanumeric
or smart date formats, the order of the answer set returned differs
from the order of the FOCUS sorted answer sets.

SET SUMPREFI X = {FST| LST}

where:

FST
Displays the first value in cases of data aggregation of
alphanumeric or smart date data types.

LsST
Displays the last value in cases of data aggregation of
alphanumeric or smart date data types.

susl

See the Smultaneous Usage Reference Manual for TSO.
SUTABSI ZE

See the Smultaneous Usage Reference Manual for TSO.
TEMP[DI SK]

This parameter applied only to CMS.

Determines the disk FOCUS uses for temporary work space, and to
store extract files (HOLD and SAVE).

SET TEMP[DI SK] = di sk
where:

di sk
Isthe disk FOCUS uses for temporary workspace, and to store
extract files.

1-51

Customizing Your Environment

Parameter: TERM
Description: Selects the terminal type.
Syntax: SET TERM I NAL] = {type| | BVMB270}
where:
type
Is the terminal type. The options are:
1 BMB270 Isthe default value. It does not support
DBCS.
| BMb550 Specifies an IBM 5550 or a PS/55 terminal.
Supports DBCS.
F6650 Specifies a Facom F-6650 terminal. Supports
DBCS.
H56020 Specifies a Hitachi H-560/20 terminal.
Supports DBCS.
Parameter: TESTDATE
Description: Temporarily alters the system date in order to test a dynamic

window. That is, it allows you to simulate clock settings beyond the
year 1999 to determine the behavior of your program.

Only use TESTDATE for testing purposes with test data. The value
of TESTDATE affects all reserved variables that retrieve the current
date from the system. Setting TESTDATE also affects anywherein
FOCUS that a date is used (such as CREATE, MODIFY,
MAINTAIN) but does not affect the date referenced directly from
the system.

TESTDATE can either be equal to TODAY or adate in the format
YYYYMMDD. If anything else is entered the following message is
displayed:

TESTDATE MUST BE YYYYMVDD OR TODAY

Syntax: SET TESTDATE = {yyyynndd| TODAY}
where:
yyyymdd
Isan 8-digit date in the format YYYYMMDD.
TODAY

Isthe current date. This value is the default.

1-52 Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

TEXTFI ELD

Preserves downward compatibility with prior FOCUS releases.
FOCUS text fields have been enhanced significantly with Release
7.0.

Note: FOCUS Release 7.0 preserves text fields exactly asthey are
entered into a data source with the ON MATCH/NOMATCH TED
command. See the Overview and Operating Environments manual
for additional information.

SET { TEXTFI ELD| TXTFI ELD} = {OLD| NEW
where:

anb
Enables you to use text field datain prior releases of FOCUS
when that data has been created or modified in Release 7.0. This
value is the default.

NEW
Disables the ability to use text field datain prior FOCUS releases
when that data has been created or modified in Release 7.0.

TITLE

Uses pre-defined column titles in the Master File as column titlesin
report output.

SET TITLE[S] = {ON OFF}
where:

N
Uses pre-defined column titles in the Master File as column titles
in report output. Thisvalueis the default.

OFF
Uses the field names in the Master File as column titles in report
output.

1-53

Customizing Your Environment

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Parameter:
Description:

Syntax:

1-54

TOPMARG N

This parameter applies to PostScript and PDF report formats.
Sets the top boundary on a page for report output.

SET TOPMARG N = {val ue| . 25}

where:

val ue
I's the top boundary on a page for report output. The default value
is.25 inches.

TRACKI O

MV S FOCUS gathers more pages to fill atrack before reading or
writing the pages to disk. Thisresultsin significant reductionsin I/O
requirements and in elapsed time for FOCUS files.

SET TRACKI O = {ON| OFF}

where:

N
Enables FOCUS to fill atrack before reading or writing to disk.
Thisvalueis the default.

OFF
Does not fill atrack before reading and writing to a disk.

TRVOUT

Suppresses all output messages to the terminal .
SET TRMOUT = { ON| OFF}

where:

N

Displays output messages to the terminal. Thisvalueisthe
defaullt.

OFF
Suppresses messages to the terminal.

Information Builders

SET Parameter Syntax

Parameter:

Description:

Syntax:

Parameter:

Description:

Syntax:

Developing Applications

UNI TS
This parameter applies to PostScript and PDF report formats.

Specifies the unit of measure for page margins, column positions,
and column widths.

SET UNI TS = {| NCHES| CM PTS}
where:

| NCHES
Uses inches as the unit of measure. This value is the default.

™M
Uses centimeters as the unit of measure.

PTS
Uses points as the unit of measurement. (Oneinch =72 paints,
one cm = 28.35 points)

USER

Enables user access to a data source or stored procedure protected
by Information Builders security.

SET USER = user

where:

user
Is the user name that, with a password, enables access to a data
source or stored procedure protected by Information Builders
security.

1-55

Customizing Your Environment

Parameter:

Description:

Syntax:

1-56

VEBTAB
Instructs FOCUS to enclose CRTFORM display fieldsin @ signs.

When the HTML/TP feature of Weh390 generates replacement

HTML forms for a 3270 screen, it can dynamically account for fields
that may or may not be populated with data during execution.
HTML/TP can use this technique with turnaround (T.) fields on
CRTFORM s because they are enclosed in @ signs. These @-sign
markers enable HTML/TP to recognize them and handle them
dynamically on a customized HTML form. In contrast, CRTFORM
display (D.) fields are not normally enclosed in @ signs.

Note: Thissetting is only for those MODIFY CRTFORM or
Dialogue Manager -CRTFORM applications that will be used in
conjunction with the HTML/TP feature of Web390. For information
about Web390 and the HTML/TP feature, see the Web390 for
0S/390 and MVS Developer’ s Guide and I nstallation Manual.

SET WEBTAB = { ON| OFF}
where:

N
Adds @ signs around CRTFORM display fields. These markers
may cause the fields displayed on the CRTFORM to shift slightly
to theright. Use this setting only for MODIFY CRTFORM or
Dialogue Manager -CRTFORM applications that will be used in
conjunction with the HTML/TP feature of Web390.

OFF
Does not place @ signs around CRTFORM display fields. This
valueis the default.

Information Builders

SET Parameter Syntax

Parameter: VEEKFI RST

Description: This parameter is used in week computations by the HDIFF,
HNAME, HPART, and HSETPT functions described in Chapter 3,
Using Functions and Subroutines. The values from 1 to 7 represent

Sunday through Saturday.
Syntax: SET WEEKFI RST = nunber

where:

nunber

Isanumber from one to seven, where one represents Sunday and
seven represents Saturday. The U.S. English default valueis
seven (Saturday) meaning that Saturday isthe first day of each
week, so every Friday-Saturday transition is the start of anew
week.

The WEEKFIRST setting does not change the number that
corresponds to each day of the week, it just specifies which one
is considered the start of the week. The default of Saturday (7) as
the first day of the week is consistent with the Microsoft SQL
Server convention.

Parameter: W DTH

Description: Specifiesthe logical record length of your output data set when the
STYLESHEET parameter is OFF. When the STYLESHEET
parameter isin effect, FOCUS ignores the setting for WIDTH.

Syntax: SET WDTH = {n| 130}
where:

n

Isthe logical record length of your output data set. The default
vaueis 130.

Developing Applications 1-57

Customizing Your Environment

Parameter: XRETRI EVAL

Description: Previews the format of a report without actually accessing any data.
This parameter enables you to perform TABLE, TABLEF, or
MATCH requests and produce HOLD Master Files without
processing the report.

Syntax: SET XRETRI EVAL = { ON| OFF}

where:

N
Performs retrieval when previewing areport. Thisvalueisthe
defaullt.

OFF
Specifies that no retrieval isto be performed.

Parameter: YRTHRESH

Description: Defines the start of a 100-year window globally or on afield-level.
Used with DEFCENTS, interprets the current century according to the
given values. Two-digit years greater than or equal to YRTHRESH
assume the value of the default century. Two-digit years less than
YRTHRESH assume the value of one more than the default century.
(See DEFCENT.)

Note: This same result can be achieved by including the
FDEFCENT and FYRTHRESH attributes in the Master File.

Syntax: SET YRTHRESH = {[-]yy| 0}
where:

yy
Is the year threshold for the window. If you do not supply a

value, yy defaults to zero (0).

If yy isapositive number, that number is the start of the 100-year
window. Any two-digit years greater than or equal to the
threshold assume the value of the default century. Two-digit
years less than the threshold assume the value of one more than
the default century.

If yy is a negative number (-yy), the start date of the window is
derived by subtracting that number from the current year, and the
default century is automatically calculated. The start date is
automatically incremented by one at the beginning of each
successive year.

1-58 Information Builders

CHAPTER 2

Querying Your Environment

Topics:
« Using Query Commands|

Developing Applications

Y ou can query your environment to display information such as
status of files, release information, server information, and joins.

2-1

Querying Your Environment

Using Query Commands

Syntax

Reference

Query commands display information about your metadata, physical data sources,
language environment, and development and run-time environment.

How to Issue a Query Command
? query [filenane]

where:

query
Is the subject of the query.

filename
Isthe name of the file that is the subject of the query. This parameter appliesto only
some queries.

To list the query commands, type a question mark in a stored procedure or at the
command prompt.

Query Command Summary
Thefollowing isalist of query commands. A detailed description of each isin thistopic.

? COMVBI NE Lists FOCUS files comprising the current COMBINE
structures.

? DEFI NE Displays currently active virtual fields created by the DEFINE
command or attribute.

? EURCFI LE Displays the currency data source in effect.

? F Listsfields currently available to you.

? FDT Displays physical attributes of a FOCUS data source.

? FF Lists field names, aliases, and format information for an active
Master File.

? FILE Displays the number of segment instancesin a FOCUS data
source and the last time the data sources were changed.

? FUNCTI ON Displays the defined functions and their parameters.

? HOLD Displays fields described in aHOLD Master File.

? JON Displays JOIN structures that exist between data sources.

? LANG Displays information about National Language Support.

? LET Displays word substitutions created with the LET command.

? LOAD Provides information about all loaded files: the file type, file
name and resident size.

?2n Displays an explanation of an error message (n represents the
number of the error message).

? PTF Displays the PTFs that have been applied to your version of
FOCUS.

Information Builders

Displaying Combined Structures

Displaying

Syntax

Example

? RELEASE Displays the release number of your product.

? SET Displays parameter settings that control your development and
run-time environment.

? SET GRAPH Displays parameter settings that control graphs produced with
the GRAPH command.

? STAT Displays statistics about the last command executed.

? STYLE Displays the current settings for StyleSheet parameters.

? SU Is communication available to the SU machine.

? USE Displays data sources specified with the USE command.

? && Displays values of global variables.

Combined Structures
The ? COMBINE command displaysfiles that are in the current COMBINE structures.

How to Display Combined Structures
? COMBI NE [fil enane]
where:

fil enanme
I's the data source containing the virtual fields. If filename is omitted, the command
displays all virtual fields.

Displaying Combined Structures
I ssuing the command

? COMBI NE

produces information similar to the following:

COMVBI NE EDUCFI LE AND JOBFI LE AS EDJICB
>
? COMBI NE
FI LEFEDICB TAG PREFI X

EDUCFI LE
JOBFI LE

Developing Applications 2-3

Querying Your Environment

Displaying Virtual Fields

Syntax

Example

Reference

The ? DEFINE command lists the active virtual fields used in aregquest. The fields can be
created by either the DEFINE command or DEFINE attribute in the Master File. The
command displays field names of up to 32 characters. If a name exceeds 32 characters,
then an ampersand (&) in the 32nd position indicates a longer field name.

How to Display Virtual Fields
? DEFINE [fil enane]
where:

fil ename
I's the data source containing the virtual fields. If filename is omitted, the command
displaysall virtual fields.

Displaying Virtual Fields
Assume that you created virtual fieldsin arequest against the EMPLOY EE database.

Issuing

? DEFINE

produces the following information:

FILE FI ELD NAME FORMAT SEGVENT ~ VIEW TYPE
EMPLOYEE PRQJECTEDSAL D12. 2

EMPLOYEE FULLNAME A26

>

? DEFINE Query Information
The following information is listed for each virtual field created with DEFINE:

FI LE I's the name of the data source containing the virtual field.

FI ELD NAME Isthe name of the virtual field.

FORNVAT Isthe format of the virtual field. The notation is the same as that
used for the FORMAT attribute in a Master File.

SEGVENT I's the number of the segment in the Master File containing the

virtua field. During reporting, your application treats the virtual
field asafield in this segment. To relate segment numbers to
segment names, use ? FDT.

VI EW Isthe root segment of DEFINE that specifies an alternate view. For
example:
DEFI NE FI LE EMPLOYEE. JOBCODE

TYPE Indicates whether the virtual field is created by the DEFINE

attribute in the Master File, or by a DEFINE command, identified by
MASTER or ablank, respectively.

Information Builders

Displaying the Currency Data Source in Effect

Displaying
Syntax

Example

Displaying

Syntax

Example

the Currency Data Source in Effect
The ? EUROFILE command displays the currency data source in effect.

How to Display the Currency Data Source in Effect
? EURCOFI LE

Displaying the Currency Data Source in Effect
I ssuing the command

? EURCFI LE
produces information similar to the following:
EURCFI LE GBP

Available Fields
The ?F command displays the fields that are currently available.

How to Display Available Fields
?F [fil enane]
where:

fil enanme
Isadata source. If filename is omitted, the command displays al virtual fields.

Displaying Available Fields

I ssuing the command

?F

produces information similar to the following:
FI LENAVE = EMPLOYEE

EMP_INFO EMP_ID LAST_NANE FI RST_NAMVE H RE_DATE
DEPARTMENT CURR SAL CURR JOBCODE ED_HRS

BANK_NAME BANK_CODE BANK_ACCT EFFECT_DATE

DAT_ INC PCT_INC SALARY PAYI NFO JOBCODE
TYPE ADDRESS_LNLADDRESS LN2 ADDRESS _LN3 ACCTNUMBER

PAY DATE GROSS
DED CODE DED_AMI

JOBSEG JOBCODE ~ JOB_DESC
SEC _CLEAR
SKI LLS SKI LLS_DESC

DATE_ATTENDATTENDSEG EMP_I D
COURSE_ CCDE COURSE _NAME

Developing Applications 2-5

Querying Your Environment

Displaying the File Directory Table

Syntax

Example

2-6

The? FDT command displays the file directory table, which lists the physical
characteristics of a FOCUS data source.

A FOCUS data source is composed of fixed-length, 4096-byte records called pages. Each
segment and each index (those fields designated by the keyword FIELDTY PE=Il in the
Master File) occupies an integral number of pages. The file directory table shows the
amount of space occupied by each segment instance in a page, the starting and ending
page numbers, and the number of pages in between for each segment and index.

How to Display a File Directory Table
? FDT filenane
where:

filenane
I's the name of the data source.

Displaying a File Directory Table
I ssuing the command

? FDT EMPLOYEE

produces the following information:

DI RECTORY: EMPLOYEEFOCUS F ON 09/ 25/ 1997 AT 09. 50. 28
DATE/ TI ME OF LAST CHANGE: 03/ 30/ 1999 16.19. 22

SEGNAME LENGTH PARENT START END PAGES LINKS TYPE
1 EMPINFO 22 1 1 1 6
2 FUNDTRAN 10 1 2 2 1 2
3 PAYI NFO 8 1 3 3 1 3
4 JOBSEG 11 3 4
5 SECSEG 4 4 2
6 SKILLSEG 11 4 2
7 ADDRESS 19 1 4 4 1 2
8 SALINFO 6 1 5 5 1 3
9 DEDUCT 5 8 6 8 3 2
10 ATTNDSEG 7 1 3
11 COURSEG 11 10 2

\%

Information Builders

Displaying the File Directory Table

Reference ? FDT Query Information
Thefollowing information is listed in the file directory table:

SEGNAVE

LENGTH

PARENT

START
END

PAGES
LI NKS

TYPE

Developing Applications

Is the name of each segment in the file. The segments are also
numbered consecutively down the |eft of the table. Unnumbered
entries at the foot of the table are indexes, which belong to fields
having the attribute FIELDTY PE=I in the Master File.

Isthe length in words (units of four bytes) of each segment instance.
Divide this number into 992 to determine the number of instances
that can fit into a page.

Is the parent segment. Each number refers to a segment name in the
SEGNAME column.

I's the page number on which the segment or index begins.
I's the page number on which the segment or index ends.
I's the number of pages occupied by the segment or index.

Isthe length, in words, of the pointer portion in each segment
instance. Every segment instance consists of two parts, data and
pointers. Pointers are internal numbers that are used to find other
instances.

Isthe type of index. NEW indicates a binary index. OLD indicates a
hash index. Segments of type KU, LM, DKU, DKM, KL, and KLU
are not physically in thisfile; therefore, thisinformation is omitted
from the table.

Querying Your Environment

Displaying Field Information for a Master File

The ?FF command displays field names, aliases, and format information for an active
Master File.

Syntax How to Display Field Information for a Master File
?FF [filenanme] [string]
where:

filenane
Is the name of the Master File.

string
Is a character string up to 66 characters long. The command displays information
only for fields beginning with the specified character string. If you omit this
parameter, the command displaysinformation for all fieldsin the Master File.

Example Displaying Field Information for a Master File
I ssuing the command
2FF
produces information similar to the following:
FI LENAVE= EMPLOYEE

EMP_I NFO
EMP_I D El D A9
LAST_NANE LN A15

FI RST_NAVE FN A10

H RE_DATE HDT 16YMD
DEPARTMENT DPT A10
CURR_SAL CSAL D12. 2M
CURR JOBCODE CJC A3
ED_HRS arT F6. 2
BANK_NANE BN A20
BANK_CODE BC 1 6S
BANK_ACCT BA 19S
EFFECT DATE EDATE 16 YMD
DAT_I NC DI | 6YMD
PCT_INC Pl F6. 2
SALARY SAL D12. 2M
PAY_| NFQJ OBCODEJBC A3

2-8 Information Builders

Displaying Data Source Statistics

Displaying Data Source Statistics

The ? FILE command displays information such as the number of segment instancesin a

Syntax

Example

FOCUS data source and when the data source was last changed.

How to Display Data Source Statistics
? FILE fil enanme

where:
fil enane

I's the name of the data source.

Displaying Data Source Statistics
I ssuing the command
? FI LE EMPLOYEE
produces statistics similar to the following:
STATUS OF FOCUS FI LE: EMPLOYEEFOCUS

SEGNAME

EMPI NFO
FUNDTRAN
PAYI NFO
ADDRESS
SALI NFO
DEDUCT
TOTAL SEGS
TOTAL CHARS
TOTAL PAGES
LAST CHANGE

Developing Applications

ACTI VE DELETED

COUNT COUNT

12

6

19
21
70
448
576
8984
8

DATE OF
LAST CHG

12/ 21/ 93
11/ 16/ 89
11/ 16/ 89
11/ 16/ 89
11/ 16/ 89
11/ 16/ 89

01/ 29/ 96

TI ME OF
LAST CHG

11.
16.
16.
16.
16.
16.

11.

01.
19.
19.
19.
19.
19.

01.

32
19
20
21
22
22

32

Al ON 03/12/99 AT 12.29.51
LAST TRANS

NUMBER

1

12
19
21
448
448

2-9

Querying Your Environment

Reference

2-10

? FILE Query Information
The following data source statistics are listed:

SEGNAVE

ACTI VE COUNT
DELETED COUNT

DATE OF LAST CHG

TI ME OF LAST CHG

Isthe name of each segment in the data source. After the segments,
theindexes are listed, if applicable.

Indexes are those fields specified by the attribute FIELDTY PE=I in
the Master File.

I's the number of instances of each segment.

I's the number of segment instances deleted, for which the space is
not reused.

Is the date on which data in a segment instance or index was last
changed.

Isthe time of day, on a 24-hour clock, when the file's last update
was made for that segment or index.

LAST TRANS NUMBER I'sthe number of transactions performed by the last update request to

TOTAL SEGS

TOTAL CHARS
TOTAL PAGES

LAST CHANGE

access the segment. If the data source was changed under
Simultaneous Usage mode, this column refers to the REF NUMB
column of the CR HLIPRINT file.

Isthe total number of segment instances in the file (shown under
ACTIVE COUNT), and the number of segments deleted when the
file was last changed (shown under DELETED COUNT).

Isthe number of characters of datain thefile.

I's the number of pagesin the data source. Pages are physical records
in FOCUS data sources. Each page is 4096 bytes.

Is the date and time the data source was last changed.

Information Builders

Displaying DEFINE Functions

Determining the Percentage of File Disorganization

Displaying
Syntax

Example

If adata sourceis disorganized by more than 29%, that is, the physical placement of data
in the data source is considerably different from itslogical or apparent placement, the
following message appears

FI LE APPEARS TO NEED THE - REBUI LD- UTILITY

REORG PERCENT IS A MEASURE COF FI LE DI SORGANI ZATI ON
0 PCT IS PERFECT -- 100 PCT IS BAD

REORG PERCENT IS x%

where:

X
I's a percentage between 30 and 100.

The variable & FOCDISORG also indicates the level of disorganization. Followingisan
example of how you can use & FOCDISORG in a Dialogue Manager -TY PE command:

-TYPE THE AMOUNT COF DI SORGANI ZATION OF THI'S FILE IS: &FOCDI SORG

This command, depending on the amount of disorganization, produces a message similar
to the following:

THE AMOUNT OF DI SORGANI ZATION OF THIS FILE I'S: 10

When using a-TY PE command with & FOCDISORG, a message is displayed even if the
percentage of disorganization isless than 30%.

DEFINE Functions

The? FUNCTION command displays all defined functions and their parameters.

How to Display DEFINE Functions
? FUNCTI ON

Displaying DEFINE Functions
I ssuing the command

? FUNCTI ON

produces information similar to the following:
Nane Format Par anet er For mat
DIFF D8 VAL1 D8

VAL2 D8

Developing Applications 2-11

Querying Your Environment

Displaying HOLD Fields

Syntax

Example

2-12

The ? HOLD command lists fields described in a Master File created by the ON TABLE
HOLD command. Thelist displays the field names, their aliases, and their formats as
defined by the FORMAT (USAGE) attribute. The ? HOLD command displaysfield
names up to 32 characters. If afield name exceeds 32 characters, an ampersand (&) in the
32nd position indicates alonger field name.

The ? HOLD command displays fields of aHOLD Master File created by the current
request.

How to Display HOLD Fields
? HOLD [fil enane]

where:

fil ename

Isthe name assigned in the AS phrase in the ON TABLE HOLD command. If you
omit the file name, it defaultsto HOLD.

Displaying HOLD Fields

I ssuing the command

? HOLD

produces information similar to the following:
DEFI NI TI ON OF CURRENT HOLD FI LE

FI ELDNAMVE ALl AS FORVAT
COUNTRY EO1 Al0
CAR E02 Al6

>

Information Builders

Displaying JOIN Structures

Displaying JOIN Structures

Syntax

Example

Reference

The ? JOIN command lists the JOIN structures currently in effect. The command displays
field names up to 12 characters. If afield name exceeds 12 characters, an ampersand in
the twelfth position indicates alonger field name.

How to Display JOIN Structures
? JON

Displaying JOIN Structures

I ssuing the command

? JON

produces information similar to the following:
JO NS CURRENTLY ACTI VE

HOST CROSSREFERENCE
FI ELD FI LE TAG FI ELD FI LE TAG AS ALL
JOBCODE EMPLOYEE JOBCODE JOBFI LE EMPJCB

? JOIN Query Information
The following JOIN information is listed:

HOST FI ELD Is the name of the host field that is joining the data sources.
FI LE I's the name of the host data source.
TAG Is atag name used as a unique qualifier for field namesin the

host data source.
CROSSREFERENCE FI ELD Isthe name of the cross-referenced field used to join the data

SOUrces.

FI LE Is the name of the cross-referenced data source.

TAG Is atag name used as a unique qualifier for field namesin the
cross-referenced data source.

AS Is the name of the joined structure.

ALL Displays Y for anon-unique join and N for aunique join.

Developing Applications 2-13

Querying Your Environment

Displaying

Syntax

Example

Displaying

Syntax

Example

2-14

National Language Support
The ? LANG command displays information about National Language Support.

How to Display Information About National Language Support
? LANG

Displaying Information About National Language Support
I ssuing the command
? LANG
produces information similar to the following:
LANGUAGE AND DBCS STATUS

Language 01/ AMENGLI SH ()
Code Page 00037

Dol I ar val ue 5B($)

DBCS Fl ag OFF(SBCS)

LET Substitutions

The? LET command lists the active word substitutions created by the LET command. A
word in the left column is used in areport request to represent the word or phrase in the
right column. For more information on the LET command, see your documentation on
defining LET substitutions.

How to Display LET Substitutions
? LET

Displaying LET Substitutions
I ssuing the command

? LET
produces information similar to the following:

PR PRI NT

TF TABLE FI LE EMPLOYEE

>

Information Builders

Displaying Information About Loaded Files

Displaying

Syntax

Example

Displaying

Syntax

Information About Loaded Files

The ? LOAD command displays the file type, file name, and resident size of currently
loaded files.

How to Display Information About Loaded Files

? LOAD [filetype]

where:

filetype
Specifies the type of file (MASTER, FOCEXEC, Access File, FOCCOMP, or
MODIFY) on which information will be displayed. To display information on all
memory-resident files, omit file type.

Displaying Information About Loaded Files
I ssuing the command
? LOAD
produces information similar to the following:
FI LES CURRENTLY LOADED

CAR MASTER 4200 BYTES
EXPERSON MASTER 4200 BYTES
CARTEST FOCEXEC 8400 BYTES

Explanations of Error Messages
The ? n command displays a detailed explanation of an error message, providing
assistance in correcting the error.

Error messages generated by certain data adapters, such as the DB2 and MODEL 204
data adapters, are also accessible through this feature.

How to Display Explanations of Error Messages
?n
where:

n
I's the error message number.

Developing Applications 2-15

Querying Your Environment

Example

Displaying Explanations of Error Messages
If you receive the message

(FOC125) RECAP CALCULATI ONS M SSI NG

and want a fuller explanation, issue:

? 125

The following message is displayed:

(FOC125) RECAP CALCULATI ONS M SSI NG
The word RECAP is not followed by a calculation. Either the RECAP shoul d
be renoved, or a cal cul ation provided

Querying Which PTFs Have Been Applied for a
Specific Release

Syntax

Example

2-16

The ? PTF command displays alist of PTFsthat have been applied to the version of
FOCUS you are currently using.

How to Query a List of PTFs
? PTF

Querying a List of PTFs

I ssuing the command

? PTF

produces results similar to the following:

>

? ptf

PTFS APPLIED TO RELEASE 70XFOC

FROM PTFTABLE LOCATED IN IBITEST LOADLIB C1

COUNT PTF NUM CREATED APPLIED SUPERSEDED BY PUT LEVEL

1) 95828 @ 112600 ...
2) 107164 LLL..... 112600 ...,
3) 110763 112600 ...
4) 112600 19990427 19990513 200295

Note: Dots are used to denote the lack of dataif no information exists for a column entry
in the resulting report. If there are no PTFs for the version of FOCUS that you are
currently running, the following is displayed:

NO PTFS HAVE BEEN APPLI ED

Information Builders

Displaying the Release Number

Displaying the Release Number

Syntax

Example

Displaying

Syntax

The ? RELEASE command displays the number of the currently installed release of your
product.

How to Display the Release Number
? RELEASE

Displaying the Release Number
I ssuing the command

? RELEASE
produces information similar to the following:
FOCUS 7.0.9 created 9/16/1999 QA-30.01

Parameter Settings

The ? SET command lists the parameter settings that control your development and
run-time environments. Y our application sets default values for these parameters, but you
can change them with the SET command.

Two options give you additional information. The FOR option lists the current state of
the command queried, and describes where you can set it. The NOT option produces a
list of SET commands not settable in five specific areas.

SET parameters are described in Chapter 1, Customizing Your Environment.

How to Display Parameter Settings
? SET [ALL| paraneter]
where:
ALL
Optionally displays al possible parameter settings.
par anmet er
Isa SET parameter.

Developing Applications 2-17

Querying Your Environment

Example

Example

2-18

Displaying Parameter Settings

I ssuing the command
? SET

produces information similar to the following:

ALL. OFF
ASNAMES FOCUS
AUTO NDEX ON
AUTOPATH ON
BI NS 64
BLKCALC NEW
BYPANELI NG OFF
CACHE 0
CARTESI AN OFF
CDN OFF
COLUMNSCROLL OFF
DATETI ME STARTUP/ RESET
DEFCENT 19
EMPTYREPORT OFF
EXTSORT ON
FI ELDNAVE NEW
FOCSTACK SI ZE 8

>

PARAMETER SETTI NGS

HI PERFOCUS
HOLDATTRS
HOLDLI ST
HOLDSTAT
HOTMVENU

I NDEX TYPE
LANGUAGE

LI NES/ PAGE
LI NES/ PRI NT
MESSAGE
MODE
NODATA
PAGE- NUM
PANEL
PAUSE

PRI NT

PRI NTPLUS

OFF
FOCUS
ALL
OFF
OFF

ONLI

2/202-

QUALCHAR .
QUALTI TLES OFF
RECAP- COUNT OFF
SAVEMATRI X N
SCREEN N
SHADOW PAGE OFF
SPACES AUTO
SQLENG NE

TCPI PI NT OFF
TEMP DI SK A
TERM NAL | BVB270
TI TLES N
W DTH 130
W NPFKEY oD
XRETRI EVAL N
YRTHRESH 0

Some parameters are listed differently from the way you specify them in the SET

command. These include:
FOCSTACK S| ZE
I NDEX TYPE

LI NES/ PAGE

LI NES/ PRI NT
SHADOW PAGES

Displaying a Single Parameter Setting

I ssuing the command
? SET ONLI NE- FMT

produces information similar to the following:
STANDARD

ONLI NE- FMT

Isthe same as the FOCSTACK parameter.
Isthe same asthe INDEX parameter.
Is the same as the PAPER parameter.
Isthe same as the LINES parameter.

Is the same as the SHADOW parameter.

Information Builders

Displaying Parameter Settings

Syntax How to Query a Command
? SET FOR par aneter
where:

par amet er
Isany SET parameter.

Example Querying Where the EXTSORT Parameter Is Valid

Entering

? SET FOR EXTSORT

yields

EXTSORT ON
SETTABLE FROM COMVAND LI NE : YES
SETTABLE ON TABLE : YES
SETTABLE FROM SYSTEM W DE PRCFI LE : YES
SETTABLE FROM HLI PROFI LE : YES
POOL TABLE BOUNDARY : YES

>

The preceding screen shows that EXTSORT is currently set ON and that it is settable
from al five features.

Syntax How to Determine Where a Command Is Valid
? SET NOT functional _area
where:

functional _area
Is one of the following:

PROVPT isin @ PROMPT command.
ONTABLE isin areport request.
FocPARMIS in the FOCPARM profile.
HLI PROF isin the HLI profile.

PT isin Pooled Tables.

Developing Applications 2-19

Querying Your Environment

Example

2-20

Determining Which Commands Are Not Valid Using ON TABLE

Entering

? SET NOT ONTABLE

yields:

BI NS
BLKCALC
BYPANELI NG
CACHE
COLUMNSCROLL
DATEDI SPLAY
DATEFNS
DEFCENT
EURCFI LE

FI ELDNAVE
FOCSTACK SI ZE
HTM_.MODE

>

NON- SETTABLE ON TABLE PARAMETER SETTI NGS

64
NEW

OFF
OFF
ON
19

NEW
8
OFF

LANGUAGE
MAXPOOLMVEM
MDI BI NS

MDI PROGRESS
MODE

MPRI NT

POOL
POOLBATCH
POOLFEATURE
POOLMEMORY
POOLRESERVE
PRI NTPLUS

AMENGLI SH
32768
8000
100000

NEW

REBUI LDVBG 1000
SAVENMATRI X N
TCPI PI NT OFF
TEMP DI SK c
TRVBD 24
TRVBW 80
TRMTYP 1 (3270)

VEBHOVE OFF
W DTH 130
W NPFKEY oD
YRTHRESH 0

The preceding screen shows alist of parameters that are not settable using ON TABLE.

Information Builders

Displaying Graph Parameters

Displaying Graph Parameters

The ? SET GRAPH command lists the parameter settings that control graphs produced

with the GRAPH command. These parameters are described further in Chapter 1,

Customizing Your Environment.

Syntax How to Display Graph Parameters
? SET GRAPH

Example Displaying Graph Parameters
I ssuing the command
? SET GRAPH

produces information similar to the following:
GRAPH PARAMETER SETTI NGS

AUTOTI CK N HI STOGRAM
BARNUVB OFF HVAX
BARSPACE 0 HM N
BARW DTH 1 HSTACK
BSTACK OFF HTI CK
DEVI CE | BVB270 PIE
GM SSI NG OFF VAUTO
GM SSVAL .00 VAXI S
GPROWPT OFF VCLASS
GRI BBON(GOOLOR) OFF VGRI D
GRID OFF VMVAX
GTREND OFF VM N
HAUTO N VTI CK
HAXI S 130 VZERO
HCLASS .00

>

.00
.00
OFF
.00
OFF

66
.00
OFF
.00
.00
.00
OFF

If you change the PLOT parameter settings, a small table appears at the end of the list:

PLOT TABLE (EBCDI C):

ENTER PLOT MODE 0050 (FOR 3284 W DTH)
EXIT PLOT MODE 0018 (FOR 3284 HEl GHT)

LEFT 0000
RI GHT 0000
UP 0000
DOVN 0000

The entries in the table at the bottom are:
ENTER PLOT MoDE Width of graph on IBM 3284 or 3287 printer.

EXIT PLOT MODE Height of graph on IBM 3284 or 3287 printer.

Ignore the parameters LEFT, RIGHT, UP, and DOWN.

Developing Applications

2-21

Querying Your Environment

Displaying Command Statistics

Syntax

Example

2-22

The? STAT command lists statistics for the most recently executed command.

Each statistic applies only to a certain command. If another command is executed, the
statistic is either O or does not appear in the list at al. When you execute commands in
stored procedures, these statistics are automatically stored in Dialogue Manager statistical
variables. For more information, see Chapter 4, Managing Applications With Dialogue
Manager.

How to Display Command Statistics
? STAT

Displaying Command Statistics
Depending on the commands executed
? STAT
produces information similar to the following:
STATI STI CS OF LAST COMVAND

RECCRDS = 0 SEGS DELTD = 0
LI NES = 0 NOVATCH = 0
BASEI O = 0 DUPLI CATES = 0
SCORTI O = 0 FORMAT ERRCRS = 0
SORT PAGES = 0 I NVALI D CONDTS = 0
READS = 0 OTHER REJECTS = 0
TRANSACTIONS = 0 CACHE READS = 0
ACCEPTED = 0 MERGES = 0
SEGS | NPUT = 0 SORT STRINGS = 0
SEGS CHNGD = 0 I NDEXI O = 0
I NTERNAL MATRI X CREATED: YES AUTO NDEX USED: NO
SORT USED: FOCUS AUTOPATH USED: NO
AGGREGATI ON BY EXT. SORT: NO HOLD FROM EXTERNAL SORT: NO

>

Information Builders

Displaying Command Statistics

Reference ? STAT Query Information
The following information is listed when the ? STAT query isissued:

RECORDS

LI NES

BASEI O

SORTI O

SORTPAGES

TRANSACTI ONS

ACCEPTED

SEGS | NPUT

SEGS CHNGD

SEGS DELTD

NOVATCH

DUPLI CATES

FORVAT ERRORS

Developing Applications

Isfor TABLE, TABLEF, MATCH, and GRAPH commands.
Indicates the number of records used in the report. Note that the
meaning of arecord depends on the type of data source used.

Isfor TABLE and TABLEF commands. I ndicates the number of
lines printed in areport.

Isfor TABLE, TABLEF, GRAPH, MODIFY, and FSCAN
commands. | ndicates the number of 1/0O operations performed on
the data source.

Isfor TABLE, TABLEF, MATCH, and GRAPH commands.
Indicates the number of 1/0O operations performed on the
FOCSORT file, awork fileinvisible to the user.

Isfor TABLE and TABLEF commands. I ndicates the number of
physical recordsin the FOCSORT file.

Isfor the MODIFY and FSCAN commands. I ndicates the number
of fixed format records read in external files by the FIXFORM
command.

Isfor the MODIFY and FSCAN commands. | ndicates the number
of transactions processed—inputs, updates, deletions, and
rejections.

Isfor the MODIFY and FSCAN commands. | ndicates the number
of transactions accepted.

Isfor MODIFY and FSCAN commands. Indicates the number of
segment instances accepted into the data source.

Isfor MODIFY and FSCAN commands. |ndicates the number of
segment instances updated in the data source.

Isfor MODIFY and FSCAN commands. | ndicates the number of
segment instances del eted from the data source.

Isfor the MODIFY command. Indicates the number of transactions
rejected for lack of matching valuesin the data source. This occurs
on an ON NOMATCH REJECT condition.

Isfor the MODIFY command. |ndicates the number of transactions
rejected because their matching field values already exist in the
data source. This occurs on an ON MATCH REJECT condition.

Isfor the MODIFY command. Indicates the number of transactions
rejected because data field values for data fields do not conform to
the field formats defined in the Master File.

2-23

Querying Your Environment

I NVALI D
CONDTS

OTHER REJECTS

CACHE READS

VERGES

SORT STRI NGS

| NTERNAL
MATRI X
CREATED

SORT USED

Isfor the MODIFY command. Indicates the number of transactions
rejected because their values failed validation tests.

Isfor the MODIFY command. |ndicates the number of transactions
rejected for reasons other than those listed above.

Shows the number of CACHE READS performed (see Chapter 1,
Customizing Your Environment).

Isthe number of times that FOCUS merge routines have been
invoked.

Is the number of times that the FOCUS SORT capacity has been
exceeded.

Can have avalue of YES/NO.

Is the type of sort facility used. It can have avalue of FOCUS,
EXTERNAL, SQL, or NONE.

Displaying Information About the SU Machine

The ? SU command displays the communication available to the SU machine.

Syntax

Example

2-24

How to Display Information About the SU Machine
? SU [useri d| ddnane]

where:
userid

Isavalid user ID.

ddnane

Isavalid ddname.

Displaying Information About the SU Machine
I ssuing the command

? SU SYNCA

produces the following information:
USERI D FILEID QUEUE

W BM.H QUERY
W BJBP CAR

Information Builders

Displaying Global Variable Values

Displaying Global Variable Values

Syntax

Example

The ? && command lists Dialogue Manager global variables and their current values.
Global variables maintain their values for the duration of the session.

See your documentation about Dialogue Manager for details on global and other
variables.

How to Display Global Variable Values

? &&

Y our site may replace the ampersand (& or & &) indicating Dialogue Manager variables,
with another symbol. In that case, use the replacement symbol in your query command.
For example, if your installation uses the percent sign (%) to indicate Dial ogue Manager
variables, list global variables by issuing:

? W

Y ou can query all Dialogue Manager variables (local, global, and system) from a stored
procedure by issuing:

-? &

Displaying Global Variable Values
Depending on the variablesin effect, issuing the command
? &&

produces information similar to the following:

&STORECODE 001
&&STORENAME MACYS
>

Developing Applications 2-25

Querying Your Environment

Displaying
Syntax

Example

Displaying
Syntax

Example

2-26

StyleSheet Parameter Settings
The ? STYLE command displays the current settings for StyleSheet parameters.

How to Display StyleSheet Parameter Settings
? [SET] STYLE

Displaying StyleSheet Parameter Settings
I ssuing the command

? STYLE

produces information similar to the following:
ONLI NE- FMT

OFFLI NE- FMT STANDARD
STYLESHEET OoN
SQUEEZE OFF
PAGESI ZE LETTER
ORI ENTATI ON PORTRAI T
UNI TS I NCHES
LABELPROVPT OFF
LEFTMARG N . 250

Rl GHTMARG N . 250
TOPMARG N . 250
BOTTOMMARGI N . 250
STYLEMODE FULL
TARGETFRAME

FOCEXURL

BASEURL

Data Sources Specified With USE

The ? USE command displays data sources specified with the USE command.

How to Display Data Sources Specified With USE
? USE

Displaying Data Sources Specified With USE
I ssuing the command

? USE

produces information similar to the following:

DI RECTORI ES | N USE ARE:

CAR FOCUS F
EMPLOYEE FOCUS F
LEDGER FOCUS F

Information Builders

CHAPTER 3

Using Functions and Subroutines

Topics:

What Is the Difference Between a
Function and a Subroutine?
Iypes of Functions and Subroutines

Bubroutine Command (Call) Syntax]

Btoring and Accessing External
Bubroutines

Developing Applications

FOCUS offersarich set of functions and subroutines that operate
on one or more arguments and return a single value as a resullt.
Functions and subroutines provide a convenient way to perform
certain calculations and manipulations.

The next few topics describe the following:

e What isthe difference between a function and a subroutine?
e Typesof functions and subroutines.

e How to use subroutines.

e Analphabetical description of the functions and subroutines.

Y ou can also create your own subroutines.

3-1

Using Functions and Subroutines

What Is the Difference Between a Function and a
Subroutine?

There are two differences between a function and a subroutine:
e How they are invoked.

* How they are accessed.

A function call has the following syntax

function (argl, arg2, ...)

where:

function
I's the name of the function.

argl, arg2, ...
Are the arguments.

A subroutine call has the following syntax
subroutine (argl, arg2, ... {outputfield| ' format'})
where:

subroutine
I's the name of the subroutine.

argl, arg2, ...
Are the arguments.

{outputfield|'format'}
Is the name of the output field or its format.

In addition, on some platforms, the functions are available immediately; whereas, the
subroutines are available in a special subroutine library that you must access.

3-2 Information Builders

Types of Functions and Subroutines

Types of Functions and Subroutines

Y ou can access any of the following kinds of functions and subroutines:
Bit
Enable you to manipulate bits.

Character
Enable you to manipulate al phanumeric fields or character strings.

Data Source
Enable you to search for or retrieve data source records or values.

Dateand Time
Enable you to manipulate dates and times.

Decoding
Enable you to assign values.

Format Conversion

Enable you to convert fields from one format to another.
Numeric

Enable you to perform numeric cal culations on numeric constants and fields.
System

Enable you to make calls to the operating system to obtain information about the
operating environment or to use a system service.

Bit Functions and Subroutines

Bit functions and subroutines enable you to manipulate bits. Unless otherwise noted,
functions and subroutines are supported on all platforms. For more information on these
functions and subroutines, see Alphabetical List of Functions and Subroutinesjon page
3-36.

BITSON subroutine

Evaluates an individual bit within a character string to determine whether it is on or
off.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

BITVAL subroutine
Evaluates a string of bits within character strings and returns its binary value.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

BYTVAL subroutine
Trandates a character to its corresponding ASCII code.

Developing Applications 3-3

Using Functions and Subroutines

HEXBYT subroutine
Trandates an integer between 0 and 255 (base 10) into the corresponding ASCII or
EBCDIC character (depending on your platform).

UFMT subroutine
Converts charactersin a phanumeric field values to hexadecimal (HEX)
representation.

Available on: MVS, VM/CMS, OpenVMS, and WebFOCUS.

Character Functions and Subroutines

The following functions and subroutines enable you to manipulate alphanumeric fields or
character strings. Unless otherwise noted, functions and subroutines are supported on all
platforms. For more information on these functions and subroutines, see Alphabetical List |
of Functions and Subroutines|on page 3-36.

ARGLEN subroutine
Measures the length of a character string within afield, excluding trailing blanks.

ASISfunction
In Dialogue Manager, distinguishes between a blank and a zero.
Available on: MVS, VM/CMS, and WebFOCUS.

BITSON subroutine

Evaluates an individual bit within a character string to determine whether it is on or
off.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.
BITVAL subroutine

Evaluates a string of bits within character strings and returns its binary value.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

BYTVAL subroutine
Trandates a character to its corresponding ASCII code.

CHKFMT subroutine
Checks for incorrect character types by comparing each character in the input string
to the corresponding character in a mask.

CTRAN subroutine
Converts one character in a string to another character.

CTRFLD subroutine
Centers a character string within afield, excluding trailing blanks.

Information Builders

Types of Functions and Subroutines

EDIT function
Extracts characters or adds characters to an alphanumeric string (with mask).

GETTOK subroutine
Divides a character string at a character called the delimiter and returns a substring
called the token.

LCWORD subroutine
Converts the letters in the given string to mixed case. The subroutine converts to
uppercase the first letter of each new word and the first letter after asingle or double
guotation mark.

Available on: MVS, VM/CMS, WebFOCUS, and Windows.
LJUST subroutine

Left-justifies a character string within afield. All leading blanks become trailing
blanks.

LOCASE subroutine
Converts uppercase charactersto lowercase.

OVRLAY subroutine
Overlays a substring on another character string.

PARAG subroutine
Divides lines of text into smaller lines with delimiters.

POSIT subroutine
Finds the starting position of a substring within alarger string.

RJUST subroutine
Right-justifies a character string within afield. All trailing blanks become leading
blanks.

SOUNDEX subroutine
Searches for a character string phonetically rather than by the way it is spelled.

SUBSTR subroutine
Extracts substrings, based on where they start and end in the parent string.

UPCASE subroutine
Converts lowercase characters to uppercase.

Developing Applications 3-5

Using Functions and Subroutines

Data Source Functions and Subroutines

Data source functions and subroutines enable you to search for or retrieve data source
records or values. Unless otherwise noted, functions and subroutines are supported on all
platforms. For more information on these functions and subroutines, see Alphabetical List |
of Functions and Subroutines|on page 3-36.

FIND function
Verifiesif avalue existsin an indexed field in another file.

Availableon: MVS, VM/CMS, and UNIX.

LAST function
Retrieves the preceding value selected for afield.

LOOKUP function
Retrieves avalue from a cross-referenced file.

Availableon: MVS, VM/CMS, and UNIX.

Date Functions and Subroutines

The following functions and subroutines enable you to manipulate dates. Unless otherwise
noted, functions and subroutines are supported on al platforms. For more information on
these functions and subroutines, see Alphabetical List of Functions and Subroutines|on

page 3-2.
AYM subroutine

Adds or subtracts months from dates that are in year-month format.
AYMD subroutine

Adds or subtracts days from dates that are in year-month-day format.
CHGDAT subroutine

Rearranges the year, month, and day portions of dates, and converts dates between
long and short date formats.

DA subroutines

Convert dates to the corresponding number of days elapsed since December 31,
1899.

DATEADD subroutine
Adds or subtracts date units to or from a date.

Available on: MVS and VM/CMS.

DATECVT function
Converts dates from one date format to another.

Availableon: MVS and VM/CMS.

Information Builders

Types of Functions and Subroutines

DATEDIF function
Cadlculates the difference between two dates.

Available on: MVSand VM/CMS.

DATEMOQV function
Moves a date to a significant point on the calendar.
Available on: MVS and VM/CMS.

DMY, MDY, and YMD functions
Cadlculate the difference between two dates.

DOWK(]L] subroutines
Determine the day of the week for dates.

DT subroutines
Convert smart dates (the number of days elapsed since December 31, 1899) to
corresponding dates.

GREGDT subroutine

Converts dates in Julian format to year-month-day format.
HADD

Increments date-time values by a specified number of units.

HCNVRT
Converts date-time values to alphanumeric format for use with operators such as
EDIT, CONTAINS, and LIKE.

HDATE

Extracts the date components from a date-time field and converts them to a date field.
HDIFF

Finds the number of boundaries of a given type crossed going from date 2 to date 1.
HDTTM

Converts a date field to a date-time field. The time portion is set to midnight.
HGETC

Stores the current date and time in a date-time field.
HHMMSSS subroutine

Retrieves the current time from the system.
HINPUT

Converts an a phanumeric string to a date-time value.

HMIDNT
Changes the time portion of a date-time field to midnight.

Developing Applications 3-7

Using Functions and Subroutines

Reference

3-8

HNAME
Extracts specified components of a date-time value and converts them to
alphanumeric format.

HPART
Extracts a component of a date-time value in numeric format.

HSETPT
I nserts the numeric value of a specified component in a date-time field.

HTIME
Extracts all of the time components from a date-time field and convertsthemto a
number of milliseconds or microseconds in numeric format.

JULDAT subroutine
Converts dates from year-month-day format to Julian (year-day format).

TODAY subroutine
Retrieves the current date from the system.

YM subroutine
Calculates the number of months that elapse between two dates. The dates must be in
year-month format.

Component Names and Values for Use With Date-Time
Functions

The following component names and val ues are supported as arguments to those
date-time functions that require you to specify a component name as an argument;

Component Name Valid Values

year 0001-9999

quarter 1-4

nont h 1-12

day- of - year 1-366

day oOr day- of - nont h 1-31 (The two names for the component are equivalent.)
week 1-53

weekday 1-7 (Sunday-Saturday)
hour 0-23

m nut e 0-59

second 0-59

mllisecond 0-999

m crosecond 0-999999

Information Builders

Types of Functions and Subroutines

Note:

* Inthose arguments that give you a choice of 8 or 10, use 8 for processing values
without microseconds, 10 when the field value includes microseconds.

e Thelast argument is always a USAGE format that indicates the data type returned by
the function. The type may be A (alpha), | (integer), D (double precision), DATE
(smart date), or H (date-time).

Valid Date Input

Date subroutines accept the following types of dates:

» Yearsthat have four digits and display the century, such as 2000 and 1900, if their
formats are specified as I8Y YMD, P8YYMD, D8YYMD, F8YYMD, or A8YYMD.

The following example uses the DECODE function to assign dates with four-digit
years. It then converts these dates to Julian and Gregorian formats.

DEFI NE FI LE CAR

DATE/ | 8YYMD=DECODE COUNTRY (ENGLAND 19960101 FRANCE 19991231 ELSE
20010101)

JDATE/ | 7=JULDAT(DATE, ' 1 7")

GDATE/ | 8=CGREGDT(JDATE, ' 1 8")

END

TABLE FI LE CAR

PRI NT DATE JDATE GDATE

END

The request produces the following report:
PAGE 1

DATE JDATE GDATE
1996/ 01/01 1996001 19960101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
2001/ 01/01 2001001 20010101
1999/12/31 1999365 19991231

Developing Applications 3-9

Using Functions and Subroutines

Two-digit years with afield length of 6 (such as6YMD). In this case, you can use
the SET DEFCENT and SET YRTHRESH commands to assign the century values.

The following example shows how to return an eight-digit date from the AYMD
subroutine when the input argument has a six-digit date format. Since DEFCENT is
19 and YRTHRESH is 50, year values from 50 through 99 are interpreted as 1950
through 1999, and year values from 00 through 49 are interpreted as 2000 through
2049:

SET DEFCENT=19, YRTHRESH=50

TABLE FI LE DATE

PRI NT D2_I 6YMD AND COVPUTE

NEWDATE/ | 8YYNMD=AYMDX(D2_I| 6YMD, 1,"'18");

END
The DEFCENT and Y RTHRESH values create a 100-year window as follows:
0 < YRTHRESH=50 = 99
i i
Cent ur y=DEFCENT+1 (20) Cent ur y=DEFCENT (19)

The request produces the following report:

PACGE 1

D2_I 6YMD NEWDATE
97/ 09/ 16 1997/ 09/ 17
00/ 02/ 29 2000/ 03/ 01
01/ 02/ 28 2001/ 03/ 01
00/ 02/ 28 2000/ 02/ 29

Note: If you do not require dates for the year 2000 and beyond, you can deactivate
this feature by issuing the following command:

SET DATEFNS=OFF

Decoding Functions and Subroutines

3-10

Decoding functions and subroutines enable you to assign values. Unless otherwise noted,
functions and subroutines are supported on all platforms. For more information on these
functions and subroutines, see Alphabetical List of Functions and Subroutinesjon page
3-36.

DECODE function

Assigns values based on the value of an input field.

Information Builders

Types of Functions and Subroutines

Format Conversion Functions and Subroutines

The following functions and subroutines convert fields from one format to another.
Unless otherwise noted, functions and subroutines are supported on all platforms. For
more information on these functions and subroutines, see [Alphabetical List of Functions |

and Subroutinesjon page 3-36.

ASIS function
In Dialogue Manager, distinguishes between a blank and a zero.

Available on: MVS, VM/CMS, and WebFOCUS.
ATODBL subroutine
Converts a number in alphanumeric format to double-precision format.
CHKPCK subroutine
Verifies that the value of a packed field isindeed in packed format.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.
EDIT function
Converts an aphanumeric field to numeric or anumeric field to al phanumeric.
FTOA subroutine
Converts a number in a numeric format to al phanumeric format.
ITONUM subroutine
Converts large binary integersin non-FOCUS files to double-precision format.
Available on: MVS, VM/CMS, and WebFOCUS.
ITOPACK subroutine
Converts large binary integersin non-FOCUS files to packed-decimal format.
Available on: MVS, VM/CMS, and WebFOCUS.
ITOZ subroutine
Converts numbers from numeric format to zoned format for extract files.
Available on: MVS, VM/CMS, OpenVMS, and WebFOCUS.

PCKOUT subroutine

Writes packed numbers of varying lengths (between one and 16 bytes) to extract
files.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

UFMT subroutine
Converts charactersin a phanumeric field values to hexadecimal (HEX)
representation.

Available on: MVS, VM/CMS, OpenVMS, and WebFOCUS.

Developing Applications 3-11

Using Functions and Subroutines

Numeric Functions and Subroutines

The following functions and subroutines enable you to perform numeric calculations on
numeric constants or fields. Unless otherwise noted, functions and subroutines are
supported on all platforms. For more information on these functions and subroutines, see
IIphabetical List of Functions and Subroutineson page 3-16.

ABS function
Returns the absolute value of its argument.

ASIS function
In Dialogue Manager, distinguishes between a blank and a zero.
Available on: MVS, VM/CMS, and WebFOCUS.

BAR subroutine

Produces horizontal bar chartsin reports.

Available on: MV S and VM/CMS.
EXP subroutine

Raises the number “€” to a power you specify.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.
EXPN function

Evaluates an argument expressed in scientific notation.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.
IMOD, DMOD, and FMOD

Calculate the remainder from a division and returns it in integer format.
INT function

Returns the integer part of its argument.

LOG function
Returns the logarithm of its argument.

MAX and MIN functions
Returns the maximum or minimum value from itslist of arguments.

PRDNOR, PRDUNI, RDNORM, and RDUNIF subroutines
Generate random numbers.

SQRT function
Returns the square root of its argument.

3-12 Information Builders

Types of Functions and Subroutines

System Functions and Subroutines

The following functions and subroutines enable you to make calls to the operating system
to obtain information about the operating environment or to use a system service. Unless
otherwise noted, functions and subroutines are supported on all platforms. For more
information on these functions and subroutines, see Alphabetical List of Functions and |

[Bubroutinesjon page 3-36.
CALLDOS subroutine
Callsa DOS program, a DOS batch program, or a Windows application.

Available on: Windows.

FEXERR subroutine
Retrieves error messages.
Available on: MV S and VM/CMS.
FINDMEM subroutine
Determinesif a specific member of a partitioned data set exists.
Available on: MVS.

GETPDS subroutine

Determinesif a specific member of a partitioned data set exists, and if so, returns the
data set name.

Available on: MVS.

GETUSER subroutine

Retrieves the user ID from the system.

Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.
HHMMSS subroutine

Retrieves the current time from the system.
MVSDYNAM subroutine

Passesa DYNAM command to the command processor.

Available on: MVS.

TODAY subroutine
Retrieves the current date from the system.

Developing Applications 3-13

Using Functions and Subroutines

Date Function and Subroutine Settings

The following settings affect the behavior of the date functions and subroutines:
e DATEFNS determines whether you use the new or old version of a date subroutine.

* DEFCENT and YRTHRESH determine what century is used for dates that do not
have a century specified. For more information on these two settings, see Chapter 7,
Working With Cross-Century Dates.

« BUSDAY S enables you to define which days of the week are considered business
days and which are not. Then, when you use DATEADD or DATEDIF with the
business day unit, or use DATEMOV, these functions ignore dates that are not
business days.

» HDAY determines afilewith alist of holidays. Then, when you use DATEADD or
DATEDIF with the business day unit, or use DATEMOV, these functions ignore
dates that are currently defined as holidays.

 LEADZERO enables you to display |eading zeros when a date subroutine in
Dialogue Manager returns a date with leading zeros.

Using Legacy Versions of Date Subroutines

All of the date subroutines have been rewritten to support Y ear 2000 dates. In some cases,
however, you may want to use the old version of the subroutine. Y ou can “turn off” the
new versions with the DATEFNS setting.

See the description of each subroutine affected by this setting for the result of turning off
DATEFNS.

Note: The old versions of these subroutines may not work correctly with dates after
December 31, 1999.

Syntax How to Activate Legacy Date Subroutines
SET DATEFNS = { O\| OFF}
where:
ON

Activates the subroutines that support dates for the year 2000 and beyond. This value
is the defaullt.

OFF
Deactivates the subroutines that support dates for the year 2000 and beyond; thisis
useful if you require the older version that does not have Y ear 2000 capabilities.

3-14 Information Builders

Date Function and Subroutine Settings

Setting Business Day Units

Syntax

Example

Syntax

Y ou can direct which days are considered business days and which days are not. Business
days are traditionally Monday through Friday, but not every business works the same
schedule. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday and Saturday, you can tailor business day units to reflect that situation.

Then, when you use DATEADD or DATEDIF with the business day unit, or use
DATEMOV, these functions ignore dates that are not business days.

How to Set Business Days
SET BUSDAYS = snmtwtfs
where:

smwfs
Is the seven-character list of days that represents your business week. Thelist hasa
position for each day from Sunday to Saturday.

» |If youwant aday of the week to be abusiness day, enter the first letter of that
day in that day’ s position.

e |f youwant aday of the week not to be a business day, enter an underscore () in
that day’s position.

If any position within SMTWTFS is either not in its correct position or is not an
underscore, you will see an error message.

Setting Business Days to Sunday, Tuesday, Wednesday, Friday,
and Saturday

Using the example of a company that does business on Sunday, Tuesday, Wednesday,
Friday, and Saturday, business days are represented as:

SET BUSDAYS = S_TWFS

How to View the Current Setting of Business Days
? SET [ALL]

Developing Applications 3-15

Using Functions and Subroutines

Setting Holidays

Procedure

Example

3-16

You can individually tailor holiday schedules that affect the calculation of business days
by skipping those days when calculating offsets. Then, when you use DATEADD or
DATEDIF with the business day unit, or use DATEMOV, these functions ignore dates
that are currently defined as holidays.

For example, in a given week, if Friday is designated as a holiday, the next business day
(BD) after Thursday is the following Monday.

Thelist of holidays is defined by afile called HDAY xxxx.
* InMVSthisfile should be amember in ERRORS called HDA'Y xxxx.
e |InCMSthelist should be HDAY xxxx ERRORS.

Each year for which data exists must be represented in the holiday file. Calling adate
function with a date value outside the range of the holidaysfile returns a zero on BD
requests.

How to Define Holidays Using a Holiday File

1. Open the procedure HDAY MAKE and follow the directions to create the holiday
file. (Information Builders supplies a sample Master File named HDAYDB.)

2. Execute HDAYMAKE.

3. Execute the following SET command
SET HDAY = XXXX
where:

XXXX

Isthe part of the name of the holiday file after HDAY .

A sample Master File (HDAY DB) and procedure (HDAY MAKE) that creates an errors
member from a data source used to maintain alist of holidaysis available on the FOCUS
disk. Create aflat file of holidays as described in the procedure and execute the procedure
to create the holiday file. The SET HDAY command controls the value of xxxx so that a
single installation can support different holiday schedules.

Using the HDAYSTKM Holiday File
For example,

SET HDAY = STKM

reads in the holidays from member HDAY STKM.

Information Builders

Date Function and Subroutine Settings

Syntax

How to View the Current Setting of HDAY
? SET [ALL]

Enabling Leading Zeros For Date Subroutines in Dialogue Manager

Syntax

Example

If you use a date subroutine in Dialogue Manager that returns a numeric integer format,
Dialogue Manager will truncate any leading zeros. This means, for example, that if your
subroutine returns the value 000101, indicating January 1, 2000, Dial ogue Manager will
truncate the leading zeros, and use 101.

To avoid this problem, you can use the LEADZERO setting.

How to Set the Display of Leading Zeros
SET LEADZERO = { ON| OFF}
where:

ON
Allows the display of leading zeros if they are present.

OFF
Truncates leading zerosif they are present. Thisis the default.

Displaying Leading Zeros

The following request calls the AYM subroutine (which adds months to datesin YM
format) to add one month to the input date of December 1999.

-SET & N = '9912";
-SET &OUT = AYM &N, 1, '14");
- TYPE &OUT

Thisyields:

1

Adding

SET LEADZERO = ON

before the above example yields
0001

correctly indicating January 2000.

Note: LEADZERO only supports expressions that make a direct call to a subroutine.
Expressions that have nesting or other mathematical functions truncate leading zeros. For
example,

-SET &OUT = AYM &N, 1, '14'/100);

Developing Applications 3-17

Using Functions and Subroutines

Subroutine Command (Call) Syntax

3-18

This topic describes the general syntax for subroutine calls, types of arguments, and rules
for using arguments.

Subroutines return a single value or character string which can be stored in afield,
assigned to a Dialogue Manager variable, used in calculations and other processing, or
used in selection or validation tests. Subroutine callsin FOCUS commands have the
genera syntax

subroutine (inputl, input2, input3, ... {outfield|'format'}
where:

subroutine
Is the name of the subroutine, up to eight characters long.

inputl..
Are the input subroutine arguments (data values and fields that the subroutine needs
to do its processing).

{outfield|'format'}
Isthe output argument. It is the name of the field that contains the output or the
format of the output value, enclosed in single quotation marks, depending on the
application. For Maintain, specify the field name. Maintain does not support the
output format as an argument. Dialogue Manager requires the output format.

The basic syntax to store the output in afield looks like:
field = subroutine (inputl, input2, ... outfield)

Subroutine syntax varies for different FOCUS commands and phrases. These variations
are discussed in subsequent sections.

Information Builders

Subroutine Command (Call) Syntax

Types of Arguments in Subroutine Calls

Thistopic lists the acceptable arguments for each subroutine distributed in the subroutine
library. Arguments are the values that you specify within the parentheses; thisis aso
referred to asa“cal list.” Arguments can take many different forms. They can be:

Numeric constants, such as 6 or 15.

Alphanumeric literals, such as'STEVENS or 'NEW YORK NY'. Literals are
enclosed in single quotation marks.

Numbers stored in a phanumeric format.

Field names, such as FIRST_NAME or HIRE_DATE. Fields can be data source
fields or temporary fields. The field names can be 66-character or qualified field
names, unique truncations, or aliases.

Expressions, such as numeric, date, and a phanumeric. Expressions can use the
arithmetic operators and the concatenation sign (]). For example, an expression may
consist of CURR_SAL * 1.03 or FN || LN.

For example, this cal culation uses subroutine output:

field= subl(inputl, input2,...'format') + sub2(inputl,
input2,... ' format');

The values returned by two subroutines are added and the result is stored in afield.
The ‘format' argument in single quotation marks is the format of the value returned by
each subroutine. The format argument is not supported in Maintain.

Dialogue Manager variables, such as & CODE or & DDNAME.
Date constants, such as '022894'.
Formats of the output values, enclosed in single quotation marks.

As input arguments for RECAP commands only, row and column references (R
notation, E notation, or labels), or names of other RECAP calculations.

Developing Applications 3-19

Using Functions and Subroutines

Rules for Arguments in Subroutine Calls

The following rules apply for arguments:

3-20

Depending on the subroutine, arguments can be either alphanumeric or numeric:

e Alphanumeric arguments (such as literals and al phanumeric fields) are stored
internally as one character per byte. Numbers can aso be stored in a phanumeric
format. Literals are enclosed in single quotation marks, except when specified in
operating system -RUN commands (-MV S RUN, for example).

Note: If an argument is listed as having a specific alphanumeric format such as
A8, itisarequired format and you must specify it.

* Numeric arguments (such as numeric constants and numeric fields) are stored
internally as binary or packed numbers. Thisincludes argumentsin integer (1),
floating-point (F), double-precision (D), and packed (P) formats.

Note: If an argument is listed as having a numeric format, you may specify any
of the four numeric formats (1, F, D, and P). If an argument islisted as having a
specific numeric format such as double-precision, it isarequired format and you
must specify it.

If you supply the wrong type of data for an argument, you will either cause an error
or the subroutine will not return correct data.

Arguments are passed to subroutines by reference, meaning that the memory location
of the argument is passed. No indication of length of the argument isimplied. The
length, when needed (usually for aphanumeric strings) must be passed as another
argument.

When lengths of arguments are required, you must be careful to ensure that all
lengths are correct. Some subroutines require alength for the input arguments and
output arguments (for example, SUBSTR); others use one length for both input and
output arguments (for example, UPCASE). In general, when one length is specified,
it is used for both input and output fields.

Providing an incorrect length can cause incorrect results:

» |If the specified length is shorter than the actual length, an initial subset of a
string is used. For example, passing an argument of '"ABCDEF and specifying a
length of 3, istreated as a string of 'ABC'.

» |f the specified length is too long, whatever isin memory beyond the length is
included. For example, passing an argument of 'ABC' and specifying alength of
6, istreated as a string beginning with 'ABC' plus whatever three characters are
in the next 3 positions of memory. Depending on memory utilization, the extra
three characters can be anything.

Information Builders

Subroutine Command (Call) Syntax

« Arguments must be specified in the exact order as shown for each subroutine; the
order varies, according to each subroutine.

* The number of arguments varies, according to each subroutine. Subroutines may
reguire up to six arguments.

Customized subroutines may require any number of arguments. The maximum
number of arguments per subroutine call is 28, including the output argument. If the
subroutine requires more than 28 arguments, you must use two or more call
statements to pass the arguments to the subroutine.

e Subroutine calls can serve as arguments in other subroutine calls or in FOCUS
functions.

* You cannot specify a Dialogue Manager amper variable for the output argument
without coding & VAR.EVAL. Y ou may specify an amper variable as an input
argument.

« Dialogue Manager converts arguments to double precision when it deems
appropriate. The determination is made solely based on the value of the argument;
not on what the subroutine expects for its pre-determined formats.

If the argument is numeric (&arg. TYPE is'N'), the valueis converted to double
precision. If the subroutine expects an a phanumeric string and the input is a numeric
string, incorrect results will occur because of the conversion to double precision. To
resolve this problem, append a non-numeric character to the end of the string, but do
not count this extra character in the length of the argument.

For example, to prevent the conversion of a delimiter blank character (') to a double
precision zero in the GETTOK subroutine, include a non-numeric character after the
blank (for example, ' @"). The GETTOK uses only the first character (the blank) asa
delimiter and the extra character (@) prevents conversion to double precision.

Using Subroutine Calls in FOCUS Functions

Subroutines can serve as arguments in the FOCUS functions described in this chapter. For
example, the MAX function returns the largest argument in alist. The statement

field = MAX (5000, subroutine (argunents, 'format'));

stores either the value 5000 or the value returned by the subroutine, whichever islarger,
inafield.

Developing Applications 3-21

Using Functions and Subroutines

Using Subroutine Calls in DEFINE, COMPUTE, and VALIDATE

Commands

3-22

Subroutines may be called from the DEFINE command or Master File attribute,
COMPUTE command, and VALIDATE command. The syntax is:

DEFI NE [FI LE fil enane]
tenpfield[/format] = subroutine (inputl, input2, input3, ...
{outfield|'format2'});

COVPUTE

tenmpfield[/format]

subroutine (inputl, input2, input3, ...

{outfield|'format2'});

VALI DATE
tenpfield[/format] = subroutine (inputl, input2, input3, ...
{outfield|'format2'});

The resulting temporary field is the same field that is specified for the outfield argument.

The temporary field' s format isrequired if it isthe first time the field is defined;
afterwards, it is optional.

If the subroutine returns output as the format of the output value (format2), the format of
the temporary field must match the 'format2' argument. For example:

CENTER_NAME/ A15=CTRFLD (LAST_NAME, 15, 'Al5');

For a calculation or acompound IF statement, you must specify the format for the output
value. There are two methods to do this:

Pre-define the format of the output field with a separate statement. For example:

COWVPUTE

AMOUNT/ D8. 2 =;

AMOUNT_FLAG A5 = | F subroutine(inputl,input2, AMOUNT) GE 500
THEN ' LARGE' ELSE ' SMALL';

The AMOUNT field is pre-defined with the format D8.2. The subroutine returns a
value to the output field AMOUNT (last argument). The IF statement tests if
AMOUNT is greater or less than 500 and stores the result in the temporary flag
AMOUNT_FLAG.

Specify the last argument in the argument list as the format. For example:

AMOUNT_FLAG A5 = | F subroutine(inputl,input2,'D8.2") CGE 500
THEN ' LARGE' ELSE ' SMALL' ;

The statement tests the returned value directly. Thisis possible because the
subroutine call defines the format of the return value (D8.2).

Information Builders

Subroutine Command (Call) Syntax

Using Subroutine Calls in WHERE and IF Tests

Subroutines may be specified in WHERE and | F selection tests. The output value of the
subroutine is compared against the test value.

For example, this request prints employee names and current salaries for last names that
begin with the letters MC. The SUBSTR subroutine extracts the first two charactersas a
substring.

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAME LAST_NAME CURR_SAL

VHERE SUBSTR(15, LAST_NAME, 1,2,2,'Al5') IS ' M ;

END

The report returns as.

FI RST_NAME LAST_NAVE CURR_SAL
JOHN MCCOY $18, 480. 00
ROGER MCKNI GHT $16, 100. 00

Using Subroutine Calls in -SET Control Commands

In Dialogue Manager, -SET commands are used to create amper variables. To assign the
returned value of a subroutine to an amper variable, use the syntax:

- SET &variabl e = subroutine (inputl, &ariabl e2[.LENGTH], ..., "format');

The ‘format' argument is the format of the output value, enclosed in single quotation
marks. Y ou cannot specify a Dialogue Manager amper variable for the output argument
(‘format’); however, you may specify an amper variable as an input argument.

If a subroutine requires the length of a character string as an input argument, you may
prompt for the character string, then use the suffix .LENGTH to test the length.

For example, this Dialogue Manager procedure prompts for a sentence (& SN), then uses
the GETTOK subroutine to extract the third word (token) from the sentence. (See
IGETTOK: Getting a Token From a String fon page 3-61.) The suffix .LENGTH passes the
number of characters in the sentence to the subroutine. The extra character (%) is
included to prevent the conversion of a delimiter blank character to a double precision
zero (see|Rules for Arguments in Subroutine Callsjon page 3-20):

- PROWPT &SN. ENTER A SENTENCE.
-SET &WORD3 = GETTOK (&SN, &SN. LENGTH, 3, ' %, 30, 'A30');

Dialogue Manager variables only contain a phanumeric data. If a subroutine returns a
numeric value and you set a Dialogue Manager variable to this value, FOCUS truncates
and convertsit to a character string before storing it in the variable based on the format.

Developing Applications 3-23

Using Functions and Subroutines

Another example, the AYMD subroutine, adds 14 days to dates:
- SET &OUTDATE = AYMD (& NDATE, 14, '16');

For more information, see AYMD: Adding or Subtracting Days to or From Dates/on page
3-45.

The &INDATE variable for the input date is previously set in the procedure. The dateis
in the six-digit year-month-day format.

The format of the output date is a six-digit integer. Although the format ('16") indicates
that the output is an integer, it is stored in the & OUTDATE variable as a character string.
For thisreason, if you display the value of & OUTDATE, you will not see slashes
separating the year, month, and day.

Using Subroutine Calls in -IF and IF Branching Commands

3-24

Y ou can use subroutines in Dialogue Manager -1F and |F branching commands. The
syntax is:

[-]I'F subroutine (args) relation expression GOTO | abel 1
[-]ELSE GOTO | abel 2;

Specify input arguments and the format of the output (‘format’).

Y ou may specify any valid relation and logical expression. Depending on whether the
condition istrue or false, the procedure branches to the specified Dialogue Manager label
or MODIFY case.

For -IF statements:

* You cannot specify a Dialogue Manager amper variable for the output argument
(‘format’) unless you use the & VAR.EVAL syntax; however, you may specify an
amper variable as an input argument.

« |f asubroutine requires the length of a character string as an input argument, you can
prompt for the character string, then use the suffix .LENGTH to test for the length
(see Using Subroutine Callsin -SET Control Commands|on page 3-23).

Information Builders

Subroutine Command (Call) Syntax

This annotated example illustrates an -1F statement that executes one of two requests
depending on when a planned project is expected to be completed.

- LOOP
- PROVPT &l NDATE. ENTER START DATE | N YEAR- MONTH- DAY FORVAT OR ZERO TO EXIT:.
-1 F & NDATE EQ 0 GOTO EXI T,
- SET &WEEKDAY = DOWK(& NDATE, ' Ad4');
- TYPE START DATE | S &N\EEKDAY &l NDATE
- PROVPT &DAYS. ENTER ESTI MATED PRQJECT LENGTH | N DAYS: .
-1 F AYMDX(& NDATE, &DAYS, ' | 6YMD') LT 960101 GOTO EARLY;
- TYPE LONG PRQJECT
- *EX LONGPRQJ
7. -RUN
- GOTO LOOP
- EARLY
- TYPE SHORT PRQIJECT
- *EX SHRTPRQJ
8. -RUN
- GO0ro LocpP
-EXIT

ok wnNE

This procedure processes as follows:

The procedure prompts you for a start date of a project in YYMMDD format.

If you enter a0, the procedure terminates execution.

The DOWK subroutine obtains the day of week for the start date.

The -TY PE statement displays the day of week and date for the start of the project.
The procedure prompts you for the estimated length of the project in days.

The AYMD subroutine cal culates the date that the project will finish. If thisdate is
before January 1, 1996, the -IF statement branches to the label EARLY .

© o A~ w D P

7. If the project will finish on or after January 1, 1996, the procedure types the words
“LONG PROJECT” and returns to the top of the procedure.

8. If the procedure branches to the label -EARLY, it types the words “ SHORT
PROJECT” and returns to the top of the procedure.

Developing Applications 3-25

Using Functions and Subroutines

Operating System -RUN Commands

3-26

Y ou can call subroutines with all aphanumeric arguments from Dialogue Manager -CMS
RUN, -TSO RUN, and -MV S RUN commands. These subroutines perform specific tasks
but typically do not return any values (for instance, a private subroutine that clears the
screen of anon-3270 terminal).

The syntax of the RUN command is:

-CM5 RUN subroutine, inputl, input2, ... [, &output]
-TSO RUN subroutine, inputl, input2, ... [, &output]
-MWS RUN subroutine, inputl, input2, ... [, &output]

Separate the subroutine name and each argument with a comma. For aphanumeric literals
used as arguments, do not enclose them in single quotation marks.

Specify an output argument as a Dialogue Manager variable if the subroutine returns a
value; otherwise, omit it. If you specify an output variable, you must pre-define its length
using a-SET statement. For example, if the subroutine requires an output argument that is
eight bytes long, you need to define the variable with eight characters enclosed in single
guotation marks before the subroutine call:

- SET &output = '12345678";

For subroutines that require arguments in numeric format, you must first convert the
arguments (whether they are numeric constants or stored in variables) into
double-precision numbers using the ATODBL subroutine. (See|/ATODBL: Converting |
IIphanumeric Strings to a Double-Precision Number jon page 3-39 for more details). All
numeric argumentsin Dialogue Manager are stored in a phanumeric format and require
conversion before being passed to subroutines. Unlike the -SET statement, operating
system -RUN commands do not automatically convert them. Y ou need to use the
ATODBL subroutine, because the EDIT function cannot store double-precision numbers
in Dialogue Manager variables.

If a subroutine requires the length of a character string as an input argument, you may
prompt for the character string, then use the suffix .LENGTH to test the length. (See
Using Subroutine Callsin -SET Control Commandsion page 3-23 for an example.)

The following is an example of a subroutine that does not return any values. Suppose you
write a subroutine called BLANKOUT that clears part of the screen on a Tektronix
terminal (anon-3270 terminal). The subroutine reads one argument that indicates which
part of the screen to blank out. To clear the top half of the screen, you include this
statement in a procedure

-CMS RUN BLANKQUT, H1
or:
- TSO RUN BLANKQUT, H1

Information Builders

Subroutine Command (Call) Syntax

Using Subroutine Calls in WHEN Ciriteria

Example

Subroutines may be called from the WHEN criteria as part of a Boolean expression. The
syntax is

WHEN (val ue rel ation value) [{AND OR} (value relation value)];
or.
WHEN NOT (| ogi cal expression)

Using a Subroutine Call in a WHEN Phrase

For example, this report request checks the valuesin the LAST _NAME field against a
mask. It prints a subfoot message when the condition, a match, occurs.

Note: Inthis example, in order to produce atrue condition, specify WHEN NOT, because
the CHKFMT subroutine returns a 0 value when a match occurs.

TABLE FI LE EMPLOYEE

PRI NT DEPARTMENT BY LAST_NAME

ON LAST_NAME SUBFOOT

"Hx*x% | AST NAME <LAST_NAME DOES MATCH MASK"

WHEN NOT CHKFMT (15, LAST_NAME, ' SM TH e,
END

The report returns as:

LAST_NAME DEPARTMENT

BANNI NG PRCDUCTI ON

BLACKWOCD M S

CRCSS M S

GREENSPAN M S

I RVI NG PRCDUCTI ON

JONES M S

MCCOY M S

MCKNI GHT PRODUCTI ON

ROMANS PRCDUCTI ON

SM TH M S
PRCDUCTI ON

***% LAST NAME SM TH DOES MATCH MASK

STEVENS PRCDUCTI ON

Developing Applications 3-27

Using Functions and Subroutines

Using Subroutine Calls in RECAP Commands

Example

3-28

Subroutines may be called from Financial Modeling Language (FML) RECAP
commands. The syntax is:

RECAP name[(n)][/format] = subroutine (inputl,..., "format 2');

Instead of atemporary field, specify the name of the calculation. Y ou aso may specify
the number (n) of the column where you want the value displayed. If you omit the column
number, the value appearsin all columns.

The format of the calculation is optional; the default is D12.2. If the calculation consists
of only the subroutine, make sure that the format of the subroutine output value
(‘format2') agrees with the calculation’s format. If the calculation format is larger than the
column width, the value displaysin that column as asterisks.

The input arguments for a RECAP command may include numeric constants,
alphanumeric literals, row and column references (R notation, E notation, or labels) or
names of other RECAP calculations.

Using a Subroutine in a RECAP Command

Suppose you have a subroutine named INVEST in your private collection of subroutines
(INVEST is not available in the supplied library) and it cal culates the amount on the basis
of cash on hand, total assets, and the current date. In order to create a report that prints an
account of company assets and cal cul ates how much money the company has available to
invest, you must create a report request that invokes the INVEST subroutine.

The current date is obtained from the & YMD system variable. The NOPRINT option
beside it prevents the date from appearing in the report; the date is solely used as input for
the next RECAP statement.

Information Builders

Subroutine Command (Call) Syntax

Therequest is:

TABLE FI LE LEDGER
HEADI NG CENTER
"ASSETS AND MONEY AVAI LABLE FOR | NVESTMENT </ 2"
SUM AMOUNT ACRCSS HI GHEST YEAR
I'F YEAR EQ 1985 OR 1986

FOR ACCOUNT
1010 AS ' CASH LABEL CASH OVER
1020 AS ' ACCOUNTS RECEI VABLE' LABEL ACR OVER
1030 AS ' I NTEREST RECEI VABLE LABEL ACI OVER
1100 AS ' FUEL | NVENTORY' LABEL FUEL OVER
1200 AS ' MATERI ALS AND SUPPLI ES' LABEL NAT OVER
BAR OVER
RECAP TOTCAS = CASH+ACR+ACI +FUEL+MAT; AS ' TOTAL ASSETS' OVER
BAR OVER
RECAP THI SDATE/ A8 = &YNMD; NOPRI NT OVER
RECAP | NVAI L = | NVEST(CASH, TOTCAS, THI SDATE, ' D12.2'); AS

"AVAI L. FOR | NVESTMENT' OVER
BAR AS ' ='
END

The request produces the following report:
PAGE 1

ASSETS AND MONEY AVAI LABLE FOR | NVESTMENT

YEAR
1986 1985
CASH 2,100 1, 684
ACCOUNTS RECEI VABLE 875 619
I NTEREST RECEI VABLE 4,026 3,360
FUEL | NVENTORY 6,250 5,295

MATERI ALS AND SUPPLIES 9,076 7,754

TOTAL ASSETS 22,327 18,712

AVAI L. FOR | NVESTMENT 3,481 2,994

Developing Applications 3-29

Using Functions and Subroutines

Storing and Accessing External Subroutines

Accessing external subroutines varies by platform. The following topics describe how to
access subroutines on specific platforms.

Note: If you have a private collection of subroutines (you created your own or use
customized subroutines), do not store them in the subroutine library. Store them
separately to avoid overwriting them whenever your site installs a new release.

Storing and Accessing Subroutines on MVS

3-30

In MVS, Information Builders-supplied subroutines are stored as part of
FUSELIB.LOAD. In addition to thisload library, your site may have private collections
of subroutines stored in separate load libraries. Load libraries are partitioned data sets
containing link-edited modules.

MVS Batch Allocation

To use subroutines stored as load libraries, alocate the load libraries to the ddname
USERLIB inthe FOCUS JCL or CLIST. For example, to allocate subroutines stored in
BIGLIB.LOAD inJCL:

// USERLI B DD DI SP=SHR, DSN=BI GLI B. LOAD
The FOCUS search order is USERLIB, STEPLIB, JOBLIB, link pack area, and linklist.

MVS/TSO Allocation

To use these subroutinesin MV S/TSO, allocate the load libraries to ddname USERLIB.
Issue the ALLOCATE command: 1) in MV S/TSO before going into your FOCUS
session; or 2) from FOCUS before executing your request. Y ou may also include the
command in your PROFILE FOCEXEC.

The syntax is
{WS| TSO ALLOCATE FI LE(USERLIB) DSN(libl Iib2 1ib3 ...) SHR
where:

WS or TSO
Specify the prefix if you issue the ALLOCATE command from FOCUS or include it
inyour PROFILE FOCEXEC.

libl...
Are the names of the load libraries. (This concatenates the data sets to ddname
USERLIB.)

Information Builders

Storing and Accessing External Subroutines

Note:

» |If you have private collections of subroutines, you need to allocate those load
librariesin addition to the FUSELIB load library.

e |If youarein aFOCUS session, you may also usethe DYNAM ALLOCATE
command to specify the allocation.

For example, to allocate the FUSELIB.LOAD load library in a FOCUS session, use either
the TSO ALLOCATE or DYNAM ALLOCATE command

TSO ALLOC F(USERLI B) DA(' prefix. FUSELI B. LOAD') SHR
or

DYNAM ALLOC FI LE USERLI B DA prefix. FUSELI B. LOAD SHR
where prefix is your high-level qualifier.

As another example, suppose areport request calls two subroutines: BENEFIT stored in
library SUBLIB.LOAD, and EXCHANGE stored in library BIGLIB.LOAD. FOCUS can
locate user-written subroutines in ddname USERLIB; therefore, the BIGLIB library is
concatenated to USERL IB. Before executing the report request, enter:

DYNAM ALLOC FI LE USERLI B DA SUBLI B. LOAD SHR
DYNAM ALLCC FILE BIGLIB DA BI GLI B. LOAD SHR
DYNAM CONCAT FI LE USERLI B BI GLI B

FOCUS searches the load libraries in the order that you specified them in the

ALLOCATE command.

Or, for batch mode, concatenate the load library to the ddname STEPLIB or USERLIB in
your JCL:

/1 FOCUS EXEC PGVEFOCUS

/1 STEPLI B DD DSN=FOCUS. FOCLI B. LOAD, DI SP=SHR

/1 DD DSN=FOCUS. FUSELI B. LOAD, DI SP=SHR

The FOCUS search order is: USERLIB, STEPLIB, JOBLIB, and link pack area and
linklist.

Developing Applications 3-31

Using Functions and Subroutines

Dynamic Language Environment Support

IBM’s Dynamic Language Environment (LE) enables you to use a common run-time
environment for all LE-supported high-level languages (HLLS).

From a non-LE-conforming driver (such as FOCUS), you can use LE preinitialization
facilities to create and initialize a common run-time environment, execute applications
written in an LE-conforming HLL multiple times within the preinitialized environment,
and terminate the preinitialized environment. FOCUS utilizes the CEEPIPI preinitialized
interface to perform these tasks.

In the preinitialized environment, FOCUS provides support for executing subroutines
multiple times.

Language Environment preinitialization is commonly used to enhance performance for
repeated invocations of an application or for a complex application with many repetitive
requests where fast response is required. For example, if FOCUS invokes an HLL
subroutine a number of times, the creation and termination of that HLL environment
multiple timesis needlesdly inefficient. A more efficient method isto create the HLL
environment only once for use by all invocations of the routine.

3-32 Information Builders

Storing and Accessing External Subroutines

The IBMLE parameter controls preinitialization for calls to subroutines from FOCUS.
The following table summarizes FOCUS preinitialization support for user-written

subroutines:

HLL

Preinitialization
Supported?

Preinitialization I nterface

IBMLE
Setting

C

Yes

C assembler interface. Callsto the
subroutine use a special extended
parameter list.

ON

C++

No

OFF

COBOL

Yes

The COBOL run-time option
RTEREUS(ON) is the recommended
preinitialization interface for COBOL
subroutines. Thisinterface requires
IBMLE=OFF.

FOCUS can also accommodate LE
compliant COBOL subroutines with
IBMLE=ON if required by site
characteristics or restrictions.

RTEREUS preinitialization and
CEEPIPI preinitiaization are mutually
exclusive for FOCUS subroutines and
cannot be used simultaneoudly. If used
simultaneously, unpredictable results
will occur.

OFF

ON

FORTRAN

No

OFF

PL/

Yes

PL/I for MVS & VM-defined
preinitialization interfaces with callsto
CEESTART or PLISTART with a
special extended parameter list.

Preinitialization services do not support
PL/I multitasking applications.

ON

For more information regarding the IBM Language Environment see IBM’s OS/390
V2R10.0 Language Environment for OS/390 & VM Programming Guide, Document
Number: SC28-1939-09.

Developing Applications

3-33

Using Functions and Subroutines

Storing and Accessing Subroutines on VM/CMS

3-34

In CMS, Information Builders-supplied subroutines are stored as:
e Theload library FUSELIB LOADLIB.

e Thetext library FUSELIB TXTLIB. A text library isafile that is composed of
multiple text files called “members.” Subroutines can be stored as members of one or
more text libraries. The file type for text librariesis TXTLIB.

» Textfiles. Thefile name of atext file must match the subroutine name. The file type
isTEXT. For example, the EXCHANGE subroutine stored as a text file has the file
identifier (ID):

EXCHANGE TEXT
Note:

e Inaddition to the FUSELIB load library, your site may have private collections of
subroutines stored in separate libraries or text files.

» |If you create your own subroutines in text files or text libraries, the subroutine must
be 31-bit addressable and created as part of a LOADLIB.

If your request calls subroutines stored as text files, FOCUS can find the subroutines
automatically. Remember, though, that you must have access to the disks where the
subroutines reside.

FOCUS searches for subroutines in the standard CM S search sequence:

1. Load libraries, inthe order that you specified them in the GLOBAL LOADLIB
command.

2. Text files, searching attached disksin alphabetical order.

3. Textlibraries, in the order that you specified them in the GLOBAL TXTLIB
command.

For subroutines stored as text filesin CM S, the access method is automatic. When your
request calls the subroutine, FOCUS searches attached disks in al phabetical order,
provided that you have proper authorization.

For subroutines stored as load or text librariesin CMS, you need to issue the CMS
GLOBAL command. The GLOBAL command enables FOCUS to search specified
libraries for the subroutines.

I ssue the command in CM S before starting the server. Y ou may also include the
command in your server’s global profile.

Note: Subroutines written in languages such as COBOL and PL/I, or subroutines that call
system subroutines, require that the GLOBAL command also specify a system library.
FUSELIB subroutines do not require any other system libraries.

Information Builders

Storing and Accessing External Subroutines

Syntax

Syntax

Example

How to Enable FOCUS to Search Specified Libraries for
Subroutines

[CvS] GLOBAL {LOADLI B| TXTLIB} libraryl library2 library3 ..
where:

oVB
Specify this prefix if you issue the GLOBAL command from a profile or stored
procedure, or include it in your server’s global profile.

libraryl..
Are the file names of the load and text libraries containing the subroutines. The
maximum number of librariesis 63.

Note: If you have private collections of subroutines, you need to specify those librariesin
the GLOBAL command in addition to the FUSELIB load library.

How to List Libraries Specified by the GLOBAL Command

To list load or text libraries specified by the GLOBAL command, issue:
OMB QUERY {LOADLI B| TXTLI B}

Using the GLOBAL COMMAND to Access Subroutines
For example, your server’'s global profile may contain the GLOBAL command:
CMB GLOBAL LOADLI B FUSELI B

For another example, suppose a report request calls two subroutines: BENEFIT, stored in
text library SUBLIB, and EXCHANGE, stored in text library BIGLIB. Before executing
the request, issue the GLOBAL command in a stored procedure or at the command line;

CMS GLOBAL TXTLIB SUBLIB Bl GLI B

If you issue two GLOBAL commands, the second command replaces the first. Once a
library is opened (as aresult of referencing one of its members), the library cannot be
changed until you exit FOCUS.

Developing Applications 3-35

Using Functions and Subroutines

Alphabetical List of Functions and Subroutines

The following sections describe the functions and subroutines in alphabetical order.

ABS: Calculating Absolute Value

Syntax

Example

3-36

The ABS function returns the absolute value of its argument.

Available on: All platforms.

How to Calculate Absolute Value
ABS(ar gunent)
where:

ar gunent
Numeric

Is the value on which ABS operates. Y ou may supply the actual value, the name of a
field that contains the value, or an expression that returns the value. If you use an
expression, make sure you use parentheses as needed to ensure the correct order of
evaluation.

Report Request Calculating Absolute Value of Difference
Between UNIT_SOLD and DELIVER_AMT

The following request cal culates the absolute value of the difference between the number
of units sold and the number delivered:

TABLE FI LE SALES

PRINT UNI T_SOLD AND DELI VER AMI AND

COVPUTE DI FF/15 = DELIVER AMI - UNIT_SOLD, AND
COVPUTE ABS DI FF/ 15 = ABS(DI FF);

BY PROD_CODE

WHERE DATE LE ' 1017';

END

Information Builders

Alphabetical List of Functions and Subroutines

The request produces the following output:
PAGE 1

B10 30 30 0 0
B17 20 40 20 20
B20 15 30 15 15
C17 12 10 -2 2
D12 20 30 10 10
El 30 25 -5 5
E3 35 25 -10 10

ARGLEN: Measuring Argument Length

Syntax

The ARGLEN subroutine measures the argument length of a character string within a
field, excluding trailing spaces. (The field format specifies the length of the field,
including trailing spaces.)

Note that in Dialogue Manager, you can measure the length of prompted character strings
using the .LENGTH suffix.

Available on: All platforms.

How to Measure the Length of a Character String
ARGLEN(i nl ength, infield, outfield)
where:

inlength
Integer

Isthe total length of the field containing the character string.
infield
Alphanumeric
Is the name of the field for which the argument length is to be determined.

outfield
Integer

Isthe field to which the integer result is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.

Developing Applications 3-37

Using Functions and Subroutines

Example

Report Request Measuring Length of Employee Last Names

The following request displays the lengths of employee last names:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

NAVE_LEN/ |3 = ARGLEN(15, LAST NAME, NAVE LEN);
WHERE DEPARTMENT EQ 'M S';

END

The request produces the following output:
PAGE 1

GREENSPAN
CRCSS

ASIS: Distinguishing Between a Blank and a Zero

Syntax

3-38

The ASIS function is used in Dialogue Manager to distinguish between ablank and a
zero. By using the ASIS function in Dialogue Manager, numeric string constants and
variables defined as numeric strings (numerics within single quotation marks) can be
differentiated from fields defined simply as numeric. The ASIS function forces FOCUS to
evaluate avariable asit is entered rather than converting it to anumber. Itisused in
Dialogue Manager equality expressions only.

Available on: All platforms.

How to Distinguish Between a Blank and a Zero
ASI S(ar gunent)
where:

ar gunent
I's the value on which the function operates. Y ou may supply the actual value, the
name of afield that contains the value, or an expression that returns the value. The
expression may call afunction or a subroutine.

If you specify an aphanumeric literal, enclose it in single quotation marks (). If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Distinguishing Between a Blank and a Zero

The following requests show how the ASIS function affects the way FOCUS recognizes
values. In the first example, the ASIS function is not used. FOCUS does not distinguish
between variables defined as' ' and O:

- SET &VARL :
-SET &VAR2 = 0;

-1 F &VAR2 EQ &/ARL GOTO ONE;

-TYPE VARL &ARL EQ VAR2 &AR2 NOT TRUE
SQUIT

- ONE

-TYPE VARL &ARL EQ VAR2 &AR2 TRUE

The output is:
VARL EQ VAR2 0 TRUE

The second request shows the use of the ASIS function to distinguish between the two
variables:

-SET &ARL = '
-SET &VAR2 = 0;

-1 F &VAR2 EQ ASI S(&VARL) GOTO ONE;
-TYPE VARL &ARL EQ VAR2 &AR2 NOT TRUE
SQUIT

- ONE

-TYPE VARL &ARL EQ VAR2 &AR2 TRUE

The output is:
VARL EQ VAR2 0 NOT TRUE

ATODBL: Converting Alphanumeric Strings to a Double-Precision

Number

The ATODBL subroutine converts numbers from al phanumeric to double-precision
format. Y ou use this subroutine primarily to prepare arguments for other subroutines that
you call from Dialogue Manager -CMS RUN, -TSO RUN, and -MVS RUN statements.
For other applications, the EDIT function performs the same operation.

All numeric argumentsin Dialogue Manager are in a phanumeric format. These
arguments must be converted to double-precision format before being passed to
subroutines. The -SET statements automatically convert these arguments, but -CMS
RUN, -TSO RUN, and -MV S RUN statements do not.

In order to call a subroutine from an operating system -RUN statement, you must convert
each numeric argument into double-precision format and store it in a Dialogue M anager
variable. The variable is used in the subroutine argument list. Since the EDIT function
cannot store double-precision numbers in Dialogue Manager variables, you must call the
ATODBL subroutine to convert the arguments.

Developing Applications 3-39

Using Functions and Subroutines

Procedure

3-40

Available on: All platforms.

Related functions and subroutines:

+ EDIT

e FTOA

Two syntaxes for the ATODBL subroutine exist.

How to Convert Alphanumeric Strings to a Double-Precision
Number From an Operating System -RUN Statement

To usethe ATODBL subroutine in Dialogue Manager, perform these steps:
1. Definethe output variable as 8 bytes long. The syntax is

-SET &outfield = '12345678';
where:

&outfield
Is the output variable. The value must be eight characters, enclosed in single
guotation marks.

2. Cdl the ATODBL subroutine from an operating system -RUN statement, not from a
-SET statement. The syntax is

-{operating_systent RUN ATODBL, nunber, inlength, &outfield
where:

operating_system

ISCMS, TSO, or MVS.

nunber
Alphanumeric

I's the number you want to convert or the variable containing the number. The
number can be up to 15 byteslong. It can contain asign and adecimal point but
no other character; otherwise, the subroutine returns a 0.

inlength
Alphanumeric

I's the number of bytesin the number argument; maximum valueis 15.
Note: This must be a character string.

outfield
A8

Is the predefined output variable.

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Convert Alphanumeric Strings to a Double-Precision
Number From a Non-Dialogue Manager Statement

The syntax for specifying the ATODBL subroutine in other applications (except from
-SET statements) is

ATODBL(nunber, inlength, outfield)

where:

nunber

Alphanumeric

I's the number to be converted, the field that contains the number, or avariable.
inlength

Alphanumeric

I's the number of bytesin the number argument; maximum value is 15. If you are

specifying this field as a numeric constant, enclose it in single quotation marks.
outfield

Double-Precision

Isthe name of the field that contains the double-precision number. This argument can
also be the format of the output value, enclosed in single quotation marks. For
Maintain, specify the field name.

MODIFY Request Converting a Prompted Alphanumeric Value
Into a Double-Precision Number
For the following example, the MISSING attribute is specified for the CURR_SAL field

inthe EMPLOY EE Master File. This meansthat, if you do not enter a current salary
value for this double-precision field, the null is interpreted as a default value, a period.

FI LENAME=EMPLOYEE, SUFFI X=FCC
SEGNAVE=EMPI NFO, SEGTYPE=S1
FI ELDNAME=EMP_I D, ALl AS=EI D, FORVAT=A9, $

FI ELDNAME=CURR_SAL, ALI AS=CSAL, FORVAT=D12. 2M M SSI NG=QN, $

Developing Applications 3-41

Using Functions and Subroutines

3-42

In this MODIFY procedure, the ATODBL subroutine converts the alphanumeric value
fromthe TCSAL field to double-precision format. After you enter an employee |D and
the employee’ s last and first names display, you are prompted to supply a current salary
or the characters N/A, if oneis not available. The current salary valueis stored in a
temporary alphanumeric field, TCSAL. The ATODBL converts the alphanumeric value
and the TY PE statement displaysit.

MODI FY FI LE EMPLOYEE

COVPUTE TCSAL/ Al12=;

PROVPT EI D

MATCH EI D

ON NOVATCH REJECT

ON MATCH TYPE "EMPLOYEE <D. LAST_NAME <D. FI RST_NAME"

ON MATCH TYPE "ENTER CURRENT SALARY OR 'N'A" | F NOT AVAI LABLE"

ON MATCH PROVPT TCSAL

ON MATCH COVPUTE

CSAL M SSI NG ON=I F TCSAL EQ ' NN A' THEN M SSI NG
ELSE ATODBL(TCSAL,'12','D12.2");

ON MATCH TYPE " SALARY NOW <CSAL"

DATA

A sample execution is as follows:

EMPLOYEEFOCUS A ON 11/14/96 AT 13.42.55
DATA FOR TRANSACTI ON 1

EMP_I D =
071382660
EMPLOYEE STEVENS ALFRED
ENTER CURRENT SALARY OR 'N A" | F NOT AVAI LABLE
TCSAL =
n/a
SALARY NOW
DATA FOR TRANSACTI ON 2

EMP_I D =
112847612

EMPLOYEE SM TH MARY

ENTER CURRENT SALARY OR 'N'A' | F NOT AVAI LABLE
TCSAL =
45000

SALARY NOW $45, 000. 00

DATA FOR TRANSACTION 3

EMP_I D =
end

TRANSACTI ONS: TOTAL = 2 ACCEPTED= 2 REJECTED= 0
SEGVENTS: I NPUT = 0 UPDATED = 0 DELETED = 0

Information Builders

Alphabetical List of Functions and Subroutines

The procedure processes as:

1. For thefirst transaction, the procedure prompts you for an employee ID. Y ou enter:
071382660.

2. The procedure displays the last and first name of the employee, STEVENS
ALFRED.

Then it prompts you for a current salary. Y ou enter: N/A.
4. Itdisplaysaperiod (.).

For the second transaction, the procedure prompts you for an employee ID. You
enter: 112847612.

6. The procedure displays the last and first name of the employee, SMITH MARY..
7. Then it prompts you for a current salary. Y ou enter: 45000.
8. It displays $45,000.00.

AYM: Adding or Subtracting Months to or From Dates

The AY M subroutine adds and subtracts months from dates. The dates must be in
year-month format. Y ou can convert a date to this format by using the CHGDAT
subroutine or the EDIT function.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

» CHGDAT
« EDIT
« AYMD

Developing Applications 3-43

Using Functions and Subroutines

Syntax How to Add or Subtract Months to or From Dates
AYM i ndate, nonths, outfield)
where:
i ndat e
Numeric

Isthe input date in year-month format. If the dateis not valid, AYM returns a 0.

nont hs
Integer

I's the number of months you are adding or subtracting from the date. To subtract
months, make the number negative.

outfield
Integer

Is the name of the field to which the resulting date in year-month format is returned.
This argument can also be the format of the output value, enclosed in single quotation
marks.

Tip:
If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the

date by 100 to convert to year-month format and set the result to be an integer. This
causes the day portion of the date, which is now after the decimal point, to be dropped.

Example Report Request Adding Six Months to Hire Date

The following request adds six months to the hire dates of employees. Note that the
Compute expression converts the dates from year-month-day to year-month formats by
dividing the dates by 100.

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND COVPUTE

H RE_MONTH | 4YM = HI RE_DATE/ 100 ;

AFTERGMONTHS/ | 4YM = AYM H RE_MONTH, 6, AFTERGMONTHS) ;
BY LAST_NAVME BY Fl RST_NAVE

WHERE DEPARTMENT EQ 'M S';

END

3-44 Information Builders

Alphabetical List of Functions and Subroutines

The request produces the following output:

PAGE 1

LAST_NAME FI RST_NAME H RE_DATE H RE_MONTH AFTER6MONTHS
BLACKWOOD ROSENARI E 82/ 04/ 01 82/ 04 82/ 10
CRCSS BARBARA 81/ 11/ 02 81/ 11 82/ 05
GREENSPAN MARY 82/ 04/ 01 82/ 04 82/ 10
JONES DI ANE 82/ 05/ 01 82/ 05 82/ 11
MCCOY JOHN 81/ 07/ 01 81/ 07 82/ 01
SM TH MARY 81/ 07/ 01 81/ 07 82/ 01

AYMD: Adding or Subtracting Days to or From Dates

The AYMD subroutine takes avalid date in the form [YY]YYMMDD and adds or
subtracts a given number of days from the submitted date.

AYMD only operates on dates in year-month-day format. Y ou can convert a date to this
format using the CHGDAT subroutine or the EDIT function.

If the addition (or subtraction) of days crosses forward or back into a century, the century
digits of the output year are adjusted.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

» CHGDAT
« EDIT
* AYM

Developing Applications 3-45

Using Functions and Subroutines

Syntax

Example

3-46

How to Add or Subtract Days to or From Dates
AYMX(i ndat e, days, outfield)
where:

i ndat e
Integer
Istheinput datein [YY]YYMMDD format. If the date is not valid, the subroutine

returns a 0. If indate isafield name, it must refer to afield with 16, I6YMD, 18,
I8YYMD, P6, P6YMD, F6, F6YMD, D6, or D6YMD format.

days
Integer
I's the number of days you are adding to indate. To subtract days, make the number
negative.

outfield
16, I6YMD, I8, or IBYYMD

Is the name of the field to which the resulting date is returned. This argument can
also be the format of the output value, enclosed in single quotation marks. If indateis
afield, both fields must have the same format.

Report Request Adding 35 Days to Hire Date
The following request adds 35 days to the hire date of employees:

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE AND COVPUTE

AFTER35DAYS/ | 6YMD = AYMD(HI RE_DATE, 35, AFTER35DAYS);
BY LAST_NAVME BY Fl RST_NAVE

WHERE DEPARTMENT EQ ' PRODUCTI ON

END

The request produces the following output:

PAGE 1

LAST_NAME FI RST_NAME H RE_DATE AFTER35DAYS
BANNI NG JOHN 82/ 08/ 01 82/ 09/ 05
I RVI NG JOAN 82/ 01/ 04 82/ 02/ 08
MCKNI GHT ROGER 82/ 02/ 02 82/ 03/ 09
ROVANS ANTHONY 82/ 07/ 01 82/ 08/ 05
SM TH RI CHARD 82/ 01/ 04 82/ 02/ 08
STEVENS ALFRED 80/ 06/ 02 80/ 07/ 07

Information Builders

Alphabetical List of Functions and Subroutines

BAR: Producing Bar Charts

The BAR subroutine enables you to produce horizontal bar charts. The bars, which
consist of repeating characters, constitute a field with each bar as afield value. When a
report request prints the field, the bars appear in the report.

Available on: All platforms.

Syntax How to Produce Bar Charts
BAR(barl ength, infield, naxvalue, 'char', outfield)
where:
bar | engt h
Numeric

I's the maximum length of the bar in repeating characters. If this value is less than or
equal to 0, the subroutine does not return a bar.

infield
Numeric

Isthe field you wish to illustrate as a bar chart.

maxval ue
Numeric

I's the maximum length of a bar. This value should be greater than the maximum
value stored in the input field (infield). If aninfield value is larger than the maxvalue
argument, the subroutine uses maxvalue and returns a bar at maximum length.

" char’
Alphanumeric

Is the repeating character that creates the bars. If the argument specifies more than
one character, only the first character is used to create the bars.

outfield
Alphanumeric

Is the name of the field that contains the bars. This output field must be large enough
to contain a bar at maximum length, as defined by the barlength argument. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

Developing Applications 3-47

Using Functions and Subroutines

Example

Example

3-48

Report Request Creating a Bar Chart of CURR_SAL

The following request prints the salaries of employees and graphs them with a bar chart.
The maximum length of a bar is 30 characters long. The 30-character bar represents a
maximum salary of $30,000 (which is $29,700, rounded up). Each equal sign represents
approximately $1,000. The request is:

TABLE FI LE EMPLOYEE
PRI NT CURR_SAL AND COVPUTE

SAL_BAR/ A30 = BAR(30, CURR SAL, 30000, '=', SAL BAR);
BY LAST_NAME BY FI RST_NANE
WHERE DEPARTMENT EQ ' PRCDUCTI ON ;
END

The request produces the following output:

PAGE 1
LAST_NAME FI RST_NANME CURR SAL SAL_BAR
BANNI NG JOHN $29, 700. 00

I RVI NG JOAN $26, 862. 00

MCKNI GHT ROGER $16, 100. 00

ROVANS ANTHONY $21, 120. 00

SM TH RI CHARD $9,500. 00 ==========
STEVENS ALFRED $11, 000. 00 ===========

Report Request Creating a Bar Chart of CURR_SAL With Scale

You may find it useful to print a scale over the bar chart. Consider the following request,
which replaces the name of the computed field with a scale.

Note: If you are running this request on a platform where the default font is proportional
(for example WebFOCUS), either use a non-proportional font, or issue SET
STY LE=OFF before running the request.

SET STYLE=OFF

TABLE FI LE EMPLOYEE

HEADI NG

"CURRENT SALARI ES OF EMPLOYEES | N PRODUCTI ON DEPARTMENT"
"GRAPHED | N THOUSANDS OF DOLLARS'

PRI NT CURR_SAL AS ' CURRENT_SALARY'

AND COVPUTE
SAL_BAR/ A30 = BAR(30, CURR SAL, 30000, '=', SAL BAR);
AS
5 10 15 20 25 30, ----trce-decmedocao g

BY LAST_NAME AS ' LAST_NAME'

BY FI RST_NAME AS ' FI RST_NAME
WHERE DEPARTMENT EQ ' PRODUCTI ON ;
END

Information Builders

Alphabetical List of Functions and Subroutines

The request produces the following output:
PAGE 1
CURRENT SALARI ES OF EMPLOYEES | N PRODUCTI ON DEPARTMENT

GRAPHED | N THOUSANDS COF DOLLARS
5 10 15 20 25

30

LAST_NAME FI RST_NAME CURRENT_SALARY
e

BANNI NG JOHN $29, 700. 00

I RVI NG JOAN $26, 862. 00

MCKNI GHT ROGER $16, 100. 00

ROVANS ANTHONY $21, 120. 00

SM TH Rl CHARD $9, 500. 00 ==========
STEVENS ALFRED $11,000. 00 ===========

BITSON: Determining If Bits Are On or Off

Syntax

The BITSON subroutine evaluates individual bits within character strings to determine if
ahitison or off. If the bit is on, the subroutine returns avalue of 1; otherwise, it returns a
value of 0. This subroutine is useful in interpreting multi-punch data, where each punch
conveys an item of information.

Note: BITSON returns different values, depending on your operating system.

Available on: All platforms.

How to Determine If Bits Are On or Off
Bl TSON(bi t nunber, infield, outfield)
where:

bi t nunber
Integer
I's the number of the bit to be evaluated, counting from the left-most bit in the
character string (counting from 1).
infield
Alphanumeric

Isthe character string, enclosed in single quotation marks, or the field that contains
the character string. The character string isin multiple 8-bit blocks.

Developing Applications 3-49

Using Functions and Subroutines

outfield
Integer
Is the name of the field that contains the value of the bit: 1 or 0. This argument can
also be the format of the output value, enclosed in single quotation marks.

Example Report Request Evaluating the Twenty-Fourth Bit of LAST_NAME

This reguest evaluates the twenty-fourth bit of the names stored in the LAST_NAME
field.

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

BIT 24/11 = BI TSON(24, LAST_NAME, BIT_24);
VWHERE DEPARTMENT EQ 'M S' ;

END

On the OS/390 platform, the request produces the following outpuit:
PAGE 1

GREENSPAN
CRCSS

BITVAL: Evaluating Bit Strings as Binary Integers

The BITVAL subroutine evaluates strings of bits within character strings. The bit strings
can be any group of bits within the character string and can cross byte and word
boundaries. The subroutine evaluates the bit strings as binary integers and returns the
corresponding values.

Note: BITVAL returns different values, depending on your operating system.

Available on: All platforms.

3-50 Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Evaluate Bit Strings
BI TVAL(infield, startbit, nunmber, outfield)
where:
infield
Alphanumeric
Isthe character string or field that contains the bit string.

startbit
Integer
Is the number of the first bit in the bit string, counting from the left-most bit in the

character string. If this argument is less than or equal to O, the subroutine returns a
value of zero (0).

nunber
Integer
Is the number of bitsin the bit string. If this argument is less than or equal to 0, the
subroutine returns a value of zero (0).
outfield
Integer

Isthe name of the field that contains the integer equivalent. This argument can also
be the format of the output value, enclosed in single quotation marks.

Report Request Evaluating Bits 12 Through 20 of LAST_NAME

This report request evaluates bits 12 through 20 of the last names stored in the field
LAST_NAME:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

STRING_VAL/ 15 = BITVAL(LAST_NAME, 12, 9, 'I5");
WHERE DEPARTMENT EQ 'M S';

END

On the OS/390 platform, the resulting output is:

PACGE 1

LAST_NAME STRI NG_VAL
SM TH 332
JONES 365
MCCOY 60
BLACKWOCD 316
GREENSPAN 412
CROSS 413

Developing Applications 3-51

Using Functions and Subroutines

BYTVAL: Translating a Character to Its ASCII or EBCDIC Code

Syntax

3-52

The BYTVAL subroutine translates characters to the ASCI1 or EBCDIC decimal values
that represent them.

Available on: All platforms.
Related functions and subroutines:
HEXBYT

How to Translate a Character
BYTVAL(character, outfield)
where:

character
Alphanumeric

Isthe input character. If you supply more than one character in this argument, the
subroutine evaluates the first character. Y ou can specify afield or amper variable that
contains the character, or specify the character itself.

outfield
Integer

I's the name of the field to which the corresponding decimal valuell an integer
between 0 and 2550 is returned. This argument can also be the format of the output
value, enclosed in single quotation marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Dialogue Manager Procedure Returning EBCDIC Value for
Prompted Character

This Dialogue Manager request prompts for a character, then returns the corresponding
number:

- PROWT &CHAR. ENTER THE CHARACTER TO BE DECCDED.
-SET &CODE = BYTVAL (&CHAR, '13');

-TYPE

- TYPE THE EQUI VALENT VALUE | S &CODE

Suppose you want to know the equivalent value of the exclamation point (!). A sample
execution is:

ENTER THE CHARACTER TO BE DECCDED
!

THE EQUI VALENT VALUE | S 90
>

The request processes as.

1. When you execute the request, it prompts:
ENTER THE CHARACTER TO BE DECODED

2. You enter an exclamation point: !.
3. Therequest responds:
THE EQUI VALENT VALUE IS 90

CHGDAT: Changing Date Formats

The CHGDAT subroutine rearranges the year, month, and day portions of dates and
converts dates between long and short date formats. Long formats contain the year,
month, and day; short formats contain one or two of these elements, such as year and
month or just day. A format can be longer if four digits are used for the year (for example,
1987), or shorter if only the last two digits are used (for example, 87).

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.
Related functions and subroutines:
» DA subroutines

« DATECVT

e DT subroutines

Developing Applications 3-53

Using Functions and Subroutines

Syntax

3-54

How to Change Date Formats
CHCDAT(' ol df ormat', 'newformat', indate, outfield)
where:

"ol df ormat’
A5

Isthe format of the input date.

"newf ormat’
A5

Is the format of the converted date.

i ndat e
Alphanumeric
Istheinput date. If the date isin numeric format, change it to alphanumeric format
using the EDIT function. If the input date is invalid, the subroutine returns spaces.
outfield
Alphanumeric or A17

Is the name of the field to which the converted date is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

Tip:
Since CHGDAT returns the date in alphanumeric format with 17 characters, you can use

the EDIT function to truncate this field to a shorter field or to convert the date to numeric
format.

The date formats specified by the arguments ol dformat and newformat contain the
following charactersin any combination:

D Days in the month (01 through 31).
M Monthsin the year (01 through 12).
Y[V] Year. OneY indicates atwo-digit date (such as 94); two Y’sindicate

afour-digit date (such as 1994).

If you want to spell out the month rather than use a number for the month, you can append
one of the following to the format of the new date:

T Displays the month as a three-letter English abbreviation.
X Displays the full English name of month.

Any other character in the format isignored.

Information Builders

Alphabetical List of Functions and Subroutines

Example

If you are converting a date from short to long format (for example, from year-month to
year-month-day), the subroutine supplies the portion of the date missing in the short
format, as shown in the following table:

Portion of Date Missing Portion Supplied by the Subroutine
Day (that is, from YM to YMD) Last day of the month.

Month (that is, from Y to YM) The month 12 (December).

Year (that is, from MD to YMD) The year 99.

Converting year from short to long form If DATEFNS=0ON, the century will be
(that is, from YMD to YYMD) determined by the 100-year window
defined by DEFCENT and Y RTHRESH.
See Chapter 7, Working With
Cross-Century Dates for details on
DEFCENT and YRTHRESH.

If DATEFNS=0OFF, the year 19xx, where
xx isthe last two digitsin the year.

Report Request Converting Numeric Date to Full Name

The following request displays the names and hire dates of employees, both in
year-month-day format and in month-day-year format. The second format displays the fulll
name of the month and the full year.

TABLE FI LE EMPLOYEE

PRI'NT HI RE_DATE AND COVPUTE

ALPHA _HI RE/ A17 = EDI T(H RE_DATE); NCPRI NT AND COWVPUTE

H RE_MDY/ A17 = CHGDAT(' YMD', 'MDYYX , ALPHA H RE, 'Al7');
BY LAST_NAVME BY Fl RST_NAVE

WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The request produces the following output:

PAGE 1
LAST_NANE FIRST_NAME H RE_DATE HI RE_MDY

BANNI NG JOHN 82/08/01 AUGUST 01 1982

I RVI NG JOAN 82/01/04 JANUARY 04 1982
MCKNI GHT ROGER 82/02/02 FEBRUARY 02 1982
ROVANS ANTHONY 82/07/01 JULY 01 1982

SM TH Rl CHARD 82/01/04 JANUARY 04 1982
STEVENS ALFRED 80/06/02 JUNE 02 1980

Developing Applications 3-55

Using Functions and Subroutines

CHKFMT: Checking String Format

Syntax

3-56

The CHKFMT subroutine checks character strings for incorrect character types. It
compares each string to a second string called a“mask,” comparing each character in the
input string to the corresponding character in the mask. If all charactersin the string
match the characters or character types of those in the mask, CHKFMT returns the value
0. Otherwise, CHKFMT returns a value equal to the position of the first character in the
string not matching the mask.

Available on: All platforms.

How to Check String Format
CHKFMT(nunthar, infield, 'mask', outfield)
where:

nunchar
Integer
I's the number of characters you want to compare against the mask.
infield
Alphanumeric
Is the character string you are inspecting (enclosed in single quotation marks) or the
field containing the string.
" mask'
Alphanumeric

I's the mask as described with the character symbols (enclosed in single quotation
marks).

outfield
Integer

Is the name of the temporary field to which the result is returned, or the format of the
output value, enclosed in single quotation marks.

Some charactersin the mask are generic: they represent character types. If a character in
the string is compared to one of these characters and is the same type, it matches. These
generic characters are:

A Represents any of the letters A-Z (uppercase or lowercase).
9 Represents any of the digits 0-9.

X Represents any of the letters A-Z or digits 0-9.

$ Represents any character.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Any other character in the mask represents only that character. For example, if the third
character in the mask isthe letter B, the third character in the string must be the letter B to
match.

If the mask is shorter than the character string, the subroutine checks only the portion of
the character string corresponding to the mask. For example, if you are using a
four-character mask to test a nine-character string, only the first four charactersin the
string are checked; the rest are returned as a nomatch with CHKFMT giving the position
asaresult.

Report Request Checking the Format of EMP_ID

The following request checks the format of EMP_ID against a mask for nine numeric
characters, beginning with the numerals 11.

TABLE FI LE EMPLOYEE

PRI NT EMP_I D AND LAST_NAVE AND

COWUTE CHK IDY 13 = CHKFMI(9, EMP_ID, '119999999', CHK ID);
WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The request produces the following output:
PAGE 1

071382660 STEVENS 1
119265415 SM TH 0
119329144 BANNI NG 0
123764317 | RVI NG 2
126724188 ROVANS 2
451123478 MCKNI GHT 1

Developing Applications 3-57

Using Functions and Subroutines

Example MODIFY Request Checking the Format of EMP_ID

The following MODIFY procedure adds records of new employees to the EMPLOY EE
data source. Each transaction begins as an employee ID that is alphanumeric with the first
five characters as digits. The procedure rejects records with other charactersin the
employee ID. The procedureis:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D LAST_NANME FI RST_NAVE DEPARTNMENT
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH COVPUTE
BAD CHAR/ 13 = CHKFMT (5, EMP_ID, '99999', BAD_CHAR):
ON NOVATCH VALI DATE
ID_TEST = | F BAD CHAR EQ 0 THEN 1 ELSE O0;
ON | NVALI D TYPE
"BAD EMPLOYEE I D: <EMP_| D'
"I NVALI D CHARACTER | N POSI TI ON <BAD_CHAR'
ON NOVATCH | NCLUDE
LOG | N\VALI D MBG OFF
DATA

A sample execution is:

>
EMPLOYEEFOCUS A ON 12/05/96 AT 15.42.03
DATA FOR TRANSACTI ON 1

EMP_I D =
111w2
LAST_NAMVE
j ohnson
FI RST_NAME
greg
DEPARTMENT
production
BAD EMPLOYEE I D: 111w
I NVALI D CHARACTER IN PCSITION 4
DATA FOR TRANSACTI ON 2

EMP_I D =

end

TRANSACTI ONS: TOTAL = 1 ACCEPTED= 0 REJECTED= 1
SEGVENTS: I NPUT = 0 UPDATED = 0 DELETED = 0

>

3-58 Information Builders

Alphabetical List of Functions and Subroutines

The procedure processes as:

1. The procedure prompts you for an employee ID, last name, first name, and
department assignment. Y ou enter the following data:

EMP_I D 111w2
LAST_NAME: j ohnson

FI RST_NAME: greg
DEPARTMENT: production

2. The procedure searches the data source for the ID 111W?2. If it does not find thisID,
it continues processing the transaction.

3. The CHKFMT subroutine checks the ID against the mask 99999, which represents
five digits.

4. Thefourth character inthe ID, the letter “W”, is not adigit. The subroutine returns
thevalue 4 to the BAD_CHAR field.

5. TheVALIDATE statement teststhe BAD_CHAR field. Since BAD_CHAR is not
equal to 0, the procedure rej ects the transaction and displays a message indicating the
position of theinvalid character in the ID.

CHKPCK: Validating Packed Fields

The CHKPCK subroutine validates packed fields (if they are available on your platform),
checking that their values are in packed format. The subroutine prevents data exceptions
that occur when requests read packed fields from files containing values that are not valid
packed numbers.

Available on: All platforms.

Developing Applications 3-59

Using Functions and Subroutines

Syntax

3-60

How to Validate Packed Fields
CHKPCK(inlength, infield, error, outfield)
where:
inlength

Numeric

Isthe field length to be validated, from 1 to 16 bytes.
infield

Alphanumeric

Istheinput field to be validated. The field is described as alphanumeric, not packed.
error

Numeric

Isthe error code that the subroutine returnsif avalue is not packed. The error code is
first truncated to an integer, then converted to packed. (The error code may appear on
areport with a decimal point because of the format of the output field.) Choose an
error code outside the range of data.

outfield

Packed

Isthe name of the field that contains the input value if the value is packed or the error
code. Thisargument can also be the format of the output value, enclosed in single
guotation marks.

To use the CHKPCK subroutine, use these steps:

1. Make surethat the Master File (FORMAT, USAGE, and ACTUAL attributes), or the
MODIFY FIXFORM statement describing the file, defines the field as al phanumeric,
not packed. This does not change the field data, which remains packed. It enablesthe
request to read the data without causing data exceptions.

2. Cdl the CHKPCK subroutine to examine the field. The subroutine returns its output
to afield defined as packed. If the value it examinesisavalid packed number, the
subroutine returns the value; otherwise, it returns an error code.

Information Builders

Alphabetical List of Functions and Subroutines

Example Validating Packed Data

In order to reproduce this example, you need to prepare a data source with invalid packed
data. Issue this request:

DEFI NE FI LE EMPLOYEE
PACK_SAL/ A8 = | F EMP_I D CONTAI NS ' 123"

THEN ' AAA" ELSE PCKQUT(CURR_SAL, 8, 'A8');
END

TABLE FI LE EMPLOYEE

PRI NT DEPARTMENT PACK_SAL BY EMP_I D
ON TABLE SAVE AS TESTPACK

END

The request creates the TESTPACK file that is used in this example. Thefile contains
employee IDs, department assignments, and salaries. The salary field named PACK_SAL
is defined as al phanumeric but contains packed data. The invalid packed datais a string of
three letters (AAA).

>
NUMBER OF RECORDS | N TABLE= 12 LINES= 12

{ EBCDI C| ALPHANUMERI C} RECORD NAMED TESTPACK

FI ELDNAME ALl AS FORVAT LENGTH
EMP_I D El D A9 9
DEPARTMENT DPT Al10 10
PACK_SAL A8 8
TOTAL 27

[DCB USED W TH FI LE TESTPACK | S DCB=(RECFM=FB, LRECL=00027, BLKSI ZE=00540)]
>

Next, you must create a Master File for the TESTPACK file. If the description defines the
salary field as packed, the bad values will cause data exceptions when arequest reads the
file. Instead, define the field as alphanumeric both in the USAGE and ACTUAL
attributes:

FI LE TESTPACK, SUFFI X = FI X

FIELD = EMP_ID ,ALIAS = EID, FORVAT = A9 ,ACTUAL = A9 , $
FI ELD = DEPARTMENT, ALI AS = DPT, FORVAT = A10, ACTUAL = A10, $
FIELD = PACK_SAL ,ALIAS = PS , FORVAT = A8 ,ACTUAL = A8 , $

Developing Applications 3-61

Using Functions and Subroutines

After you create the Master File, prepare the request to produce the report. In the
DEFINE command, the CHKPCK subroutine validates the salaries and moves them from
the alphanumeric field, PACK_SAL, to the packed field, GOOD_PACK. The
GOOD_PACK field contains either employees salaries or the error code -999. The
request is:

DEFI NE FI LE TESTPACK

GOOD_PACK/ PBCM = CHKPCK(8, PACK SAL, -999, GOCD PACK);
END

TABLE FI LE TESTPACK
PRI NT DEPARTMENT GOOD_PACK BY EMP_I D
END

The request produces the following output:

PAGE 1

EMP_I D DEPARTNMENT GO0D_PACK
071382660 PRODUCTI ON $11, 000
112847612 M S $13, 200
117593129 M S $18, 480
119265415 PRODUCTI ON $9, 500
119329144 PRODUCTI ON $29, 700
123764317 PRODUCTI ON -$999
126724188 PRODUCTI ON $21, 120
219984371 M S $18, 480
326179357 M S $21, 780
451123478 PRCODUCTI ON -$999
543729165 M S $9, 000
818692173 M S $27, 062

CTRAN: Translating One Character to Another

3-62

The CTRAN subroutine translates one character to another. This subroutine is especially
useful for changing replacement characters to unavailable characters, or to characters that
are difficult to input or unavailable on your keyboard.

Note: This subroutine is especially useful for inputting characters that are difficult to
enter in PROMPT, such as“,” and “ ' “. It eliminates the need to enclose entriesin single
guotation marks. To use this subroutine, you need to know the decimal equivalent of the
charactersin internal machine representation. Printable EBCDIC or ASCII characters and
their decimal equivalents are listed in character charts.

Available on: All platforms.
Related subroutines:
HEXBYT

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Translate One Character to Another
CTRAN(i nl en, infield, decfrm decto, output)
where:

inlen
Integer

Isthe length in characters of the input string.
infield

Alphanumeric

Isthe input string.

decfrm
Integer
Is the decimal value of the character to be trand ated.
decto
Integer
Isthe decimal ASCII or EBCDIC value of the character to be used as a substitute for
decfrm.
out put
Alphanumeric

Isthe name of the field that contains the resulting output string or the format of the
output value enclosed in single quotation marks.

Report Request Converting Spaces to Underscores

The following request converts blank spacesin afield containing addresses to
underscores:
TABLE FI LE EMPLOYEE

PRI NT ADDRESS_LN3 AND COVPUTE
ALT_ADDR/ A20 = CTRAN(20, ADDRESS LN3, 32, 95, ALT_ADDR):

BY EMP_ID
WHERE TYPE EQ ' HSM
END

Developing Applications 3-63

Using Functions and Subroutines

The request produces the following output:
PAGE 1

117593129 RUTHERFORD NJ 07073 RUTHERFORD_NJ_07073_

119265415 NEW YORK NY 10039 NEW YORK_NY_10039__
119329144 FREEPORT NY 11520 FREEPORT_NY_11520__
123764317 NEW YORK NY 10001 NEW YORK_NY_10001__
126724188 FREEPORT NY 11520 FREEPORT_NY_11520__
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068__
543729165 JERSEY CITY NJ 07300 JERSEY_CI TY_NJ_07300
818692173 FLUSH NG NY 11354 FLUSHI NG_NY_11354__
Example MODIFY Request Inserting Accented Letter E’s

This MODIFY request enables you to enter the names of new employees containing the
accented letter E, asin the name Adée Moliére, for example. The equivalent EBCDIC
code for an asterisk is 92, for an E, 159.

Note: If you are using the Hot Screen facility, disable it with SET SCREEN=OFF in
order to display the accented letter E.

Therequest is:

MODI FY FI LE EMPLOYEE
CRTFORM
"xxxxx NEW EMPLOYEE ENTRY SCREEN ****x"

"ENTER EMPLOYEE' S I D. <EMP_I D"

"ENTER EMPLOYEE' S FI RST AND LAST NAME"
"SUBSTI TUTE *' S FOR ALL ACCENTED E CHARACTERS"

"FI RST_NAME: <FI RST_NAME LAST_NAME: <LAST_NAME"
"ENTER THE DEPARTMENT ASSI GNMVENT: <DEPARTMENT"
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH COVPUTE
FI RST_NAME/ A10 = CTRAN (10, FIRST_NAME, 92, 159, 'Al0');
LAST_NAME/ A15 = CTRAN (15, LAST_NAME, 92, 159, 'Al5');
ON NOVATCH TYPE "FI RST_NAME: <FI RST_NAME LAST_NAME: <LAST_NAME"
ON NOVATCH | NCLUDE
DATA
END

3-64 Information Builders

Alphabetical List of Functions and Subroutines

A sample execution is as follows:

x*x*x NEW EMPLOYEE ENTRY SCREEN **
ENTER EMPLOYEE' S | D. 999888777

ENTER EMPLOYEE' S FI RST AND LAST NAME
SUBSTI TUTE *' S FOR ALL ACCENTED E CHARACTERS

FI RST_NAME: ADFLE LAST_NAME: MOLI *RE

ENTER THE DEPARTMENT ASSI GNVENT: SALES

The request processes as:

1. The CRTFORM screen prompts you for an employee ID, last name, first name, and
department assignment. It requests that you substitute an asterisk (*) whenever the
accented letter E appearsin a name.

2. You enter the following data:

EMPLOYEE | D 999888777
FI RST_NAME: AD*LE
LAST_NAME: MCLI * RE
DEPARTMENT: SALES

3. The procedure searches the data source for the employee ID. If it does not find it, it
continues processing the request.

4. The CTRAN subroutine converts the asterisks into E'sin both the first and last
names (ADELE MOLIERE).

x*x*x NEW EMPLOYEE ENTRY SCREEN **
ENTER EMPLOYEE' S | D

ENTER EMPLOYEE' S FI RST AND LAST NAME
SUBSTI TUTE *' S FOR ALL ACCENTED E CHARACTERS

FI RST_NAME: LAST_NAME:

ENTER THE DEPARTMENT ASSI GNVENT:

FI RST_NAMVE: ADELE LAST NAMVE: MOLI ERE

Developing Applications 3-65

Using Functions and Subroutines

Example

3-66

5. The procedure stores the data in the data source.

Note: If you are using the Hot Screen facility, some unusual characters cannot be
displayed. If Hot Screen does not support the character you chose, enter the FOCUS
command

SET SCREEN = OFF
RETYPE

and redisplay the report that will appear as regular terminal output. If your terminal can
display the character, the character will appear. The display of specia characters depends
upon your software and hardware; not all specia characters may display.

MODIFY Request Inserting Commas

ThisMODIFY request adds records of new employees to the EMPLOY EE data source.
The PROMPT statement prompts you for data one field at atime. The CTRAN
subroutine enables you to enter commas in names without having to enclose the namesin
single quotation marks. Instead of typing the comma, you type a semicolon, which is
converted by the CTRAN subroutine into a comma. The equivalent EBCDIC code for a
semicolon is 94; for acomma, 107.

Therequestis:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D LAST_NAME FI RST_NAME DEPARTMENT
MATCH EMP_I D
ON MATCH REJECT
ON NOVATCH COVPUTE
LAST_NAME/ A15 = CTRAN (15, LAST_NAME, 94, 107, 'Al5');
ON NOVATCH | NCLUDE
DATA

Information Builders

Alphabetical List of Functions and Subroutines

A sample execution is as follows:

>
EMPLOYEEFOCUS A ON 04/19/96 AT 16.07.29
DATA FOR TRANSACTI ON 1

EMP_I D
224466880
LAST_NANE
BRADLEY; JR
FI RST_NAMVE
JOHN
DEPARTMENT
MS
DATA FOR TRANSACTION 2

EMP_I D =
end

TRANSACTI ONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGVENTS: I NPUT = 1 UPDATED = 0 DELETED = 0

>
The request processes as.

1. Therequest prompts you for an employee ID, last name, first name, and department
assignment. Y ou enter the following data:

EMP_I D 224466880
LAST_NAME: BRADLEY; JR
FI RST_NAME: JOHN
DEPARTMENT: M S

2. Therequest searches the data source for the ID 224466880. If it does not find the ID,
it continues processing the transaction.

3. The CTRAN subroutine converts the semicolon in “BRADLEY; JR.” to acomma.
Thelast nameis now “BRADLEY, JR.”

4. Therequest adds the transaction to the data source.

Developing Applications 3-67

Using Functions and Subroutines

This regquest displays the semicolon converted as a comma:

TABLE FI LE EMPLOYEE

PRI NT EMP_I D LAST_NAME Fl RST_NAME DEPARTMENT
IF EMP_ID I S 224466880

END

NUMBER OF RECORDS | N TABLE= 1 LINES= 1

PAUSE. . PLEASE | SSUE CARRI AGE RETURN WHEN READY

PAGE 1
EMP_I D LAST_NAME FI RST_NAME DEPARTMENT
224466880 BRADLEY, JR JOHN M S

CTRFLD: Centering a Character String

The CTRFLD subroutine centers character strings within fields. The number of leading
spacesis egual to or one less than the number of trailing spaces.

The CTRFLD subroutine is useful for centering the contents of a field and its report
column or a heading that consists only of an embedded field. The report phrase
HEADING CENTER centers each field value including trailing spaces. To center the
field value without the trailing spaces, first center the value within the field using the
CTRFLD subroutine.

Available on: All platforms.
Related functions and subroutines:
e LJUST

« RJUST

Note: Use of CTRFLD in astyled report (StyleSheets feature) generally negates the effect
of this feature unlessthe itemis also styled as a centered element.

3-68 Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Center a Character String
CTRFLD(infield, inlength, outfield)
where:
infield
Alphanumeric
Istheinput field or a string enclosed in single quotation marks.

inlength
Integer
Isthe length of the input and output fields. This argument must be greater than 0. (A
length less than 0 can cause unpredictable results.)

outfield
Alphanumeric

Is the name of the field to which the centered output is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

Report Request Centering LAST_NAME
The following request prints last names left-justified and centered.

Note: If you are running this request on a platform where the default font is proportional
(for example WebFOCUS), either use a non-proportional font, or issue SET
STYLE=OFF before running the request.

SET STYLE=OFF

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

CENTER NAME/ A15 = CTRFLD(LAST_NAME, 15, 'Al5');
VWHERE DEPARTMENT EQ ' M S'

END

The request produces the following output:

PAGE 1
LAST_NANE CENTER_NAVE
SM TH SM TH
JONES JONES
MCCOY MCCOY
BLACKWOCD BLACKWOCD
GREENSPAN GREENSPAN
CROSS CROSS

Developing Applications 3-69

Using Functions and Subroutines

DA Subroutines: Converting a Date to an Integer

Syntax

3-70

The DA subroutines convert dates to the corresponding number of days elapsed since
December 31, 1899. By converting dates to the number of days, you can add and subtract
dates and cal culate the interval's between them. Y ou can convert the results back to date
format by using the DT subroutines discussed in Report Request Finding the Day of the |

Week|on page 3-71.

There are six DA subroutines; each one accepts dates in a different format.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.
Related functions and subroutines:
e CHGDAT

« DATEDIF

e DT subroutines

How to Convert a Date to an Integer
subroutine(indate, outfield)
where:

subroutine
Is one of the following:

DADMY converts dates in day-month-year format.
DADYM converts dates in day-year-month format.
DAMDY converts dates in month-day-year format.
DAMYD converts dates in month-year-day format.
DAYDM converts dates in year-day-month format.
DAYND converts dates in year-month-day format.

i ndat e
Numeric

Istheinput date or afield that contains the date. The date is truncated to an integer
before conversion. The date format is determined by the subroutine, as explained
above.

To specify the year, enter only the last two digits; the subroutine assumes the century
component. If the date isinvalid, the subroutine returns a 0.

Information Builders

Alphabetical List of Functions and Subroutines

outfield
Integer

I's the name of the field to which the number of days this century is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks.

Example Report Request Calculating the Difference Between Two Dates

The following example shows the number of days that elapse between the time employees
get raises and the time they were hired:

TABLE FI LE EMPLOYEE
PRI NT DAT_I NC AS ' RAI SE DATE AND COMPUTE

DAYS_H RED/ | 8 = DAYMD(DAT_INC, '18') - DAYMX H RE_DATE, '18'):;
BY LAST_NAME BY FI RST_NANE

| F DAYS_H RED NE 0

VHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The example produces the following report:

PACGE 1

LAST_NAME FI RST_NAME RAI SE DATE DAYS_H RED
I RVI NG JOAN 82/ 05/ 14 130
MCKNI GHT ROGER 82/ 05/ 14 101
SM TH Rl CHARD 82/ 05/ 14 130
STEVENS ALFRED 82/ 01/ 01 578

81/01/01 213

Developing Applications 3-71

Using Functions and Subroutines

DATEADD: Adding or Subtracting Date Units to or From a Date

The DATEADD function adds or subtracts units to or from a date format. A unit can be
any of the following:

e Year.

e Month. If you use the month unit and create invalid dates (such as February 31),
DATEADD corrects them to the last day of the month. This means that adding one
month to January 31 yields February 28 or February 29 (depending on whether itisa
leap year), not February 31.

 Day.

* Weekday. If you use the weekday unit, DATEADD does not count Saturday and
Sunday when adding days. This means that one weekday past a Friday isthe
following Monday. If your input date is a Saturday or Sunday, DATEADD adjusts it
to the following Monday before performing addition or subtraction.

* Busnessday. If you use the business day unit, DATEADD usesthe BUSDAY S
setting and holiday file (determined by the HDAY setting) to determine which days
are working days and disregards the rest. This means that if Monday is not a working
day, then one business day past a Sunday is the following Tuesday.

DATEADD can help you:

e Compute payroll dates.

e Track and ship orders.

* Ensure correct credit card transactions.

Note: You can perform non day-based date calculations (for example YM, Y Q) directly
(+, -) without using these functions.

Available on: All platforms.

3-72 Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Add or Subtract Date Units to or From a Date
DATEADD(YYMDdat e, 'unit', #units)
where:

YYMDdat e
Date

Is any day-based new date, for example, YYMD, MDY, or JUL.
uni t

Alphanumeric

Can be one of the following:

Y indicates year units.

Mindicates month units.

D indicates day units.

WD indicates weekday units. This means that DATEADD disregards Saturday and
Sunday when performing calculations.

BD indicates business day units. This means that DATEADD usesthe BUSDAY S
setting and the holidays file (determined from the HDAY setting) to determine which
days are working days. DATEADD disregards non-working days when performing
calculations.

#units
Integer

I's the number of date units you wish to add or subtract to or from the day-based new
date. If this number is not awhole unit, it is rounded down to the next largest integer.

Rounding With DATEADD

The number of units passed to DATEADD is aways awhole unit. For example,
DATEADD(DATE, ' M, 1.999)

adds one month because the number of unitsisless than two.

Developing Applications 3-73

Using Functions and Subroutines

Example

Example

3-74

Using Weekday Units

If you use weekday units and use a Saturday or Sunday as input, DATEADD adjusts the
input to Monday. Thus,

DATEADD(Sat ur day, 'WD', 1)
and
DATEADD(Sunday, 'WD', 1)

both yield Tuesday as a result because Saturday and Sunday are not business days, so
DATEADD begins with Monday and adds one, yielding Tuesday.

Adding Three Business Days to a Date

In this example, DATEADD takes NEW_DATE, in YYMD format, and adds three
weekdaystoit:

DATEADD(NEW DATE, ' WD, 3)

The following table shows sample values for NEW_DATE and
DATEADD(NEW_DATE, 'WD', 3):

NEW DATE DATEADD(NEW DATE, 'WD, 3)

1982/ 04/ 01 1982/ 04/ 06
1981/11/02 1981/11/05
1982/ 04/ 01 1982/ 04/ 06
1982/ 05/ 01 1982/ 05/ 06
1981/07/01 1981/07/06
1981/07/01 1981/07/06

Notice that in some cases, DATEADD added more than three days, because otherwise the
resulting date would have been on a weekend.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Example

Report Request Adding Three Business Days to a Date

The following request adds three weekdays to HIRE_DATE:

TABLE FI LE EMPLOYEE
PRI NT FI RST_NAME AND H RE_DATE AND COMPUTE

NEW DATE/ YYND=DATECVT(H RE_DATE, 'I16YMD, ' YYMD);

H RE_DATE_PLUS_THREE/ YYMD=DATEADD(NEW DATE, ‘WD, 3);
BY LAST_NAME

WWHERE DEPARTMENT EQ 'M S';

END

This reguest produces the following output:

PAGE 1

LAST_NANE FIRST NAME H RE_DATE NEWDATE H RE_DATE PLUS_ THREE
BLACKWOCD ROSEMARI E 82/04/01 1982/ 04/01 1982/ 04/ 06

CROSS BARBARA 81/11/02 1981/11/02 1981/11/05

GREENSPAN MARY 82/04/01 1982/ 04/01 1982/ 04/ 06

JONES DI ANE 82/05/01 1982/ 05/01 1982/ 05/ 06

MCCOY JOHN 81/07/01 1981/07/01 1981/ 07/06

SM TH MARY 81/07/01 1981/07/01 1981/ 07/06

Notice that in some cases, DATEADD added more than three days, because otherwise
HIRE_DATE_PLUS THREE would have been on a weekend.

Report Request That Determines Whether a Date Is a Business
Day

The following example uses DATEADD to determine whether adate is a business day.
To run this example you need a DATE Master File and a DATE data source.

Assume the DATE Master Fileis asfollows:

FI LENAMVE = DATE, SUFFI X=FI X, $
SEGNAVE=SEGL, SEGTYPE = S0, $
FIELD = D1_YYMD, ALIAS = D1, FORVAT=YYMD, $

The DATE data source should have the following records:

19980605
19980606

In CMS you must filedef the DATE data source. For example:

FI LEDEF DATE DI SK DATE DATA A

In MV, you must allocate the DATE data source to ddname DATE. For example:
DYNAM ALLOC DD DATE DA USERL. DATE. DATA SHR REU

Developing Applications 3-75

Using Functions and Subroutines

The request follows:
SET EMPTYREPORT=ON

DEFI NE FI LE DATE
X/ YYMD=DATEADD(D1_YYMD, 'BD, 0);
END

TABLE FI LE DATE

HEADI NG

" USE DATEADD TO DETERM NE WHETHER A SMARTDATE FIELD IS A BUSI NESS "
DAY. THE DATA SOURCE HAS THE DATE ' 1998/ 06/ 05" WHI CH IS A FRI DAY

" STORED IN FIELD D1_YYMD. AN IF TEST IS USED TO DETERM NE |F THE "
DATE CORRESPONDS TO A BUSI NESS DAY. "
PRI'NT D1_YYMD X
IF X EQ ' 19980605’

END

TABLE FI LE DATE
HEADI NG
IT WLL YIELD O RECORDS 0 LINES | F THE RESULTI NG DATE | S NOT
" A BUSINESS DAY. THE DATA SOURCE ALSO HAS ' 1998/ 06/05,"' A SATURDAY. "
PRI'NT D1_YYMD X
I'F X EQ ' 19980606’
END

The preceding request yields the following:
PAGE 1

USE DATEADD TO DETERM NE WHETHER A SMARTDATE FIELD IS A BUSI NESS
DAY. THE DATA SOURCE HAS THE DATE ' 1998/ 06/05 WH CH IS A FRI DAY
STORED IN FIELD DL_YYMD. AN |F TEST |'S USED TO DETERM NE | F THE
DATE CORRESPONDS TO A BUSI NESS DAY.

DL_YYMD X

PAGE 1
IT WLL YIELD O RECORDS O LINES | F THE RESULTI NG DATE | S NOT

A BUSI NESS DAY. THE DATA SOURCE ALSO HAS ' 1998/ 06/ 05,' A SATURDAY.
DL_YYMD X

3-76 Information Builders

Alphabetical List of Functions and Subroutines

DATECVT: Converting Date Formats

DATECVT converts date formats within applications without requiring intermediate
calculations.

DATECVT can help you:

» Compute payroll dates.

e Track and ship orders.

» Ensure correct credit card transactions.
Available on: All platforms.

Related functions and subroutines:

* CHGDAT subroutine

» DA subroutines

e DT subroutines

Syntax How to Convert a Date Format
DATECVT(i ndate, 'infnt', 'outfmt')
where:

i ndat e
Date

I's the date whose format you wish to change. If you supply an invalid old date,
DATECVT returns a zero value. Indates with old formats obey any DEFCENT and
YRTHRESH valuesimplied for that field when performing the conversion.

infnt and out f nt
Alphanumeric

Can be one of the following:

e Any new date format (for example, YYMD, YQ, M, DMY, JUL) that matches
the format of indate. It can also be in the format of the output value enclosed
within single quotes.

* Any old date format (such asI6YMD or ASMDYY).

* Non-date formats (such as 18 or A6). Non-date formats in the infmt parameter
function as offsets from the base date of aYYMD field (12/31/1900).

The format of the field on the left side of the equal sign must match the outfmt value.

Invalid formats cause DATECVT to return a zero value or blank.

Developing Applications 3-77

Using Functions and Subroutines

Example

Converting YYMD to DMY

For example,
fiel d/ DW = DATECVT(indate, 'YYMD, 'DWY');

If the value of indate is 19991231 then field is set to the offset, which is 311299. Indates
with old formats obey any DEFCENT and YRTHRESH valuesimplied for that field
when performing the conversion.

DATEDIF: Finding the Difference Between Two Dates

3-78

DATEDIF returns the difference between two dates in the form of awhole number,
expressed in terms of units. A unit can be any of the following:

e Year.
e Month.
 Day.

* Weekday. If you use the weekday unit, DATEDIF does not count Saturday and
Sunday when adding days. This means that the difference between Friday, December
21, 1999 and Monday, January 3, 2000, is one day.

e Businessday. If you use the business day unit, DATEADD usesthe BUSDAY S
parameter and holiday file (determined by the HDAY parameter) to determine which
days are working days and disregards the rest. This means that if Friday, December
31, 1999 isa holiday and Saturday and Sunday are not business days, the difference
between Thursday, December 30, 1999 and Monday, January 3, 2000, is one day.
See Date Function and Subroutine Settingsjon page 3-14 for more information.

DATEDIF aways returns awhole number. If the difference between two datesis not a
whole number, say the number of years between March 2, 1996 and March 1, 1997,
DATEDIF rounds down to the next largest integer. Thus the number of years between
March 2, 1996 and March 1, 1997 is 0.

If you use month units, and one or both of your input dates is the end of the month,
DATEDIF takes thisinto account. This means that the difference between January 31 and
April 30 is three months, not two months.

If the to-date is before the from-date, DATEDIF returns a negative number.
DATEDIF can help you:

e Compute payroll dates.

e Track and ship orders.

* Ensure correct credit card transactions.

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

Note: You can perform non day-based date calculations (for example YM, Y Q) directly
(+, -) without using DATEDIF.

Available on: All platforms.
Related functions and subroutines:
« DMY, MDY, and YMD subroutines

* YM subroutine

How to Return the Difference Between Two Dates
DATEDI F(fronYYNMD, toYYMD, 'unit')
where:

fronYYND
Date

Is the starting date from which to calculate the difference.

t oYYND
Date

I's the ending date from which to calculate the difference.
uni t

Alphanumeric

Can be one of the following:

Y indicates year units.

mindicates month units.

D indicates day units.

WD indicates weekday units. This means that DATEDIF disregards Saturday and
Sunday when performing calculations.

BD indicates business day units. This means that DATEDIF usesthe BUSDAY S
setting and the holidays file (determined from the HDAY setting) to determine which
days are working days. DATEDIF disregards non-working days when performing
calculations.

Rounding With DATEDIF
The following expression
DATEDI F(19960302, 19970301, 'Y')

returns O because the difference between March 2, 1996 and March 1, 1997 isless than a
whole year.

Developing Applications 3-79

Using Functions and Subroutines

Example

Using Month Calculations

Using DATEDIF with month units yields the inverse of DATEADD. If adding one month
to date X creates date Y, then the count of months via DATEDIF between date X and date
Y must be one month. Theruleis:

If the to-date is an end-of-month then the month difference may be rounded up (in
absolute terms) to guarantee the inverserule.

The following expressions

DATEDI F(19990228, 19990128, 'M)
DATEDI F(19990228, 19990129, 'M)
DATEDI F(19990228, 19990130, 'M)
DATEDI F(19990228, 19990131, 'M)
all return aresult of minus one month.

Additional examples:

DATEDI F(March31, May31, 'M) yields2.

DATEDI F(March31, May30, 'M) Yields 1 (because May 30 is not the end of the month).
DATEDI F(March31, April30, 'M) yieldsl.

The same rules apply to year math, the only difference being that February 29th plus one
year is equal to February 28th.

DATEMOV: Moving Dates to a Significant Point

3-80

DATEMOQV enables you to move a date to a significant point on the calendar.
DATEMOV works with a date format only.

DATEMOQV is affected by the BUSDAY S parameter and the holiday file (determined by
the HDAY parameter). See Date Function and Subroutine Settingslon page 3-14 for more
information.

DATEMOQV can help you:

e Compute payroll dates.
e Track and ship orders.
» Ensure correct credit card transactions.

Available on: All platforms.

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

How to Move a Date to a Significant Point
DATEMOV(YYMDdat e, ' nove- point')

where:

YYMDdat e

Date

Is the date you wish to move. May be any new date format aslong asit implies a day
component (for example MDYY, DMY, but not YM or MYY).

nove- poi nt

Alphanumeric
Isthe significant point to which you wish to move. Permissible move-points are:

eomfor end of month.

BomMfor beginning of month.

eoQfor end of quarter.

BoQ for beginning of quarter.

eoy for end of year.

Boy for beginning of year.

Eowfor end of week.

Bowfor beginning of week.

ND for next weekday.

NBD for next business day (affected by BUSDAY S setting and holiday files).

PwD for prior weekday.

PBD for prior business day (affected by BUSDAY S setting and holiday files).

wp- for aweekday or earlier.

BD- f or abusiness day or earlier (affected by BUSDAY S setting and holiday files).
wo+ for aweekday or later.

BD+ for abusiness day or later (affected by BUSDAY S setting and holiday files).

Invalid move-points result in a zero being returned.

Developing Applications 3-81

Using Functions and Subroutines

Example Report Request Using DATEMOV

The following DEFINE statement defines a date called ADATE, which isMay 7, 1998
and calculates significant points for this date:
DEFI NE FI LE CAR

ANUM |5 WTH COUNTRY = ANUMt1;
ADATEX/ YYMD W TH COUNTRY = 19980507,

ADATE/ YMD = ADATEX+ANUM

NWD/ YNDWI = DATEMOV(ADATE, ' NWD') ;
PWDY YMDWI = DATEMOV(ADATE, ' PWD');
WDP/ YNDWI' = DATEMOV(ADATE, 'WD+');
VDM YMDWI = DATEMOV(ADATE, 'WD-');
NBD/ YNDWI' = DATEMOV(ADATE, 'NBD);
PBDY YMDWI = DATEMOV(ADATE, ' PBD);
WBP/ YNDWI' = DATEMOV(ADATE, ' BD+');
VBM YMDWI = DATEMOV(ADATE, 'BD-');
END

The following command sets the business days to Monday, Tuesday, Wednesday, and
Thursday:

SET BUSDAY = _MI'WI__

The following TABLE request

TABLE FI LE CAR

HEADI NG

"Exanpl es of DATEMOV'

"Busi ness days are Mnday, Tuesday, Wednesday, + Thursday "

"START DATE.. | MOVE PONTS. "

PRI NT ADATE/ W AS ' DOW

N W PWD/ W WDP/ WIT AS ' WD+ VWDM W' AS ' WD-'
NBD) W PBDY WI V\BP/ WI' AS ' BD+' WBM WI AS ' BD-'
BY ADATE

END

yields:

Exanpl es of DATEMOV
Busi ness days are Mdnday, Tuesday, Wednesday, + Thursday

START DATE.. | MOVE PONTS. i

ADATE DOW NWD PWO W+ WD- NBD PBD BD+ BD-

98/05/08 FRI MON THU FRI FRI TUE WED MON THU
98/05/09 SAT TUE THU MON FRI TUE WED MON THU
98/05/10 SUN TUE THU MON FRI TUE WED MON THU
98/05/11 MON TUE FRI MON MON TUE THU MON MON
98/05/12 TUE WED MON TUE TUE WED MON TUE TUE

3-82 Information Builders

Alphabetical List of Functions and Subroutines

DECODE: Decoding Values

Syntax

The DECODE function assigns values based on the value of an input field.

Many times the value of afield is a coded value. For example, the field SEX may have
code F for female employees and M for male employees. This allows the value to be
stored more efficiently (in this case, one character instead of six for female, or four for
male), greatly reducing the storage requirement for the file. One method for decoding
(expanding) these valuesisto provide aseries of nested IF ... THEN ... ELSE phrases.
For example,

IF SEX 1S M THEN ' MVALE ELSE ' FEVALE

but this can become very cumbersome and inefficient if there are numerous codes. The
DECODE function facilitates the handling of codes.

There are two ways to use DECODE: you can type your values directly into the DECODE
statement, or you can read your values from a separate file.

Available on: All platforms.

How to Decode Values
DECCDE fi el dname(codel resultl code2 result2...[ELSE default])
where:

fiel dnanme
Alphanumeric or Numeric

Is the name of the input field.

code
Any supported format

Iswhat DECODE is searching for; once it has found the specified value, it will assign
the corresponding result. If the value has embedded blanks or commas, enclose it in
single quotation marks.

resul t
Any supported format

Isthe value to be assigned when the field has the corresponding code. If the value has
embedded blanks or commas, enclose it in single quotation marks.

def aul t
Any supported format

Isthe value to be assigned if the code is not found among the list of codes. If this
default is omitted, DECODE will assign a blank or zero for non-matching codes.

Developing Applications 3-83

Using Functions and Subroutines

Syntax

3-84

Note:

* You can use up to 40 lines to define the code and result pairs for any given DECODE
expression. Y ou can use either commas or blanks to separate the code from the resullt,
or one pair from another.

* When explicitly coded in a procedure, you can use up to 40 lines of DECODE pairs;
39if you also use an EL SE phrase.

» DECODE may give numeric results. Negative numbers must be enclosed in single
guotation marks.

e Elementsthat contain either acomma or a blank must be enclosed in single quotation
marks.

How to Decode Values in a Separate File
DECCDE fi el dnanme(ddname [ELSE default])
where:

fiel dnanme
Alphanumeric or Numeric

Is the name of the input field.
ddnarme

Isalogical name or a shorthand name that points to the physical file name containing
the decoded values.

def aul t
Any supported format
Isthe value to be assigned if the code is not found among the list of codes. If this
default is omitted, DECODE will assign ablank or zero for non-matching codes.
Note:

» Eachrecord in the separate file is expected to contain one pair of elements separated
by a comma or blanks.

» All dataisinterpreted in ASCII format on UNIX and Windows, or in EBCDIC
format on MV S or CMS, and converted to the USAGE formats of the DECODE
pairs.

e Leading and trailing blanks are ignored.

» Theremainder of each record is also ignored and can be used for comments or other
data. This conventionisfollowed in all cases, except when the file nameisHOLD. In
that case thefile is presumed to have been created by the FOCUS HOL D command,

which writes fieldsin their internal format, and the DECODE pairs are interpreted
accordingly. In this case, extraneous data in the record isignored.

Information Builders

Alphabetical List of Functions and Subroutines

Example

« |If eachrecord in the file consists of only one element, this element isinterpreted as
the code, and the result becomes either blanks or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the
screening condition

IF field IS (fil enane)

and as afile of literals for an IF condition specified in a computational expression.
For example:

TAKE = DECODE SELECT (filename ELSE 1);
VALUE = |F TAKE IS O THEN... ELSE...;

TAKE will be 0 for SELECT values found in the literal fileand 1 in all other cases.
The VALUE computation is carried out as if the expression had been:

I F SELECT (filenanme) THEN... ELSE...;

* When using DECODE viaafile, you can have up to 32,767 charactersin thefile.

Report Request Assigning Job Categories Based on
CURR_JOBCODE

The following request uses EDIT to extract the first character of the field
CURR_JOBCODE. It then uses DECODE to create avalue for the field
JOB_CATEGORY.

TABLE FI LE EMPLOYEE
PRI NT CURR_JOBCODE AND COVPUTE
DEPX_CODE/ Al = EDI T(CURR_JOBCODE, ' 9$$') ; NOPRI NT AND COMPUTE
JOB_CATEGORY/ A15 = DECCDE DEPX_CODE(A ' ADM NI STRATI VE
B ' DATA PROCESSING) ;
BY LAST_NAME
WWHERE DEPARTMENT EQ 'M S';
END

The request produces the following output:

PAGE 1

LAST_NAME CURR_JOBCCDE JOB_CATEGORY
BLACKWOOD B04 DATA PROCESSI NG
CROSS Al7 ADM NI STRATI VE
GREENSPAN A07 ADM NI STRATI VE
JONES B0O3 DATA PROCESSI NG
MCCOY B02 DATA PROCESSI NG
SM TH B14 DATA PROCESSI NG

Developing Applications 3-85

Using Functions and Subroutines

Example Report Request Reading DECODE Values From a File

The following request has two parts. The first part creates afile with alist of the
employee IDs for the employees who have taken classes. The second part reads thisfile
and assigns 0 to those empl oyees who have taken classes and 1 to those employees who
have not. (Notice that the HOLD file contains only one column of values; therefore
DECODE assigns the value 0 to an employee when their EMP_ID appearsin the fileand
1 when EMP_ID does not appear in thefile.)

TABLE FI LE EDUCFI LE

PRI NT EMP_I D
ON TABLE HOLD
END

TABLE FI LE EMPLOYEE
PRINT EMP_I D AND LAST_NAME AND FI RST_NAVE AND
COMPUTE NOT_IN LI ST/11 = DECODE EMP_I DY HOLD ELSE 1);
WHERE DEPARTMENT EQ 'M S';

END

This reguest produces the following output:

PAGE 1

EMP_I D LAST_NANE FIRST_NAME NOT_|IN_LIST
112847612 SM TH MARY 0
117593129 JONES DI ANE 0
219984371 MCOOY JOHN 1
326179357 BLACKWOCD ROSEMARI E 0
543729165 GREENSPAN MARY 1
818692173 CROSS BARBARA 0

DMY, MDY, YMD: Calculating the Difference Between Two Dates

The DMY, MDY, and YMD functions cal cul ate the difference between two datesin
integer, alphanumeric, or packed format:

Available on: All platforms.
Related functions and subroutines:
« DATEDIF

e YM

3-86 Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Calculate the Difference Between Two Dates
function(begi n, end)
where:

function
Is one of the following:
D calculates the difference between two dates in day-month-year order.
MDY calculates the difference between two dates in month-day-year order.
YMD cal culates the difference between two dates in year-month-day order.
begin
Numeric

I's the beginning date. Y ou may supply the actual date or the name of afield that
contains the date.

end
Numeric

Isthe end date. Y ou may supply the actual date or the name of afield that contains
the date.

Report Request Calculating Number of Days Between Start
Date and First Pay Raise

The following request cal culates the number of days between employees’ start dates and
their first pay raise:

TABLE FI LE EMPLOYEE

SUM HI RE_DATE FST. DAT_I NC AS ' FI RST PAY, | NCREASE' AND COWPUTE
DI FF/ 14 = YMD(H RE_DATE, FST.DAT_INC) ; AS 'DAYS, BETWEEN

BY LAST_NAVME BY Fl RST_NAVE

WHERE DEPARTMENT EQ 'M S';

END

The request produces the following output:

PAGE 1
FI RST PAY DAYS

LAST_NAME FI RST_NAME HI RE_DATE | NCREASE BETWEEN
BLACKWOCD ROSEMARI E 82/ 04/ 01 82/ 04/ 01 0
CROSS BARBARA 81/ 11/ 02 82/ 04/ 09 158
GREENSPAN MARY 82/ 04/ 01 82/ 06/ 11 71
JONES DI ANE 82/ 05/ 01 82/ 06/ 01 31
MCCOY JOHN 81/07/01 82/01/01 184
SM TH MARY 81/ 07/ 01 82/ 01/ 01 184

Developing Applications 3-87

Using Functions and Subroutines

DOWK and DOWKL: Finding the Day of the Week

Syntax

3-88

The DOWK and DOWKUL subroutines find the day of the week (Sunday through
Saturday) of dates. The DOWK subroutine returns the day as a 3-letter abbreviation; to
display the full name of the day, specify DOWKL instead.

Available on: All platforms.

How to Find the Day of the Week
DOWK(i ndate, outfield)

or

DONKL(i ndat e, outfield)

where:

i ndat e
Numeric

Isthe input date in year-month-day format. If the date is not valid, the subroutine
returns spaces. If the date specifies a 2-digit year and DEFCENT and YRTHRESH
values have not been set, the subroutine assumes the 20th century.

outfield
DOWK: A4

DOWKL: A12

Is the name of the field to which the day of the week is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Finding the Day of the Week

The following request shows on which day of the week employees were hired:

TABLE FI LE EMPLOYEE
PRINT EMP_I D AND HI RE_DATE AND COMPUTE
DATEDY A4 = DOWK(HI RE_DATE, DATED);
WHERE DEPARTMENT EQ ' PRODUCTI ON

END

The request produces the following output:
PAGE 1

071382660 80/06/02 MON
119265415 82/01/04 MN
119329144 82/08/01 SUN
123764317 82/01/04 MN
126724188 82/07/01 THU
451123478 82/02/02 TUE

DT Subroutines: Converting an Integer to a Date

The DT subroutines convert numbers representing the days elapsed since December 31,
1899 to corresponding dates. The DT subroutines are useful when you are performing
arithmetic on dates converted to the number of days (see DA Subroutines; Converting a |
Date to an Integer jon page 3-70). The DT subroutines convert the result back to date
format.

There are six DT subroutines; each one converts the numbers into dates of a different
format.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.
Related functions and subroutines:
e CHGDAT

+ DA subroutines

« DATEDIF

Developing Applications 3-89

Using Functions and Subroutines

Syntax

Example

3-90

How to Convert Integers to Dates
subrouti ne(nunber, outfield)
where:

subroutine
Is one of the following:

DTDMWY converts numbers to day-month-year dates.
DTDYMconverts numbers to day-year-month dates.
DTMDY converts numbers to month-day-year dates.
DTMYD converts numbers to month-year-day dates.
DTYDM converts numbers to year-day-month dates.
DTYMD converts numbers to year-month-day dates.

nunber
Numeric

I's the number of days. The number is truncated to an integer.

outfield
Integer

I's the name of the field to which the corresponding date is returned. The date format
is determined by the subroutine, as explained above. This argument can also be the
format of the output value, enclosed in single quotation marks.

Report Request Converting Integer to Date

The following request takes a date that has been converted to the number of days (34650)
and convertsit back to the corresponding date, in month-day-year format:

TH' S PROCEDURE CONVERTS H RE_DATE, WHICH IS I N | 6YMD FORMNAT,
TO A DATE I N | 8MDYY FORVAT

FIRST I T USES THE DAYMD SUBROUTI NE TO CONVERT H RE_DATE

TO A NUMBER OF DAYS

THEN | T USES THE DTMDY SUBROUTI NE TO CONVERT THI S NUMBER OF
DAYS TO | 8MDYY FORNAT

[N T B T
EE S T

*

DEFI NE FI LE EMPLOYEE

NEWE/ 1 8 W TH EMP_| D=DAYMX HI RE_DATE, NEWF) ;

NEW HI RE_DATE/ | 8MDYY W TH EMP_| D=DTMDY(NEWF, NEW HI RE_DATE) ;
END

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE NEW HI RE_DATE

BY FN BY LN

WHERE DEPARTMENT EQ ' M S'

END

Information Builders

Alphabetical List of Functions and Subroutines

The request produces the following output:

PAGE 1
FI RST_NAME LAST_NAVE H RE_DATE NEW H RE_DATE
BARBARA CROSS 81/ 11/ 02 11/ 02/ 1981
DI ANE JONES 82/ 05/ 01 05/ 01/ 1982
JOHN MCCOY 81/ 07/ 01 07/01/ 1981
MARY GREENSPAN 82/ 04/ 01 04/ 01/ 1982

SM TH 81/ 07/ 01 07/01/ 1981
ROSEMARI E BLACKWOOD 82/ 04/ 01 04/ 01/ 1982

EDIT: Converting the Format of a Field

Syntax

Y ou can use the EDIT function to convert an a phanumeric field that contains numeric
characters to numeric format, or to convert a numeric field to alphanumeric format. This
is useful when you need to manipulate the field using a command or keyword that
requires a particular format.

Note: The EDIT function also extracts characters from or adds charactersto an
alphanumeric string. For more information, see Report Request Converting Numeric Date |

0 Full Namejon page 3-55.

Available on: All platforms.

Related functions and subroutines:
FTOA

How to Convert Field Formats
EDI T(fi el dnane);
where:

fiel dnanme
Alphanumeric or Numeric

Isthe field name, enclosed in parentheses.
When you use EDIT to assign the converted value to afield, the format of the new field
must correspond to the format of the returned value. For example, if you use EDIT to

convert anumeric field to alphanumeric format, and then assign the resulting value to an
alphanumeric field, you must give the new field an al phanumeric format as follows:

DEFI NE ALPHAPRI CE/ A6 = EDI T(PRI CE);

When converting an alphanumeric field to numeric format, a sign or decimal point in the
field is accepted and isreflected in the value stored in the numeric field.

Developing Applications 3-91

Using Functions and Subroutines

Example

3-92

When converting a floating-point or packed-decimal field to alphanumeric format, EDIT
removes the sign, the decimal point, and any number to the right of the decimal point. It
then right-justifies the remaining digits and adds |eading zeros to the specified field
length. Also, converting a number with more than nine significant digits in floating-point
or packed-decimal format may produce an incorrect result.

Report Request That Converts HIRE_DATE to Alphanumeric
Format

The following request uses the CHGDAT subroutine to spell out an employee’s hire date.
However, CHGDAT expectsits input date to be in alphanumeric format, and the
HIRE_DATE field is numeric. Therefore, this report request defines a hidden field,
ALPHA_HIRE, containing the contents of HIRE_DATE converted to alphanumeric
format. Then CHGDAT uses ALPHA_HIRE asinput.

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE AND COVPUTE

ALPHA HI RE/ A17 = EDI T(H RE_DATE); NOPRI NT AND COVPUTE
H RE_MDY/ A17 = CHGDAT(' YMD' , ' MDYYX , ALPHA H RE, ' Al17');
BY LAST_NAVME BY FI RST_NAVE

WHERE DEPARTMENT EQ 'M S

END

The request produces the following output:

PACGE 1

LAST_NAME FI RST_NAME HI RE_DATE H RE_MY
BLACKWOCD ROSEMARI E 82/04/01 APRIL 01 1982
CRCSS BARBARA 81/11/02 NOVEMBER 02 1981
GREENSPAN MARY 82/04/01 APRIL 01 1982
JONES DI ANE 82/05/01 MAY 01 1982
MCCOY JOHN 81/07/01 JULY 01 1981

SM TH MARY 81/07/01 JULY 01 1981

Information Builders

Alphabetical List of Functions and Subroutines

EDIT: Extracting or Adding Characters

Syntax

Y ou can use the EDIT function to extract characters from or add charactersto an
alphanumeric string.

If you want to use EDIT to extract characters from a string, you can also use SUBSTR.
The differences are:

* TheEDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

e The SUBSTR subroutine can vary the position of the substring depending on the
values of other fields.

Note: The EDIT function also converts the format of afield. For more information, see
Report Request Converting Integer to Datelon page 3-90.

Available on: All platforms.
Related functions and subroutines:
SUBSTR

How to Extract or Add Characters
EDI T(fi el dnane, 'nmask');
where:

fiel dname
Alphanumeric or Numeric

Is the name of the source field.

mask
Alphanumeric

Isastring, enclosed in single quotation marks (').

EDIT compares the characters in the mask to the charactersin the source field. When it
encounters a9 in the mask, EDIT copies the corresponding character from the source
field to the new field. When it encounters a $ (dollar sign) in the mask, EDIT ignoresthe
corresponding character in the source field. When it encounters any other character in the
mask, EDIT copies that character to the corresponding position in the new field.

Note: To aobtain the correct results, the length of the mask, excluding any characters other
than 9 and $, must be the length of the source field. In other words, the total number of
9'sand $'s must match the length of the field.

Developing Applications 3-93

Using Functions and Subroutines

Example

3-94

Report Request Extracting First Initial of FIRST_NAME and
Adding Dashes to EMP_ID

The following request shows how you can use masking to extract the first initial from
FIRST_NAME and add dashesto EMP_ID. EMP_ID has the format A9; FIRST_NAME
has the format A10. The request produces two new fields, FIRST _INIT and
EMPIDEDIT, which contain the first initial, and an employee |D with dashes added to
enhance readability, respectively.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

FIRST_I NI T/ Al = EDI T(FI RST_NAME, ' 9$$3$$$$$$$') ;
EMPI DEDI T/ A11 = EDI T(EMP_I D, ' 999-99-9999');
WHERE DEPARTMENT EQ 'M S';

END

The request produces the following output.

PACGE 1

LAST_NAME FIRST_INIT EMPIDED T
SM TH M 112-84-7612
JONES D 117-59-3129
MCCOY J 219-98-4371
BLACKWOCD R 326-17-9357
GREENSPAN M 543-72-9165
CROSS B 818-69-2173

Information Builders

Alphabetical List of Functions and Subroutines

EXP: Raising “e” to the Nth Power

Syntax

Example

The EXP subroutine raisesthe value “€” (approximately 2.72) to any power you specify.
This subroutine is the inverse of the LOG function, which returns an argument’s
logarithm.

The subroutine cal culates the answer by adding terms of an infinite series. If aterm adds
less than .000001 percent to the sum, the subroutine ends the calculation and returns the
result as a double-precision number.

Available on: All platforms.
Related subroutines:
LOG

How to Raise “e” to the Nth Power
EXP(power, outfield)
where:

power
Numeric

Isthe power that “€” is being raised to.

outfield
Double-precision

Isthe name of the field that contains the result. This argument can also be the format
of the output value, enclosed in single quotation marks.

Raising “e” to the Nth Power

The following Dialogue Manager procedure raises “€” to the power you specify and
returns the result rounded to the nearest integer (the 0.5 added to the result is a rounding
constant). To determine “€” to the third power, set the & POW variable to 3.

- SET &POW = "'3';
-SET &RESULT = EXP(&POW 'D15.3") + 0.5;
-TYPE E TO THE &POW POVNER | S APPROXI MATELY &RESULT

Theresult is 20:
E TO THE 3 PONER | S APPROXI MATELY 20

Developing Applications 3-95

Using Functions and Subroutines

EXPN: Evaluating Scientific Notation

Syntax

The EXPN function evaluates an argument expressed in scientific notation.

Available on: All platforms.

How to Evaluate Scientific Notation
EXPN(ar gunent)
where:

ar gunent
I's the value on which the function operates and should have the following format

n.nn {E| D} {+-} p
where:

n. nn isanumeric constant that consists of a whole number component, followed by a
decimal point, followed by afractional component.

{E| D} denotes scientific notation. E and D are interchangeable.
p isthe power of 10 to which you want to raise the number.

Y ou may supply the actual value, the name of afield that contains the value, or an
expression that returns the value. The expression may call afunction or a subroutine.

For example, you can use scientific notation to express 103 as:
1. 03E+2

FEXERR: Retrieving FOCUS Error Messages

3-96

The FEXERR subroutine retrieves a specified FOCUS error message. FOCUS error
messages may consist of up to four lines of text:

e Thefirst line contains the message.
* Theremaining three may contain a detailed explanation, if it exists.

The subroutine retrieves the first line, the message portion. This subroutineis especially
useful in procedures when the display of output messagesis suppressed for a FOCUS
session. Examples of commands that suppress messages are the CM S halt typing
command (SET CMSTYPE HT) or the FOCUS terminal output command (SET
TRMOUT=0FF).

Available on: All platforms.

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Retrieve FOCUS Error Messages
FEXERR(nnnnn, ' A72")
where:

nnnnn
Numeric

Isthe FOCUS error number, up to five digits.

LAT2!
Isthe format of the output value, enclosed in single quotation marks, which contains
the retrieved message. The maximum length of FOCUS error messagesis 72
characters. For Maintain, specify the field name.

Retrieving FOCUS Error Messages

This Dialogue Manager request initiates aglobal variable (& & MSGVAR) to store the
retrieved message as a concatenated string, assigns the FOCUS error number 650 to a
local variable (& ERR), and displays the message. The FEXERR subroutine retrieves the
message for the error number specified as a variable.

Therequest is:

- SET &ERR = 650;
- SET &&MSGVAR = FEXERR(&ERR, 'A72');
- TYPE & &MSGVAR

When you execute this request, it displays the message for FOCUS error number 650:

(FOC650) THE DI SK IS NOT ACCESSED
>

FINDMEM: Finding a Member of a Partitioned Data Set

The FINDMEM subroutine, used on MV S or batch only, determines if a specific member
of apartitioned data set (PDS) exists. This subroutine is especially useful in Dialogue
Manager procedures.

In order to use this subroutine, the PDS must be allocated to a ddname, because the
ddname is specified in the subroutine call. Y ou can search multiple partitioned data sets
with one subroutine call if the partitioned data sets are concatenated to one ddname.

Available on: MVS.
Related functions and subroutines:
GETPDS

Developing Applications 3-97

Using Functions and Subroutines

Syntax

3-98

How to Find a Member of a Partitioned Data Set
FI NDVEM ddnane, menber, outfiel d)
where:

ddnane
A8

I's the ddname to which the PDS is allocated. This argument must be eight characters
long or avariable. If you are using aliteral for this argument, encloseit in single
guotation marks. If it isless than eight characters, pad the literal with trailing blanks.

menber
A8

I's the member you are searching for. This argument must be eight characters long. If
you are using aliteral for this argument that has less than eight characters, pad the
literal with trailing blanks.

outfield
Al

Isthe name of the field that contains the result of the search: Y, N, or E. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

The subroutine searches the PDS for a specified member and returns the letter Y, N, or E:

\4

The member existsin the PDS.
N

The member does not exist in the PDS.
E

An error occurred. This can occur for two reasons:
1. Thedatasetisnot allocated to the ddname.
2. The data set alocated to the ddname is not a PDS (and may be a sequentid file).

Information Builders

Alphabetical List of Functions and Subroutines

Example

Finding the Member of a Partitioned Data Set

This Dialogue Manager procedure executes areport request if the EMPLOY EE Master
File exists. The FINDMEM subroutine searches the PDS allocated to ddname MASTER
for the EMPLOY EE Master File. If the subroutine does not find the description, the
procedure returns the appropriate message.

The procedureis:

- SET &FI NDCODE = FI NDMVEM ' MASTER ', ' EMPLOYEE' , 'Al');
-1 F &1 NDCODE EQ ' N GOTO NOVEM

-1 F &F1I NDCODE EQ ' E' GOTO NOPDS;

- TYPE MEMBER EXI STS, RETURN CODE = &FI NDCODE

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL BY LAST_NAME BY FI RST_NAME

WHERE RECORDLIM T EQ 4

END

-EXIT

- NOVEM

- TYPE EMPLOYEE NOT FOUND | N MASTER FI LE PDS

-EXIT

- NOPDS

- TYPE ERROR OCCURRED | N SEARCH

-TYPE CHECK | F FILE I S A PDS ALLOCATED TO DDNAME NMASTER
-EXIT

In this sample execution, the procedure finds the member and displays the report:

MEMBER EXI STS, RETURN CODE = Y
> NUMBER OF RECORDS | N TABLE= 4 LINES= 4

PAUSE. . PLEASE | SSUE CARRI AGE RETURN WHEN READY

PAGE 1

LAST_NANE FI RST_NAVE CURR_SAL

JONES DI ANE $18, 480. 00

SM TH MARY $13, 200. 00
Rl CHARD $9, 500. 00

STEVENS ALFRED $11, 000. 00

Developing Applications 3-99

Using Functions and Subroutines

FTOA: Converting a Number to Alphanumeric Format

The FTOA subroutine converts numbers from numeric format to alphanumeric format.

Syntax

3-100

The EDIT function also converts numbers from numeric to alphanumeric format, but
there are differences between FTOA and EDIT:

FTOA retains the decimal portions of numbers, whereas EDIT truncates numbers to
integers.

FTOA stores numbers right-justified with leading spaces, whereas EDIT stores
numbers right-justified with leading zeros.

FTOA enablesyou to add edit options to the converted number; whereas EDIT does
not.

FTOA can process any number up to 16 digits; EDIT can process any number up to
nine digits and certain numbers up to ten digits. (The limit for EDIT is due to the
internal representation of the number as a 4-byte integer.)

Available on: All platforms.

How to Convert Numbers to Characters
FTOA(nunber, '(format)', outfield)

where:

nunber

Numeric
I's the number to be converted or the field containing the number.

"(format) '

Alphanumeric

Isthe format of the number asit is stored in numeric format, enclosed in both single
guotation marks and parentheses. Only F and D formats are supported. Include any
edit options that you want to appear in the outpuit.

Note: If you are using afield for this argument, specify the field name without
guotation marks or parentheses. The valuesin the field must be enclosed in
parentheses.

outfield

Alphanumeric

I's the name of the field to which the number in a phanumeric format is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks. The length of this argument must be greater than the length of the number
argument and must account for edit options and a possible negative sign. The D
format automatically supplies commas.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Converting GROSS Salary to Alphanumeric
Format

The following request converts the GROSS salary field from decimal to a phanumeric
format:

TABLE FI LE EMPLOYEE

PRI NT GROSS AND COVPUTE

ALPHA GROSS/ Al4 = FTOA(GROSS, '(D12.2)', ALPHA GROSS);
BY LAST_NAME

END

The request produces the following output:

PAGE 1

LAST_NAME GROSS ALPHA _GRCSS
BLACKWOOD $1, 815. 00 1, 815. 00
CRCSS $2, 255. 00 2, 255.00
I RVI NG $2, 238.50 2,238.50
JONES $1, 540. 00 1, 540. 00
MCKNI GHT $1, 342.00 1, 342. 00
ROVANS $1, 760. 00 1, 760. 00
SM TH $1, 100. 00 1, 100. 00
STEVENS $916. 67 916. 67

GETPDS: Determining if a Member of a Partitioned Data Set Exists

The GETPDS subroutine determines if a specific member of a partitioned data set (PDS)
exists and, if so, returns the PDS name. This subroutine is especially useful in Dialogue
Manager procedures. The FINDMEM subroutine is almost identical to the GETPDS
subroutine, except that the GETPDS subroutine provides either the PDS name or different
status codes.

In order to use this subroutine, the PDS must be allocated to a ddname, because the
ddname is specified in the subroutine call. Y ou can search multiple partitioned data sets
with one subroutine call if the partitioned data sets are concatenated to one ddname.

Availableon: MVS.
Related functions and subroutines:
FINDMEM

Developing Applications 3-101

Using Functions and Subroutines

Syntax

3-102

How to Determine if a Member Exists
CGETPDS(ddnane, menber, outfield)
where:
ddnane
A8

I's the ddname to which the PDS is allocated. This argument must be eight characters
long or avariable. If you are using aliteral for this argument, encloseit in single
guotation marks. If it isless than eight characters, pad the literal with trailing blanks.

menber
A8

I's the member you are searching for. This argument must be eight characters long. If
you are using aliteral for this argument that has less than eight characters, pad the
literal with trailing blanks.

outfield
A44

Is the name of the field that contains the result of the search. This argument must be
44 characters long, because the maximum length for a PDS nameis 44. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

The subroutine searches the PDS for a specified member and returns one of four values:

PDS nane
If the specified member exists, the PDS name that containsiit.
*D
The ddname is not assigned (allocated) to a data set.
*M
The member does not exist in the PDS.
*E
An error occurred. This often occurs because the data set allocated to the ddname is
not a PDS (and may be a sequentidl file).

Information Builders

Alphabetical List of Functions and Subroutines

Example Determining if a Member EXists

This Dialogue Manager procedure returns the name of the PDS if the EMPLOY EE
Master File exists. The GETPDS subroutine searches the PDS allocated to ddname
MASTER for the EMPLOY EE Master File.

- SET &DDNAME = ' MASTER
- SET &VEMBER = ' EMPLOYEE' ;
- SET &PNAME = '

- SET &PNAME = GETPDS(&DDNANE, &VEMBER, &PNAME) ;
-1 F &PNAME EQ ' *D THEN GOTO DDNOAL;

-1 F &PNAME EQ ' *M THEN GOTO MEMNOF,;

-1 F &PNAME EQ ' *E' THEN GOTO DDERRCR;

*

- TYPE MEMBER &VEMBER | S FOUND I N
- TYPE THE PDS &PNAME
- TYPE ALLOCATED TO &DDNAME

*

-EXIT
- DDNOAL

*

- TYPE DDNAME &DDNAME NOT ALLOCATED

*

-EXIT
- MEIVNOF

*

- TYPE MEMBER &VEMBER NOT FOUND UNDER DDNAME &DDNANME

*

-EXIT
- DDERROR

*

-TYPE ERROR | N GETPDS; DATA SET PROBABLY NOT A PDS.

*

-EXIT

A sample execution is:

MEMBER EMPLOYEE |'S FOUND I N
THE PDS USER1. MASTER. DATA
ALLOCATED TO MASTER

> >

Developing Applications 3-103

Using Functions and Subroutines

Example Using GETPDS With TED

In this example, the GETPDS subroutine searches for a specified member in the
production MASTER.DATA partitioned data set and returns the PDS name. The
DYNAM commands copy the specified member from the production PDS to your local
PDS. Then, the TED editor enables you to edit the member. The ddnames are allocated
earlier in the session: the production PDS is alocated to the ddname MASTER; your
local PDS to ddname MYMASTER.

* |f the MASTER file in question is in the 'production' pds, it nust

* be copied to a 'local' pds, which has been allocated previously to the
-* ddname MYMASTER bef ore any changes can be made.

* Assume the MASTER in question is supplied via a -CRTFORM with

-* a length of 8 characters, as &VEMBER

- SET &DDNAME = ' MASTER
- SET &MVEMBER = &MEMBER;
- SET &PNAME = °

- SET &PNAME = GETPDS(&DDNANE, &VEMBER, &PNAME) ;
-IF &PNAME EQ '*D OR '*M OR '*E THEN GOTO DDERROR,

*

DYNAM ALLOC FI LE XXXX DA -
&PNAME MEMBER &MVEMBER SHR
DYNAM COPY XXXX MYNMASTER MEMBER &VEMBER
- RUN
TED MYMASTER(&VEMBER)
-EXIT

*

- DDERROR

*

-TYPE Error in CETPDS; Check allocation for &DDNAME for
- TYPE proper allocation.
*

-EXIT
Earlier in the FOCUS session, allocate the ddnames:

> > tso alloc f(master) da('w bfoc.p7009505. master.data') shr
> > tso alloc f(nymaster) da('userl.naster.data') shr

3-104 Information Builders

Alphabetical List of Functions and Subroutines

Example

After you execute the procedure, specify the EMPLOY EE member. The member is
copied to your local PDS and you enter TED.

PLEASE SUPPLY VALUES REQUESTED

MEMBER= > enpl oyee

MYMASTER(EMPLOYEE) S| ZE=37 LI NE=O

00000 * * * TOP OF FILE * * *
00001 FI LENAME=EMPLOYEE, SUFFI X=FCC
00002 SEGNAME=EMPI NFO, SEGTYPE=S1

00003 FI ELDNAVE=EMP_I D, ALl AS=EI D, FORVAT=A9, $
00004 FI ELDNAVE=LAST_NAME, ALI AS=LN, FORVAT=ALS, $
00005 FI ELDNAME=FI RST_NAME, ALl AS=FN, FORVAT=AL10, $
00006 FI ELDNAVE=HI RE_DATE, ALl AS=HDT, FORVAT=1 6 YNMD, $
00007 FI ELDNAME=DEPARTMENT, ALl AS=DPT, FORVAT=AL10, $

Using GETPDS With Query Commands

Suppose you wanted to review the attributes of the PDS that contained a specific member.
This Dialogue Manager procedure searches for the EMPLOY EE member in the PDS
allocated to the ddname MASTER and, based on its existence, allocates the PDS name to
the ddname TEMPMAST. Dialogue Manager MV S system variables are used to display
the attributes.

- SET &DDNAME = ' MASTER
- SET &VEMBER = ' EMPLOYEE' ;
- SET &PNAME = '

- SET &PNAME = GETPDS(&DDNANE, &VEMBER, &PNAME) ;
-IF &PNAME EQ '*D OR '*M OR '*E THEN GOTO DDERROR

*

DYNAM ALLOC FI LE TEMPMAST DA -
&PNAME SHR
- RUN
-? WS DDNAME TEMPMAST
-TYPE The data set attributes include:
-TYPE Data set nane is: &DSNAMVE
-TYPE Vol une is: & OLSER
-TYPE Di sposition is: & SP
-EXIT

*

- DDERRCOR
-TYPE Error in CETPDS; Check allocation for &DDNAME for
- TYPE proper allocation.

*

-EXIT

Developing Applications 3-105

Using Functions and Subroutines

A sample execution follows:

> THE DATA SET ATTRI BUTES | NCLUDE:
DATA SET NAME | S: USER1. VASTER. DATA
VOLUME | S: USERMO

DISPCSITION I'S: SHR

>

When you execute this procedure, it searches the PDS allocated to ddname MASTER for
the member EMPLOQY EE. Since the procedure locates the member, it displays the
attributes for the MASTER PDS.

GETTOK: Getting a Token From a String

The GETTOK subroutine divides a character string where a specific character, called the
delimiter, occursin the string. It then returns one of the substrings, called a token.

For example, suppose you want to extract the fourth word from a sentence. The
subroutine divides the sentence into words using spaces as delimiters, then extracts the
fourth word. If the string is not divided by a delimiter character, use the PARAG
subroutine.

Available on: All platforms.
Related functions and subroutines:
PARAG

3-106 Information Builders

Alphabetical List of Functions and Subroutines

Syntax

How to Divide a Character String
CETTOK(infield, inlen, toknum 'delinm, outlen, outfield)
where:

infield
Alphanumeric
Isthe field containing the parent character string.

inlen
Integer

Isthe length of the parent string. If this argument is less than or equal to O, the
subroutine returns spaces.

t oknum
Integer
I's the number of the token you want extracted. If this argument is positive, the tokens
are numbered from left to right. If this argument is negative, the tokens are numbered
from the right to left (for example, an argument of -2 indicates the second to the last
token in the string). If this argument is 0, the subroutine returns spaces. Leading and
trailing null tokens are ignored.

delim
Alphanumeric

Isthe delimiter character in the parent string, enclosed in single quotation marks. If
you specify more than one character, only the first character is used.

outlen
Integer
I's the maximum size of the token. If this argument is less than or equal to 0, the
subroutine returns spaces. If the token islonger than this argument, it istruncated; if
it is shorter, it is padded with trailing spaces.

outfield
Alphanumeric

Is the name of the field to which the token is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.

Note: The delimiter is not included in the token.
Tip:
In Dialogue Manager, to prevent the conversion of a delimiter blank character (' ') to a
double precision zero, include a non-numeric character after the blank (for example, * %').

GETTOK uses only the first character (the blank) as a delimiter and the extra character
(%) prevents conversion to double precision.

Developing Applications 3-107

Using Functions and Subroutines

Example Report Request Extracting Zip Code From Address

The following request uses a single blank space as a delimiter to break an address line
into tokens and returns the last token, which is the zip code:

TABLE FI LE EMPLOYEE

PRI NT ADDRESS_LN3 AND COWMPUTE

LAST_TOKEN A10 = GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, LAST_TCKEN) ;
AS ' LAST TOKEN, (ZI P CODE)

WHERE TYPE EQ ' HSM

END

The request produces the following output:

PAGE 1

LAST TOKEN
ADDRESS_LN3 (ZI P CODE)
RUTHERFORD NJ 07073 07073
NEW YORK NY 10039 10039
FREEPORT NY 11520 11520
NEW YORK NY 10001 10001
FREEPORT NY 11520 11520
ROSELAND NJ 07068 07068
JERSEY CI TY NJ 07300 07300
FLUSH NG NY 11354 11354

GETUSER: Retrieving the User ID

The GETUSER subroutine retrieves the user 1D (userid) of the connected user.

In MVS FOCUS, it can aso retrieve the name of an MV S batch job if you run it from the
batch job. To retrieve alogon ID for M SO, use the MSOINFO subroutine described in
the FOCUS for IBM Mainframe Multi-Session Option Installation and Technical
Reference Guide.

Available on: All platforms.

Syntax How to Retrieve the User ID
GETUSER(out f i el d)
where:

outfield

Alphanumeric eight bytes

Isthe name of the field that contains the user ID. Specify afield that is eight bytes
long. Thisargument can also be the format of the output value, enclosed in single
guotation marks.

3-108 Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Returning User ID of Person Executing Request

The following request returns employees’ department assignments and salaries; the report
heading returns the user 1D of the person executing the request:

DEFI NE FI LE EMPLOYEE
USERI Y A8 W TH EMP_I D = GETUSER(USERI D) ;
END

TABLE FI LE EMPLOYEE

SUM CURR_SAL AS ' TOTAL SALARI ES

BY DEPARTMENT

HEADI NG

"SALARY REPORT RUN FROM USERI D: <USERI D'

END

The request produces the following output:
PAGE 1

SALARY REPORT RUN FROM USERI D: USER1

DEPARTMENT TOTAL SALARI ES

M S $108, 002. 00
PRCDUCTI ON $114, 282. 00

GREGDT: Converting From Julian to Gregorian Format

The GREGDT subroutine converts dates in Julian format to year-month-day format.
Datesin Julian format are 5- or 7-digit numbers. The first two or four digits are the year;
the last three digits are the number of the day counting from January 1. For example,
January 1, 1987 in Julian format is either 87001 or 1987001, and December 31, 1987 is
either 87365 or 1987365.

Depending on the format of the output, GREGDT converts Julian dates to either YMD or
YYMD format, using the DEFCENT and YRTHRESH settings.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine (which only supports 5-digit input dates and produces only Y MD output),
change the DATEFNS setting to OFF.

Available on: All platforms.
Related functions and subroutines:
JULDAT

Developing Applications 3-109

Using Functions and Subroutines

Syntax

Example

3-110

How to Convert Julian Format Dates to Gregorian Format

GRECDT(i ndate, outfield)

where:

i ndat e
Numeric

Isthe Julian date, which is truncated to an integer before conversion. Each value
must be a 5- or 7-digit number after truncation. The first two or four digits represent
the year, the last three digits must be between 001 and 365 (366 for aleap year). If
the dateisinvalid, the subroutine returns a 0.

outfield
Integer at least 16

I's the name of the field to which the date in year-month-day format is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

GREGDT returns dates in the following format:

If theformat isi6or 17

If theformat is|8 or greater

If DATEFNS=ON
(the default)

YMD

YYMD (GREGDT uses the
DEFCENT and YRTHRESH
settings to determine the century, if
necessary).

If DATEFNS=OFF

YMD

YMD

Information Builders

Alphabetical List of Functions and Subroutines

Example Report Request Converting Date to Julian and Gregorian Date
The following request converts HIRE_DATE to both a Julian date and a Gregorian date;

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND

COVPUTE JULI AN/ 15 = JULDAT(H RE_DATE, JULI AN); AND
COWPUTE GREG DATE/ | 8 = GREGDT(JULIAN, '18");

BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The request produces the following output:

PAGE 1
LAST_NANME FI RST_NAME H RE_DATE JULIAN GREG DATE

BANNI NG JOHN 82/08/01 82213 19820801

I RVI NG JOAN 82/01/04 82004 19820104

MCKNI GHT ROGER 82/02/02 82033 19820202

ROVANS ANTHONY 82/07/01 82182 19820701

SM TH Rl CHARD 82/01/04 82004 19820104

STEVENS ALFRED 80/06/02 80154 19800602

Notice that GREGDT determines the century (using the DEFCENT and YRTHRESH
settings).

Developing Applications 3-111

Using Functions and Subroutines

HADD: Incrementing a Date-Time Field

Syntax

Example

3-112

The HADD subroutine in an expression to increment a date-time field by a given number
of units.

How to Increment a Date-Time Field
HADD (dtfield, 'conponent', increment, length, 'H ormat')
where:

dtfield
Is the date-time value to increment. Y ou can supply the name of adate-timefield, a
date-time constant, or an expression that returns a date-time value.

conponent
I's the name of the component to be incremented, enclosed in single quotation marks.
See [Component Names and Values for Use With Date-Time Functions|on page 3-8
for alist of supported components.

i ncrement
I's the number of units by which to increment the specified component. Y ou can
supply the actual value, the name of a numeric field that contains the value, or an
expression that returns the value.

| engt h
Isthe length of the returned date-time value. Valid values are:
8 for time values down to milliseconds.
10 for time values down to microseconds.

Hf or mat
Isthe USAGE format of the returned date-time value, enclosed in single quotation
marks.

Incrementing the Month Component of a Date-Time Field

The following adds two months to the TRANSDATE field:

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME© AND COVPUTE

ADD_MONTH HYYMDS = HADD (TRANSDATE, 'MONTH , 2, 8, 'HYYMDS')
WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME ADD_MONTH

1118 2000/ 06/ 26 05:45 2000/ 08/26 05:45:00
1237 2000/ 02/ 05 03:30 2000/ 04/05 03:30: 00

Information Builders

Alphabetical List of Functions and Subroutines

If necessary, the day is adjusted to be valid for the resulting month.

HCNVRT: Converting a Date-Time Field to Alphanumeric Format

Syntax

Example

The HCNVRT subroutine converts a date-time field to alphanumeric format for use with
operators such as EDIT, CONTAINS, and LIKE.

How to Convert a Date-Time Field to Alphanumeric Format
HCNVRT (dtfield, '(Hnt)', rlength, 'Ann")
where:

dtfield
Is the date-time value to convert. Y ou can supply the name of a date-timefield, a
date-time constant, or an expression that returns a date-time value.

Hf mt
Isthe USAGE format of the date-time field being converted, enclosed in parentheses
and single quotation marks.

rl ength
Isthe length of the alphanumeric field returned. Y ou can supply the actual value, the
name of a numeric field that contains the value, or an expression that returns the
value. If rlength is smaller than the number of characters needed to display the
alphanumeric field, ablank field is returned.

Ann
Isthe USAGE format of the returned alphanumeric value, enclosed in single
guotation marks.

Converting a Date-Time Field to Alphanumeric Format

The following converts the TRANSDATE field to alphanumeric format:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TIME AND COMPUTE

ALPHA DATE_TI ME1/ A20 = HCNVRT (TRANSDATE, ' (HL7)', 17, 'A20');
ALPHA_DATE_TI ME2/ A20 = HONVRT (TRANSDATE, ' (HYYMDS)', 20, 'A20');
WHERE DATE EQ 2000

END

Theoutput is:

CUSTI D DATE-TI ME ALPHA_DATE_TI ME1 ALPHA_DATE_TI ME2
1118 2000/ 06/ 26 05:45 20000626054500000 2000/ 06/ 26 05: 45: 00
1237 2000/ 02/ 05 03:30 20000205033000000 2000/ 02/ 05 03:30: 00

Developing Applications 3-113

Using Functions and Subroutines

HDATE: Converting the Date Portion of a Date-Time Field to a Date

Format

Syntax

Example

3-114

The HDATE subroutine extracts the date portion of a date-time field and convertsit to a
date format.

How to Convert the Date Portion of a Date-Time Field to a
Date Format

HDATE (dtfield, 'dateformat')
where:

dtfield
Is the date-time value. Y ou can supply the name of a date-time field, a date-time
congtant, or an expression that returns a date-time value.

dat ef or mat
Isthe USAGE format of the returned date field (for example, YMD), enclosed in
single quotation marks.

Converting the Date Portion of the TRANSDATE Field to a Date
Format

The following request converts the date portion of the TRANSDATE field to date format
YYMD:

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE
TRANSDATE_DATE/ YYMD = HDATE(TRANSDATE, ' YYMD);
WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME TRANSDATE_DATE

1118 2000/ 06/ 26 05:45 2000/ 06/ 26
1237 2000/ 02/ 05 03:30 2000/ 02/ 05

Information Builders

Alphabetical List of Functions and Subroutines

HDIFF: Finding the Number of Units Between Two Date-Time Values

Syntax

Example

Y ou can use the HDIFF subroutine in an expression to find the number of boundaries of a
given type crossed in going from date 2 to date 1.

How to Find the Number of Units Between Two Date-Time
Values

HDI FF (dtfieldl, dtfield2, 'conponent', 'Dformat')
where:

dtfieldl
Is the ending date-time value. Y ou can supply the name of a date-timefield, a
date-time constant, or an expression that returns a date-time value.

dtfiel d2
Is the starting date-time value. Y ou can supply the name of a date-timefield, a
date-time constant, or an expression that returns a date-time value.

conmponent
I's the name of the component to be used in the calculation, enclosed in single
guotation marks. If the unit is weeks, the WEEKFIRST setting is used in the
calculation. See Component Names and Values for Use With Date-Time Functions
on page 3-8 for alist of supported components.

Df or mat
Isthe USAGE format of the resulting number of units, enclosed in single quotation
marks. The format type must be D.

Finding the Number of Days Between Two Date-Time Fields

The following request finds the number of days between the ADD_MONTH and
TRANSDATE fields:

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE

ADD_MONTH HYYMDS = HADD (TRANSDATE, ' MONTH , 2, 8, 'HYYMDS');
Dl FF_DAYS/ D12.2 = HDI FF(ADD_MONTH, TRANSDATE, 'DAY', 'Dl12.2');
VWHERE DATE EQ 2000

END

The output is:

CUSTID DATE-TI ME ADD_MONTH DI FF_DAYS
1118 2000/ 06/ 26 05:45 2000/ 08/26 05:45:00 61.00
1237 2000/ 02/ 05 03:30 2000/ 04/05 03:30: 00 60. 00

Developing Applications 3-115

Using Functions and Subroutines

HDTTM: Converting a Date field to a Date-Time Field

Syntax

Example

3-116

You can use the HDTTM subroutine in an expression to convert a date field to a
date-time field. The time portion is set to midnight.

How to Convert a Date field to a Date-Time Field
HDTTM (datefield, {8|10}, Hformat)
where:

datefield
I's the date value to be converted. Y ou can supply the name of a date field, adate
constant, or an expression that returns a date value.

8| 10
Isthe length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for time values down to microseconds.

Hf or mat
Isthe USAGE format of the returned date-time value.

Converting a Date Field to a Date-Time Field

The following request converts the date field TRANSDATE_DATE to adate-timefield:

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME© AND COVPUTE
TRANSDATE_DATE/ YYMD = HDATE(TRANSDATE, ' YYMD);
DT2/ HYYMDI A = HDTTM TRANSDATE_DATE, 8, 'HYYMDI A');
WHERE DATE EQ 2000

END

Theoutput is:

CUSTI D DATE-TI ME TRANSDATE_DATE DT2
1118 2000/ 06/ 26 05:45 2000/ 06/ 26 2000/ 06/ 26 12: 00AM
1237 2000/ 02/ 05 03:30 2000/ 02/ 05 2000/ 02/ 05 12: 00AM

Information Builders

Alphabetical List of Functions and Subroutines

HEXBYT: Converting a Number to a Character

Syntax

Example

The HEXBY T subroutine allows you to obtain the ASCII or EBCDIC character
equivalent of adecimal integer value. This subroutine returns a single a phanumeric
character in the ASCII or EBCDIC character set. Y ou can use this subroutine to produce
characters that are not on your keyboard, similar to the CTRAN subroutine.

Note: The display of special characters depends upon your software and hardware; not all
special characters may display. Printable EBCDIC and ASCII characters and their integer
equivalents are listed in character charts.

Available on: All platforms.
Related functions and subroutines:
« BYTVAL

e CTRAN

How to Convert a Number to a Character
HEXBYT(i nput, out put)
where:

i nput
Numeric

Isthe decimal value to be trandlated to a single character. A value greater than 255 is
treated as the remainder of (input/256).

out put
Alphanumeric

I's the resulting alphanumeric character.

Report Request Determining Decimal Value of Character

The following request uses BY TVAL to determine the ASCII or EBCDIC code for the
first letter of LAST_NAME, and then uses HEXBY T to convert the code back to aletter.

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND

COVPUTE LAST I NIT_CODE/ 13 = BYTVAL(LAST_NAME, '13');
COVPUTE LAST_ I NI T/ Al = HEXBYT(LAST | NI T_CODE, LAST INIT);
WWHERE DEPARTMENT EQ 'M S ;

END

Developing Applications 3-117

Using Functions and Subroutines

Example

3-118

The request produces the following output on ASCII platforms:

PAGE 1

LAST_NANE LAST INIT_CODE LAST INT
SM TH 83 S

JONES 74]

MCCOY 77 M
BLACKWOCD 66 B
GREENSPAN 71 G

CROSS 67 C

The request produces the following output on EBCDIC platforms:

PAGE 1
LAST_NANE LAST_INIT_CODE LASTINIT
SM TH 226 S
JONES 209 J
MCCOY 212 M
BLACKWOCD 194 B
GREENSPAN 199 G
CROSS 195 C

Report Request Inserting Braces

The following request displays the names of employees and their salaries. The names of
employees earning less than $12,000 a year are enclosed in braces. The braces are
produced by the HEXBY T subroutine. The integer equivalent for the left brace is 192; for
the right, 208.

DEFI NE FI LE EMPLOYEE
BRACE/ AL7 = HEXBYT(192, 'Al') | LAST_NAMVE | HEXBYT(208, 'Al');
BNAME/ AL7 = | F CURR SAL LT 12000 THEN BRACE
ELSE LAST_ NAME;
END
TABLE FI LE EMPLOYEE
PRI NT BNAME CURR SAL BY EMP_I D
END

Information Builders

Alphabetical List of Functions and Subroutines

The resulting output is:

PAGE 1

EMP_I D BNAVE CURR_SAL
071382660 {STEVENS } $11, 000. 00
112847612 SM TH $13, 200. 00
117593129 JONES $18, 480. 00
119265415 {SM TH } $9, 500. 00
119329144 BANNI NG $29, 700. 00
123764317 | RVING $26, 862. 00
126724188 ROVANS $21, 120. 00
219984371 MCCOY $18, 480. 00
326179357 BLACKWOOD $21, 780. 00
451123478 MCKNI GHT $16, 100. 00
543729165 { GREENSPAN } $9, 000. 00
818692173 CROSS $27, 062. 00

Note: If you are using the Hot Screen facility, some unusual characters cannot be
displayed. If Hot Screen does not support the character you chose, enter the FOCUS
command

SET SCREEN = OFF
RETYPE

and redisplay the output which will appear as regular terminal output. If your terminal can
display the character, the character will appear. The display of special characters depends
upon your software and hardware; not all specia characters may display.

HGETC: Storing the Current Date and Time in a Date-Time Field

Y ou can use the HGET C subroutine in an expression to store the current date and time in
adate-timefield. If millisecond or microsecond values are not available in your operating
environment, the value returned for these componentsis zero.

Syntax How to Store the Current Date and Time in a Date-Time Field
HGETC ({8] 10}, 'Hformat")
where:
8| 10

Isthe length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for input time values down to microseconds.

Hf or mat
Isthe USAGE format of the returned date-time value, enclosed in single quotation
marks.

Developing Applications 3-119

Using Functions and Subroutines

Example

Storing the Current Date and Time in a Date-Time Field

The following request stores the current date and timein field DT2;

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME© AND COVPUTE
DT2/ HYYMDmM = HGETC(10, ' HYYMDni);

WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME DT2

1118 2000/ 06/ 26 05:45 2000/ 10/ 03 15:34: 24. 000000
1237 2000/ 02/ 05 03:30 2000/ 10/03 15: 34: 24. 000000

HHMMSS: Returning the Current Time

Syntax

3-120

The HHMMSS subroutine retrieves the current time from the system. It returns the time
as an eight-character string with embedded periods separating the hours, minutes, and
seconds.

Note:
* &TOD returns the current time of day.

e Compiled MODIFY procedures must use the HHMMSS subroutine to obtain the
time; they cannot use the & TOD variable. The & TOD variable is made current only
when you execute a MODIFY, SCAN, or FSCAN procedure.

Available on: All platforms.

How to Retrieve the Current Time
HHVVBS(out fi el d)
where:

outfield
Alphanumeric

Is the name of the field to which the time (in HH.MM.SS format) is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Displaying Current Time
The following request retrieves the current time and displaysit in areport footing:

TABLE FI LE EMPLOYEE

SUM CURR_SAL AS ' TOTAL SALARIES' AND COWPUTE
NOATI ME/ A8 = HHMVBS(NOATI ME) ; NOPRI NT

BY DEPARTMENT

FOOTI NG

"SALARY REPORT RUN AT TI ME <NOWI ME"

END

The request produces the following output:
PAGE 1

DEPARTMENT TOTAL SALARI ES

M S $108, 002. 00
PRCDUCTI ON $114, 282. 00

SALARY REPCRT RUN AT TIME 15.21. 14

HINPUT: Converting an Alphanumeric String to a Date-Time Value

Syntax

The HINPUT subroutine converts an alphanumeric string to a date-time value.

How to Convert and Alphanumeric String to a Date-Time
Value
HI NPUT (inputlength, "inputstring', length, 'Hfnt')
where:
inputlength
Isthe length of the al phanumeric string to convert. Y ou can supply the actual value,

the name of a numeric field that contains the value, or an expression that returns the
value.

inputstring
I's the al phanumeric string to convert. Y ou can supply the actual string enclosed in
single quotation marks, the name of an alphanumeric field, or an expression that
returns an a phanumeric value. The alphanumeric string can consist of any valid
date-time input value as described in the Describing Data manual.

| ength
Isthe length of the returned date-time value. Valid values are;

8 for time values down to milliseconds.
10 for time values down to microseconds.

Developing Applications 3-121

Using Functions and Subroutines

Example

Hf mt
Isthe USAGE format of the returned date-time value, enclosed in single quotation
marks.

Converting an Alphanumeric String to a Date-Time Value

The following request converts the TRANSDATE field to a phanumeric format (using the
HCNVRT function) and then uses the HINPUT routine to convert the alphanumeric string
to a date-time value:

TABLE FI LE VI DECTR2
PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COMPUTE

ALPHA_DATE_TI ME/ A20 = HCNVRT (TRANSDATE, ' (HL7)', 17, 'A20');
DT_FROM ALPHA/ HYYMDS = HI NPUT(14, ALPHA DATE TIME, 8, ' HYYMDS);
VWHERE DATE EQ 2000

END

Theoutput is:

CUSTI D DATE-TI ME ALPHA_DATE_TI ME1 ALPHA_DATE_TI ME2
1118 2000/ 06/ 26 05:45 20000626054500000 2000/ 06/ 26 05: 45: 00
1237 2000/ 02/ 05 03:30 20000205033000000 2000/ 02/ 05 03:30: 00

HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight

Syntax

3-122

The HMIDNT subroutine changes the time portion of a date-time field to midnight (all
zeroes). This function can be used for testing date-time fields for a given date.

How to Set the Time Portion of a Date-Time Field to Midnight
HM DNT (dtfield, length, 'H ormat')
where:

dtfield
Is date-time value. Y ou can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

| engt h
Isthe length of the returned date-time value. Valid values are:

8 for time values down to milliseconds.
10 for time values down to microseconds.

Hf or mat
Isthe USAGE format of the returned date-time value, enclosed in single quotation
marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Setting the Time to Midnight

The following request sets the time portion of the TRANSDATE field to midnight in both
the 24- and 12-hour systems:

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME© AND COVPUTE
TRANSDATE_M D_24/ HYYMDS HM DNT(TRANSDATE, 8, ' HYYMDS')
TRANSDATE_M D_12/ HYYMDSA = HM DNT(TRANSDATE, 8, ' HYYNMDSA')
WHERE DATE EQ 2000

END

Theoutput is:
CUSTID DATE- TI NE TRANSDATE_M D_24 TRANSDATE_M D_12

1118 2000/ 06/ 26 05:45 2000/ 06/ 26 00: 00: 00 2000/06/26 12: 00: 00AM
1237 2000/ 02/ 05 03:30 2000/ 02/05 00: 00: 00 2000/ 02/05 12: 00: 00AM

HNAME: Extracting a Date-Time Component in Alphanumeric

Format

Syntax

The HNAME subroutine extracts a specified component from a date-time field and
returnsit in alphanumeric format.

How to Extract a Date-Time Component in Alphanumeric
Format

HNAME (dtfield, 'conponent', Afornat)
where:

dtfield
Is the date-time value. Y ou can supply the name of a date-time field, a date-time
congtant, or an expression that returns a date-time value.

conmponent
I's the name of the component to be extracted, enclosed in single quotation marks. See
Component Names and Values for Use With Date-Time Functions|on page
3-8 for alist of supported components.

Af or mat
I's the al phanumeric USAGE format of the returned component, enclosed in single
guotation marks. All other components are converted to strings of digitsonly. The
year is always four digits, and the hour assumes the 24-hour system.

Developing Applications 3-123

Using Functions and Subroutines

Example Extracting the Day Component in Alphanumeric Format From
a Date-Time Field

The following request extracts the day in al phanumeric format from the TRANSDATE
field:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE- TI ME AND COVPUTE

DAY _COVPONENT/ A2 = HNAME(TRANSDATE, 'DAY', 'A2');

VHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME DAY_COMPONENT

1118 2000/ 06/ 26 05:45 26
1237 2000/ 02/ 05 03:30 05

Example Extracting the Week Component With Different WEEKFIRST
Settings

The following request extracts the week in al phanumeric format from the TRANSDATE
field. Changing the WEEKFIRST setting changes the value of the extracted component:

SET WEEKFI RST = 7

TABLE FI LE VI DEOTR2

PRI'NT CUSTI D TRANSDATE AS ' DATE-TI ME© AND COVPUTE
WEEK_COVPONENT/ A10 = HNAME(TRANSDATE, ' WEEK' , ' Al0Q')
WHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME WEEK_COVPONENT

1118 2000/ 06/ 26 05:45 26
1237 2000/ 02/ 05 03:30 06

Running the same request setting WEEKFIRST to 3 produces the following output (see
Chapter 1, Customizing Your Environment):

CUSTID DATE-TI ME VEEK_COVPONENT

1118 2000/ 06/ 26 05:45 25
1237 2000/ 02/ 05 03:30 05

3-124 Information Builders

Alphabetical List of Functions and Subroutines

HPART: Returning a Date-Time Component in Numeric Format

Syntax

Example

The HPART subroutine extracts a specified component from a date-time field and returns
it in numeric format.

How to Return a Date-Time Component in Numeric Format
HPART (dtfield, 'conponent', 'Iformat')
where:

dtfield
Is the date-time value. Y ou can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

conponent
I's the name of the component to be extracted, enclosed in single quotation marks. See
IComponent Names and Values for Use With Date-Time Functions|on page 3-8 for a
list of supported components.

| f or mat
Isthe integer USAGE format of the returned component, enclosed in single quotation
marks. The year is aways four digits, and the hour assumes the 24-hour system.

Extracting the Day Component in Numeric Format From a
Date-Time Field

The following request extracts the day in integer format from the TRANSDATE field:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE- TI MEE AND COVPUTE
DAY_COWVPONENT/ 1 2 = HPART(TRANSDATE, 'DAY', '12');
WHERE DATE EQ 2000

END

Theoutput is:

CUSTI D DATE-TI ME DAY_COVPONENT
1118 2000/ 06/ 26 05: 45 26
1237 2000/ 02/ 05 03: 30 5

Developing Applications 3-125

Using Functions and Subroutines

HSETPT: Inserting a Component Into a Date-Time Field

Syntax

Example

3-126

The HSETPT subroutine inserts the numeric value of a specified component into a
date-time field.

How to Insert a Component Into a Date-Time Field
HSETPT (dtfield, 'conponent', value, length, 'Hormat')

where:

dtfield
Is the date-time value. Y ou can supply the name of a date-time field, a date-time
congtant, or an expression that returns a date-time value.

conmponent
Is the name of the component to be inserted, enclosed in single quotation marks. See
Component Names and Values for Use With Date-Time Functions|on page 3-8 for a
list of supported components.

val ue
I's the numeric value to use for the requested component. Y ou can supply the actual
value, the name of a numeric field that contains the value, or an expression that
returns the value.

| ength
Isthe length of the returned date-time value. Valid values are;
8 for time values down to milliseconds.
10 for time values down to microseconds.

Hf or mat
Isthe USAGE format of the returned date-time value, enclosed in single quotation
marks.

Inserting the Day Component Into a Date-Time Field

The following request inserts the day into the ADD_MONTH field:

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME AND COVPUTE

ADD_MONTH HYYMDS = HADD (TRANSDATE, ' MONTH , 2, 8, 'HYYMDS');
| NSERT_DAY/ HYYMDS = HSETPT(ADD_MONTH, ' DAY', 28, 8, 'HYYMDS');
VWHERE DATE EQ 2000

END

The output is:
CUSTID DATE- TI ME ADD_MONTH | NSERT_DAY

1118 2000/ 06/ 26 05:45 2000/ 08/26 05:45:00 2000/08/28 05:45:00
1237 2000/ 02/ 05 03:30 2000/ 04/05 03:30:00 2000/04/28 03:30:00

Information Builders

Alphabetical List of Functions and Subroutines

HTIME: Converting the Time Portion of a Date-Time Field to a

Number

Syntax

Example

The HTIME subroutine converts the time portion of a date-time field to a numeric
number of milliseconds (if the first argument is 8) or microseconds (if the first argument
is 10). For microseconds, the input date-time field must be a 10-byte field.

How to Convert the Time Portion of a Date-Time Field to a
Number

HTI ME (I ength, dtfield, 'Dformat')
where:

| engt h
Isthe length of the input date-time value. Valid values are:

8 for time values down to milliseconds.
10 for input time values down to microseconds.

dtfield
Is the date-time value to use for extracting the time. Y ou can supply the name of a
date-time field, a date-time constant, or an expression that returns a date-time value.

Df or mat
Isthe USAGE format of the returned number of milliseconds or microseconds,
enclosed in single quotation marks.

Converting the Time Portion of a Date-Time Field to a Number

The following request converts time portion of the TRANSDATE field to a number of
milliseconds:

TABLE FI LE VI DECTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COWPUTE
M LLI SEC/ D12. 2 = HTI ME(8, TRANSDATE, 'Dl12.2")
VWHERE DATE EQ 2000

END

Theoutput is:
CUSTID DATE- TI NE M LLI SEC

1118 2000/ 06/ 26 05: 45 20, 700, 000. 00
1237 2000/ 02/ 05 03: 30 12, 600, 000. 00

Developing Applications 3-127

Using Functions and Subroutines

IMOD, FMOD, and DMOD: Calculating the Remainder From a

Division

Syntax

3-128

The MOD subroutines calcul ate the remainder from adivision. There are three MOD
subroutines:

e IMOD returns the remainder as an integer.

* FMOD returns the remainder as a floating-point number.

» DMOD returns the remainder as a decimal number.

The three subroutines use the formula:

remai nder = dividend - | NT(dividend/divisor) * divisor
Available on: All platforms.

Related functions and subroutines:

INT

How to Calculate the Remainder From a Division
subroutine(dividend, divisor, outfield)
where:

subroutine
Is one of the following:

I MOD returns the remainder as an integer.
FMOD returns the remainder as a floating-point number.
DMOD returns the remainder as a decimal number.

di vi dend
Numeric

Isthe dividend.
di vi sor

Numeric

Isthe divisor.

outfield
Numeric

Is the name of the field to which the remainder is returned. Remember that the
subroutine name (IMOD, FMOD, or DMOD) determines the format. This argument
can also be the format of the output value, enclosed in single quotation marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Extracting Last Three Digits From Account
Number

The following request extracts the last three digits from the employee bank account
numbers by dividing by 1000 and finding the remainder:

TABLE FI LE EMPLOYEE

PRI NT ACCTNUMBER AND

COVPUTE LAST3_ACCT/ |1 3L = | MOD(ACCTNUMBER, 1000, LAST3_ACCT);
BY LAST_NAME BY FI RST_NAME

VWHERE (ACCTNUMBER NE 000000000) AND (DEPARTMENT EQ "M S');
END

The request produces the following output:

PAGE 1

LAST_NAME FI RST_NAME ACCTNUMBER LAST3_ACCT
BLACKWOOD ROSENARI E 122850108 108
CRCSS BARBARA 163800144 144
GREENSPAN MARY 150150302 302
JONES DI ANE 040950036 036
MCCOY JOHN 109200096 096
SM TH MARY 027300024 024

INT: Finding the Greatest Integer

Syntax

The INT function returns the integer part of its argument.
Available on: All platforms.

Related functions and subroutines:

IMOD, FMOD, and DMOD

How to Calculate the Greatest Integer
I NT(ar gunent)
where:

ar gunent
Numeric

I's the value on which the function operates. Y ou may supply the actual value, the
name of afield that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

Developing Applications 3-129

Using Functions and Subroutines

Example

Report Request Calculating the Greatest Integer in DED_AMT

The following request calculates the greatest integer in the DED_AMT field:

TABLE FI LE EMPLOYEE
SUM DED_AMT AND COMPUTE

| NT_DED_AMI/ | 11=| NT(DED_AMT) ;

BY LAST_NAME BY FI RST_NANE

WHERE (DEPARTMENT EQ ' M S') AND (PAY_DATE EQ 820730);
END

The request produces the following output:

PAGE 1
LAST_NANE FI RST_NAMVE DED_AMT | NT_DED_AMT
BLACKWOCD ROSEMARI E $1, 261. 40 1261
CROSS BARBARA $1, 668. 69 1668
GREENSPAN MARY $127. 50 127
JONES DI ANE $725. 34 725
SM TH MARY $334. 10 334

ITONUM: Converting Large Binary Integers to Double-Precision

3-130

The ITONUM subroutine converts large binary integersin non-FOCUS files to
double-precision format. Some programming languages and some non-FOCUS data
storage systems use large binary integer formats. Large binary integers (more than 4 bytes
in length) are not supported in the Master File syntax and, therefore, require conversion to
double-precision format.

The ITONUM subroutine processes a large byte binary format input string and convertsiit
to a double-precision number. The user specifies how many of the rightmost bytesin the
input string are significant. The output of ITONUM is an 8-byte double-precision field.

Available on: All platforms.
Related functions and subroutines:
ITOPACK

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Convert Large Binary Integers to Double-Precision
| TONUM si gbytes, infield, outfield)
where:

si gbytes
Numeric

I's the maximum number of bytesin the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 Theleft-most 3 bytes are ignored.
6 Theleft-most 2 bytes are ignored.

7 Theleft-most byte isignored.
infield
A8
Isthe field that contains the binary number. Both the USAGE and ACTUAL formats
must be A8.
outfield

Numeric

Isthe name of the field that contains the double-precision number. This argument can
also be the format of the output value, enclosed in single quotation marks. The format
must be specified as Dn or Dn.d.

Report Request Converting a Large Binary Integer to
Double-Precision

Suppose a binary number in an external file has the following COBOL format:
PIC 9(8)V9(4) COWP

It isdefined in the EUROCAR Master File asafield called BINARYFLD. Itsfield
formats are USAGE=A8 and ACTUAL=AS8, sinceitslength is greater than 4 bytes.

The field can be converted to a double-precision number using the following request:

DEFI NE FI LE EURCCAR

MYFLD/ D12.2 = | TONUM 6, BI NARYFLD, MYFLD);
END

TABLE FI LE EUROCAR

PRI NT MYFLD BY CAR

END

Developing Applications 3-131

Using Functions and Subroutines

ITOPACK: Converting Large Binary Integers to Packed-Decimal

Format

Syntax

3-132

The ITOPACK subroutine converts large binary integers in non-FOCUS filesto
packed-decimal format. Some programming languages and some non-FOCUS data
storage systems use double-word binary integer formats. These are similar to the
single-word binary integers used by FOCUS, but they allow larger numbers. Large binary
integers (more than 4 bytesin length) are not supported in the Master File syntax and,
therefore, require conversion to packed format.

The ITOPACK subroutine processes an 8-byte binary format input string and converts it
to a packed number. The user specifies how many of the rightmost bytes in the input
string are significant. The output of ITOPACK isan 8-byte packed field of up to 15
significant numeric positions (for example, P15 or P16.d).

Available on: All platforms.
Related functions and subroutines:
ITONUM

How to Convert Large Binary Integers to Packed-Decimal
Format

| TOPACK(si gbytes, infield, outfield)
where:

si gbyt es
Numeric

I's the maximum number of bytesin the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 Upto 11 significant positions (the first 3 bytes are ignored).
6 Upto 14 significant positions (the first 2 bytes are ignored).
7 Upto 15 significant positions (the first byte isignored).

infield

A8

Isthe field that contains the binary number. Both the USAGE and ACTUAL formats
must be A8.

Information Builders

Alphabetical List of Functions and Subroutines

Example

outfield
Numeric

Is the name of the field that contains the packed number. This argument can also be

the format of the output value, enclosed in single quotation marks. The format must
be specified as Pn or Pn.d.

Note: The only restrictionis that for afield defined as‘PIC 9(15) COMP’ or the
equivalent (15 significant digits), the maximum number that can be trandated is
167,744,242,712,576.

Report Request Converting a Large Binary Integer to
Packed-Decimal Format

Suppose a binary number in an external file has the following COBOL format:
PIC 9(8)V9(4) COWP

It is defined to FOCUS in the EUROCAR Master File asafield called BINARYFLD. Its
field formats are USAGE=A8 and ACTUAL=AS8, since itslength is greater than 4 bytes.

The field can be converted to a packed number using the following request:

DEFI NE FI LE EURCCAR

PACKFLD/ P14. 4 = | TOPACK(6, BI NARYFLD, PACKFLD);
END

TABLE FI LE EUROCAR

PRI NT PACKFLD BY CAR

END

Developing Applications 3-133

Using Functions and Subroutines

ITOZ: Converting to Zoned Format

Syntax

3-134

The ITOZ subroutine converts numbers in numeric format to zoned format. Although
FOCUS does not process zoned numbers, FOCUS requests can write zoned fields to
extract files for use by external programs.

Available on: All platforms.

How to Convert to Zoned Format
| TQZ(out | engt h, nunber, outfield)
where:

out |l ength
Numeric

Is the length of the zoned number in bytes, up to 15 bytes. The last byte includes the
sign.

nunber
Numeric

I's the number to be converted or the field that contains the number. The number is
truncated to an integer beforeit is converted.

outfield
Alphanumeric

Is the name of the field that contains the zoned number. This argument can also be
the format of the output value, enclosed in single quotation marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example Converting to Zoned Format

The following request prepares an extract file containing employee IDs and salariesin
zoned format for a COBOL program. The request is:

DEFI NE FI LE EMPLOYEE
ZONE_SAL/ A8 = | TOZ(8, CURR SAL, ZONE_SAL):
END

TABLE FI LE EMPLOYEE

PRI NT ZONE_SAL BY EMP_I D

ON TABLE SAVE AS SALARI ES

END

The resulting extract fileis:
NUMBER OF RECORDS | N TABLE= 12 LINES= 12

EBCDI C RECORD NAMED SALARI ES

FI ELDNAME ALl AS FORVAT LENGTH
EMP_I D El D A9 9
ZONE_SAL A8 8
TOTAL 17

DCB USED W TH FI LE SALARI ES | S DCB=(RECFM=FB, LRECL=00017, BLKSI ZE=00340)
>

JULDAT: Converting From Gregorian to Julian Format

The JULDAT subroutine converts dates from year-month-day format to Julian (year-day)
format. Datesin Julian format are 5- or 7-digit numbers. The first two or four digits are
the year, the last three digits are the number of the day counting from January 1. For
example, January 1, 1987 in Julian format is either 87001 or 1987001, and December 31,
1987 is 87365 or 1987365.

Depending on the format of the output, JULDAT converts dates to either YYNNN or
YYYYNNN format, using the DEFCENT and YRTHRESH settings.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine (which only produces 5-digit dates), change the DATEFNS setting to
OFF.

Available on: All platforms.

Related functions and subroutines:
GREGDT

Developing Applications 3-135

Using Functions and Subroutines

Syntax

Example

3-136

How to Convert a Gregorian Date to a Julian Date
JULDAT(i ndate, outfield)
where:

i ndat e

Numeric

Isthe date or field containing the date in year-month-day format (YMD or YYMD).
outfield

Integer at least 15

Isthe field to which the Julian date is returned. This argument can aso be the format
of the output value, enclosed in single quotation marks (15 or 17). For Maintain,
specify the field name.

JULDAT returns dates in the following format:

If theformatisl5or 16 | If theformat is|7 or greater
If DATEFNS=ON YYNNN YYYYNNN (JULDAT usesthe
(the default) DEFCENT and YRTHRESH
settings to determine the century, if
necessary).
If DATEFNS=OFF | YYNNN YYNNN

Report Request Converting Gregorian Date to Julian Date

The following request prints employee names and hire dates, in both year-month-day and
Julian formats for the PRODUCTION department:

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND

COVPUTE JULI AN/ 7 = JULDAT(H RE_DATE, JULI AN);
BY LAST_NAME BY FI RST_NAME

WHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME H RE_DATE JULI AN
BANNI NG JOHN 82/ 08/ 01 1982213
I RVI NG JOAN 82/01/ 04 1982004
MCKNI GHT ROGER 82/ 02/ 02 1982033
ROVANS ANTHONY 82/07/01 1982182
SM TH RI CHARD 82/ 01/ 04 1982004
STEVENS ALFRED 80/ 06/ 02 1980154

Notice that JULDAT determines the century (using the DEFCENT and YRTHRESH
settings).

Information Builders

Alphabetical List of Functions and Subroutines

LAST: Retrieving the Preceding Value

Syntax

Example

The LAST function retrieves the preceding value selected for afield.

Available on: All platforms.

How to Retrieve the Preceding Value
LAST fi el dnane
where:

fiel dname
Alphanumeric or Numeric

Isthe field name.

The effect of the keyword LAST depends on whether it appearsin a DEFINE or
COMPUTE. In aDEFINE, the LAST vaueisthat of the previous record retrieved from
the file before sorting takes place. In a COMPUTE, the LAST value is that of the record
in the previous line in the report.

LAST cannot be used with -SET in Dialogue Manager.

Report Request Displaying Running Total of Current Salaries by
Department

The following request produces a running total of the CURR_SAL field within
departments. It uses LAST to determine whether the previoudly retrieved value of
DEPARTMENT equalsthe current value. If the values are equal, CURR_SAL is added to
RUN_TOT. If the values are different, the department has changed and RUN_TOT starts
with the value of the first CURR_SAL in the new department.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME CURR_SAL AND COVPUTE

RUN_TOT/ D12. 2M = | F DEPARTMENT EQ LAST DEPARTMENT THEN
(RUN_TOT + CURR SAL) ELSE CURR SAL ;

AS ' RUNNI NG, TOTAL, SALARY'

BY DEPARTMENT SKI P- LI NE

END

Developing Applications 3-137

Using Functions and Subroutines

The request produces the following output:

PAGE 1
RUNNI NG
TOTAL
DEPARTMENT LAST_NAME CURR_SAL SALARY
M S SM TH $13, 200. 00 $13, 200. 00
JONES $18, 480. 00 $31, 680. 00
MCCOY $18, 480. 00 $50, 160. 00
BLACKWOCD $21, 780. 00 $71, 940. 00
GREENSPAN $9, 000. 00 $80, 940. 00
CRCSS $27,062. 00 $108, 002. 00
PRODUCTI ON STEVENS $11, 000. 00 $11, 000. 00
SM TH $9, 500. 00 $20, 500. 00
BANNI NG $29, 700. 00 $50, 200. 00
I RVI NG $26, 862. 00 $77,062. 00
ROMANS $21, 120. 00 $98, 182. 00
MCKNI GHT $16, 100. 00 $114, 282. 00

LCWORD: Converting Letters in a Word to Mixed Case

The LCWORD subroutine converts the letters in the given string to mixed case. The
subroutine converts to lowercase every alphanumeric character except:

e Thefirst letter of each new word.

» Thefirst letter after a single or double quotation mark. For example, O’ CONNOR is
converted to O’ Connor and JACK’ Sto Jack’S (not Jack’s).

The rest of the word is converted to lowercase. The result is aword with an initial
uppercase character followed by lowercase characters.

If the subroutine encounters a number in the string, the subroutine treats it as an uppercase
character and continues to convert the following al phabetic charactersto lowercase.

Available on: All platforms.
Related functions and subroutines:
» LOCASE

e UPCASE

3-138 Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Convert Letters to Mixed Case
LOWORD(i nl ength, infield, outfield)
where:

inlength

Integer

Isthe length of the input field.
infield

Alphanumeric

Is the name of the input field or the input string enclosed in single quotation marks.
outfield

Alphanumeric

Is the name of the output field. The length of the outfield must be greater than or
equal to the length of the infield.

Report Request Converting LAST_NAME to Mixed Case

The following request converts LAST_NAME values, which are all uppercase, to mixed
case:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

M XED_CASE/ A15 = LOWORD(15, LAST_NAME, M XED CASE) :
VWHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The request produces the following output:

PAGE 1

LAST_NAME M XED_CASE
STEVENS St evens

SM TH Smth

BANNI NG Banni ng

I RVI NG I rving
ROVANS Romans
MCKNI GHT Mekni ght

Developing Applications 3-139

Using Functions and Subroutines

LJUST: Left-justifying a String

The LJUST subroutine left-justifies a character string within afield. All leading spaces
become trailing spaces. The LJUST subroutine is helpful in left-justifying character
strings previously right-justified or centered.

Available on: All platforms.
Related functions and subroutines:
e CTRFLD

* RJUST

Note: LIJUST will not have any visible effect in areport that uses StyleSheets (SET
STYLE=0ON) unless you center the item.

Syntax How to Left-justify a String
LJUST(inl ength, infield, outfield)
where:

i nl ength

Integer

Isthe length of infield and outfield.
infield

Alphanumeric

Is the name of the data field to be left-justified or the input string enclosed in single
guotation marks.

outfield
Alphanumeric

Is the name of the field to which the output is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.

3-140 Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Left-justifying a Formerly Numeric Field

The following request converts current salaries from numeric to al phanumeric format
using the FTOA subroutine. It then left-justifies the resulting alphanumeric values.

Note: If you are running this request on a platform where StyleSheets are turned on by
default (for example WebFOCUS), issue SET STY LE=OFF before running the request.

SET STYLE=CFF

TABLE FI LE EMPLOYEE
PRI NT FI RST_NAME AND COMPUTE

SAL_STRI NG A12 = FTOA(CURR SAL, '(D8.2M', SAL_STRING:
LEFT_SAL/ Al2 = LJUST(12, SAL_STRING LEFT_SAL);

BY LAST_NAME

WWHERE DEPARTMENT EQ ' M S

END

The request produces the following output:

PAGE 1

LAST_NAME FI RST_NAME SAL_STRI NG LEFT_SAL
BLACKWOOD ROSEMARI E $21, 780. 00 $21, 780. 00
CRCSS BARBARA $27,062. 00 $27,062. 00
GREENSPAN MARY $9, 000. 00 $9, 000. 00
JONES DI ANE $18, 480. 00 $18, 480. 00
MCCOY JOHN $18, 480. 00 $18, 480. 00
SM TH MARY $13, 200. 00 $13, 200. 00

Developing Applications 3-141

Using Functions and Subroutines

LOCASE: Converting Text to Lowercase
The LOCASE subroutine converts the al phabetical text in afield to lowercase.

Thisisuseful for converting input fields from FIDEL CRTFORMSs and from non-FOCUS
applications to lowercase.

Note: This subroutine used to be named LOWCASE on the Windows platform. For
upward compatibility, you can issue the command LET LOCASE = LOWCASE.

Available on: All platforms.
Related functions and subroutines:
« LCWORD

e UPCASE

Syntax How to Convert Text to Lowercase
LOCASE(i nl ength, infield, outfield)
where:

i nl ength
Integer
Isthe length of the input and output fields. It must be greater than 0. The length, in
characters, must be equal for both arguments; otherwise, an error occurs.
infield
Alphanumeric

Is the name of the field to convert or the input string enclosed in single quotation
marks.

outfield
Alphanumeric

Is the name of the field in which to store the converted text. This can be the same as
the infield. This argument can also be the format of the output value, enclosed in
single quotation marks.

3-142 Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Converting LAST_NAME to Lowercase

The following request converts LAST _NAME values, which are all uppercase, to
lowercase:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

LOWER NAME/ Al5 = LOCASE(15, LAST_NAVE, LOAER NAME);
WHERE DEPARTMENT EQ 'M S';

END

The request produces the following output:

PAGE 1

LAST_NAME LOVNER_NAME
SM TH smth
JONES j ones
MCCOY nccoy
BLACKWOOD bl ackwood
GREENSPAN gr eenspan
CROSS Cross

LOG: Calculating the Natural Logarithm

Syntax

The LOG function returns the natural logarithm of its argument.
Available on: All platforms.

Related functions and subroutines:

EXP

How to Calculate the Natural Logarithm
LOG(ar gunent)
where:

ar gunent
Numeric

I's the value on which the function operates. Y ou may supply the actual value, the
name of afield that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation. If you enter an argument less than or equal to 0, LOG returns 0.

Developing Applications 3-143

Using Functions and Subroutines

Example Report Request Calculating Natural Logarithm of Current
Salary

The following request calculates the log of employees’ current salaries:

TABLE FI LE EMPLOYEE
PRI NT CURR_SAL AND COVPUTE

LOG CURR SAL/D12.2 = LOG CURR SAL);
BY LAST_NAME BY FI RST_NANE

WHERE DEPARTMENT EQ ' PRCDUCTI ON ;
END

The request produces the following output:

PAGE 1
LAST_NANE FI RST_NAVE CURR SAL LOG CURR SAL
BANNI NG JOHN $29, 700. 00 10. 30
I RVI NG JOAN $26, 862. 00 10. 20
MCKNI GHT ROGER $16, 100. 00 9. 69
ROVANS ANTHONY $21, 120. 00 9. 96
SM TH Rl CHARD $9, 500. 00 9.16
STEVENS ALFRED $11, 000. 00 9.31

MAX and MIN: Finding the Maximum or Minimum Value

The MAX and MIN functions return either the maximum or minimum value
(respectively) from alist of arguments.

Available on: All platforms.

Syntax How to Find the Maximum or Minimum Value
The syntax for MAX is
MAX(argunment 1, argunent2, ...)

and the syntax for MIN is
M N(argunment 1, argunent2, ...)
where:

argunent 1, argunent?2
Numeric

I's the value on which the function operates. Y ou may supply the actua value, the
name of afield that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

3-144 Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Determining Minimum of ED_HRS and 30
The following request finds the minimum value from the ED_HRS field and the value 30:

TABLE FI LE EMPLOYEE
PRI NT ED_HRS AND COMPUTE

M N_EDHRS 30/ D12. 2=M N(ED_HRS, 30);
BY LAST_NAME BY FI RST_NANE

WHERE DEPARTMENT EQ 'M S' ;

END

This regquest produces the following output:

PAGE 1
LAST_NANE FIRST_NAME ED HRS M N_EDHRS_30
BLACKWOCD ROSEMARIE 75.00 30. 00
CROSS BARBARA 45. 00 30. 00
GREENSPAN MARY 25.00 25.00
JONES DI ANE 50. 00 30. 00
MCCOY JOHN .00 .00
SM TH MARY 36. 00 30. 00

MVSDYNAM: Passing a DYNAM Command to the Command

Processor

The MVSDYNAM subroutine transfers a specified FOCUS DY NAM command to the
DYNAM command processor. A zero (0) return code indicates successful processing;
non-zero codes indicate failure. Thisis useful in compiled MODIFY procedures after the
CASE AT START statement to pass all ocation statements to the processor.

Availableon: MVS.

Developing Applications 3-145

Using Functions and Subroutines

Syntax

3-146

How to Pass a DYNAM Command to the Command Processor
MVSDYNAM command, | ength, rc)
where:

comand
Alphanumeric

Isthe DYNAM command, enclosed in single quotation marks, or afield or variable
that contains the command. The subroutine converts lowercase input to uppercase.

| ength
Numeric

I's the command length from 1 to 256 characters long.

rc
14

Isthe name of the field that contains the return code. This argument can also be the
format of the output value, enclosed in single quotation marks. For Maintain, specify
the field name.

MVSDYNAM returns one of three possible types of codes:

0
The DYNAM command transferred and successfully executed.

posi tive nunber

FOCUS error number corresponding to a FOCUS error.

negative nunber
FOCUS error number corresponding to DY NAM failure (from the SVC).

Information Builders

Alphabetical List of Functions and Subroutines

Example Executing the DYNAM FREE Command

In this MODIFY request, the MV SDY NAM subroutine transfers the DY NAM FREE
command to the processor. Query commands display the results before and after the
DYNAM FREE command is specified. The successful return code of zero (0) is stored in
the RESfield.

-* THE RESULT OF ? TSO DDNAME CAR W LL BE BLANK AFTER ENTERI NG
-* "FREE FILE CAR AS YOUR COMVAND
DYNAM ALLOC FI LE CAR DS USERL. CAR FOCUS SHR REUSE
? TSO DDNAME CAR
- RUN
- PROWT &XX. ENTER A SPACE TO CONTI NUE.
MODI FY FI LE CAR
COWPUTE LI NE/ A60=;
RES/ 14 = 0;
CRTFORM
' ENTER DYNAM COVIVAND BELOW "
" <LI NB>"
COVPUTE
RES = MVSDYNAM LI NE, 60, RES);
GOTO DI SPLAY

CASE DI SPLAY
CRTFORM LI NE 1
' THE RESULT OF DYNAM WAS <D. RES"
GOTO EXIT
ENDCASE
DATA
END
? TSO DDNAME CAR

Developing Applications 3-147

Using Functions and Subroutines

Thefirst query command displays the allocation that results from the DY NAM
ALLOCATE command. Type one space and press the Enter key to continue.

DDNANVE
DSNAVE

DI SP

DEVI CE
VOLSER
DSORG
RECFM
SECONDARY
ALLOCATI ON
BLKSI ZE
LRECL
TRKTOT
EXTENTSUSED
BLKSPERTRK
TRKSPERCYL
CYLSPERDI SK =
BLKSWRI TTEN =
FOCUSPACGES =

CAR
USER1. CAR FOCUS
SHR
DI SK
USERWN
PS
F
100
BLOCKS
4096
4096
8
1
12
15
2227
96
8

ENTER A SPACE TO CONTI NUE >
Then, enter the DY NAM FREE command. (The DYNAM keyword is assumed.)

ENTER DYNAM COVIVAND BELOW
free file car

The subroutine successfully transfers the DY NAM FREE command to the processor and
the return code displays. Press the Enter key to continue.

THE RESULT OF DYNAM WAS 0

Then, the second query command indicates that the all ocation has been freed.

3-148

DDNANVE
DSNAVE

DI SP

DEVI CE
VOLSER
DSORG
RECFM
SECONDARY
ALLOCATI ON
BLKSI ZE
LRECL
TRKTOT
EXTENTSUSED
BLKSPERTRK
TRKSPERCYL
CYLSPERDI SK
BLKSWRI TTEN
>

CAR

*k k%

[eNeoNeoNoNeNoNeNo)

Information Builders

Alphabetical List of Functions and Subroutines

OVRLAY: Overlaying a Substring Within a String

Syntax

The OVRLAY subroutine overlays a substring on another character string. When
specified in MODIFY procedures, the subroutine enables you to edit a part of an
alphanumeric field without replacing the field entirely.

Available on: All platforms.

Related functions and subroutines:

« EDIT
« POSIT
» SUBSTR

How to Overlay a Substring
OVRLAY(base, basel en, substring, sublen, position, outfield)
where:

base
Alphanumeric

Is the character string to be overlaid.

basel en
Integer
Isthe length of the base and outfield strings. If this argument isless than or equal to
0, unpredictable results occur.

substring
Alphanumeric

I's the substring to overlay the base string.

subl en
Integer
Isthe length of the substring. If this argument is less than or equal to O, the
subroutine returns spaces.
position
Integer
Is the position in the base string where the overlay isto begin. If thisargument is less

than or equal to O, the subroutine returns spaces. If the argument is larger than
baselen, the subroutine returns the base string.

Developing Applications 3-149

Using Functions and Subroutines

outfield
Alphanumeric

Is the name of the field to which the overlaid string is returned. If the overlaid string
islonger than the output field, the string is truncated to fit the field. This argument
can also be the format of the output value, enclosed in single quotation marks.

Example Report Request Replacing Last Three Characters of EMP_ID

The following request replaces the last three characters of EMP_ID (starting at the 7th
position) with the three-character job code found in CURR_JOBCODE, creating a new
security identification code:

TABLE FI LE EMPLOYEE
PRI NT EMP_I D AND CURR_JOBCODE AND COMVPUTE

NEW | D/ A9 = OVRLAY(EMP_ID, 9, CURR JOBCODE, 3, 7, NEWID);
BY LAST_NAME BY FI RST_NAME

WWHERE DEPARTMENT EQ ' M S';

END

The request produces the following output:

PAGE 1

LAST_NANE FIRST_NAME EMP_ID CURR_JOBCODE NEW I D
BLACKWOCD ROSEMARI E 326179357 B04 326179804
CROSS BARBARA 818692173 Al7 818692A17
GREENSPAN MARY 543729165 AQ7 543729A07
JONES DI ANE 117593129 BO3 117593803
MCCOY JOHN 219984371 BO2 219984B02
SM TH MARY 112847612 Bl4 112847B14

3-150 Information Builders

Alphabetical List of Functions and Subroutines

Example

MODIFY Request Using OVRLAY

ThisMODIFY procedure prompts for input using a CRTFORM screen and updates first
names in the EMPLOY EE data source. The CRTFORM LOWER option enables you to
update the names in lowercase, but the procedure ensures that the first letter of each name
is capitalized. The procedureis:

MODI FY FI LE EMPLOYEE
CRTFORM LOVER
"ENTER EMPLOYEE' S ID. <EMP_| D'
"ENTER FI RST_NAME | N LOWER CASE: <FI RST_NANE"
MATCH EMP_I D
ON NOVATCH REJECT
ON MATCH COMVPUTE
F_UP/Al = UPCASE (1, FIRST_NAME, 'Al');
FI RST_NAME/ A10 = OVRLAY (FI RST_NAME, 10, F_UP,
1, 1, 'Al0");
ON MATCH TYPE " CHANGI NG FI RST NAME TO <FI RST_NAME "
ON MATCH UPDATE FI RST_NAME
DATA
END

The COMPUTE statement invokes two subroutines:
» The UPCASE subroutine extracts the first letter and convertsit to uppercase.

e« The OVRLAY subroutine replaces the present first letter in the name with the
uppercase initial.
A sample execution is:

ENTER EMPLOYEE' S I D: 071382660
ENTER FI RST_NAME | N LONER CASE: alfred

The procedure processes as.

1. The procedure prompts you from a CRTFORM screen for an employee ID and afirst
name. Y ou type the following data and press the Enter key:

EMPLOYEE' S I D: 071382660
FI RST NAME: al fred

2. The procedure searches the data source for the ID 071382660. If it findsthe ID, it
continues processing the transaction. In this case, the ID exists and belongsto Alfred
Stevens.

3. The UPCASE subroutine extracts the | etter afrom alfred and converts it to the | etter
A.

Developing Applications 3-151

Using Functions and Subroutines

4. The OVRLAY subroutine overlaysthe letter A on afred. The first name is now
Alfred.

ENTER EMPLOYEE' S | D
ENTER FI RST_NAME | N LONER CASE:

CHANG NG FI RST NAME TO Al fred
5. The procedure updates the first name in the data source.

6. When you exit the procedure with PF3, the FOCUS transaction message indicates
that one update occurred.

TRANSACTI ONS: TOTAL
SEGVENTS: I NPUT

1 ACCEPTED= 1 REJECTED= 0
0 UPDATED = 1 DELETED = 0

PARAG: Dividing Text Into Smaller Lines

3-152

The PARAG subroutine divides lines of text into smaller lines by marking them off with a
delimiter character. The GETTOK subroutine can then place the smaller lines, called
sublines, into different fields.

The PARAG subroutine works by scanning a specific number of characters from the
beginning of the line and replacing the last space in this group with a delimiter. 1t then
scans the next group of characters starting from the delimiter and replaces the last space
in this group with a second delimiter. It repeats this process until the end of the line. Each
group of characters marked off by the delimiter becomes a subline.

If the subroutine finds no spacesin the group it scans, it replaces the next character after
the group with the delimiter. Therefore, be sure that no word of text is longer than the
number of characters scanned by the subroutine (the maximum subline length).

Available on: All platforms.
Related functions and subroutines:
GETTOK

Information Builders

Alphabetical List of Functions and Subroutines

Syntax How to Divide Text Into Smaller Lines
PARAG i nl en, infield, 'delim, subsize, outfield)
where:
inlen

Integer

Isthe length of input string and the outfield.
infield

Alphanumeric

Isthe input string.

del i m
Alphanumeric

Isthe delimiter character. Choose a character that does not appear in the text.

subsi ze
Integer

I's the maximum length of the subline.

outfield
Alphanumeric

Is the name of the field to which the delimited text is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

Note: If theinput lines of text are roughly equal in length, you can keep the sublines
equal by specifying a subline length that evenly divides into the length of the text lines.
For example, if you are dividing text lines 120 characters long, you can divide each of
them into two sublines 60 characters long, three sublines 40 characters long, and so on.
This enables you to print lines of text in paragraph form.

However, if you divide the lines evenly, you may create more sublines than you intend.
For example, suppose you divide 120-character text lines into two lines of 60 characters
maximum length. One lineis divided so that the first subline is 50 characterslong and the
second is 55. Thisleaves room for athird subline 15 characters long.

To correct this, insert a space (using weak concatenation) at the beginning of the extra
subline, then append this subline (using strong concatenation) to the end of the one before
it.

Developing Applications 3-153

Using Functions and Subroutines

Example

Report Request Dividing Address Line Into Smaller Lines

The following request divides an address line into smaller lines using commas as
delimiters:

TABLE FI LE EMPLOYEE
PRI NT ADDRESS_LN2 AND COVPUTE

PARA_ADDR/ A20 = PARAG(20, ADDRESS LN2, ',', 10, PARA ADDR);
BY LAST_NAME

WHERE TYPE EQ ' HSM ;

END

The request produces the following output:

PAGE 1
LAST_NANE ADDRESS_LN2 PARA_ADDR

BANNI NG APT 4C APT 4C

CROSS 147-15 NORTHERN BLD 147- 15, NORTHERN, BLD
GREENSPAN 13 LI NDEN AVE. 13 LI NDEN, AVE.

I RVI NG 123 E 32 ST. 123 E 32, ST. ,
JONES 235 MURRAY HIL PKWY 235 MURRAY, H L PKWY
MCKNI GHT 117 HARRI SON AVE. 117, HARRI SON, AVE.
ROVANS 271 PRES| DENT ST. 271, PRESI DENT, ST.
SM TH 136 E 161 ST. 136 E 161, ST.

PCKOUT: Writing Packed Numbers of Different Lengths

3-154

The PCKOUT subroutine enables requests to write packed numbers (where the operating
system supportsit) of different lengths to extract files (HOLD and SAVE files). When a
request saves packed fieldsin extract files, it writes them as 8- or 16-byte fields regardless
of their format specifications. With the PCKOUT subroutine, you can vary their lengths
between 1 to 16 bytes.

Available on: All platforms.
Related functions and subroutines:
« CHKPCK

e ITOPACK

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Example

How to Write Packed Numbers of Different Lengths
PCKOUT(i nfield, outlength, outfield)
where:

infield
Numeric

Istheinput field that contains the values. The field can be packed, integer,
floating-point or double-precision. If the field is not integer, its values are rounded to
the nearest integer.

outl ength
Numeric

Isthe output field length from 1 to 16 bytes.

outfield
Alphanumeric

Is the name of the output field written to the extract file. The subroutine returns the
field as alphanumeric although it contains packed data. This argument can also be the
format of the output value, enclosed in single quotation marks.

Writing Packed Numbers of Different Lengths

This reguest writes names, salaries, and dates of hire to a SAVE file. The salaries from
the CURR_SAL field (USAGE=D12.2M) are converted and written to the 5-byte packed
field SHORT_SAL:

DEFI NE FI LE EMPLOYEE

SHORT_SAL/ A5 = PCKOUT(CURR SAL, 5, SHORT_ SAL):
END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME SHORT_SAL HI RE_DATE

ON TABLE SAVE

END

Developing Applications 3-155

Using Functions and Subroutines

After FOCUS creates the SAVE file, the FOCUS message returns the fields and their
lengths:

>
NUMBER OF RECORDS | N TABLE= 12 LINES= 12

EBCDI C RECORD NAMED SAVE

FI ELDNAME ALI AS FORNVAT LENGTH
LAST_NAME LN Al5 15
SHORT_SAL A5 5

HI RE_DATE HDT | 6YMD 6
TOTAL 26

DCB USED W TH FI LE SAVE I'S DCB=(RECFM=FB, LRECL=00026, BLKSI ZE=00520)

POSIT: Finding Substring Position

Syntax

3-156

The POSIT subroutine finds the starting positions of substrings within larger strings. For
example, the position of the substring DUCT in the character string PRODUCTION is
position 4.

If the substring is not in the parent string, the subroutine returns the value 0.
Available on: All platforms.

Related functions and subroutines:

OVRLAY

How to Find a Substring Position
PCsSI T(parent, inlength, substring, sublength, outfield)
where:

par ent
Alphanumeric

Isthe field containing the parent character string.

inlength
Integer

Isthe parent field length. If this argument is less than or equal to 0, the subroutine
returns O.

substring
Alphanumeric

I's the substring whose position you wish to find, enclosed in single quotation marks,
or afield that contains the string.

Information Builders

Alphabetical List of Functions and Subroutines

Example

subl engt h
Integer

Isthe length of substring. If this argument isless than or equal to O, or if it is greater
than the inlength argument, the subroutine returns a 0.

outfield
Integer

Is the name of the field to which the position is returned. This argument can aso be
the format of the output value, enclosed in single quotation marks.

Report Request Determining First Position of the Letter | in
LAST_NAME

The following request displays the positions of the first capital letter | in last names:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

| _IN_NAVE/ |2 = POSI T(LAST_NAME, 15, 'I', 1, '12');
VHERE DEPARTMENT EQ ' PRCDUCTI ON ;

END

The request produces the following output:

PAGE 1
LAST_NANE | _I N_NANE
STEVENS 0
SM TH 3
BANNI NG 5
I RVI NG 1
ROVANS 0
MCKNI GHT 5

Developing Applications 3-157

Using Functions and Subroutines

PRDNOR, PRDUNI, RDNORM, and RDUNIF: Generating Random

Numbers

The PRDNOR, PRDUNI, RDNORM, and RDUNIF subroutines generate random
numbers:

RDNORM generates double-precision random numbers that are normally distributed
with an arithmetic mean of 0 and a standard deviation of 1. If you use the RDNORM
subroutine to generate a large set of numbers (between 1 and 32768), it has the
following properties:

The numbersin the set lie roughly on a bell curve, as shown in the following
figure. The bell curve is highest at the O mark, which means that there are more
numbers close to 0 than farther away.

Frequency
of
Occurrence

-4 -3 -2 -1 0 1 2 3 4
Random Number Generated

The average of the setiscloseto 0.

The set can contain numbers of any size, but most of the numbers are between 3
and -3.

PRDNOR does the same thing as RDNORM, except that the set of random numbers
isreproducible.

RDUNIF generates double-precision random numbers uniformly distributed between
0 and 1 (that is, any random number it generates has an equal probability of being
anywhere between 0 and 1).

PRDUNI does the same thing as RDUNIF, except that the set of random numbersis
reproducible.

Available on: All platforms.

3-158

Information Builders

Alphabetical List of Functions and Subroutines

Syntax

Syntax

How to Use RDNORM and RDUNIF to Generate Random
Numbers

subroutine(outfield)
where:

subroutine
Is one of the following:

RDNORM generates normally distributed random numbers with an arithmetic mean of 0
and a standard deviation of 1.

RDUNI F generates random numbers uniformly distributed between 0 and 1.
outfield
Double-precision

I's the name of the double-precision field that contains the random numbers. This
argument can also be the format of the output value, enclosed in single quotation
marks.

How to Use PRDNOR and PRDUNI to Generate Random
Numbers

subroutine(seed, outfield)
where:

subroutine
Is one of the following:
PRDNOR generates reproducible normally distributed random numbers with an
arithmetic mean of 0 and a standard deviation of 1.

PRDUNI generates reproducible random numbers uniformly distributed between 0 and
1

seed
Numeric
Isthe seed or the field that contains the seed, up to nine bytes. The seed istruncated
to an integer.
outfield
Double-precision

Is the name of the field that contains the random numbers. This argument can also be
the format of the output value, enclosed in single quotation marks.

Developing Applications 3-159

Using Functions and Subroutines

Note: For the PRDUNI subroutine, CM S behavior differs from MV S behavior. In CMS,
the seed number changes upon multiple executions as the subroutine is reloaded. In MV'S,
the subroutine is loaded once. To keep the subroutine loaded for the duration of the
session, we recommend assigning the subroutine to atemporary field using a DEFINE
command. The subroutine remains loaded in memory until the DEFINE is cleared.

Example Report Request Using RDNORM to Generate Random Numbers

Suppose you want to randomly pick five employeesin your company to participatein a
survey. The following request generates a random number for each employee and then
chooses the top five:

DEFI NE FI LE EMPLOYEE
RAND/ D12. 2 W TH LAST_NAME = RDNORM RAND) ;
END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND FI RST_NAME
BY H GHEST 5 RAND

END

(You could aso use RDUNIF to generate RAND.)

The request produces output similar to the following (your output will appear differently,
since each time RDNORM generates different random numbers):

PAGE 1
RAND LAST_NAME FI RST_NAME
.65 CROSS BARBARA
.20 BANNI NG JOHN
.19 T RVING JOAN
.00 BLACKWOOD ROSEMVARI E
-.14 GREENSPAN MARY

3-160 Information Builders

Alphabetical List of Functions and Subroutines

Example Report Request Using PRDNOR to Generate Random Numbers

Thisisthe same request used for the RDNORM subroutine, except, that every time you
execute it, the PRDNOR subroutine produces the same results. To change the resullts,
change the seed, specified here as 40. The request is:

DEFI NE FI LE EMPLOYEE
RAND/ D12. 2 W TH LAST_NAME = PRDNOR(40, RAND);
END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND FI RST_NAME
BY H GHEST 5 RAND

END

The request produces the following output:

PAGE 1
RAND LAST_NAME FI RST_NAME
1.38 STEVENS ALFRED
1.12 MCCoY JOHN
.55 SM TH Rl CHARD
.21 JONES DI ANE
.01 [IRVING JOAN

RJUST: Right-justifying a String

The RIJUST subroutine right-justifies a character string within afield. All trailing spaces
become leading spaces. This subroutine is hel pful when you display al phanumeric fields
containing numbers.

Available on: All platforms.
Related functions and subroutines:
« CTRFLD

e LJUST

Note: RJUST will not have any visible effect in areport that uses StyleSheets (SET
STYLE=ON) unless you center the item.

Developing Applications 3-161

Using Functions and Subroutines

Syntax

Example

3-162

How to Right-justify a String
RIUST(inl ength, infield, outfield)
where:

inlength
Integer

Isthe length of infield and outfield.
infield
Alphanumeric
Istheinput field or string enclosed in single quotation marks.

outfield
Alphanumeric

Is the name of the field to which the output is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.

To avoid justification problems, inlength and infield must be the same length.

Report Request Right-justifying a Field
The following request shows last names left-justified and right-justified.

Note: If you are running this request on a platform where StyleSheets are turned on by
default (for example WebFOCUS), issue SET STY LE=OFF before running the request.

SET STYLE=OFF

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME AND COMPUTE

RI GHT_NAME/ A15 = RJUST(15, LAST_NAME, Rl GHT_NAME);
VWHERE DEPARTMENT EQ ' M S'

END

The request produces the following output:

PAGE 1
LAST_NANE Rl GHT_NAMVE

SM TH SM TH
JONES JONES
MCCOY MCCOY
BLACKWOCD BLACKWOCD
GREENSPAN GREENSPAN
CROSS CROSS

Information Builders

Alphabetical List of Functions and Subroutines

SQRT: Calculating the Square Root

Syntax

Example

The SQRT function calculates the square root of its argument.

Available on: All platforms.

How to Calculate the Square Root
SQRT(ar gunent)
where:

ar gunent
Numeric

I's the value on which the function operates. Y ou may supply the actual value, the
name of afield that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

Report Request Calculating Square Root of Movies’ List Price
The following request cal culates the square root of amovie'slist price:

TABLE FI LE MOVl ES

PRI NT LI STPR AND COVPUTE

SQRT_LI STPR/ D12. 2 = SQRT(LI STPR);
BY TITLE

WHERE CATEGCORY EQ ' MJUSI CALS' ;

END

This request produces the following output:

PACGE 1

TITLE LI STPR SQRT_LI STPR
ALL THAT JAZZ 19.98 4. 47
CABARET 19.98 4. 47
CHORUS LINE, A 14.98 3.87
FI DDLER ON THE ROOF 29. 95 5.47

Developing Applications 3-163

Using Functions and Subroutines

SUBSTR: Extracting a Substring

The SUBSTR subroutine extracts a substring from a large character string called a parent
string.

Syntax

3-164

Another way to extract substringsisto use the EDIT function. The differences are:

The EDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

The SUBSTR subroutine can vary the position of the substring depending on the
values of other fields.

Available on: All platforms.

Related functions and subroutines:
EDIT

How to Extract a Substring
SUBSTR(i nl ength, parent, start, end, sublength, outfield)

where:

inlength

Integer
Isthe length of the parent string.

par ent

Alphanumeric

Isthe field containing the parent string or the parent string enclosed in single
guotation marks.

start

end

Integer

Is the starting position of the substring in the parent string. If this argument isless
than 1, the subroutine returns spaces.

Integer

Is the ending position of the substring. If this argument is less than the start argument
or greater than the inlength argument, the subroutine returns spaces.

Information Builders

Alphabetical List of Functions and Subroutines

Example

subl engt h
Integer
Isthe length of the substring (normally end - start + 1). If the sublength is longer than
end
- start +1, the substring is padded with trailing spaces. If it is shorter, the substring is
truncated. This value should be the declared length of outfield. Only sublength
characters will be processed.

outfield
Alphanumeric

Is the name of the field to which the substring is returned. This argument can also be
the format of the output value, enclosed in single quotation marks.

Report Request Extracting Three Characters From LAST NAME
Beginning With the Letter |

The following request uses the POSIT subroutine to determine the position of the first
letter | in LAST_NAME. Then the report extracts the letter | and the next two characters.

TABLE FI LE EMPLOYEE

PRI NT

COVPUTE | _I N_NAVME/ | 2 = POSI T(LAST_NAME, 15, 'I', 1, '12'); AND

COVPUTE | _SUBSTR/ A3 = SUBSTR(15, LAST NAME, | _IN_NAME, | _I N NAME+2, 3,
| _SUBSTR) ;

BY LAST_NAME

WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The request produces the following report:

PAGE 1
LAST_NANE | _IN_NAME | _SUBSTR
BANNI NG 5 ING

I RVI NG 1 IRV
MCKNI GHT 5 1GH
ROVANS 0

SM TH 3 ITH
STEVENS 0

Notice that since Stevens and Romans have no | in their names, SUBSTR extracts a blank
string.

Developing Applications 3-165

Using Functions and Subroutines

TODAY: Returning the Current Date

Syntax

3-166

The TODAY subroutine retrieves the current date from the system in the format
MM/DD/YY or MM/DD/YYYY, depending on the format of the output field.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine (which always returns the current date in the format MM/DD/Y'Y), change
the DATEFNS setting to OFF.

Available on: All platforms.
Related functions and subroutines:
HHMMSS

How to Retrieve the Current Date
TODAY(out fi el d)
where:
outfield
Alphanumeric, at least A8

Is the name of the field to which the current date in MM/DD/YY[YY] format is
returned. This argument can also be the format of the output value, enclosed in single
guotation marks.

If DATEFNS=ON and outfield is A8 or A9, TODAY returns the 2-digit year. If
DATEFNS=ON and outfield is A10 or greater, TODAY returns the 4-digit year. If
DATEFNS=OFF, TODAY returns the 2-digit year, regardless of the format of
outfield.

Note:

e You can retrieve the date in the same format (separated by slashes) by using the
system variable & DATE. Y ou can retrieve the date without the slashes using the
system variables & YMD, &MDY, and &DMY . The system variable & DATEfmt
retrieves the date in a specified format.

* You can remove the embedded dashes using the EDIT function.

e Compiled MODIFY procedures cannot use Dialogue Manager system variables.
They must use the TODAY subroutine to obtain the date.

The TODAY subroutine always returns a date that is current. Therefore, if you are
running an application late at night, you may want to use the TODAY subroutine.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Displaying the Current Date
The following request retrieves the current date and displaysit in areport heading:

DEFI NE FI LE EMPLOYEE
DATE/ A1I0 W TH EMP_I D=TODAY(DATE) ;
END

TABLE FI LE EMPLOYEE

SUM CURR_SAL BY DEPARTMENT
HEADI NG

"PAGE <TABPAGENO

"SALARY REPORT RUN ON <DATE
END

The request produces the following output:

PAGE 1

SALARY REPORT RUN ON 12/13/1999
DEPARTNMENT CURR_SAL

MS $108, 002. 00
PRCDUCTI ON $114, 282. 00

Developing Applications

3-167

Using Functions and Subroutines

UFMT: Converting Alphanumeric to Hexadecimal

Syntax

3-168

The UFMT subroutine converts charactersin a phanumeric field values to hexadecimal
(HEX) representation.

This subroutine is especially useful for examining data of unknown format. Aslong asthe
length of the datais known, its content can be examined.

Available on: MVS, OpenVMS, VM/CM S, WebFOCUS.

How to Convert Alphanumeric to Hexadecimal
UFMI(infield, inlength, outfield)
where:
infield
Alphanumeric
Istheinput field or an alphanumeric string enclosed in single quotation marks.

i nl ength
Numeric

Istheinput field length.

outfield
Alphanumeric

Is the name of the field that contains the HEX equivalent. The format of the outfield
argument must be alphanumeric and have alength that is twice as long as the inlength
argument (2*inlength). This argument can also be the format of the output value,
enclosed in single quotation marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example Report Request Converting JOBCODE to Hexadecimal

The following request uses the UFMT subroutine to convert the values in the JOBCODE
field to their HEX representation and store them in the HEXCODE temporary field.
Notice that the format of the temporary field istwice as large as the inlength argument:

DEFI NE FI LE JOBFI LE

HEXCODE/ A6 = UFMT(JOBCODE, 3, HEXCODE);
END

TABLE FI LE JOBFI LE

PRI NT JOBCODE HEXCODE

END

The resulting output is:
PAGE 1

JOBCODE HEXCODE

A0l ClFOF1
A02 CLlFOF2
AO7 CLFOF7
Al12 CLF1F2
Al4 CLlF1F4
Al5 CLF1F5
Al6 CLlF1F6
Al7 CLF1F7
BO1 C2FOF1
B02 C2FOF2
BO3 C2FOF3
BO4 C2FOF4
B14 C2F1F4

Developing Applications 3-169

Using Functions and Subroutines

UPCASE: Converting Text to Uppercase

Syntax

3-170

The UPCASE subroutine converts a string of characters to uppercase.

One reason you might use UPCASE is when you are sorting on afield that contains both
mixed case and uppercase values. In these cases, sorting uses the ASCII or EBCDIC
sorting order, which may cause unpredictable results. To obtain consistent results, define
anew field with all of the valuesin uppercase, and sort on that.

In FIDEL, CRTFORM LOWER retains the case of entries as they were typed. You can
use the UPCA SE subroutine to convert entries for particular fields to uppercase.

Available on: All platforms.

Related functions and subroutines:

+ LCWORD
» LOCASE
+ MXCASE

How to Convert Text to Uppercase
UPCASE(| engt h, input, output)
where:

| engt h
Integer

Isthe length of both the input and the output strings.

i nput
Alphanumeric

I's the mixed-case input string or field.

out put
Alphanumeric

I's the uppercase output string or field. This argument can also be the format of the
output value, enclosed in single quotation marks.

Information Builders

Alphabetical List of Functions and Subroutines

Example

Report Request Converting Mixed Case Names to Uppercase

Suppose you are sorting on a field that contains both uppercase and mixed case values.
The following request defines afield called LAST_NAME_MIXED that contains both
uppercase and mixed case values:
DEFI NE FI LE EMPLOYEE
LAST_NAME_M XED/ A15=I F DEPARTMENT EQ 'M S' THEN LAST_NAME ELSE

LOWORD (15 , LAST_NAME, 'Al5');
END

Suppose you execute a request that sorts by thisfield:

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAME BY LAST_NAME_M XED

WHERE CURR_JOBCODE EQ 'B02' OR 'Al7' OR 'B04';
END

On an EBCDI C-based platform, this request produces the following output:
PAGE 1

LAST_NAME_M XED FI RST_NAMVE

Banni ng JOHN
BLACKWOOD ROSEMARI E
CRCSS BARBARA
Mckni ght ROGER
MCCOY JOHN
Romans ANTHONY

On an ASClI-based platform, this request produces the following output:
PAGE 1

LAST_NAME_M XED FI RST_NAVE

BLACKWOOD ROSENVARI E
Banni ng JOHN
CROSS BARBARA
MCCOY JOHN
Mckni ght ROGER
Romans ANTHONY

In the first example, Mcknight appears before MCCOY,, since the EBCDIC sorting order
places lowercase | etters before uppercase | etters. In the second exampl e, Blackwood
appears before Banning, since the ASCI| sorting order places uppercase letters before
lowercase letters. In either case, thisis not how you would expect your report to be sorted.

Developing Applications 3-171

Using Functions and Subroutines

The solution is to create a new field with all uppercase letters and sort using thisfield:

DEFI NE FI LE EMPLOYEE

LAST_NAME_M XED/ A15=I F DEPARTMENT EQ 'M S THEN LAST_NAME ELSE
LOWORD (15, LAST_NAME, 'Al5');

LAST_NANME_UPPER/ AL5=UPCASE (15, LAST_NAVE M XED, 'Al5')

END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME_M XED AND FI RST_NAME BY LAST_NAME_UPPER
WHERE CURR_JOBCODE EQ 'B02' OR 'Al7' OR 'B04';

END

Now, when you execute the request, the names are sorted correctly:
PAGE 1

LAST_NAME_UPPER LAST_NAME M XED FI RST_NAMVE

BANNI NG Banni ng JOHN
BLACKWOOD BLACKWOOD ROSENVARI E
CROSS CROSS BARBARA
MCCOY MCCOY JOHN

MCKNI GHT Mekni ght ROGER
ROVANS Romans ANTHONY

If you don’t want to see the field with all uppercase values, you can NOPRINT it.

Example MODIFY Request Using UPCASE

Suppose your company decided to store employee names in mixed case and the
department assignments in uppercase in the EMPLOY EE data source.

To enter records of new employees, execute thisMODIFY procedure:

MCDI FY FI LE EMPLOYEE

CRTFORM LOVER

"ENTER EMPLOYEE'S ID : <EMP_I D'

"ENTER LAST_NAME: <LAST_NAME FI RST_NAME: <FI RST_NAME"
"TYPE THE NAME EXACTLY AS YOU SEE I T ON THE SHEET"

"ENTER DEPARTMENT ASSI GNMENT: <DEPARTMENT"
MATCH EMP_I D

ON MATCH REJECT

ON NOVATCH COVPUTE

DEPARTMENT = UPCASE (10, DEPARTMENT, 'A10');

ON NOVATCH | NCLUDE

ON NOQVATCH TYPE " DEPARTMENT VALUE CHANGED TO UPPERCASE. <DEPARTMENT"
DATA
END

3-172 Information Builders

Alphabetical List of Functions and Subroutines

A sample execution is as follows:

ENTER EMPLOYEE' S I D : 444555666
ENTER LAST_NAME: Cutter FI RST_NAME: Al an
TYPE THE NAME EXACTLY AS YQU SEE I T ON THE SHEET

ENTER DEPARTMENT ASSI GNMENT: sal es

The procedure processes as.

1.

The procedure prompts you for an employee ID, last name, first name, and
department on a CRTFORM screen. The CRTFORM LOWER option retains the
case of entries as they were typed.

Y ou type the following data and press the ENTER key:

EMPLOYEE' S | D 444555666
LAST_NAME: Cutter

FI RST_NAME: Al an
DEPARTMENT ASSI GNVENT: sal es

The procedure searches the data source for the ID 444555666. If it does not find the
ID, it continues processing the transaction.

The UPCASE subroutine converts the DEPARTMENT entry “sales’ to “SALES.”

ENTER EMPLOYEE' S I D :
ENTER LAST_NAME: FI RST_NAME:
TYPE THE NAME EXACTLY AS YQU SEE IT ON THE SHEET

ENTER DEPARTNMENT ASSI GNMVENT:

DEPARTMENT VALUE CHANGED TO UPPERCASE: SALES
The procedure adds the transaction to the data source.

When you exit the procedure with PF3, the FOCUS transaction message indicates the
number of transactions accepted or rejected.

TRANSACTI ONS: TOTAL 1 ACCEPTED= 1 REJECTED= 0

SEGMVENTS: I NPUT = 1 UPDATED = 0 DELETED = 0

Developing Applications 3-173

Using Functions and Subroutines

YM: Calculating Elapsed Months

Syntax

3-174

The YM subroutine calculates the number of months that elapse between two dates. The
dates must be in year-month format. Y ou can convert a date to this format by using the
CHGDAT subroutine or the EDIT function.

This subroutine has been rewritten to support Y ear 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.
Related functions and subroutines:
e CHGDAT

« DATEDIF

e DMY,MDY,YMD

How to Calculate Elapsed Months
YM frondate, todate, outfield)
where:

frondat e
Numeric
Is the starting date in year-month format (for example, 14YM). If the date is not valid,
the subroutine returns a 0.
t odat e
Numeric
Is the ending date in year-month format. If the date is not valid, the subroutine returns
ao.
outfield
Integer
I's the name of the field to which the number of months between the two datesis

returned. This argument can also be the format of the output value, enclosed in single
guotation marks.

Tip:
If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the

date by 100 to convert to year-month format and set the result to be an integer. This
causes the day portion of the date, which is now after the decimal point, to be dropped.

Information Builders

Alphabetical List of Functions and Subroutines

Example Report Request Calculating Difference in Months Between Two

Dates

The following request shows the number of months that elapse between the time

employees get raises and the time they were hired. Note that the COMPUTE expression
converts the dates from year-month-day to year-month format by dividing the dates by

100.

TABLE FI LE EMPLOYEE
PRI NT DAT_I NC AS ' RAI SE DATE' AND COWPUTE

H RE_MONTH/ | 4YM = HI RE_DATE/ 100; NOPRI NT AND COWPUTE

MONTH_| NC/ | 4YM = DAT_I NG/ 100; NOPRI NT AND COMPUTE
MONTHS_HI REDY 1 3 = YM H RE_MONTH, MONTH_INC, '13');

BY LAST_NAVME BY FI RST_NAME BY H RE_DATE

I F MONTHS_H RED NE 0
WHERE DEPARTMENT EQ 'M S';

END

The request produces the following output:

PAGE 1

LAST_NANE
CROSS
GREENSPAN
JONES
MCCOY
SM TH

Developing Applications

FI RST_NAME H RE_DATE

BARBARA 81/ 11/ 02
MARY 82/ 04/ 01
DI ANE 82/ 05/ 01
JOHN 81/ 07/ 01
MARY 81/ 07/ 01

RAI SE DATE MONTHS_HI RED

82/ 04/ 09
82/ 06/ 11
82/ 06/ 01
82/01/01
82/ 01/ 01

3-175

CHAPTER 4

Managing Applications With Dialogue

Manager

Topics:

* PDverview of Dialogue Manager

- [Creating and Storing Procedures|

. Executing Procedures
. Including Comments in a Procedure
. Dverview of Dialogue Manager

Eommands

. Eending a Message to the User: -TYPE

. Controlling Execution: -RUN, -EXIT, and
FOUIT

.
.
- |Additional Facilities|

« Using Variables in Procedures

. Supplying Values for Variables at Run
fime

. Dialogue Manager Quick Reference

Developing Applications

This topic describes how to make report procedures more

dynamic by using Dialogue Manager control commands and

variables.

4-1

Managing Applications With Dialogue Manager

Overview of Dialogue Manager Capabilities

Example

PR

Noo

Dialogue Manager enables you to execute stored procedures. In the FOCUS community,
stored procedures are referred to as FOCEXECs. In thistopic, they are referred to simply
as procedures.

Dialogue Manager hel ps you build and manage the execution of procedures, giving you
flexibility in application design. Y ou can use Dialogue Manager control commands to
determine the sequence in which FOCUS commands (such as TABLE) execute. Dialogue
Manager also enables you to use variables in your procedures and supply values for those
variables at run time. Y ou can create a dialogue between the user and the terminal through
various prompting methods, including full-screen forms, menus and windows that you
design yourself, and system queries, as well as supplying values directly in the procedure.

Using Dialogue Manager control commands and variables, your application can respond
to user input and environment conditions at run time. It isimportant to understand how
Dialogue Manager processes an application’s commands and variables.

Processing a Procedure

The following exampl e traces the execution process of a procedure. The numbers at the
left refer to explanatory notes that follow the example.

-TOP

- PROVPT &WHI CHCI TY. ENTER NAME OF CI TY OR DONE.
-IF &H CHCI TY EQ ' DONE' GOTO QUI T;

TABLE FI LE SALES

SUM UNI T_SOLD

BY PROD_CODE

IF CTY IS &0 CHO TY

END

-RUN

- GOTO TOP

SQUIT

Information Builders

Overview of Dialogue Manager Capabilities

Assume that this procedure is stored in afile named SLRPT. To execute it, the user types
either of the following:

EXEC SLRPT

or

EX SLRPT

The following describes the individual steps of the procedure:
1. -TOP

Thisisalabel, which serves as atarget to which -IF ... GOTO or -GOTO commands
transfer processing control. Labels themselves call for no specia processing, soin
this case control passes to the next command.

2. -PROVPT &HI CHCI TY. ENTER NAME OF CI TY OR DONE.

The prompt “ENTER NAME OF CITY OR DONE” appears on the terminal.
Assume the user types “STAMFORD” and the variable value is stored for later use.
Processing continues with the next line.

3. -1F &WH CHC TY EQ ' DONE GOTO QUI T;

Had DONE been entered, control would passto -QUIT at the bottom of the
procedure. Thiswould end processing, cause an immediate exit from this procedure,
and return control to the FOCUS prompt. Since STAMFORD was entered,
processing continues with the next line.

4. TABLE FILE SALES

Since there is no leading hyphen, thisisinterpreted asa FOCUS command. Only
Dialogue Manager commands execute immediately, so the next five lines are placed
in the stack where FOCUS commands are kept until executed; thisisreferred to as
FOCSTACK. Note that the value STAMFORD, entered in response to the prompt, is
inserted into the FOCUS command line as the value for & WHICHCITY .

At this point the FOCSTACK looks like this:

TABLE FI LE SALES
SUM UNI T_SOLD

BY PROD_CODE

IF OTY | S STAMFORD
END

Control passes to the next Dialogue Manager command.

Developing Applications 4-3

Managing Applications With Dialogue Manager

5 -RWN

This command sends the stack to FOCUS, which executes the stored request and
returns control to the next Dialogue Manager command.

6. -GOTO TOP

Control is now routed back to -TOP, thus establishing aloop. Execution continues
from -TOP with the -PROMPT command.

7. -QUT

This command is reached when the user types DONE in response to the prompt. The
procedure is exited and the FOCUS prompt appears.

FOCEXEC <
Exec

v :

FOCEXEC
2 Processor
Resolve Variables

Terminal
(Enter Values)

\ 4
4 FOCSTACK

A 4

FOCUS
COMMAND
PROCESSOR
(Executes FOCSTACK)

s >\ 6
(TABLE) (MODIFY) C FOCEXEC)_

Figure 4-1. Schematic Diagram of Procedure Processing

1. Processing begins from the command processor when a procedure is invoked for
execution at the FOCUS prompt (for example, EX SLRPT).

2. The FOCEXEC Processor reads each line of the procedure. Any variables on the line
are assigned their current values.

3. If avariableismissing avalue, FOCUS issues a prompt. The user then suppliesthe
missing value.

4-4 Information Builders

Overview of Dialogue Manager Capabilities

4. When acommand line that contains no Dialogue Manager commandsis fully
expanded with any variables resolved (through either a-SET command or
prompting), it is placed onto the command execution stack (FOCSTACK).

5. Diaogue Manager execution commands (for example, -RUN) and statistical
variables flush the FOCSTACK and route all currently stacked commandsto the
FOCUS Command Processor.

6. Inthe previous example the FOCUS Command Processor routes execution to the
TABLE module and executes the TABLE request that was stacked.

By the time your FOCSTACK isready for execution, this has happened:

* All variables have received values and these val ues have been integrated into the
command lines containing variables.

« Dialogue Manager commands have been used to place FOCUS commands into
proper sequential order for execution.

* At thispoint the FOCUS Command Processor no longer sees any Dialogue Manager
commands. It only sees FOCUS command lines in the stack.

Note: Any FOCUS command can be placed in a procedure. This includes the EXEC
command itself. When an EXEC command is processed in a procedure, the commands
from the new procedure are first stacked and then executed. Multiple levels of nesting are
permitted when you use the EXEC command, while only four levels of nesting are
permitted when you use -INCLUDE.

Overview of Dialogue Manager Variables

Y ou can write procedures that contain variables whose values are unknown until run time;
this technique allows a user to customize the procedure by supplying different values each
timeit executes. Variablesfall into two categories:

» Loca and global variables, whose values must be supplied at run time. Local
variables retain their values only for one procedure. Global variables retain their
values across procedures unless you explicitly clear them. They lose their values
when you exit from FOCUS. Y ou create alocal variable by choosing a name that
starts with a single ampersand (&); you create a global variable by choosing a name
that starts with a double ampersand (& &).

» System and statistical variables, whose values are automatically supplied by the
system when a procedure references them. System and statistical variables have
names that begin with a single ampersand (&). For example, the variable & LINES
indicates how many lines of output were produced, and the variable & DATE
indicates the current date.

For complete information about variables, see Using Variables in Proceduresjon page
4-49.

Developing Applications 4-5

Managing Applications With Dialogue Manager

Creating and Storing Procedures

Y ou can create procedures with your system editor or with the FOCUS integrated text
editor, TED. TED has two features that make it particularly useful for creating and editing
procedures:

If you type TED without specifying a procedure name, the last executed procedureis
automatically selected. Thisis convenient when devel oping and testing new
procedures.

Y ou can test the execution of the procedure by typing RUN on the TED command
line. This automatically saves the procedure and executesit. If thereisan error in
your procedure, type TED. This brings you back into the editor and places you
directly on the line in which the error was detected.

These options complement the FILE and SAVE options that are common to other editors.

Follow these general rules when you are creating procedures:

Dialogue Manager commands must begin in the first position of the line.

At least one space must be inserted between the Dialogue Manager command and
other text.

If a Dialogue Manager command exceeds one line, the following line must begin with
ahyphen (-) in the first position. The continuation line can begin immediately after
the hyphen, or you may insert a space between the hyphen and the rest of the line.

Procedures must have the record format RECFM=F and the logical record length
(LRECL) 80.

Information Builders

Executing Procedures

Executing Procedures

Example

Procedures are generally initiated from the FOCUS prompt (>). Type the command
EXEC, or its abbreviation EX, followed by the name of the procedure.

Executing a Procedure
Either of the following commands
EXEC SLRPT

or

EX SLRPT

will summon the procedure named SLRPT for execution.

Controlling Access to Data

Syntax

Y ou can set a password in a procedure and tie it to different portions of a procedure.

How to Set a Password in a Procedure
- PASS password
where:

passwor d
Is apassword or a variable containing a password.

Since -PASS is a Dialogue Manager command, it executes immediately and is not sent to
the FOCSTACK. This means that the user need not issue the password with the SET
command.

Developing Applications 4-7

Managing Applications With Dialogue Manager

Including Comments in a Procedure

Example

4-8

It is good practice to include commentsin procedures for the benefit of others who may
read or refine them at alater date. Comments are particularly recommended as procedure
headers to give version, date, and other relevant information. It is easier to track and
maintain large software applications when they are carefully commented. Comments are
ignored during actual execution.

To add comment lines to a Dialogue Manager procedure, precede them with a hyphen and
an asterisk (-*). Any text whatsoever may immediately follow the -*. Y ou can place
comment lines anywhere in a procedure.

Comments do not appear on the terminal nor do they trigger any processing. They are
visible only when viewing the contents of the procedure through the editor and are strictly
for the benefit of the developer. However, you can view comments on the terminal by
using the option ECHO = ALL.

Including Comments in a Procedure
The following example contains two comment lines:

-* Version 1 6/30/85 SLRPT FOCEXEC

-* Conponent of Retail Sal es Reporting Mdul e
TABLE FI LE SALES

HEADI NG CENTER

"MONTHLY SALES FOR STAMFORD'

Information Builders

Overview of Dialogue Manager Commands

Overview of Dialogue Manager Commands

Dialogue Manager provides commands for accomplishing the following tasks:

Reference

e Sending messages to the user.

» Displaying values.

e Controlling the values of variables, including reading variables from and writing
values to an externd file.

» Testing conditions and branching.

e Controlling the execution of stacked commands.

e Cdling another procedure.

e Issuing operating system commands specific to your environment.

Summary of Dialogue Manager Commands

The following pages describe all Dialogue Manager commands. They arelisted in
alphabetical order. The categories used to describe them in the quick reference at the end
of thistopic are briefly outlined below:

Command Lists the name of the command.

Syntax Shows exactly how the command components must appear in a
procedure.

Function Outlines the meaning and purpose of the command.

Similar Command

Describes the relationship between the Dialogue Manager
command and other FOCUS commands (for example, -TY PE
and TYPE).

Command

M eaning

- *

Isacomment ling; it has no action.

- CLCSE ddnane

Closes the specified -READ or -WRITE file.

- CLOSE * Closes all -READ and -WRITE files currently open.

- VB Executes a CM S command from within Dialogue Manager.
- Gv6 RN In CMSS, loads and executes a user-written subroutine.

- CRTCLEAR Clears the screen display.

- CRTFORM

Initiates full-screen variable data entry.

Developing Applications

Managing Applications With Dialogue Manager

Command M eaning

- %Eﬁgﬂs Presetsinitia values for variable substitution.

-EXIT Executes stacked commands and returns to the FOCUS
prompt.

- G010 Establishes an unconditional branch.

- HTM.FCRM For use with the Web Interface to FOCUS.

I'F Tests and branches control based on test resuilts.

- I NCLUDE Dynamically incorporates one procedure in another.

-1 abel Is a user-supplied name that identifies the target for -GOTO or
-IF.

-WS RN Same as-TSO RUN.

- PASS Sets password directly.

- PROVPT Types a prompt message on the screen and reads areply.

-QUIT Exits the procedure without executing it.

- READ Reads records from a non-FOCUS file.

- REPEAT Executes a loop.

- RN Executes all stacked FOCUS commands and returns to
procedure for further processing.

- SET Assignsavalue to avariable.

- TSO RN In MV S/TSO, loads and executes a user-written subroutine.

- TYPE Types informative message to screen or other output device.

- W NDOW Invokes Window Painter, transferring control from the
procedure to the specified window file.

-VRTE Writes arecord to a non-FOCUS file.

Brackets contents for -CRTFORM display line.

-? SET SETCOMVAND
&nyvar

Captures the setting of SETCOMMAND in & myvar.

-? & string]

Displays the values of currently defined amper variables.

Information Builders

Sending a Message to the User: -TYPE

Sending a Message to the User: -TYPE

The Dialogue Manager command -TY PE enables you to send informative messages to the
screen while a procedure is processing. These messages serve a variety of functions. They
can explain the purpose of the procedure, the results of computations or calculations, or
preface prompts requesting information from the terminal. -TY PE triggers these

messages.

Syntax How to Send a Message to the User

-TYPE[4] text
- TYPE[O] text
-TYPE[1] text

where:

+

Suppresses the line feed following the printing of text.
Forces aline feed before the message text is displayed.

Forces a page g ect before the message text is printed.

t ext
Isall succeeding text including variable values supplied on the same command line.
It sends the text to the screen, followed by aline feed. It remains on screen until
scrolled off or replaced by a new screen.

The options +, 0, and 1 are used to pass printer control characters to the output device and
are particularly useful for character printers. Options + and 1 do not work on IBM
3270-type terminals. -TY PE sends the text to the terminal as soon asit is encountered in
the processing of a procedure.

Developing Applications 4-11

Managing Applications With Dialogue Manager

Example

Sending a Message to the Users

Thefollowing is an example of the use of -TY PE:

-* Version 1 6/30/85 SALERPT FOCEXEC
-TYPE This report cal cul ates percentage of returns
TABLE FI LE SALES

Note: The -TY PE message need not be enclosed in quotation marks, since FOCUS
understands that - TY PE signals a following textual message. If you use quotation marks,
they will appear along with the message. This differs from the use of TYPE in MODIFY,
where quotation marks are used as delimiters and must enclose informative text.

Controlling Execution: -RUN, -EXIT, and -QUIT

Dialogue Manager enables you to manage the flow of execution with these commands:
* -RUN executes stacked commands and continues the procedure.
» -EXIT executes stacked commands and exits the procedure.

e -QUIT cancels execution and exits the procedure.

Executing Stacked Commands and Continuing the Procedure:

-RUN

4-12

The Dialogue Manager command -RUN causes immediate execution of all stacked
FOCUS commands and closes any external files opened with -READ or -WRITE.
Following execution, processing of the procedure continues with the line that follows
-RUN.

Information Builders

Controlling Execution: -RUN, -EXIT, and -QUIT

Example

Executing Stacked Commands and Continuing the Procedure

The following example illustrates the use of -RUN to execute stacked code and then
return to the procedure.

-TYPE This report cal cul ates percentage of returns.
TABLE FI LE SALES

END

- RUN

-TYPE This routine reports on data in the enployee file.
TABLE FI LE EMPLOYEE

END

The procedure processes as follows:

1. Thecommand -TY PE generates a message.
2. The FOCUS code is stacked.

3. The command -RUN causes the stacked commands to be executed and the output
returned.

4. Processing continues with the line following -RUN. In this case, another message is
sent and another TABLE request isinitiated.

Executing Stacked Commands and Exiting the Procedure: -EXIT

-EXIT forces execution of stacked FOCUS commands as soon asiit is encountered.
However, instead of returning to the procedure, -EXIT closes all external files, terminates
the procedure, and, either returns you to the FOCUS prompt or to the calling procedure.

Developing Applications 4-13

Managing Applications With Dialogue Manager

Example

4-14

n

Executing Stacked Commands and Exiting the Procedure

In the following example, either the first TABLE request or the second TABLE request
will execute, but not both:

-TYPE This report cal cul ates percentage of returns.
-1F &PROC EQ ' EMPLOYEE' GOTO EMPLOYEE;
- SALES

TABLE FI LE SALES

END
-EXIT
- EMPLOYEE
TABLE FI LE EMPLOYEE

END
The procedure processes as follows:
1. Thecommand -TY PE generates a message.
2. Assumethe value passed to & PROC is SALES.

The -IF test checks the value of & PROC. Since it is not equal to EMPLOY EE,
control passesto the label -SALES.

The FOCUS code is stacked. Control passesto the next line, -EXIT.

4. Thecommand -EXIT executes the stacked commands. The output is sent to the
terminal or output device and the procedure is exited.

The TABLE request under the label -EMPLOY EE is not executed.

This example also illustrates an implicit exit. If the value of & PROC was EMPLOY EE,
control would passto the label -EMPLOY EE after the -1 F test, and the procedure would
never encounter the -EXIT. The TABLE FILE EMPLOY EE request would execute and
the procedure would automatically terminate.

Information Builders

Controlling Execution: -RUN, -EXIT, and -QUIT

Canceling Execution of the Procedure: -QUIT

-QUIT cancels execution of any stacked commands and causes an immediate exit from
the procedure.

This command is useful if tests or computations generate results that make additional
processing unnecessary.

Example Canceling Execution of the Procedure

The following example illustrates the use of -QUIT to cancel execution based on the
results of an -IF test.

1. -TYPE This report cal cul ates percentage of returns.
TABLE FI LE SALES

END

2. -1F &ODE GT ' B10' OR &CODE EQ ' DONE GOTO QUI T;
3. -QUIT

The procedure processes as follows:
1. Thecommand -TY PE generates a message. The FOCUS code is stacked.
2. Assumethat the value of & CODE isB11.

The command -IF tests the value and passes control to -QUIT.

3. Thecommand -QUIT cancels execution of the stacked commands and exits the
procedure.

Exiting FOCUS and Setting Return Codes: -QUIT FOCUS

The Dialogue Manager command -QUIT FOCUS causes an immediate exit not only from
the procedure, but from FOCUS as well. It returns you to the operating system and sets a
return code.

Developing Applications 4-15

Managing Applications With Dialogue Manager

Syntax How to Exit FOCUS and Set a Return Code
-QUIT FOCUS [n| 8]
where:
nl 8

I's the operating system return code number. It can be a constant or variable. A
variable should be an integer. If you do not supply avaue or if you supply a
non-integer value, the return code posted to the operating system is 8 (the default
value).

A mgjor function of user-controlled return codes isto detect processing problems. The
return code value determines whether to continue or terminate processing. Thisis
particularly useful for batch processing.

Branching

The execution flow of a procedure is determined with the following commands:

-GOTO. Used for unconditional branching, -GOTO transfers control to alabel.

-IF...GOTO. Used for conditional branching, -IF...GOTO transfers control to alabel
depending on the outcome of atest.

-GOTO Processing

Dialogue Manager processes a-GOTO as follows:

4-16

It searches forward through the procedure for the target label. If it reaches the end
without finding the label, it continues the search from the beginning of the procedure.

The first time through a procedure, Dialogue Manager notes the addresses of all the
labels so that they can be found immediately if needed again.

Dialogue Manager takes no action on labels that do not have a corresponding
-GOTO.

If a-GOTO does not have a corresponding label, execution halts and an error
message is displayed.

Information Builders

Branching

Syntax

Example

How to Unconditionally Branch With -GOTO

- QOTO | abel

-l abel [TYPE text]
where:

| abel
I's a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that can be confused with functions or arithmetic or logical operations.

The label may precede or follow the -GOTO command in the procedure.

TYPE t ext
Optionally sends a message to a client application.

Unconditional Branching With -GOTO

The following example “comments out” all the FOCUS code using an unconditional
branch rather than -* in front of every line;

- START TYPE PROCESSI NG BEG NS

- GOTO DONE

TABLE FI LE SALES

PRI NT UNI T_SOLD RETURNS

WHERE PROD_CODE BETWEEN ' &CODE1' AND ' &CODE2'
AND PRCDUCT = ' &PRCDUCT'

BY PROD_CODE, CI TY

END

- RUN

- DONE

Developing Applications 4-17

Managing Applications With Dialogue Manager

Syntax

4-18

How to Conditionally Branch With -IF...GOTO

-1 F expression [THEN] GOTO | abel 1; [ELSE IF...;]
[ELSE GOTO | abel 2;]

where:

expressi on
Isavalid expression. Literals need not be enclosed in single quotation marks unless
they contain embedded blanks or commas.

THEN
Isan optional keyword that increases readability of the command.

GOTO | abel
I's a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that can be confused with functions or arithmetic or logical operations.

The label may precede or follow the -IF command in the procedure.

ELSE I F
Optionally specifies a compound -1 F test. See Compound -IF Tests on page 4-19.

ELSE GOTO
Optionally passes control to label2 when the -1F test fails.

The command -IF must end with a semicolon (;) to signal that all logic has been specified.
Continuation lines must begin with a hyphen (-).

Information Builders

Branching

Example Conditional Branching With -IF...GOTO

In the following example, control passes to the label -PRODSALES if & OPTION is equal
to S. Otherwise, control falls through to the label -PRODRETURNS, the line following

the -1 F test.

-IF &OPTION EQ ' S' GOTO PRODSALES;
- PRODRETURNS
TABLE FI LE SALES

END
-EXIT
- PRODSALES
TABLE FI LE SALES

END
-EXIT
The following command specifies both transfers explicitly:

-IF &OPTION EQ 'S GOTO PRODSALES ELSE
- GOTO PRODRETURNS;

Notice that the continuation line begins with a hyphen (-).

Compound -IF Tests
Y ou can use compound -1F tests provided each test specifies atarget label.

Example Using Compound -IF Tests

In the following example, if the value of & OPTION is neither R nor S, the procedure
terminates (GOTO QUIT). The -QUIT serves both as atarget label for the GOTO and as
an executable command.

-1F &OPTION EQ ' R THEN GOTO PRODRETURNS ELSE | F

- &OPTION EQ 'S THEN GOTO PRODSALES ELSE
- GOTO QUIT;

QT

Developing Applications 4-19

Managing Applications With Dialogue Manager

Using Operators and Functions in -IF Tests

Expressionsin an -IF test can include all FOCUS arithmetic and logical operators, as well
as available functions or subroutines. See the Creating Reports manual for details.

Example Testing System and Statistical Variables
You can use system and statistical variablesin -IF tests.

In the following example, if data (& LINES) is retrieved with the request, then the
procedure branches to the label -PRODSALES; otherwise, it terminates.

TABLE FI LE SALES

-1 F &I NES NE 0 GOTO PRODSALES;
-EXIT
- PRODSALES

Screening Values With -IF Tests

To ensure that a supplied valueisvalid in a procedure, you can test it for the following:

Presence
e Length
e Type

For instance, you would not want to perform a numerical computation on a variable for
which a phanumeric data has been supplied.

4-20 Information Builders

Branching

Syntax

Example

How to Test for the Presence of a Value
-1 F &nane. EXI ST [expression] GOTO | abel . ..
where:

&name
Is auser-supplied variable.

.EXI ST
Indicates that you are testing for the presence of avalue. If avalue is not present, a
zero (0) is passed to the expression. Otherwise, a non-zero value is passed.

expressi on
Isthe remainder of avalid expression that uses & name.EXIST as an amper variable.

GOTO | abe
Specifies alabel to branch to.

Testing for the Presence of a Variable

In the following example, if no value is supplied, & OPTION.EXIST isequal to zero and
control is passed to the label -CANTRUN. The procedure sends a message to the client
application and then exits. If avalueis supplied, control passes to the label
-PRODSALES.

-1 F &OPTI ON. EXI ST GOTO PRODSALES ELSE GOTO CANTRUN,

- PRODSALES
TABLE FI LE SALES

END
-EXIT
- CANTRUN
-TYPE TOTAL REPORT CAN T BE RUN W THOUT AN OPTI ON.
-EXIT

Developing Applications 4-21

Managing Applications With Dialogue Manager

Syntax How to Test for the Length of a Value
-1 F &nane. LENGTH expressi on GOTO | abel . ..
where:

&name
Is auser-supplied variable.

. LENGTH
Indicates that you are testing for the length of avalue. If avalueis not present, a zero
(0) is passed to the expression. Otherwise, the number of charactersin the valueis
passed.

expressi on
Isthe remainder of avalid expression after & name is expanded.

GOTO | abe
Specifies alabel to branch to.

Example Testing for Variable Length

In the following example, if the length of & OPTION is greater than one, control passesto
the label -FORMAT, which informs the client application that only asingle character is
allowed.

-1 F &OPTI ON. LENGTH GI' 1 GOTO FORMAT ELSE
- GOTO PRODSALES

- PRODSALES
TABLE FI LE SALES

END
-EXIT
- FORMVAT
-TYPE ONLY A SI NGLE CHARACTER IS ALLOVED,

Example Storing the Length of a Variable

The following example sets the variable & WORDLEN to the length of the string
contained in the variable & WORD:

- PROWPT &WORD. ENTER WORD.
- SET &WORDLEN = &WORD. LENGTH

4-22 Information Builders

Branching

Syntax

Example

How to Test for the Type of a Value
-1 F &nane. TYPE expression GOTO | abel . ..
where:

&name
Is auser-supplied variable.

TYPE
Indicates that you are testing for the type of avalue. The letter N (numeric) is passed
to the expression if the value can be interpreted as a number up to 10°-1 and can be
stored in four bytes as a floating point format. In Dialogue Manager, the result of an
arithmetic operation with numeric fields is truncated to an integer after the whole
result of an expression is calculated. If the value could not be interpreted as numeric,
the letter A (alphanumeric) of the letter U (undefined) is passed to the expression.

expressi on
Isthe remainder of avalid expression after & name is expanded.

GOTO | abe
Specifies alabel to branch to.

Testing for Variable Type

In the following example, if & OPTION is not a phanumeric, control passes to the label
-NOALPHA, which informs the client application that only a phanumeric characters are
allowed.

-1 F &OPTI ON. TYPE NE A GOTO NOALPHA ELSE
- GOTO PRODSALES

- PRODSALES
TABLE FI LE SALES

END
-EXIT
- NOALPHA
-TYPE ENTER A LETTER ONLY.

Developing Applications 4-23

Managing Applications With Dialogue Manager

Testing the Status of a Query

The system variable & RETCODE returns a code after a query is executed. If the query
resultsin anormal display, the value of & RETCODE is 0. If adisplay error occurs, or no
display results (as can happen when the query finds no data), the value of & RETCODE is
8. (If the error occurs on a? SU, the value of & RETCODE is 16.)

The value of & RETCODE is set following the execution of any of these queries:

NORMAL NODISPLAY ERROR

? HOLD

16

? JON

? COVBI NE

? DEFI NE

? USE

0O [0O | 0O | 0O |0 |0 |0

? LOAD

o|jo|o|jo|jo|o|o| oo

? FI LEDEF 8

*The & RETCODE value of ? SU means: 0 indicates that the FOCUS Database Server
(formerly called the sink machine) is up with one or more users; 8 indicates that the
FOCUS Database Server is up with no users; 16 indicates that thereis an error in
communicating to the FOCUS Database Server.

Y ou can test the status of any of these queries by checking the & RETCODE variable and
providing branching instructionsin your procedure.

For example, if you are using Simultaneous Usage (SU), you must know if the FOCUS
Database Server is available before you can begin a particular procedure. The following
procedure tests whether SINK 1 is available before launching PROC1.

? SU SI NK1

- RUN

-1 F &RETCODE EQ 16 GOTO BAD,
-1 NCLUDE PROCL

- BAD

-EXIT

4-24 Information Builders

Looping

Looping

Syntax

The Dialogue Manager command -REPEAT allows looping in a procedure.

How to Specify a Loop

- REPEAT | abel n TI MES

- REPEAT | abel VWH LE condi tion

- REPEAT | abel FOR &variable [FROM fromval] [TO toval] [STEP s]
where:

| abel

Identifies the end of the code to be repeated (the loop). A label can include another
loop if the label for the second loop has a different name from the first.

n TI MES
Specifies the number of times to execute the loop. The value of n can be alocal
variable, aglobal variable, or aconstant. If it isavariable, it is evaluated only once,
so the only way to end the loop early iswith -QUIT or -EXIT (you cannot change the
number of times to execute the loop) or to branch out of the loop.

WH LE condi tion
Specifies the condition under which to execute the loop. The condition isany logical
expression that can be true or false. Theloop isrun if the conditionis true.

FOR &vari abl e
Isavariable that istested at the start of each execution of the loop. It is compared
with the value of fromval and toval (if supplied). Theloop is executed only if
&variable islessthan or equal to toval (STEP is positive), or greater than or equal to
toval (STEP is negative).

FROM fronval
Isaconstant that is compared with &variable at the start of each execution of the
loop. The default valueis 1.

TO tova
Isavaluethat is compared with &variable at the start of each execution of the loop.
The default is 1,000,000.

STEP s
Is a constant used to increment &variable at the end of each execution of the loop. It
may be positive or negative. The default valueis 1.

The parameters FROM, TO, and STEP can appear in any order.

Developing Applications 4-25

Managing Applications With Dialogue Manager

Example Using -REPEAT to Create a Loop
These examplesillustrate how to write each of the syntactical elements of -REPEAT.
1. -REPEAT label n TIMES
Example:

- REPEAT LAB1 2 TI MES
- TYPE | NSI DE
-LAB1 TYPE QUTSI DE

Theoutput is:

I NSI DE
I NSI DE
QUTSI DE

2. -REPEAT | abel WHI LE condition

Example:

-SET &A = 1;

- REPEAT LABEL WHI LE &A LE 2;
-TYPE &A

-SET &A = &A + 1;
-LABEL TYPE END. &A

The output is:

1
2
END:. 3

3. -REPEAT | abel FOR &variable FROM fronval TO toval STEP s
Example:

- REPEAT LABEL FOR &A STEP 2 TO 4
-TYPE | NSI DE &A
-LABEL TYPE QUTSI DE &A

Theoutput is:

I NSI DE 1
I NSI DE 3
QUTSI DE 5

4-26 Information Builders

Using Expressions: -SET

Ending a Loop
A loop can end in one of three ways:
* |t executesinitsentirety.
e A-QUIT or -EXIT isissued.
* A -GOTOisissued to alabel outside of the loop.

Note: If you later issue another -GOTO to return to the loop, the loop proceeds from
the point it | eft off.

Using Expressions: -SET

The Dialogue Manager command -SET can be used in various ways to define values for
variablesin Dialogue Manager. Y ou can compute new variables or recompute existing
ones using arithmetic and logical expressions. Y ou can aso control loops, set indexes for
variables, and call subroutines.

Thefollowing isalist of what can beincluded in a-SET expression and some specific
rules for computations when using amper variables. Some cal culations and special
functions require that the amper variables have humeric values. FOCUS substitutes the
value before placing the calculation in the stack. The variable does not have to have an |
(integer) format, but the value for the variable must not contain alphanumeric characters.
Note that the LAST operator used for reporting has no meaning in Dialogue Manager, nor
do special MODIFY functions like FIND or LOOKUP.

e You can perform concatenations with the concatenation symbol. Y ou must insert a
space separating the amper variable from the concatenation symbol.

* You can use the DECODE function.

e You can usethe EDIT function; however, itsuseis limited to the mask option.
* You can usethe TRUNCATE function

* You can use the date functions.

* You can use subroutines.

For more information on expressions, functions, and subroutines, see the Creating
Reports manual.

Developing Applications 4-27

Managing Applications With Dialogue Manager

Computing a New Variable

Syntax

Example

4-28

Y ou can use -SET to define a value for a substituted variable based on the results of a
logical or arithmetic expression or a combination.

How to Compute a New Variable
- SET &nanme = expression
where:

&name
Is a user-supplied variable that has its val ue assigned with the expression.

expressi on
Is an expression following the rules outlined in the Creating Reports manual, but
with limitations as defined in this topic. The semicolon after the expression is
required to terminate the -SET command.

Altering a Variable Value

The following example demonstrates the use of -SET to alter variable values based on
tests.

- START
-TYPE RETAIL PRI CE ABOVE OR BELOW $1.00 I N TH S REPORT?
- PROWT &CHO CE. ENTER A OR B.
-SET &REL = IF &CHO CE EQ A THEN ' GI' ELSE 'LT
TABLE FI LE SALES
PRI NT PROD_CODE UNI T_SOLD RETAI L_PRI CE
BY STORE_CODE BY DATE
| F RETAIL_PRI CE &REL 1. 00
END

In the example, the & CHOICE variable receives either A or B as the value supplied
through -PROMPT. Assuming the user entersthe letter A, -SET assigns the string value
GT to &REL. Then, the value GT is passed to the & REL variable in the procedure, so
that the expanded FOCUS command at execution time is:

I F RETAIL_PRICE GTI 1.00

Note that literals are enclosed by single quotation marks. These are optional unlessthe
literal contains embedded commas or blanks. To produce aliteral that includes asingle
guotation mark, place two single quotation marks where you want one to appear.

Information Builders

Using Expressions: -SET

Using the DECODE Function

Y ou can use the DECODE function to change a variable to an associated value.

Example Assigning a Value to a Variable With DECODE

In the following example, the variable refersto alabel:

1. - PROWPT &SELECT. ENTER CHO CE (A, B,C D, E).

2. - SET &GO=DECODE &SELECT (A ONE B TWD C THREE

-D FOUR E FIVE ELSE EXIT);

3. - 0ro &30
- ONE
-TVO

The example processes as follows:

1. -PROMPT promptsthe user at the terminal for avalue for the variable & SELECT.
Assume the user enters A.

2. -SET definesthe variable & GO in terms of the DECODE function. Depending on the
value input for & SELECT, DECODE associates a substitution. In this case, ONE is
substituted for A.

3. -GOTO &GO transfers control to the label -ONE.

In the example, & GO can be another procedure (see | ncorporating Multiple Procedures|
on page 4-37) that is executed, depending on the value that is decoded:

-TOP

- TYPE

- PROWT &SELECT. ENTER 1, 2, 3, 4, 5, OR EXIT TO END.
- SET &GO=DECODE &SELECT (1 ONE 2 TWO 3 THREE

4 FOUR 5 FIVE ELSE EXIT);
-IF &0 IS EXIT GOTO EXI T;
EX &GO
- RUN
- G01O TOP
-EXIT

For more information on DECODE, see the Creating Reports manual.

Developing Applications 4-29

Managing Applications With Dialogue Manager

Using the EDIT Function

Y ou can use the mask option of the EDIT function with amper variables. Y ou can insert
characters into an a phanumeric value, or extract certain characters from the value.

Example Using the EDIT Function With Amper Variables

In the following example, EDIT extracts a particular character, in this case the J, for
comparison in order to branch to the appropriate label. Assume there are nested menus
and the user must supply a number to branch to a particular menu. If the first character is
aJ, the branch isto the label JUMP that enables the user to jump in nested menus (the
numbers refer to the explanation below):

1. -TYPE CHOOSE 1 for Edit, 2 for Print, 3 for Math
1. -TYPE TO JUWP LEVELS OF MENUS TYPE J1.3 ETC.

2. -PROVPT &OPTI ON. Ad. Pl ease enter sel ection:.

3. -SET &XYZ = EDI T(&OPTI ON, ' 9%3%$');

4, -1F &XYZ EQ J THEN GOTO JUMP;

5. -JUWP

The example processes as follows:
1. -TYPE send messages to the screen explaining the options to the user.

2. -PROMPT asksthe user to enter avalue for the variable & OPTION. It can have as
many as four characters.

3. -SET calculatesthe variable & XY Z, which is the & OPTION variable, using the mask
option of EDIT. Thefirst character is screened.

4. -IF determinesthe branch. If the variable & XY Z is equal to J, processing continues
to the label JUMP. Otherwise, processing continues to the next command in the
procedure.

5. -JUMPisalabel. The coding that follows contains the necessary FOCUS commands
to enabl e the user to jump to the various menus.

4-30 Information Builders

Using Expressions: -SET

Using the TRUNCATE Function

Syntax

Example

The Dialogue Manager TRUNCATE function removes trailing blanks from Dialogue
Manager amper variables and adjusts the length accordingly.

The Dialogue Manager TRUNCATE function has only one argument, the string or
variable to be truncated. If you attempt to use the Dialogue Manager TRUNCATE
function with more than one argument, the following error message is generated:

(FOC03665) Error |oading external function ' TRUNCATE

This function can only be used in Dialogue Manager commands that support subroutine
calls, such as-SET and -IF commands. It cannot be used in -TY PE or -CRTFORM
commands or in arguments passed to stored procedures.

Note: A user-written subroutine of the same name can exist without conflict.

How to Use the TRUNCATE Function
- SET &var2 = TRUNCATE(&var1);
where:

&var 2
Isthe Dialogue Manager variable to which the truncated string is returned. The
length of this variable is the length of the original string or variable minus the trailing
blanks. However, if the original string consisted of only blanks, asingle blank, with a
length of oneis returned.

&varl
IsaDialogue Manager variable or aliteral string enclosed in single quotation marks.
System variables and statistical variables are allowed as well as user-created local
and global variables.

Using the Dialogue Manager TRUNCATE Function
The following example shows the result of truncating trailing blanks:

-SET &LONG = ' ABC

-SET &RESULT = TRUNCATE(&LONG) ;

-SET &L = &L.ONG LENGTH,

-SET &RL = &RESULT. LENGTH,

-TYPE LONG = &LONG LENGIH = &LL
-TYPE RESULT = &RESULT LENGIH = &RL

The output is:

LONG
RESULT

ABC LENGTH = 06
ABC LENGTH = 03

Developing Applications 4-31

Managing Applications With Dialogue Manager

The following example shows the result of truncating a string that consists of all blanks:

-SET &LONG = ' "

-SET &RESULT = TRUNCATE(&LONG) ;

-SET &L = &L.ONG LENGTH,

-SET &RL = &RESULT. LENGTH,

-TYPE LONG = &LONG LENGIH = &LL
-TYPE RESULT = &RESULT LENGIH = &RL

The output is:

LONG = LENGTH = 06
RESULT = LENGTH = 01

The following example uses the TRUNCATE function as an argument for EDIT:

-SET &LONG = ' ABC :

-SET &RESULT = EDI T(TRUNCATE(&LONG) |' Z', ' 9999');
-SET &LL = &L.ONG LENGTH,

-SET &RL = &RESULT. LENGTH;

-TYPE LONG &LONG LENGTH = &LL

-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG
RESULT

ABC LENGTH = 06
ABCZ LENGTH = 04

Controlling a Loop With -SET

Y ou can use the -SET command to control the repetition limit of aloop.

Example Controlling a Loop With -SET

In the following example, the variable & N isincremented using -SET and tested to
terminate the loop:

- DEFAULTS &N=0
- START
- SET &N=&N+1;
EX SLRPT
- RUN
-IF &N GI' 5 GOTO NOMCORE;
- GOTO START
5. -NOMORE TYPE EXCEEDI NG REPETI TION LIM T
-EXIT

PR

oo

Execution proceedsin this way:
1. The-DEFAULTS command initializes the loop-controlling variable &N to 0.

2. -START isaDiaogue Manager label that begins the loop. It isthe target of an
unconditiona -GOTO.

4-32 Information Builders

Using Expressions: -SET

The-SET command increments the value of &N by one each time through the loop.

4, The FOCUS command EX SLRPT is stacked. The command -RUN then calls for the
execution of the stacked command.

5. This-IF command tests the current value of the variable &N. If the value is greater
than 5, control passes to the label -NOMORE, which displays a message for the user
and forces an exit. If the value of &N is5 or less, control falls through to the next
Dialogue Manager command.

6. The unconditional Dialogue Manager command -GOTO START causes the loop to
repest.

Setting a Date

Natural date literals can be used in Dialogue Manager. They provide away to take
advantage of the powerful date handling capabilities of FOCUS. For more information on
the FOCUS DATE format, see the Creating Reports manual.

Example Setting Dates and Computing the Difference in Days
Consider the following example:

-SET &NOW= ' MAR 11 1999';
- SET &LATER= ' 2000 11 MAR ;
- SET &DELAY = &LATER - &NOW

Thevalue of & DELAY is set to the difference, in days, between & LATER and & NOW.
Note:

e A computation that adds or subtracts a fixed number of days from avariable in
DATE format is not yet supported.

* A date given to Dialogue Manager cannot exceed 20 characters, including spaces.

« Diaogue Manager accepts only full-format dates (that is, MDY or MDY'Y, in any
order).

Calling a Subroutine

Any function name encountered in a Dialogue Manager expression which is not
recognized as a system standard name or FOCUS function is assumed to be a subroutine.
These subroutines are externally programmed by users and stored in alibrary that is
available at the time they are referenced. One or more arguments are passed to the user
program, which performs an operation or calculation and returns a single value or
character string.

Dialogue Manager variables can receive their values from subroutines through -SET.

Developing Applications 4-33

Managing Applications With Dialogue Manager

Syntax

Example

4-34

How to Set a Variable Value Based on the Result From a
Subroutine

- SET &nane = routine(argunent,..., "format');
where:

nane
Is the name of the variable in which the result is stored.

routine
Is the name of the subroutine.

ar gunent
Represents the argument(s) that must be passed to the subroutine. These arguments
are converted to decimal format.

f or mat
Isthe predefined format of the result. Thisis used to convert the numeric format back
to character representation. It must be enclosed in single quotation marks.

Setting a Variable Value Based on the Result From a
Subroutine

In the following example, FOCUS invokes the subroutine RATE, adds 0.5 to the
calculated value, and then formats the result as a double precision number. Thisresult is
then stored in the variable & COST:

- PROWT &COVPANY. WHAT COVPANY ARE YQOU USI NG?.

- PROVPT &DEST. WVHERE ARE YOU SENDI NG THE PACKAGE TO?.

- PROWPT &WEI GHT. HOW HEAVY | S THE PACKAGE | N POUNDS?.

- SET &COST = RATE(&COVPANY, &DEST, &WEI GHT, ' D6. 2") + 0. 5;
-TYPE THE COST TO SEND A &WEI GHT pound PACKAGE

- TYPE TO &DEST BY &COWVPANY | S &COST

Information Builders

Using Expressions: -SET

Syntax

Example

How to Load and Execute a Subroutine

The following is an alternate way of calling subroutines. The Dialogue Manager
command causes the subroutine to be loaded and then executed. The syntax is

{-CM5 } RUN routine, argunent,...
{-TSO } RUN routine, argunent,...
{-WS } RUN routine, argument,...

where:

routine
I's the name of the subroutine.

ar gunent
Represents the argument(s) that must be passed to the subroutine. Arguments that are
variables must have sizes predefined in prior -SET commands.

The numeric arguments to the subroutine are not automatically converted to D format in
this syntax. Any required conversion must be done externally by the user or in the
subroutine.

Loading and Executing a Subroutine
The following is an example of the preceding syntax:

- PROWT &MYCODE. A3.

- SET &WNAME = "'

-SET &WFACTOR = "'

- CMS RUN CODENAME, &MYCCDE, &MYNAME, &MYFACTCR

In this example the program is CODENAME. The arguments that are variables are either
prompted for or set at the beginning of the procedure and the values are then supplied for
the arguments. Note that in this syntax the user program may use an argument for both
input and output purposes. It is the responsibility of the user program to move the correct
number of characters into the output variables.

Developing Applications 4-35

Managing Applications With Dialogue Manager

Additional Facilities

Dialogue Manager supports a number of facilities for building applications. These
facilitiesinclude:

e Creating startup files (profiles) that set overall environment conditions, which apply
throughout your working session with FOCUS.

» Using -INCLUDE and EXEC to dynamically insert a procedure in another procedure,
or to nest them up to four levels.

e Creating windows and menus for displaying information and collecting datain a
procedure.

» Debugging procedures.
e Managing dataintegrity and security.
e Transferring data to and from non-FOCUS files.

Establishing Startup Conditions

FOCUS supports a startup profile that executes its content immediately upon entry into
FOCUS. Using this procedure you can:

» Establish standard conditions that apply throughout the subsequent working session.
For example, you can predefine environment parameters or automatically compute
variables and make them available for later use.

* Provide amenu of subsequent user options.
e Control use of an application.

You can create a profile using any text editor or the FOCUS editor TED. Thefileisa
FOCEXEC named PROFILE.

Note: It is possible to use an aternate FOCEXEC as a profile or not to execute a profile
at all. For more information, see the Overview and Operating Environments manual.

4-36 Information Builders

Additional Facilities

Example

Creating a Startup Profile

Note the following example of a profile (under CMYS):

USE
SALES FOCUS Al

MASTER FOCUS Cl1

END

CMS FI LEDEF MYSAV DI SK SAVE TEMP (LRECL 304 RECFM V
DEFI NE FI LE SALES

RATI Q' D5.2 = (RETURNS/ UNI T_SOLD);

END

- TYPE FOCUS SESSI ON ON &DATE MDYY &TCD

LET WORKREPORT=TABLE FI LE EMPLOYEE
SET LI NES=57, PAPER=66, PAGE=CFF
OFFLI NE

Upon entering FOCUS, the profile is executed and a message showing the current date
and timeis displayed:

FOCUS SESSI ON ON 03/11/99 AT 14:21:06

Incorporating Multiple Procedures

Dialogue Manager supports dynamic inclusion of other proceduresinto a stored
procedure at run time to enhance efficiency. There are two ways to do this:

e You can use the EXEC command in a procedure. The command will be stacked with
other FOCUS commands and executed when an appropriate Dial ogue M anager
command forces execution of the stack. The procedure must be a fully executable
procedure.

* The-INCLUDE command incorporates afile, which may be whole or partial
procedures. A partial procedure could not be executed alone, but can be saved in a
file and included in a calling procedure. Thisis particularly useful for procedures
containing common header text, or partial processing cases that can be included at
run time, based on tests and branches initiated in the original procedure. Y ou can nest
-INCLUDESs up to four levels.

The major difference between these two methods is when the procedure is executed. An
EXEC command would be stacked and subsequently executed when the appropriate
Dialogue Manager command is encountered, whereas -INCLUDE occurs immediately.

Developing Applications 4-37

Managing Applications With Dialogue Manager

Syntax

4-38

Using -INCLUDE

Linesinserted from a-INCLUDE are incorporated into the calling procedure as if they
had originally been placed there.

There are many more uses for -INCLUDE files:

« Asacontrol over the user environment. The included procedure must be present and
some switches set before the present procedure continues execution.

» Asasecurity mechanism. The included procedure can be encrypted and a direct
password set. For more information, see the Describing Data manual.

» The name of the included file can be determined by the procedure (for example,
-INCLUDE &NEWLINES, where NEWLINES is a variable whose value is afile
name). This can shorten the main procedure when there are many alternate
procedures.

How to Incorporate a File
-1 NCLUDE filenane [filetype [fil enode]]
where:

fil enanme
I's the name of a FOCUS procedure.

filetype
Isthe procedure’ sfile type. If noneisincluded, afile type of FOCEXEC is assumed.

fil enode
Is the procedure’sfile mode. If noneisincluded, afile mode of A is assumed.

Information Builders

Additional Facilities

Example Incorporating a File

In this example, -INCLUDE searches for afile named DATERPT:

-1 F &OPTI ON EQ S GOTO PRODSALES
- ELSE GOTO PRODRETURNS;

- PRODRETURNS
-1 NCLUDE DATERPT
- RUN

Assume that DATERPT is a procedure containing the following TABLE request:

TABLE FI LE SALES

PRI NT PROD_CODE UNI T_SOLD
BY STORE_CODE

I F PROD_CCDE | S &PRODUCT
END

-INCLUDE incorporates this request into the calling procedure. FOCUS prompts for a
value for the variable & PRODUCT as soon as the -INCLUDE is encountered. The
ensuing -RUN forces the execution of thisincluded TABLE request.

Example Incorporating Non-Executable Code

You can use -INCLUDE to call files containing code that is not executable. For instance,
a common heading used throughout all reports can be stored in a separate file and
incorporated into any procedure as needed. For example,

TABLE FI LE SALES
-1 NCLUDE SALEHEAD
SUM UNI T_SOLD AND RETURNS AND COVPUTE ...

where the SALEHEAD file contains:

HEADI NG

"THE ABC CORPORATI ON'
"RETAI L SALES DI VI SI ON'
"MONTHLY SALES REPORT"

Developing Applications 4-39

Managing Applications With Dialogue Manager

Example Incorporating a Defined Field

As another example, a defined field can be placed in a separate file and called from a
procedure as follows

-1 NCLUDE DEFRATI O
TABLE FI LE SALES

-1 NCLUDE SALEHEAD
SUM UNI T_SCOLD AND RETURNS AND RATI O
BY A TY

where the DEFRATIO file contains:

DEFI NE FI LE SALES
RATI O/ D5. 2=(RETURNS/ UNI T_SOLD) ;
END

This DEFINE will be dynamically included before the TABLE request executes.

Nesting Procedures With -INCLUDE

Any number of different procedures can be invoked from a single calling procedure. Y ou
can also nest -INCLUDE commands within each other, up to four levels deep.

- PRODSALES
-1 NCLUDE FI LE1
- RUN
FI LE1
-1 NCLUDE FI LE2
- RUN
FI LE2
-1 NCLUDE FI LE3
- RUN
FI LE3
-1 NCLUDE FI LE4
- RUN
FI LE4
- RUN

Files 1 through 4 are incorporated into the original procedure. All of the included files are
viewed as part of the original procedure. A procedure cannot branch to alabel in an
included file.

4-40 Information Builders

Additional Facilities

Using EXEC
A procedure can also call another one with the command EXEC (EX). The called
procedure must be fully executable. Y ou can also pass values to variables on the
command line.

Example Using EXEC to Call a Procedure

In the following example, a procedure calls DATERPT:
-1F &OPTION EQ 'S GOTO PRODSALES ELSE GOTO PRODRETURNS;

- PRODRETURNS
EX DATERPT

- RUN

Note: If the last executable command in the called procedure is a-CRTFORM, control
will not be returned to the calling procedure unless another Dialogue Manager command
isincluded to terminate the -CRTFORM, such as -RUN or a-label.

Developing an Open-Ended Procedure

A file of stored FOCUS commands without variables |ooks and executes exactly as
though it had been typed interactively into FOCUS from the terminal. However, if thereis
an error in your procedure file, it is rejected. If you make an error while typing
interactively from the terminal, FOCUS issues prompts to help you correct the error.

If you store a procedure without the END command, you can execute all the procedure
lines. The terminal then “opens’ to allow interactive completion of the procedure. You
can add additional command lines and enter the END command from the terminal to
complete the procedure.

Note that you cannot use amper variables when typing online at aterminal. Open-ended
procedures do not support variable substitution in lines entered after the terminal is
opened. Variable substitution is supported in the stored portion of the procedure.

Developing Applications 4-41

Managing Applications With Dialogue Manager

Example Developing and Running an Open-Ended Procedure

Assume the following open-ended procedure is stored as SLRPT:

- TYPE ENTER REST OF PROCEDURE
TABLE FI LE SALES
HEADI NG CENTER
"MONTHLY REPORT"
SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATI Q' D5.2 = 100 * RETURNS/ UNI T_SOLD;

Y ou can invoke the procedure by typing EX SLRPT. It executes normally but failsto
encounter an END command in thefile. It then opens up the terminal displaying the
FOCUS prompt. Depending on what you want, you could supply:

BY STORE_CCDE
END

Or, dternatively:

IF CTY IS STAMFORD
BY STORE_CODE
END

Debugging With &ECHO

It can be helpful to display command lines as they execute in order to test and debug
procedures. The variable & ECHO is available for this purpose.

Syntax How to Display Command Lines as They Execute
&ECHO = di spl ay
Valid values are:

N
Displays lines that are expanded and stacked for execution.

ALL
Displays Dialogue Manager commands as well as lines that are expanded and stacked
for execution.

OFF
Suppresses display of both stacked lines and Dialogue Manager commands. This
valueis the default.

4-42 Information Builders

Additional Facilities

You can set & ECHO through -DEFAULTS, -SET, or on the command line. For example,
you can set ECHO to ALL for the execution of the procedure SLRPT using any of the
following commands:

- DEFAULTS &ECHO = ALL
or

-SET &ECHO = ALL;

or

EX SLRPT ECHO = ON

If you use -SET or -DEFAULTS and placeit in the procedure, display begins from that
point in the procedure, and can be turned off and on again at any other point in the
procedure.

Note that if the procedure is encrypted, & ECHO automatically receives the value OFF,
regardless of the value that is assigned explicitly.

Testing Dialogue Manager Command Logic With &STACK

Syntax

To test the logic of Dialogue Manager commands, you can run the procedure but prevent
actual execution of the stacked commands by setting the & STACK variable.

How to Test Dialogue Manager Command Logic
&STACK = { ON| OFF}
where:

N
Resultsin normal execution of stacked commands. This value is the default.

OFF
Prevents execution of stacked commands. In addition, system variables (for example,
&RECORDS or &LINES) are not set. Dialogue Manager commands are executed so
you can test the logic of the procedure.

Developing Applications 4-43

Managing Applications With Dialogue Manager

You can set & STACK through -DEFAULTS, -SET, or on the command line. For
example, you can set & STACK to OFF for the execution of the procedure SLRPT using
any of the following commands:

- DEFAULTS &STACK = OFF
or

- SET &STACK = OFF;

or

EX SLRPT STACK = OFF

Thisisusually used with ECHO = ALL for debugging purposes. The terminal displays
both the Dialogue Manager commands, as well as the FOCUS commands with the
supplied values. Y ou can view the logic of the procedure.

Locking Procedure Users Out of FOCUS

Syntax

4-44

Normally, users can respond to a Dialogue Manager value request with QUIT and return to
the FOCUS command level or the prior procedure. In situations where it isimportant to
prevent users from entering native FOCUS or QUIT from a particular procedure, the
environment can be locked and QUIT deactivated.

How to Lock Procedure Users Out of FOCUS
Enter the following command within the procedure:
- SET &QUI T=OFF;

With QUIT deactivated, any attempt to return to native FOCUS produces an error
message indicating that “quit” is not avalid value. Then the user is prompted for another
value.

A user can terminate the FOCUS session from inside a locked procedure by responding to
aprompt with

QU T FOCUS
to return to the operating system, not the FOCUS command level.
Note: The default value for &QUIT isON.

Information Builders

Additional Facilities

Writing to Files: -WRITE

Syntax

Example

In addition to conducting a dialogue with the user, Dialogue Manager can read from and
write to files. For information on reading values from files, see Bupplying Values Without |
Prompting jon page 4-68.

The Dialogue Manager -WRITE enables you to write lines of text to afile.

How to Write to a File
-WRI TE ddnane [NOCLOSE] text
where:

ddnane
Isthe logical name of the file as defined to FOCUS using FILEDEF, ALLOCATE,
or DYNAM ALLOCATE. For information about file allocations, see the Overview
and Operating Environments manual.

NOCLCSE
Indicates that the file should be kept open even if a-RUN is encountered. Thefileis
closed upon completion of the procedure or when a-CLOSE or subsequent -READ
command is encountered.

t ext
Is any combination of variables and text. To write more than one line, end the first
line with acomma (,) and begin the next line with a hyphen followed by a space (-).

-WRITE opens the file to receiving the text and closes it upon exit from the procedure.
When the file is reopened for writing, the new material overwrites the old. If you wish to
reopen to add new recordsinstead of overwriting existing ones, use the attribute DISP
MOD when you define the file to the operating system.

Writing to a File
The following example reopens the file PASS under CM S to add new text:

-CM5 FI LEDEF PASS DI SK PASS DATA (DI SP MOD
-WRI TE PASS &DI V &RED &TEST RESULT | S
- &RECORDS AT END OF RUN

Developing Applications 4-45

Managing Applications With Dialogue Manager

Example Reading From and Writing to Sequential Files

The following exampleillustrates reading from and writing to sequential files and the use
of operating system commands (in this example, CMS). The numbers in the margin refer

to notes that follow the example.

1. -TCP
2. -PROWT &CITY. ENTER NAME OF CITY -- TYPE QU T WHEN DONE.
3. -CMS FI LEDEF PASS DI SK PASS DATA A (LRECL 80 RECFM FB
4. -VWRITE PASS &CI TY

TABLE FI LE SALES

HEADI NG CENTER

"LONEST MONTHLY SALES FOR &CI TY"

PRI NT DATE PROD_CCDE

BY LONEST 1 UNI T_SOLD

BY STORE_CCDE

BY G TY

IF CTY EQ &I TY

FOOTI NG CENTER

" CALCULATED AS CF &DATE"

ON TABLE SAVE AS | NFO

END
5. -RUN

6. -CMS FILEDEF LOG DI SK LOG DATA Al (LRECL 80 RECFM FB

MODI FY FI LE SALES
COVPUTE

TODAY/ | 6=&YMD;
ClTY="&CI TY';

FI XFORM X5 STORE_CODE/ A3 X15 DATE/ A4 PRCD_CODE/ A3
MATCH STORE_CODE DATE PROD_CCDE

ON MATCH TYPE ON LOG

" <STORE_CODE><DATE><PROD_CODE><TCODAY>"

ON MATCH DELETE
ON NOVATCH REJECT
DATA ON | NFO

END
7. -RWIN

EX SLRPT3
8. -RUN
11. - GOTO TOP
12. -QUIT

4-46

Information Builders

Additional Facilities

The procedure SLRPT3, which isinvoked from the calling procedure, contains the
following lines:

9. -READ PASS &CI TY. A8.
TABLE FI LE SALES
HEADI NG CENTER
"MONTHLY REPORT FOR &CI TY"
"LOWEST SALES DELETED'

PRI NT PROD_CODE UNI T_SOLD RETURNS DAMAGED
BY STORE_CODE

BY QI TY

IF CTY EQ &I TY

FOOTI NG CENTER

"CALCULATED AS OF &DATE"

END

10. -RUN

The following paragraphs explain the logic and show the dial ogue between the user and
the screen. User entries are in lowercase:

1. -TOP marksthe beginning of the procedure.
2. -PROMPT sends the following prompt to the screen after the procedure is executed:

ENTER NAME OF CITY — TYPE QUIT WHEN DONE>stamford

FILEDEF defines and opens a file named PASS.

4, -WRITE writesthe value of & CITY to the non-FOCUS file named PASS. In this
case the value written is STAMFORD.

Developing Applications 4-47

Managing Applications With Dialogue Manager

5. -RUN executes the stacked TABLE request. In this case, a non-FOCUS file named
INFO is created with the SAVE command. Thisis a sequentia file, containing the
result of the TABLE request as shown below.

NUMBER OF RECORDS I N TABLE= 7 LINES= 7
(BEFORE TOTAL TESTS)

EBCDI C RECORD NAMED | NFO

FI ELDNAME ALI AS FORNVAT LENGTH
UNI T_SOLD SOLD 15 5
STORE_CODE SNO A3 3

aTy CTY Al5 15
DATE DTE AAND 4
PROD_CODE PCODE A3 3
TOTAL 30

DEFAULT FI LEDEF | SSUED

FI LEDEF | NFO DI SK | NFO FOCTEMP Al (LRECL 30 BLKSI ZE 300 RECFM F6)
>
>

6. FILEDEF definesalog file for the subsequent MODIFY request.

7. -RUN executes the stacked MODIFY request. The data comes directly from the
INFO file created in the prior TABLE request and is entered using FIXFORM.
Hence, the product with the lowest UNIT_SOLD is deleted from the file, and logged
toalogfile.

sales.foc ON 04-23-93 AT 12.28.38

TRANSACTIONS: TOTAL= 1 nACCEPTED= 1 REJECTED= O
SEGHENTS : INPUT= 0 UPDATED = 0 DELETED = 1

8. Thenext -RUN executes another procedure called SLRPT3.

9. -READ readsthevauefor & CITY from the non-FOCUS file PASS. In this case the
value passed is STAMFORD.

4-48 Information Builders

Using Variables in Procedures

10. The -RUN executes the TABLE request and control is routed back to the calling

procedure.
PAGE 1
MONTHLY REFORT FOR STAMFORD
LOWEST SALES DELETED

STORE_CODE CITY PROD_CODE UNIT_SOLD RETURNS DAMAGED

148 STAMFORD Bilo 60 10 b
B1Z2 40 3 3
B1? 29 2 1
c? 15 5 4
D12 27 0] 0
E2 8o 9 4
E3 70 8 9

CALCULATING AS OF 04-23-93

11. -GOTO TOP routes control to the top.
12. When the user types QUIT, processing ends.

Using Variables in Procedures

Interactive variable substitution is at the heart of Dialogue Manager. Y ou can create
procedures that include variables (also called amper variables) and supply values for them
at run time. These variables store a string of text or numbers and can be placed anywhere
in aprocedure. A variable can refer to afield, acommand, descriptive text, afile name—
literally anything.

Variables can be used only in procedures. They are ignored if you use them while creating
reports live at the terminal. Values for variables may be supplied either directly on the
command line when you execute the procedure, or through the -DEFAULTS command,
the -SET command, or a-READ command in the procedure itself.

This topic describes how to use amper variables in procedures and how to supply values
for them. Variablesfall into two classifications:

* Loca and global variables have values supplied at run time. Local variable values
remain in effect for the respective procedure, while global variable values remain in
effect for all procedures executed during an entire FOCUS session (that is, from the
time you enter FOCUS until you exit with the FIN command).

e System, statistical, and special variables have values that the system automatically
resolves whenever you request them.

Developing Applications 4-49

Managing Applications With Dialogue Manager

Leading double ampersands (& &) denote global variables. All other Dialogue Manager
variables begin with a single ampersand (&). For this reason, in the FOCUS community
they are known as amper variables.

The maximum number of local, global, system, statistical, special and index variables
available in aprocedure is 512. Approximately 30 are reserved for use by FOCUS.

Additionally, Dialogue Manager supports four types of prompting. Y ou can alter the
execution flow of your procedure, or change the substance of the request based on the
values entered. These are

4-50

Direct Prompting with -PROMPT: Y ou can request a set of values before they are
actually needed. Y ou can write your own text for these prompts and then validate the
entered values to confirm that they fit a preset list of acceptable items or match a
predefined format.

Full-Screen Data Entry with -CRTFORM: The -CRTFORM command gathers
variable values through full-screen data entry. Many values can be input and
manipulated at the same time. Several screens can be included in a single procedure
and used for avariety of purposes, including the development of menu-driven
applications.

-CRTFORM invokes FIDEL, the FOCUS Interactive Data Entry Language, and
incorporates most of its functions. Y ou can also use Screen Painter to design and
paint -CRTFORM data entry screens directly on your terminal screen.

Note that the Dialogue Manager command -CRTFORM is used for entering Dialogue
Manager amper variable values. The equivalent MODIFY command, CRTFORM
(without a hyphen), is used in MODIFY requests to enter field values.

Selecting Itemsfrom a M enu with -WINDOW: Y ou can create a series of menus
and windows using the Window Painter facility and display them on the screen using
the -WINDOW command. When displayed, the menus and windows can collect data
by prompting users to select avalue, enter avalue, or press a program function (PF)

key.

Implied Prompting: FOCUS recognizes variables in a procedure by the leading
ampersand (&). If avalue has not been provided by some other means, FOCUS
automatically requests a value from the terminal when needed.

Information Builders

Using Variables in Procedures

Querying the Values of Variables

Syntax

Syntax

Example

Amper variable values can be queried during execution.

How to Query the Values of Variables
-? & string]
where:

string
Is a complete amper variable or apartial string of up to 12 characters. Only amper
variables starting with the specified string are displayed.

The command displays the following message, followed by alist of currently defined
amper variables and their values:

CURRENTLY DEFI NED & VARI ABLES

Note that thisis a Dialogue Manager query. Since local variables do not exist outside a
procedure, no similar query is available from the FOCUS command line.

Querying Parameter Value Settings

There is a Dialogue Manager query that enables you to capture previously defined SET
parameter values in amper variables.

How to Query Parameter Value Settings
-? SET paraneter anpervar
where:

par anmet er
Isany valid FOCUS setting that may be queried with the ? SET or ? SET ALL
command.

anmpervar
Is the name of the variable where the value is to be stored.

Querying a Parameter Value Setting
For example, if you enter

-? SET ASNAMES &abc
- TYPE &ABC

the value stored in & abc becomes the value of ASNAMES. If you omit & abc from the
command, then avariable called & ASNAMES is created that contains the value of
ASNAMES.

Developing Applications 4-51

Managing Applications With Dialogue Manager

Local Variables

Local variables are identified by a single ampersand (&) preceding the name of the
variable. They remain in effect throughout a single procedure.

Example Using Local Variables

In the following example, &CITY, & CODEL, and & CODE2 are local variables:

TABLE FI LE SALES

HEADI NG CENTER

"MONTHLY REPORT FOR &Cl TY"

" PRODUCT CODES FROM &CODE1 TO &CODE2"

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ'D5.2 = 100 * (RETURNS/ UNI T_SOLD);
BY O TY

IF OTY EQ &0 TY

BY PROD_CODE

| F PROD_CODE | S- FROM &CODE1 TO &CODE2
END

Assume you supply the values when you execute the procedure:
EX SLRPT CI TY = STAMFORD, CODE1=B10, CODE2=B20
The procedure looks like this before it processes:

TABLE FI LE SALES

HEADI NG CENTER

"MONTHLY REPORT FOR STAMFORD'

" PRCDUCT CCDES FROM B10 TO B20"

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ D5.2 = 100 * (RETURNS/ UNI T_SOLD);
BY O TY

IF O TY EQ STAMFORD

BY PROD_CODE

| F PROD_CODE | S- FROM B10 TO B20

END

Values supplied for local variables remain current in the procedure. That is, all instances
of the variables receive the values supplied. However, the values are not passed to other
procedures containing the same variables (that is, & CODE1 and & CODEZ2 in another
procedure). The values disappear after SLRPT has finished processing.

4-52 Information Builders

Using Variables in Procedures

Global Variables

Example

Syntax

Global variables differ from local variablesin that once avalueis supplied, it remains
current throughout the FOCUS session, unless set to another value with -SET or cleared
by the LET CLEAR command. For information on LET CLEAR, see Chapter 5, Defining
a Word Substitution. They are useful for gathering values at the start of awork session for
use by several subsequent procedures. All procedures that use a particular global variable
will receive the current value until you exit from FOCUS.

Global variables are specified through the use of a double ampersand (& &) preceding the
variable name. It is possible to have alocal and global variable with the same name. They
are distinct and may have different values.

Using Global Variables

The following is an example of a procedure containing global variables:

TABLE FI LE SALES
HEADI NG CENTER

" MONTHLY REPORT FOR &&CI TY"

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ'D5.2 = 100 * (RETURNS/ UNI T_SOLD);
BY O TY

IF OTY EQ &&dl TY

BY PROD_CODE

| F PROD_CODE | S- FROM &CODEL TO &&CODE2
END

How to Query the Values of Global Variables

Since global variable values remain current throughout the FOCUS session, it is helpful to
be able to display their values on demand. Do this by issuing the following command,

? &&

which displays the values of all global variablesin use during the FOCUS session.

Developing Applications 4-53

Managing Applications With Dialogue Manager

Example

Querying the Values of Global Variables

The following example displays the values of three global variables:

>

7 &&
&ERCITY
&&CODE1
&&CODEZ

>

STAMFORD
Blo
BZ0

System Variables

FOCUS automatically substitutes values for system variables encountered in a Dialogue
Manager reguest. System-supplied variables cannot be overridden. For example, you can
use the system variable & DATE to automatically incorporate the system date in your

Reference

4-54

request.

Summary of System Variables

A list of Dialogue Manager system variables follows:

Variable Format or Value | Description
&DATE MM DD/ YY Returns the current date.
&DATEF nt Any date format. Returns the current date, where fmt can be
any combination of YYMD, MDY, etc.
&DwY DDMMYY Returns the current date.
&DMYY DDMMCCYY Returns the current (four-digit year) date.
&FOCCPU mlliseconds Calculatesthe OS CPU time. MV S only. In
CMS, this returns the same value as
&FOCTTIME.
&FOCEXTTRM ON Indicates the availability of extended
OFF termina attributes.
&FOCFI ELDNAME | NEW Returns a string indicating whether long and
ab qualified field names are supported. A value
NOTRUNC of OLD means that they are not; NEW means
that they are; and NOTRUNC means that
they are supported, but unique truncations of
field names cannot be used.

Information Builders

Using Variables in Procedures

Variable Format or Value | Description

&FOCFOCEXEC M anages reporting operationsinvolving
many similarly named requests that are
executed using EX. & FOCFOCEXEC
enables you to easily determine which
procedure is running. & FOCFOCEXEC can
be specified within arequest or in a Dialogue
Manager command to display the name of the
currently running procedure.

&FOCI NCLUDE Manages reporting operations involving
many similarly named requests that are
included using -INCLUDE.
&FOCINCLUDE can be specified within a
regquest or in a Dialogue Manager command
to display the name of the current included
procedure.

&FOCMODE CcVB | dentifies the operating environment.

CRIE
MBSO
oS
TSO
&FOCPRI NT ONLI NE Returns the current print setting.
OFFLI NE
&FOCPUTLVL FOCUS PUT | evel (For example, 9306 or 9310.)
nunber . &FOCPUTLVL isno longer supported.
&FOCQUALCHAR Returns the character used to separate the
components of qualified field names.
!
%
|
\

&FOCREL rel ease nunber I dentifies the FOCUS Release number (for
example, 6.5 or 6.8).

&FOCSBORDER N Whether solid borders will be used in

OFF full-screen mode.

&FOCSYSTYP H PER CMS system type.

CP/ A

Developing Applications

4-55

Managing Applications With Dialogue Manager

4-56

Variable Format or Value | Description
&FOCTMPDSK A ..Z I dentifies the disk where FOCUS places
temporary work files (for example, HOLD
files). CMS only.
&FOCTRMSD 24 Indicates terminal height. (This can be any
27 value; the examples shown are common
32 Settings.)
43
&FOCTRMBW 80 Indicates terminal width. (This can be any
132 value; the examples shown are common
settings.)
&FOCTRMTYP 3270 Identifies the terminal type.
TTY
UNKNOMN
&FCOCTTI ME m | liseconds Calculatestotal CPU time. CMS only.
&FOCVTI ME m | liseconds Calculates virtual CPU time. CMS only.
&HI PERFOCUS N Returns a string showing whether
OFF HiperFOCUS s on.
& ORETURN Returns the code set by the last Dialogue
Manager -READ or -WRITE operation.
&NDY MVDDYY Returns the current date. The format makes
this variable useful for numerical
comparisons.
&VDYY MVDDCCYY Returns the current (four-digit year) date.
&RETCODE numeri ¢ Returns the return code set upon execution of
an operating system command. Executes all
FOCUS commands in the FOCSTACK just
asthe -RUN command would.
&TOD HH. MM SS Returns the current time. When you enter
FOCUS, this variable is updated to the
current system time only when you execute a
MODIFY, SCAN, or FSCAN command. To
obtain the exact time during any process, use
the HHMMSSS subroutine.
&YND YYMVDD Returns the current date.
&YYMD CCYYMVDD Returns the current (four-digit year) date.

Information Builders

Using Variables in Procedures

Example

Example

Using the System Variable &DATE

The following exampleillustrates the use of a system variable in arequest:
TABLE FI LE SALES

FOOTI NG " CALCULATED AS CF &DATEMDYY"
END
-EXIT

The system variable & DATEMDY'Y ensures that the date that appearsin thereport is
always the current system date.

Using the System Variable &FOCFOCEXEC

This next example illustrates how to use the system variable & FOCFOCEXEC in a
reguest to display the name of the currently running procedure:

TABLE FI LE EMPLOYEE

" REPORT: &FOCFOCEXEC -- EMPLOYEE SALARI ES'

PRI'NT CURR_SAL BY EMP_ID
END

If the request is stored as a procedure called SALPRINT, when executed it will produce
the following:

PAGE 1

REPORT: DABZ219 -- EMPLOYEE ZALARIES
EMP_ID CURR_SAL
BT1382660 511,000,600
112847612 513, 200.00
115360218 5.00
117393129 516,460,600
119265415 59,500, A0
119329144 529,700, PO
121495681 5.00
123764317 526, 862.00
126724188 521,120,080
219984371 516,460,600
326179337 521,760,600
451123478 516,106, 60
543729165 59,000, 00
18692173 527,062,600

Developing Applications 4-57

Managing Applications With Dialogue Manager

Example

4-58

& FOCFOCEXEC and & FOCINCLUDE can also be used in -TY PE commands. For
example, you have a procedure named EMPNAME that contains the following:

- TYPE & FOCFOCEXEC is: &FOCFOCEXEC
When EMPNAME is executed, the following output is produced:
&FOCFOCEXEC |'S: EMPNAME

Displaying a Date Variable Containing a Four-Digit Year

Y ou can display a date variable containing a 4-digit year without separators. The
variablesare &YYMD, &MDYY, and &DMY'Y. These variables complement the 2-digit
year variables & YMD, &MDY, and &DMY .

Using the System Variable &YYMD

The following example shows areport using & YYMD:

TABLE FI LE EMPLOYEE
HEADI NG
"SALARY REPORT RUN ON DATE &YYMD'

PRI NT DEPARTMENT CURR_SAL

BY LAST_NAVME BY Fl RST_NAVE
END

Information Builders

Using Variables in Procedures

The resulting output for May 18, 1998 is:

PAGE

SALARY REFORT RUM OM DATE 19998319

LAST_MAME
BAMMIMG
BLACKLOOD
CROSS
DAYIS
GARDMHER
GREEMSFAM
IRVING
JOMES
MECOY
MEKMIGHT
ROMAMS
SMITH

STEVENS

FIRST_HAME
JOHN
ROSEMARIE
BAREBARA
ELIZABETH
DAYID
MARY

JOAN
DIANE
JOHN
ROGER
AMTHOMY
MARY
RICHARD
ALFRED

DEPARTHMENT
FRODUCTION
MIS
oIs
MIS
FRODUCTION
MIS
PRODUCTION
MIS
MIS
FRODUCTION
FRODUCTION
MIS
FRODUCTION
FRODUCTION

CURR_SAL

529,700,
521,780,
527,062,

5.

5.
59,800,
526,862,
514, 480,
514, 480,
516,100,
521,120,
513,200,
59,500,
511, 000,

Developing Applications

4-59

Managing Applications With Dialogue Manager

Statistical Variables

FOCUS posts many statistics concerning overall operations while a procedure executes in
the form of statistical variables. Aswith system variables, FOCUS can automatically
supply values for these variables on request.

Reference

4-60

Summary of Statistical Variables

A list of Dialogue Manager statistical variables follows:

Variable

Description

&ACCEPTS

Indicates the number of transactions accepted. This variable applies
only to MODIFY requests.

&BASEI O

Indicates the number of input/output operations performed.

&CHNGD

Indicates the number of segments updated. This variable applies only
to MODIFY requests.

&DELTD

Indicates the number of segments deleted. This variable applies only
to MODIFY requests.

&DUPLS

Indicates the number of transactions rejected as a result of duplicate
values in the data source. This variable applies only to MODIFY
requests.

&FOCDI SORG

Indicates the percentage of disorganization for a FOCUSfile. This
variable can be displayed or tested even if the value is less than 30%
(the level at which ? FILE displays the amount of disorganization).

&FOCERRNUM

Indicates the last error number, in the format FOCnnnn, displayed
after the execution of a procedure. If more than one occurred,
&FOCERRNUM will hold the number of the most recent error. If no
error occurred, & FOCERRNUM will have avalue of 0. Thisvalue
can be passed to the operating system with the line -QUIT FOCUS
&FOCERRNUM. It can aso be used to control branching from a
procedure to execute an error-handling routine.

&FORVAT

Indicates the number of transactions rejected as aresult of aformat
error. This variable applies only to MODIFY requests.

& NPUT

Indicates the number of segments added to the data source. This
variable applies only to MODIFY requests.

& NVALI D

Indicates the number of transactions rejected as aresult of aninvalid
condition. This variable applies only to MODIFY requests.

Information Builders

Using Variables in Procedures

Example

Variable Description

&LI NES Indicates the number of lines printed in last report. This variable
applies only to report requests.

ENOVATCH Indicates the number of transactions rejected as a result of not
matching avalue in the data source. This variable applies only to
MODIFY requests.

&READS Indicates the number of records read from a non-FOCUS file.

&RECORDS Indicates the number of records retrieved in last report. This variable
applies only to report requests.

&REJECTS Indicates the number of transactions rejected for reasons other than
the ones specifically tracked by other statistical variables. This
variable applies only to MODIFY requests.

&TRANS Indicates the number of transactions processed. This variable applies
only to MODIFY requests.

Using &LINES to Control Execution of a Request

The following example illustrates how to use the statistical variable & LINES to control
execution of arequest:

TABLE FI LE SALES

HEADI NG CENTER

" MONTHLY REPORT FOR &Cl TY"

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ' D5.2 = 100 * (RETURNS/ UNI T_SOLD);
BY O TY

IF OTY EQ &CI TY

BY PROD_CODE

| F PROD_CODE | S- FROM &CODE1 TO &CODE2
ON TABLE HOLD

END

- RUN

-IF &LINES EQ 0 GOTO NORECORDS;

MODI FY FI LE SALES

DATA ON HOLD

END

- RUN

- NORECORDS

-TYPE No record satisfies this report request

SQUIT

Developing Applications 4-61

Managing Applications With Dialogue Manager

Syntax

In the example, the system cal culates the statistical variable & LINES (the number of lines
produced by the TABLE request). If the number is O, there are no lines in the report;
-QUIT tells FOCUS to halt processing and the user is returned to the FOCUS prompt. If
&LINES isgreater than 0, processing continues to the MODIFY request.

How to Query the Values of Statistical Variables

Y ou can query the current value of all statistical variables except & FOCDISORG and
&FOCERRNUM by typing the query command

? STAT
from the FOCUS prompt.

Special Variables

Reference

4-62

FOCUS provides special variables that apply to the cursor, function keys, windows, and
other features.

Summary of Special Variables
A list of special variables follow:

Variable Description

&CURSOR Holds the cursor position.

&CURSORAT Reads the cursor position.

&ECHO Controls the display of commands for debugging purposes.
&PFKEY Holds the PF Key function.

&QUIT Controls whether the response QUIT, or PF1in - CRTFORM, to a

prompt causes an exit from the procedure.

&STACK Controls whether the entire procedure, or only the Dialogue
Manager commands are executed.

&W NDOANAME Holds the name of the last window activated by the most recently
executed -WINDOW command (see Chapter 9, Designing Windows
With Window Painter).

&W NDOWALUE | Holds the return value of the last window activated by the most
recently executed -WINDOW command (see Chapter 9, Designing
Windows With Window Painter).

Information Builders

Using Variables in Procedures

Using Variables to Alter Commands

A variable can refer to a FOCUS command or to a particular field. In thisway, the
command structure of a procedure can be determined by the value of the variable.

Example Using a Field Variable

In the following example, the variable & FIELD determines the field to print in the
TABLE request. For example, & FIELD could have the value RETURNS, DAMAGED,
or UNIT_SOLD from afile named SALES.

TABLE FI LE SALES

PRI NT &FI ELD
BY PROD_CODE

Evaluating a Variable Immediately

The .EVAL operator enables you to evaluate a variable' s value immediately, making it
possible to change a procedure dynamically. It is used for substitution and re-evaluated by
Dialogue Manager.

Syntax How to Evaluate a Variable
.EVAL uses the following syntax
[& &vari abl e. EVAL
where:

vari abl e
Isalocal or global amper variable.

When the command procedure is executed, the expression is replaced with the value of
the specified variable before any other action is performed.

Developing Applications 4-63

Managing Applications With Dialogue Manager

Example

Example

4-64

Excluding and Including the .EVAL Operator

Without the .EVAL operator, an amper variable cannot be used in place of some FOCUS
commands, as shown by the following example:

- SET &A='-TYPE' ;
&A HELLO

This exampl€’s output shows that FOCUS does not recognize the value of & A:
UNKNOWN FOCUS COMVAND - TYPE

Appending the .EVAL operator to the & A amper variable makesit possible for FOCUS
to interpret the variable correctly. For example, adding the .EV AL operator as follows,

-SET &A='-TYPE';
&A. EVAL HELLO

produces the following output:

HELLO
>>

Evaluating a Variable Immediately

The .EVAL operator is particularly useful in modifying code at run time. The following
exampleillustrates how to use the .EVAL operator in arecord selection expression. The
numbers to the left apply to the notes that follow:
-SET &R="1F COUNTRY |'S ENGLAND ;
-1F & EQ ' YES THEN GOTO START;
-SET &R = ' -*';
- START
TABLE FILE CAR
PRI NT CAR BY COUNTRY
&R. EVAL
END

The procedure executes as follows:
1. The procedure setsthe value of &R to ‘IF COUNTRY ISENGLAND’.

2. Ifthe&Y isYES, the procedure branches to the START label, bypassing the second
-SET command.

3. Ifthe&Y isNO, the procedure continues to the second -SET command, which sets
&R to‘-*', which isacomment.

4. Thereport request is stacked.

Information Builders

Using Variables in Procedures

5. The procedure evaluates & R’ s value. If the user wanted arecord selection test, &R’'s
vaueis'|F COUNTRY ISENGLAND’ and thislineis stacked.

If the user did not want arecord selection test, & R'svalueis‘-*’ and thislineis
ignored.

Concatenating Variables

Y ou can append a variable to a character string or you can combine two or more variables
and/or literals. See the Creating Reports manual for full details on concatenation. When
using variables, it isimportant to separate each variable from the concatenation symbol

(Ih with a space.
Syntax How to Concatenate Variables
- SET &nanme3 = &nanel || &nane2;
where:
&name3

Is the name of the concatenated variable.

&nanel || &nane2
Are the variables, separated by a space and the concatenation symbol.

Note: The example shown uses strong concatenation, indicated by the || symbol. Strong
concatenation removes any trailing blanks from &namel. Conversely, weak
concatenation, indicated by the symbol |, preserves any trailing blanksin & namel.

Developing Applications 4-65

Managing Applications With Dialogue Manager

Supplying Values for Variables at Run Time

Example

4-66

b e

When you design a Dialogue Manager procedure, you must decide how the variablesin
the procedure will acquire values. Values for variables can be supplied in two ways:

e Whenyou call aprocedure. Y ou can include the variable names and their
corresponding values as parameters in an EXEC command that calls one procedure
from another.

» Directly in aprocedure. The Dialogue Manager commands -DEFAULTS, -SET, and
-READ enable you to supply values directly in a procedure.

Supplying Values for Variables

The example in thistopic illustrates the use of the commands -DEFAULTS and -SET to
supply values for variables. In the example, the user supplies the value of & CODE1,
& CODE2, and & REGIONMGR as prompted by an HTML form.

The numbers to the left of the example apply to the notes that follow:

- DEFAULTS &VERB=' SUM
-SET &I TY=I F &CODE1 GTI ' B09' THEN ' STAMFORD ELSE ' UNI ONDALE' ;
- TYPE REG ONAL MANAGER FOR &CI TY

TABLE FI LE SALES

HEADI NG CENTER

"MONTHLY REPORT FOR &CI TY"

" PRODUCT CODES FROM &CODE1 TO &CODE2"

&VERB UNI T_SOLD AND RETURNS AND COMPUTE
RATIQ' D5.1 = 100 * (RETURNS/ UNI T_SOLD);
BY PROD_CODE
| F PROD_CODE | S- FROM &CODE1 TO &CODE2
FOOTI NG CENTER
"REG ON MANAGER ® ONMGR'
" CALCULATED AS OF &DATEMDYY"
END

- RUN

The procedure executes as follows:
1. The-DEFAULTS command setsthe value of & VERB to SUM.

2. The-SET command suppliesthe value for & CITY depending on the value for
& CODE1 typed by the user on the form. Because the user typed B10 for & CODEL,
thevaluefor &CITY becomes STAMFORD.

3. When the user runs the report, FOCUS writes a message that incorporates the value
for &CITY:

REG ONAL MANAGER FOR STAMFORD

Information Builders

Supplying Values for Variables at Run Time

4. Theuser supplied the value for & REGIONMGR on the form. FOCUS supplies the
current date at run time.

5. The FOCUS stack contains the following lines:

TABLE FI LE SALES

HEADI NG CENTER

"MONTHLY REPORT FOR STAMFORD'

" PRCDUCT CCDES FROM B10 TO B20"

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ D5.1 = 100 * (RETURNS/ UNI T_SOLD);
BY PROD_CODE

| F PROD_CODE | S- FROM B10 TO B20

FOOTI NG CENTER

"REG ON MANAGER SM TH'

" CALCULATED AS OF 03/11/99"

END

Reference General Rules for Supplying Variable Values
The following general rules apply to values for variables:

* The maximum length of a variable value to be displayed on the screenis 80
characters.

e A physical FOCSTACK line with values substituted for variables cannot exceed 80
characters; therefore, you should not use variable values longer than 80 characters.

» |If avalue contains an embedded space, comma (,) or equal sign (=), you must enclose
the variable name in single quotation marks when you use it in an expression. For
example, if thevaluefor &CITY isNY, NY, you must refer to the variable as
‘&CITY’ in any expression.

e Onceavalueissupplied for alocal variable, it is used throughout the procedure,
unlessit is changed by -CRTFORM, -PROMPT, -READ, -SET, or -WINDOW.

» Onceavalueissupplied for aglobal variable, it is used throughout the FOCUS
session in all procedures, unlessit is changed by -CRTFORM, -PROMPT, -READ,
-SET, or -WINDOW, or cleared by LET CLEAR.

« Diaogue Manager automatically prompts the terminal if a value has not been
supplied for avariable.

Developing Applications 4-67

Managing Applications With Dialogue Manager

Supplying Values Without Prompting

There are several ways to supply values for local and global variables besides prompting
methods. These are outlined below:

* Supplying values on the command line: Y ou can supply values when you execute the
procedure.

e Supplying values with -DEFAULTS: Y ou supply initial default valuesin the
procedure to ensure that you will not be implicitly prompted for the value.

* Supplying values with -SET: Y ou supply values by setting them in the procedure
using the -SET command. The values can be constants or the result of an expression.

e Supplying values with -READ: Y ou can supply values by reading them in from a
sequential file.

Supplying Values on the Command Line

When the user knows the values required by a procedure, they can be typed on the
command line following the name of the procedure itself. This saves time, since FOCUS
now has values to pass to each local or global variable and the user will not be prompted
to supply them.

Example Supplying Values on the Command Line
Consider the following procedure:

TABLE FI LE SALES

HEADI NG CENTER

" MONTHLY REPORT FOR &Cl TY"

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ' D5.2 = 100 * (RETURNS/ UNI T_SOLD);
BY PROD_CODE

| F PROD_CODE | S- FROM &CODE1 TO &CODE2
BY O TY

IF OTY EQ &CI TY

END

In order to execute this procedure and supply values for the variables on the command
line, the user would type the following:

EX SLRPT CI TY = STAMFORD, CODE1=B10, CODE2=B20

4-68 Information Builders

Supplying Values for Variables at Run Time

Syntax

Example

How to Supply Values on the Command Line

Each name-value pair must have the syntactic form
name=val ue

and pairs must be separated by commas. It is not necessary to enter the name-value pairs
in the order that they are encountered in the procedure.

When the list of valuesto be supplied exceeds the width of the terminal, insert acomma
asthe last character on the line and enter the balance of the list on the following line(s), as
shown:

EX SLRPT AREA=S, CITY = STAMFORD, VERB=COUNT, FIELDS = UNI T_SOLD,
CODE1=B10, CODE2=B20

It is acceptable to supply some but not all values on the command line, in which case,
values not supplied will trigger prompts to the terminal .

To supply global amper variable values on the command line, you must supply the double
ampersand prefix, asin the following example:

EX SLRPT &&G.OBAL=val ue, CITY = STAMFORD, CODE1=B10, CODE2=B20

Using Positional Variables

When the variable is numbered (a positional variable; for example, &1, &2, &3) thereis
no need to specify the name, in this case a number, on the command line. FOCUS
matches the values, one by one to the positional variables as they are encountered in the
procedure. Therefore, it isvital to enter the appropriate value for each variable, in the
proper order.

Consider the following example:

TABLE FI LE SALES
HEADI NG CENTER

" MONTHLY REPORT FOR &1"

SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ'D5.2 = 100 * (RETURNS/ UNI T_SOLD);
BY PROD_CODE

| F PROD_CODE | S- FROM & TO &3

BY O TY

IF OTY EQ &1

END

The command line for entry of positional values should read:
EX SLRPT STAMFORD, B10, B20

Developing Applications 4-69

Managing Applications With Dialogue Manager

Example

Mixing Named and Positional Variables

Y ou can mix named and positional variables freely on the command line, providing that
names are associated with values for named variables and values are supplied for
positional variablesin the order that these variables are numbered in the procedure. For
example:

EX SLRPT CITY = STAMFORD, B10, B20, VERB=COUNT

Supplying Values With -DEFAULTS

Syntax

Example

4-70

The Dialogue Manager command -DEFAULTS supplies an initial (default) value for a
variable that had no value before the command was processed. It ensures that values will
be passed to variables whether or not they are provided elsewhere.

How to Supply Default Values
- DEFAULTS ¢&[& nane=val ue [...]
where:

&nane
|s the name of the variable.

val ue
Is the default value assigned to the variable.

Supplying Default Values

In the following example, -DEFAULTS sets default valuesfor & CITY and
& REGIONMGR.

- DEFAULTS &Cl TY=STAMFCRD, ® ONMCR=SM TH
TABLE FI LE SALES

Overriding Default Values

Y ou can override default values by supplying new values on the command line or by an
explicit prompt.

Information Builders

Supplying Values for Variables at Run Time

Supplying Values With -SET

Syntax

Example

Example

With -SET, you can assign a value computed in an expression.

How to Set a Variable Value
- SET &[&] nane=expr essi on;
where:

&name
Is the name of the variable.

expr essi on;
Isavalid literal, arithmetic, or logical expression. Expressions can occupy several
lines, so you should end the command with a semicolon (;).

Setting Variable Values

In the following example, -SET assigns the value 14Z or 14B to the variable
& STORECODE, as determined by the logical |F expression. The value of & CODE is
supplied by the user.

- SET &STORECODE = | F &CODE GT C2 THEN ' 147 ELSE ' 14B' ;
TABLE FI LE SALES
SUM UNI T_SOLD AND RETURNS
BY PROD_CODE
| F PROD_CODE GE &CODE
BY STORE_CCDE
| F STORE_CCDE | S &STORECODE
END

Setting a Literal Value

Single quotation marks around aliteral is optional unless it contains embedded blanks,
commas, or equal signs, in which case you must include them as shown:

- SET &NAME=' JOHN DOE'

To assign aliteral value that includes a single quotation mark, place two single quotation
marks where you want one to appear:

- SET &NAME=' JOHN O ' HARA' ;

Developing Applications 4-71

Managing Applications With Dialogue Manager

Supplying Values With -READ

Y ou can supply values for variables by reading them from a sequential file.

Syntax How to Supply Values With -READ
- READ ddnane[,] [NOCLOSE] &nane[.format.][,] ...
where:
ddnane

Isthe logical name of the file as defined to FOCUS using FILEDEF. (When using
MVS, use ALLOCATE or DYNAM ALLOCATE.) A space after the ddname
denotes a fixed format file while a comma denotes a comma-delimited file.

NOCLCSE
Indicates that the file should be kept open even if a-RUN is encountered. Thefileis
closed upon completion of the procedure or when a -CLOSE or subsequent -WRITE
command is encountered.

nane
Is the variable name. Y ou may specify more than one variable. Using commas to
separate variablesis optional.

If thelist of variablesis longer than one line, end the first line with a comma and
begin the next line with a dash followed by a blank (-). For example:

Comma-delimited files

- READ EXTFI LE, &CI TY, &CODE1,
- &CODE2

Fixed format files

- READ EXTFI LE &CI TY. A8. &CODEL. A3.
- &CODE2. A3

f or mat
Isthe format of the variable. Note that format must be delimited by periods. The
format isignored for comma-delimited files.

Note: -SET provides an aternate method for defining the length of avariable using
the corresponding number of characters enclosed in single quotation marks (‘). For
example, the following command defines the length of & CITY as8:

-SET &CI TY='

4-72 Information Builders

Supplying Values for Variables at Run Time

Example Reading Data and Testing a System Variable

The example below reads data from EXTFILE, afixed format file that contains the
following data:

STAMFORDB10B20

The example tests the system variable & |ORETURN. If there is no record to be read, the
value of &IORETURN is not equal to zero and the procedure branches to the label after
the TABLE request.

- READ EXTFI LE &CI TY. AS. &CODEL. A3. &CODE2. A3.
-1 F & ORETURN NE 0 GOTO RESUME;
TABLE FI LE SALES
SUM UNI T_SOLD
BY O TY
IF ATY IS & TY
BY PROD_CODE
| F PROD_CODE | S- FROM &CODE1 TO &CODE2
END
- RESUME

Direct Prompting With -PROMPT

The Dialogue Manager command -PROMPT solicits values before the variables to which
they refer are used in the procedure. The user is prompted for avalue as soon as
-PROMPT is encountered. If alooping condition is present, -PROMPT requests a new
value for the variable, even if avalue exists already. Thus, each time through the loop, the
user is prompted for a new value.

With -PROMPT you can specify format, text, and lists in the same way as all other
variables.

Developing Applications 4-73

Managing Applications With Dialogue Manager

Example Prompting for Variable Values

The following is an example of the use of -PROMPT:

- PROWVPT &CODE1
- PROVPT &CODE2
-SET &I TY = | F &OODEL GT B09 THEN STAMFORD ELSE UNI ON;
-TYPE REG ONAL MANAGER FOR &CI TY
- PROVPT ® ONMGR
TABLE FI LE SALES
HEADI NG CENTER
" MONTHLY REPORT FOR &Cl TY"
" PRODUCT CODES FROM &CODEL TO &CODE2"
SUM UNI T_SOLD AND RETURNS AND COVPUTE
RATIQ'D5.2 = 100 * (RETURNS/ UNI T_SOLD);
BY O TY
IF OTY EQ &0 TY
BY PROD_CODE
| F PROD_CODE | S- FROM &CODE1 TO &CODE2
FOOTI NG CENTER
"REG ON MANAGER ® ONMGR'
" CALCULATED AS OF &DATE"
END

-PROMPT sends the following prompts to the screen. User input is shown in lowercase:
PLEASE SUPPLY VUALUES REQUESTED

CODE1=

h10

CODEZ=

[iPal]

REGIONAL MANAGER FOR STAMFORD
REG IONMGR=

=mith

>

Note how the sequence of supplied values determines the overall flow of the procedure.
The value of & CODEL determines the value of & CITY that gives meaning to the -TY PE
command. -TY PE gives the user the necessary information to make the correct choice
when supplying the value for & REGIONMGR.

By default, all user input is automatically converted to uppercase.

4-74 Information Builders

Supplying Values for Variables at Run Time

Full-Screen Data Entry With -CRTFORM

-CRTFORM sets up full-screen menus for entering values. The -CRTFORM command in
Dialogue Manager and the CRTFORM command in MODIFY are two versions of FIDEL
for use in different contexts. The syntax, functions and features are fully outlined in the
Maintaining Databases manual.

Selecting Data From Menus and Windows With -WINDOW

Y ou can create a series of menus and windows using Window Painter, and then display
those menus and windows on the screen using the -WINDOW command. When
displayed, the menus and windows can collect data by prompting a user to select a value,
to enter avalue, or to press a program function (PF) key.

Implied Prompting

If avalueis not supplied by any other means for a variable, FOCUS automatically
prompts the user for the value. Thisis known as an implied prompt. These occur
sequentially as each variable is encountered in the procedure.

Example Automatically Prompting for Variable Values

Consider the following example:

TABLE FI LE SALES
HEADI NG CENTER
"MONTHLY REPORT FOR &CI TY"

BY PROD_CODE
I F PROD_CCDE | S- FROM &CCDE1 TO &CODE2

FOOTI NG CENTER

"REG ON MANAGER: ® ONMGR'
"CALCULATED AS COF &DATE"
END

Developing Applications 4-75

Managing Applications With Dialogue Manager

When you execute the procedure, FOCUS prompts for the values for the variables one at
atime. Theterminal dialogueis asfollows. User input isin lowercase:

PLEASE SUFFLY VALUES REQUESTED

CODE1=

h10

CODEZ=

[iPal]

REG IONMGR=
=mith

>

At the point when all variables have values, FOCUS processes the report request.

Verifying Input Values

4-76

Input values can be verified in the following ways:
» Format conditions can be specified against which the entered values are compared.

» Listsof acceptable values can be specified against which the entered values are
compared.

e Text can be supplied that either explains what type of value is needed or lists choices
of acceptable values on the screen.

Using Format Specifications

Y ou can specify variables with format conditions against which the entered values are
compared. If the entered values do not have the specified format, FOCUS prints error
messages and prompts the user again for the value(s).

Alphanumeric formats are described by the letter A followed by the number of characters.
The number of characters can be from 1 to 255. Integer formats are described by the letter
| followed by the number of digits to be entered. The number can be from 1 to 9 (value
must be less than 231-1).

The description of the format must be enclosed by periods.

If you test field names against input variable values, we recommend that you specify
formats of the input variables. If you do not, and the supplied val ue exceeds the format
specification from the Master File, the procedure is ended and error messages are
displayed. To continue, the procedure must be executed again. However, if you do
include the format, and the supplied val ue exceeds the format, Dialogue Manager rejects
the value and the user is prompted again.

Information Builders

Supplying Values for Variables at Run Time

Example

Example

Note: FOCUS internally stores all Dialogue Manager variables as alphanumeric codes.
To perform arithmetic operations, Dialogue Manager converts the variable value to
double-precision floating point decimal and then converts the result back to alphanumeric
codes, dropping the decimal places. For this reason, do not perform tests that look for the
decimal placesin the numeric codes.

Using a Format Specification

Consider the following format specification:
&STORECCDE. A3.

No special message is sent to the screen detailing the specified format. However, if, in the
above example, the user enters more than three alphanumeric characters, the valueis
rejected, the error message FOC291 is displayed and the user is prompted again.

Note the following example detailing the dial ogue between FOCUS and the user:

STORECODE=> ccl4

(FOCZ91) VALUE IN PROMPT REFPLY EXCEEDS 03 CHARS:CC14
STORECODE=>

Using Lists of Value Ranges

Variables can be further customized by providing lists of values describing the acceptable
range of prompted responses. If the user does not enter one of the available options, the
terminal displaysthe list and re-prompts the user. Thisis an excellent way to limit the
values supplied and to provide help information to the screen while prompting.

Providing a List of Valid Values
For example:
- PROWPT &CI TY. (STAMFORD, UNI ONDALE, NEWARK) .

A message is printed if the user does not respond with one of the replies on thelist. This
isfollowed by a display of the value list. Finally, another prompt is issued for the needed
value. For example:

CITY>union

PLEASE CHODSE ONE OF THE FOLLOWING:
STAMFORD, UNIONDALE, NEWARK

CITY>

Developing Applications 4-77

Managing Applications With Dialogue Manager

Syntax

Example

4-78

How to Use a Variable to Provide the Reply List

You can aso use avariable to provide the reply list, in conjunction with the -SET
command. The syntax is

-SET & ist="value,...";
- PROWPT &variable. (& ist)[.text.]

where:
Iist
Isthe name of the reply list variable. Note that in the -PROMPT command, the value

is subgtituted between the parentheses and delimited by periods. If the prompt text
has parentheses, enclose that text in single quotation marks (*).

val ue
Isthe desired value. Y ou may list more than one value, separated by commas.
Enclose the value(s) in single quotation marks (‘). A semicolon is required when
using -SET.

vari abl e
Is the name of the variable for which you are prompting the user for values.

Using a Variable to Provide the Reply List
For example:

- SET &Cl Tl ES=' STAMFORD, UNI ONDALE, NEWARK' ;
- PROVPT &CI TY. (&CI TIES).' (ENTER CITY)" .

The resulting screen is exactly the same as when the list itself is provided in the
parentheses.

Y ou can also create more complex combinations. For example:

-SET &CITIES=I F &CODEL IS B10 THEN ' STAMFORD, NEWARK
- ELSE ' STAMFORD, UNI ONDALE, NEWARK'

Information Builders

Supplying Values for Variables at Run Time

Example

Supplying Text for Variable Prompting

A variable can be further specified with customized text explaining the prompt at the
screen.

For example:

TABLE FI LE SALES
HEADI NG CENTER
"MONTHLY REPORT FOR &CITY. ENTER CI TY. "

BY PROD_CODE
I F PROD_CODE | S- FROM &CODEL. A3. BEG NNI NG CCDE. TO
&CODE2. A3. ENDI NG CCDE.

"REG ON MANAGER: ® ONMGR. REG ONAL SUPERVI SOR. "
"CALCULATED AS OF &DATEMDYY"
END

Notice that text has been specified for & CITY and & REGIONMGR without specification
of aformat.

Based on the example, the terminal displays the following prompts one by one:

ENTER CITY> stamford
BEGINNING CODE> hi0
ENDING CODE> bZ20

REGIONAL SUPERVISOR> smith

Developing Applications 4-79

Managing Applications With Dialogue Manager

Dialogue Manager Quick Reference

Thistopic describes all the Dialogue Manager commands in alphabetical order. The
following commands are included:

*

-CLOSE *
-CRTCLEAR
-DEFAULTS
-IF
-MVSRUN
-QUIT

-RUN

-TYPE

Command:

Function:

Syntax:

Command:

Function:

Syntax:

-? -CLOSE
-CMS -CMSRUN
-CRTFORM -DEFAULTS
-EXIT -GOTO
-INCLUDE -label

-PASS -PROMPT
-READ -REPEAT
-SET -TSO RUN
-WINDOW -WRITE

*

The command -* signals the beginning of a comment line.

Any number of comment lines can follow one another, but each must
begin with -*. A comment line may be placed at the beginning or end
of aprocedure, or in between commands. However, it cannot be on
the same line as a command.

Use comment lines liberally to document a procedure so that its
purpose and history are clear to others.

-* text

where:

t ext
Isacomment. A space is not required between -* and text.

-?

The command -? displays the current value of alocal variable.
-? & string]

where:

string
Isan optional variable name of up to 12 characters. If this
parameter is not specified, the current values of all local, global,
and defined system and statistical variables are displayed.

Information Builders

Dialogue Manager Quick Reference

Command:

Function:

Syntax:

Command:

Function:

Syntax:

Command:

Function:

Syntax:

Command:

Function:

Syntax:

Developing Applications

-CLOSE

-CLOSE closes an external file opened with the -READ or -WRITE
NOCLOSE option. The NOCLOSE option keeps afile open until
the -READ or -WRITE operation is compl ete.

- CLCSE ddnane| *

where:

ddnamne
I's the ddname of the open file described to FOCUS via an
alocation (TSO, MSO) or FILEDEF (CMS) command.

Closes all -READ and -WRITE files that are currently open.
-CMS

CMS executes a CM S operating system command from within
Dialogue Manager.

CVB conmand
where:

conmand
IsaCMS command.

-CMSRUN

In CMS, loads and executes the specified user-written subroutine.
SET can also execute user-written programs.

-CM5 RUN subroutine

where:

subroutine
Is a FOCUS user-written subroutine.

-CRTCLEAR
Clears the current screen display.

- CRTCLEAR

4-81

Managing Applications With Dialogue Manager

4-82

Command:

Function:

Syntax:

-CRTFORM
Creates forms to prompt the user for values for variables.

All linesfollowing a-CRTFORM command that begin with a
hyphen and enclose text in double quotation marks (*) are part of a
single-screen form. Pressing ENTER passes all input datato
associated variables.

With -CRTFORM, the first line that does not begin with a-* signals
the end of the form. With -CRTFORM BEGIN, the command
-CRTFORM END signals the end of the form.

All FIDEL facilities are available to -CRTFORM except HEIGHT,
WIDTH, and LINE.

CRTFORM in MODIFY functionsidentically to -CRTFORM in
Dialogue Manager.

See -PROMPT.

- CRTFORM [TYPE n] [BEG N| END [LONER| UPPER] |
where:

- CRTFORM

Invokes FIDEL and signals the beginning of the screen form.

TYPE n
Enables you to define the number of lines (n) to reserve for
messages. Y ou can specify anumber from 1 to 4. The default is
4.

BEG N
Supports the use of other Dialogue Manager commands to help
build the form.

END
Signals the end of the -CRTFORM. Used with -CRTFORM
BEGIN.

LONER
Reads lowercase data from the screen. Once you specify
LOWER, every screen thereafter is alowercase screen until you
specify otherwise.

UPPER
Trandates lowercase |etters to uppercase. Thisis the defaullt.

Information Builders

Dialogue Manager Quick Reference

Command:

Syntax:

Function:

Command:

Function:

Syntax:

Developing Applications

-DEFAULTS
- DEFAULTS &nane=val ue, &nane=val ue. ..

where:

nane
Is the variable name.

val ue
Isthe variable value.

Setsinitial values for the named variables in the procedure.

Y ou can override -DEFAULTS values by supplying values for the
variables on the command line, by specifically prompting for values
with -PROMPT or -CRTFORM, or by supplying avalue with -SET
subsequent to -DEFAULTS.

-DEFAULTS guarantees that the variables are always given avalue
and therefore that it will execute correctly.

Default values are provided in other FOCUS modules to anticipate
user needs and reduce the need for keystrokes in situations where
most users desire a predefined outcome. See also -SET.

-EXIT

-EXIT forces a procedure to end. All stacked commands are
executed and the procedure exits (if the procedure was called by
another one, the calling procedure continues processing).

Use -EXIT for terminating a procedure after processing a final
branch that compl etes the desired task.

The last line of a procedureis an implicit -EXIT. In other words, the
procedure ends after the last line isread.

-EXIT

4-83

Managing Applications With Dialogue Manager

Command:

Function:

Syntax:

Command:

Function:

Syntax:

4-84

-GOTO
-GOTO forces an unconditional branch to the specified label.

If Dialogue Manager finds the label, processing continues with the
line following it.

If Dialogue Manager does not find the label, processing ends and an
error message is displayed.

- QOTO | abel

-1 abel [TYPE text]
where:

| abel
I's a user-defined name of up to 12 characters that specifies the
target of the -GOTO action.

Do not use embedded blanks or the name of any other Dialogue
Manager command except -QUIT or -EXIT. Do not use words
that can be confused with functions, arithmetic and logical
operations, and so on.

TYPE t ext
Optionally sends a message to the client application.

-HTMLFORM
For use with the Web Interface to FOCUS.

- HTMLFORM

Information Builders

Dialogue Manager Quick Reference

Command: -IF

Function: -IF routes execution of a procedure based on the evaluation of the
specified expression.

An -IF without an explicitly specified EL SE whose expression is
fal se continues processing with the line immediately following it.

Syntax: -1 F expression [THEN] GOTO | abel 1; [ELSE GOTO | abel 2;]
[ELSE IF...;]
where:
| abel

I's a user-defined name of up to 12 characters that specifiesthe
target of the GOTO action.

Do not use embedded blanks or the name of any other Dialogue
Manager command except -QUIT or -EXIT. Do not use words
that can be confused with functions, arithmetic or logical
operations, and so on.

expressi on
Isavalid expression. Literals need not be enclosed in single
guotation marks unless they contain embedded blanks or
commas.

THEN
Isan optional keyword that increases readability of the
command.

ELSE GOTO
Optionally passes control to label2 when the -1F test fails.

ELSE I F
Optionally specifies a compound -1F test.

The semicolon (;) isrequired at the end of the command.

Continuation lines must begin with a hyphen (-).

Developing Applications 4-85

Managing Applications With Dialogue Manager

4-86

Command:

Function:

Syntax:

Command:

Function:

Syntax:

-INCLUDE

Specifies another procedure to be attached and executed at run time,
asif it were part of the calling procedure. The specified procedure
may comprise either afully developed or partial procedure. Note
that a partial procedure does not execute if called outside of the
procedure containing -INCLUDE.

When using -INCLUDE, you may not branch to alabel outside of
the specified procedure.

A procedure may contain more than one -INCLUDE. Up to four
-INCLUDES may be nested.

Y ou may use any valid command in a-INCLUDE.

EXEC may also be used to execute a procedure inside another
procedure.

-I NCLUDE filenanme [filetype [filenpde]]

where:

fil ename
Is the procedure to be incorporated in the calling procedure.
filetype
Isthe procedure' sfile type. If noneisincluded, afile type of
FOCEXEC is assumed.

fil enode
Isthe procedure’ s file mode. If noneisincluded, afile mode of
A isassumed.

-label
A label isthe target of a-GOTO or -IF command.
-1 abel [TYPE nessage]

where:

| abel
I's a user-supplied name of up to 12 characters that identifies the
target for a branch.

Do not use embedded blanks or the name of any other Dialogue
Manager command except -QUIT or -EXIT. Do not use words
that can be confused with functions, arithmetic or logical
operations, and so on.

TYPE nessage
Optionally sends a message to the client application.

Information Builders

Dialogue Manager Quick Reference

Command:

Function:

Syntax:

Command:

Function:

Syntax:

Developing Applications

-MVS RUN

Same as-TSO RUN.
- WS RUN

-PASS

Passwords can be directly issued and controlled by the Dialogue
Manager. Thisis especially useful to specify a particular file or set
of filesthat a given user can read or write. Passwords have detailed
sets of functions associated with them through DBA module.

The procedure that sets passwords should be encrypted so that it and
the passwords that it sets cannot be typed and made known.

A variable can be associated with -PASS so that a password valueis
prompted for and assigned.

The PASS command provides the same function at the command
level, as does the PASS parameter of the SET command.

- PASS password
where:

passwor d
Is apassword or a variable containing a password.

4-87

Managing Applications With Dialogue Manager

Command: -PROMPT

Function: -PROMPT types a message to the terminal and reads the reply from
the user. Thisreply assigns a value to the variable named.

If aformat is specified and the supplied value does not conform,
FOCUS displays an error message and prompts the user again for the
vaue.

If a(list) is specified and the user does not reply with avalue on the
list, FOCUS reprompts and printsthe list of acceptable values.

Note: You cannot use format and list together.
In MODIFY, PROMPT specifies additional data input needs.

In GRAPH, when it is set on, GPROMPT automatically prompts for
all parameters needed to execute the graph request. Thisis quite a
different function from -PROMPT in Dialogue Manager.

See -CRTFORM.
Syntax: -PROWPT &nanme [[.format|.(list)] [.text].]
where:

&name
Is auser-defined variable.

f or mat
Optionally specifies a phanumeric or integer data type and
length.

t ext
Optionally specifies prompting text that appears on the screen.
Must be delimited by periods.

Iist
Optionally specifies arange of acceptable responses. Must be
enclosed in parentheses.

4-88 Information Builders

Dialogue Manager Quick Reference

Command: -QUIT
Syntax: -QUIT or -QUIT FOCUS [n]
where:

n
I's the operating system return code. It can be a constant or an
integer variable up to 4095. If you do not supply avalue or if
you supply a non-integer value for n, the return code is 8 (the
default value).

Function: Forces an immediate exit from the procedure. Lines that have been
stacked are not executed. This differsfrom an -EXIT, which
executes all lines that are currently on the stack.

Like-EXIT, -QUIT returns the user to the FOCUS prompt.

-QUIT FOCUS takes the user out of FOCUS altogether and returns
the user to the operating system level.

-QUIT can be made the target of a branch, with the same results as
those already described.

QUIT can be entered in response to -PROMPT or -CRTFORM to
force an exit from the procedure. The QUIT command can, however,
be turned off from within Dialogue Manager to prevent the user from
exiting FOCUS prompt.

The QUIT command can also be used to exit from MODIFY and
TABLE requests as well as Dialogue Manager procedures.

The principle of QUIT remains consistent throughout FOCUS,
namely that the exited request or procedure is not executed and the
user isreturned to the FOCUS prompt.

See adso -RUN and -EXIT.

Developing Applications 4-89

Managing Applications With Dialogue Manager

4-90

Command:

Function:

Syntax:

-READ

Reads data from non-FOCUS files. -READ can access datain either
fixed or free form.

See-WRITE.
- READ ddnane[,] [NOCLOSE] &nane[.format.][,] ...

where:

ddnamne
Isthe logical name of the file as defined to FOCUS using
FILEDEF (or, for MVS, ALLOCATE or DYNAM
ALLOCATE). A space after the ddname denotes a fixed format
file while a comma denotes a comma-delimited file.

NOCLCSE
Indicates that the ddname should be kept open even after a
-RUN is executed. The ddname is closed upon completion of
the procedure or when a -CLOSE or subsequent -WRITE
command is encountered.

nane
Is the variable name. Y ou may specify more than one variable.
Using acommarto separate variables is optional .

If thelist of variablesis longer than oneline, end the first line with a
comma and begin the next line with a dash followed by a blank (-)
for comma-delimited files or a dash followed by a comma followed
by ablank (-,) for fixed format files. For example:

Comma-delimited files

- READ EXTFI LE, &CI TY, &CODE1,
- &CODE2

Fixed format files

- READ EXTFI LE &CI TY. A8. &CODEL. A3.
-, &CODE2. A3

f or mat
Isthe format of the variable. Note that format must be delimited
by periods. The format isignored for comma-delimited files.

Information Builders

Dialogue Manager Quick Reference

Command:

Function:

Syntax:

Developing Applications

-REPEAT

-REPEAT allows looping in a procedure.

The parameters FROM, TO, and STEP can appear in any order.
A loop ends when any of the following occurs:

* Itisexecutedinitsentirety.

e A-QUIT or -EXIT isissued.

* A -GOTOisissued to alabel outside of the loop. If a-GOTO is
later issued to return to the loop, the loop proceeds from the
point it left off.

- REPEAT | abel n TI MES

- REPEAT | abel WHI LE condition

- REPEAT | abel FOR &variable [FROM fromval] [TO toval]
[STEP s]

where:

| abel
I dentifies the code to be repeated (the loop). A label can include
another loop if the label for the second loop has a different
name from the first.

n TI MES
Specifies the number of times to execute the loop. The value of
n can be alocal variable, aglobal variable, or aconstant. If itis
avariable, it is evaluated only once, so the only way to end the
loop early iswith -QUIT or -EXIT (you cannot change the
number of times to execute the loop).

VWHI LE condi tion
Specifies the condition under which to execute the loop. The
condition isany logical expression that can be true or false. The
loop isrun if the condition is true.

FOR &vari abl e

Isavariable that istested at the start of each execution of the
loop. It is compared with the value of fromval and toval (if
supplied). The loop is executed only if &variableislessthan or
equal to toval (STEP is positive), or greater than or equal to
toval (STEP is negative).

FROM fronval
Is a constant that is compared with &variable at the start of each
execution of the loop. The default valueis 1.

4-91

Managing Applications With Dialogue Manager

Command:

Function:

Syntax:

Command:

Function:

Syntax:

4-92

TO toval
Isavalue against which &variableistested. The default is
1,000,000.

STEP s
Is aconstant used to increment &variable at the end of each
execution of the loop. It may be positive or negative. The
default valueis 1.

-RUN

-RUN causes immediate execution of al stacked FOCUS
commands.

Following execution, processing of the procedure continues with the
line that follows -RUN.

-RUN is commonly used to do the following:

* Generate results from areguest that can then be used in testing
and branching.

e Close an external file opened with -READ or -WRITE. When a
fileisclosed, the line pointer is placed at the beginning of the
filefor a-READ. The line pointer for -WRITE is positioned
depending on the allocation and definition of thefile.

- RUN
-SET

-SET assigns aliteral valueto avariable, or avalue that is computed
in an arithmetic or logical expression.

Single quotation marks around aliteral value are optional unless it
contains embedded blanks or commas, in which case you must
include them.

- SET &[&] nane=expr essi on
where:

&name
Is the name of avariable whose value will be set.

expressi on
Isavalid expression. Expressions can occupy several lines, so
end the command with a semicolon (;).

Information Builders

Dialogue Manager Quick Reference

Command:

Function:

Syntax:

Command:

Function:

Syntax:

Developing Applications

-TSORUN

In TSO, loads and executes the specified user-written subroutine.
Note: The prefix -TSO can be used only with RUN.

-SET can also execute user-written programs.

-TSO RUN subroutine

where:

subroutine
Is the name of a FOCUS user-written subroutine.

-TYPE

Transmits informative messages to the user at the terminal. Any
number of -TY PE lines may follow one another but each must begin
with -TYPE.

Substitutable variables may be embedded in text. The values
currently assigned to each variable will be displayed in their
assigned position in the text.

-TYPEL and TY PE+ are not supported by IBM 3270-type terminals.

TYPE isused in avariety of waysin FOCUS to send informative
messages to the screen. A TY PE command may appear on the same
line as alabel in Dialogue Manager. In MODIFY, TYPE isused to
print messages at the start and end of processes, at selected positions
in MATCH or NOMATCH, NEXT or NONEXT, and to send a
message after an INVALID data condition.

- TYPE[4] text

- TYPE[O] text
-TYPE[1] text

where:

- TYPEL
Sends the text after issuing a page gject.

- TYPEO
Sends the text after skipping aline.

- TYPE+
Sends the text but does not add a line feed.

t ext
Is acharacter string that fits on aline.

4-93

Managing Applications With Dialogue Manager

4-94

Command:

Function:

Syntax:

-WINDOW

Executes awindow file. When the command is encountered, control
is transferred from the procedure to the specified window file. The
window specified in the command becomes the first active window.
Control remains within the window file until amenu optionis
chosen, or awindow is activated, for which there is no goto value.

The window file, and the windowsiin it, are created using Window
Painter.

- W NDOW wi ndowf i | e wi ndownane

[PFKEY| NOPFKEY] [GETHOLD] [BLANK| NOBLANK]
[CLEAR| NOCLEAR]

where:

wi ndowfil e
Identifies the file in which the windows are stored. In CMS, this
isafile name. The file must have afile type of FMU.

In MVS/TSO, thisis amember name. The member must belong
to aPDS allocated to ddname FMU.

wi ndownane
| dentifies which window in the file will be displayed first.

PFKEY
Enables you to test for function key values during window
execution.

NOPFKEY
Y ou are unable to test for function key values during window
execution.

GETHOLD
Retrieves stored amper variables collected from a Multi-Select
window.

BLANK
Clearsall previously set amper variable values when
-WINDOW is encountered. Thisisthe default setting.

NOBLANK
When -WINDOW is encountered, the values of previously set
amper variables are retained.

Information Builders

Dialogue Manager Quick Reference

Command:

Function:

Syntax:

Developing Applications

CLEAR
Clears the screen before displaying the first window. Thisisthe
default behavior. When specified in conjunction with the
Terminal Operator Environment (TOE), the TOE screenis
redisplayed when control is transferred back to the procedure.

NOCLEAR
Displays the specified window directly over the current screen.

-WRITE
Writes information to non-FOCUS files.

Note that all files that have been written should be closed upon any
exit from the procedure using -QUIT, -EXIT, or -RUN.

In TABLE, WRITE isasynonym for SUM; functionally it is quite
different from -WRITE.

See -READ.
-WRI TE ddnane [NOCLOSE] text

where:

ddnamne
Isthe logical name of the file as defined to FOCUS using
FILEDEF (or for MVS, ALLOCATE or DYNAM
ALLOCATE).

NOCLCSE
Indicates that the file should be kept open evenif a-RUN is
encountered. Thefileis closed upon completion of the
procedure or when a -CLOSE or subsequent -READ command
is encountered.

t ext
Is any combination of variables and text. To write more than
one line, end the first line with a comma (,) and begin the next
line with a hyphen followed by a space (-).

4-95

Managing Applications With Dialogue Manager

Command: S

Function: The-" * syntax is associated with the FIDEL -CRTFORM
command. All textual data enclosed by the double quotation marksis
printed to the screen. Y ou can use position markers and specify
variable fields within double quotation marks.

When -CRTFORM is processed, the screen displays a form and the
cursor stops at each amper variable date entry field. If avariable has
not been declared prior to the -CRTFORM, FOCUS prompts the
user for avalue to assign to the variable.

In MODIFY, enclosing data in double quotation marks (*) without
the leading hyphen is used with CRTFORM, or for headings,
footings, subheads, and subfoots within a TABLE request.

See -CRTFORM.
Syntax:

where:

Enclose textual information, fields and spot markers.

4-96 Information Builders

Dialogue Manager Quick Reference

System Defaults and Limits

This topic provides you with an easier way of locating default values, operating system
and FOCUS limits, summary tables, general rules, and tips for ease-of-use.

Some general rulesto follow when you are creating procedures are;

» |f aDialogue Manager command exceeds one line, the following line must begin with
ahyphen (-).

e The hyphen (-) must be placed at the first position of the command line.

» The command is usually attached to the hyphen (-), but you may leave space between
the hyphen and the Dialogue Manager command.

» Atleast one space must be inserted between the Dialogue Manager command and
other text.

* Procedure files must have the record format (RECFM) F and the logical record
length (LRECL) 80.

The following are some general rules that apply in regard to supplying values for
variables:

e The maximum length of avariable value is 79 characters.

* A physical FOCSTACK line with all variables expanded to their full values cannot
exceed 80 characters. Since most variables are part of alinein a procedure, it is
recommended that you use values that are less than 80 characterslong.

e |f avalue contains an embedded comma (,) or embedded equal sign (=) the value
must be enclosed between single quotation marks. For example:

EX SLRPT AREA=S, CITY="NY, NY

e Onceavalueissupplied for alocal variable, it is used for that variable throughout
the procedure, unlessit is changed through a-PROMPT, -SET, or -READ.

» Onceavalueissupplied for aglobal variable, it is used for that global variable
throughout the FOCUS session in al procedures, unlessit is changed through a
-PROMPT, -SET, or -READ.

« Diaogue Manager automatically sends a prompt to the terminal if a value has not
been supplied for avariable. Automatic prompts (implied prompting) areidentical in
syntax and function to the direct prompts created with -PROMPT.

Developing Applications 4-97

Managing Applications With Dialogue Manager

Thefollowing isalist of operating system default values, limits, and format
specifications.

4-98

The default value for the operating system return code valueis 8.

The maximum number of amper variables available in a procedure is 512, of which
approximately 30 are reserved for use by FOCUS. Thisincludes all local, global,
system, statistical, special, and index variables.

Literals must be surrounded by single quotation marks if they contain embedded
blanks or commas. To produce aliteral that includes a single quotation mark, place
two single quotation marks where you want one to appear.

Alphanumeric formats are described by the letter A followed by the number of
characters. The number of characters can be from 1 to 255.

Integer formats are described by the letter | followed by the number of digitsto be
entered. The number can be from one to nine digits in length, value must be less than
2311,

A label is auser-defined name of up to 12 characters. Y ou cannot use blanks and
should not use the name of any other Dialogue Manager command. The label may
precede or follow GOTO in the procedure.

A date given to the Dialogue Manager cannot be more than 20 characters long,
including spaces.

-INCLUDE files can be nested up to 4 levels deep.

The default setting for &QUIT is ON.

When using Window Painter:

e Screens should not begin in row 0, column O, or column 1.
e The maximum screen sizeis 22 rows by 77 columns.

e A File Contents window has alimit of 12K worth of data. Thisis approximately
150 lines.

¢ The maximum number of menu itemsis41.

* File Name windows must have a WIDTH of 24 or greater, or meaningless
characters will appear.

Information Builders

CHAPTER 5

Defining a Word Substitution

+ faving [ET Substitutions in a File
* g g S

Developing Applications

A LET substitution enables you to define aword to represent
other words and phrases. By substituting words for phrases, you
can reduce the typing necessary to enter requests (especially
when entering phrases repeatedly) and make your requests
easier to understand.

5-1

Defining a Word Substitution

The LET Command

Syntax

5-2

The LET command enables you to represent aword or phrase with another word. This
reduces the amount of typing necessary for issuing requests, and makes your requests
easier to understand. A substitution is especially useful when you use the same phrase
repeatedly. Note that you cannot use LET substitutions in Dialogue Manager commands.

Y ou can substitute any phrase that you enter online unless you are entering a MODIFY
request.

The LET command has a short form and along form. Use the short form for one or two
LET definitions that fit on one line. Otherwise, use the long form.

When you define aword with LET and then use that word in arequest, the word is
tranglated into the word or phrase it represents. The result is the same as if you entered
the origina word or phrase directly.

Once defined, a LET substitution lasts until it is cleared or until the request terminates.
To clear active LET substitutions, issue the LET CLEAR command. To use the same
substitutions in many requests, place the LET commands in a stored procedure. If you
want to save currently active LET substitutions, use the LET SAVE facility. These
substitutions can then be executed later with one short command.

How to Make a Substitution (Short Form)

LET word = phrase [;word = phrase...]

where:

wor d
Isastring of up to 80 characters with no embedded blanks.

phrase
Isastring of up to 256 characters, which can include embedded blanks. The phrase
can aso include other special characters, but semicolons and pound signs need
specia consideration. If the word you are defining appearsin the phrase you are
replacing, you must enclose it in single quotation marks.

More than one substitution can be defined on the same line by placing a semicolon
between definitions.

Information Builders

The LET Command

Example

Syntax

Making a Substitution (Short Form)

The LET command defines the word WORKREPORT as a substitute for the phrase
TABLE FILE EMPLOYEE:

LET WORKREPCRT = TABLE FI LE EMPLOYEE

Issuing the following

WORKREPORT
PRI NT LAST_NAME
END

resultsin this request:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME
END

The next command includes TABLE as both the word you are defining and as part of the
phrase it isreplacing. It is enclosed in single quotation marks in the phrase:

LET TABLE = ' TABLE FILE EMPLOYEE

More than one word is defined in the following command. The definitions are separated
by a semicolon:

LET WORKREPORT=TABLE FI LE EMPLOYEE; PR=PRI NT

How to Make a Substitution (Long Form)

LET
word = phrase

END
where:
wor d
Isastring of up to 80 characters with no embedded blanks.
phrase
Isastring of up to 256 characters that can include embedded blanks.
END
Isrequired to terminate the command.
As shown, LET and END must each be on a separate line.

As with the short form, you can define several words on one line by separating the
definitions with a semicolon. A semicolon is not required after the last definition on a
line.

Developing Applications 5-3

Defining a Word Substitution

Example Making a Single Substitution (Long Form)
The following example illustrates a single substitution.
LET
RI GHTNAME = ' STEVENS' OR 'SM TH OR 'JONES' OR 'BANNING OR ' MCCOY' OR
" MCKNI GHT'
END
Example Making Multiple Substitutions (Long Form)

The following example illustrates substitutions that span more than one line. Notice that
there is no semicolon after the definition PR = PRINT:

LET
WORKREPORT = TABLE FI LE EMPLOYEE; PR = PRI NT
RI GHTNAME = "STEVENS' OR 'SM TH OR ' JONES
END
Example Defining Substitutions for Translation

Non-English speakers can use LET commands to trandlate a request into another
language. For example, this request

TABLE FI LE CAR

SUM AVE. RCOST OVER AVE. DCOST
BY CAR ACRCSS COUNTRY

END

can be trandated into French as:

CHARGER FI CHI ER CAR

SOMMER AVE. RCOST SUR AVE. DCOST
PAR CAR TRAVERS COUNTRY

FI'N

5-4 Information Builders

Variable Substitution

Variable Substitution

Example

Example

Using the LET command, you can define aword that represents a variable phrase. A
variable phrase contains placeholder symbols (carets) to indicate missing elementsin the
phrase. This allows you to give a phrase different meaningsin different requests.
Placehol ders can be parts of words within phrases. They can aso be used to represent
system commands.

Placehol ders can be unnumbered or numbered. If the placeholders are not numbered, then
they arefilled from left to right: the first word in the request after the LET-defined word
fillsthe first placeholder, the second word fills the second placeholder, and so on to the
last placeholder. If they are numbered, the placeholders are filled in numerical order. If
you do not supply enough words to fill all the placeholders, the extra placeholders are
null.

Making a Variable Substitution

The command

LET UNDERSCORE = ON < > UNDER- LI NE

contains one placeholder. After issuing this command, you can use the word
UNDERSCORE in arequest:

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL BY EMP_I D BY H RE_DATE
UNDERSCORE EMP_I D

END

The field name following the LET-defined word supplies the missing value to the
placeholder. In the example, EMP_ID follows the defined word UNDERSCORE. This
field name is inserted in the placeholder and translates UNDERSCORE EMP_ID as:

ON EMP_I D UNDER- LI NE

Making Multiple Variable Substitutions (Unnumbered)
Issuing the LET command

LET TESTNAME = WHERE LAST_NAME IS < > OR< > OR < >

and then including the following line in a request

TESTNAME ' MOKNI GHT' ' STEVENS' ' BLACKWOOD

trandates the line as:

WHERE LAST_NAME |'S ' MOKNI GHT' OR ' STEVENS' OR ' BLACKWOOD

Notice that the variable phrase needs no placeholder at the end, and could a so be coded
as WHERE LAST_NAME IS <> OR <>. Once al the placeholders are filled, the rest of
the definition follows. In this example, the words MCKNIGHT and STEVENS would fill
the two placeholders. BLACKWOOD would be left over, so it would follow the variable
phrase.

Developing Applications 5-5

Defining a Word Substitution

If you do not supply enough words to fill in all the placeholders, the extra placeholders
are null. For example, issuing this LET command

LET TESTNAME = WHERE LAST_NAME IS < > OR < > OR
and then entering this command

TESTNAME ' MCCOY'

trangd ates the statement into:

WHERE LAST_NAME |S ' MOCOY" OR OR

This statement isillegal and produces an error message.

Example Making Multiple Variable Substitutions (Numbered)
The following LET command contains numbered placehol ders:
LET TESTNAME = WHERE LAST_NAME | S <1> OR <2> OR <3>
Therefore, the following line
TESTNAME ' STEVENS' ' MOKNI GHT' ' BLACKWOOD
istrandated as follows:
WHERE LAST_NAME | S ' STEVENS' OR ' MCKNI GHT' OR ' BLACKWOOD

If two placeholders have the same number, both placeholders are filled with the same
word. For example, if you issue thisLET command

LET RANGE = SUM MAX. <1> AND M N. <1>
and thisline

RANGE SALARY

the trandated statement is:

SUM MAX. SALARY AND M N. SALARY

Example Making a Variable Substitution in a Phrase
Issuing the following LET command
LET BI GGEST = MAX. < >
and entering the line
WRI TE Bl GGEST SALARY
trand ates the statement as:
VRl TE MAX. SALARY

Example Defining a System Command

Each of the following LET commands define a system command in MV S:

LET ALFOC = TSO ALLOC F(< >) DA(< >. FOOUS) SHR
LET LI STMEM = TSO LI STDS < > MEMBERS

5-6 Information Builders

Null Substitution

Null Substitution

Syntax

Example

With anull substitution, you can use more than one word to represent a phrase. By using
more than one word in arequest instead of a single word, you can make the request more
readable.

You can define anull word using LET. A null word isignored by the application.

How to Define a Null Word
LET word=;

Defining a Null Word

This LET command defines DISPLAY as anull word:

LET

DI SPLAY:
AVESAL
END

In the following request, the word DISPLAY isused in the code DISPLAY AVESAL,
for readability, to make clear that the request prints the value represented by AVESAL:

TABLE FI LE EMPLOYEE

DI SPLAY AVESAL

WHERE DEPARTMENT | S ' PRODUCTI ON
END

Theword DISPLAY isignored and the request istrandated as:

TABLE FI LE EMPLOYEE

SUM AVE. SALARY BY DEPARTMENT
WHERE DEPARTMENT | S ' PRODUCTI ON
END

SUM AVE. SALARY BY DEPARTMENT

Developing Applications 5-7

Defining a Word Substitution

Multiple-line Substitution

Example

Many commands, such as END, must appear on a separate line in areport request. To
include such acommand in aLET definition, place a number sign (#) and a space before
the command to indicate a new line. This allows you to substitute one word for several
lines of code.

Special considerations regarding number signs apply in the CM S environment.

Making Multiple-line Substitutions

This LET command uses the number sign and a space to indicate that anew lineis
required for the END command:

LET HOLDREP = ON TABLE HOLD # END

The following request

TABLE FI LE EMPLOYEE
SUM AVE. CRCSS BY EMP_I D BY PAY_DATE
HOLDREP

istrandated as:

TABLE FI LE EMPLOYEE

SUM AVE. GRCSS BY EMP_I D BY PAY_DATE
ON TABLE HOLD

END

Recursive Substitution

Example

5-8

Recursive substitution allows a phrase in one LET definition to contain aword defined in
another LET definition. Recursive substitution can also be used to abbreviate long
phrases within LET commands.

Making a Recursive Substitution

In the following LET command

LET
TESTNAMVE=I F LAST_NAME | S RI GHTNAVE

RI GHTNAME = STEVENS OR MCKNI GHT OR MOCOY

END

the word RIGHTNAME in the phrase in the first definition is defined in the second
definition. (Note that the two phrasesin the LET command could be reversed.) ThisLET
command is equivalent to:

LET

TESTNAME = | F LAST_NAME | S STEVENS OR MCKNI GHT OR MCCOY

END

Information Builders

Using LET Substitution in a COMPUTE or DEFINE Command

Example

Abbreviating a Long Phrase
Consider the following LET command, which illustrates recursive substitution:

LET

TESTNAME = STEVENS OR SM TH OR MCCOY OR CONT1
CONT1 = BANNING OR | RVING OR ROVANS CR CONT2
CONT2 = JONES OR BLACKWOCD

END

You can use TESTNAME in this request:

TABLE FI LE EMPLOYEE

PRI NT SALARY BY LAST_NAME
I'F LAST_NAME | S TESTNAME
END

Thisisthe equivalent of:

TABLE FI LE EMPLOYEE

PRI NT SALARY BY LAST_NAVE

I'F LAST_NAME | S STEVENS OR SM TH OR MCCOY CR
BANNI NG OR | RVI NG OR ROVANS

OR JONES OR BLACKWOOD

END

Using LET Substitution in a COMPUTE or DEFINE

Command

Example

A semicolon must follow an expression in a COMPUTE or DEFINE command. To use a
LET substitution n a DEFINE or COMPUTE, you must include two semicolons in the
LET syntax. You cannot create a LET substitution for a phrase that contains a semicolon.

Using a LET Substitution in a COMPUTE or DEFINE Command
The following LET syntax includes two semicolons, since the substitution will be made
ina COMPUTE command:

LET

SALTEST = LEVEL/ A4 = | F SALARY GT 35000 THEN HI GH
ELSE LOW;

END

I ssuing the command
AND COVPUTE SALTEST
trandatesthe line into

AND COWPUTE LEVEL/ A4 = | F SALARY GTI 35000 THEN HI GH
ELSE LOW

with one semicolon after the word LOW, as required by the expression in the
COMPUTE.

Developing Applications 5-9

Defining a Word Substitution

Checking Current LET Substitutions

Syntax

Example

Example

The ? LET command displays the currently active LET substitutions.

How to Check Current LET Substitutions
? LET [wordl word2 ... wordn]
where:

wordl word 2...wordn
Are the LET-defined words you want to check. If you omit these parameters, ? LET
displays atwo-column list of all active LET substitutions. The left column contains
the LET-defined words; the right column contains the phrases the words represent.

Checking Selected LET Substitutions
Issuing
? LET CHART TESTNAME RI GHTNAME

displays atwo-column list of the LET substitutions for CHART, TESTNAME, and
RIGHTNAME.

Checking All Current LET Substitutions
Issuing

? LET

displaysalist of al current LET substitutions.

Interactive LET Query: LET ECHO

5-10

The LET ECHO facility shows how FOCUS interprets FOCUS statements. This facility
isadiagnostic tool you can use when statements containing LET-defined words are not
being interpreted the way you expect them to. Enter:

LET ECHO

Thisturns on the LET ECHO facility. When you enter a FOCUS statement, LET ECHO
displays the statement as interpreted by FOCUS.

Note:

e |If you enter astatement containing no LET-defined words, LET ECHO displays the
statement as you entered it.

e If you enter astatement containing LET-defined words, LET ECHO displaysthe
statement with the substitutions made.

» |f the statement contains variable substitutions, LET ECHO displays the substitutions
with the placeholdersfilled in.

» |f the statement contains multiple-line substitutions, LET ECHO displays the
statement with the substitutions on multiple lines.

Information Builders

Clearing LET Substitutions

e |f the statement contains null substitutions, LET ECHO displays the statement with
the LET-defined words del eted.

» |f the statement contains recursive substitutions, the substitutions appear as they are
finally resolved.

e LET ECHO may be coded at the top of a FOCEXEC. END ECHO gets coded on the
last line of the FOCEXEC.

To turn off the LET ECHO facility and return to the FOCUS command level, enter:
ENDECHO

Note: If you enter a statement containing a variable substitution, you must enter as many
words after the LET-defined word as there are placeholders in the phrase; otherwise, LET
ECHO will wait for additional input.

Clearing LET Substitutions

Syntax

Example

Usethe LET CLEAR command to clear LET substitutions.

How to Clear LET Substitutions
LET CLEAR {*|wordl [word2...wordn]}
where:

*

Clears all substitutions.

wor dl...wordn
Are the LET-defined words that you want to clear.

Clearing LET Substitutions
I ssuing the following command
LET CLEAR CHART TESTNAME RI GHTNAME

clears subgtitutions for CHART, TESTNAME, and RIGHTNAME. If there are no
additional LET substitutions in effect, the following command would have the same
effect:

LET CLEAR *

Developing Applications 5-11

Defining a Word Substitution

Saving LET Substitutions in a File

Since LET substitutions only last the duration of arequest, saving them is helpful if you
need the same substitutions for another request.

To save LET substitutions currently in effect, use the LET SAVE command.

Syntax How to Save LET Substitutions
LET SAVE [fil enane]
where;
fil enanme

Is the eight-character name of the file in which you want to save the substitutions. If
you do not supply afile name, the default file name is LETSAVE.

Assigning Phrases to Function Keys

Y ou can assign a phrase to a function key. Then when you have a blank line and press a
function key, that phrase appears asif you actually typed it. This process works only in
situations where the LET facility is operative.

Syntax How to Assign a Phrase to a Function Key
LET !'n = [.] phrase
where;

n
Isafunction key number from 1 to 24.

Suppresses the echo of the phrase when you press the function key.
phrase
Is the phrase that the specified function key represents.

Example Assigning Phrases to Function Keys

LET '4 = EX DAILYRPT

LET !'6 END

LET 120 IF RECORDLIMT EQ 10
LET 121 . EX MYREPORT

5-12 Information Builders

CHAPTER 6

Enhancing Application Performance

Topics:
.
« [Compiling a MODIFY Request]

. Accessing a FOCUS Data Source (MVS |
Only)

Developing Applications

Thistopic covers FOCUS facilities that are available to you
across command environment boundaries. These facilities are
easy to use and, in many cases, step-by-step instructions are
provided.

6-1

Enhancing Application Performance

FOCUS Facilities

The FOCUS facilities discussed in this topic are classified asfile utilities for FOCUS and
externa files. They are summarized in the following table:

Command | Description

LOAD Loads FOCUS procedures and Master Filesinto memory (see Loading
a File on page 6-2).

COWPI LE Trandates MODIFY requests into compiled code ready for execution
(see Compiling a MODIFY Reguest|on page 6-7).

M N O Note: Thisfacility isfor MVS only.

Improves performance by reducing 1/0O operations when accessing
FOCUS data sources (see jAccessing a FOCUS Data Source (MVS |

Dnly)|on page 6-8).

Loading a File

Use the LOAD command to load the following types of filesinto memory for use within
aFOCUS session:

e Master Files(MASTER).

* AccessFiles.

* FOCUS procedures (FOCEXEC).

» Compiled MODIFY requests (FOCCOMP).
* MODIFY requests (MODIFY).

Using memory-resident files decreases execution time because the files do not have to be
read from disk. Use the UNLOAD command to remove the files from memory.

Syntax How to Load a File
LOAD filetype filenanmel... [filenane2...]
where;

filetype
Specifies the type of file to be loaded (MASTER, access file, FOCEXEC,
FOCCOMP, or MODIFY).

filenanmel..
Specifies one or more files to be loaded. Separate the file type and file name(s) with
a space.

6-2 Information Builders

Loading a File

Example

Syntax

Example

Loading Multiple Files

The following command loads the four FOCEXECs CARTEST, FOCMAP1,
FOCMAP2, and FOCMAP3 into memory:

>L OAD FOCEXEC CARTEST FOCMAP1 FOCVAP2 FOCVAP3

A subsequent reference to one of these files during the current FOCUS session will use
the loaded, rather than the disk, version.

How to Unload a File
UNLOAD [*|filetype] [*| filenamel... [filenane2...]]
where:

filetype
Specifies the type of file to be unloaded (MASTER, access file, FOCEXEC,
MODIFY, or FOCCOMP). To unload all files of all types, use an asterisk.

filenanmel..
Specifies one or more files to be unloaded. Separate the file type and file name(s)
with aspace. To unload al files of that file type, use an asterisk.

Unloading Multiple Files

The following command unloads the two memory-resident FOCEXECs CARTEST and
FOCMAPS:

>UNLOAD FOCEXEC CARTEST FOCVAP3

Any subsequent reference to one of these files will use the disk version.

Developing Applications 6-3

Enhancing Application Performance

Loading Master Files, FOCUS Procedures, and Access Files

Loading Master Files, Access Files, and FOCEXECs into memory eliminates the I/0Os
required to read them each time they are referenced. Whenever FOCUS requires a Master
File, Access File, or executes a FOCEXEC, it first looks for a memory-resident
MASTER, access file, or FOCEXEC filg; if FOCUS cannot find the file in memory, it
then searches for adisk version in the normal way.

Reference Considerations for Loading a Master File, FOCUS Procedure, or
Access File
The following are considerations for loading a Master File, FOCUS procedure, and
Access File:

* If youload aMaster File, Access File, or a FOCEXEC that has already been loaded
into memory, the new copy replaces the old copy.

e Do not load aMaster File, Access File, or a FOCEXEC that you are developing,
because FOCUS will always use the memory-resident copy of the file (until you
reload it), rather than the one you are developing. Thisis because the copy that you
are developing on TED or your system editor is the disk copy, not the
memory-resident copy.

» A loaded Master File, Access File, or FOCEXEC requires a maximum of 80 bytes of
memory for each of its records plus a small amount of control information, rounded
up to amultiple of 4200 bytes.

6-4 Information Builders

Loading a File

» Thefollowing are the file types for the various Access Files:

Access File File Type
ADABAS FOCADBS
DATACOM FOCDTCM
UDB FOCSQL
IDMS FOCIDMS
IMS (IMS=NEW only) ACCESS
MODEL 204 FOCM204
ORACLE FOCSQL
SQLDS FOCSQL
S2K FOCS2K
SUPRA ACCESS
TERADATA FOCSQL
TOTAL FOCTOTAL

Loading a Compiled MODIFY Request

Syntax

When you load a compiled MODIFY request, FOCUS |loads the FOCCOMP file from
disk into memory, then reads and parses the Master File and binds the description to the
FOCCOMP file. You may then run the request by issuing the RUN command. The RUN
command causes FOCUS to search for amemory-resident FOCCOMP file. If FOCUS
cannot find the file, it searches for a disk version in the normal way.

Loading FOCCOMP files not only eliminates the I/Os required to read large FOCCOMP
filesand their associated Master Files, but also causes another, more subtle effect. When
you issue the RUN command to execute a FOCCOMP file from disk, virtual storage must
be paged in to accommodate it. If the FOCCOMP fileislarge, it may require many pages
(and alarge virtual storage area) in avery short time. If you load the FOCCOMP file
first, theinitial surge of paging occurs only once at LOAD time. After that, each
execution of the loaded file requires alower paging rate.

How to Execute a Compiled Request
RUN r equest
where:

request
I's the name of the compiled request stored in memory.

Developing Applications 6-5

Enhancing Application Performance

Loading a MODIFY Request

The LOAD MODIFY command is similar to the COMPILE command (described in the
Maintaining Databases manual) except that instead of writing the compiled output to a
FOCCOMP file on disk, FOCUS writes the output into memory as a pre-loaded,
compiled MODIFY. FOCUS then reads the Master File associated with the MODIFY
command from disk and translates it into an internal table that is tightly bound with the
compiled MODIFY . Thus the command

>LOAD MODI FY NEWFAX
has substantially the same effect as

>COWVPI LE NEWFAX
>LOAD FOCCOVP NEWFAX

except that the compiled code is never written to disk.

After you enter aLOAD MODIFY command, the resulting compiled MODIFY is
indistinguishable from code loaded with LOAD FOCCOMP. Thus the UNLOAD
MODIFY and ? LOAD MODIFY commands produce exactly the same results as the
UNLOAD FOCCOMP and ? LOAD FOCCOM P commands. Note that the UNLOAD
FOCCOMP and UNLOAD MODIFY commands unload the bound Master File as well.

When you issue the RUN command to invoke a MODIFY procedure, FOCUS looks for a
memory-resident compiled procedure (created by a LOAD FOCCOMP or LOAD
MODIFY command) of that name. If the procedure cannot be found, FOCUS then
searches for adisk version of the FOCCOMP filein the normal way.

The benefits of the LOAD MODIFY command are that disk space is hot used to store the
FOCCOMP file, disk 1/0Os are reduced, the FOCEXEC cannot get out of step with the
compiled version, and the paging rateis reduced as it iswith FOCCOMP files.

Displaying Information About Loaded Files

Syntax

6-6

The ? LOAD command displays the file type, file name, and resident size of currently
loaded files.

How to Display Information About Loaded Files
? LOAD [filetype]
where;

filetype
Specifies the type of file (MASTER, FOCEXEC, access file, FOCCOMP, or
MODIFY) on which information will be displayed. To display information on all
memory-resident files, omit file type.

Information Builders

Compiling a MODIFY Request

Example

Compiling

Syntax

Syntax

Displaying Information About Loaded Files
I ssuing the command
? LOAD

produces information similar to the following:

FI LES CURRENTLY LOADED

CAR MASTER 4200 BYTES
EXPERSON MASTER 4200 BYTES
CARTEST FOCEXEC 8400 BYTES

a MODIFY Request

The COMPILE command translates a MODIFY request stored in a FOCEXEC into an
executable code module. This module, like an object code module, cannot be edited by a
user. However, it loads faster than the original request because the MODIFY commands
have aready been interpreted by FOCUS (the initialization time of a compiled MODIFY
module can be four to ten times faster than the original request). Compiling a request can
save a significant amount of time if the request is large and must be executed repeatedly.
Y ou compile the request once, and execute the module as many times as you need it.

Enter the COMPILE command at the FOCUS command level (the FOCUS prompt). To
module, use the RUN command from the FOCUS command level.

How to Compile MODIFY Request
COWPI LE focexec [AS nodul e]
where:

f ocexec
Is the name of the FOCEXEC where the request is stored.

nodul e
Is the name of the module. The default is the FOCEXEC name. FOCEXEC names
and module names are system dependent.

How to Execute a Module
RUN nodul e
where:

nodul e
I's the name of the module.

You will see no difference in execution between the module and the original request, but
it will load much faster.

Developing Applications 6-7

Enhancing Application Performance

Reference

Accessing

6-8

Considerations for Compiling a MODIFY Request
The following are considerations for compiling aMODIFY request:

e The FOCEXEC procedure to be compiled may only contain one MODIFY request. It
may not contain any other FOCUS, Dialogue Manager, or operating system
commands.

» Before compiling arequest or executing amodule, alocate all input and output files
such as transaction files and log files. These alocations must be in effect at run time.

» Before compilation, issue any SET, USE, COMBINE, or JOIN commands necessary
to run the request.

e |f the data source you are modifying is joined to another file (using the JOIN
command) during compilation, it must be joined to the file at run time.

» If you are modifying a combined structure (using the COMBINE command), the
structure must be combined both at compilation and at run time.

e FOCEXECs prompt for Dialogue Manager variable values at compilation time.
These values cannot be changed at run time.

» |If you are using FOCUS security to prevent unauthorized users from executing the
request, the password you set at compilation time must be the same one set at run
time.

a FOCUS Data Source (MVS Only)

MINIO isanew 1/O buffering technique that improves performance by reducing 1/0
operations when accessing FOCUS data sources under MV S. With MINIO set on, no
block is ever read more than once, and therefore the number of reads performed will be
the same as the number of tracks present. Thisresultsin an overall reduction in elapsed
times when reading and writing.

With FOCUS data sources that are not disorganized, MINIO can greatly reduce the
number of 1/0 operations for TABLE and MODIFY commands. 1/0 reductions of up to
fifty percent are achievable with MINIO. The actual reduction will vary depending on
data source structure and average numbers of children segments per parent segment. By
reducing 1/0O operations, elapsed times for TABLE and MODIFY commands also drop.

Information Builders

Accessing a FOCUS Data Source (MVS Only)

Syntax

Using MINIO

How to Set MINIO
SET M NI O = {ON| OFF}
where;

ON

Does not read a block more than once; the number of reads performed will be the
same as the number of tracks present. Thisresultsin an overall reduction in elapsed
times when reading and writing. Thisvalue is the default.

OFF
Disables MINIO.

MINIO reduces CPU time slightly while slightly raising memory utilization. MINIO
reguires one track 1/0 buffer per referenced segment type. Between 40K and 48K of
above-the-line virtual memory is needed per referenced segment.

When MINIO is enabled, FOCUS decides for each command whether or not to employ it,
and which data sources to use it with. It is possible in executing a single command
referencing severa data sources that MINIO might be used for some but not for others.
Data sources accessed viaindexes, or physically disordered through online updates, are
not candidates for MINIO buffering. Physical disorganization, in this case, means that the
sequence of selected records jumps all over the data source, as opposed to progressing
steadily forward. When disorganization occurs, MINIO abandons its buffering techniques
and resorts to the standard 1/0O methodology.

When reading data sources, MINIO is used with TABLE, TABLEF, GRAPH, MATCH
and during the DUMP phase of the REBUILD command, provided the target data source
isnot accessed via an index or is physically disorganized.

When writing to data sources, MINIO is used with MODIFY but never with
MAINTAIN, provided thereis no CRTFORM or COMMIT subcommand. CRTFORMs
indicate online transaction processing, which requires that completed transactions be
written out to the data source. COMMITs are explicit orders to do so. These events are
incompatible with MINIO minimization logic and therefore rule out its use.

Aswith reads, using MINIO with MODIFY also requires that a data source be accessed
sequentially. Attempts to access an index, or update physically disorganized data sources
both cause MINIO to be disabled. In addition, frequent repositioning to previously
accessed records, even within well-organized data sources, will cause MINIO to be
disabled.

Developing Applications 6-9

Enhancing Application Performance

Determining if a Previous Command Used MINIO

The? STAT command is used to determine whether the previous data source access

Syntax

Example

6-10

command employed MINIO.

How to Determine if a Previous Command Used MINIO

? STAT

Determining if a Previous Command Used MINIO

Typing ? STAT generates a screen similar to the following:

STATI STI CS OF LAST COMVAND

RECORDS = 0
LI NES = 0
BASEI O = 87
TRACKI O = 16
SORTI O = 0
SORT PAGES = 0
READS = 1
TRANSACTIONS = 1500
ACCEPTED = 1500
SEGS | NPUT = 1500
I NTERNAL MATRI X CREATED. YES
SORT USED: FOCUS
M NI O USED:. YES

SEGS CHNGD
SEGS DELTD
NOVATCH

DUPLI CATES
FORVAT ERRORS
I NVALI D CONDTS
OTHER REJECTS
CACHE READS
MERGES

SORT STRI NGS

AUTO NDEX USED:.
AUTOPATH USED:

55 Ocooooooooo

In the preceding example MINIO USED isdisplayed as YES. It may also display NO or

DISABLED.

e YES meansthat MINIO buffering has taken place reducing the number of tracks
read/written to the FOCUS data source.

* NO, meansthat MINIO buffering has not taken place.

» DISABLED meansthat MINIO buffering was started but terminated as no
performance gains could be made. This does not mean that the command did not
complete successfully. It only indicates that MINIO buffering began and ended

during the read/write.

Information Builders

Accessing a FOCUS Data Source (MVS Only)

Reference Restrictions for Using MINIO

Note the following restrictions when you are using the MINIO command:

When MINIO is used with MODIFY, all CHECK subcommands are ignored. If a
MODIFY command terminates abnormally, the condition of the data sourceis
unpredictable, and it should be restored from a backup copy and the update repeated.
Since MINIO isdesigned to minimize I/O during large data source loads and
updates, it has no checkpoint or restart facility. If thisis unacceptable, set MINIO
off.

MINIO is not used to access data sources through FOCUS Database Servers
(formerly called sink machines) or HLI programs.

MINIO requires the presence of the TRACKIO feature. Meaning, TRACKIO must
be set to ON which isthe default setting. If TRACKIO is set to OFF, then MINIO is
deactivated.

MINIO buffering starts when the FOCUS data source exceeds 64 pagesin size. If
thissizeis never reached, MINIO is never activated.

If the file being modified UPDATES, INCLUDES, or DELETEs afield that is
indexed, MINIO isdisabled. In other words, FIELDTY PE=I or INDEX=I iscoded in
the Master File for thisfield.

CRTFORM and COMMIT commands disable MINIO.
MAINTAIN procedures will not use MINIO buffering techniques.

MINIO isnot enabled if the data source is physically disorganized by transaction
processing.

Developing Applications 6-11

CHAPTER 7
Working With Cross-Century Dates

Topics:

When Do You Use the Sliding Window ||
rechnigue?
[heSiding Window Technique]
APP 0 a Wind

echniquel

1] iNAow Wi

efining a Dynamic Global Window

I
Querying the Current Global Value

of DEFCENT and YRTHRESH

‘%e!mlng a EI e-Eeve or ;le!g-geve
iIndow In a Master File

efining a Window 1or a virtual Fie
ni | W u
|
alue
| —— -
ates

Developing Applications

Many existing business applications use two digits to designate
ayear, instead of four digits. When they receive avalue for a
year, such as 00, they typically interpret it as 1900, assuming
that the first two digits are 19, for the twentieth century. These
applications require away to handle dates when the century
changes (for example, from the twentieth to the twenty-first), or
when they need to perform comparisons or arithmetic on dates
that span more than one century.

The cross-century date feature described in this topic enables the
correct interpretation of the century if it is not explicitly
provided, or is assumed to be the twentieth. The featureis
application-based, that is, it involves modifications to
procedures or metadata so that dates are accurately interpreted
and processed. The feature is called the sliding window
technique.

7-1

Working With Cross-Century Dates

When Do You Use the Sliding Window Technique?

If your application accesses dates that contain an explicit century, the century is accepted
asis. Your application can run correctly across centuries, and you do not need to use the
diding window technique.

If your application accesses dates without explicit centuries, they assume the default
value 19. Y our application will require remediation, such as the sliding window
technique, to ensure the correct interpretation of the century if the default is not valid, and
to run as expected in the next century.

Thistopic coversthe use of the dliding window technique in reporting applications.
Details on when to use the sliding window technique are provided later in thistopic. It
also includes reference information on the use of the technique with FOCUS MODIFY
reguests. For additional information on implementing this technique with Maintain, see
your database maintenance documentation.

This topic does not cover remediation options such as date expansion, which requires that
data be changed in the data source to accommodate explicit century values. For alist of
Information Builders documentation on remediation, see your latest Technical
Publications Catalog.

The Sliding Window Technique

7-2

With the sliding window technique, you do not need to change stored data from a 2-digit
year format to a4-digit year format in order to determine the century. Instead, you can
continue storing 2-digit years and expand them when your application accesses them.

The dliding window technique recognizes that the earliest and latest values for asingle
date field in most business applications are within 100 years of one another. For example,
a human resources application typically contains afield for the birth date of each active
employee. The difference in the birth date (or age) of the oldest active employee and the
youngest active employeeis not likely to be more than 100.

The technique isimplemented as follows:

* You define the start of a 100-year sliding window by supplying two values: one for
the default century (DEFCENT) and one for the year threshold (Y RTHRESH). For
example, avalue of 19 for the century, combined with a value of 60 for the
threshold, creates awindow that startsin 1960 and ends in 2059.

» Thethreshold provides away to assign a value to the century of a 2-digit year:

e A year greater than or equal to the threshold assumes the value of the default
century (DEFCENT). Using the sample value 19 for the default century and 60
for the threshold, a 2-digit year of 70 isinterpreted as 1970 (70 is greater than
60).

» A year less than the threshold assumes the value of the default century plus 1
(DEFCENT + 1). Using the same sample values (19 and 60), a 2-digit year of 50
isinterpreted as 2050 (50 is less than 60), and a 2-digit year of 00 isinterpreted
as 2000 (00 is also less than 60).

Information Builders

The Sliding Window Technique

The conversion rule for this exampleisillustrated as follows:

0 < YRTHRESH = 60 = 99
i i
Century = DEFCENT + 1 (20) Century = DEFCENT (19)

Any 2-digit year is assumed to fall within the window. Y ou must handle dates that
fall outside the defined window by coding.

Each file or each date field used in an application can have its own conversion rule,
which provides the flexibility required by most applications.

Defining a Sliding Window
Y ou can define a diding window in several ways, depending on the specific requirements
of your application:

Globally. The SET DEFCENT and SET YRTHRESH commands define a window
on aglobal level.

On afilelevel. The FDEFCENT and FYRTHRESH attributesin a Master File
define awindow on afile level, allowing the correct interpretation of date fieldsfrom
multiple files that span different time periods.

On afield level. The DEFCENT and YRTHRESH attributesin a Master File define
awindow on afield level, allowing the correct interpretation of date fields, within a
singlefile, that span different time periods.

For avirtual field. The DEFCENT and YRTHRESH parameters on a DEFINE
command, in either arequest or aMaster File, define awindow for avirtua field.

For a calculated value. The DEFCENT and YRTHRESH parameters on a
COMPUTE command define awindow for a calculated value.

If you define more than one window using any of the preceding methods, the precedence
isasfollows:

1.

2.
3.
4

DEFCENT and YRTHRESH on a DEFINE or COMPUTE command.
DEFCENT and YRTHRESH field-level attributesin a Master File.
FDEFCENT and FYRTHRESH file-level attributesin a Master File.

SET DEFCENT and SET YRTHRESH on aglobal level; if you do not specify
values, the defaults are used (DEFCENT = 19, YRTHRESH = 0).

Developing Applications 7-3

Working With Cross-Century Dates

Creating a Dynamic Window Based on the Current Year

An optional feature of the dliding window technique enables you to create a dynamic
window, defining the start of a 100-year span based on the current year. The start year
and threshold for the window automatically change at the beginning of each new year.

If an application requires that awindow’s start year change when anew year begins, use
of this feature avoids the necessity of manually re-coding it.

To implement this feature, YRTHRESH or FY RTHRESH is offset from the current year,
or given a negative value.

For example, if the current year is 1999 and Y RTHRESH is set to -38, awindow from
1961 to 2060 is created. The start year 1961 is derived by subtracting 38 (the value of
YRTHRESH) from 1999 (the current year). To interpret dates that fall within this
window, the threshold 61 is used.

At the beginning of the year 2000, a new window from 1962 to 2061 is automatically
created; for dates that fall within this window, the threshold 62 is used. In the year 2001,
the window becomes 1963 to 2062, and the threshold is 63, and so on.

With each new year, the start year for the window is incremented by one.
When using this feature, do not code avalue for DEFCENT or FDEFCENT, since the

featureis designed to automatically calculate the value for the default century. Be aware
of the following:

e If youdo codeavauefor DEFCENT on the field level in aMaster File, or for
FDEFCENT on thefilelevel in a Master File, the feature will not work as intended.
The value for the century, which is automatically calculated by YRTHRESH by
design, will be reset to the value you code for DEFCENT or FDEFCENT.

e If you code avauefor DEFCENT anywhere other than the field level in a Master
File (for example, on the global level), and YRTHRESH is negative, the coded value
will beignored. The default century will be automatically calculated as designed.

Information Builders

Applying the Sliding Window Technique

Applying the Sliding Window Technique

To apply the sliding window technique correctly, you need to understand the difference
between a date format (formerly called a smart date) and alegacy date:

» A dateformat refersto an internally stored integer that represents the number of days
between area date value and a base date (either December 31, 1900, for dates with
YMD or YYMD format; or January 1901, for dateswith YM, YYM, YQ, or YYQ
format). A Master File does not specify a data type or length for a date format;
instead, it specifies display options such as D (day), M (month), Y (2-digit year), or
YY (4-digit year). For example, MDY'Y in the USAGE (also known as FORMAT)
attribute of a Master Fileisadate format. A real date value such as March 5, 1999,
displays as 03/05/1999, and isinternally stored as the offset from December 31,
1900.

» A legacy daterefersto an integer, packed decimal, double precision, floating point,
or aphanumeric format with date edit options, such as16YMD, A6MDY, 18YYMD,
or ABMDYY. For example, ABMDY is a6-byte alphanumeric string; the suffix
MDY indicates how Information Builders will return the datain thefield. The
sample value 030599 displays as 03/05/99.

For details on date fields, see your documentation on describing data.

When to Supply Settings for DEFCENT and YRTHRESH

Therest of thistopic refers simply to DEFCENT when either DEFCENT or FDEFCENT
applies, and to YRTHRESH when either YRTHRESH or FY RTHRESH applies.

Supply settings for DEFCENT and Y RTHRESH in the following cases:

* When you issue a DEFINE or COMPUTE command to convert alegacy date
without century digits to a date format with century digits (for example, to convert
the format 16YMD to YYMD). With DEFINE and COMPUTE, DEFCENT and
YRTHRESH do not work directly on legacy dates; for example, you cannot use them
to convert the legacy date format 16Y MD to the legacy date format 18YYMD.

* When a DEFINE command, COMPUTE command, or Dialogue Manager -SET
command calls a function or subroutine, supplied by Information Builders, that uses
legacy dates, and the input date does not contain century digits.

On input, the subroutine will use the window defined for an 16 legacy date field
(with edit options). The output format may be |8 (again, with edit options), which
includes a4-digit year.

* When datais entered or changed in adate format field in a FOCUS data source, or
an SQL date is entered or changed in a Relational Database Management System
(RDBMS), and the input date does not contain century digits.

For example, you can use the dliding window technique in applications that use
FIXFORM or CRTFORM with MODIFY.

Developing Applications 7-5

Working With Cross-Century Dates

Reference

* When adatasourceisread, and the ACTUAL attribute in the Master Fileis non-date
specific (for example, A6, 16, or P6), without century digits, and the FORMAT or
USAGE attribute specifies a date format. This case does not apply to FOCUS data
sources.

Follow these rules when implementing the sliding window technique:

e Specify values for both DEFCENT and YRTHRESH to ensure consistent coding and
accurate results, except when YRTHRESH has a negative value. In that case, specify
avalue for YRTHRESH only; do not code avalue for DEFCENT.

* Donot use DEFCENT and YRTHRESH with ON TABLE SET.

Finally, keep in mind that the sliding window technique does not change the way existing
datais stored. Rather, it accurately interprets data during application processing.

Restrictions With MODIFY

The following results occur when you use the sliding window technique with a MODIFY
request or FOCCOMP procedure:

« A MODIFY request compiled prior to Version 7.0 Release 6, when run with global
SET DEFCENT and SET YRTHRESH settings, or with file-level or field-level
settings, yields a FOC1886 error message. Y ou must recompile the MODIFY
request.

* A MODIFY request compiled in Version 7.0 Release 6, when run with global SET

DEFCENT and SET YRTHRESH settings, or with file-level or field-level settings,
yields a FOC1885 warning message.

e« A FOCCOMP procedure, compiled with global SET DEFCENT and SET
YRTHRESH settings, and run in releases prior to Version 7.0 Release 6, yields a
FOC548 invalid version message. Y ou must recompile the MODIFY request.

* A FOCCOMP procedure that contains DEFCENT/Y RTHRESH or
FDEFCENT/FY RTHRESH attributesin the associated Master File, and run in
releases prior to Version 7.0 Release 6, yields a FOC306 description error message.

Date Validation

7-6

Date formats are validated on input. For example, 11/99/1999 isrejected asinput to a
date field formatted as MDY'Y, because 99 is not avalid day. Information Builders
generates an error message.

Legacy dates are not validated. The date 11991999, described with the format ASMDY'Y,
is accepted, even though it, too, contains the invalid day 99.

Information Builders

Defining a Global Window With SET

Defining a Global Window With SET

Syntax

The SET DEFCENT and SET YRTHRESH commands define a window on a global
level. The time span created by the SET commands applies to every 2-digit year used by
the application unless you specify file-level or field-level windows elsewhere.

For details on specifying parameters that govern the environment, see your
documentation on the SET command.

How to Define a Global Window With SET
To define a globa window, issue two SET commands.

The first command is
SET DEFCENT = {cc| 19}
where:

cC

Isthe century for the start date of the window. If you do not supply avalue, cc
defaultsto 19, for the twentieth century.

The second command is
SET YRTHRESH = {[-]yy]| 0}

where;

yy
Isthe year threshold for the window. If you do not supply avalue, yy defaultsto zero
(0).
If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of FDEFCENT for the century. Two-digit years less than the
threshold assume the value of FDEFCENT + 1.

If yy is anegative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and FDEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

Developing Applications 7-7

Working With Cross-Century Dates

Example

7-8

Defining a Global Window With SET
In the following request, the SET command defines a global window from 1983 to 2082.

As SET syntax allows, the command is entered on one line, with the parameters separated
by a comma. Y ou do not need to repeat the keyword SET for YRTHRESH.

The DEFINE command converts the legacy date EFFECT_DATE into the date format
NEW_DATE. It createsNEW_DATE asavirtual field, derived from the existing field
EFFECT_DATE. The format of EFFECT_DATE isI6YMD, which isa 2-digit year.
NEW_DATE isformatted as YYMD, which isa4-digit year. For details on DEFINE, see
your documentation on creating reports.

Therequest is:
SET DEFCENT = 19, YRTHRESH = 83

DEFI NE FI LE EMPLOYEE
NEW DATE/ YYMD = EFFECT_DATE;
END

TABLE FI LE EMPLOYEE

PRI NT EFFECT_DATE NEW DATE BY EMP_I D

END

In the report, the value of the 2-digit year 82 isless than the threshold 83, so it assumes
the value 20 for the century (DEFCENT + 1) and is returned as 2082 in the NEW_DATE
column. The other year values (83 and 84) are greater than or equal to the threshold 83,
so their century defaultsto the value 19 (DEFCENT); they are returned as 1983 and 1984
under NEW_DATE.

The output is:

PAGE 1

EMP_I D EFFECT_DATE NEW DATE
071382660

112847612

117593129 82/11/01 2082/11/01
119265415

119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188

219984371

326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/ 09/ 01
543729165

818692173 83/05/01 1983/ 05/ 01

Information Builders

Defining a Global Window With SET

In the example, missing date values appear as blanks by default. To retrieve the base date
value for the NEW_DATE field instead of blanks, issue the command

SET DATEDI SPLAY = ON

before running the request. The base date value for NEW_DATE, which is formatted as
YYMD, isreturned as 1900/12/31.:

PAGE 1

EMP_I D EFFECT_DATE NEW DATE
071382660 1900/ 12/ 31
112847612 1900/ 12/ 31
117593129 82/11/01 2082/11/01
119265415 1900/ 12/ 31
119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188 1900/ 12/ 31
219984371 1900/ 12/ 31
326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/ 09/ 01
543729165 1900/ 12/ 31
818692173 83/05/01 1983/ 05/ 01

If NEW_DATE had aYYM format, the base date would appear as 1901/01. If it had a
YYQ format, it would appear as 1901 Q1.

If the value of NEW_DATE is0 and SET DATEDISPLAY = OFF (the default), blanks
are displayed. With SET DATEDISPLAY = ON, the base date is displayed instead of
blanks. Zero (0) istreated as an offset from the base date, which results in the base date.

For details on SET DATEDISPLAY, see your documentation on the SET command.

Developing Applications 7-9

Working With Cross-Century Dates

Defining a Dynamic Global Window With SET

Example

7-10

Thistopic illustrates the creation of a dynamic window using the global command SET
YRTHRESH. Y ou can also implement this feature on the file and field level, and on a
DEFINE or COMPUTE.

With this option of the sliding window technique, the start year and threshold for the
window automatically change at the beginning of each new year. The default century
(DEFCENT) isautomatically calculated.

You can use SET TESTDATE to alter the system date when testing a dynamic window
(that is, when YRTHRESH has a negative value). However, when testing a dynamic
window defined in a Master File, you must issue a CHECK FILE command each time
you issue a SET TESTDATE command. CHECK FILE reloads the Master File into
memory and ensures the correct recal culation of the start date of the dynamic window.
For detailson SET TESTDATE, see your documentation on the SET command. For
details on CHECK FILE, see your documentation on describing data.

Defining a Dynamic Global Window With SET

In the following request, the COMPUTE command calls the subroutine AYMD, supplied
by Information Builders. AYMD adds one day to theinput field, HIRE_DATE; the
output field, HIRE_DATE_PLUS ONE, containsthe result. HIRE_DATE is formatted
as|6YMD, which is alegacy date with a 2-digit year. HHRE_DATE_PLUS ONE is
formatted as 18Y YMD, which is alegacy date with a 4-digit year.

The subroutine uses the YRTHRESH value set at the beginning of the request to create a
dynamic window for the input field HIRE_DATE. The start date of the window is
incremented by one at the beginning of each new year. Notice that DEFCENT is not
coded, since the default century is automatically calculated whenever YRTHRESH has a
negative value.

The subroutine inputs a 2-digit year, which is windowed. It then outputs a 4-digit year
that includes the century digits.

Sample values are shown in the reports for 1999, 2000, and 2018, which follow the
request.

For detailson AYMD, see your documentation on creating reports.
Therequest is:
SET YRTHRESH = -18

TABLE FI LE EMPLOYEE
PRI NT HI RE_DATE AND COVPUTE

HI RE_DATE_PLUS_ONE/ | 8YYMD = AYMX HI RE_DATE, 1, HI RE_DATE PLUS_ONE);
END
In 1999, the window spans the years 1981 to 2080. The threshold is 81 (1999 - 18). In the
report, the 2-digit year 80 isless than the threshold 81, so it assumes the value 20 for the
century (DEFCENT + 1), and isreturned as 2080 in the HIRE_DATE_PLUS ONE
column. The other year values (81 and 82) are greater than or equal to the threshold 81,
so their century defaultsto the value of DEFCENT (19); they are returned as 1981 and
1982.

Information Builders

Defining a Dynamic Global Window With SET

The output is:
PAGE 1

H RE_DATE H RE_DATE_PLUS ONE

80/ 06/ 02 2080/ 06/ 03
81/ 07/ 01 1981/ 07/ 02
82/ 05/ 01 1982/ 05/ 02
82/ 01/ 04 1982/ 01/ 05
82/ 08/ 01 1982/ 08/ 02
82/ 01/ 04 1982/ 01/ 05
82/ 07/ 01 1982/ 07/ 02
81/ 07/ 01 1981/ 07/ 02
82/ 04/ 01 1982/ 04/ 02
82/ 02/ 02 1982/ 02/ 03
82/ 04/ 01 1982/ 04/ 02
81/ 11/ 02 1981/ 11/ 03

In 2000, the window spans the years 1982 to 2081. The threshold is 82 (2000 - 18). In the
report, the 2-digit years 80 and 81 are less than the threshold; for the century, they
assume the value 20 (DEFCENT + 1). The 2-digit year 82 is equal to the threshold; for
the century, it defaults to the value 19 (DEFCENT).

Theoutput is:

PAGE 1

H RE_DATE H RE_DATE_PLUS ONE

80/ 06/ 02 2080/ 06/ 03
81/ 07/ 01 2081/ 07/ 02
82/ 05/ 01 1982/ 05/ 02
82/ 01/ 04 1982/ 01/ 05
82/ 08/ 01 1982/ 08/ 02
82/ 01/ 04 1982/ 01/ 05
82/ 07/ 01 1982/ 07/ 02
81/ 07/ 01 2081/ 07/ 02
82/ 04/ 01 1982/ 04/ 02
82/ 02/ 02 1982/ 02/ 03
82/ 04/ 01 1982/ 04/ 02
81/ 11/ 02 2081/ 11/ 03

Running the report in 2018 illustrates the automatic recalculation of DEFCENT from 19
to 20. In 2018, the window spans the years 2000 to 2099. The threshold is 0 (2018 - 18).
A 2-digit year greater than or equal to O defaults to the recalculated value 20
(DEFCENT).

Since all the values for the HIRE_DATE year are greater than 0O, their century defaultsto
20.

Developing Applications 7-11

Working With Cross-Century Dates

The output is:
PAGE 1

H RE_DATE H RE_DATE_PLUS ONE

80/ 06/ 02 2080/ 06/ 03
81/ 07/ 01 2081/ 07/ 02
82/ 05/ 01 2082/ 05/ 02
82/ 01/ 04 2082/ 01/ 05
82/ 08/ 01 2082/ 08/ 02
82/ 01/ 04 2082/ 01/ 05
82/ 07/ 01 2082/ 07/ 02
81/ 07/ 01 2081/ 07/ 02
82/ 04/ 01 2082/ 04/ 02
82/ 02/ 02 2082/ 02/ 03
82/ 04/ 01 2082/ 04/ 02
81/ 11/ 02 2081/ 11/03

Querying the Current Global Value of DEFCENT and
YRTHRESH

Y ou can query the current global value of DEFCENT and YRTHRESH.

Syntax How to Query the Current Global Value of DEFCENT and
YRTHRESH
? SET [ALL]
where:
ALL

Returns values for every possible environment setting. Excluding it generates a
shorter list of the most common settings.

Example Querying the Current Global Value of DEFCENT and YRTHRESH

Enter
? SET
to query the current global value of DEFCENT and Y RTHRESH.

7-12 Information Builders

Defining a File-Level or Field-Level Window in a Master File

The following is aresponse to the query:
PARAVETER SETTI NGS

ALL OFF HDAY . PRI NT ONLI NE
DEFCENT 20 PAGE-NUM ON TRACKI O ON
FOCSTACK SIZE 8 PREFI X . YRTHRESH 0

Defining a File-Level or Field-Level Window in a
Master File

In this implementation of the sliding window technique, you change the metadata used by
an application. Two pairs of Master File attributes enable you to define awindow on a
fileor field level:

* The FDEFCENT and FYRTHRESH attributes define awindow on afile level. They
enable the correct interpretation of legacy date fields from multiple files that span
different time periods.

A file-level window takes precedence over a global window for the dates associated
with that file.

* The DEFCENT and YRTHRESH attributes define awindow on afield level,
enabling the correct interpretation of legacy date fields, within asinglefile, that span
different time periods. Each legacy date field in afile can have its own window. For
example, in an insurance application, the range of dates for date of birth may be from
1910 to 2009, and the range of dates for expected death may be from 1990 to 2089.

A field-level window takes precedence over afile-level or global window for the
dates associated with that field.

For details on Master Files, see your documentation on describing data.

Developing Applications 7-13

Working With Cross-Century Dates

Syntax

Example

7-14

How to Define a File-Level Window in a Master File

To define awindow that appliesto all legacy datefieldsin afile, add the FDEFCENT

and FYRTHRESH attributes to the Master File on the file declaration.

The syntax for the first attribute is

{ FDEFCENT| FDFC} = {cc]| 19}

where:

ccC
Isthe century for the start date of the window. If you do not supply avalue, cc
defaultsto 19, for the twentieth century.

The syntax for the second attribute is

{ FYRTHRESH FYRT} = {[-1yy| 0}

where:

yy
Isthe year threshold for the window. If you do not supply avalue, yy defaultsto zero
(0).
If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.
If yy is anegative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically

calculated. The start date is automatically incremented by one at the beginning of
each successive year.

Defining a File-Level Window in a Master File

Tip:

Use the abbreviated forms of FDEFCENT/FYRTHRESH or DEFCENT/YRTHRESH to
reduce keystrokes. The examples in this topic use the abbreviated forms where available
(for instance, FDFC instead of FDEFCENT). Maintain supports only the abbreviated forms
in certain command syntax (for example, on a COMPUTE or DECLARE command). For
details, see your database maintenance documentation.

In the following example, the FDEFCENT and FY RTHRESH attributes define a window
from 1982 to 2081. The window is applied to all legacy date fields in the file, including
HIRE_DATE, DAT_INC, and others, if they are converted to a date format.

Information Builders

Defining a File-Level or Field-Level Window in a Master File

The Master Fileis:

FI LENAME=EMPLOYEE, SUFFI X=FCC, FDFC=19, FYRT=82
SEGNAVE=EMPI NFO, SEGTYPE=S1

FI ELDNAVE=EMP_I D, ALl AS=EI D, FORVAT=A9, $
FI ELDNAVE=LAST_NAME, ALI AS=LN, FORVAT=A15, $
FI ELDNAVE=FI RST_NANME, ALl AS=FN, FORVAT=AL0, $
FI ELDNAVE=HI RE_DATE, ALl AS=HDT, FORVAT=1 6 YNMD, $
FI ELDNAVE=DAT_I NC, ALI AS=DI , FORVAT=I 6 YMD, $

The DEFINE command in the following request creates two virtual fields named
NEW_HIRE_DATE, which is derived from the existing field HIRE_DATE; and
NEW_DAT _INC, which isderived from DAT_INC. The format of HIRE_DATE and
DAT_INCisI6YMD, which isalegacy date with a 2-digit year. NEW_HIRE_DATE
and NEW_DAT_INC are date formats with 4-digit years (YYMD). For details on
DEFINE, see your documentation on creating reports.

DEFI NE FI LE EMPLOYEE

NEW HI RE_DATE/ YYMD = HI RE_DATE;

NEW DAT_I NC/ YYMD = DAT_I NC;

END

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE NEW HI RE_DATE DAT_I NC NEW DAT_I NC

END

The window created in the Master File applies to both legacy date fields. In the report,
the year 82 (which is equal to the threshold), for both HIRE_DATE and DAT_INC,
defaults to the century value 19 and is returned as 1982 in the NEW_HIRE_DATE and
NEW_DAT_INC columns. The year 81, for both HIRE_DATE and DAT_INC, isless
than the threshold 82 and assumes the century value 20 (FDEFCENT + 1).

The partial output is:
PAGE 1

H RE_DATE NEWHI RE_DATE DAT_INC NEWDAT_INC

80/06/02 2080/ 06/ 02 82/ 01/ 01 1982/ 01/ 01
80/06/02 2080/ 06/ 02 81/01/01 2081/01/01
81/07/01 2081/07/01 82/ 01/ 01 1982/ 01/ 01
82/ 05/ 01 1982/ 05/ 01 82/ 06/ 01 1982/ 06/ 01
82/ 05/ 01 1982/ 05/ 01 82/ 05/ 01 1982/ 05/ 01

Developing Applications 7-15

Working With Cross-Century Dates

Syntax

Example

7-16

How to Define a Field-Level Window in a Master File

To define awindow that applies to a specific legacy date field, add the DEFCENT and

YRTHRESH attributes to the Master File on the field declaration.

The syntax for the first attribute is

{ DEFCENT| DFC} = {cc]| 19}

where:

ccC
Isthe century for the start date of the window. If you do not supply avalue, cc
defaultsto 19, for the twentieth century.

The syntax for the second attribute is

{ YRTHRESH| YRT} = {[-]yy| 0}

where:

yy
Isthe year threshold for the window. If you do not supply avalue, yy defaultsto zero

(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.

If yy is anegative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

Defining a Field-Level Window in a Master File

In this example, the application requires a different window for two legacy date fieldsin
the samefile.

The DEFCENT and YRTHRESH attributes in the Master File define awindow for
HIRE_DATE from 1982 to 2081, and awindow for DAT_INC from 1983 to 2082.

The Master Fileis:

FI LENAVE=EMPLOYEE, SUFFI X=FOC
SEGNAMVE=EMPI NFO, SEGTYPE=S1

FI ELDNAVE=EMP_I D, ALI AS=EI D, FORVAT=A9, $
FI ELDNAVE=LAST_NAME, ALl AS=LN, FORVAT=A15, $
FI ELDNAVE=FI RST_NANME, ALl AS=FN, FORVAT=A10, $
FI ELDNAVE=HI RE_DATE, ALl AS=HDT, FORVAT=I 6YMD, DFC=19, YRT=82, $
FI ELDNAVE=DAT_I NC, ALl AS=DI , FORMAT=I 6YMD, DFC=19, YRT=83, $

Information Builders

Defining a File-Level or Field-Level Window in a Master File

Example

The request is the same one used in the previous example (defining afile-level window in
aMaster File):

DEFI NE FI LE EMPLOYEE

NEW H RE_DATE/ YYMD = HI RE_DATE;

NEW DAT_| NC/ YYMD = DAT_I NC,

END

TABLE FI LE EMPLOYEE
PRI NT HI RE_DATE NEW HI RE_DATE DAT_I NC NEW DAT_I NC

END

However, the report illustrates the use of two different windows for the two legacy date
fields. For example, the year 82 for HIRE_DATE defaults to the century value 19, since
82 is equal to the threshold for the window for thisfield. The date returned for
NEW_HIRE_DATE is 1982.

The year 82 for DAT_INC assumes the century value 20 (DEFCENT + 1), since 82 is
less than the threshold for the window for this field (83). The date returned for
NEW_DAT_INC is 2082.

The partial output is:
PAGE 1

H RE_DATE NEWHI RE_DATE DAT_INC NEWDAT_INC

80/ 06/ 02 2080/ 06/ 02 82/ 01/ 01 2082/ 01/ 01
80/ 06/ 02 2080/ 06/ 02 81/01/01 2081/ 01/01
81/07/01 2081/ 07/ 01 82/ 01/ 01 2082/ 01/ 01
82/ 05/ 01 1982/ 05/ 01 82/ 06/ 01 2082/ 06/ 01
82/ 05/ 01 1982/ 05/ 01 82/ 05/ 01 2082/ 05/ 01

Defining a Field-Level Window in a Master File Used With
MODIFY

This exampleillustrates the use of field-level DEFCENT and Y RTHRESH attributesto
define awindow used with MODIFY . To run this example yourself, you need to create a
Master File named DATE and a procedure named DATEL OAD.

The Master File describes a segment with 12 date fields of different formats. The first
field isadate format field. The DEFCENT and Y RTHRESH attributes included on this
field create awindow from 1990 to 2089. The window is required because the input data
for the first date field does not contain century digits, and the default value 19 cannot be
assumed.

Developing Applications 7-17

Working With Cross-Century Dates

7-18

The Master File looks like this:

FI LENAME=DATE, SUFFI X=FCC
SEGNAME=ONE, SEGTYPE=S1

FI ELDNAVE=D1_YYMD, ALl AS=D1, FORMAT=YYMD, DFC=19, YRT=90, $
FI ELDNAMVE=D2_| 6YMD, ALI AS=D2, FORVAT=I 6 YNMD, $
FI ELDNAVE=D3_1 8YYMD, ALI AS=D3, FORVAT=I 8, $
FI ELDNAVE=D4_AGYMD, ALl AS=D4, FORVAT=A6YND, $
FI ELDNAMVE=D5_A8YYMD, ALI AS=D5, FORVAT=A8YYND, $
FI ELDNAVE=D6_1 4YM ALl AS=De6, FORVAT=1 4YM $
FI ELDNAVE=D7_YQ, ALl AS=Dv, FORVAT=YQ, $
FI ELDNAVE=D8_YM ALI AS=D8, FORVAT=YM $
FI ELDNAMVE=DO_JUL, ALl AS=D9, FORVAT=JUL, $
FI ELDNAVE=D10_Y, ALl AS=D10, FORNMAT=Y, $
FI ELDNAMVE=D11_YY, ALI AS=D11, FORVAT=YY, $

FI ELDNAVE=D12_MDYY, ALIAS=D12, FORVAT=MDYY,

The procedure (DATELOAD) creates a FOCUS data source named DATE and loads two
recordsinto it. The first field of the first record contains the 2-digit year 92. Thefirst field
of the second record contains the 2-digit year 88. For details on commands such as
CREATE and MODIFY, and others used in thisfile, see your database maintenance
documentation.

The procedure looks like this:

CREATE FI LE DATE
MCDI FY FI LE DATE
FIXFORM D1/8 D2/ 6 D3/8 D4/ 6 D5/8 D6/ 4 D7/4 D8/4 D9/5 D10/2 D11/ 4 D12/ 8
MATCH D1
ON NOVATCH | NCLUDE
ON MATCH REJECT
DATA
92022900022920000229000229200002290002000100020006000200002292000
88022900022920000229000229200002290002000100020006000200002292000
END

The following request accesses al the fields in the new data source:

TABLE FI LE DATE
PRI NT *
END

In the report, the year 92 for D1_YYMD defaults to the century value 19, since 92 is
greater than the threshold for the window for thisfield (90). It is returned as 1992 in the
D1 _YYMD column. The year 88 assumes the century value 20 (DEFCENT + 1), because
88 isless than the threshold. It isreturned as 2088 in the D1_YYMD column.

The partial output is:

PAGE 1

©*

1992/ 02/ 29 00/ 02/ 29 20000229 00/02/29 2000/02/29 00/02 00 QL 00/02 ...
2088/ 02/ 29 00/02/29 20000229 00/02/29 2000/02/29 00/02 00 QL 00/02 ...

Information Builders

Defining a File-Level or Field-Level Window in a Master File

Example Defining Both File-Level and Field-Level Windows
The following Master File defines windows at both the file and field level:

FI LENAME=EMPLOYEE, SUFFI X=FCC, FDFC=19, FYRT=83
SEGNAVE=EMPI NFO, SEGTYPE=S1

FI ELDNAMVE=EMP_I D, ALl AS=EI D, FORNMAT=AQ, $

FI ELDNAVE=LAST_NAME, ALI AS=LN, FORMAT=A15, $

FI ELDNAMVE=FI RST_NAME, ALI AS=FN, FORMAT=AL10, $

FI ELDNAME=HI RE_DATE, ALl AS=HDT, FORMAT=I 6YMD, DFC=19, YRT=82, $

FI ELDNAVE=EFFECT_DATE, ALl AS=EDATE, FORMAT=I 6YND, $

FI ELDNAVE=DAT_I NC, ALl AS=DI , FORMAT=| 6YND, $
Therequest is:

DEFI NE FI LE EMPLOYEE
NEW H RE_DATE/ YYMD = H RE_DATE;
NEW EFFECT_DATE/ YYMD = EFFECT_DATE;
NEW DAT | NG/ YYMD = DAT_I NC,

END

TABLE FI LE EMPLOYEE
PRI NT HI RE_DATE NEW HI RE_DATE EFFECT_DATE NEW EFFECT_DATE DAT_I NC

NEW DAT_I NC

END

When the field HIRE_DATE is accessed, the time span 1982 to 2081 is applied. For all
other legacy date fieldsin the file, such as EFFECT_DATE and DAT_INC, the time span
specified at thefile level isapplied, that is, 1983 to 2082.

For example, the year 82 for HIRE_DATE isreturned as 1982 in the NEW_HIRE_DATE
column, since 82 is equal to the threshold of the window for that particular field. The year
82 for EFFECT_DATE and DAT_INC isreturned as 2082 in the columns
NEW_EFFECT DATE and NEW_DAT _INC, since 82 isless than the threshold of the
file-level window (83).

Developing Applications 7-19

Working With Cross-Century Dates

The partial output is:
PAGE 1

H RE_DATE NEW HI RE_DATE EFFECT DATE NEW EFFECT DATE DAT_INC NEWDAT INC

80/ 06/ 02 2080/ 06/ 02 82/ 01/ 01 2082/ 01/01
80/ 06/ 02 2080/ 06/ 02 81/01/01 2081/ 01/01
81/07/01 2081/07/01 82/ 01/ 01 2082/ 01/01
82/05/01 1982/05/01 82/ 11/ 01 2082/ 11/01 82/ 06/ 01 2082/ 06/ 01
82/05/01 1982/05/01 82/ 11/ 01 2082/ 11/01 82/ 05/ 01 2082/ 05/ 01

Missing date values for NEW_EFFECT_DATE appear as blanks by default. To retrieve
the base date value for NEW_EFFECT_DATE instead of blanks, issue the command
SET DATEDI SPLAY = ON

before running the request. The base date value is returned as 1900/12/31. See the last
example in Defining a Global Window With SET|on page 7-8 for sample results.

Defining a Window for a Virtual Field

Syntax

7-20

The DEFCENT and YRTHRESH parameters on a DEFINE command create a window
for avirtual field. The window is used to interpret date values for the virtual field when
the century is not supplied. Y ou can issue a DEFINE command in either arequest or a
Master File.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; their values are always taken from the left side of the DEFINE syntax (that
is, from the left side of the equal sign). If the expression in the DEFINE contains a
subroutine call, the subroutine uses the DEFCENT and Y RTHRESH values for the input
field. The standard order of precedence (field level/file level/global level) appliesto the
DEFCENT and YRTHRESH values for the input field.

How to Define a Window for a Virtual Field in a Request
Use standard DEFINE syntax for arequest, as described in your documentation on
creating reports. Partial DEFINE syntax is shown here.

On the line that specifies the name of the virtual field, include the DEFCENT and
Y RTHRESH parameters and values. The parameters must immediately follow the field
format information.

DEFI NE FI LE fil enane
fieldnane[/format] [{DEFCENT| DFC} {cc|19} {YRTHRESH YRT} {[-]yy|0}] =
expressi on;

END

Information Builders

Defining a Window for a Virtual Field

where:

filename
Isthe name of the file for which you are creating the virtua field.

fiel dname
Isthe name of the virtual field.

f or mat
Isadate format suchasDMY or YYMD.

DEFCENT
Is the parameter for the default century.

ccC
Isthe century for the start date of the window. If you do not supply avalue, cc
defaultsto 19, for the twentieth century.

YRTHRESH
Is the parameter for the year threshold. Y ou must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code a value for
YRTHRESH.

yy
Isthe year threshold for the window. If you do not supply avalue, yy defaultsto zero
(0).
If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.
If yy is anegative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expressi on
Isavalid arithmetic or logical expression, function, or subroutine that determines the
value of the virtual field.

END
Isrequired to terminate the DEFINE command.

Developing Applications 7-21

Working With Cross-Century Dates

Example

7-22

Defining a Window for a Virtual Field in a Request

In the following request, the DEFINE command creates two virtual fields,
GLOBAL_HIRE_DATE and WINDOWED_HIRE_DATE. Both virtua fields are
derived from the existing field HIRE_DATE. The format of HIRE_DATE is|6YMD,
which isalegacy date with a 2-digit year. The virtual fields are date formats with a
4-digit year (YYMD).

The second virtual field, WINDOWED_HIRE_DATE, has the additional parameters
DEFCENT and YRTHRESH, which define awindow from 1982 to 2081. Notice that
both DEFCENT and YRTHRESH are coded, as required.

Therequest is:

DEFI NE FI LE EMPLOYEE

GLOBAL_HI RE_DATE/ YYMD = HI RE_DATE;

W NDOWED_H RE_DATE/ YYMD DFC 19 YRT 82 = H RE_DATE;
END

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE GLOBAL_H RE_DATE W NDOWED_H RE_DATE

END

Assuming that there are no FDEFCENT and FYRTHRESH file-level settingsin the
Master File for EMPLOQOY EE, the global default settings (DEFCENT = 19, YRTHRESH
= 0) are used to interpret 2-digit years for HIRE_DATE when deriving the value of
GLOBAL_HIRE_DATE. For example, the value of al yearsfor HIRE_DATE (80, 81,
and 82) is greater than O; consequently they default to 19 for the century and are returned
as 1980, 1981, and 1982 in the GLOBAL_HIRE_DATE column.

For WINDOWED_HIRE_DATE, the window created specifically for that field (1982 to
2081) is used. The 2-digit years 80 and 81 for HIRE_DATE are less than the threshold
for the window (82); consequently, they are returned as 2080 and 2081 in the
WINDOWED_HIRE_DATE column.

The output is:

PAGE 1

H RE_DATE GLOBAL_HI RE_DATE W NDOWED_HI RE_DATE

80/ 06/ 02 1980/ 06/ 02 2080/ 06/ 02
81/ 07/ 01 1981/ 07/ 01 2081/ 07/ 01
82/ 05/ 01 1982/ 05/ 01 1982/ 05/ 01
82/ 01/ 04 1982/ 01/ 04 1982/ 01/ 04
82/ 08/ 01 1982/ 08/ 01 1982/ 08/ 01
82/ 01/ 04 1982/ 01/ 04 1982/ 01/ 04
82/ 07/ 01 1982/ 07/ 01 1982/ 07/ 01
81/ 07/ 01 1981/ 07/ 01 2081/ 07/ 01
82/ 04/ 01 1982/ 04/ 01 1982/ 04/ 01
82/ 02/ 02 1982/ 02/ 02 1982/ 02/ 02
82/ 04/ 01 1982/ 04/ 01 1982/ 04/ 01
81/ 11/ 02 1981/ 11/ 02 2081/ 11/ 02

Information Builders

Defining a Window for a Virtual Field

Example

Defining a Window for Subroutine Input in a DEFINE Command

The following sample request illustrates a call to the subroutine AYMD in a DEFINE
command. AYMD adds 60 daysto the input field, HIRE_DATE; the output field,
SIXTY_DAYS, containsthe result. HIRE_DATE is formatted as I6YMD, whichisa
legacy date with a2-digit year. SIXTY_ DAY Sisformatted as I8Y YMD, whichisa
legacy date with a4-digit year.

For detailson AYMD, see your documentation on creating reports.

DEFI NE FI LE EMPLOYEE

SI XTY_DAYS/ | 8YYMD = AYMX H RE_DATE, 60, '18YYMD);

END

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE S| XTY_DAYS

END

The subroutine uses the DEFCENT and YRTHRESH values for the input field
HIRE_DATE. In this example, they are set on the field level in the Master File:

FI LENAVE=EMPLOYEE, SUFFI X=FOC
SEGNAME=EMPI NFO, SEGTYPE=S1

FI ELDNAVE=EMP_I D, ALI AS=EI D, FORVAT=A9, $
FI ELDNAVE=LAST_NAME, ALI AS=LN, FORVAT=AL5, $
FI ELDNAVE=FI RST_NANME, ALl AS=FN, FORVAT=A10, $
FI ELDNAVE=HI RE_DATE, ALl AS=HDT, FORMAT=I 6YMD, DFC=19, YRT=82, $

The subroutine inputs a 2-digit year, which is windowed. It then outputs a 4-digit year
that includes the century digits.

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the
century.

The output is:
PAGE 1

H RE_DATE SI XTY_DAYS
80/ 06/ 02 2080/ 08/ 01
81/ 07/ 01 2081/ 08/ 30
82/ 05/ 01 1982/ 06/ 30
82/ 01/ 04 1982/ 03/ 05
82/ 08/ 01 1982/ 09/ 30
82/ 01/ 04 1982/ 03/ 05
82/ 07/ 01 1982/ 08/ 30
81/ 07/ 01 2081/ 08/ 30
82/ 04/ 01 1982/ 05/ 31
82/ 02/ 02 1982/ 04/ 03
82/ 04/ 01 1982/ 05/ 31
81/11/02 2082/ 01/ 01

Developing Applications 7-23

Working With Cross-Century Dates

Syntax

7-24

How to Define a Window for a Virtual Field in a Master File

Use standard DEFINE syntax for aMaster File, as discussed in your documentation on
describing data. Partial DEFINE syntax is shown here.

The parameters DEFCENT and YRTHRESH must immediately follow the field format
information.

DEFI NE fi el dname/ [format] [{DEFCENT| DFC} {cc|19} {YRTHRESH YRT} {[-]yy|0}]

expression; $

where;

fiel dnane
Isthe name of the virtual field.

f or mat
Isadate format such asDMY or YYMD.

DEFCENT
Is the parameter for the default century.

ccC
Isthe century for the start date of the window. If you do not supply avalue, cc
defaultsto 19, for the twentieth century.

YRTHRESH
Is the parameter for the year threshold. Y ou must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code a value for
YRTHRESH.

yy
Isthe year threshold for the window. If you do not supply avalue, yy defaults to zero
(0).
If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.
If yy is anegative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expressi on
Isavalid arithmetic or logical expression, function, or subroutine that determines the
value of the virtual field.

Information Builders

Defining a Window for a Virtual Field

Example

Defining a Window for a Virtual Field in a Master File

In the following example, the DEFINE command in a Master File creates avirtual field
named NEW_HIRE_DATE. Itisderived from the existing field HIRE_DATE. The
format of HIRE_DATE is16YMD, which isalegacy date with a 2-digit year.
NEW_HIRE_DATE isadate format with a4-digit year (YYMD).

The parameters DEFCENT and YRTHRESH on the DEFINE command create a window
from 1982 to 2081, which isused to interpret all 2-digit years for the virtual field. Notice
that both DEFCENT and Y RTHRESH are coded, as required.

The field-level window takes precedence over any global settingsin effect. Thereisno
file-level setting in the Master File.

The Master Fileis:

FI LENAME=EMPLOYEE, SUFFI X=FCC
SEGNAVE=EMPI NFO, SEGTYPE=S1

FI ELDNAME=EMP_I D, ALl AS=EI D, FORVAT=A9, $
FI ELDNAVE=LAST_NAME, ALI AS=LN, FORVAT=A15, $
FI ELDNAME=FI RST_NAME, ALI AS=FN, FORVAT=A10, $
FI ELDNAVE=HI RE_DATE, ALl AS=HDT, FORVAT=1 6 YNMD, $

DEFI NE NEW HI RE_DATE/ YYMD DFC 19 YRT 82 = HI RE_DATE; $
The following request generates the values in the sample report:

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE NEW HI RE_DATE

END

Since the 2-digit years 80 and 81 are less than the threshold 82, their century assumes the
value of DEFCENT + 1 (20), and they are returned as 2080 and 2081 in the
NEW_HIRE_DATE column. The 2-digit year 82 is equal to the threshold and therefore
defaultsto the value of DEFCENT (19). It isreturned as 1982.

Theoutput is:

PAGE 1
HI RE_DATE NEW HI RE_DATE
80/ 06/ 02 2080/ 06/ 02
81/ 07/ 01 2081/ 07/ 01
82/ 05/ 01 1982/ 05/ 01
82/ 01/ 04 1982/ 01/ 04
82/ 08/ 01 1982/ 08/ 01
82/ 01/ 04 1982/ 01/ 04
82/ 07/ 01 1982/ 07/ 01
81/ 07/ 01 2081/ 07/ 01
82/ 04/ 01 1982/ 04/ 01
82/ 02/ 02 1982/ 02/ 02
82/ 04/ 01 1982/ 04/ 01
81/ 11/ 02 2081/ 11/ 02

Developing Applications 7-25

Working With Cross-Century Dates

Defining a Window for a Calculated Value

Syntax

7-26

Use the DEFCENT and Y RTHRESH parameters on a COMPUTE command in a report
request to create a window for atemporary field that is calculated from the result of a
PRINT, LIST, SUM, or COUNT command. The window is used to interpret a date value
for that field when the century is not supplied.

Y ou can aso use the parameters on a COMPUTE command in aMODIFY or Maintain
procedure, or on a DECLARE command in Maintain. For details on the use of the
parametersin Maintain, see your database maintenance documentation.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; their values are always taken from the left side of the COMPUTE syntax
(that is, from the left side of the equal sign). If the expression in the COMPUTE contains
asubroutine call, the subroutine uses the DEFCENT and YRTHRESH valuesfor the
input field. The standard order of precedence (field level/file level/global level) appliesto
the DEFCENT and YRTHRESH values for the input field.

How to Define a Window for a Calculated Value in a Report
Use standard COMPUTE syntax, as described in your documentation on creating reports.
Partiadl COMPUTE syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and

Y RTHRESH parameters and values. The parameters must immediately follow the field
format information.

TABLE FI LE fil enane
comand
[AND] COWPUTE
fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH YRT} {[-]yy|0}] =
expr essi on;

END
where:
fil enanme
Isthe name of the file for which you are creating the calculated value.
conmand
Isacommand such as PRINT, LIST, SUM, or COUNT.
fiel dnane
Isthe name of the calculated value.
f or mat
Isadate format such asDMY or YYMD.

DEFCENT
Is the parameter for the default century.

Information Builders

Defining a Window for a Calculated Value

Syntax

ccC
Isthe century for the start date of the window. If you do not supply avalue, cc
defaultsto 19, for the twentieth century.

YRTHRESH
Is the parameter for the year threshold. Y ou must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code avalue for
YRTHRESH.

yy
Isthe year threshold for the window. If you do not supply avalue, yy defaults to zero
(0).
If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.
If yy is anegative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expressi on
Isavalid arithmetic or logical expression, function, or subroutine that determines the
value of the temporary field.

END
Isrequired to terminate the request.

How to Define a Window for a Calculated Value in a MODIFY
Request

Use standard MODIFY and COMPUTE syntax, as described in your database
maintenance documentation; partial syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and
Y RTHRESH parameters and values. The parameters must immediately follow the field
format information.

MODI FY FI LE fil enane

COVPUTE
fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH YRT} {[-]yy|0}] =
expressi on;

[ENDJ

Developing Applications 7-27

Working With Cross-Century Dates

where:

filename
Is the name of the file you are modifying.

fiel dname
Isthe name of the field being set to the value of expression.

f or mat
Isadate format such asMDY or YYMD.

DEFCENT
Is the parameter for the default century.

ccC
Isthe century for the start date of the window. If you do not supply avalue, cc
defaultsto 19, for the twentieth century.

YRTHRESH
Is the parameter for the year threshold. Y ou must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code a value for
YRTHRESH.

yy
Isthe year threshold for the window. If you do not supply avalue, yy defaultsto zero
(0).
If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.
If yy is anegative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expressi on
Isavalid arithmetic or logical expression, function, or subroutine that determines the
value of fieldname.

END
Terminates the request. Do not add this command if the request contains PROMPT
statements.

7-28 Information Builders

Defining a Window for a Calculated Value

Example

Example

Defining a Window for a Calculated Value

In the following request, the parameters DEFCENT and Y RTHRESH on the COMPUTE
command define a window from 1999 to 2098. Notice that both DEFCENT and
YRTHRESH are coded, as required. The window is applied to the field created by the
COMPUTE command, LATEST_DAT_INC.

DAT_INC isformatted as 16YMD, which is alegacy date with a 2-digit year.
LATEST_DAT_INC isadate format with a4-digit year (YYMD). The prefix MAX
retrieves the highest value of DAT_INC.

Therequest is:

TABLE FI LE EMPLOYEE
SUM SALARY AND COMPUTE
LATEST_DAT_I NC/ YYMD DFC 19 YRT 99 = MAX. DAT_I NC,
END
The highest value of DAT_INC is 82/08/01. Since the year 82 isless than the threshold
99, it assumes the value 20 for the century (DEFCENT + 1).

The output is:
PAGE 1

SALARY LATEST_DAT_I NC

$332,929.00 2082/08/01

Defining a Window for Subroutine Input in a COMPUTE
Command

The following sample request illustrates a call to the subroutine JULDAT ina
COMPUTE command. JULDAT converts dates from Gregorian format (year/month/day)
to Julian format (year/day). For century display, datesin Julian format are 7-digit
numbers. Thefirst 4 digits are the century. The last three digits represent the number of
days, counting from January 1.

For details on JULDAT, see your documentation on creating reports.

In the request, the input field isHIRE_DATE. The subroutine convertsit to Julian format
and returnsit as JULIAN_DATE. HIRE_DATE isformatted asI6YMD, whichisa
legacy date with a2-digit year. JULIAN_DATE isformatted as 17, which isalegacy date
with a4-digit year.
TABLE FI LE EMPLOYEE
PRI NT DEPARTMENT HI RE_DATE
AND COVPUTE

JULI AN _DATE/ | 7 = JULDAT(H RE_DATE, JULI AN_DATE);
BY LAST_NAME BY FI RST_NAME
END

Developing Applications 7-29

Working With Cross-Century Dates

7-30

The subroutine uses the FDEFCENT and FY RTHRESH values for the input field
HIRE_DATE. In this example, they are set on the file level in the Master File:
FI LENAME=EMPLOYEE, SUFFI X=FOC, FDFC=19, FYRT=82

SEGNAME=EMPI NFO,

FI ELDNAMVE=EMP_I D,

FI ELDNAVE=LAST_NANE,
FI ELDNAVE=FI| RST_NANE,
FI ELDNAVE=HI RE_DATE,

SEGTYPE=S1

ALl AS=EI D,
ALl AS=LN,
ALl AS=FN,
ALl AS=HDT,

FORVAT=A9,

FORVAT=A15,
FORVAT=A10,
FORVAT=I 6 YMD,

AP HH

The subroutine inputs a 2-digit year, which is windowed. It then outputs a 4-digit year

that includes the century digits.

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the

century.

The output follows. By default, the second occurrence of the last name SMITH displays

as blanks.

PAGE 1

LAST_NANE
BANNI NG
BLACKWOCD
CROSS
GREENSPAN
I RVI NG
JONES
MCCOY
MCKNI GHT
ROVANS

SM TH

STEVENS

FI RST_NAME
JOHN
ROSEMARI E
BARBARA
MARY

JOAN

DI ANE
JOHN
ROGER
ANTHONY
MARY

Rl CHARD
ALFRED

DEPARTMENT

HI RE_DATE
82/ 08/ 01
82/ 04/ 01
81/11/02
82/ 04/ 01
82/ 01/ 04
82/ 05/ 01
81/07/01
82/ 02/ 02
82/ 07/ 01
81/07/01
82/ 01/ 04
80/ 06/ 02

JULI AN_DATE
1982213
1982091
2081306
1982091
1982004
1982121
2081182
1982033
1982182
2081182
1982004
2080154

Information Builders

Additional Support for Cross-Century Dates

Additional Support for Cross-Century Dates

The following features apply to the use of datesin your applications.

Default Date Display Format

The default date display format is MM/DD/CCY'Y, where MM is the month; DD isthe
day of the month; CC isthe first two digits of a4-digit year, indicating the century; and
YY isthelast two digits of a4-digit year.

For example:
02/ 11/ 1999

For atable that fully describes the display of adate based on the specified format and
user input, see the Describing Data manual.

Date Display Options
The following date display options are available:

e You candisplay arow of data, even though it contains an invalid date field, using the
command SET ALLOWCVTERR. Theinvalid date field is returned as the base date
or as blanks, depending on other settings. For details, see your documentation on the
SET command. This feature applies to non-FOCUS data sources when converting
from the way datais stored (ACTUAL attribute) to the way it is formatted
(FORMAT or USAGE attribute).

» |If adateformat field contains the value zero (0), you can display its base date, using
the command SET DATEDISPLAY = ON. By default, the value zero in adate
format field such as YYMD isreturned as a blank. For details, see your
documentation on the SET command.

* You can display the current date with a 4-digit year using the Dialogue Manager
system variables &YYMD, &MDYY, and &DMYY. The system variable
& DATEfmt displays the current date as specified by the value of fmt, which isa
combination of allowable date options, including a4-digit year (for example,
&DATEYYMD). For details, see your documentation on Dialogue Manager.

System Date Masking

Y ou can temporarily alter the system date for application testing and debugging, using
the command SET TESTDATE. With this feature, you can simulate clock settings
beyond the year 1999 to determine the way your program will behave. For details, see
your documentation on the SET command.

Date Functions and Subroutines

The date functions and subroutines supplied with your software work across centuries.
Many of them facilitate date manipulation. For details on date functions and subroutines,
see your documentation on creating reports.

Developing Applications 7-31

Working With Cross-Century Dates

Date Conversion

Y ou can convert alegacy date to adate format in a FOCUS data source using the option
DATE NEW on the REBUILD command. For details, see your documentation on
database maintenance.

Century and Threshold Information

The ALL option, in conjunction with the HOLD option, on the CHECK FILE command
includesfile-level and field-level default century and year thresholds as specified in a
Master File. For details, see your documentation on describing data.

Date Time Stamp

The year in the time stamp for a FOCUS data source is physically written to page one of
thefilein the format CCYY.

7-32 Information Builders

CHAPTER 8

Euro Currency Support

* Preparing FOCUS to Process
Currency Conversions

« Activating the Currency Data Source|

. uerying the Currency Data Source
n Effect

« Processing Currency Datal

Developing Applications

Thistopic describes how to create and use a currency data
source to convert to and from the new euro currency.

8-1

Euro Currency Support

Integrating the Euro Currency

With the introduction of the euro currency, businesses need to maintain booksin two
currencies, add new fields to their data source designs, and perform new types of
currency conversions. FOCUS can perform currency conversions according to the rules
specified by the European Union. Before you can use FOCUS to process currency
conversions, you must:

» Create acurrency data source with the currency IDs and exchange rates you will use.
See Creating the Currency Data Sourcelon page 8-4.

» ldentify fieldsin your data sources that represent currency data. See
Fields That Contain Currency Datalon page 8-6.

« Activate your currency data source. See[Activating the Currency Data Sourcejon
page 8-8.

After you complete these preliminary steps, you can perform currency conversions. See
Processing Currency Datalon page 8-10.

Note: Operating system vendors are in the process of integrating the euro currency
symbol into their environments. As the euro symbol becomes available, FOCUS will
support it.

Converting Currencies

8-2

Although the euro was introduced in 11 countries of the European Union on January 1,
1999, it will not immediately replace local currenciesin those countries. During the
transition period from 1999 to 2002, both traditional currencies and the euro will be used
simultaneoudly for accounting purposes and non-cash transactions in each participating
country. Euro cash will not be introduced until January 1, 2002, and by July 1, 2002 the
traditional currencies will no longer be legal tender.

On the last day of 1998, the European Union set fixed exchange rates between the euro
and the traditional national currency in each of the 11 adopting member nations. While
the exchange rates within Euroland will remain fixed, exchange rates between the euro
and non-euro countries will continue to vary freely and, in fact, several rates may bein
use at one time (for example, actual and budgeted rates).

Information Builders

Converting Currencies

The European Union has established the following rules for currency conversion:

» The exchange rate must be specified asadecimal value, r, with six significant digits
(not six decimal places). For example, 123.456 has six significant digits but not six
decimal places. This rate will establish the following relationship between the euro
and the particular national currency:

1 euro =r national units

* To convert from the euro to the national unit, multiply by r and round the result to
two decimal places.

e To convert from the national currency to the euro, divide by r and round the result to
two decimal places.

» To convert from one national currency to another, first convert from one national
unit to the euro, rounding the result to at least three decimal places (FOCUS rounds
to exactly three decimal places). Then convert from the euro to the second national
unit, rounding the result to two decimal places. The following diagram illustrates this
two-step conversion process known as triangulation:

Converting 10 U5 Daollars to French Francs

EUR
r=1.00000
Stey 1: Step 2
10USD = 10/1.17249 EUR 8.344 EUR = 8,520*6.55057 F RF
=8520EUR =55.95FRF
L= FRF
r=1.17249 r=6.55957

Developing Applications 8-3

Euro Currency Support

Preparing FOCUS to Process Currency Conversions

Although 11 or more currenciesin the European Union will be converting to the euro,
more than 100 currencies have a recognized status worldwide. In addition, you may need
to define custom currencies for some applications.

Y ou identify your currency codes and rates by creating a currency data source. The
currency data source can be any type of data source that FOCUS can access.

Creating the Currency Data Source

For each type of currency you need, you must supply the following valuesin your
currency data source:

» A three-character code to identify the currency, such as USD for U.S. dollars or BEF
for Belgian francs. (For apartial list of recognized currency codes, see[Sample |

Currency Codespon page 8-13)

» Oneor more exchange rates for the currency.

Thereisno limit to the number of currencies you can add to your currency data source;
the currencies you can define are not limited to official currencies and, therefore, the
currency data source can be fully customized for your applications.

We strongly recommend that you create a separate data source for the currency data
rather than adding the currency fields to another data source. A separate currency data
source enhances performance and minimizes resource utilization because FOCUS loads
the currency data source into memory before you perform currency conversions.

Information Builders

Preparing FOCUS to Process Currency Conversions

Syntax

How to Specify Currency Codes and Rates in a Master File

The currency data source can be any type of data source accessible by FOCUS (for
example, FOCUS, FIX, DB2, or VSAM). The currency Master File must have one field
that identifies each currency ID you will use and one or more fields to specify the
exchange rates.

The syntax is

FIELD = CURRENCY_I D, FORVAT = A3, ACTUAL = A3 ,$
FIELD = ratel, FORVAT = {D12. 6| nuneric_format1}, ACTUAL = Al2, $
FI EL.D = raten, FORVAT = {D12. 6| nuneric_formatn}, ACTUAL = Al2,$
where:

CURRENCY_| D

Isthe required field name. The values stored in thisfield are the three-character
codes that identify each currency, such as USD for U.S. dollars. Each currency ID
can be auniversally recognized code or a user-defined code.

Note: FOCUS automatically recognizes the code EUR; you should not store this
code in your currency data source. See[Sample Currency Codes|on page 8-13 for a
list of common currency codes.

ratel, ..., raten
Are types of rates (such as BUDGET, FASB, ACTUAL) to be used in currency
conversions. Each rate is the number of national units that represent one euro.

nurmeric_formatl, ..., nuneri c_formatn
Are the display formats for the exchange rates. Each format must be numeric. The
recommended format, D12.6, ensures that the rate is expressed with six significant
digits asrequired by the European Union conversion rules. Do not use Integer format
OF

ACTUAL An
Isrequired only for non-FOCUS data sources.

Note: The maximum number of fieldsin the currency data source must not exceed 255
(that is, the CURRENCY _ID field plus 254 currency conversion fields).

Developing Applications 8-5

Euro Currency Support

Example

Specifying Currency Codes and Rates in a Master File

The following Master File for acomma-delimited currency data source specifies two
rates for each currency, ACTUAL and BUDGET:

FI LE = CURRCODE, SUFFI X = COM $

FI ELD = CURRENCY_I D, FORVAT = A3, ACTUAL = A3 ,$
FI ELD = ACTUAL, ALIAS =, FORVAT = D12.6, ACTUAL = A12 ,$
FI ELD = BUDGET, ALIAS =, FORVAT = D12.6, ACTUAL = A12 ,$

The following is sample data for the currency data source defined by this Master File:

FRF, 6.55957, 6.50000,$
UsD, 1.17249, 1.20000,$
BEF, 40.3399, 41.00000,$

Identifying Fields That Contain Currency Data

8-6

Once you have created your currency data source, you must identify the fieldsin your
data sources that represent currency values. To designate afield asa
currency-denominated value (a value that represents a number of unitsin a specific type
of currency) add the CURRENCY attribute to one of the following:

» TheFIELD specification in the Master File.
* Theleft side of aDEFINE or COMPUTE.

Information Builders

Preparing FOCUS to Process Currency Conversions

Syntax

How to Identify a Currency Value
Use the following syntax to identify a currency-denominated value.

* InaMaster File:

FIELD = currfield, FORVAT = nuneric_format, , CURR =
{curr_id|codefield} ,$

* InaDEFINE in the Master File:

DEFI NE currfield/ nuneric_format CURR curr_id = expression ;$

* |naDEFINE FILE command:

DEFI NE FI LE fil enane
currfield/ numeric_format CURR curr_id = expression
END

* InaCOMPUTE command:
COWPUTE currfield/ numeric_format CURR curr_id = expression
where:

fil enanme
Isthe name of the file for which thisfield is defined.

currfield
I's the name of the currency-denominated field.

nuneri c_f or mat
Isanumeric format. Depending on the currency denomination involved, the
recommended number of decimal placesis either two or zero. Do not use | or F
format.

CURR
Indicates that the field value represents a currency-denominated value. CURR isan
abbreviation of CURRENCY/, which isthe full attribute name.

curr_id
Is the three-character currency ID associated with the field. In order to perform
currency conversions, this ID must either be the value EUR or match a
CURRENCY _ID vauein your currency data source.

Developing Applications 8-7

Euro Currency Support

Example

codefield
Isthe name of afield, qualified if necessary, that contains the currency ID associated
with currfield. The code field should have format A3 or longer and isinterpreted as
containing the currency ID value in itsfirst three bytes. For example:

FIELD = PRICE, FORMAT = P12.2C, ..., CURR = TABLE.FLDL, $

FIELD = FLDL, FORMAT = A3, ...,$

The field named FLD1 contains the currency ID for the field named PRICE.
expressi on

Isavalid expression.

Identifying a Currency-Denominated Field

Assume that the currency data source contains the currency ID value BEF (Belgian
francs).

If the FINANCE data source contains a field named PRICE that is denominated in
Belgian francs, the description of PRICE in the FINANCE Master File could be:

FIELD = PRICE, ALIAS=, FORVAT = P17.2, CURR=BEF, $

Activating the Currency Data Source

Syntax

8-8

Before you can perform currency conversions, you must bring the relevant currency data
source into memory by issuing the SET EUROFILE command.

How to Activate Your Currency Data Source

Issue the following command at the FOCUS command prompt, in a FOCEXEC, or in any
supported profile;

SET EURCFI LE = {ddname| OFF}
where;

ddnane
Isthe name of the Master File for the currency data source. There is no default value
for EUROFILE. The ddname must refer to a data source known to FOCUS and
accessible by FOCUS in read-only mode.

OFF
Deactivates the currency data source and removesit from memory.

During your FOCUS session, if you want to access a different currency data source, you
can re-issue the SET EUROFILE command.

Information Builders

Querying the Currency Data Source in Effect

Note:

e You cannot append any additional SET parametersto the SET EUROFILE command
line. For example, the PAUSE setting would be lost if you issued the following
command:

SET EURCFI LE=fil ename , PAUSE=OFF
e You cannot issue the SET EUROFILE command within a TABLE request.

Querying the Currency Data Source in Effect

Syntax

Example

Reference

You can issue a query to determine what currency data source isin effect. To do this,
issuethe ? SET ALL query command or the ? EUROFILE query command.

How to Determine the Currency Data Source in Effect

If you want to determine which currency data sourceisin effect, issuethe ? SET ALL
command or the new EUROFILE query command:

? SET EURCFI LE

Determining the Currency Data Source in Effect

Issuing the command

? EURCFI LE

produces information similar to the following:
EURCFI LE GBP

SET EUROFILE Error Messages and Notes

Issuing the SET EUROFILE command when the currency data source Master File does
not exist generates the following error message:

(FOC205) THE DESCRI PTI ON CANNOT BE FOUND FOR FI LE NAMED: ddnane

Issuing the SET EUROFILE command when the currency Master File specifies a
FOCUS data source and the associated FOCUS data source does not exist generates the
following error message:

(FOC036) NO DATA FOUND FOR THE FOCUS FI LE NAMED: nane

Note for Pooled Table users: The SET EUROFILE command creates a pool boundary.

Developing Applications 8-9

Euro Currency Support

Processing Currency Data

Syntax

8-10

After you have created your currency data source, identified the currency-denominated
fieldsin your data sources, and activated your currency data source, you can perform
currency conversions.

Each currency 1D in your currency data source generates a virtual conversion function
whose name is the same asiits currency ID. For example, if you added BEF to your
currency data source, avirtual BEF currency conversion function will be generated.

The euro function, EUR, is supplied automatically with FOCUS. Y ou do not need to add
the EUR currency ID to your currency data source.

How to Convert Currency Data
Use the following syntax for calling a currency conversion function.

« InaTABLE, GRAPH, or MODIFY procedure:

DEFI NE FI LE fil enane
result/format [CURR curr_id] = curr_id(infield, ratel [,rate2]);
END

or

COWUTE result/format [CURR curr_id] = curr_id(infield, ratel
[,rate2]);

* InaMaster File:

DEFINE result/format [CURR curr_id] = curr_id(infield, ratel
[,rate2]);$

where:

filenane
Isthe name of the file for which thisfield is defined.

resul t
Isthe converted currency value.

f or mat
Must be a numeric format. Depending on the currency denomination involved, the
recommended number of decimal placesis either two or zero. Do not use | or F
format. The result will always be rounded to two decimal places, which will display
if the format allows at least two decimal places.

Information Builders

Processing Currency Data

curr_id
Isthe currency 1D of the result field. This ID must be the value EUR or match a
currency ID in your currency data source; any other value generates the following

message
(FOC263) EXTERNAL FUNCTI ON OR LOAD MODULE NOT FOUND: curr_id

Note: The CURR attribute on the left side of the DEFINE or COMPUTE identifies
the result field as a currency-denominated value which can be passed as an argument
to acurrency function in subsequent currency calculations. Adding this attribute to
the left side of the DEFINE or COMPUTE does not invoke any format or value
conversion on the calculated result.

infield
Is a currency-denominated value. This input value will be converted from its original
currency to the curr_id denomination. If the infield and result currencies are the
same, no calculation is performed and the result value is the same as theinfield
value.

ratel
Isthe name of arate field from the currency data source. Theinfield value is divided
by its currency’ s ratel value to produce the equivalent number of euros.

If rate2 is not specified in the currency calculation and triangulation is required, this
intermediate result is then multiplied by the result currency’ s ratel value to complete
the conversion.

In certain cases, you may need to provide different rates for special purposes. In
these situations you can specify any field or numeric constant for ratel aslong asit
indicates the number of units of the infield currency denomination that equals one
euro.

rate2
Isthe name of arate field from the currency data source. Thisargument is only used
for those cases of triangulation in which you need to specify different rate fields for
theinfield and result currencies. It isignored if the euro is one of the currencies
involved in the calculation.

The number of euros that was derived using ratel is multiplied by the result
currency’ srate? value to complete the conversion.

In certain cases, you may need to provide different rates for special purposes. In
these situations you can specify any field or numeric constant for rate2 aslong asit
indicates the number of units of the result currency denomination that equals one
euro.

Note: Maintain does not support these currency conversion functions.

Developing Applications 8-11

Euro Currency Support

Example

Reference

8-12

Converting Currencies

Assume that the currency data source contains the currency I1Ds USD and BEF, and that
PRICE is denominated in Belgian francs as follows:

FIELD = PRICE, ALIAS=, FORVAT = P17.2, CURR=BEF, $

» Thefollowing example converts PRICE to euros and stores the result in PRICE2
using the BUDGET conversion rate for the BEF currency ID:

COVPUTE PRI CE2/ P17. 2 CURR EUR = EUR(PRI CE, BUDGET);

» Thisexample converts PRICE from Belgian francs to US dollars using the
triangulation rule;

DEFI NE PRI CE3/P17.2 CURR USD = USD(PRICE, ACTUAL);$

First PRICE isdivided by the ACTUAL rate for Belgian francs to derive the number
of euros rounded to three decimal places. Then this intermediate value is multiplied
by the ACTUAL rate for US dollars and rounded to two decimal places.

» Thefollowing example uses a numeric constant for the conversion rate:
DEFI NE PRI CE4/ P17.2 CURR EUR = EUR(PRICE, 5); $

* The next example usesthe ACTUAL rate for Belgian francsin the division and the
BUDGET rate for US dollars in the multiplication:

DEFI NE PRI CE5/ P17.2 CURR USD = USD(PRI CE, ACTUAL, BUDGET);$

Currency Calculation Processing and Messages

Theresult is aways calculated with very high precision, 31 to 36 significant digits,
depending on platform. The precision of the final result is always rounded to two decimal
places. In order to display the result to the proper precision, its format must allow at least
two decimal places.

Issuing a TABLE request against a Master File that specifies a currency code not listed in
the active currency data source generates the following message:

(FOC1911) CURRENCY I'N FI LE DESCRI PTI ON NOT FOUND | N DATA

A syntax error or undefined field name in a currency conversion expression generates the
following message:

(FOC1912) ERROR | N PARSI NG CURRENCY STATEMENT

Information Builders

Processing Currency Data

Reference Sample Currency Codes

The following rates were in effect on December 31, 1998. Euroland countries as of that
date are marked with an asterisk (*). Their rates are fixed and will not change; the rates
for other countries can change over time:

Country Currency Code Rate
Austria* ATS 13.7603
Belgium* BEF 40.3399
Canada CAD 1.7978
Denmark DKK 7.46215
European Union EUR 1
Finland* FIM 5.94573
France* FRF 6.55957
Germany* DEM 1.95583
Greece GRD 328.6
Ireland* IEP 0.787564
Italy* ITL 1936.27
Japan JPY 133.149
L uxembourg* LUF 40.3399
Netherlands* NLG 2.20371
Norway NOK 8.91039
Portugal* PTE 200.482
Spain* ESP 166.386
Sweden SEK 9.52669
Switzerland CHF 1.61093
UK GBP 0.706739
USA uUSD 1.17249

Developing Applications 8-13

Euro Currency Support

Example

8-14

Converting U.S. Dollars to Euros, French Francs, and Belgian
Francs

Assume PRICE is denominated in U.S. dollars and ACTUAL isthe name of aratein the
currency data source. Using the currency conversion rates from|Sample Currency Codes|
on page 8-13, the following FOCEXEC converts PRICE to euros, French francs, and
Belgian francs:

-* CURRCODE | S THE CURRENCY DATA SOURCE
-* CURRDATA | S THE DATA SOURCE W TH CURRENCY- DENOM NATED FI ELDS

-* THE FOLLOW NG FI LEDEFS ARE FOR RUNNI NG UNDER CMB
CVS FI LEDEF CURRCCDE DI SK CURRCCDE TEXT A
CMS FI LEDEF CURRDATA DI SK CURRDATA TEXT A

-* THE FOLLOWN NG ALLOCATI ONS ARE FOR RUNNI NG UNDER MWVS
-* DYNAM ALLOC FI LE CURRCODE DA USERL. FOCEXEC. DATA(CURRCODE) SHR REU
-* DYNAM ALLOC FI LE CURRDATA DA USERL. FOCEXEC. DATA(CURRDATA) SHR REU

SET EURCFI LE = CURRCODE

DEFI NE FI LE CURRDATA
PRI CEEUR/ P17. 2 CURR EUR = EUR(PRI CE, ACTUAL);
END

TABLE FI LE CURRDATA

PRI'NT PRI CE PRI CEEUR AND COVPUTE

PRI CEFRF/ P17. 2 CURR FRF = FRF(PRI CE, ACTUAL);
PRI CEBEF/ P17. 2 CURR BEF = BEF(PRI CE, ACTUAL);
END

This regquest generates the following report:

PAGE 1

PRI CE PRI CEEUR PRI CEFRF PRI CEBEF
5.00 4. 26 27.97 172.01
6. 00 5.12 33.57 206. 42

40. 00 34.12 223.78 1376. 20

10. 00 8.53 55. 95 344. 06

Information Builders

Processing Currency Data

Note: You cannot use the derived euro value PRICEEUR in a conversion from USD to
BEF. PRICEEUR has two decimal places (P17.2), not three, as the triangul ation rules
require. Therefore, PRICEEUR yields the following inaccurate result (see PRICEBEF
above) and is not valid as the intermediate value in a currency conversion that requires
triangulation:

COWPUTE PRI CENEW P17. 2 CURR BEF = BEF(PRI CEEUR, ACTUAL)
PRI CENEW

1376. 40
344.10

Developing Applications 8-15

CHAPTER 9

Designing Windows With Window Painter

Topics:

Window Files and Windows

ntegrating Windows and the |

FOCEXEC
utorial: A Menu-Driven Application

Window Painter Screens|

[rransferring Window Files|

Developing Applications

Thistopic describes how to create FOCUS menus and windows

that work with FOCEXECs.

9-1

Designing Windows With Window Painter

Introduction

9-2

FOCUS Window Painter is atool that helps you design and create your own menus and
screens for attractive and easy-to-use applications.

Many window types and features are available. Y ou can implement horizontal menus and
multi-input windows as part of your FOCUS application. Horizontal menus can also have
pulldown menus associated with each menu item.

Y ou can perform a string search in an active window by entering any pattern followed by
ablank and then pressing Enter. Within the pattern:

e Anasterisk (*) isamultiple character wildcard.
» A question mark (?) isasingle character wildcard.
* Anequa sign (=) repeatsthe last string.

FOCUS tries to locate the line matching the pattern starting from the line following the
current line. The search concludes at the line preceding the current line. If no match is
found, a beep sounds and the cursor remains at the current position.

The windows you can design with FOCUS Window Painter ook just like the menus and
screens you see in the FOCUS Talk Technologies, such as TableTalk and PlotTalk, but
you can customize them to fit your application. Y ou can design user-friendly menus and
can display convenient and eye-catching instructions onscreen.

FOCUS Window Painter itself guides you step by step, using windows like those you
will be creating.

On the windows you create, you can prompt users to:

* Select menu items from alist.

* Enter data.

e Select from automatically generated lists of available files and field names.
* Register achoice by pressing afunction key.

You can aso simply display explanations and instructions.

Window Painter is flexible enough to design the many different types of windows you
might need for any application you can write with FOCUS.

Y ou can a so upload window files from FOCUS running in one operating environment,
such as PC/FOCUS, and edit them using Window Painter for use on another operating
environment such asMVS or CMS.

Information Builders

Introduction

How Do Window Applications Work?

Window Painter stores the windows you design in window files. Window fileswork in
conjunction with FOCEXEC procedures that use Dialogue Manager.

There are two major partsin any window application, each of which isastep for the
developer:

e Thewindows, created with Window Painter, which users will see.
» The Dialogue Manager FOCEXEC.

Y ou can invoke Window Painter to create and edit windows by typing
W NDOW [PAI NT]

at the FOCUS prompt, and pressing Enter.

Y ou can invoke the Window facility in your FOCEXEC by including the Dialogue
Manager command -WINDOW in the FOCEXEC. The -WINDOW command provides
the name of the window file, and the name of the individual window that should be
displayed first. When the -WINDOW command is executed by Dialogue Manager,
control in the FOCEXEC passes to the Window facility.

The user is moved through the window file by goto values. A goto valuetellsthe
Window facility which window to display next.

Y ou specify goto values when creating the windows with Window Painter. When your
window is amenu with several items, you may assign a different goto value for each
menu item, so that the next window depends on the user’ s selection.

When you create the windows, you also specify return values. As with goto values, you
may assign a different return value to each item on a menu. Return values are collected as
the user moves through the windows, and are substituted for “amper variables’ which

can be used later in the window file or in the FOCEXEC when control passes back.
(Amper variables are Dialogue Manager variables of the format & variablename.)

When the selected value isinserted in the FOCEXEC, you may test it with a Dialogue
Manager IF... THEN command and branch accordingly to alabel in the FOCEXEC. In
thisway, you move the user through a series of windows, collecting return values for
amper variables, using only one command in your FOCEXEC.

Y ou can use windows to collect amper variable valuesin place of any other method of
prompting available through Dial ogue Manager.

For a complete discussion of the Dialogue Manager facility, see Chapter 4, Managing
Applications With Dialogue Manager. For details of integrating a FOCEXEC with the
Window facility using return and goto values see | ntegrating Windows and the |

OCEXEC on page 9-21.

Developing Applications 9-3

Designing Windows With Window Painter

Window Files and Windows

Windows—that is, menus and screens—are stored in window files. Windows are
included in a specified window file as you create and save them during a Window Painter
session.

* InCMS, window files havefile type FMU, and are created and updated on the A
disk automatically by Window Painter.

e InMVS, window files are contained in a partitioned data set (PDS) allocated to
ddname FMU. Before any window files can be created, a PDS must be created and
ddname FMU must be alocated to it.

Note, however, that creating a PDS is not necessary if you are creating window files
to be used only in the current FOCUS session: Window Painter will temporarily
allocate the PDS. For afull description of allocation requirements, see the
appropriate Guide to Operations topic in the FOCUS Overview and Operating
Environments manual .

A window file can contain a maximum of 384 windows, and a number of windows may
be displayed on the screen at once. All the windows in a single application may be stored
together in one window file, or you may create separate window files for different parts
of the application such as Help Windows.

Y ou can make an application more attractive by presenting menusin windows containing
titles and other design elements, and can make an application easier to use by displaying
function key definitions or other useful information.

9-4 Information Builders

Window Files and Windows

Types of Windows You Can Create
Window Painter creates 10 different types of windows, each with its own special uses:
* Vertica menus
* Horizontal menus
e Textinput windows
* Text display windows
* Filenameswindows
* Field names windows
* File contents windows
* Return value display windows
+ Execution windows
e Multi-input windows

These windows are described in the following topics.

Vertical Menus

Thisisavertical menu:

idelect a report and press ENTER:

fAiccounts Payable
ficcounts Receivable
Salary Information

i
i
i
i Create a Mew Report

i e

A menu isawindow that lets users select an option from alist. These options are called
menu items. A vertical menu lists its menu items one below the other. A user can select
an item by moving the cursor down the list with the arrow keys and pressing Enter when
the cursor is on the line of the desired item. A user can select more than one item if the
window includes the Multi-Select option, which is part of the Window Options Menu.
Help information can be specified for each item in the menu by using the menu-item help
feature of help windows. For additional information on Multi-Select and Help windows
see Window Options Menulon page 9-61.

Developing Applications 9-5

Designing Windows With Window Painter

9-6

Horizontal Menus

Thisisahorizontal menu:

+ == 4

i Reporting fAd hoc Maintenance Quit

A horizontal menu displays its menu items on aline, from left to right. Y ou select an
item by using PF11 or the Tab key to move right and PF10 or Shift+Tab to move left
across the line, and pressing Enter when the cursor is at the desired item. Y ou can also
select an item by employing the search techniques available for FOCUS windows.
(Search techniques are not available with pulldown windows).

If you use PF11 at the last item on the menu, the cursor moves to the first item on the
menu. If you use PF10 at the first item on the menu, the cursor movesto the last item on
the menu, unless there is another screen to scroll to.

An application can display an associated pulldown menu for an item on a horizontal
menu when the cursor is on that item. Choose the pulldown option from the Window
Options menu as discussed in Creating Windows lon page 9-14. An option to display
descriptive text above or below the horizontal menu is also available from the Window
Options menu.

Y ou can assign any return value to each item on the menu. When you select a menu item,
the corresponding return value is collected.

In ahorizontal or vertical menu, you can assign a goto value to each menu item.

Text Input Windows

Thisisatext input window:

iEnter an Invoice Mumber:

e

Amper variables can be used in a Windows application. A text input window prompts the
user to supply information needed in a FOCEXEC. It is also possible to display an
existing value to be edited. Each text input window accepts one line of input up to 76
characterslong. Y ou assign the length and format of the field when you create the
window. Additional information about creating a text input window is found in

Creation Menulon page 9-57.

Information Builders

Window Files and Windows

Text Display Windows
Thisisatext display window:

iInstructions for printing:

Press ALT-? if you wish
to generate an OFFLINE
report.

Press ALT-8 if you wish
to generate an ONLINE
report.

omm omm mm mm e e e e e ==

A text display window lets you present information such as instructions or messages. No
selections can be made from a text display window, and no data can be entered init.

File Names Windows

Thisis afile names window:

id3elect the report you wish to generate and presz ENTER:
+(MORE)
i SALARY FOCEXEC B1
i ACCTS FOCEXEC Bl
i BILLS FOCEXEC Bl
1
+

BUDGET FOCEXEC Bl
(MORE)

R

A file names window presents a list of names of up to 409 files (in CMS) or 1023 PDS
members (in MV S). The user can select one of these names by moving the cursor and
pressing Enter when the cursor is on the line of the desired file name. Y ou can specify
selection criteria for the displayed file names when the window is created. A user can
select more than one file if the window includes the Multi-Select option, which is
available on the Window Options Menu.

Developing Applications 9-7

Designing Windows With Window Painter

9-8

Note that the maximum number of file (or member) names which can be displayed
decreases as the width of the window increases. Narrower windows can display a greater
number of names.

Field Names Windows

Thisis afield names window:

iSelect the field you wish to sort on and press ENTER:

i EMP_ID

i LAST_NAME
i FIRST_NAME
i HIRE_DATE
i DEPARTHENT
i CURR_SAL

+(MORE)

i T

A field names window presents alist of all field names from a Master File; the user can
select one by moving the cursor and pressing Enter when the cursor is on the line of the
desired field name. A user can select more than one field if the window includes the
Multi-Select option, which is available on the Window Options Menu.

Y ou can use afield names window as the next step after afile names window. That way,
you can present a selection of filesfirst, followed by the fields in a selected file.

The field names will be qualified when duplicates exist. Y ou can use PF10 and PF11 to
scroll left and right if afield name exceeds the maximum number of characters allowed
on alinein adatafield window.

Use PF6 as athree-way toggle to sort the fields in one of the following ways:
1. Display field namesin the order in which they appear in the Master File.
2. Display field namesin alphabetical order.

3. Display the fully qualified field namesin the order in which they appear in the
Master File.

Information Builders

Window Files and Windows

File Contents Windows

Thisis afile contents window:

+ +
iSelect the record you want to display and press ENTER:|
+ +
i STAMFORD 3 14B i
i NEY YORK u 142 i
i UNIONDALE R ¢7F i
i U ki i

+

NEUWARK

The file contents window displays the contents of afile. There isno limit on the size of a
file contents window. The user can select aline of contents by moving the cursor to it
and pressing Enter. Each line can be up to 77 characterslong. A user can select more
than one line if the window includes the Multi-Select option, which is described as part
of the Window Options Menu in Window Options Menulon page 9-61.

e InCMS, the contents of any file (except as noted below) can be displayed. Y ou will
be prompted for the file name and file type.

* InMVS, the contents of any member of a PDS (except as noted below) can be
displayed. Sequential files can also be displayed in TSO. Y ou will be prompted for a
file name (the ddname) and a file type (the member name). This information should
be entered as “member name ddname.”

Note: You cannot display afile with unprintable charactersin afile contents window.
Thisincludes files such as FOCUSfiles, HOLD files, SAVB files, FOCCOMP files, and
encrypted files.

Return Value Display Windows

Thisisareturn value display window:

iThis is a sample Return Value Display window.

i TABLE FILE EMFLOYEE
i PRINT ENP_ID FIRST_NAME LAST_NAME
i END

 me omm omm o m= R

Developing Applications 9-9

Designing Windows With Window Painter

9-10

The return value display window displays amper variables that have been collected from
other windows. No selections can be made from a return value display window, and no
data can be entered into it.

Return value display windows are very useful for constructing a command (or any string
of words or terms) by working through a series of windows. An example of this type of
application is seen when you construct a TABLE request using TableTalk.

Each line of the return value display window is stored in avariable called
& windownamexx, where windowname is the name of the window and xx isaline
number.

Unless you use the Line-break option to place return values on separate lines, al
collected return values are placed on the same line until the end of the line is reached.
The length of the line is determined by the size of the window created. A description of
the Line-break option on the Window Options Menu can be found in \indow Options |

on page 9-61.

Only one return value display window may be displayed at atime on the screen. It will
collect avalue from any active window (that is, awindow from which a selection is
being made or to which text is being entered, or an active text display window) if it ison
that window’ s display list. A description of the Display lists option on the Window
Options Menu can be found in Window Options Menulon page 9-61.

Y ou can clear the collected values from a return value display window by including it on
the hide list of awindow that is being used. A description of the Hide lists option on the
Window Options Menu can be found in Window Options Menuon page 9-61.

For a Multi-Select window, the return value display window gives the number of
selections, not the values selected. The values can be retrieved by using the -WINDOW
command with the GETHOLD option.

Information Builders

Window Files and Windows

Execution Windows

Thisis an execution window:

- This iz a sample Execution window.
TABLE FILE EMPLOYEE

PRINT EMP_ID BY LAST_NAME

END

—RUN

I

Wind: EXECWIND Typ: Execution PF1=Help Z=Menu 4=5ize 9=Move 10=Del 11=Add

The execution window contains FOCUS commands such as Dialogue Manager
commands, and TABLE requests.

Y ou can create an execution window by choosing its option on the Window Creation
menu.

When thiswindow isfirst displayed, it has awidth of 77 characters, and no heading. Y ou
can place FOCUS commands within it. Note that the commands in an execution window
appear just as you type them; commands are not automatically converted to uppercase.

The Window Painter Main Menu contains an option enabling you to run awindow in
order to see any return values collected. If you were to run (not execute) the execution
window from the Window Painter Main Menu, you would see the execution window
contents, then any windows called, and finally any return values collected by running the
windows.

Note the following rules when using execution windows:

* When you GOTO an execution window, the contents of the window are executed. In
all cases, execution begins at the top of the window.

« An execution window is not displayed when executed, although the commands it
contains may generate a display.

* An execution window can use an amper variable as a goto value.

« An execution window clears the screen and the Return Value display window.

Developing Applications 9-11

Designing Windows With Window Painter

+ Execution windows have no return values.

» Execution windows can contain up to 22 lines.

» Execution windows can use local variables.

» Goto valuesfor execution windows should be assigned at line 1.

» Windows called from within execution windows preempt window goto values. For
example, a-WINDOW command issued from within an execution window preempts
an assigned goto value.

* The FOCUS commands within an execution window follow normal Dialogue
Manager execution (that is, FOCUS commands are stacked, Dialogue Manager
commands are executed immediately). Any windows called from the execution
window will follow the logic determined by the windows themselves. This will
substantially affect the application’ s transfer of control.

« Use-RUN for immediate execution; otherwise requests will be performed after
leaving the window application.

Normally, FOCUS returns to the window designated by the assigned goto value after the
contents of the execution window have been executed. However, when ajump is made to
awindow from inside an execution window, the commands in the execution window
following the jJump are skipped (along with any attached gotos). This differs from
initiating a window from inside Dialogue Manager, which when finished returns you to
the command following the GOTO.

Multi-Input Windows

Thisisamulti-input window:

Phone Number: - -

+ +
i i
i Enter the following persommel information: i
1 1
i Name : i
i i
i Address: i
i City: . i
i Zip Code - i
i i
i i
i i
i i
+ +

Department :

9-12 Information Builders

Window Files and Windows

A multi-input window prompts you for information that will be used in the application. A
multi-input window may include up to 50 input fields, each of which can be up to 76
characterslong. Y ou assign the length, name, and format of the field when you create the
window.

Use the Tab key to move the cursor between the fields on a multi-input window.

Y ou can supply help information for each field in amulti-input window by using the
Help window option. For information on Help windows, seeWindow Options Menu jon
page 9-61.

For a multi-input window, the return value is the name of the input field occupied by the
cursor when you pressed Enter or afunction key. The name that you supply for each
input field is assigned to an amper variable with the same name as the field (each input
field has a unique name). The variable & WINDOWYVALUE contains the value of the
input field occupied by the cursor when you pressed Enter or a function key.

Use a unique name for each field on a multi-input window. To display the field names
specified, use the Input Fields option on the Window Options menu.

Developing Applications 9-13

Designing Windows With Window Painter

Creating Windows

9-14

The process of creating windows begins with choosing the type of window you want to
create from the Window Creation menu. Each type of window requires dightly different

instructions. The tutorial in [Tutorial: A Menu-Driven Application

on page 9-29 describes

how to create and implement text display window, vertical menu,

and file names

windows. This topic describes how to create horizontal menus (with or without

associated pulldown menus) and multi-input windows.

Creating a Horizontal Menu

To create a horizontal menu, begin by placing the cursor at the Menu (horizontal) option

on the Window Creation menu:

Use PF1 for help

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z to undo a selection

=== - 4

iSelect the window type:

iHenu (vertical)
iMenu C(horizontal)
iText input

iText display

iFile names

iField names

iFile contents
iRBeturn value display
iExecution window
iMulti-Input window

F T T

You will be prompted to enter a name and brief description for the window, after which

you will reach the creation screen. On this screen:

1. Movethe cursor to the location in which you want the top left corner of the menu to

be displayed. Press Enter.

2. Next, use the arrow keysto move the cursor down (enough spacesto leave aline for
each item you want to display as a menu choice) and to the right (enough spacesto
just fit the longest menu item). Press PF4. Y ou will see two windows: oneisfor
entering information and the other is the corresponding horizontal menu.

3. Enter the menu items in the window containing the cursor. Pr

ess the Enter key after

each item; the item automatically appears on the horizontal menu.

Information Builders

Window Files and Windows

The following is an example of a completed creation screen:

i Vertical Inputs Lists Execution Misc End

-

i Vertical
i Imputs

i Lists

i Execution
i Misc

i End

Wind: HORO Typ: Menu (horz) PFl=Help Z=Menu 4=Size 9=Move 10=Del 11-=ndd

Once you have entered the items on your menu, there are several options you can select
for each item. Move the cursor to any item and press PF2 to display the Window Options
menu:

iExit this mem
iGoto value

iReturn value
iFOCEXEC namne

iHead ing
iDescription

iShow a window
ilnshow a window
iDisplay list

iHide list

i Popup (0ff)
iHelp window

iLine break

iMulti =select (Off)
iQuit PF3
iMenu text

iText line (x+1
iPulldouwn (Off)
iConceal option
iSwitch window

C Maintenance Quit

-

S

Developing Applications 9-15

Designing Windows With Window Painter

Position the cursor on any option you want to select and press Enter.

Two features available for horizontal menus are Menu text and Text line. Menu text isa
line of text displayed when the cursor is on amenu item. The line on which thetext is
displayed is called the text line. Y ou can position the text line one or two lines either
above or below the horizontal menu.

The following exampleillustrates Menu text and Text line. When the cursor is positioned
on Vertical in the example below, the following is displayed:

UVERTICAL MENU TESTS

i Vertical Inputs Lists Execution Misc End

=

In this example, the Menu text VERTICAL MENU TESTS is positioned at Text line x-1,
one line above the menu. To place the Text line two lines above the Menu text, change
x-1to x-2. For Text lines below the menu text, use x+1 or x+2.

Y ou can aso select the Pulldown option for a horizontal menu. With this option, you can
assign a pulldown menu to be displayed for a horizontal menu item whenever the cursor
is positioned on that item.

Pulldown Menus

When you set the Pulldown option ON, you can display an associated pulldown menu for
an item in a horizontal menu by positioning the cursor on that item. The default is OFF.
To change the setting to ON, position the cursor on the Pulldown option and press Enter.
Note that when Pulldown is set ON, Menu Text is automatically set OFF.

The associated pulldown menu must be a vertical menu. When creating the horizontal
menu, you must assign a Goto value to point to the pulldown menu. To do so, position
the cursor on the goto value, press Enter, and enter the name of the pulldown menu you
want to display in the space provided:

+
i Reporting + i
t iEnter name of next window to go to.i +
iJust “Enter’ for exit. i
1 + 1 + +
Reporting rpts i
i Ad hoc i +
i Maintenance i
i Quit i
+

Y ou must create the vertical menu, rpts, as you would any other vertical menu. See
[Tutorial: A Menu-Driven Applicationon page 9-29 for examples.

9-16 Information Builders

Window Files and Windows

The following example shows a horizontal menu with the Reporting pulldown menu
displayed:

i Reporting Ad hoc Maintenance Quit

 m—

Reportl
Report2
Report3d
Report4
Reports
Reportb
Report?

i

The following screen shows the same menu with the Ad hoc pulldown menu displayed:

i Reporting Ad hoc Maintenance Quit

==

i Ad Hoc Reporting
i Ad Hoc Graphs
i Ad Hoc Maintenance

[

The following screen shows the same menu with the Maintenance pulldown menu

displayed:
+

i Reporting fid hoc Maintenance Quit i

+ +
+ +
i Add new information i
i Update existing info i
i Review Entries i
+ +

Note: To move from item to item in a horizontal menu, use PF10 and PF11.

Developing Applications 9-17

Designing Windows With Window Painter

9-18

Creating a Multi-Input Window

To create a multi-input window, begin by placing the cursor at the Multi-Input window
option on the Window Creation menu and press Enter. Y ou will then be prompted for a
name, description and heading. Place the window on the screen and size it as desired.

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z to undo a selection

Use PF1 for help

iselect the window type:

iMlenu (vertical)
iMenu Chorizontal)
iText input

iText display

iFile names

iField names

iFile contents
iReturn value display
iExecution window
iMulti-Input window

T

 omm omm m=

To place entries on the window:

1.

2
3
4
5

Type the text for display.

Press PF6 at the point where the field begins.
Space along for the length of the field.

Press PF6 again to signify the end of the input area.

Enter name and information for the field.

Information Builders

Window Files and Windows

The following example shows a multi-input window, with Name: entered as display text.

FOCUS WINDOW PAINTER

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF12 to undo a selection
Use PF1 for help

e 1

iEnter a description:

iSample file for Window Painter tutorial.

$ mm o m=

Thisiswhat the developer’s screen looks like after several fields have been included in
the multi-input window:

iEnter the following persommel information:

Name @ 0000000000000

Address: XXXXXXXMXXHXXKXXXKXK
KNANAAAKE , XX

Zip Code)00 — XXXX

Phone Number: XXX — XXX — XXxXX

Department @ MO NNXK

Rl

Note: Text fields may be supplied without headings or instructions. For example, see the
city and state portion of the addressline.

Developing Applications 9-19

Designing Windows With Window Painter

9-20

Thisis how the window appears when run as part of the application:

Enter the following persommel information:

Name :

Address:

Z2ip Code -
Phone Number:

i
+
i
i
i
i
i
i
i
i
i Department:
i

T s

The following screen shows what is returned from the window when it isrun inside the
Window Painter:

iVariable Value

i&WINDOWNAME MULTI
i &W INDOWUALUE
1&MULTI NAME
i &NAME

i&STREET

i&CITY

1&STATE

i1&21P1

1&21P4

i &AREA

i EXCHANGE

i &HUNMEB

i &DEPARTMENT

i &PFKEY ENTR

i&ARETCODE

 mE mm mm mE mE mE mE mE mm mE mE mm mm mE m= o me

Note: To move from field to field in a multi-input window, use the Tab key.

Information Builders

Integrating Windows and the FOCEXEC

Integrating Windows and the FOCEXEC

The windows you create with Window Painter are designed for you to use within an
application FOCEXEC. This topic discusses how to integrate your windows into your
FOCEXEC.

Syntax The -WINDOW Command

To invoke the Window facility, insert the following Dialogue Manager command in your
FOCEXEC

- W NDOW wi ndowf i | e wi ndownane [PFKEY| NOPFKEY] [GETHOLD] [BLANK| NOBLANK] [CLEAR| NOCLEAR]
where:

wi ndowfi | e
Identifies the file in which the windows are stored. In CMS, thisisafile name. The
file must have afile type of FMU or TRF. In MV S, thisis amember name. The
member must belong to a PDS allocated to ddname FMU.

wi ndownane
Optional. Identifies which window in the file to display first. Can be set in Window
Painter or in first window displayed.

PFKEY/ NOPFKEY
Enables (prevents) testing for function key values during window execution.

GETHOLD
Retrieves stored amper variables collected from a Multi-Select window. Does not
cause window to be displayed.

BLANK
Clearsall previously set amper variable values when the -WINDOW command is
encountered. Thisis the default setting.

NOBLANK
No amper variable values are cleared when the -WINDOW command is
encountered.

CLEAR
When FOCUS is being used with the Terminal Operator Environment (described in
the Overview and Operating Environments manual), the -WINDOW command
clears the screen before displaying the first window. The Terminal Operator
Environment screen will be redisplayed when control is transferred from the
Window facility back to the FOCEXEC. Thisisthe default setting.

Developing Applications 9-21

Designing Windows With Window Painter

NOCLEAR
When FOCUS is being used with the Terminal Operator Environment, the window
file'swindows are displayed directly over the Terminal Operator Environment
screens.

Note: NOBLANK is particularly important in applications that use more than one
-WINDOW command.

Transferring Control in Window Applications

Example

9-22

When the -WINDOW command is encountered, control in the FOCEXEC is transferred
to the Window facility. Control remains with the Window facility until one of the
following occurs:

e The user makes a selection for which you have assigned no goto value.

 ThePFKEY optionisin effect and the user presses a function key (the function key
must be set to RETURN, HX, CANCEL, or END, as described in the [Testing]
Function Key Valuesjon page 9-26.)

Once control passes back to the FOCEXEC, control only returns to the Window facility
if another WINDOW command is encountered.

Window File in an Application FOCEXEC

This example shows an application FOCEXEC and awindow file named REPORT
which contains three windows: R1, R2, and R3.

The numbers at the | eft of the example refer to the flow of execution (that is, the order in
which the commands and windows are executed).

- START
- W NDOW REPORT Rl PFKEY

-*Control is transferred fromthe above command
-*to window R1 in wi ndow file REPORT.

_*

-1 F &PFKEY EQ PF05 GOTO LABEL1,;

_*

-*Control returns to the above command from
-*wi ndow R2 in w ndow file REPORT.

- LABEL1

- W NDOW REPORT R3

_*

-*Control is transferred fromthe above command
-*to wi ndow R3 in wi ndow file REPORT.
_*

-lF &R3 EQ EXIT GOTO EXI T,
_*

-*Control returns to the above command from

Information Builders

Integrating Windows and the FOCEXEC

-*WNDOWR3 in wi ndow fil e REPORT.

CEXIT
Note:

e At Step 3, the user selects an option from Window R1. Thisoption’s goto valueis
R2. Control istransferred to Window R2.

* Theuser presses afunction key in Window R2. Control is transferred to the
FOCEXEC, to the command following the -WINDOW command (Step 4).

» At Step 6, the user selects the option to exit; no goto value was set for that option.
Control istransferred to the FOCEXEC, to the command following the -WINDOW
command
(Step 7).

The flow of control has certain implications for the design of your window applications:

* Any timeyou wish to pass control back to the FOCEXEC, the window or menu
option must have no goto value, or else must prompt the user to press a function key
(as described in[Testing Function Key Values|on page 9-26).

e At some point in the window session, control should return to the FOCEXEC so that
the accumulated return values can be substituted for amper variables, and the
variables then used in the FOCEXEC.

* Any timeyou wish to pass control from the FOCEXEC to the Window facility you
must insert the -WINDOW command in the FOCEXEC.

* Notethat it is not necessary to create a new window file for each -WINDOW
command; you can ssimply enter the same file again at whatever window you wish.

» If youwishtotest for afunction key valuein the middle of a series of windows,
remember that pressing the function key automatically returns control to the
FOCEXEC; an -IF test command should follow the -WINDOW command, and a
second -WINDOW command should be placed after the -1F command to transfer
control back to the window file.

e |f youwant to clear an existing set of variable values, you may do so by returning
control to the FOCEXEC and executing another -WINDOW command with the
BLANK option in effect.

To back up a step during window execution, the user may press the PF12 or PF24 keys.
Thiswill not cause control to pass to the FOCEXEC. However, you can force Dialogue
Manager to return control to a FOCEXEC by a PF key setting as described in
Function Key Valuesjon page 9-26.

Developing Applications 9-23

Designing Windows With Window Painter

Return Values

9-24

When the user responds to your window prompt by entering text, selecting an item from
amenu, or pressing afunction key, this response is the return value that fillsin an amper
variable in your FOCEXEC.

There are two ways in which amper variables are most commonly used in FOCEXECs:

e Tocollect valuesto plug into a FOCUS procedure such asa TABLE or GRAPH
request so it can run.

» Totest thevaluereturned in avariable, and branch accordingly to a different part of
the FOCEXEC or to another FOCEXEC.

The return value collected can be almost anything you desire: a character string, a
number, the name of afile, a procedure name, or part of a FOCUS command.

A return value amper variable in the FOCEXEC has the same name as the window in
which it is collected; that is:

&wi ndownane

For example, the return value collected by the window MAIN supplies avalue for the
variable & MAIN.

* Invertical menu and horizontal menu windows, you assign any return value you
wish to each item on the menu. If the user selects that option, that return valueis
collected.

e Intext input windows, the return value is the text that the user types.

* Intext display windows, you can assign one return value to the entire window.
Unlike other return values, atext display window return valueis collected as soon as
control passes to the window, without the user needing to select anything.

e Return value display windows display return values collected from other types of
windows. These return values can be displayed one per line, or several together on a
single line. Although this type of window does not itself have areturn value, each
line has a corresponding amper variable (& windownamexx, where xx isthe line
number).

* For amulti-input window, the return value is the name of the input field on which
the cursor is positioned when you press Enter or a PF key.

e Inwindows with the Multi-Select option, the return value is the number of items
selected.

* Infile names, field names, and file contents windows, the return value s,
respectively, the file name, field name, or line of file contents that the user selects
from the display.

Information Builders

Integrating Windows and the FOCEXEC

Example

Goto Values

Return Value in a Menu-Driven Application

For example, assume that you have written a menu-driven application that enables a user
to report from any one of alist of files. You have created a series of windows for this
application, one of which is afile names window named FILE designed to collect a
return value for & FILE. The window displays alist of al the user’ s files that meet certain
file-identification criteria you specified when you created the window.

Y our FOCEXEC contains these lines:

- START
- W NDOW EXAMPLE FI LE

TABLE FI LE &FILE

When the user moves the cursor to SALES and presses ENTER, SALES s collected to
be substituted for & FILE in the FOCEXEC:

TABLE FI LE SALES

When you are creating your windows, you will also assign goto valuestelling the
Window facility which window to display next. These values allow you to move the user
through a series of windows, collecting return values for amper variables, without adding
lines to your FOCEXEC.

* Invertical menu and horizontal menu windows, you assign a goto value for each
menu item.

e Inall other windows, you assign a single goto value.

* You can use an amper variable asa GOTO value.

As described in [Transferring Control in Window Applicationsjon page 9-22, if you assign
no goto value to a menu option or window, control passes back to the FOCEXEC when
the user selects that option or presses Enter at that window.

It isimportant not to confuse these goto values with the Dialogue Manager -GOTO
command. The goto value points your application to a new window in the window file;
the -GOTO command transfers control to alabel in your FOCEXEC.

Returning From a Window to Its Caller

Y ou can return from awindow to its caller viathe <ESCAPE> option. If you enter this
string as the goto value of awindow, control will return to the previous window upon
completion of the current window (enter the right and left carets as part of the goto
value).

Developing Applications 9-25

Designing Windows With Window Painter

Window System Variables

We have already discussed return values: these are specific to each window. Two other
Window facility variables, & WINDOWNAME and & WINDOWVALUE, are specific to
the -WINDOW session (not to each window) and receive their values when the Window
facility passes control from awindow file back to the FOCEXEC.

&WINDOWNAME

& WINDOWNAME is an amper variable containing the name of the last window that
was displayed before the Window facility transferred control back to the FOCEXEC.

This variable can be used in many ways. For example, if the goto values/function key
promptsin awindow file allow a user to leave the window file from several different
windows, you can test & WINDOWNAME in the FOCEXEC to determine which
window the user was in last (and, therefore, which path the user navigated through the
window file).

&WINDOWVALUE

&WINDOWVALUE is an amper variable containing the return value from the last
window that was displayed before the Window facility transferred control back to the
FOCEXEC. If the user selected aline for which no return value was set (for example, a
blank line between two menu optionsin a vertical menu window), then

& WINDOWVALUE will contain the line number of the line that was selected.

This variable can be used in many ways. For example, if the goto values/function key
prompts allow a user to leave the window file from several different windows, and you
need to know the return value of the last window the user was in before she or he left the
file by pressing afunction key, you can test & WINDOWVALUE.

Testing Function Key Values

9-26

If you wish to test for function key values, you must specify the PFKEY option on the
-WINDOW command line. When the PFKEY option is set and a user presses afunction
key during window execution, the name of that key is stored in the amper variable

& PFKEY.

For example, if the user presses PF1, the 4-character value of & PFKEY is PFOL. If PF2,
the value is PF02, and so forth. If the user presses Enter, the valueis ENTR. The value of
&PFKEY isreset each time the user presses a function key.

Information Builders

Integrating Windows and the FOCEXEC

Note that if the PFKEY option is specified, the Window facility’ s default PF key actions
are overridden by the general FOCUS PF key settings. This means that when you specify
the PFKEY option, if you still want the standard Window facility PF key actions to be
available to window users (for example, PF1 = HELP, PF3 = UNDO), you must use the
SET command in your application FOCEXEC, followed by a-RUN command, to
explicitly set those actions.

For example, if you specify the PFKEY option but you want to retain all of the Window
facility’ s default PF key actions using the same PF keys, you need to include the
following commands before the -WINDOW command in your application FOCEXEC:

SET PFO1=HELP
SET PFO3=UNDO
SET PF04=TOP

SET PFO5=BOTTOM
SET PFO06=SORT
SET PFO7=BACKWARD
SET PF08=FORWARD
SET PFO9=SELECT
SET PF10=LEFT
SET PF11=RI GHT
SET PF12=UNDO

- RUN

When you specify the PFKEY option, any PF key which you want to test for in the
application FOCEXEC must be set to RETURN. (HX, CANCEL, and END also function
as RETURN within the Window facility, and can be used in place of it.)

For example, if you design your application so that a user can press PF2 to choose an
additional menu option, and therefore you want to test & PFKEY for the value PFO2 in
your application FOCEXEC, then you must include the following SET command before
the -WINDOW command in your application FOCEXEC:

SET PF02=RETURN

The SET PF command is discussed in Chapter 1, Customizing Your Environment, and in
the Maintaining Databases manual.

You can list the current general FOCUS PF key settings by issuing the ? PFKEY
command. The ? PFKEY command is discussed in Chapter 2, Querying Your
Environment.

The variable & PFKEY can be tested just like any other amper variable. Note that the
name of the variable is dways & PFKEY ; it is not linked to awindow name like other
amper variables collected through windows.

Y ou may test the PFKEY variable repeatedly throughout the FOCEXEC. Additional SET
commands are not required.

Developing Applications 9-27

Designing Windows With Window Painter

One of the advantages of using the & PFKEY variableisthat it enables you to collect two
return values from a single menu. Y ou might, for example, create awindow called
FILES, which prompts the user to enter the name of afile, then press PF7 to produce a
graph or PF8 to produce a report. Both the file name as & FILES and the function key
value as & PFKEY would be collected as return values.

It is always important to remember that pressing afunction key will immediately return
control to the FOCEXEC if that key was set to RETURN (or to HX, CANCEL, or END).

Note: If the cursor ison amenu that has a FOCEXEC associated with it, the FOCEXEC
is executed and the GOTO value associated with the menu choice is assumed. The
PFKEY isignored.

In the example above, if the user presses a function key before typing the file name, the
& FILES variable will not be collected. If the key was set to something other than
RETURN, HX, CANCEL, or END, then the action it was set to is invoked, and control
remains within the Window facility.

Executing a Window From the FOCUS Prompt

Syntax

9-28

Y ou can execute a window directly from the FOCUS command prompt.

How to Execute a Window From the FOCUS Prompt

EX 'windowfile FMJ [w ndowname] [PFKEY| NOPFKEY] [BLANK| NOBLANK]
[CLEAR| NOCLEAR]

where;

wi ndowf i | e
Isthe file containing the windows. It must have file type FMU, and appear within
single quotation marks.

wi ndownane
Identifies the first window to be executed. If awindow name is not specified,
FOCUS will execute the default start window, or the first window created.

PFKEY/ NOPFKEY
Tells FOCUS you will (will not) be testing for function key values during execution.

BLANK
Clears previously set amper variables when the window is called. Thisisthe default
setting.

NOBLANK
Retains previously set amper variables.

Information Builders

Tutorial: A Menu-Driven Application

CLEAR
When FOCUS is being used with the Terminal Operator Environment, the screenis
cleared when the EX command is encountered. The Terminal Operator Environment
screen isrestored when the last window in the chain has been executed. Thisisthe
default setting.

NOCLEAR
When FOCUS is being used with the Terminal Operator Environment, the screen is
not cleared when the EX command is encountered, and any windows are displayed
within the Terminal Operator Environment screens.

For example, to execute the window MAIN in the window file REPORT, you could issue
EX ‘REPORT FMU’ MAIN from the FOCUS command prompt, which is equivalent to
issuing -WINDOW REPORT MAIN from Dialogue Manager.

Tutorial: A Menu-Driven Application

Thistutorial describes a menu-driven system that clerical personnel can use to produce
sales reports and graphs at your chain of retail stores. The system must fulfill three major
reguirements:

» Easeof use. Your system must let employees be productive without extensive
training.
* Functionality. The system hasto work properly with only afew steps.

« Appearance. There should be continuity between screens, and a general unity of
design. The reports and graphs produced must be attractive and easy to read.

The application prompts the user to select reporting or creating a graph.

Then, the user may opt to execute an existing FOCUS request or to create anew one. A
user who chooses to execute an existing request will be shown an automatically
generated list of FOCEXECs from which to pick. A user who chooses to create a new
request will be placed in either TableTak or PlotTalk, depending on whether reporting or
creating a graph was chosen in the first step.

While the report or graph is being generated, a corresponding message will be displayed
on the terminal screen. And, after the output is displayed, the user can choose to generate
another report or graph, or else to exit.

Developing Applications 9-29

Designing Windows With Window Painter

9-30

The following figure illustrates the logic of the application FOCEXEC.

- START

- W NDOW SAMPLE NAI N

_*

-*Control is transferred fromthe above comand
-*to wi ndow MAIN in w ndow file SAMPLE.

_*

-IF &VAIN . ..

_*

-*Control returns to the above command
-*fromoption "Exit?" in w ndow NAIN,
-*fromoption "New Request?" in w ndow EXECTYPE,

-*and fromevery selection in w ndow EXECNAME.

_*

- GOTO START

list of report and graph requests
from which the user can select.

-EXIT
Window If option selected is... Then goto:
MAIN Report? window EXECTY PE
Graph? window EXECTY PE
Exit? back to FOCEXEC
EXECTYPE | Existing Request? window EXECNAME
New Reguest? back to FOCEXEC
EXECNAME | Theoptionsin thiswindow area | Control istransferred back to the

FOCEXEC.

Information Builders

Tutorial: A Menu-Driven Application

Creating the Application FOCEXEC

Nooh~w

8.
9.

10.
11.
12.

13.
14.
15.

16.

A FOCEXEC called SAMPLE will drive this application.

Begin by using the TED editor to create the FOCEXEC file SAMPLE. At the FOCUS
prompt, type
TED SAMPLE

and press Enter. (In CMS, TED assigns the file type FOCEXEC unless you specify
another filetype. In MV'S, you must specify ddname as follows:

FOCEXEC (SAMPLE)

Typein the following FOCEXEC. Note that the numbers on the left refer to explanatory
notes. Do not type them in your FOCEXEC file, but read the notes as you go aong. All
commands that begin with a hyphen, such as-WINDOW, are Dialogue Manager
commands, and they must begin in the first column. Dialogue Manager is discussed in
Chapter 4, Managing Applications With Dialogue Manager.

Y ou will notice that this application determines variable values in two ways: there are
variables for which values are collected by windows, and variables which are set within
the FOCEXEC using the -SET command.

- START

- W NDOW SAMPLE NAI N

-IF &VAIN EQ XXI' T GOTO EXI T,

-1F &VAI N EQ RPT GOTO GENERATE;

-1 F &VAIN EQ GRPH GOTO GENERATE;

- GOTO START

_kkkkk kA Ak Ak Ak Ak k kK k &NERATE khkkkkkkkkkkkkkkkkkk*x
- GENERATE

-1 F &EXECTYPE EQ EXI ST GOTO RPTEX ELSE GOTO NEWRPT;
- RPTEX

EX &EXECNAME

- SET &FORVAT=I F &VAI N EQ RPT THEN REPORT
-ELSE | F &VAI N EQ GRPH THEN GRAPH,

- TYPE GENERATI NG &FORVAT

- RUN

- GOTO START

- NEVRPT

- SET &PROCNAME=I F &VAI N EQ RPT THEN TABLETALK
-ELSE | F &VAIN EQ GRPH THEN PLOTTALK;
&PROCNANVE

- RUN

- GOTO START

RS EEEEEEEEEEEEEEEEEES EX' T khkkkkkkhkkkhkhkkkkkkkkkk*x

-EXIT

Developing Applications 9-31

Designing Windows With Window Painter

9-32

10.

11.
12.

13.
14.

The -WINDOW command transfers control to the Window facility. SAMPLE isthe
name of the window file this application will use. (We will createit in this tutorial.)
MAIN isthe window where the procedure will begin.

Control will not return to the next line of the FOCEXEC until awindow is processed
for which no goto value has been assigned, in this case, EXECTY PE or
EXECNAME.

The return value collected for & MAIN—collected from the window MAIN—is
tested. The FOCEXEC branches to alabel depending on itsvalue.

If the return value for & MAIN is RPT or GRPH, the FOCEXEC will branch to
-GENERATE; if XXIT, to -EXIT. Each return value corresponds to a selection on
the menu window MAIN.

Thislabel begins the GENERATE section of the FOCEXEC.

The value collected for & EXECTY PE (from window EXECTY PE) is tested and the
FOCEXEC branches accordingly. Note that this value was collected from the
window EXECTY PE while the Window facility was in control, without a prompt
from Dialogue Manager.

Thislabel beginsthe RPTEX section of the FOCEXEC.

The FOCUS command that will execute an existing report is stacked. The value of
& EXECNAME—the name of the existing report—was collected while the window
filewasin control. The single quotation marks around & EXECNAME tell FOCUS
to treat the value—which may contain more than one word (in CMS, for example, a
file name and a file type)—as part of asingle file identification.

The value of the variable & FORMAT is set according to the return value from the
MAIN window. If the value was RPT, & FORMAT is set to REPORT; if the valueis
GRPH, & FORMAT is set to GRAPH.

A message containing the value of & FORMAT is displayed for the user while the
stacked FOCUS request is executing.

-RUN executes the stacked command(s).

When the request output has been displayed, the FOCEXEC branches back to
-START, where the user can choose to exit or to create another report or graph. All
amper variable values collected in the previous round are cleared when the
-WINDOW command is encountered.

Thislabel begins the section NEWRPT.

This command sets the value of & PROCNAME to TABLETALK if the value of
&MAIN isRPT, to PLOTTALK if the value is GRPH.

Thisline stacks the command TABLETALK or PLOTTALK.

-RUN executes the stacked command.

Information Builders

Tutorial: A Menu-Driven Application

15. This command returnsto -START, asin note 10.
16. This command ends FOCEXEC execution.

Creating the Window File

The -WINDOW command SAMPLE FOCEXEC tells FOCUS to look for awindow file
named SAMPLE and awindow named MAIN. The complete list of windows used in this

application is:
BORDER A text display window used as a background display for the other
windows.
BANNER A text display window that introduces the application.
MAIN A vertical menu from which the user can choose to create a graph or

areport, or exit the application.

EXECTYPE | A vertical menu from which the user chooses to execute an existing
procedure or create a new one.

EXECNAME | A file nameswindow displaying all FOCEXEC files, from which
the user can select one to execute. Thiswindow is seen only if the
user opts to execute an existing report in EXECTY PE.

All these windows will be included in the window file named SAMPLE. Y ou are going
to start by building that window file.

* InCMS, when you use Window Painter to create awindow file, thefileis
automatically created by the system on your A disk.

e InMVS, before you can use Window Painter to create awindow file, a PDS must be
allocated with ddname FMU, LRECL 4096, and RECFM F. BLKSIZE 4096 is
recommended.

Y ou can reach the FOCUS Window Painter Entry Menu by typing
W NDOW [PAI NT]

at the FOCUS prompt, and pressing Enter.

The Entry Menu isthe first screen you see:

i Reporting fid hoc Maintenance Quit

o

i Add new information
i Update existing info
i Review Entries

 mm omm o

Developing Applications 9-33

Designing Windows With Window Painter

Since you are creating a new window file, choose NEW FILE, and press Enter. The next
screen you see prompts you to name the window file.

Since the FOCEXEC will look for awindow file named SAMPLE, type
SAMPLE

and press Enter.

i INSTRUCTIONS : Move cursor to selection and hit ENTER
i Use PF3 or PF1Z to undo a selection
i Use PF1 for help

 omm omm m=

iselect the window type:

iMlenu (vertical)
iMenu Chorizontal)
iText input

iText display

iFile names

iField names

iFile contents
iReturn value display
iExecution window
iMulti-Input window

T

You will see ascreen asking for a description of the window file.

9-34 Information Builders

Tutorial: A Menu-Driven Application

Type
Sanple file for Wndow Painter tutorial

and press Enter.

FOCUS UWINDOW PAINTER

INSTRUCTIONS : Move cursor to selectionm and hit ENTER
Use PF3 or PF1Z to undo a selection
Usze FF1 for help

iEnter a description: i

iSample file for Window Painter tutorial. i

Creating the Text Display Window Named BORDER

Now you are ready to create the first window. The screen that appears on your display is
the Window Painter Main Menu. Select

Create a new w ndow

and press Enter.

FOCUS WINDOW PAINTER

INSTRUCTIDNS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z2 to undo a selection
U=ze PF1 for help

iSelect one of the following:

iCreate a new window

{Edit an existing windouw
iDelete an existing window
iBun the window file

iSwitch window files
iUtilities

{End

iQuit without =aving changes

L e it)

Developing Applications 9-35

Designing Windows With Window Painter

The Window Creation Menu asks what kind of window you want to create.

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z to undo a selection
Use PF1 for help

=== - 4

iSelect the window type:

iHenu (vertical)
iMenu C(horizontal)
iText input

iText display

iFile names

iField names

iFile contents
iRBeturn value display
iExecution window
iMulti-Input window

F T T

The BORDER window is the first window you will create for the application. BORDER
will supply a background border for other windows. It is atext display window, so select

Text displ ay

and press Enter.

Next, you are asked to name the window. Type
BORDER

and press Enter.

File: SAMPLE FOCUS UWINDOU PAINTER

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z to undo a selection
Use PF1 for help

b o mm -

iEnter a name for the window:

i BORDER

o= o m=

9-36 Information Builders

Tutorial: A Menu-Driven Application

The Window Description Screen appears next. This description does not appear when the
window is displayed, but becomes part of the document file that Window Painter creates
describing al windows in thefile. Since the document file is very useful when writing
your FOCEXEC, it isagood ideato enter afunctional description here. To describe this
window, type

Thi s wi ndow borders all ny screens.

and press Enter. The ability to annotate screens in this manner is very useful when
selecting windows to edit.

File: SAMPLE FOCUS WINDOW FPAINTER

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z2 to undo a selection
Use PF1 for help

b mm -

iEnter a window description:

iThis window borders all my screens.

]

The Window Heading Screen comes next. Since you do not want a heading displayed on
thiswindow, simply press Enter to bypassiit.

The Window Design Screen displayed now is nearly blank, with a cursor for you to
position where you want the upper left-hand corner of BORDER to be. L eave the cursor
whereit isand press Enter.

A small box appears around the cursor: this is the window. Y ou will now make the
window larger. Using the arrow keys, move the cursor to the right edge of the screen, on
the line just above the status line: thiswill be the new lower right corner of the window.
Now press PF4 to resize the window. (PF4 functions as the SIZE key in the Window
Design Screen.) The window has been resized so that itslower right corner is where you
positioned the cursor: the window now fills the entire screen.

When resizing awindow, remember that the window’ s lower right corner refersto the
lower right corner of the window border, which is shown as a plus sign (+) on the screen.
It isthis corner that you are moving when you resize the window. On the other hand, the
last row of the window refers to the last row that can contain data or text: thisisthe row
immediately above the bottom border.

Thiswindow’ s border will form the background border for the other windows in this
application.

Developing Applications 9-37

Designing Windows With Window Painter

If you need help using the keyboard while in the Window Design Screen, press PF1 (the
Window Painter Help key) to see the following display:

File: SAMPLE FOCUS UWINDOU PAINTER

Help: Text display and Return value display windows

Use the arrow keys to move the cursor around on the screen.
To enter text for a line, simply type that text in the window,
for text display.

PF01-PF13 : Help.
PFOZ-PF14 : Main options menu.
PFO3-PF15 : Quit the Menu Design Screen.
PF04-FF16 : Resize the window.
If you find that you do not have enough room in the window to
type the text you want, move the cursor to where you want the
new lower-right-hand cormer to be, and press PF04 or PF16.
PFO5-PF1? : 3et a window to go to if the current line is selected.
PFO6-PF18 : Set a return value for the current line.
PFO3-PFZ21 : Move the window.
To move the window, place the cursor where you want the new
upper—left-hand corner to be, and press PFO9 or PFZ1.
PF10-PF2Z : Delete the line that the cursor is om.
PF11-PF23 : Insert a line at the cursor position.

o e o e e e e e me mE mE o e me e e e e e e e

9-38 Information Builders

Tutorial: A Menu-Driven Application

Press Enter to continue.

Now that the window is complete, you should save it. Press PF3.

1Save
iQuit without =zaving
iCont inue

Mind: BORDER Typ: Text display PFl=Help Z=Menmu 4=3ize 9=Move 10=Del 11=Add

Press Enter to select Save. Y ou will be returned to the Main Menu.

Creating the Text Display Window Named BANNER

BANNER is also atext display window, but is smaller than BORDER and contains text
that identifies this application.

From the Window Painter Main Menu, select
Create a new w ndow

and press Enter. Select

Text Displ ay

and press Enter. The name of thiswindow is
BANNER

and itsdescriptioniis:

Banner for application MAIN nmenu.

Enter this name and description just as you did for the BORDER window. When
prompted for a heading, press Enter.

Developing Applications 9-39

Designing Windows With Window Painter

At the Window Design Screen, use the arrow keys to move the cursor two spacesto the
right, and press Enter. Now position the cursor 64 more spaces to the right and two rows
down, and press PF4 to resize the window.

Y ou will now enter text to be displayed in the window. Reposition the cursor on the first
line within the window, ten spaces to the right of the window’ s left border, and type:

The M| knmore Farnms Weekly Reporting System

Type aline of asterisks (*) all the way across the window’ s second line. (Begin at the
second column within the window, because the first column of every window is
protected.)

You will now center the banner in the width of the screen. Estimate where the upper left
corner of the window would be if the window were centered. Position the cursor there,
and then press PF9. The window moves to its new location. Repeat the processif you
need to center it more precisely.

The window should look like this:

The Milkmore Farm=s Weekly Reporting System

-

Mind: BANNER Typ: Text display PFl=Help Z=Menu 4=35ize 9=Move 10=Del 11=Add

Press PF3 and save the window.

9-40 Information Builders

Tutorial: A Menu-Driven Application

Creating the Vertical Menu Window Named MAIN

Now you will create the MAIN vertical menu window, which collects the amper variable
&MAIN. Select

Create a new w ndow
and press Enter.

BORDER and BANNER are text display windows, from which no options may be
selected. Since MAIN, however, is amenu from which a selection must be made, choose

Menu (vertical)

and press Enter. Name the window:

MAI N

On the Description screen, type

User can report, graph, or exit.

and press Enter.

When prompted for a heading, type ten spaces, then
Woul d you like to:

and press Enter.

On the Window Design Screen, move the cursor five rows from the top and 20 columns
from the left, and press Enter. The window will be created wide enough to contain the
heading. Now position the cursor six rows below the window’ s bottom edge, and ten
columnsto the right of its right edge. Press PF4 and the window will be resized.

Developing Applications 9-41

Designing Windows With Window Painter

Type the following menu options as they appear below:

i Would you like to:

Create a report?
Create a graph?

Exit?

b mm me mm m me me o me

Mind: MAIN Type: Menu (vert) PFi1=Help 2Z=Menu 4=5ize 9=Move 10=Del 11=Add

Now you will assign goto and return values for each menu option. To assign either value
to an option, the cursor must first be on that option.

9-42 Information Builders

Tutorial: A Menu-Driven Application

Move your cursor back to

Create a report?

and press PF2 to display the pop-up Window Options Menu.

iExit this menu
iGoto value PF5
iReturn value FPFb
iFOCEXEC name

iHead ing
iDescription

iShow a window
ilnshow a window
iDisplay list

iHide list

iPopup (Off)
iHelp window

iLine break

iMulti select (Off)
iQuit PF3
iACE security rule
iSwitch window

i Would you like to:

Create a report?

i
i
i Create a graph?
i
i Exit?

i

i Y

e ——

Wind: MAIN Typ: Menu C(vert) PF1=Help 2=Menu 4=5ize 9=Move 10=Del 11=ndd

Assigning a goto value tells the Window facility to display another window when this
item is selected during execution.

In the next window of this application, the user will be prompted to either execute an
existing report or create a new one. The window that displays that prompt will be called
EXECTY PE, so the goto value of the first two menu options will be EXECTY PE.

Move the cursor to

Got o val ue

and press Enter.

Developing Applications 9-43

Designing Windows With Window Painter

9-44

In the space provided, type

EXECTYPE

and press Enter.

iEnter name of next wi

ndow to go to.

iJust 'Enter’ for exit.

+
]
1
]
1

you like to:

{EXECTYPE i

+

Create a report?

Create a graph?

Exit?

i Y

Wind: MAIN Typ: Menu (vert)

PF1=Help Z=Menu 4=Size 9=Move 10=Del 11=ndd

The return value collected by this window—& MAIN—will be tested in the FOCEXEC:

- START

- W NDOW SAMPLE NAI N
-IF &VAIN EQ XXI' T
-IF &VAIN EQ RPT
-1 F &VAI N EQ GRPH

Now move the cursor to

Return val ue

and press Enter.

GOTCEXI T
GOTO GENERATE;
GOTO GENERATE;

Information Builders

Tutorial: A Menu-Driven Application

Type the value
RPT

as shown, and press Enter.

+ +
iEnter return value for the line:i 1d you like to: i
+ +
iRPT i reate a report? i
i
i Create a graph? i
i i
i Exit? i
i i
+
Wind: MAIN Typ: Menu C(vert) PF1l=Help Z=Menu 4=5ize 9=Move 10=Del 11=-Add

Exit the Window Options Menu by moving the cursor to

Exit this nenu

and pressing Enter.

Now you will set the valuesfor:

Create a graph?

Move the cursor to the second menu item, and press PF2.
Repeat the steps you just performed, assigning the goto value
EXECTYPE

and the return value:
GRPH

L eave the Window Options menu and move the cursor to
EXI T?

For this option, you will not assign a goto value. Since it exits to the FOCEXEC, thereis
no next window to be displayed.

Developing Applications 9-45

Designing Windows With Window Painter

9-46

Repeat the steps to assign the return value:

XXI T

With the Window Options Menu still on the screen, move the cursor to
Display |ist

and press Enter.

The display list may specify up to 16 windows to be displayed when this window is
visible during execution. Since you want BORDER and BANNER to be displayed with
MAIN, you must add them to the list.

iSelect one of these options:
+

+ - 4
-

iDisplay list:

iAdd to the list i
iDelete from the listi
iQuit i

+

Uould you like to:

Create a report?
Create a graph?

Exit?

 mm ome me me me mm o mE

Select:
Add to the |ist

A list of windows appears, from which you select by moving the cursor and pressing
Enter. The windows must be selected in the order in which they should appear, because
they will be overlaid one on top of another when displayed. Select BORDER and
BANNER for MAIN's display list, being certain to select BORDER first so that it will be
displayed behind BANNER.

When you have finished, choose Quit to return to the Window Options Menu.
Quit the Window Options Menu and press PF3 to save MAIN.

Before moving on, look at what you have done so far. Select

Run the w ndow file

and press Enter.

Information Builders

Tutorial: A Menu-Driven Application

Select
MAI N

as the starting screen. Press Enter, and you will see a screen like this:

The Milkmore Farms Weekly Reporting System

[FA—

Would you like to:

Create a report?
Create a graph?

Exit?

$ omm e o e omm o o= -

m mE mm =R e mm mm me e e mm mm = mm = e mm = =e == F

Position the cursor on the “ Create areport” line. When you press Enter to continue the
display, you will see an error message because EXECTY PE—the goto value—has not
been created yet. Ignore it, and press Enter to continue. Y ou will see a screen displaying
amper variables for thiswindow and their values. Press Enter to return to the Main Menu.

Creating the Vertical Menu Window Named EXECTYPE

So far you have created two text display windows and a vertical menu. The next window
we will create will also be avertical menu.

Select
Create a new w ndow

from the Main Menu, and choose

Menu (vertical)
from the Window Creation Menu. Enter
EXECTYPE

as the window name.

Developing Applications 9-47

Designing Windows With Window Painter

9-48

When prompted for a description, type
Create a new FOCEXEC or run existing one
and press Enter. When prompted for a heading, press Enter.

When the Window Design Screen appears, move the cursor 12 rows down the screen and
22 columns to the right, and press Enter. Now reposition the cursor four rows beneath the
bottom edge of the window and 32 columns to the right of the right edge of the window,
and press PF4 to resize it.

Type the following two menu options as they appear below:

. using an existing reguest

. using a new request

Wind: EXECTYPE Typ: Menu (vert) PFl=Help Z=Menu 4=3Size 9=Move 10=Del 11-=ndd

When you created the MAIN window, you used the Window Options Menu to set each
return value and goto value. Thereis an easier way to set return and goto values using the
PF6 and PF5 keys.

Pressing PF5 prompts you successively for a GOTO value, a Return value and a
FOCEXEC name. When prompted for a GOTO value press Enter again and you will be
prompted for the Return value. Enter EXIST and press PF5 again and you are prompted
for FOCEXEC name. Just press Enter.

If you select
. using an existing request.

from the EXECTY PE menu, the file names window EXECNAME will be displayed next.
EXECNAME will contain alist of existing FOCEXEC files from which you may choose.

Move the cursor to the second menu item.

Now you need to consider the return and goto values for this option.

Information Builders

Tutorial: A Menu-Driven Application

If you choose to create a new report or graph request, EXECNAME will not be
displayed. Rather, control must pass back to the FOCEXEC, which will execute these
lines:

-1 F &EXECTYPE EQ EXI ST GOTO RPTEX ELSE GOTO NEWRPT,;

- NEWRPT

- SET &PROCNAME=I F &VAI N EQ RPT THEN TABLETALK
ELSE | F &VAI N EQ GRPH THEN PLOTTALK;
&PROCNAVE

- RUN

Since you want control to pass to the FOCEXEC if this option is chosen, you will not
assign a goto value to it. Remember that during execution control passes to the
FOCEXEC when an option without a goto value is selected.

The return value may be anything other than EXIST. For now, press PF6, and enter
NEXI ST

Rather than create display and hide lists for EXECTY PE, make it a pop-up window. A
pop-up window is displayed like any other window, but disappears when the user presses
Enter. EXECTY PE pops up in front of MAIN.

Press PF2 to display the Window Options Menu, move the cursor to
Popup(OF f)
and press Enter. Y ou will seethat (Off) changesto (On).

Exit the Window Options Menu, press PF3, and save the window.

Creating the File Names Window Named EXECNAME

Y our final window is the file names window that displays alist of existing FOCUS report
reguests. On the Window Creation Menu, select:

Fil e nanes

Name the window

EXECNAVE

and type in the description:

Sel ect an exi sting FOCEXEC fromlist.
Enter an explanatory heading:

Sel ect the request you want to execute and press ENTER

Developing Applications 9-49

Designing Windows With Window Painter

9-50

Y ou will be prompted for file-identification criteria. Type
* FOCEXEC

and press Enter.

File: SAMPLE FOCUS WINDOUW PAINTER

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z2 to undo a selection
Use PF1 for help

+

iEnter the file name criteria (e.g. = MASTER)I
ior & variable name containing the criteria:

i= FOCEXEC

1
1
+
1
1
+

e InCMS, when the application is executed, thiswill select all files having the file
type FOCEXEC.

* InMVS, when the application is executed, thiswill select all members of ddname
FOCEXEC.

On the Window Design Screen, move the cursor two rows down and press Enter. Use
PF9 to center the window on the screen. Resize the window: reposition the cursor two
columns to the right of the window’ s right edge and ten rows below the window’ s bottom
edge, and press PF4.

Since only BORDER should be displayed with this window, add BANNER, MAIN, and
EXECTY PE to the hide list and add BORDER to the display list.

When the user selects a file name from this window during execution, that file name will
automatically be collected as the return value. Y ou cannot set the return value any other
way for this type of window.

In the FOCEXEC, that return value will be plugged into the line
EX &EXECNAME

and the report or graph request will be executed.

But in order for this to happen, you must return control to the FOCEXEC. Therefore, you
will assign no goto value to this window.

Information Builders

Window Painter Screens

If you want to change the file identification criteria of afile nameswindow (or of afield
names or file contents window) after it has been created, change the “return value.”
Although these two window types cannot have their actual return values set when the
window is created or edited, the “return value” which is displayed and can be set is
actually the window’ s file identification criteria. Y ou can change the file identification
criteriajust as you would change the actual return value of avertical menu window.

Exit from the Window Options Menu, press PF3, and save the window. The window file
is complete. Exit from Window Painter.

Executing the Application
To execute the SAMPLE FOCEXEC, at the FOCUS prompt, type
EX SAMPLE

and press Enter. When prompted to choose a new or existing FOCEXEC, select

. using a new request.

unless you have created one in an earlier FOCUS session. The application will execute
PlotTalk or TableTalk. If you save the request you create, you can try the SAMPLE
FOCEXEC again, and execute the new request by selecting:

. using an existing request.

This completes the tutorial.

Window Painter Screens

The creation of windows isitself an automated window-driven process. There are six
Mmajor screens:

e TheEntry Menu

* TheMain Menu

* TheWindow Creation Menu
* The Window Design Screen

e The Window Options Menu

* TheUtilitiesMenu

These screens assist you whenever you create or edit windows.

Developing Applications 9-51

Designing Windows With Window Painter

Invoking Window Painter

Syntax

9-52

To invoke Window Painter, type the WINDOW PAINT command at the FOCUS prompt
and press Enter.

How to Invoke Window Painter
W NDOW [PAI NT [fil enane]]

where;

PAI NT
Is optional.

fil enanme
I's the name of the window file that you want to work with.

In CMS, thisisafile name. The file must have afile type of FMU.

In MVS, thisis amember name. The member must belong to ddname FMU.
If you do not specify file name, you will begin your Window Painter session at the Entry
Menu, where you can choose awindow file to use or can create a new window file. If

you do specify file name, you will skip the Entry Menu and begin your Window Painter
session at the Main Menu, working with the window file you specified.

If the file name does not exist, you will be asked if you want to create anew file. If not,
the Window Painter Entry Menu will be displayed.

Information Builders

Window Painter Screens

Entry Menu
Y ou can reach the Window Painter Entry Menu by typing
W NDOW [PAI NT]
at the FOCUS prompt, and then pressing Enter.

The Entry Menu isthe first screen you see:

File: SAMPLE FOCUS WINDOUW PAINTER

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF1Z2 to undo a selection
Use PF1 for help

iSelect the window file:

iNew File Create a new file i
iTEST This i=s a test. i
iSAMPLE Sample file for Window Painter tutorial.

The Entry Menu invites you to choose awindow file in which to work. If you are
creating windows for a new application, you should start a new window file. If you are
maintaining or creating windows for an existing application, use the window file that
corresponds to your application.

When you become comfortable working with windows, you can write FOCEXECs that
include branching between window files. Refer to [Transferring Control in Window |
Ppplications|on page 9-22 for a detailed discussion on branching and transferring
control.

Developing Applications 9-53

Designing Windows With Window Painter

Main Menu

9-54

Once you have selected awindow file from the Entry Menu, or entered the WINDOW
PAINT command with the file name option, the Main Menu appears:

— ¥

FOCUS WINDOW PAINTER

INSTRUCTIONS :

Move cursor to selection and hit ENTER
Use PF3 or PF12 to undo a selection

Use PF1 for help

P

idelect one of the following:

iCreate a new window

iEdit an existing window
iDelete an existing window
iRun the window file

iSwitch window files
iUtilities

iEnd

iQuit without saving changes

$ mm mm mm mm me mm o= om= o ==

Information Builders

Window Painter Screens

The following table summarizes the options on the Main Menu, along with illustrations
of screens that appear when you select some of the options:

Menu Option

Description

Create a new
window

Brings up the Window Creation Menu. Y ou can select the type of
window you want to create.

Edit an existing
window

Brings up alist of windows in your current window file. Y ou can
select the one you want to edit.

File: SAMPLE

FOCUS WINDOW FPAINTER

INSTRUCTIONS :

Move cursor to selection and hit ENTER
Use PF3 or PF1Z to undo a selection
U=ze PF1 for help

iSelect window to edit: H

iBORDER This window borders all my screens.
iBANNER Banner for application MAIN menu.
iMAIN User can report, graph, or exit.

iEXECTYPE Create a FOCEXEC or run an existing one.
iEXECNAME Select an existing FOCEXEC from list.

$ mm e omm ==

Menu Option

Description

Delete an existing
window

Brings up alist of windowsin your current window file. You
can select the one you want to delete.

File: SAMPLE

FOCUS WINDOW FPAINTER

INSTRUCTIONS :

Move cursor to selection and hit ENTER
Use PF3 or PF1Z to undo a selection
U=e PF1 for help

iSelect window to delete: |
+

{BORDER
iBANNER
iMAIN

{EXECTYPE |
iEXECNAME |

Developing Applications

9-55

Designing Windows With Window Painter

Menu Option Description

Run the window Brings up alist of windowsin your current window file. You

file can select the one from which you want to start running the
window file.

After the window file is run, the windows amper variable
values are displayed. The display includes the first 20
characters of each value.

This option shows you how your windows work without
executing the FOCEXEC. Use this option to test your window
file.

Switch Window Returns you to the Window Painter Entry Menu, from which
files you can select another window file. The previous window fileis
saved whenever you switch window files.

Utilities Brings up the Utilities Menu, which is discussed in
ion page 9-72.

End Returns you to native FOCUS. All work that you saved during
the Window Painter session is kept.

Quit without Returns you to native FOCUS. All work that you saved during

saving the Window Painter session is discarded.

9-56 Information Builders

Window Painter Screens

Window Creation Menu

Y ou can reach the Window Creation Menu by selecting

Create a New W ndow

from the Main Menu. Y ou will see the following screen:

INSTRUCTIONS : Move curszor to selection and hit ENTER
Use PF3 or PF1Z2 to undo a selection
Use PF1 for help

[y

iS3elect the window type:

iMenu (vertical)
iMenu C(horizontal)
iText input

iText display

iFile names

iField names

iFile contents
iReturn value display
iExecution windou
iMulti-Input window

§ mm me mm mE mE mE me mE ome me o me

You will first need to select the type of window you will create. You will then be asked
to enter an 8-character name and an optional 40-character description. These are for your
use only; they do not appear in the window during execution.

For avertical menu, horizontal menu, text input, text display, file names, field names, file
contents, multi-input, or return value display window, you are prompted to supply a
60-character heading.

For atext input window, you are prompted to choose the format of the text entry field
(alphanumeric, with all text translated to uppercase; a phanumeric, with no case
translation; or numeric). Later, in the Window Design Screen, you can make the length
of the text entry field shorter than the window’ s header length by typing asingle
character in the window immediately following the last desired field position, or by
typing characters continuously from the first field position to the last desired field
position.

For afile names, field names, or file contents window, you are prompted to produce
file-identification criteriathat can consist of an amper variable, a completefile
identification, or (for file names windows) afile specification which includes an asterisk
(for example, * MASTER).

Developing Applications 9-57

Designing Windows With Window Painter

9-58

The asterisk is used as awildcard character: it indicates that any character or sequence of
characters can occupy that position. In CM S, an asterisk used in file-identification criteria
can be embedded (for example, * DEPT FOCEXEC); the asterisk can be used in the file
name, the file type, and the file mode. In MV S, the asterisk can be used as the member
name but not in the ddname.

If an amper variableis used, you can prompt for the file identification criteria at run time.

e File-identification criteriain CMS must specify the file name first, the file type
second, and an optional file mode third. If the file mode is not specified, it defaults
to an asterisk.

» File-identification criteriain MV S must specify the member name first and the
ddname second.

If you are creating afield names window, your file-identification criterion is the name of
aMaster File.

In addition, you can create execution windows containing FOCUS commands such as
Dialogue Manager commands or TABLE requests. Y ou will be prompted for the window
name and heading. Once awindow has been specified, you will see the Window Design
screen.

For complete information about the types of windows you can create in Window Painter,
see[Types of Windows You Can Createlon page 9-4.

The next screen displayed is the Window Design Screen, discussed in \Window Design _|
Screen|on page 9-59. This screen enables you to enter information, and position and size
your window.

Information Builders

Window Painter Screens

Window Design Screen

In this screen you design the appearance and functionality of your windows. It appears
during the window creation process, when you press Enter after typing the heading of
your window.

The Window Design Screen consists of a blank screen, a cursor, and text asking you to
move the cursor to the starting position for the window. This starting position becomes
the upper left corner of the window. Use the cursor arrow keys to move the cursor to the
place where you want the upper left corner of the window to be, and press Enter.

When you press Enter thistime, the window appears, with its heading at the top. Y ou can
enlarge it, type text in it, and move it around the screen.

File: SAMPLE FOCUS WINDOUWUY PAINTER

iThis line is the window heading.i

Wind: PZ258 Typ: Menu (vert) PF1l=Help Z2=Menu 4=Size 9=Move 10=Del 11=Add

The Window Design Screen lets you use the keyboard to manipulate the window you are
creating.

Developing Applications 9-59

Designing Windows With Window Painter

9-60

The following chart summarizes Window Design Screen key functionsin all window

types.

PF Key

Function

PF1

Displays awindow of help information.

PF2

Displays the Window Options menu. This menu is discussed in
Window Options Menu jon page 9-61.

PF3

Displays the exit menu. Y ou can select:
e Exiting from the Window Design Screen while saving your work.
e Quitting from the Screen without saving your work.

e Continuing your work.

PF4

Resizes the window. First move the cursor to the desired position of
the window’ s lower right corner. When you press PF4, the window’s
upper left corner remains in the same position; the window’ s lower
right corner moves to the current cursor position.

If the window sizeis reduced, nothing in the window is deleted; all
window contents beyond the window border can be seen by scrolling
the window.

PF5

Gets the GOTO value, the Return value and the FOCEXEC name for
the active window.

PF6

Sets the return value of the line that the cursor is on.

PF7

Scrolls the window up if the window contents extend beyond the top
border.

PF8

Scrolls the window down if the window contents extend beyond the
bottom border.

PF9

Moves the window. First move the cursor to the desired position of the
window’ s upper left corner. When you press PF9, the window’ s upper
|eft corner (the + in the border) moves to the current cursor position.
The rest of the window moves accordingly.

PF10

Deletes the line of window contents identified by the current cursor
position. If the window contents do not extend beyond the window
borders, then the window itself will be reduced by one line.

PF11

Adds one line of window contents beneath the lineidentified by the
current cursor position. If the window contents do not extend beyond
the window borders, then the window itself will increase by one line.

Information Builders

Window Painter Screens

PF Key Function

PF12 Provides the same function as the PF3 key.

PF13 - These keys provide the same functions as the corresponding keys PF1
PF24 - PF12.

If awindow’ s contents extend beyond a top or bottom border, then the message
(MORE)

isdisplayed on that border. This reminds you that there are more lines of contents that
are hidden beyond that border. Y ou can view these lines by scrolling the window toward
the border. When the window is used in an application, the user can also scroll the
window to see all of the contents.

The display line at the bottom of the Window Design Screen shows instructions or
information. When you first see the Window Design Screen, the display line tellsyou to
move the cursor and press Enter. When you press Enter, the display line shows the name
of the window file, and the name and type of window being created; it also tellswhich
keysto press for the HEL P function, the SIZE function, and the Window Options Menu.

Window Options Menu

When the Window Design Screen is displayed, pressing PF2 brings up the following
Window Options Menu:

Exit this menu
Goto value
Return value
FOCEZEC name
Head ing
Description
Show a windou Hould you like to:
Unshow a window
Display list Create a report?
Hide list
Popup (Off) Create a graph?
Help windou
Line break Exit?
Multi select (OFF)
Quit PF3
Conceal option
Suitch windou

Hind: MAIN Typ: Menu (vert) PFi=Help 2=Menu 4=Size 9=Move 10=Del 11=Add

Developing Applications 9-61

Designing Windows With Window Painter

The following table summarizes the options on this menu, along with illustrations of
screens that appear when you select some of the options:

Menu Option Description

Goto value Selecting this option lets you specify the next window in the
path from this selection field or window. Y ou will be asked to
supply the name of the window. (It does not matter whether or
not this window exists. Y ou can create it later, but remember
the name you chose for it.)

In menu windows, goto values are assigned to each menu item.
In other windows, there is asingle goto value for the entire
window.

To assign agoto value, your cursor must be on the proper line
when the Window Options Menu is brought up. Select Goto
value from the Window Options Menu and you will be
prompted to enter the name of the window that is the target of
the goto. Type the name in the space provided and press Enter
again. The goto value is assigned.

+

iEnter name of next window to go to.i +
{Just 'Enter’ for exit. ! you like to: i
+ + +
{EXECTYPE | i Create a report? i
A + i i
i Create a graph? i
i i
i Exit? i
+

Wind: MAIN Typ: Menu C(vert) PF1l=Help Z=Menu 4=5ize 9=Move 10=Del 11=-Add

9-62 Information Builders

Window Painter Screens

Menu Option

Description

Return value

The return value supplies a value for an amper variable. If the
user selects thisfield during execution, the return value you
have assigned is plugged into the amper variable in your
FOCEXEC. Return values are assigned to each menu itemin
menu windows, and one per window for other window types.
The only exceptions are the multi-input window, whose return
value isthe name of the input field occupied by the cursor when
you pressed Enter or a PF key, and the return value display
window, which does not have areturn value but instead
displays other windows' return values. Thereturn value for a
Multi-Select window is the number of selections.

To assign areturn value, your cursor must be on the proper line
when the Window Options Menu is brought up. Select Return
value from the Window Options Menu and you will be
prompted to enter areturn value. Note that for file names, field
names, and file contents windows, the value that you enter is
the file-identification criterion for that window. Type the value
in the space provided and press Enter again. The return valueis
assigned.

+
for the line:i 1ld you like to:

+

i reate a report?

iEnter return value

iRPT i
i
i
i
i

Wind: MAIN Typ:

Create a graph?

Exit?

§ mm omm mm omm s = o me

Menu (vert) PF1=Help Z=Menu 4=5ize 9=Move 10=Del 11=-Add

Developing Applications

9-63

Designing Windows With Window Painter

9-64

Menu Option

Description

FOCEXEC name

Attaches a FOCEXEC to each menu selection of the window.
The FOCEXEC is executed when the menu item is selected.

Heading Changes the heading of any window you are working on. Y ou
can also add or remove a heading.
Description Changes the description of any window you are working on.

Show a window

Used only during window editing, brings another window onto
the screen for reference. Y ou cannot edit the second window.

Unshow a window

Removes the shown window from the display.

Information Builders

Window Painter Screens

Menu Option

Description

Display list

Enables you to specify alist of up to 16 windows that will be
visible when this window is displayed during execution.

Note that if part of awindow on the display list extends beyond
the window border or does not fit on the screen, it cannot be
scrolled.

Asmany as 16 windows can be displayed on the screen at one
time. This appliesto all windows on the screen (that is, a
window displayed during execution, windows displayed when
executed previoudly and not hidden afterward, and windows
displayed because specified on adisplay list). The window
facility interprets each window heading as a separate window: if
all of the windows have headings, 16 of them can be displayed
on the screen at one time.

iDisplay list:i
—— +————t

{BORDER |
iBANNER |

Uind: MAIN

Typ:

iSelect one of these screens:
+

{EXECTYPE!

{EXECNAME }

* =k

i Would you like to:

Create a report?

i
i
i Create a graph?
i
i Exit?

S Y

Menu (vert) PF1=Help Z=Menu 4=5ize 9=Move 10=Del 11=-Add

Developing Applications

9-65

Designing Windows With Window Painter

Menu Option Description

Hidelist Allows you to specify windows that will not appear when this
window is displayed during execution. Y ou can specify up to
16 specific windows or all windows in the window file. If you
select “All,” dl the windows will be hidden except those in the
display list. -- If you do not hide a window that was displayed,
it will remain on the screen until another window that includes
it on ahidelist is displayed during execution.

—— +
iHide list: i iSelect one of these options:i
—— +
i EXECNAME i inll i
A + iBORDER |
iBANNER |
—_————— +
+
i Would you like to: i
+
i Create a report? i
i i
i Create a graph? i
i i
i Exit? i
i i
+
Wind: MAIN Typ: Menu (vert) PFl=Help Z2=Menu 4=Size 9=Move 10=Del 11-=Add

9-66 Information Builders

Window Painter Screens

Menu Option

Description

Popup (Off/On)

Makes the window disappear when the user presses Enter
during execution. Defaults to OFF, which leaves the window on
screen. Set Popup to OFF with text display windows as they do
not work even if set to ON.

Help window

Lets you display information about a window or a menu item
when auser presses PF1 (the Window facility HEL P key)
during execution. The information displayed is text within a
specified Help window.

Note that if the PFKEY option is specified in the -WINDOW
command, you will have to explicitly set a PF key asthe HELP
key, as described in Testing Function Key Valueslon page 9-26.

When selecting the Help window option, you will be asked to
supply the name of the Help window file that contains the Help
window. Next, you will be asked to supply the name of the
Help window itself. The Help window can be an existing
window, or one that you will create.

If the Help window displays field names, it qualifies duplicates
with the segment name.

Y ou can use any window type for a Help window. A text
display window is easiest, except when you want to supply
different help information for each item in avertical menu,
horizontal menu (that is, item-specific help).

If you wish to assign item-specific help, use afile contents
window that displays afile containing text in the following
format:

=>HELPFI LE
=> menu item
this is the Hel p message you want the user to see.

where:

=>
Is entered with an equal sign (=) and a greater-than sign
>).

HELPFI LE

Must be uppercase.

Developing Applications

9-67

Designing Windows With Window Painter

9-68

Help window
(continued)

menu item
Isthe exact text of the menu item. Any blank spaces that
precede thistext in the menu must aso precede this text
here in the Help file. Note that at least one blank space
always precedes the menu item text in a vertical menu,
horizontal menu, or multi-input window.

For example, if thefirst three lines of avertical menu are

(1) Generate a sales report
(2) Generate a stock report

and there are three blank spaces between the left border of the
window and the beginning of the text, then the file containing
help text could look like this:

=>HELPFI LE

=> (1) Generate a sales report

This option displays a |list of existing sales report
requests, and lets you sel ect one of these requests
to execute.

=> (2) Generate a stock report

This option displays a |list of existing stock report
requests, and lets you sel ect one of these requests
to execute.

The linesimmediately following the menu item text are
displayed when the user positions the cursor on the menu item
and presses PF1.

In some cases you may wish to assign topic-specific help, but
you may want the help text for some of the topicsto be
contained in a separate file. In these cases, on the line following
the menu item text, replace the help message with the file
identification of the file containing that menu item’s help
message.

In CMS, use thisfile-identification format:

FI LENAVE= filenanme filetype [fil enpde]
In MV, use this file-identification format:
FI LENAMVE= nenber nane ddnane

To assign one set of instructions that can be used for multiple
menu items, use the following syntax:

=>DEFAULT
This text appears when you have not witten
t opi c-speci fic hel p.

Information Builders

Window Painter Screens

Help window
(continued)

The DEFAULT text must be the last section in the Help file.

Lines beginning with an * are comment lines that are not
displayed.

What follows is an example of atopic-specific Help file for the
Main Menu used in the tutorial.

=>HELPFI LE

*Help file for tutorial/Min Menu

=> Create a report?

Choose this option if you wish to create a new
report.

=> Create a graph?

Select this option if you wish to create pie charts,
bar charts or other graphics.

= Exit?

If you wish to | eave the application, choose this
opti on.

Line-break

Formats the contents of the return value display window. This
option is set when designing the windows from which you
collect the return value(s) to be displayed.

When you select this option, you will see;

None

New | i ne before val ue
New |ine after val ue
Bot h

where;

None
Places return value directly after preceding value. If thereis
not enough room on thisline, return value is placed on the
next line.

New | i ne before val ue
Places return value on the next line.

New | ine after val ue
Places return value on the same line as preceding value.
Places next return value on next line.

Bot h
Places return value on aline by itself.

Developing Applications

9-69

Designing Windows With Window Painter

Multi-Select Enables you to select multiple items from one window. The
number of items you select is collected as the return value from
that window; each selected item’ s return valueisstored in a
temporary file in memory. Y ou can later retrieve these stored
valuesfor usein a FOCEXEC. Values for up to eight windows
can be stored at onetime.

When you select this option, you will see:
-Select Multi(On)

During execution, the user selectsindividual values by pressing
PF9. After all selections have been made, the user presses
Enter.

Note that when the -WINDOW command is issued with the
PFKEY option, the PF9 key cannot be used to make selections
unless a SET command is issued before the -WINDOW
command. For example:

SET PFO9=SELECT
You can aso set adifferent PF key for selecting multiple items.

A Multi-Select window can have no more than one goto value.
Although in a vertical menu window you can assign a different
goto value to each menu item, only the value assigned to the
firstitem is effective.

The return value collected for awindow using the Multi-Select
option is the number of values selected by the user.

To retrieve the individual values, issue a special WINDOW call,
asfollows:

- W NDOW wi ndowfi | e wi ndownane GETHOLD
where:

wi ndowfile
Is the name of the window file.

w ndownane
Is the name of the Multi-Select window.

GETHOLD
Isthe special parameter that retrieves one value at atime
from the temporary file.

The valueis assigned to the variable & windowname.

9-70 Information Builders

Window Painter Screens

Multi-Select
(continued)

The GETHOLD option requires at least two -WINDOW
commands in your FOCEXEC. Thefirst -WINDOW command
(without the GETHOLD option) transfers control to the
Window facility where a Multi-Select window is used. The
second and subsequent -WINDOW commands use the
GETHOLD option to retrieve the stored amper variables
collected in a particular Multi-Select window.

For each value to be retrieved, you will need a-WINDOW
command with the GETHOLD option. Each value will be
stored in & windowname. If you wish to use thisvalue, we
recommend assigning it to another variable. For example, if the
return value has the value 4, you would issue the special
-WINDOW command four times; each time you would collect
the value from & windowname. Alternatively, you could
perform aloop.

Note that -WINDOW with the GETHOLD option will not
transfer control from the FOCEXEC to the Window facility.

Quit

Returns you to the Window Painter Entry Menu.

Input fields

Input fields pertain to Multi Input Windows. Selecting the field
takes you to that field.

Menu text

Specifiesaline of descriptive text, up to 60 characterslong, for
items on a horizontal menu. Use the Text line option to position
the text.

Text line (x+1)

On a horizontal menu, positions descriptive text one or two
lines above or below the menu. Valid values are x+1 or x+2 to
place the text above the horizontal menu, x-1 or x-2 to place the
text below the horizontal menu. Use the Menu text option to
define the descriptive text.

Pulldown (off/on)

If the setting is ON, placing the cursor on anitemin a
horizontal menu can display an associated pulldown menu. The
default setting is OFF. Turn the setting ON by positioning the
cursor on this option and pressing Enter. — The pulldown
menu must be a vertical menu and must be assigned as the goto
value for the horizontal menu item. Note that setting Pulldown
ON automatically shuts off Menu Text.

Switch window

Enables you to work on and move between two windows.
When you select this option, you can create a new window, or
edit an existing window without returning to the Main Menu.

Developing Applications

9-71

Designing Windows With Window Painter

Utilities Menu

If you select the Utilities option from the Window Painter Main Menu, the Utilities Menu
will be displayed:

INSTRUCTIONS : Move cursor to selection and hit ENTER
Use PF3 or PF12 1o undo a selection
Use PF1 for help

Select one of the following:

Document the file

Change the file description
Compress the file

Rename a windou

Copy a windou

Select the start uindow
Create a transfer file

Quit the WHilities Henu

File: SAMPLE FOCUS HINDOH PAINTER

9-72 Information Builders

Window Painter Screens

The following table summarizes the options on this menu, along with illustrations of
screens that appear when you select some of the options:

Menu Option

Description

Document thefile

When you select this utility, Window Painter creates
documentation of the window file. Y ou can display the
document on the screen using TED or another system editor, or
send it to a printer or disk file.

In CMS, this option creates a file with file type TRF on your A
disk.

In MVS, this option creates a member of the TRF PDS; that
PDS must have already been allocated. However, creating a
PDSis not necessary if you are only going to use the
documentation file during the current FOCUS session: Window
Painter will temporarily allocate the PDS.

This document contains detailed information about all the
windows in the window file. It shows you the kinds of
windows, their structure and format, and any options you have
assigned from the Window Options Menu, including return and
goto values. The text you enter when prompted for a window
file description or individual window description is part of this
document.

The document is especially useful when creating a FOCEXEC,
since it provides return and goto values in addition to other
information.

Note: If you create another file with the same name, thefileis
not overwritten. It is appended.

Developing Applications

9-73

Designing Windows With Window Painter

9-74

= RETURN=None
= MULTI=0ff
= HEADING:

= WINDOW DATA:

»

T
*
=yl A S-S S I N

JOExit?
= DISPLAY LIST:
= BORDER

= WINDOW FILE NAME=SAMPLE

= DESCRIPTION="Sample file for windows tutorial’
= WINDDW NAME=MAIN,
= DESCRIPTION="User can report, graph, or exit.’

= ROW= b6,COLUMN=£Z3,HEIGHT= 7,WIDTH=38,WINDOWY= 7,POPUP= O,BORDER= Z,HEADLEN=Z8,

I Would you like to:

' Create a report? " EXECTYPE ’,'RPT

." Create a graph? *,"EXECTYPE * " GRPH

TYPE=Henu (vertical)

GOTOS : UALUES :

»

Il

s *L O RKIT

- e e e = o=

- .
- -
-

Menu Option

Description

Changethefile
description

Changes the description of the current window.

Compressthefile

This utility is provided to help you save space in memory. It
allows space made available by deleted or edited windows to be
reused.

Rename a window

When you select this utility, you see alist of the windows in the
current window file. Y ou can change the name of any of these
windows.

Copy awindow

This function copies awindow from one window file to
another, or duplicates it within the samefile.

The copy function is useful when you create a new application,
or need to add windows to an existing application, and want the
windows to look like those you have aready created. Y ou can
copy any window and edit it to conform to the new application.

Select the start
window

Enables you to choose a default start window. This window is
the first to be entered if a specific window is not selected upon
startup. If adefault start window is not explicitly chosen,
FOCUS will select the first window created to be the start
window.

Information Builders

Transferring Window Files

Menu Option Description
Createatransfer | Createsafileto betransferred for use with the Window facility
file in PC/FOCUS, TSO or another FOCUS environment.

In CMS, this option creates a file with file type TRF on your A
disk.

In MV, this option creates a member of the TRF PDS; that
PDS must have aready been alocated.

Quit the utilities
menu

Returns you to the Main Menu.

Transferring Window Files

If you use FOCUS in more than one operating environment, you can transfer an existing
window file from one environment to be used in another environment. For example, if
you have a fully-developed window application in PC/FOCUS, and you want to develop
asimilar application in mainframe FOCUS, you can transfer the PC/FOCUS window file
to mainframe FOCUS; this saves you the trouble of recreating the window file from
scratch in mainframe FOCUS.

Y ou can transfer awindow file to a new environment in four simple steps:

1.
2.
3.
4,

Create atransfer file from the original window file using Window Painter.
Transfer the new file to the new environment using the XFER command.
Edit the transferred filein TED, if necessary.

Compile the transferred file using the WINDOW COMPILE command.

These steps are described in the following topics.

Developing Applicat

ions

9-75

Designing Windows With Window Painter

Creating a Transfer File

9-76

The window files that you design in Window Painter are compiled files; before a window
file can be transferred to another environment, a user-readable source code version must
be created. This user-readablefileis called atransfer file, and is created using the transfer
file option of Window Painter.

e InCMS, this Window Painter option automatically creates atransfer file with afile
type of TRF on your A disk.

e InMVS, thisWindow Painter option automatically creates a new member of the
PDS alocated to ddname TRF; the PDS must already have been allocated (with
LRECL between 80 and 132 and RECFM FB). However, it is not necessary to create
the PDS if you are only going to use the transfer file during the current FOCUS
session: Window Painter will temporarily allocate the PDS.

» For information about the transfer files created by FOCUS Window Painter in other
operating environments, see the appropriate FOCUS Users Manual for those
environments.

To convert awindow fileto atransfer file, go to the Window Painter Utilities Menu and
select:

Create a transfer file

Y ou will then be prompted for the name of the new transfer file. Enter any name that you
wish; it can have the same name as the window file, or an entirely new name. In CMS the
name that you enter isthe file name; in MV Siit is the member name.

Note that you should not give the transfer file a name already assigned to a window
documentation file. Also, you should not give the transfer file a name already assigned to
an existing transfer file unless you want to merge the two files, as described below. See
the appropriate operating environment topic in the Overview and Operating
Environments manual for more information about duplicate window transfer and window
documentation file names.

Y ou will be asked to select which window(s) you want to transfer. Y ou can select
All

to transfer al of the windows in the current window file, or you can select any single
window in thefile. Thisisthelast step in creating atransfer file.

Note that you can merge transfer files: if atransfer file already exists for your window
file, and you only need to add a new window to it, you can give the new transfer file the
same name as the old one, and then select the new window. Window Painter will merge
the source code for the new window into the existing file, so that you have asingle
complete transfer file.

Information Builders

Transferring Window Files

Transferring the File to the New Environment

Once the transfer file exists, it can be transferred to the new environment using the XFER
command. The XFER command is described in Chapter 6, Enhancing Application
Performance.

Editing the Transfer File

Window facility features introduced in one FOCUS release may not be fully supported in
earlier releases. Because different operating environments may be running different
releases of FOCUS, the transfer file created by the FOCUS Window facility in one
environment may contain features not fully supported by the Window facility in another
environment.

If your transfer file contains Window facility features not fully supported in the new
environment, you may need to remove or fine-tune those features. If, on the other hand,
the new environment supports features not supported in the original environment, you
can add those features to the transfer file. Adding, removing, and fine-tuning features can
be done by simply editing the transfer file.

The Format of the Transfer File

The transfer fileis a user-readable source code listing of all of the windows, and their
features, that were included from the original window file. Y ou can remove or fine-tune
an unsupported feature by ssimply editing or deleting the appropriate line in the transfer
file. You can accomplish this by using TED or any other editor.

Each transfer file contains:
* One set of window file attributes describing the file.

e For each window defined in the file, one set of window attributes describing that
window.

» For each line in each window, one set of attributes describing that line.

Developing Applications 9-77

Designing Windows With Window Painter

If any attribute is not specified in the transfer file, it defaults to a value of zero or blank
(depending on whether the value is normally numeric or a phanumeric).

Attribute Description

FILENAME The name of the original window file.
DESCRIPTION A comment field describing thefile.
WINDOWNAME | The name of the window.

TYPE The type of window:

Vertical menu

Text input window
Text display window
Horizontal menu

File names window
Field names window
File contents window

Return value display window

© © N o g A~ W DN P

Execution window
10. Multi-input window
COMMENT A comment field describing the window.

TRANSLATE Type of input for text input windows (Type 2).
0 Allow mixed caseinput.
1 Allow numeric input only.

2 Trandateinput to uppercase.

ROW The row number of the upper left corner of the window.
COLUMN The column number of the upper left corner of the window.
HEIGHT The height of the window data (the number of lines of window

data, not the height of the actual window frame).

If there are more data lines than will fit in the window frame,
the PF7 and PF8 keys can scroll the window.

TEXT LINE Position of menu text. Valuesare: +1, +2, -1, -2.

WIDTH The width of the window frame, not including the border.

9-78 Information Builders

Transferring Window Files

Attribute Description
INPUT FIELDS Fields for multi-input windows.

WINDOW The number of linesin the actual window frame (not the
number of lines of window data). This does not include borders.

POPUP Sets the pop-up feature.
0 Thiswill not be a pop-up window.
1 Thiswill be apop-up window.

Figure 9-1. Transfer File Syntax: Window File Attributes

Attribute Description
BORDER Sets the window border.

0 Therewill be no window border.
1 Therewill be awindow border.
2 Therewill be awindow border.

Options 1 and 2 both result in a basic window border.

HEADLEN Length of the window heading. If thisvalueis 0, there will be
no heading.

RETURN Setsthe line break feature for use with return value display
windows.

0 Linebreak will not be used.

1 New line beforethisreturn value.

2 New line after thisreturn value,

3 New line before and after this value.

MULTI Sets the multi-select feature.

0 Thiswill not be amulti-select window.

1 Thiswill be amulti-select window.

HEADING The text of the window heading.
HELP The name of the help window for this window.
HELPFILE The name of the window file that contains the help window.

Developing Applications 9-79

Designing Windows With Window Painter

Attribute

Description

DISPLAY

The name of awindow to be displayed at the same time this one
isdisplayed. There can be up to 16 DISPLAY valuesfor each
window. This attribute is optional.

HIDE

The name of awindow to be hidden when thisoneis displayed.
There can be up to 16 HIDE values for each window. This
attribute is optional.

Figure 9-2. Transfer File Syntax: Window Attributes

Attribute

Description

DATA

A line to be displayed in the window (for example, amenu
choice in avertical menu Window, or aline of text in atext
display window). The data can include amper variables
(including & windowname).

GOTO

The name of the window to go to if thisline is selected by the
user. The value can be an amper variable (including
&windowname). If the value is blank, and thisline is selected,
Windows will return to Dialogue Manager.

VALUE

Thereturn value supplied if thislineis selected by the user.
This value will be placed in the amper variable & windowname,
where windowname is the name of the window.

For file names windows (TY PE = 5), thisisthefile selection
criteria (including asterisks) of the file names to be displayed.

For field names windows (TY PE = 6), this is the name of the
Master File whose fields will be displayed.

For file contents windows (TY PE = 7), thisis the name of the
file whose contents are to be displayed.

Figure 9-3. Transfer File Syntax: Window Line Attributes

9-80

Information Builders

Transferring Window Files

Operating Environment Considerations

When you transfer awindow file to a mainframe operating environment from a different
environment, differencesin hardware and operating software may require that you make
changes to the file. These changes are discussed below.

Screen position. Windows should not begin in row 1 or in column 1. If you transfer
awindow with these row or column positions, truncation will occur. Adjust the
ROW and COLUMN attributes if necessary.

Screen size. Windows should not have more than 22 rows or 77 columns. Windows
that extend beyond the end of the terminal screen will automatically be truncated
without any warning message.

Thisisimportant to note if you are transferring a window file from an environment
where the screen size differs from that in the mainframe environment. Adjust the
ROW and COLUMN attributes if necessary.

Window Position. Column 1 of vertical menu, horizontal menu, multi-input and text
display windows cannot be used. Window text must begin to the right of column 1.

Function keys. Windows transferred from other environments may refer to function
keys not present in the mainframe environment. Change function key referencesiif
necessary.

Blank lines. Are acknowledged by Window Painter.

Colorsand Border Types. The use of colored windows and background and
multiple border typesis not supported.

File Naming Conventions. File naming conventions differ in different operating
environments. When transferring a file from some environments, the Window
facility will automatically translate references to FOCEXECs, Master Files, and error
files, as shown below. Y ou must change other file references yourself when you edit
the transfer file.

PC or UNIX Extension Mainframe File Type or ddname
FEX FOCEXEC

.MAS MASTER

.ERR ERRORS

Developing Applications 9-81

Designing Windows With Window Painter

Example Sample Transfer File

To illustrate the transfer file format, part of the transfer file for the SAMPLE window file
is shown below (SAMPLE is described in the tutorial). The MAIN and EXECNAME
windows from the file are included in the example.

FI LENAVE=SAMPLE

DESCRI PTI ON=' Sanpl e file for windows tutorial'
W NDOANAME=NAI N, TYPE=1

COMMENT=' User can report, graph, or exit.'
ROW 6, COLUVN=23, HEI GHT= 7, W DTH=38, W NDOW 7, POPUP= 0, BORDER= 2, HEADLEN=28
RETURN=0

MULTI =0

HEADI NG=' Wul d you |ike to:"'

DATA=' '

$

DATA=' Create a report?

GOTO=" EXECTYPE' , VALUE=" RPT '

$

DATA=' '

$

DATA=' Create a graph?

GOTO=" EXECTYPE' , VALUE=" GRPH

$

DATA='

$

DATA=' Exit?

GOoTo= ", VALUE=" XXI'T'

$

DATA=' '

$

DI SPLAY=BORDER , $

DI SPLAY=BANNER ,$

W NDOWNAMVE=EXECNAME, TYPE=5

COWMMENT=" Sel ect an existing FOCEXEC fromlist."'
RONE 4, COLUMNELL, HEI GHT=11, W DTH=57, W NDOW£11, POPUP= 0, BORDER=
2, HEADLEN=55,

RETURN=0

MULTI =0

HEADI NG=' Sel ect the request you want to execute and press ENTER '
DATA='

GOoTo= ", VALUE="' * FOCEXEC

$

DI SPLAY=BORDER, $

HI DE=BANNER, $

H DE=MAI N, $

HI DE=EXECTYPE, $

9-82 Information Builders

Transferring Window Files

Compiling the Transfer File

Syntax

The transfer file can be executed in its current format, but it may execute dowly, and it
will use alarge amount of memory. Y ou can make your window application more
efficient, requiring less time and memory for execution, by compiling it.

Y ou can compile atransfer file using the WINDOW COMPILE command. This produces
anew compiled window file, in the same format as the window files produced by
Window Painter.

Note that before you can issue this command in MVS, a PDS with LRECL 4096 and
RECFM F must have already been allocated to ddname FMU. However, you do not need
to create this PDS if you are only going to use the transfer file during the current FOCUS
session: Window Painter will temporarily allocate the PDS.

How to Compile a Transfer File
W NDOW COWVPI LE wi ndowfi | e

where;

wi ndowfil e
Is the name of the transfer file.

In CMS, this must be the file name of afile with file type TRF.

The command will create a new file with the file name specified in the command,
and afile type of FMU, on the A disk. Once it has been created, you can move the
file to any disk you wish.

In MV, this must be a member name of a member of a PDS allocated to ddname
TRF.

The command will create anew member of the PDS allocated to ddname FM U, with
the same member name specified in the command.

When a Dialogue Manager -WINDOW command is encountered in a FOCEXEC,
FOCUS will search for acompiled window file (an FMU file) with the specified file
name. If the compiled file is not found, the transfer file (TRF file) with the same file
name will be used.

Note that if you compile atransfer file and later make changesto it, you will need to
recompile the updated transfer file: otherwise, FOCUS will continue to use the older,
unchanged compiled file.

Developing Applications 9-83

APPENDIX A
Master Files and Diagrams

Topics: This appendix contains data source descriptions and structure
diagrams for the exampl es used throughout the documentation.

« [he JOBFILE Data Source|

» [he EDUCFILE Data Source|
+ [he SALES Data Sourcel

+ [he PROD Data Source|

. | he CAR Data Sourcel

. | he LEDGER Data Sourcel

+ [he FINANCE Data Source]

« [he REGION Data Source]

« [he COURSES Data Source]
« [he EMPDATA Data Source]
e [he EXPERSON Data Source)|
« [he TRAINING Data Source|
.

« The COMASTER File|

. The VideoTrk and MOVIES Data
sources

| he VIDEOTR2 Data Source|
. | he Gotham Grinds Data Sourcesl

Developing Applications A-1

Master Files and Diagrams

Creating Sample Data Sources

Y ou can create the sample data sources on your user 1D by executing the procedures
specified below. These FOCEXECs are supplied with FOCUS. If they are not available
to you or if they produce error messages, contact your systems administrator.

To create these files, first make sure you have read access to the Master Files.

Data Sour ce L oad Procedure Name

EMPLOYEE, Under CMS enter:

EDUCFILE, and

JOBFILE EX EMPTEST
Under MV, enter:
EX EMPTSO
These FOCEXECs also test the data sources by generating
sample reports. If you are using Hot Screen, remember to press
either Enter or the PF3 key after each report. If the
EMPLOYEE, EDUCFILE, and JOBFILE data sources already
exist on your user ID, the FOCEXEC will replace the data
sources with new copies. This FOCEXEC assumes that the
high-level quaifier for the FOCUS data sources will be the
same as the high-level qualifier for the MASTER PDS that was
unloaded from the tape.

SALES EX SALES

PROD EX PROD

CAR none (created automatically during installation)

LEDGER EX LEDGER

FINANCE EX FI NANCE

REGION EX REG ON

COURSES EX COURSES

EXPERSON EX EXPERSON

EMPDATA EX LOADEMP

TRAINING EX LOADTRAI

PAYHIST none (PAYHIST DATA isasequential data sourceand is
alocated during the installation process)

COMASTER none (COMASTER isused for debugging other Master Files)

VideoTrk and EX LOADVTRK

MOVIES

VIDEOTR2 EX LOADVI D2

Gotham Grinds EX LOADGG

Information Builders

The EMPLOYEE Data Source

The EMPLOYEE Data Source

The EMPLOY EE data source contains data about a company’s employees. Its segments

are:

EMPINFO, which contains employee I Ds, names, and positions.

FUNDTRAN, which specifies employees’ direct deposit accounts. This segment is
unique.

PAY INFO, which contains the employee's salary history.
ADDRESS, which contains employees’ home and bank addresses.
SALINFO, which contains data on employees monthly pay.
DEDUCT, which contains data on monthly pay deductions.

The EMPLOY EE data source also contains cross-referenced segments belonging to the
JOBFILE and EDUCFILE files, described later in this appendix. The segments are:

JOBSEG (from JOBFILE), which describes the job positions held by each employee.
SECSEG (from JOBFILE), which lists the skills required by each position.

SKILLSEG (from JOBFILE), which specifies the security clearance needed for each
job position.

ATTNDSEG (from EDUCFILE), which lists the dates that employees attended
in-house courses.

COURSEG (from EDUCFILE), which lists the courses that the employees attended.

Developing Applications A-3

Master Files and Diagrams

The EMPLOYEE Master File

FILENAME=EMPLOYEE, SUFFIX=FOC

SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID,
FIELDNAME=LAST_NAME, ALIAS=LN,
FIELDNAME=F IRST_NAME, ALIAS=FN,
FIELDNAME=HIRE_DATE, ALIAS=HDT,
FIELDNAME=DEPARTHENT, ALIAS=DPT,
F IELDNAME=CURR_SAL, ALIAS=CSAL,
FIELDNAME=CURR_JOBCODE, ALIAS=CJC,
FIELDNAME=ED_HRS, ALIAS=0JT,

FORMAT=A9,
FORMAT=A15,
FORMAT=A10,
FORMAT=I6YMD,
FORMAT=A10,
FORMAT=D1Z .2M,
FORMAT=A3,
FORMAT=F6.2,

SEGNAME=FUNDTRAN, SEGTYFE=U, PARENT=EMPINFO

FIELDNAME=BANK_NAME , ALIAS=BN,
FIELDNAME=BANK_CODE, ALIAS=BC,
FIELDNAME=BANK_ACCT, ALIAS=BA,

FIELDNAME=EFFECT_DATE, ALIAS=EDATE,

FORMAT=nZ20,
FORMAT=I6S,
FORMAT=I95,
FORMAT=I6YMD,

SEGNAME=PAYINFO, SEGTYPE=SH1, PARENT=EMPINFO

FIELDNAME=DAT_INC, ALIAS=DI,
FIELDNAME=FCT_INC, ALIAS=FI,
FIELDNAME=3ALARY, ALIAS=3AL,
FIELDNAME=JOBCODE, ALIAS=JBC,

FORMAT=I6YMD,
FORMAT=F6.2,
FORMAT=D12.2N,
FORMAT=A3,

SEGNAME=ADDRESS, SEGTYPE=31, PARENT=EMFINFO

FIELDNAME=TYPE, ALIAS=AT,
FIELDNAME=ADDRESS_LN1, ALIAS=LN1,
FIELDNAME=ADDRESS_LNZ, ALIAS=LNZ,
FIELDNAME=ADDRESS_LN3, ALIAS=LN3,
FIELDNAME=ACCTNUMBER, ALIAS=ANO,

FORMAT=A4,

FORMAT=AZ0,
FORMAT=AZ0,
FORMAT=AZ0,
FORMAT=I9L,

SEGNAME=SALINFO, SEGTYPE=5H1, PARENT=EMPINFO

FIELDNAME=PAY_DATE,
FIELDNAME=GROSS,

ALIAS=FD,
AL1AS=M0_PAY,

FORMAT=I6YMD,
FORMAT=D12.2H,

SEGNAME=DEDUCT, SEGTYPE=31, PARENT=SALINFO

ALIAS=DC,
ALIAS=DA,

FIELDNAME=DED_CODE,
FIELDNAME=DED_ANT,

FORMAT=A4,
FORMAT=D1Z .2M,

L L 0 00D L0 L0000 L0 L0 L L

SEGNAME=JOBSEG, SEGTYPE=KU ,PARENT=PAYINFO, CRFILE=JOBFILE, CRKEY=JOBCODE,S

SEGNAME=SECSEG, SEGTYPE=KLU,PARENT=JOBSEG,
SEGNAME=SKILLSEG,SEGTYPE=KL, PARENT=JOBSEG,

CRFILE=JOBFILE,S
CRFILE=JOBFILE,S

SEGNAME=ATTNDSEG,SEGTYPE=KM, PARENT=EMPINFO, CRFILE=EDUCFILE,CRKEY=EMP_ID,5
SEGNAME=COURSEG, SEGTYPE=KLU,PARENT=ATTNDSEG,CRFILE=EDUCFILE,S

Information Builders

The EMPLOYEE Data Source

The EMPLOYEE Structure Diagram

STRUCTURE COF FOCUS

EMPI NFO
01 s1
kkkkkkkkkkhkkk
*EMP_I D *

*LAST_NAME ~ **
*FI RST_NAME **
*H RE_DATE **

* * %
I

dokok ok ok ok ok ok kK k ok ok

02 1 U
.
*BANK_NAME ~ *
*BANK_CODE ~ *
*BANK_ACCT *
* EFFECT_DATE *
* *

dokok ok ok ok ok ok kK k ok ok

P
[
| SECSEG
05 | KLU
SEC_CLEAR
JOBFI LE

Developing Applications

_______ PR
[
| PAYI NFO
03 1 SH
AARREEEE A A AR
*DAT_INC ~ **
*PCT_INC **
*SALARY * k
* JOBCODE *
* * k

Kokok ok ok ok ok ok ok ok ok ok ok ok

KR KKK K kKKK Kk kK

JOBSEG
04 KU
JOBCCDE K
JOB_DESC

| JOBFILE
[
-------- +
[
| SKI LLSEG
06 | KL
. SKILLS
: SKI LL_DESC
JOBFI LE

_______ P
[
| ADDRESS
07 I si
.
*TYPE *

* ADDRESS_LN1 **
* ADDRESS_LN2 **
* ADDRESS_LN3 **

* **
Kokok ok ok ok ok ok ok ok ok ok ok ok ok

kR KKKk kKKK Kk kK

FI LE EMPLOYEE ON 09/ 15/ 00 AT 10. 16. 27

08 |

Hokok ok ok ok ok ok ok ok k ok ok

*PAY_DATE *x

* GROBS *x
* * k
. .
* * k

Kok ok ok ok ok ok ok ok ok ok ok ok ok

kRKK KK kKKK K * kK

|
|
|
| DEDUCT
09 I Sl

KRKK KK kKKK K Kh kK

*DED_CODE *x

*DED_AMT *x
* * %
* * k
* * %

I

Hokok ok ok ok ok ok ok ok k ok ok

-------- +
|
| ATTNDSEG
10 | KM
: DATE_ATTEND : :
EMP_ID K
| EDUCFI LE
|
|
| COURSEG
11 I KLU
: COURSE_CODE
: COURSE_NAMVE
EDUCFI LE

A-5

Master Files and Diagrams

The JOBFILE Data Source

The JOBFILE data source contains information on a company’s job positions. Its

segments are:

» JOBSEG describes what each position is. The field JOBCODE in this segment is

indexed.

e SKILLSEG liststhe skills required by each position.

e SECSEG specifies the security clearance needed, if any. This segment is unique.

The JOBFILE Master File

FILENAME=JOBFILE ,SUFFIX=FOC
SEGNAME=JOBSEG ,SEGTYPE=51
FIELD=JOBCODE »ALIAS=JC
FIELD=JOB_DESC LALIAS=JD
SEGNAME=SKILLSEG ,SEGTYPE=51
FIELD=3SKILLS SALIAS=
FIELD=SRILL_DESC ,ALIAS=SD
SEGNAME=SECSEG ,SEGTYPE=U
FIELD=SEC_CLEAR ,ALIAS=3C

The JOBFILE Structure Diagram

A-6

SECTION 01

STRUCTURE OF FOCUS

JOBSEG
01 31
Ez. 2 T Tz r o o oz z r 3
*I0BCODE
=J0B_DESC

k.3
k.3

SRR]

k.3

~i

I

— -

02 03 I 5

,USAGE=A3
,USAGE=AZ5
»PARENT=JOBSEG
»USAGE=R4
SUSAGE=A30
»PARENT=JOBSEG
,USAGE=RBb

FILE JOBFILE ON

SECSEG I SKILLSEG
u

=3EC_CLEAR

E

=3KILLS
=3KILL_DESC
k.3

E

ok ok ok %

k.3
E
k.3

k.3

PPEEE

I

» INDEX=1

[— [—

L3 L LD

-

01,0596 AT 14.40.06

Information Builders

The EDUCFILE Data Source

The EDUCFILE Data Source

The EDUCFILE data source contains data on a company’ s in-house courses. Its segments
are

COURSEG contains data on each

course.

ATTNDSEG specifies which employees attended the courses. Both fieldsin the
segment are key fields. Thefield EMP_ID in this segment isindexed.

The EDUCFILE Master File

F
3

3

The EDUCFILE S

ILENAME=EDUCF ILE ,SUFFIX=FOC
EGNAME=COURSEG ,SEGTYPE=31
FIELD=COURSE_CODE ,ALIAS=CC
FIELD=COURSE_NAME ,ALIAS=CD
EGNAME=ATTNDSEG ,SEGTYPE=SHZ
FIELD=DATE_ATTEND ,ALIAS=DA
FIELD=EMP_ID SALIAS=EID

tructure Diagram

SECTION 01
STRUCTURE OF FOCUS
COURSEG
01 51

s e s)
*COURSE_CODE sex
*COURSE_NAME =6
»* £
* E
* E
s S a2

030 JoE3eE a0 oo oo e

ATTNDSEG
0z 3H2

oo oo oo oo oo e
*DATE_ATTEND ===
=EMP_ID

k3

I
I
I
I
I

k.3

1143

k.3

o ef- oo e ek et
oo oo oo Sef-eE-ef - o

Developing Applications

»USAGE=Ab6
,USAGE=A30
, PARENT=COURSEG

SUSAGE=16YMD

SUSAGE=A3

FILE EDUCFILE OM

Ll Ll

» INDEX=1

01-05-96 AT 14.45.44

A-7

Master Files and Diagrams

The SALES Data Source

The SALES data source records sales data for a dairy company (or astore chain). Its
segments are:

» STOR_SEG lists the stores buying the products.
» DAT_SEG contains the dates of inventory.

* PRODUCT contains sales data for each product on each date. Note the following
about fieldsin this segment:

e« ThePROD_CODE field isindexed.
* The RETURNS and DAMAGED fields have the MISSING=0N attribute.

The SALES Master File

A-8

FILENAME=KSALES, SUFFIX=FOC,

SEGNAME=STOR_SEG, SEGTYPE=31,
FIELDNAME=STORE_CODE, ALIAS=SMO, FORMAT=-A3, §

FIELDNAME=CITY, ALIAS=CTY, FORWAT=-A15, 3%
FIELDNAME=AREA, ALIAS-LOC, FORMAT=A1l, 3§

SEGNAME=DATE_SEG, PARENT=STOR_SEG, SEGTYPE=5SH1,
FIELDNAME=DATE, ALIAS=DTE, FORMAT=A4MD, 3

SEGNAME=FRODUCT, PARENT-DATE_SEG, SEGTYPE=351,
FIELDNAME=FROD_CODE, ALIAS=FCODE, FORMAT=A3, FIELDTYFPE=1, §
FIELDNAME=UNIT_SOLD, ALIAS=50LD, FORMAT=15,
FIELDNAME=RETAIL_PRICE, ALIAS=RP, FORMAT=D5.2M, 5
FIELDNAME=DELIVER_AMNT, ALIAS=5SHIP, FORMAT=15,
FIELDNAME=0PENING_AMNT, ALIAS=INV, FORMAT=15,
FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=13, MISSING=0N, S
FIELDNAME=DAMAGED, ALIAS=BAD, FORMAT=13, MISSING=0N, S

Information Builders

The SALES Data Source

The SALES Structure Diagram

SECTION 01
STRUCTURE OF FOCUS FILE SALES 0N 01-05-90 AT 14.50.28
STOR_SEG
o1 51

oS- ool JoE e -JeE- oo oo
=3TORE_CODE
=CITY
*REA

PEEL S

DATE_SEG
0z SH1
R
=DATE

FRODUCT
31

=PROD_CODE =]
“INIT_SOLD ==
*RETAIL_PRICE==
*DELIVER_AMT s
E 3 N

o300 -0 -J0E- oo e e
30000 -oE- oo e

Developing Applications A-9

Master Files and Diagrams

The PROD Data Source

The PROD data source lists products sold by adairy company. It consists of one
segment, PRODUCT. The field PROD_CODE is indexed.

The PROD Master File

FILE=KFROD, SUFFIX=FOC,

SEGMENT=FRODUCT, SEGTYPE=51,
FIELDNAME=PROD_CODE, ALIAS=PCODE., FORMAT=A3, FIELDTYPE=I, §
FIELDNAME=FROD_NAME, ALIAS=ITEM, FORMAT=A15, 35
FIELDNAME=PACKAGE, ALIAS=SIZE, FORMAT=A1Z, §
FIELDNAME=UNIT_COST, ALIAS=COST, FORMAT=D5.2M, 5

The PROD Structure Diagram

SECTION 01
STRUCTURE OF FOCLE FILE FROD OH 81-65-94 AT 14.57.38
FRODUCT
01 31

wPROD_CODE ~ wsl
«PROD_MAHE = ==
=PACKAGE -
wNIT_COST =

HAEASAAHARAHSR

A-10 Information Builders

The CAR Data Source

The CAR Data Source

The CAR data source contains specifications and sales information for rare cars. Its

segments are;
e ORIGIN lists the country that manufactures the car. The field COUNTRY is
indexed.

* COMP contains the car name.

* CARREC contains the car model.

» BODY liststhe body type, seats, dealer and retail costs, and units sold.

» SPECSIists car specifications. This segment is unique.

« WARANT lists the type of warranty.

* EQUIP lists standard equipment.

The aliasesin the CAR Master File are specified without the ALIAS keyword.

The CAR Master File

FILENAME=CAR, SUFF IX=FOC
SEGNAME=ORIGIN,SEGTYPE=51
FIELDNAME=COUMTRY , COUNTRY, 410, FIELDTYPE=1,5
SEGNAME=COMP, SEGTYPE=31, PARENT=0ORIGIN
FIELDHAME=CAR,CARS,A16,5
SEGNAME=CARREC , SEGTYPE=51, PARENT=COMP
FIELDNAME=MODEL , MODEL , 424, 5
SEGNAME=BODY, SEGTYPE=51, PARENT=CARREC
FIELDNAME=BODYTYPE, TYPE,A12,5
FIELDNAME=SEATS,SEAT, 13,5
FIELDNAME=DEALER_COST,DCOST,D?.5
FIELDNAME=RETAIL_CDST,RCOST,D?.5
FIELDNAME=SALES,UNITS, 16,5
SEGNAME=SPECS ,SEGTYPE=U, PARENT=BODY
FIELDNAME=LENGTH,LEN,D5,5
FIELDNAME=WIDTH,WIDTH,D5,5
FIELDNAME=HEIGHT ,HEIGHT,D5,5
FIELDNAME=WEIGHT ,WEIGHT,D6,5
F IELDNAME=WHEELBASE, BASE,D6.1,5
FIELDNAME=FUEL_CAP,FUEL,D6.1,5
FIELDMAME=BHP ,POUER, D6, 5
FIELDNAME=RPM,RPH, I5,5
FIELDMAME=MPG,MILES,D6,5
F IELDNAME=ACCEL , SECONDS, D6, 5
SEGNAME=WARANT , SEGTYPE=51, PARENT=COMF
FIELDNAME=UARRANTY ,UARR, A40,5
SEGNAME=EQUIP , SEGTYPE=51, PARENT=COMP
FIELDHAME=STANDARD .EQUIF.A40 .5

Developing Applications A-11

Master Files and Diagrams

The CAR Structure Diagram

A-12

SECTION 01

STRUCTURE OF FOCUS

DRIGIN
01 51

*COUNTRY

*

LI B

LI B 3
FEE L

FILE CAR

RREC

bt
Lo
(=3

03

I
I WARANT
06 I 51

I
I EQUIP
07 I 51

*MODEL

FEE R

LI B

*ARRANTY

»

FEiEd

*
*
*

=3TANDARD

E

PEEEY

»*
»*
»*

e]

BODY
51

04

i

=BODYTYPE
=5EATS
=DEALER_COST
=RETAIL_COST

»*

I3

e]

SPECS

05 u
=LENGTH *
= IDTH *
=HEIGHT *
=YEIGHT *
E E

ON 01,05-96 AT 14.59.29

Information Builders

The LEDGER Data Source

The LEDGER Data Source

The LEDGER data source lists accounting information. It consists of one segment, TOP.
This data source is specified primarily for FML examples. Aliases do not exist for the
fieldsin this Master File, and the commas act as placehol ders.

The LEDGER Master File

FILENAME=LEDGER, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S2,§
FIELDNAME=YEAR , , FORMAT=fA4, §
FIELDNAME=ACCOUNT, , FORMAT=A4, 5
FIELDNAME=AMOUNT , , FORMAT=ISC,5

The LEDGER Structure Diagram

SECTION 01
STRUCTURE OF FOCUS FILE LEDGER ON 01-05-96 AT 15.07.56

0P
01 52
3030 o3 0 -JoE- 0300 - o3 oE-JoE- €
=YEAR
=ACCOUNT
=AMOUNT

E

PPEL S

E

¥

Developing Applications A-13

Master Files and Diagrams

The FINANCE Data Source

The FINANCE data source contains financial information for balance sheets. It consists
of one segment, TOP. This data source is specified primarily for FML examples. Aliases
do not exist for the fields in this Master File, and the commas act as placehol ders.

The FINANCE Master File

FILENAME=F INANCE, SUFFIX=FOC,5
SEGNAME=TOP, SEGTYPE=S52,5
FIELDNAME=YEAR , , FORMAT=n4, 35
FIELDNAME=ACCOUNT, , FORMAT=A4, 5
FIELDNAME=AMOUNT , , FORMAT=D12C,5

The FINANCE Structure Diagram

SECTION 01
STRUCTURE OF FOCUS FILE FINANCE ON 01-05-96 AT 15.17.08

TOP
01 32
030 oE o e o oo e
=YEAR
=AICCOUNT
=AMOUNT

k.3

PPEL

*

A-14 Information Builders

The REGION Data Source

The REGION Data Source

The REGION data source lists account information for the east and west regions of the
country. It consists of one segment, TOP. This data source is specified primarily for FML
examples. Aliases do not exist for the fields in this Master File, and the commas act as
placeholders.

The REGION Master File

FILENAME=REGION, SUFFIX=FOC,$
SEGNAME=TOP, SEGTYPE=S1,S$
FIELDNAME=ACCOUNT , , FORMAT=A4, §
FIELDNAME=E_ACTUAL, , FORMAT=ISC,§
FIELDNAME=E_BUDGET, , FORHMAT=ISC,5
FIELDNAME=W_ACTUAL, , FORMAT=15C,5
FIELDNAME=W_BUDGET, , FORMAT=15C,5

The REGION Structure Diagram

SECTION 01 STRUCTURE OF FOCUS FILE REGION ON 01-05-96 AT 15.18.48

T0P
01 31
Jof-IuE- oo oo oo JeE-E -
*ACCOUNT
=E_ACTUAL
=E_BUDGET
=) _ACTUAL

k.3

FEELE

i

Developing Applications A-15

Master Files and Diagrams

The COURSES Data Source

The COURSES data source describes education courses. It consists of one segment,
CRSESEGL. Thefield DESCRIPTION has aformat of TEXT (TX).

The COURSES Master File

FILENAME=COURSES, SUFFIX=FOC,

SEGNAME=CRSESEG1, SEGTYPE=51,

FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=Ab, FIELDTYPE=I,
FIELDNAME=COURSE_NAME, ALIAS=CN, FORMAT=A30,
FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=I3,
FIELDNAME=DESCRIPTION, ALIAS=CDESC, FORMAT=TX50,

L r Ly B Ly By

The COURSES Structure Diagram

SECTION o1
STRUCTURE OF FOCUZ FILE COURSES OH @1-05-% AT 15.20.59
CREESEGL
21 31

wCOURSE_CODE wsl
wCOURSE_HAHE wo
«DURATION ww
»DESCRIPTION w=T

ELELELELE L LT

A-16 Information Builders

The EMPDATA Data Source

The EMPDATA Data Source

The EMPDATA data source contains organizational data about a company’s employees.
It consists of one segment, EMPDATA. Note the following:

* ThePIN field isindexed.
* The AREA field isatemporary one.

The EMPDATA Master File

FILENAME=EMPDriTA, SUFFIX=FOC
SEGNAME=EMPDATA, SEGTYPE=S1

FIELDNAME=FIN, ALIAS=ID, FORMAT=A9, INDEX=I,]
FIELDNAME=LASTNAME , ALIAS=LN, FORMAT=A15,]
FIELDNAME=F IRSTNAME , ALIAS=FN, FORMAT=A10, 5
FIELDNAME=MIDINITIAL, ALIAS=MI, FORMAT=A1,]
FIELDNAME=DIV, ALIAS=CDIV, FORMAT=A4, 5
FIELDNAME=DEPT, ALIAS=CDEPT, FORMAT=nZ20,]
FIELDNAME=JOBCLASS, ALIAS=CJCLAS, FORMAT=A8, 5
FIELDNAME=TITLE, ALIAS=CFUNC, FORMAT=nZ20,]
FIELDNAME=SALARY, ALIAS=CSAL, FORMAT=D12.2M, 5
FIELDNAME=HIREDATE, ALIAS=HDAT, FORMAT=YMD,]

9
DEFINE AREA-A13=DECODE DIV (NE ’NORTH EASTERN’ SE *SOUTH EASTERN’
CE 'CENTRAL’ WE 'WESTERN' CORP ‘CORPORATE' ELSE ' INVALID AREA’):5

The EMPDATA Structure Diagram

SECTION 01 STRUCTURE OF FOCUS FILE EMPDATA ON 01-05-96 AT 14.49.09

EMPDATA
01 31
oo oo - oo -JaE-Jef 3o -JuE- e -
=P IN s]
=LASTNAME e
*FIRSTHAME =~ s
=MIDINITIAL ==

k.3 N

Developing Applications A-17

Master Files and Diagrams

The EXPERSON Data Source

The EXPERSON data source contains personal data about individual employees. It
consists of one segment, ONESEG.

The EXPERSON Master File

FILE=EXPERSON »SUFFIX=FOC
SEGMENT=0OMESEG, 5

FIELDNAME=30C_SEC_NO »ALTAS=535N »USAGE=A9 .9
FIELDNAME=FIRST_NAME JALIAS=FN sUSAGE=A9 9
FIELDNAME=LAST_NAME »ALIAS=LN »USAGE=A10 .9
FIELDNAME=AGE JALIAS=YEARS JUSAGE=12 9
FIELDNAME=SEX SALIAS= »USAGE=A1 .9
FIELDNAME=MARITAL_STAT ,ALIAS=MS sUSAGE=f1 9
FIELDNAME=NO_DEF »ALIAS=NDF SUSAGE=13 .9
FIELDNAME=DEGREE JALIAS= JUSAGE=A3 9
FIELDNAME=ND_CrARS »ALIAS=CARS SUSAGE=13 .9
F IELDNAME=ADDRESS JALIAS= JUSAGE=f14 9
FIELDNAME=CITY SALIAS= »USAGE=A10 .9
FIELDNAME=WAGE JALIAS=PAY ;USAGE=D10.2Z8M ,5
FIELDNAME=CATEGORY SALIAS=5TATUS »USAGE=A1 .9
FIELDNAME=SKILL_CODE JALIAS=SKILLS sUSAGE=A5 9
FIELDNAME=DEFPT_CODE »ALIAS=WHERE »USAGE=A4 .9
FIELDNAME=TEL_EXT JALTAS=EXT JUSAGE=14 9
FIELDNAME=DATE_EMP SALIAS=BASE_DATE SUSAGE=16YMTD .9
FIELDNAME=MULTIPLIER SALIAS=RATIO sUSAGE=D5.3 5

The EXPERSON Structure Diagram

SECTION 01
STRUCTURE OF FOCUS FILE EXPERSON ON 01-05-96 AT 14.50.58
ONESEG
01 51

oS- JoE ook JeE oo~
#530C_SEC_NO =
#F IRST_NAME 2=
#LAST_NAME 2=
+#AGE

S
* N

3

A-18 Information Builders

The TRAINING Data Source

The TRAINING Data Source

The TRAINING data source contains training course data for employees. It consists of

one segment, TRAINING. Note the following:

« ThePIN field isindexed.

* The EXPENSES, GRADE, and LOCATION fields have the MISSING=ON

attribute.

The TRAINING Master File

FILENARE=TRAINING, SUFFIX=FOC
SEGNAME=TRAINING, SEGTYPE=35H3

FIELDNAME=FIN,
FIELDNAME=COURSESTART .,
FIELDNAHE=COURSECODE ,
FIELDNAHE=EXPENSES.,

F IELDNANE=GRADE ,
FIELDNAHE=LOCAT ION,

AL Ins=1D,

AL IAS=C3TART,
AL IAS=CCOD,
AL IAS=COST,
AL IAS=GRA ,

AL IAS=L0C,

The TRAINING Structure Diagram

SECTION o1

STRUCTURE OF FOCIES

TRATHING
01 SH3
A EHHHHHHE S - -
=P IN]
#COURSESTART ==
=COURSECODE wm
=EXPENSES Wl
- £
A s S HHHHHES eSS
-

Developing Applications

FORMAT =R,
FORMAT=YHD,
FORHAT=A7,
FORMAT=DE .2,
FORAAT=AZ ,
FORRAT =6 ,

INDEX=1,

5
5
5
MISSING=0M,5
MISSING=0M,5
MISSING=0N,5

FILE TRAINING ON 1£-1Z2-94 AT 14.51.28

A-19

Master Files and Diagrams

The PAYHIST File

The PAYHIST data source contains the employees salary history. It consists of one
segment, PAY SEG. The SUFFIX attribute indicates that the datafileis a fixed-format
sequentia file.

The PAYHIST Master File

FILENAME=PAYHIST, SUFFIX-FIX
SEGMENT=PAYSEG,5

FIELDNAME=SOC_SEC_NO, ALIAS=5SN. USAGE=A9, ACTUAL=A9,S
FIELDNAME=DATE_OF_IN, ALIAS=INCDATE, USAGE=I6YMTD, ACTUAL=AG,5
FIELDNAME=ANMT_OF_INC, ALIAS=RAISE, USAGE=Db6 .2, ACTUAL=A10,5
FIELDNAME=PCT_INC, ALIAS=, USAGE=D6.2, ACTUAL=A6,S
FIELDNAME=NEW_SAL, ALIAS=CURR_SAL, USAGE=D10.Z, ACTUAL=A11,5
FIELDNAME=F ILL, ALIAS=, USAGE=A38, ACTUAL=A38,5

The PAYHIST Structure Diagram

SECTION 01 STRUCTURE OF FIXx FILE PAYHIST ON 01-05-96 AT 14.51.53
PAYSEG
01 31

*30C_SEC_ND =
*DATE_OF_IN s
*AMNT_OF _INC s
=PCT_INC e

* -

A-20 Information Builders

The COMASTER File

The COMASTER File

The COMASTER fileisused to display the file structure and contents of each segment in
adata source. Since COMASTER is used for debugging other Master Files, a
corresponding FOCEXEC does not exist for the COMASTER file. Its segments are;

FILEID listsfileinformation.
RECID lists segment information.
FIELDID listsfield information.
DEFREC lists a description record.
PASSREC lists read/write access.

CRSEG lists cross-reference information for segments.

ACCSEG lists DBA information.

Developing Applications

A-21

Master Files and Diagrams

The COMASTER Master File

FILE=COMASTER, SUFFIX=COM,

SEGNAME=FILEID

FIELDNAME=FILENAME ,FILE A8, :
FIELDNAME=FILE SUFFIX ,SUFFIX A8, .9

SEGNAME=RECID

F IELDNAME=SEGNAME »SEGMENT A8 .9
FIELDNAME=SEGTYFE »3EGTYPE A1, .9
FIELDNAME=SEGS IZE »3EGSIZE 4, a5
FIELDNAME=PARENT ,PARENT A8 .9
FIELDNAME=CRKEY »UKEY ,Abb,)9

SEGNAME=FIELDID

FIELDNAME=FIELDNAME ,FIELD ,Abb,)9
FIELDNAME=ALIAS »SYNONYM ,AB6, .3
FIELDNAME=FORMAT SUSAGE A8,)9
FIELDNAME=ACTUAL »ACTUAL A8,)9
FIELDNAME=AUTHORITY ,AUTHCODE A8,)9
FIELDNAME=FIELDTYFE ,INDEX A8, .9
FIELDNAME=TITLE ,TITLE SAb4, .9
FIELDNAME=HELPMESSAGE , MESSAGE SAZ56, .9
FIELDNAME=MISSING SMISSING A4, .9
FIELDNAME=ACCEPTS »ACCEPTABLE ,AZ55, .9
F IELDNAME=RESERVED »RESERVED A4, .9

SEGNAME=DEFREC

FIELDNAME=DEFINITION ,DESCRIPTION,A44, .5
SEGNAME=PASSREC, PARENT=F ILEID
FIELDNAME=READ-UWRITE ,RW ,A32, .5
SEGNAME=CRSEG , PARENT=RECID

FIELDNAME=CRF ILENAME ,CRFILE A, .5
FIELDNAME=CRSEGNAME ,CRSEGMENT ,ng@ ,]
FIELDNAME=ENCRYPT ,ENCRYPT At ,]
SEGNAME=ACCSEG, PARENT=DEFREC

FIELDNAME=DBA ,DBA A8 .9
FIELDNAME=DBAF ILE . A8 .9
FIELDNAME=USER ,PASS A8 .9
F IELDNAME=ACCESS »ACCESS A8 ,)9
FIELDNAME=RESTRICT ,RESTRICT ,n8 ,)9
F IELDNAME=NAME »NAME ,Abb,)9
F IELDNAME=VALUE »VALUE ,A80,)9

A-22 Information Builders

The COMASTER File

The COMASTER Structure Diagram

SECTIDN 01
STRUCTURE OF EXTERNAL FILE COMASTER ON 12-12-94 AT 14.53.38

FILEID
01 51
PR BB
=F ILENAME b
*FILE SUFFIX ==

* Ed
* 363
»* s
NN MR NEIEN
e R
I
— +
I I
I RECID I PASSREC
02 IN 07 IN
*SEGNANE »x =READ/URITE 3=
*3EGTYPE % x b
*3EGSIZE % x b
=PARENT xx e
»* 3 * 3
I
— +
I I
I FIELDID I CRSEG
03 IN 06 IN
*FIELDNAME =x =CRFILENAME 3=
*ALIAS »x =*CRESEGNAME =
=FORMAT =% =ENCRYPT b
=ACTUAL % x b
* Ed * 3
I
I
I
I DEFREC
04 IN
B
=DEFINITION =
* Ed
* Ed
* Ed
* Ed
SIS SIS
B
I
I
I
I ACCSEG
05 IN
=DBA =
=DBAFILE x
«ISER 3
*ACCESS 3
Ed

*

I

Developing Applications

A-23

Master Files and Diagrams

The VideoTrk and MOVIES Data Sources

The VideoTrk data source tracks customer, rental, and purchase information for avideo
rental business. It can be joined to the MOV IES data source. VideoTrk and MOVIES are
used in examples that illustrate the use of the Maintain facility.

VideoTrk Master File

FI LENAVE=VI DEOTRK, SUFFI X=FQCC

SEGNAMVE=CUST, SEGTYPE=S1
FI ELDNAME=CUSTI D, ALl AS=CI N, FORNVAT=A4, $
FI ELDNAVE=LASTNANME, ALl AS=LN, FORVAT=A15, $
FI ELDNAVE=FI RSTNANE, ALl AS=FN, FORVMAT=A10, $
FI ELDNAVE=EXPDATE, ALl AS=EXDAT, FORMAT=YMD, $
FI EL DNAMVE=PHONE, ALl AS=TEL, FORVAT=A10, $
FI ELDNAMVE=STREET, ALl AS=STR, FORVAT=A20, $
FI ELDNAMVE=CI TY, ALl AS=CI TY, FORVMAT=A20, $
FI ELDNAVE=STATE, ALl AS=PROV, FORVAT=A4, $
FI ELDNAVE=ZI P, ALI AS=POSTAL _ CCDE, FORVAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH]1, PARENT=CUST
FI ELDNAVE=TRANSDATE, ALl AS=QUTDATE, FORVMAT=YMD, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FI EL DNAME=PRODCCDE, ALl AS=PCCD, FORNMAT=A6, $
FI ELDNAVE=TRANSCCDE, ALl AS=TCCD, FORMAT=I 3, $
FI ELDNAMVE=QUANTI TY, ALl AS=NG, FORMAT=I 3S, $
FI ELDNAME=TRANSTOT, ALl AS=TTOT, FORMAT=F7. 2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
FI ELDNAVE=MOVI ECCDE, ALl AS=MCCD, FORVMAT=A6, | NDEX=I, $
FI ELDNAMVE=COPY, ALl AS=COPY, FORMAT=I 2, $
FI ELDNAVE=RETURNDATE, ALI AS=I| NDATE, FORVAT=YMD, $
FI ELDNAVE=FEE, ALI AS=FEE, FORMAT=F5. 2S, $
MOVIES Master File
FI LENAME=MOVI ES, SUFFI X=FOC
SEGNAVE=MOVI NFO, SEGTYPE=S1
FI ELDNAME=MOVI ECCDE, ALl AS=MCCD, FORMAT=A6, | NDEX=I, $
FI ELDNAVE=TI TLE, ALl AS=MTL, FORVAT=A39, $
FI ELDNAVE=CATEGORY, ALl AS=CLASS, FORNAT=AS, $
FI ELDNAVE=DI RECTOR, ALl AS=DI R, FORMAT=A17, $
FI ELDNAVE=RATI NG, ALl AS=RTG, FORVAT=A4, $
FI ELDNAVE=RELDATE, ALl AS=RDAT, FORVAT=YMD, $
FI ELDNAME=VWHOLESALEPR, ALI AS=WPRC, FORVAT=F6.2, $
FI ELDNAVE=LI STPR, ALl AS=LPRC, FORVMAT=F6. 2, $
FI ELDNAMVE=COPI ES, ALl AS=NCC, FORMAT=I 3, $

A-24 Information Builders

The VideoTrk and MOVIES Data Sources

SECTI ON 01

VideoTrk Structure Diagram

STRUCTURE OF FOCUS

CusT
01 S1
*kkkkkkkkkkkkkk
*CUSTI D *x
* LASTNAVE *x
*FI RSTNAMVE ~ **
* EXPDATE *x

* * %
*kkkkkkkkkkkkkkk

*kkkkkkkkkkkkk*x

02 SH1

*kkkkkkkkkkkkk*x

*TRANSDATE ~ **

* * %
* * %
* * %
* * %

kkkkkkkkkkkkkk

*kkkkkkkkkkkkk*x

I SALES
03 | S2
kkkkkkkkkkkkk
* PRODCCDE *x
*TRANSCCDE ~ **
*QUANTI TY *x
* TRANSTOT *x

* * %
*kkkkkkkkkkkkkk*x

khkkkkkkkkkkkkk

Developing Applications

TRANSDAT

| RENTALS

04 I 82

*kkkkkkkkkkkkk*x

*MOVI ECODE **|

* COPY *x
*RETURNDATE ~ **
*FEE *e
* * *

*kkkkkkkkkkkkkk*x

khkkkkkkkkkkkkk

FI'LE VIDEOTRK ON 05/21/99 AT 12.25.19

A-25

Master Files and Diagrams

MOVIES Structure Diagram

SECTI ON 01
STRUCTURE OF FOCUS FILE MOVIES ON 05/21/99 AT 12.26.05
MOVI NFO
01 S1

*kkkkkkkkkkkkkk

*MOVI ECODE - **
*TITLE *x
* CATEGORY *x
*DI RECTOR *x

* * %
*kkkkkkkkkkkkkkk

*kkkkkkkkkkkkk*x

The VIDEOTR2 Data Source

The VIDEOTR2 data source tracks customer, rental, and purchase information for a
video rental business. Itissimilar to VideoTrk but is a partitioned data source with both
aMaster and Access File and with a date-time field.

The VIDEOTR2 Master File

FI LENAME=VI DECTR2, SUFFI X=FCC,
ACCESS=VI DEOACX, $

SEGNAME=CUST, SEGTYPE=S1
FI ELDNAME=CUSTI D, ALI AS=CI N, FORVAT=A4, $
FI ELDNAVE=LASTNANME, ALl AS=LN, FORVAT=ALS, $
FI ELDNAVE=FI RSTNAME, ALl AS=FN, FORVAT=AL0, $
FI ELDNAVE=EXPDATE, ALI AS=EXDAT, FORVAT=YMD, $
FI EL DNAVE=PHONE, ALl AS=TEL, FORVAT=AL0, $
FI ELDNAME=STREET, ALl AS=STR, FORVAT=A20, $
FI ELDNAMVE=CI TY, ALI AS=CI TY, FORVAT=A20, $
FI ELDNAVE=STATE, ALl AS=PROV, FORVAT=A4, $
FI ELDNAVE=ZI P, ALl AS=POCSTAL_CODE, FORVAT=A9, $
FI ELDNAVE=EMAI L, ALI AS=EMAI L, FORVAT=A18, $
SEGNAVE=TRANSDAT, SEGIYPE=SH1, PARENT=CUST
FI EL DNAVE=TRANSDATE, ALl AS=OUTDATE, FORVAT=HYYMDI , $
SEGNAMVE=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FI EL DNAVE=TRANSCCDE, ALl AS=TCOD, FORVAT=I 3, $
FI ELDNAVE=QUANTI TY, ALl AS=NQ, FORVAT=I 3S, $
FI ELDNAVE=TRANSTOT, ALI AS=TTOT, FORVAT=F7. 2S, $
SEGNAME=RENTALS, SEGIYPE=S2, PARENT=TRANSDAT
FI EL DNAME=MOVI ECCDE, ALl AS=MCQOD, FORVAT=A6, | NDEX=I, $
FI ELDNAME=COPY, ALI AS=CCPY, FORVAT=I 2, $
FI ELDNAVE=RETURNDATE, ALl AS=I NDATE, FORVAT=YND, $
FI ELDNAVE=FEE, ALl AS=FEE, FORVAT=FS. 2S, $

DEFI NE DATE/ | 4 = HPART(TRANSDATE, 'YEAR , '14");

A-26 Information Builders

The VIDEOTR2 Data Source

The VIDEOTR2 Access File

On CMS,

MASTER VI DECTR2
DATANAME ' VI DPART1 FOCUS A
VWHERE DATE EQ 1991;

DATANAME ' VI DPART2 FOCUS A'
WHERE DATE FROM 1996 TO 1998,

DATANAME ' VI DPART3 FOCUS A'
WHERE DATE FROM 1999 TO 2000;

On MV, the data set names include your user ID asthe high-level qualifier:

MASTER VI DEOTR2
DATANAME useri d. VI DPART1. FOCUS
WHERE DATE EQ 1991,

DATANAME useri d. VI DPART2. FOCUS
WHERE DATE FROM 1996 TO 1998;

DATANAME useri d. VI DPART2. FOCUS
WHERE DATE FROM 1999 TO 2000;

Developing Applications

A-27

Master Files and Diagrams

The VIDEOTR2 Structure Diagram

STRUCTURE COF FOCUS

A-28

cusT
01 s1

*kkkkkkkkkkkkkk
*CUSTI D *

*LASTNAME ~ **
*FI RSTNAME ~ **
* EXPDATE *

* * %
kkkkkkkkkkkkkkkx

*kkkkkkkkkkkkkk

| TRANSDAT

02 I SH1

*kkkkkkkkkkkkkk

*TRANSDATE ~ **

* * %
* * %
* * %
* * %

*kkkkkkkkkkkkkkk

*kkkkkkkkkkkkkk

I SALES
03 I S2
*kkkkkkkkkkkkkk
*TRANSCCDE ~ **
*QUANTI TY *x
*TRANSTOT *x

* * %
* * %
kkkkkkkkkkkkkkk

kkkkkkkkkkkkk

| RENTALS

04 I S2

*kkkkkkkkkkkkk*x

*MOVI ECODE - **

* COPY *e
*RETURNDATE ~ **
*FEE *x

*kkkkkkkkkkkkkk*x

kkkkkkkkkkkkk

FI'LE VIDEOTR2 ON 09/27/00 AT 16. 45. 48

Information Builders

The Gotham Grinds Data Sources

The Gotham Grinds Data Sources

Gotham Grindsis a group of data sources that contain information about a specialty items
company.

The GGDEMOG Data Source

The GGDEMOG data source contains demographic information about the customers of
Gotham Grinds, a company that sells specialty items like coffee, gourmet snacks, and
gifts. It consists of one segment, DEMOGOL.

The GGDEMOG Master File

FILENANME=GGDEMOG, SUFFIX=FOC
SEGHNAME=DEMOGH1, SEGTYPE=51
FIELD=ST, ALIAS=EBZ, FORMAT=A@Z, INDEX=I, TITLE='State’, DESC='State’.§

FIELD=HH, ALIAS=EB3, FORMAT=189, TITLE='Number of Households’.
DESC='Number of Households’,S

FIELD=AUGHHSZ98, ALIAS=EA4, FORMAT=189, TITLE=’Average Household Size’,
DESC=' fiverage Household Size'.$

FIELD=MEDHHI98, ALIAS=EAS, FORMAT=IA9, TITLE="Median Household Income’,
DESC='Median Household Income’,$

FIELD=AUGHHIY98, ALIAS=EHG, FORMAT=189, TITLE='Average Household Income’,
DESC="Average Household Income’ ,5

FIELD=MALEFOP98, ALIAS=EB7, FORMAT=189, TITLE='Male Population’,
DESC="Male Population’,$

FIELD=FEMPOP98, ALIAS=EH8, FORMAT=189, TITLE='Female Populatiom’,
DESC="Fenmale Population’,$

FIELD=P15T01998, ALIAS=E@9, FORMAT=189, TITLE='15 to 19°,
DESC='Population 15 to 19 years old’.$

FIELD=PZAT0Z998, ALIAS=E18, FORMAT=189, TITLE='ZA to Z9°,
DESC='Population 28 to 29 years old’,$

FIELD=P38T04998, ALIAS=E11, FORMAT=189, TITLE='38 to 49',
DESC="Population 38 to 49 years old’ .S

FIELD=-P58T06498, ALIAS=E1Z, FORMAT=189, TITLE='58 to 64°,
DESC="Population 58 to 64 years old’,5

FIELD=P650VUR98, ALIAS=E13, FORMAT=IA9, TITLE="65 and over’,
DESC='Population 65 and over’,S

Developing Applications A-29

Master Files and Diagrams

The GGDEMOG Structure Diagram

NJUMEER OF ERRORS= u]

NJMEER ©OF 3EGMENTS= 1 [REAL= 1 WVIRTUAL= o)
NUMEER ©OF FIELDS= 1Z2 INDEZXES= 1 FILE3= 1
TOTAL LENGTH OF ALL FIELD3= 101

SECTICH 01

STEUCTURE OF FoOCU3 FILE GGDEMOG CN 03/17/96¢ AT 12.18.05

GGDEMOG
01 =1
FTHEHFHFFHFFTFTFTFTFTFTFS
*ST LS
+ HH wE
*AVGHHSZOE *%
*MEDHHIOS LA
* T

e o o
FTEHFERATFFASTFASS

The GGORDER Data Source

The GGORDER data source contains order information for Gotham Grinds. It consists of
two segments, ORDERO1 and ORDERO2, respectively.

The GGORDER Master File

FILENAME=GGORDER, SUFFIX=FOC
SEGNAME=0RDERB1, SEGTYPE=51
FIELD=0RDER_NUMBER, ALIAS=0RDND1, FORMAT=I6, TITLE='Order,Number’,
DESC="0Order Identification Mumber’,$
FIELD=0RDER_DATE, ALIAS=DATE, FORMAT=MDY, TITLE='Order,Date’,
DESC="Date order was placed’,$
FIELD=STORE_CODE, ALIAS=STCD, FORMAT=AS, TITLE='Store,Code’,
DESC="Store Identification Code (for order)’ .S
FIELD=PRODUCT CODE, ALIAS=PCD, FORMAT=A4, TITLE='Product,Code’,
DESC="Product Identification Code (for order)’ .S
FIELD=QUANTITY, ALIAS=0RDUNITS, FORMAT=I8, TITLE='Ordered,Units’,
DESC="Quantity Ordered’,5
SEGNAME=0RDERBZ, SEGTYPFE=KU, PARENT=0RDER#1, CRFILE=GGPRODS, CRKEY¥=PCD,
CRSEG=PRODSA1 .5

A-30 Information Builders

The Gotham Grinds Data Sources

The GGORDER Structure Diagram

HOMEEER OF ERRORE= 0
HIMEER OF SERIENTGE= £ | REAL= 1l TIRTTAL= 13
HFOMEER OF FIELDE= 1z IHDEXEZ= 0 FILEE= 2
TOTAL LEEZTH OF ALL FIELDZ= 2z
SECTIOH 01
STRUCTTERE OF FOCTS FILE GGORDER OF 09F17/95 AT 12.:29.:24
GORDER
ol 21

ke ke ke ke ey
*ORDER HUMEER**
*ORDER_DATE %
*BTORE_CODE **
FPRODTET _CODE**
- *r
ke ok ke ko ke
ke ko ke ke ke

(PRODOCT_ID K
:PRODTCT _DES>:
(JENDOR _CODE -
UENDOR_HAME

The GGPRODS Data Source

Developing Applications

The GGPRODS data source contains product information for Gotham Grinds. It consists
of one segment, PRODS01.

The GGPRODS Master File

FILENAME=GGPRODS, SUFFIX=FOC
SEGNAME=PRODSBA1, SEGTYPE=51
FIELD=PRODUCT_ID, ALIAS=PCD, FORMAT=A4, INDEX=I, TITLE='Product,Code’,
DESC='Product Identification Code’.S
FIELD=PRODUCT_DESCRIPTION, ALIAS=PRODUCT, FORMAT=A16, TITLE=’Product’,
DESC='Product Name’,$5
FIELD=VENDOR CODE, ALIAS=UCD, FORMAT=A4, INDEX=I, TITLE='Uendor ID’,
DESC="Vendor Identification Code’,5
FIELD=VENDOR_NAME, ALIAS=VENDOR, FORMAT=AZ3, TITLE="Uendor HName®,
DESC='Uendor Mame’ .S
FIELD=PACKAGE_TYPE, ALIAS=PACK, FORMAT=A7, TITLE=’Package’,
DESC='Packaging Style’,S
FIELD=SIZE, ALIAS=SZ, FORMAT=I1Z, TITLE='Size', DESC='Package Size’,5
FIELD=UNIT_PRICE, ALIAS=UNITPR, FORMAT=D?.Z, TITLE="Unit,Price’,
DESC='Price for one unit’,5

A-31

Master Files and Diagrams

The GGPRODS Structure Diagram

NUMEER ©OF ERROR3= [u]

NUMEBER ©OF SEGHMENTS= 1 [REAL= 1 WIRTUAL= o
NUMEER OF FIELD3= 7 INDEXES= Zz FILES= 1
TOTAL LENGTH OF ALL FIELDS= 63

SECTION 01

ATRUCTURE OF FOCUS FILE GGPRODS oM 09/17/96 AT 12.21.12

GGPRODS
o1 al
EEER BT THETH TS
*PRODUCT ID *+*1I
*VENDOR_CODE #+%1
#PRODUCT DES-#

*VENDOR_MNAME =+
* i

o i ol O e o

The GGSALES Data Source

The GGSALES data source contains sales information for Gotham Grinds. It consists of
one segment, SALESOL.

The GGSALES Master File

FILENAME=GGSALES, SUFFIX=FOC

SEGNAME=3ALESA1, SEGTYPE=31

FIELD=SE]_NO, ALIAS=SE}, FORMAT=IS5, TITLE="Sequence##’,
DESC='Sequence number in database’,5

FIELD=CATEGORY, ALIAS=EBZ, FORMAT=A11, INDEX=1, TITLE=’Category’ .
DESC='Product category',$

FIELD=PCD, ALIAS=EB3, FORMAT-AB4, INDEX=1, TITLE='Product ID’,
DESC='Product Identification code (for sale)’.$

FIELD=PRODUCT, ALIAS=EA4, FORMAT=Al6, TITLE=’Product’, DESC=’Product name’,$

FIELD=REGION, ALIAS=EHS, FORMAT=A11, INDEX=1, TITLE='Region’,
DESC="Region code’,5

FIELD=ST, ALIAS=EA6, FORMAT=ABZ, INDEX=I, TITLE='State’, DESC='State’.§

FIELD=CITY, ALIAS=E@?, FORMAT=A28, TITLE='City’, DESC='City’.5

FIELD=STCD, ALIAS=EAS, FORMAT=ABS, INDEX=I, TITLE='Store ID’,
DESC='Store identification code (for sale)’,$

FIELD=DATE, ALIAS=EA9, FORMAT=I8YYMD, TITLE='Date’,
DESC='Date of sales report’,S

FIELD=UNITS, ALIAS=E18, FORMAT=188, TITLE="Unit Sales’,
DESC="Number of units sold’,§

FIELD=DOLLARS, ALIAS=E11, FORMAT=188, TITLE="Dollar Sales’,
DESC='Total dollar amount of reported sales’,$

FIELD=BUDUNITS, ALIAS=E1Z, FORMAT=IA8, TITLE='Budget Units’,
DESC='Number of units budgeted’,$

FIELD=BUDDOLLARS, ALIAS=E13, FORMAT=1B8, TITLE='Budget Dollars’,
DESC='Total sales guota in dollars’,5

A-32 Information Builders

The Gotham Grinds Data Sources

The GGSALES Structure Diagram

NUMEER OF ERRORS= a
NUMEER OF SEGMENTS= 1 | REAL= 1 VIRTUAL= 0O}
NUMEER OF FIELDS= 13 INDEXES= 5 FILES= 1
TOTAL LENGTH OF ALL FIELDS= 114
SECTION 01
STRUCTURE OF FOCUS FILE GGSALES ON 09/17/96 AT 12.22.19
GGISALES
01 51
o ol ol o ol ol
#SEQ NO *%
*CATEGORT *5]
*PCD T
*REGION *a]
+* &

oo o o o o o o o e o ol

TEEETATFTFTATTTTNS

The GGSTORES Data Source

The GGSTORES data source contains information for each of Gotham Grinds' 12 stores
in the United States. It consists of one segment, STORESOL.

The GGSTORES Master File

FILENAME=GGSTORES, 3UFFIX=FOC
SEGNAME=STORESB1, SEGTYPE=51
FIELD=STORE_CODE, ALIAS=EBZ, FORMAT=AHS, INDEX=I, TITLE='Store ID’,
DESC='Franchizee ID Code’.,$
FIELD=STORE_NAME, ALIAS=EB3, FORMAT=nZ3, TITLE='Store Name',
DESC='Store MName’,$
FIELD=ADDRESS1, ALIAS=EA4, FORMAT=A19, TITLE='Contact’,
DESC=’Franchisee Ouwner’,5
FIELD=ADDRESSZ, ALIAS=EBS, FORMAT=A31, TITLE='Address’', DESC="S5treet Address’,5
FIELD=CITY, ALIAS=EBG6, FORMAT=AZ22, TITLE='City’, DESC='City’.S
FIELD=STATE, ALIAS=E@?, FORMAT=ABZ, INDEX=I, TITLE='State’, DESC=’State’,S
FIELD=ZIF, ALIAS=EBS, FORMAT=AB6, TITLE='Zip Code’, DESC='Postal Code’ .5

Developing Applications A-33

Master Files and Diagrams

A-34

The GGSTORES Structure Diagram

NUMEER OF ERROR3I= o
NUMEER OF SEGHMENTI= 1 | REAL= 1 VIRTUAL=
NUMEER OF FIELD3= 7 INDEXE3= Z FILE3=
TOTAL LENGTH ©OF ALL FIELD3= 108
SECTICN 01

STRUCTURE OF FoOCU3 FILE GG3TORES

GGITORES

o1 31

TEEREEREANTNNNN

*3TORE_CODE *+1

*3TATE %1
*3TORE_MNANE **
*ADDRESS1 ww
* ww

TEERRERRRANNNNE S

FTEREREERATNNNES

oM 09/17/96 AT 12.23.09

Information Builders

APPENDIX B
Error Messages

Topics:
. Accessing Error Files
. Displaying Messages Online

Developing Applications

If you need to see the text or explanation for any error message,
you can display it online in your FOCUS session or find itin a

standard FOCUS ERRORS file. All of the FOCUS error
messages are stored in eight system ERRORS files.

Error Messages

Accessing Error Files

B-2

For CMS, the ERRORS files are:

FOT004
FOG004
FOM004
FOS004
FOA004
FSQLXLT
FOCSTY
FOB004

ERRORS
ERRORS
ERRORS
ERRORS
ERRORS
ERRORS
ERRORS
ERRORS

For MVS, these files are the following members in the ERRORS PDS:

FOTO004
FOG004
FOM004
FOS004
FOA004
FSQLXLT
FOCSTY
FOB004

Information Builders

Displaying Messages Online

Displaying Messages Online

To display a message online, issue the following query command at the FOCUS
command level

?n
where n is the message humber.

The message number and text will display along with a detailed explanation of the
message (if one exists). For example, issuing the following command:

? 210
displaysthe following

(FOC210) THE DATA VALUE HAS A FORVAT ERROR:

An alphabetic character has been found where all numerical digits are
required.

Developing Applications B-3

APPENDIX C

Creating Your Own Subroutines

Topics:

Erocess Overview
Considerations for Writing Subroutines
Igompilation and Storage

Developing Applications

This topic discusses how to create your own private
collection of subroutines to use with FOCUS.

C-1

Creating Your Own Subroutines

Process Overview

C-2

The process of creating a subroutine involves four steps:

1. Write the subroutine for FOCUS the same way you would for a program. Use any
language that supports subroutine calls; among the most common languages are
FORTRAN, COBOL, PL/I, Assembler, and C.

2. Storethe subroutine in a separate file; do not include it in the main program.

3. Compilethe subroutine. In MVS, link-edit it; in CM S, add the subroutine to a load
library using the GENSUBLL command.

4. Test the subroutine; specify it in a FOCUS command, report request, or procedure.

For example, suppose you write a program named INTCOMP that cal cul ates the amount
of money in an account earning simple interest. The program reads arecord, testsif the
datais acceptable, and then calls a subroutine called SIMPLE that computes the amount
of money. The program and the subroutine are stored together in the same file.

The program and the subroutine shown here are written in pseudocode (a method of
representing computer code in a general way):

Begi n program | NTCOWP.
Execute this loop until end-of-file.
Read next record, fields: PRI NCPAL, DATE_PUT, YRRATE.
If PRINCPAL is negative or greater than 100, 000,
rej ect record.
I f DATE_PUT is before January 1, 1975, reject record.
If YRRATE is negative or greater than 20% reject record.
Cal | subroutine SIMPLE (PRI NCPAL, DATE_PUT, YRRATE, TOTAL).
Print PRI NCPAL, YEARRATE, TOTAL.
End of | oop.
End of program

Subroutine SI MPLE (AMOUNT, DATE, RATE, RESULT).
Retrieve today's date fromthe system

Let NO _DAYS = Days from DATE until today's date.
Let DAY_RATE = RATE / 365 days in a year.

Let RESULT = AMOUNT * (NO_DAYS * DAY_RATE + 1).
End of subroutine.

If you move the SIMPLE subroutine into a file separate from the main program and
compileit, you can call the subroutine from FOCUS. The following report request shows
how much money employees would accrue if they invested their salaries in accounts
paying 12%:
TABLE FI LE EMPLOYEE
PRI NT LAST_NAME DAT_I NC SALARY AND COMPUTE

| NVESTEDY D10. 2 = SI MPLE (SALARY, DAT_INC, 0.12, |NVESTED);

BY EMP_ID
END

Information Builders

Considerations for Writing Subroutines

Note: The subroutine is designed to return only the amount of the investment, not today’s
date. Thisis because a subroutine can return only asingle valueto FOCUS each timeitis
called.

Considerations for Writing Subroutines

When you write a subroutine for FOCUS, there are requirements and limits that you need
to consider. The topic provides information about:

Naming conventions
Argument considerations
Programming considerations
Language considerations

A programming technique that uses entry points. Entry points enable you to use one
algorithm to produce different results.

A programming technique that allows multiple subroutine calls. Multiple calls enable
the subroutine to process more than 28 arguments.

Naming Conventions

The subroutine name may consist of up to eight characters, unless the language you are
using to write the subroutine supports a shorter naming convention. Each character can be
aletter or number. The first character of the name must be aletter (A-Z). Special symbols
are not permitted.

Argument Considerations

When you create your arguments, consider these points:

The argument maximum. Subroutine callsin FOCUS may contain up to 28
arguments. However, you can bypass this restriction if you create a subroutine that
accepts multiple calls, as described in Programming Technique: Subroutines With |
More Than 28 Argumentsjon page C-9.

Types of arguments. Subroutine calls can serve as arguments in other subroutine
calls or in FOCUS functions. For types of acceptable arguments and rules, see
Chapter 3, Using Functions and Subroutines.

I nput arguments. FOCUS passes input arguments to subroutines using standard
conventions. Register 1 pointsto the list of argument addresses. Each addressisafull
word.

Developing Applications C-3

Creating Your Own Subroutines

Output arguments. Subroutines may return only one output argument to the FOCUS
request. Place this argument last in the subroutine argument list. Y ou can choose any
format for the output argument except in Dialogue Manager statements.

I nternal processing. When you specify values for arguments and FOCUS passes the
arguments to a subroutine,

Alphanumeric arguments remain unchanged.

Numeric arguments are converted to 8-byte, double-precision data (except in
-CMS RUN and -MV S RUN statements and amper variables, as discussed
below).

Various languages represent double-precision fields as declarations:

Language Declaration

Assembler DS, D

C Double

COBOL COMP-2

FORTRAN REAL*8

PL/I DECIMAL FLOAT (16)

Dialogue M anager requirements. If you are writing a subroutine specifically for
Dialogue Manager, you may need to code your subroutine to perform conversion for
these situations:

Operating system -RUN statements. FOCUS passes all arguments from -CMS
RUN, -TSO RUN, and -MV S RUN statements as al phanumeric data. If your
subroutine requires numeric arguments, you may choose to have your subroutine
convert these arguments into numeric format. Otherwise, the user can use the
ATODBL subroutine to convert the arguments into double-precision format
before passing them to the subroutine. The ATODBL subroutine is described in
Chapter 3, Using Functions and Subroutines.

Operating system -RUN statements and output argument format. If the
subroutineis called from a-CMS or -TSO RUN statement, the output argument
is stored in the output variable in numeric format. Since FOCUS cannot interpret
data stored in Dialogue Manager variables in numeric format, the datais
unreadable. To prevent this, have your subroutine convert the output value into a
character string.

Information Builders

Considerations for Writing Subroutines

e -SET and output argument format. If the output argument isin numeric format,
the -SET statement truncates the output value to an integer, convertsit to a
character string, and stores the value in a specified amper variable. To prevent
this, have your subroutine convert the output value into a character string. This
enables the numeric value to be passed to Dialogue Manager without being
truncated to an integer.

Programming Considerations

When you plan your programming requirements, consider these points:

Write the subroutine as a proper subroutine, not as a function.

If the subroutine initializes variables, it must initialize them each time it is executed
(seria reusability).

Since a single FOCUS request may execute a subroutine hundreds or even thousands
of times, code the subroutine as efficiently as possible.

If you create your own subroutinesin text files or text libraries, the subroutine must
be 31-bit addressable.

Language Considerations

Language considerations include:

Available memory.

If you write the subroutine in alanguage that brings libraries into memory (for
example, FORTRAN and COBOL), the libraries reduce the amount of memory
available to the subroutine.

FORTRAN input/output operations (1/0).

In CMS, FOCUS does not support FORTRAN input/output operations. If a
subroutine written in FORTRAN must read or write data, write the 1/O portionsin a
separate subroutine in another language.

In MV S/TSO, FOCUS does support FORTRAN input/output operations.

PL/I notes:

* Do not use the RETURNS attribute.

* Include the following attribute in the procedure (PROC) statement:
OPTI ONS (COBOL)

Developing Applications C-5

Creating Your Own Subroutines

e Declare alphanumeric arguments received from FOCUS requests as
CHARACTER (n)

where n isthe field length as defined by the FOCUS request. Do not use the
VARYING attribute.

e Declare numeric arguments received from FOCUS requests as
DECI MAL FLOAT (16)
or
BI NARY FLOAT (53)

» Theformat of the output argument to be returned to the FOCUS request depends
on how the format is described in the DEFINE or COMPUTE commands:

FOCUSFormat | PL/I Declaration

An CHARACTER (n) (Do not usethe VARY ING attribute.)
| BI NARY FI XED (31)

F DECI MAL FLOAT (6) Or BINARY FLOAT (21)

D DECI MAL FLOAT (16) Or BI NARY FLOAT (53)

P DECI MAL FI XED (15) (for small packed numbers, 8
bytes)
DECI MAL FI XED (31) (for large packed numbers, 16
bytes)

e Declare variables that are not arguments with the STATIC attribute. This avoids
dynamically allocating these variables every time the subroutine is executed.

C-6 Information Builders

Considerations for Writing Subroutines

e Clanguage notes:
» Do not return avalue with the return statement.
» Declare double-precision fields as ‘double’.

» Theformat of the output parameter to be returned to the FOCUS request
depends on how the format is defined in the request, as shown by the chart
below:

FOCUS For mat C Declaration

An char *xxx n

(Note: Alphabetical fields are not terminated with a
null byte and, therefore, cannot be processed by
many of the string manipulation subroutinesin the
run-time library.)

I ong *Xxxx

float *xxx

doubl e *xxx

T|O| M

No equivalent in C.

Programming Technique: Entry Points

Normally, subroutines are executed starting from their first statement. However, they can
be executed starting from any place in their code if you designate that place as an entry
point. (How you designate entry points depends on the language you are using.) Each
entry point has a name.

To execute a subroutine at an entry point, specify the entry name in the subroutine call
instead of the subroutine name. The general syntax is:

{subroutine|lentrypoint} (inputl, input2,...{'format'|outfield})

Entry points enable a subroutine to use one basic algorithm to produce different results.
For example, the DOWK subroutine cal cul ates the days of the week on which dates fall.
When you specify the subroutine name DOWK, you obtain a 3-letter abbreviation of the
day. If you specify the entry name DOWKL, you obtain the full name. The calculation,
however, is the same.

Developing Applications Cc-7

Creating Your Own Subroutines

Entry Point Example

This example illustrates how entry points work. The FTOC subroutine, written in
pseudocode below, converts Fahrenheit temperatures to Centigrade. The entry point
FTOK (designated by the Entry statement) sets a flag that causes 273 to be subtracted
from the Centigrade temperature (Kelvin temperature). The subroutineis:

Subroutine FTOC (FAREN, CENTI).

Let FLAG = 0.

Go to label X

Entry FTOK (FAREN, CENTI).

Let FLAG = 1.

Label X

Let CENTI = (5/9) * (FAREN - 32).

If FLAG = 1 then CENTI = CENTI - 273.
Ret ur n.

End of subroutine.

Here is ashorter way to write the subroutine. Notice that the kelv output argument listed
for the entry point is different from the centi output argument listed at the beginning of
the subroutine:

Subroutine FTOC (FAREN, CENTI).
Entry FTOK (FAREN, KELV).

Let CENTI = (5/9) * (FAREN - 32).
KELV = CENTI - 273.

Ret ur n.

End of Subroutine.

To obtain the Centigrade temperature, specify the subroutine name FTOC in the
subroutine call. For example:

CENTI GRADE/ D6. 2 = FTOC (TEMPERATURE, CENTI GRADE) ;

To obtain the Kelvin temperature, specify the entry name FTOK in the subroutine call.
For example:

KELVI N D6.2 = FTOK (TEMPERATURE, KELVIN);

Note: In CMS, subroutines can be executed from their entry points only if the subroutines
are stored in libraries. Y ou must specify these librariesin the GLOBAL command, as
described in[CMS: Compilation and Storagejon page C-13.

C-8 Information Builders

Considerations for Writing Subroutines

Programming Technique: Subroutines With More Than 28

Arguments

Subroutine call syntax cannot specify more than 28 arguments, including the output
argument. To process more than 28 arguments, you must write the subroutine so that the
user can specify two or more call statements to pass the arguments to the subroutine.

We recommend the following technique for writing subroutines with multiple call
statements:

1. Divide the subroutine into segments. Each segment will receive the arguments passed
by one corresponding subroutine call.

The argument list in the beginning of your subroutine must represent the same
number of argumentsin the subroutine call, including a call number argument and an
output argument.

Y ou may process some of the arguments as dummy arguments if you have an unequal
number of arguments. For example, if you divide 32 arguments among six segments,
the each segment processes six arguments; the sixth segment processes two
arguments and four dummy arguments.

2. Include a statement at the beginning of the subroutine that reads the call number (first
argument) and branches to a corresponding segment. Each segment processes the
arguments from one call. (For example, number 1 branchesto the first segment,
number 2 to the second segment, and so on.)

3. Have each segment store the argumentsit receivesin other variables (which can be
processed by the last segment) or accumulate them in arunning total.

End each segment with a statement returning control back to the FOCUS request
(RETURN statement).

4. Thelast segment returns the final output value to the FOCUS request.
The following sample of pseudocode illustrates the four steps:

Subroutine name (num inputl, input2, input3, input4, outfield).
If NUMis 1 then goto |abel ONE
el se goto | abel TWOD

Label ONE.
Let variable = inputl + input?2.
Ret urn.

Label TWO

LET outfield = variable + input3 + input4
Return

End of subroutine

Note: You can also use the entry point technique, described in Programming Technique: |
Entry Points|on page C-7, to write subroutines that process more than 28 arguments.

Developing Applications C-9

Creating Your Own Subroutines

Syntax

C-10

How to Use Subroutines With Multiple Call Statements

To use a subroutine that requires more than 28 arguments, you must specify two or more
call statements to pass the arguments to the subroutine.

The syntax for calling a subroutine with multiple call statementsis

dummy = subroutine (1, groupl, dummy)
dummy = subroutine (2, group2, dummy);

outfield = subroutine (n, groupn, outfield);
where:

dumy
Is either the name of a dummy field or its format, enclosed in single quotation marks.
It must have the same format as the outfield argument.

Note: Do not specify the dummy argument for the last call statement; use the outfield
argument.

subroutine
I's the name of the subroutine, up to eight characters long, depending on your
programming language.

Isanumber that identifies each subroutine call. It must be the first argument in each
subroutine call. The subroutine uses this call number to branch to segments of code.

groupl. ..
Arelists of input arguments passed by each subroutine call. Each group contains the
same number of arguments, but no more than 26 arguments.
26 + call nunber + output =28

outfield
Isthe output field that contains the value returned by the subroutine. It isthe
fieldname of the field that contains the output or the format of the output value,
enclosed in single quotation marks, depending on the application. It islast argument
inthelast call.

Note:

» Each subroutine call contains the same number of arguments. This is because the
argument list in each call must correspond to the argument list in the beginning of the
subroutine. The last call may contain several dummy arguments.

e Subroutines may require additional arguments as determined by the programmer who
created the subroutine.

Information Builders

Considerations for Writing Subroutines

Example

Creating a Subroutine With 32 Input Arguments

This exampleillust

rates how to create a subroutine with 32 input arguments using the

recommended technique. It also shows how the subroutine is specified in a DEFINE

command.

The ADD32 subroutine, written in pseudocode, sums 32 numbers. It is divided into six
segments, each of which adds six numbers from a subroutine call. (The total number of
input argumentsis 36 but the last four are dummy arguments.) The sixth segment adds
two arguments to the SUM variable and returns the final output value. The sixth segment
does not process any values supplied for the four dummy arguments.

The subroutineis:

Subr out i ne ADD32
If NUMis 1 then
else if NUMis 2
else if NUMis 3
else if NUMis 4
else if NUMis 5
el se goto | abel

Label ONE.
Let SUM= A+ B
Ret ur n.

Label TWO
Let SUM = SUM +
Return

Label THREE
Let SUM = SUM +
Ret urn

Label FOUR
Let SUM = SUM +
Ret urn

Label FI VE
Let SUM = SUM +
Return

Label SI X

LET TOTAL = SUM
Ret urn

End of subroutin

Developing Applications

(NUM A B, C D E F, TOTAL).
goto | abel ONE

then goto | abel TWO

then goto | abel THREE

then goto | abel FOUR

then goto | abel FIVE

SI X

+C+D+E+F

+ A+ B

e

C-11

Creating Your Own Subroutines

To use the ADD32 subroutine, list all six call statements; each call specifying six
numbers. The last four numbers, represented by zeroes, are dummy arguments. In this
example, the DEFINE command stores the total of the 32 numbersin the SUM32 field.

DEFI NE FI LE EMPLOYEE

DUMWY/ D10 = ADD32 (1, 5, 7, 13, 9, 4, 2, DUMW);
DUMWY/ D10 = ADD32 (2, 5, 16, 2, 9, 28, 3, DUMWY);
DUMWY/ D10 = ADD32 (3, 17, 12, 8, 4, 29, 6, DUMWY);
DUMWY/ D10 = ADD32 (4, 28, 3, 22, 7, 18, 1, DUMW);
DUMWY/ D10 = ADD32 (5, 8, 19, 7, 25, 15, 4, DUMWY);
SUMB2/ D10 = ADD32 (6, 3, 27, 0, 0, 0, 0, SUMB2);
END

Compilation and Storage

Once you have written your subroutine, you need to compile and storeit. Thistopic
discusses compiling and storing your subroutine for CMS and MV S,

CMS: Compilation and Storage

On CMS, compile the subroutine and use the GENSUBLL command to add the compiled
object codeto aload library (filetype LOADLIB). Enter:

GENSUBLL ?

to display for online information about the command. Do not store subroutine in the
FUSELIB load library (FUSELIB LOADLIB), asit may be overwritten when your site
installs the next release of FOCUS.

Y ou may also compile the subroutine and store the compiled object code either as a text
file (filetype TEXT), or asamember in atext library (filetype TXTLIB). Do not store it
inthe FUSELIB text library (FUSELIB TXTLIB), asit may be overwritten when your
siteinstalls the next release of FOCUS.

Individual text files are easier to maintain and control. Text libraries, on the other hand,

enable you to build different entry points into the subroutine (as shown in
[Technique: Entry Points|on page C-7). Note that there are two CM'S commands regarding

text libraries:

e TheTXTLIB command allows you to create, add to, and delete text libraries.

* TheGLOBAL TXTLIB command allows users to specify text libraries to gain access
to their subroutines.

C-12 Information Builders

Testing the Subroutine

If the subroutine is written in PL/I, append this line at the end of the text file
ENTRY subroutine
where:

subroutine
I's the name of the subroutine. Y ou can do this using your system editor.

Make sure that any subroutines that your subroutine calls are also compiled and placed in
text filesor libraries.

MVS: Compilation and Storage

On MV, compile and link-edit the subroutine and store the module in aload library. If
your subroutine calls other subroutines, compile and link-edit all the subroutines together
in asingle module.

If the subroutine is written in PL/I, include this link-editor control statement when
link-editing the subroutine

ENTRY subrouti ne
where:

subrouti ne
I's the name of the subroutine.

Do not store the subroutine in the FUSEL IB load library (FUSELIB.LOAD), asit may be
overwritten when your site installs the next release of FOCUS.

Testing the Subroutine

Once you have successfully compiled your subroutine, accessit and test it. In order to
access the subroutine, you need to issue the GLOBAL command for CMS or the
ALLOCATE command for MV'S.

If an error occurs during your testing, check to seeif the error isin the FOCUS request or
in the subroutine. If you are uncertain about its source, apply this test:

1. Write adummy subroutine that has the same arguments but only returns a constant.
2. Execute the request with the dummy subroutine.

If the request executes the dummy subroutine normally, the error isin your
subroutine. If the request still generates an error, the error isin the request.

If you intend to make your subroutine available to other users, be sure to document what
your subroutine does, what the arguments are, what formats they have, and in what order
they must appear in the FOCUS subroutine call.

Developing Applications C-13

Creating Your Own Subroutines

Example of a Custom Subroutine: The MTHNAM

Subroutine

C-14

Thistopic illustrates how a subroutine can be written in FORTRAN, COBOL, PL/I, BAL
Assembler, and C, and then executed in a FOCUS request. The subroutine, called
MTHNAM, converts a number from 1 to 12 to the full name of the corresponding month
(from January to December).

The subroutine performs the following:

1.

The subroutine receives the input argument from the FOCUS request as a
double-precision number.

It adds .000001 to the number. This compensates for rounding errors. (Rounding
errors can occur since floating-point numbers are approximations and may be
inaccurate in the last significant digit.)

It moves the number into an integer field.
If the number islessthan 1 or greater than 12, it changes the number to 13.

It defines a 13-element array containing the names of the months. The last element is
an error message.

It setsthe index of the array equal to the number in the integer field. It then places the
corresponding array element into the output argument. If the number is 13, the
argument contains the error message.

It passes the output argument back to FOCUS.

Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

The MTHNAM Subroutine Written in FORTRAN

ThisisaFORTRAN version of the MTHNAM subroutine. The fields are:

MI'H

I's the double-precision number passed by FOCUS.

MONTH

I's the name of the month passed back to FOCUS. Since the character string

‘September’ contains nine letters, MONTH is a 3-element array. The subroutine
passes the three elements back to FOCUS; FOCUS concatenates them into one field.

Isa2-dimensional, 13 by 3 array containing the names of the months. The last three
elements contain the error message.

| MTH

Is the integer representing the month.

The programis:

SUBROUTI NE MTHNAM (MTH, MONTH)
REAL* 8
| NTECER* 4

DATA

+ + 4+ + + o+ ++

MTH
MONTH(3), A(13, 3), | MIH
1)/ JANU /, A(1,2)/'ARY '/, A(1,
1)/'FEBR /, A(2,2)/'UARY' [, A(2,
1)/'MARC /, A(3,2)/'H '/, Al 3,
1)/ APRI' [, A(4,2)/'L ', A 4,
1)/ MAY '/, A(5,2)/ "/, A(5,
1)/"JUNE /, A(6,2)/" "/, A(6,
1)/ JULY' [, A(7,2)1" LA T,
J1)/TAURU /. A(8,2)/'ST '/, Al 8,
1)/ SEPT' /, A(9,2)/'EMBE /, A(9,
,1)/'0CTO/, A(10,2)/'BER '/, A(10,
J1)/'NOVE' /, A(11,2)/'MBER /, A(11,
,1)/'DECE' /, A(12,2)/'MBER /, A(12,
V1)1 **ER/, A(13,2)/'ROR*'/, A(13,
IF (IMH.LT. 1 .OR IMH.GT. 12) | MH=13

A(
A(
A
A(
A(
A(
A(
A(
A

9,

A(10
A(11
A(12
A(13
| MTHEMTH+0. 000001

NN E

DO 1 1=1,3
1 MONTH(1)=A(I MTH, 1)
RETURN

END

Developing Applications

3)/"
3)/
3)/"
3)/
3)/"
3)/
3)/"
3)/

3)/'R

3)/
3)/"
3)/
3) /" *

~ e e— e e — — e~~~

C-15

Creating Your Own Subroutines

The MTHNAM Subroutine Written in COBOL

Thisisa COBOL version of the MTHNAM subroutine. The fields are:

MONTH- TABLE
Isafield containing the names of the months and the error message.

MLI NE

Isa13-element array that redefines the MONTH-TABLE field. Each element (called
A) contains the name of a month; the last element contains the error message.

Isone element in the MLINE array.

I X
Isaninteger field that indexes MLINE.

I MTH
Is the integer representing the month.

MIH
I's the double-precision number passed by FOCUS.

MONTH
I's the name of the month passed back to FOCUS.

C-16 Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

The programis:

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. MTHNAM
ENVI RONVENT DI VI SI ON.
CONFI GURATI ON' SECTI ON.
SOURCE- COMPUTER. | BM 370.
OBJECT- COMPUTER. | BM 370.
DATA DI VI SI ON.
WORKI NG- STORAGE SECTI ON.
01 MONTH TABLE.
05 FILLER PIC X(9) VALUE ' JANUARY
05 FILLER PI C X(9) VALUE ' FEBRUARY ' .
05 FILLER PIC X(9) VALUE ' MARCH .
05 FILLER PIC X(9) VALUE 'APRIL '.
05 FILLER PIC X(9) VALUE ' MAY "
05 FILLER PI C X(9) VALUE ' JUNE "
05 FILLER PIC X(9) VALUE ' JULY
05 FILLER PIC X(9) VALUE ' AUGUST '.
05 FILLER PI C X(9) VALUE ' SEPTEMBER .
05 FILLER PIC X(9) VALUE ' OCTOBER .
05 FILLER PI C X(9) VALUE ' NOVEMBER ' .
05 FILLER PI C X(9) VALUE ' DECEMBER ' .
05 FILLER PI C X(9) VALUE ' **ERROR**" .
01 M.I ST REDEFI NES MONTH TABLE.
05 M.INE OCCURS 13 TIMES | NDEXED BY I X.
10 A PIC X(9).
01 IMH PIC S9(5) COWP.
LI NKAGE SECTI ON.
01 MH COVP- 2.
01 MNTH PIC X(9).
PROCEDURE DI VI SI ON USI NG MIH, MONTH.
BEG 1.
ADD 0. 000001 TO MTH.
MOVE MMH TO | MTH,
IF IMH < +1 OR > 12
SET I X TO +13
ELSE
SET I X TO | MTH.
MOVE A (1X) TO MONTH.
GOBACK.

Developing Applications C-17

Creating Your Own Subroutines

The MTHNAM Subroutine Written in PL/I

ThisisaPL/l version of the MTHNAM subroutine. The fields are:

MIHNUM
I's the double-precision number passed by FOCUS.

FULLMTH
I's the name of the month passed back to FOCUS.

MONTHNUM
Is the integer representing the month.

MONTH_TABLE
A 13-element array containing the names of the months. The last element contains the
€rror message.

The programis:

MIHNAM PROC(MTHNUM FULLMTH) OPTI ONS(COBOL) ;
DECLARE MIHNUM DECI MAL FLOAT (16) ;
DECLARE FULLMIH CHARACTER (9) ;
DECLARE MONTHNUM FI XED BIN (15,0) STATIC ;
DECLARE MONTH TABLE(13) CHARACTER (9) STATIC
INNT (' JANUARY' ,
' FEBRUARY ,
" MARCH |,
"APRIL',
" MAY'
"JUNE',
"JULY,
" AUGUST' ,
' SEPTEMBER |
' OCTOBER
' NOVEMBER ,
' DECEMBER ,
"RHERRORF*')
MONTHNUM = MTHNUM + 0. 00001 ;
IF MONTHNUM < 1 MONTHNUM > 12 THEN
MONTHNUM = 13 ;
FULLMTH = MONTH_TABLE(MONTHNUM) |
RETURN;
END MTHNAM

C-18 Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

The MTHNAM Subroutine Written in BAL Assembler
ThisisaBAL Assembler version of the MTHNAM subroutine.

START
STM

BALR
USI NG

L
LD
LE
LPER
AW
AW
STD
L
™
BNO
LCR

PCS LR
C
BNP
C
BNP

INVALID LA

*

VALI D SR
M

*
LA
L
wC

LM
BR

Developing Applications

0
14, 12, 12(13)
12,0
* 12

3,0(0, 1)
4,=D 0.0
6,0(0, 3)

4,6

4, =D 0. 00001
4, DZERO

4, FPNUM

2, FPNUM#4

0(3), B' 10000000

POS
2,2

3,2
2,=F' 0

I NVALI D
2, =F' 12'
VALI D
3,13(0, 0)

2,2
2,=F 9

6, MTH(3)
4,4(0,1)
0(9, 4), 0(6)

14, 12, 12(13)
14

save registers
| oad base reg

| oad addr of first arg into R3
cl ear out FPR4 and FPR5
FP nunber in FPR6

abs val ue in FPR4

add roundi ng const ant
shift out fraction

nove to nmenory

integer part in R2

check sign of original no
branch if positive

conpl enent if negative

copy nonth nunber into R3

is it zero or |ess?

yes. so invalid

is it greater than 127

no. so valid

set R3 to point to item @3 (error)

clear out R2
multiply by shift in table
get addr of itemin R6

get addr of second arg in R4
nove in text

recover regs
return

C-19

Creating Your Own Subroutines

ob
FPNUM D
DZERO

MI'H

BBEBEBEEBEEEEEEE8HH

m
Z
w)

X' 4E00000000000000"
CL9' dummyi t em
CL9" JANUARY'
CL9' FEBRUARY'
CL9" MARCH
CL9' APRI L'

CL9" MAY'

CL9" JUNE'

CL9" JULY'

CL9" AUGUST'
CL9' SEPTEMBER
CL9' OCTOBER
CL9' NOVEMBER
CL9' DECEMBER
CL9' ** ERROR**'
MIHNAM

The MTHNAM Subroutine Written in C
ThisisaC language version of the MTHNAM subroutine.

C-20

voi d nt hnam(doubl e *, char *);
voi d nt hnan(nt h, nont h)

doubl e *nth;
char *nont h;

{

char *nnmonth[13] = {"January ",

int inth, |oop;

"February ",
"Mar ch
"April
" May
"June ",
"July
" August "
" Sept enmber ",
"Cct ober ",
"Novenber ",
"Decenber ",
"**Error**"},

imh = *mh + .00001;

imh = (inmh<11!!

imh > 12 ? 13 :

for (1oop=0;lo0p < 9;I|o00p++)
nmont h[1 oop] = nnonth[inth-1][] oop];

}

al i gnnment

floating point number

shift constant
nmonth tabl e

inmh);

Information Builders

Example of a Custom Subroutine: The MTHNAM Subroutine

The MTHNAM Subroutine Called by a FOCUS Request

The following example demonstrates how a FOCUS request uses the MTHNAM
subroutine. The DEFINE command extracts the month portion of the pay date and
executes the MTHNAM subroutine to convert it into the full name of the month. The
name is stored inthe PAY_MONTH field. The report request prints the monthly pay of

Alfred Stevens.

Therequest is as follows:

DEFI NE FI LE EMPLOYEE
MONTH_NUM M = PAY_DATE;

PAY_MONTH/ A12

END

MTHNAM (MONTH_NUM PAY_MONTH) ;

TABLE FI LE EMPLOYEE
PRI NT PAY_MONTH GROSS
BY EMP_I D BY FI RST NAME BY LAST_NAME

BY PAY_DATE

IF LN IS STEVENS

END

This request produces the following report:

PAGE 1
EMP_I D FI RST NAMVE LAST_NAME PAY_DATE PAY_MONTH GROSS
071382660 ALFRED STEVENS 81/ 11/ 30 NOVEMBER $833. 33
81/ 12/ 31 DECEMBER $833. 33
82/ 01/ 29 JANUARY $916. 67
82/ 02/ 26 FEBRUARY $916. 67
82/ 03/ 31 MARCH $916. 67
82/ 04/ 30 APRI L $916. 67
82/ 05/ 28 MAY $916. 67
82/ 06/ 30 JUNE $916. 67
82/ 07/ 30 JuLy $916. 67
82/ 08/ 31 AUGUST $916. 67
Developing Applications C-21

Creating Your Own Subroutines

Subroutines Written in REXX

A FOCUS request can call user-written subroutines coded in REXX. These routines, also
called FUSREXX macros, provide a 4GL option to the languages supported for
user-written subroutines.

Using REXX Subroutines

Syntax

C-22

REXX subroutines are supported in the VM/CMS and MV S environments:

* InCMS, aFUSREXX macro can contain either REXX source code or compiled
REXX code created by running the source code through the REXX compiler. In
addition, you can load either type of FUSREX X macro into memory using the
EXECLOAD command. The compilation and load process reduces the CPU
requirements and increases speed. Compilation also is a security tool, making private
information difficult to read.

* InMVS, FOCUS supports source versions of REXX subroutines only.

Because of CPU requirements, the use of FUSREXX routines in large production jobs
should be monitored carefully.

The following notes apply to the examplesin this topic:

« REXX versions are not necessarily the same in all operating environments.
Therefore, some of the examples may use REXX functions that are not availablein
your environment.

* TheREXX codeislisted, but not fully explained. See your REXX documentation for
information about REXX instructions and functions.

How to Call a REXX User-Written Subroutine
In aDEFINE FILE command:

DEFI NE FI LE fil enane
fieldnanme/ { An| I n} = subnanme(inlenl, inparnl, ..., outlen, outparm;
END

In aDEFINE attribute in the Master File:

DEFI NE fi el dnanme/ {An| I n} = subnane(inlenl, inparml, ..., outlen, outparnj;
Ina COMPUTE command:
fiel dname/ {An| I n} = subnanme(inlenl, inparml, ..., outlen, outparm;

In a Dialogue Manager -SET command:

- SET &var = subnane(inlenl, inparml, ..., outlen, outparnj;

Information Builders

Subroutines Written in REXX

where:

fiel dnane
Is the name of the field to receive the return value.

An| I n
Isthe format of the field to receive return value.

subnane
Is the name of the REXX routine.

inlenl, inparml ...
Aretheinput parameters. Each parameter consists of apair of values: alength and an
alphanumeric parameter value. Y ou can supply the name of an aphanumeric field, an
alphanumeric literal, or an expression that resolvesto an alphanumeric value. Up to

13 input parameter pairs are supported by FOCUS. Each parameter value can be up
to 256 byteslong.

Note: Dialogue Manager converts input parameters that consist of numeric digitsto
decimal format, regardless of their original datatype. Therefore, you cannot pass
numeric input parametersto a REXX routine using -SET.

outl en, outparm
I's the output parameter pair, consisting of alength and a return value. In most cases,
the return value should be alphanumeric, but integer return values are also supported.
The return value can be the name of the field or Dialogue Manager variable to which
the valueis returned or its USAGE format enclosed in single quotation marks. The
return value can be a minimum of one byte long and a maximum (for an
alphanumeric value) of 256 bytes.

Note: If the value returned is integer, outlen must be 4 because FOCUS reserves four
bytes for integer fields.

&var
Is the name of the Dialogue Manager variable to receive the return value.

REXX subroutines:

» Requireinput datato be character and should return character output. Integer return
values are also supported, but the output length in the subroutine call must be four.
FOCUS has a 256-byte limit on character variables. Thislimit also appliesto
FUSREXX routines. FUSREXX routines return variable length data. For this reason,

you must supply the length of the input arguments and the maximum length of the
output data.

» Do not require any input parameters, but do require one return parameter, which must
return at least one byte of data. It is possible for a FUSREX X function to need no
input, such as a function that returns USERID.

Developing Applications C-23

Creating Your Own Subroutines

Example

C-24

» Do not support floating-point numbers (REXX does not have native floating-point
conversion routines). All numeric fields should be converted to character format with
no commeas using a FOCUS function such as EDIT before being passed to the
FUSREXX routine. This prevents FOCUS from converting numbers to floating point
before passing them to the FUSREXX routine.

» Arenot supported in Dialogue Manager -CMS RUN commands.

e OnVM/CMS, the FILETY PE of REXX user-written functionsis FUSREXX; they
can be stored on any accessed disk.

« OnMVS DDNAME FUSREXX must be allocated to a PDS, and that library will be
searched before other MV S libraries.

* Thesearch order for subroutinesis:
1. FUSREXX
2. Standard CMS or MV S search order.

Returning the Day of the Week

The FUSREXX routine DOW returns the day of the week an employee was hired. The
routine passes one input parameter pair and one return field pair.

DEFI NE FI LE EMPLOYEE

AHDT/ A6 = EDI T(HI RE_DATE) ;

DAY_OF_WEEK/ A9 W TH AHDT= DOW 6, AHDT, 9, DAY_OF_WEEK) ;

END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME HI RE_DATE DAY_OF_ WEEK
END

1. Theinputfield issix byteslong. Datais passed in field AHDT. The hire dateis
converted to an alphanumeric field.

2. Thereturnfield is up to nine byteslong and is named DAY _OF WEEK.

Information Builders

Subroutines Written in REXX

Example

The output is:

LAST_NAME H RE_DATE DAY_OF_WEEK
STEVENS 80/ 06/ 02 Monday

SM TH 81/07/01 Wednesday
JONES 82/ 05/ 01 Saturday
SM TH 82/ 01/ 04 Monday
BANNI NG 82/ 08/ 01 Sunday

I RVI NG 82/ 01/ 04 Monday
ROVANS 82/ 07/ 01 Thursday
MCCOY 81/07/01 Wednesday
BLACKWOCD 82/ 04/ 01 Thursday
MCKNI GHT 82/ 02/ 02 Tuesday
GREENSPAN 82/ 04/ 01 Thursday
CROSS 81/11/02 Monday

The FUSREXX macro is displayed below. The FUSREXX routine reads the input date,
reformatsit to MM/DD/Y'Y format, and returns the day of the week using a REXX DATE
cal.

/* DOWroutine. Return WEEKDAY from YYMVDD fornmat date */
Arg ynd .
Return Date('W, Transl ate(' 34/56/12' ,ynd, ' 123456'),' U)

Returning Text Format

The REXX function called in this request returns the number of copies of each classic
movie in text format. It passes one input parameter and one return field.

TABLE FI LE MOVl ES

PRI NT TI TLE AND COVPUTE

ACOPI ES/ A3 = EDI T(COPI ES); AS ' COPI ES'

AND COWPUTE

TXTCOPI ES/ A8 = NUMCNT(3, ACCPI ES, 8, TXTCCPI ES) ;
WHERE CATEGCRY EQ ' CLASSIC

END

1. Theinputfield is 3 byteslong. Datais passed in field ACOPIES. The COPIESfield
is converted to an alphanumeric field.

2. Thereturnfield is up to 8 byteslong and is named TXTCOPIES.

Developing Applications C-25

Creating Your Own Subroutines

Example

C-26

PR

The output is:

EAST OF EDEN

Cl TI ZEN KANE

CYRANO DE BERGERAC
MARTY

MALTESE FALCON, THE
GONE W TH THE W ND

ON THE WATERFRONT

MJTI NY ON THE BOUNTY
PHI LADELPHI A STCRY, THE

CAT

ON A HOT TIN ROCF

CASABLANCA
The FUSREXX macro is:

/* NUMCNT routi ne.

*/
Arg

data = 'Zero One Two Three Four Five Six Seven Ei ght

nunbr = nunbr + 1 /* so 0 equals 1 el enent

nunbr

Ret urn Wor d(dat a, nunbr)

Passing Multiple Arguments

COPIES TXTCOPI ES

Thr ee

Pass a nunber fromO to 10 and return a character val ue

Ni ne Ten'
in array */

The following example shows how to pass multiple arguments to a FUSREXX routine. It
isan interest calculation using the present salary for the employee and the employee start
date to calculate a present value. It passes four input parameters and one return field.

DEFI NE FI LE EMPLOYEE

AHDT/ A6 = EDI T(H RE_DATE) ;
ACSAL/ A12 = EDI T(CURR_SAL)
DCSAL/ D12. 2 = CURR SAL ;

PV/ A12 =

END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME FI RST_NAME HI RE_DATE DCSAL PV

END
1

| NTEREST(6, AHDT, 6, ' &YMD' , 3,' 6. 5", 12, ACSAL, 12, PV)

Thefirst input field is six byteslong. Datais passed in field AHDT. The hire dateis

converted to an alphanumeric field.

The current salary is converted to an alphanumeric field for use in the interest

calculation.

The current salary is converted to a double-precision field to include commas and a

decimal point in the outpuit.

Information Builders

Subroutines Written in REXX

4. Thesecond input field is six byteslong. Datais passed as a FOCUS character

variable & YMD in YYMMDD format.

Thethird input field is a character value of 6.5, which is 3 byteslong to account for
the decimal point in the character string.

Thefourth input field is 12 bytes long. This passes the character field ACSAL.

Thereturn field isup to 12 byteslong and is named PV.

Theoutput is:

LAST_NAME FI RST_NAME H RE_DATE
STEVENS ALFRED 80/ 06/ 02
SM TH MARY 81/ 07/ 01
JONES DI ANE 82/ 05/ 01
SM TH RI CHARD 82/ 01/ 04
BANNI NG JOHN 82/ 08/ 01
I RVI NG JOAN 82/ 01/ 04
ROVANS ANTHONY 82/ 07/ 01
MCCOY JOHN 81/ 07/ 01
BLACKWOOD ROSENARI E 82/ 04/ 01
MCKNI GHT ROGER 82/ 02/ 02
GREENSPAN MARY 82/ 04/ 01
CRCSS BARBARA 81/ 11/ 02

DCSAL PV

11, 000. 00
13, 200. 00
18, 480. 00
9, 500. 00
29, 700. 00
26, 862. 00
21, 120. 00
18, 480. 00
21, 780. 00
16, 100. 00
9, 000. 00
27,062. 00

14055.
15939.
21315.
11155.
33770.
31543.
24131.
22315.
25238.
18822.
10429.
32081.

14
99
54
60
53
35
19
99
25
66
03
82

The FUSREXX macro is displayed below. The REXX format command is used to format

the return value.

/* Sinple | NTEREST program dates are yymmdd for mat
Arg start_date, now _dat e, percent, open_bal ance,

begin

*/

Date(' B', Transl ate(' 34/56/12' ,start_date, ' 123456'),'U)

stop = Date('B', Translate('34/56/12',now date,'123456'),'U)

val now = open_bal ance * (((stop -

Ret urn For mat (val now, 9, 2)

Developing Applications

begi n)

* (percent / 100)) / 365)

Cc-27

Creating Your Own Subroutines

Example

C-28

PR

Accepting Multiple Tokens in Parameters

FUSREXX routines can accept multiple tokens in a parameter. The following procedure
passes employee information (pay date and monthly gross pay) as separate tokens in the
first parameter. It passes three input parameters and one return field.

DEFI NE FI LE EMPLOYEE

COMPIDYA256 = FN| ' * | LN| ' ' | DPT| ' ' | EID;

APD/ A6 = EDI T(PAY_DATE) ;

APAY/ A12 = EDI T(MO_PAY) ;

OKARAI SE/ AL = OK4RAI SE(256, COVPI D, 6, APD, 12, APAY, 1, OKARAI SE)
END

TABLE FI LE EMPLOYEE

PRI NT EMP_I D FI RST_NAME LAST_NAVE DEPARTMENT
I F OKARAI SE EQ ' 1"

END

1. Thefirstinput field is 256 byteslong. Datais passed in field COMPID. COMPID is
the concatenation of several character fields passed as the first parameter. Each of the
other parametersis a single argument.

2. Thesecond input field is six byteslong. Dataiis passed in field APD. The pay dateis
converted to an alphanumeric field.

3. Thethird input field is 12 bytes long. Datais passed in field APAY. The monthly
gross pay is converted to an alphanumeric field.

4. Thereturn field is up to one byte long and is named OK4RAISE.

Theoutput is:
EMP_I D FI RST_NAME LAST_NAME DEPARTMENT

071382660 ALFRED STEVENS PRODUCTI ON

The FUSREX X macro is displayed below. Commas separate FUSREXX parameters. The
ARG command specifies multiple variable names before the first comma and, therefore,
separates the first FUSREX X parameter into separate REXX variables, using blanks as
delimiters between the variables.

/* OKARAI SE routine. Parse separate tokens in the 1st parm then nore parns
*/

Arg fname | name dept enpid, pay_date, gross_pay,

If dept = ' PRODUCTION & pay_date < '820000'
Then retvalue = '1'
El se retvalue = '0'

Return retval ue

Information Builders

Subroutines Written in REXX

Example

n

FUSREXX routines should use the REXX RETURN function to return datato FOCUS.
REXX EXIT is acceptable, but is generally used to end an EXEC, not a FUNCTION.

Correct Not as d ear

/* Some FUSREXX function */ /* Anot her FUSREXX function */
Arg input Arg input

SOME I exx process ... SOMe r exx process ...

Return data_t o_Focus Exit O

Returning an Integer Value

It is possible for REXX to return avalue that is not character format. The following
example shows how REXX returns an integer value. This example aso shows how the
format of the integer field is used as the last field in the return argument. It passes two
input fields and one return field. The FUSREXX routine NUMDAY S returns the number
of days between hire date and date of increase. Note that the return value for an integer is
always four byteslong.

DEFI NE FI LE EMPLOYEE

AHDT/ A6 = EDI T(HI RE_DATE) ;

ADI / A6 = EDI T(DAT_INC) ;

BETVEEN | 6 = NUMDAYS(6, AHDT, 6, ADI , 4, 16') ;
END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME H RE_DATE DAT_I NC BETWEEN
I F BETVEEN NE O

END

1. Thefirstinput field is six byteslong. Datais passed in field AHDT. The hire dateis
converted to an alphanumeric field.

2. Thesecond input field is six byteslong. Dataiis passed in field ADI. The date of
increase is converted to an alphanumeric field.

3. Thereturnfield is up to six byteslong and is named BETWEEN.
The output is:

LAST_NAME H RE_DATE DAT_INC BETWEEN
STEVENS 80/ 06/ 02 82/01/01 578
STEVENS 80/ 06/ 02 81/01/01 213
SM TH 81/07/01 82/ 01/ 01 184
JONES 82/ 05/ 01 82/ 06/ 01 31
SM TH 82/ 01/ 04 82/ 05/ 14 130
I RVI NG 82/ 01/ 04 82/ 05/ 14 130
MCCOY 81/07/01 82/ 01/ 01 184
MCKNI GHT 82/ 02/ 02 82/ 05/ 14 101
GREENSPAN 82/ 04/ 01 82/ 06/ 11 71
CROSS 81/ 11/ 02 82/ 04/ 09 158

Developing Applications C-29

Creating Your Own Subroutines

Example

C-30

The FUSREXX macro is displayed below. The return value is converted from REXX
character to HEX and formatted to be four bytes long.
/* NUMDAYS routine. Return nunber of days between 2 dates in yymdd fornat
*/
/* The value returned will be in hex fornat

*/
Arg first,second .

basel
base2

Date(' B, Transl ate(' 34/56/12' ,first,' 123456'),' U)
Date(' B', Transl ate(' 34/56/ 12' , second, ' 123456'),' U)

Return D2C(base2 - basel, 4)

Returning a Date Field From a FUSREXX Macro

FOCUS smart date fields contain the integer number of days since the base date
12/31/1900. REX X has a date function that can accept and return several types of date
formats, including one called Base format (‘B’) that contains the number of days since the
REXX base date 01/01/0001 (Jan. 1 of the Year 1).

Because input arguments must be alphanumeric, you cannot pass a smart date field to a
REXX subroutine. Therefore, you can either:

e Passthe REXX routine an alphanumeric field with date display options and have it
return a smart date value, if you account for the number of days difference between
the FOCUS base date and the REXX base date and convert the result to integer.

» Passthe REXX routine a smart date value converted to al phanumeric format. With
this technique, you must account for the difference in base dates for both the input
and output.

The following example uses the technique of passing the subroutine an alphanumeric field
with date display options. The FUSREX X macro called DATEREX1 takes two input
arguments: an alphanumeric date in A8Y YMD format and a number of days in character
format. It returns a smart datein Y'Y MD format that represents the input date plus the
number of days. The FOCUS format A8YYMD correspondsto the REXX Standard
format ('S).

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX1 routine. Add indate (format A8YYMD) to days */
Arg indate, days .
Return D2C(Date(' B ,indate,'S)+ days - 693959, 4)

Information Builders

Subroutines Written in REXX

The following request uses the DATEREX1 macro to calculate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of daysto add. Because HIRE_DATE isin I6Y MD format, it must be converted
to ABY YMD before being passed to the macro:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME FI RST_NAME H RE_DATE

AND COWPUTE

ADATE/ YYMD = HI RE_DATE; NOPRI NT
AND COWPUTE

| NDATE/ ABYYND= ADATE; NOPRI NT
AND COWPUTE

NEXT_DATE/ YYMD = DATEREXL(8, | NDATE, 3, ' 365' , 4, NEXT_DATE) ;
BY LAST_NAME NOPRI NT
END

The output is:

LAST_NAME FI RST_NAME HI RE_DATE NEXT_DATE

BANNI NG JOHN 82/08/01 1983/08/01
BLACKWOCD ROSEMARI E 82/ 04/ 01 1983/04/01
CRCSS BARBARA 81/11/02 1982/11/02
GREENSPAN MARY 82/ 04/ 01 1983/04/01
I RVI NG JOAN 82/01/04 1983/01/04
JONES DI ANE 82/ 05/01 1983/05/01
MCCOY JOHN 81/07/01 1982/07/01
MCKNI GHT ROGER 82/ 02/ 02 1983/02/02
ROMANS ANTHONY 82/07/01 1983/07/01
SM TH MARY 81/07/01 1982/07/01
SM TH Rl CHARD 82/01/04 1983/01/04
STEVENS ALFRED 80/ 06/ 02 1981/06/02

The following exampl e uses the technique of passing the subroutine a smart date
converted to al phanumeric format. The FUSREX X macro called DATEREX2 takes two
input arguments: an al phanumeric number of days that represents a smart date, and a
number of daysto add. It returns a smart datein Y YMD format that represents the input
date plus the number of days. Both the input date and output date are in REXX base date
(‘B’) format.

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX2 routine. Add indate (original format YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate+693959,'B') + days - 693959, 4)

Developing Applications C-31

Creating Your Own Subroutines

The following request uses the DATEREX?2 macro to calcul ate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of daysto add. Because HIRE_DATE isin I6YMD format, it must be converted
to an alphanumeric number of days before being passed to the macro:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME FI RST_NAME H RE_DATE

AND COWPUTE

ADATE/ YYMD = HI RE_DATE; NOPRI NT
AND COWPUTE

| NDATE/ A8 = EDI T(ADATE); NOPRI NT
AND COWPUTE

NEXT_DATE/ YYMD = DATEREX2(8, | NDATE, 3, ' 365' , 4, NEXT_DATE) ;
BY LAST_NAME NOPRI NT
END

The report output is the same as that produced by the DATEREX1 macro.

Compiling FUSREXX Macros in CMS

C-32

The SUM2 FUSREX X macro takes two amounts as input and returns the sum in integer
format:

/* SUM2 routine. Add anmpbuntl to ampbunt2 and return as integer */

Arg antl, ant2 .

Return D2C(ant1l + ant 2, 4)

To compile and compress this FUSREX X macro in CMS, issue the following command.
Note that the file identifier must be in upper case:

rexxconp SUM2 FUSREXX A (condense
A FILELIST of SUM2 * A lists the following files:

Suwe CFUSREXX Al F 1024 2 1 1/31/00 12:07:19
Suwe LISTING Al V 121 42 1 1/31/00 12:07:19
Suwe FUSREXX Al F 80 3 1 1/31/00 12:04:19

Thefile SUM2 FUSREXX isthe original sourcefile. The file SUM2 CFUSREXX isthe
compiled version. To call the compiled version in a FOCUS request, you must rename it
to have the file type FUSREXX. The file SUM2 LISTING details the results of the
compilation.

To use the compiled version in a FOCUS request, issue the following commands. The
EXECLOAD command, which loads the routine into memory and improves performance,
isoptional:

renane sun® fusrexx a ssun? fusrexx a

renane sun® cfusrexx a sun? fusrexx a
execl oad sun fusrexx a

Information Builders

Subroutines Written in REXX

Then, in FOCUS, issue the following request:

TABLE FI LE EMPLOYEE
PRI NT CSAL AND COVPUTE
Al2 = EDI T(CSAL);
AMOUNT/ A4 = ' 1000" ;

TOTSAL/ 16 =

ASAL/

END

The output is:

Developing Applications

$9, 000
$27, 062

SUMR(12, ASAL, 4, AMOUNT, 4, TOTSAL)

ASAL

000000011000
000000013200
000000018480
000000009500
000000029700
000000026862
000000021120
000000018480
000000021780
000000016100
000000009000
000000027062

C-33

Index

Symbols

-"..." command, 4-10, 4-96

& (local variables), 4-6

& & (global variables), 4-6
&ACCEPTS variable, 4-60
&BASEIO variable, 4-60

& CHNGD variable, 4-60

& CURSOR variable, 4-62

& CURSORAT variable, 4-62
&DATE variable, 4-54

& DATEfmt variable, 4-54, 7-31
&DELTD variable, 4-60

&DMY variable, 4-54

&DMYY variable, 4-54, 4-58, 7-31
&DUPLS variable, 4-60

&ECHO variable, 4-42, 4-62
&FOCCPU variable, 4-54

& FOCDISORG variable, 2-11, 4-60
& FOCERRNUM variable, 4-60
&FOCEXTTRM variable, 4-54

& FOCFIELDNAME variable, 4-54
& FOCFOCEXEC variable, 4-55
&FOCINCLUDE variable, 4-55
&FOCMODE variable, 4-55
&FOCPRINT variable, 4-55

&FOCSBORDER variable, 4-55
&FOCSY STYP variable, 4-55
&FOCTMPDSK variable, 4-56
&FOCTRMSD variable, 4-56
&FOCTRMSW variable, 4-56

& FOCTRMTY P variable, 4-56
&FOCTTIME variable, 4-56
&FOCVTIME variable, 4-56
&FORMAT variable, 4-60
&HIPERFOCUS variable, 4-56
&INPUT variable, 4-60
&INVALID variable, 4-60
&|ORETURN variable, 4-56
&LINES variable, 4-61

&MDY variable, 4-56

&MDYY variable, 4-56, 4-58, 7-31
&NOMATCH variable, 4-61
&PFKEY variable, 4-62, 9-26
&QUIT variable, 4-44, 4-62
&READS variable, 4-61

& RECORDS variable, 4-61

& REJECT S variable, 4-61

& RETCODE variable, 4-24, 4-56
&STACK variable, 4-43, 4-62
&TOD variable, 4-56

& TRANS variable, 4-61

&FOCPUTLVL variable, 4-55
& FOCQUALCHAR variable, 4-55
& FOCREL variable, 4-55

&WINDOWNAME variable, 4-62, 9-26
&WINDOWVALUE variable, 4-62, 9-26

Developing Applications

Index

&YMD variable, 4-56 ? SET NOT query command, 2-17, 2-19, 2-20
&YYMD variable, 4-56, 4-58, 7-31 -? SET SETCOMMAND & myvar, 4-10

(&& global variables), 2-25 ? STAT command, 2-22

-* command, 4-8, 4-9, 4-80 ? STYLE command, 2-26

.EVAL operator, 4-63 ? SU command, 2-24

.EXIST operator, 4-21 ? USE command, 2-26

.LENGTH operator, 4-22

.TY PE operator, 4-23

? && command, 2-25

-? &[string] command, 4-10, 4-51
? COMBINE command, 2-3

A

ABSfunction, 3-36
ACCBLN parameter, 1-3
ACCEPT attribute, 1-24

-? command, 4-80 Access Files, 6-4

loading, 6-4
? DEFINE query command, 2-4 VIDEOTRZ2, A-27
? EUROFILE command, 2-5, 8-9 AGGR[RATIQ] parameter, 1-3
? F command, 2-5 ALL parameter, 1-4
? FDT command, 2-6 ALLOWCVTERR parameter, 1-5
? FF command, 2-8 alphanumeric format, 3-121, 3-123, 3-168

converting, 3-121, 3-168

alphanumeric strings
converting from, 3-121

? FILE command, 2-9
?HOLD command, 2-12
? JOIN command, 2-13 amper variables, 4-49
? LANG command, 2-14 EDIT function, 4-30
2 LET command, 2-14 return values, 9-24

? LOAD command, 2-15, 6-6 applications, 9-51

executing, 9-51

?n command, 2-15 ARGLEN subroutine, 3-37

? PTF command, 2-16 arguments, 3-36, C-3

? RELEASE command, 2-17 calculating square root, 3-163

5 calculating value, 3-36

?SET ALL query command, 8-9 in scientific notation, 3-96

? SET command, 2-17, 7-12 in subroutines, 3-19, 3-20
length, 3-37

? SET FOR query command, 2-17, 2-19 maximum value. 3-144

? SET GRAPH command, 2-21 minimum value, 3-144

returning logarithm, 3-143

|-2 Information Builders

Index

AS phrase, 1-6

ASIS function, 3-38
ASNAMES parameter, 1-6
Assembler language, C-4
ATODBL subroutine, 3-39
AUTOINDEX parameter, 1-6
AUTOPATH parameter, 1-7
AUTOSTRATEGY parameter, 1-7
AUTOTABLEF parameter, 1-7
AYM subroutine, 3-43

AYMD subroutine, 3-45

B

BAL Assembler language, C-19
MTHNAM subroutine, C-19

bar charts, 3-47
BAR subroutine, 3-47
BINS parameter, 1-8

bit functions and subroutines, 3-3
BITSON, 3-49
BITVAL, 3-50
BYTVAL, 3-52
HEXBYT, 3-117
UFMT, 3-168

bits, 3-3
evaluating, 3-49
strings, 3-50

BITSON subroutine, 3-49
BITVAL subroutine, 3-50
BLKCALC parameter, 1-8
BOTTOMMARGIN parameter, 1-9

branching, 4-16
-IF command, 3-24

BUSDAY S parameter, 1-8

Developing Applications

BUSDAY S setting, 3-15
business day units, 3-15
BYPANEL parameter, 1-9
BYSCROLL parameter, 1-9
BYTVAL subroutine, 3-52

C

C language, C-4
MTHNAM subroutine, C-20

Cache memory
Number of reads performed, 2-24

CACHE parameter, 1-10

calculated values, 7-26
sliding window, 7-26

CAR data source, A-11
CARTESIAN parameter, 1-11
CDN parameter, 1-11

character functions and subroutines, 3-4
ARGLEN, 3-37
ASIS, 3-38
BITSON, 3-49
BITVAL, 3-50
BYTVAL, 3-52
CHKFMT, 3-56
CTRAN, 3-62
CTRFLD, 3-68
EDIT, 3-93, 4-30
GETTOK, 3-106
LCWORD, 3-138
LJUST, 3-140
LOCASE, 3-142
OVRLAY, 3-149
PARAG, 3-152
POSIT, 3-156
RJUST, 3-161
SUBSTR, 3-164
UPCASE, 3-170

character strings
converting, 3-138, 3-142, 3-170

Index

character strings (continued)
dividing, 3-106
extracting substring, 3-164
justifying, 3-140, 3-161
overlaying substring, 3-149
characters, 3-4
converting, 3-117
trandating, 3-62

CHECK FILE command, 7-10
CHGDAT subroutine, 3-53
CHKFMT subroutine, 3-56
CHKPCK subroutine, 3-59
-CLOSE command, 4-9, 4-81
-CLOSE ddname command, 4-9
-CMS command, 4-9, 4-81

CMS environment, C-12
compiling subroutines, C-12
FUSREXX macros, C-32
storing subroutines, C-12

-CMS RUN command, 4-9
subroutines, 3-26

COBOL language, C-4
MTHNAM subroutine, C-16

COLUMNSCROLL parameter, 1-12
COMASTER data source, A-21

COMBINE structures, 2-3
? COMBINE command, 2-3

command statistics, 2-22, 2-24
? STAT command, 2-22

commands, 1-2
CHECK FILE, 7-10
COMPILE, 6-7
COMPUTE, 7-26
DEFINE, 7-5, 7-20
Dialogue Manager, 4-9
EXEC, 4-7, 4-37, 4-41
GLOBAL, C-13
LET, 5-2

commands (continued)
LET CLEAR, 4-53
LET ECHO, 5-10
LOAD, 6-2
LOAD MODIFY, 6-6
MINIO, 6-8, 6-9, 6-11
query, 2-2
QUIT, 4-44
SET, 1-2
SET EUROFILE, 8-8
SET TESTDATE, 7-10
WINDOW COMPILE, 9-83
WINDOW PAINT, 9-52

comments, 4-8
COMPILE command, 6-7
compound -IF tests, 4-19

COMPUTE command, 7-26
sliding window, 7-26
subroutinesin, 3-22

COMPUTE parameter, 1-12
concatenation, 4-65

conversions
alphanumeric format, 3-168
character strings, 3-138, 3-142, 3-170
characters, 3-117
currency, 8-2
dates, 3-53, 3-77, 7-32
date-time fields, 3-113, 3-114
format, 3-39
from alphanumeric format, 3-91
from Gregorian format, 3-135
from Julian format, 3-109
from numeric format, 3-89, 3-100
numeric format, 3-130, 3-132, 3-134
strings, 3-121
to alphanumeric format, 3-100
to date format, 3-89, 3-114
to EBCDIC, 3-52
to Gregorian format, 3-109
to Julian format, 3-135
to numeric format, 3-91
to zone format, 3-134

Information Builders

Index

COUNTWIDTH parameter, 1-12

COURSES data source, A-16

cross-century dates, 7-1, 7-31

-CRTCLEAR command, 4-9, 4-81
-CRTFORM command, 4-10, 4-49, 4-75, 4-82
CTRAN subroutine, 3-62

CTRFLD subroutine, 3-68

currencies, 8-2
converting, 8-2
euro, 8-2

CURRENCY attribute, 8-6

currency conversions, 8-2, 8-10
currency data source, 8-4

currency data source, 8-4
? EUROFILE command, 2-5
activating, 8-8
creating, 8-4
CURRENCY attribute, 8-6
displaying, 2-5
guerying, 8-9

custom subroutines, C-14

D

data source functions and subroutines, 3-6
LAST, 3-137

data source statistics, 2-9
? FILE command, 2-9

data sources
currency data source, 8-4
MINIO command, 6-8
statistics, 2-9
USE command, 2-26

date conversions, 3-53, 3-77

date formats, 7-5
with diding window, 7-5

Developing Applications

date functions and subroutines, 3-6, 7-31

AYM, 3-43
AYMD, 3-45
CHGDAT, 3-53
DATEADD, 3-72
DATECVT, 3-77
DATEDIF, 3-78
DATEMOQV, 3-80
DMY, 3-86
DOWK, 3-88
DOWKL, 3-88
DTDMY, 3-89
DTDYM, 3-89
DTMDY, 3-89
DTMYD, 3-89
DTYDM, 3-89
DTYMD, 3-89
GREGDT, 3-109
HADD, 3-112
HCNVRT, 3-113
HDATE, 3-114
HDIFF, 3-115
HDTTM, 3-116
HGETC, 3-119
HHMMSS, 3-120
HINPUT, 3-121
HMIDNT, 3-122
HNAME, 3-123
HPART, 3-125
HSETPT, 3-126
HTIME, 3-127
JULDAT, 3-135
legacy versions, 3-14
MDY, 3-86
settings, 3-14
TODAY, 3-166
valid date input, 3-9
YM, 3-174
YMD, 3-86

DATEADD function/subroutine, 3-72
DATECVT function, 3-77

DATEDIF function, 3-78
DATEDISPLAY parameter, 1-13

Index

DATEFNS parameter, 1-13, 3-14
DATEFORMAT parameter, 1-14
DATEMOQV function, 3-80

dates, 3-6, 7-2
calculating difference, 3-174
converting, 3-116, 7-32
date display format, 7-31
date display options, 4-58, 7-31
difference between, 3-86
functions and subroutines, 3-78, 3-166
holidays, 3-16
incrementing, 3-112
natural date literals, 4-33
setting, 4-33
system, 7-31
time stamp, 7-32
validating, 7-6

date-time fields, 3-119, 3-122, 3-123, 3-125, 3-126
converting, 3-113, 3-127
converting to, 3-116

date-time functions
component names, 3-8

DATETIME parameter, 1-14
date-time values, 3-121
DECODE function, 3-83, 4-29

decoding functions and subroutines
DECODE, 3-83, 4-29

default century, 7-32
-DEFAULTS command, 4-10, 4-68, 4-70, 4-83

DEFCENT parameter, 1-15, 7-2, 7-3, 7-5, 7-7
COMPUTE command, 7-26
DEFINE command, 7-20
querying, 7-12
with COMPUTE, 7-27

DEFINE command, 7-5
diding window, 7-5, 7-20
subroutinesin, 3-22

Dialogue Manager, 4-2

ASIS function, 3-38

canceling a procedure, 4-15
commands, 4-9

executing stacked commands, 4-13
exiting from FOCUS, 4-15
facilities, 4-36

leading zeros, 3-17

sending a message to the user, 4-11
stacked commands, 4-12

testing logic, 4-43

variables, 4-6

Dialogue Manager commands, 4-9

-* 4-8, 4-9, 4-80

-?,4-80

-? &[string], 4-10, 4-51

-? SET COMMAND & myvar, 4-10

-CLOSE, 4-9, 4-81

-CLOSE ddname, 4-9

-CMS, 4-9, 4-81

-CMSRUN, 4-9

-CRTCLEAR, 4-9, 4-81

-CRTFORM, 4-10, 4-49, 4-75, 4-82

-DEFAULTS, 4-10, 4-70, 4-83

-EXIT, 4-10, 4-13, 4-83

-GOTO, 4-10, 4-16, 4-84

-HTMLFORM, 4-10, 4-84

-IF, 4-10, 4-85

-INCLUDE, 4-10, 4-37, 4-38, 4-86

-label, 4-10, 4-86

-MVSRUN, 4-10, 4-87

-PASS, 4-7, 4-10, 4-87

-PROMPT, 4-10, 4-49, 4-73, 4-88

-QUIT, 4-10, 4-15, 4-89

-QUIT FOCUS, 4-15

-READ, 4-10, 4-72, 4-90

-REPEAT, 4-10, 4-25, 4-91

-RUN, 4-10, 4-12, 4-92

-SET, 3-23, 4-10, 4-27, 4-28, 4-32, 4-44, 4-71,
4-92

-TSO RUN, 4-10, 4-93

-TYPE, 4-10, 4-11, 4-93

-WINDOW, 4-10, 4-49, 4-75, 4-94, 9-3

-WRITE, 4-10, 4-45, 4-95

disorganized files, 2-11

Information Builders

Index

DISPLAY parameter, 1-15
DMOD subroutine, 3-128
DMY function, 3-86
DOWK subroutine, 3-88
DOWKL subroutine, 3-88
DT subroutines, 3-89
DTDMY subroutine, 3-89
DTDYM subroutine, 3-89
DTMDY subroutine, 3-89
DTMY D subroutine, 3-89
DTSTRICT parameter, 1-16
DTYDM subroutine, 3-89
DTYMD subroutine, 3-89
dynamic window, 7-4, 7-10

E

EDIT function, 3-91, 3-93, 4-30
EDUCFILE data source, A-7
EMPDATA data source, A-17
EMPLOY EE data source, A-3
EMPTY REPORT parameter, 1-16
Entry Menu, 9-53

error messages
? n command, 2-15
displaying explanations, 2-15
retrieving, 3-96

ESTRECORDS parameter, 1-17

euro currency, 8-2
converting, 8-2, 8-10

EUROFILE parameter, 1-18, 8-8
EXEC command, 4-7, 4-37, 4-41

execution windows, 9-11

Developing Applications

-EXIT command, 4-10, 4-12, 4-13, 4-83
EXP subroutine, 3-95

EXPERSON data source, A-18

EXPN function, 3-96

EXTAGGR parameter, 1-18

external subroutines, 3-30

EXTHOLD parameter, 1-18

EXTSORT parameter, 1-19

EXTTERM parameter, 1-19

F

FDEFCENT attribute, 7-3, 7-13
FEXERR subroutine, 3-96

field names windows, 9-8
field-level dliding window, 7-13
FIELDNAME parameter, 1-19

fields, 2-5
? F command, 2-5
? FF command, 2-8

file contents windows, 9-9

file directory table, 2-6
?FDT command, 2-6

file names windows, 9-7
creating, 9-49

file-level dliding window, 7-13
FILENAME parameter, 1-20

files, 6-2
disorganization, 2-11
loading, 6-2
writing to, 4-45

FILTER parameter, 1-20
FINANCE data source, A-14
Financial Modeling Language (FML), 3-28

Index

FINDMEM subroutine, 3-97
FIXRETRIEVE parameter, 1-21
FMOD subroutine, 3-128
FOC144 parameter, 1-21
FOC2GIGDB parameter, 1-22
FOCALLOC parameter, 1-22

FOCCOMPfile, 6-5
with dliding window, 7-6

FOCSTACK parameter, 1-22
FOCUS facilities, 6-2
accessing FOCUS data sources, 6-8

compiling MODIFY requests, 6-7
loading files, 6-2

format conversion functions and subroutines, 3-11

ASIS, 3-38
ATODBL, 3-39
CHKPCK, 3-59
EDIT, 3-91
FTOA, 3-100
ITONUM, 3-130
ITOPACK, 3-132
ITOZ, 3-134
PCKOUT, 3-154
UFMT, 3-168

format conversions, 3-39
format specifications, 4-76

FORTRAN language, C-4
MTHNAM subroutine, C-15

FTOA subroutine, 3-100

function keys, 5-12
LET substitution, 5-12
testing values, 9-26

functions and subroutines, 3-1, 3-21
bit, 3-3
character, 3-4
data source, 3-6
date, 3-6
date-time, 3-119

functions and subroutines (continued)
differences between, 3-2
format conversion, 3-11
numeric, 3-12
system, 3-13
types, 3-3
with diding window, 7-5, 7-23, 7-29

FUSELIB LOAD library, 3-30

FUSREXX macros, C-32
compilingin CMS, C-32

FYRTHRESH attribute, 7-3, 7-13

G

GETPDS subroutine, 3-101
GETTOK subroutine, 3-106
GETUSER subroutine, 3-108
GGDEMOG data source, A-29
GGORDER data source, A-30
GGPRODS data source, A-31
GGSALES data source, A-32
GGSTORES data source, A-33
GLOBAL command, C-13
global dliding window, 7-7

global variables, 4-6, 4-49, 4-53
? & & command, 2-25

Gotham Grinds data sources, A-29
GGDEMOG, A-29
GGORDER, A-30
GGPRODS, A-31
GGSALES, A-32
GGSTORES, A-33

-GOTO command, 4-10, 4-16, 4-84
goto values, 9-3, 9-25, 9-62

graph parameters, 2-21
? SET GRAPH command, 2-21

GREGDT subroutine, 3-109

Information Builders

Index

H

HADD subroutine, 3-112
HCNVRT subroutine, 3-113
HDATE subroutine, 3-114
HDAY parameter, 1-23, 3-16
HDIFF subroutine, 3-115
HDTTM subroutine, 3-116
HEXBYT subroutine, 3-117
HGETC subroutine, 3-119
HHMM SS function/subroutine, 3-120
HINPUT subroutine, 3-121
HLISUDUMP parameter, 1-23
HLISUTRACE parameter, 1-23
HMIDNT subroutine, 3-122
HNAME subroutine, 3-123

HOLD fields, 2-12
?HOLD command, 2-12

HOLDATTR parameter, 1-24
HOLDLIST parameter, 1-24
HOLDSTAT parameter, 1-25
holidays, 3-16

horizontal menus, 9-6
creating, 9-14

HOTMENU parameter, 1-25
HPART subroutine, 3-125

HSETPT subroutine, 3-126

HTIME subroutine, 3-127
-HTMLFORM command, 4-10, 4-84

IBMLE parameter, 1-26

Developing Applications

IF command, 3-24
subroutinesin, 3-24

-IF command, 4-10, 4-16, 4-85
-IF tests, 4-19
subroutinesin, 3-24

IF selection tests, 3-23
subroutinesin, 3-23

-IF tests, 4-19
compound, 4-19
operators and functions, 4-20
screening values, 4-20

IMMEDTY PE parameter, 1-26

IMOD subroutine, 3-128

implied prompting, 4-49, 4-75

IMS parameter, 1-26

-INCLUDE command, 4-10, 4-37, 4-38, 4-86
INDEX parameter, 1-27

INT function, 3-129

ITONUM subroutine, 3-130

ITOPACK subroutine, 3-132

ITOZ subroutine, 3-134

J

JOBFILE data source, A-6
JOINOPT parameter, 1-27

joins, 2-13
? JOIN command, 2-13

JULDAT subroutine, 3-135

L

-label command, 4-10, 4-86
LANG parameter, 1-28

Index

languages, C-5
considerations, C-5
environment support, 3-32

LAST function, 3-137

LCWORD function/subroutine, 3-138
leading zeros, 3-17

LEADZERO parameter, 1-29, 3-17
LEDGER data source, A-13
LEFTMARGIN parameter, 1-30

legacy dates, 7-5
with diding window, 7-5

LET CLEAR command, 4-53

LET command, 5-2
checking subgtitutions, 5-10
clearing substitutions, 5-11
long form, 5-2
multiple-line substitutions, 5-8
null substitutions, 5-7
recursive substitutions, 5-8
saving substitutions, 5-12
short form, 5-2
variable subgtitutions, 5-5

LET ECHO command, 5-10

LET substitutions
function key, 5-12

LINES parameter, 1-30

LJUST function/subroutine, 3-140
LOAD command, 6-2

LOAD MODIFY command, 6-6
load procedures, A-2

loading files, 2-15, 6-2
? LOAD command, 2-15
Access Files, 6-4
compiled MODIFY requests, 6-5
displaying, 6-6
FOCCOMPfile, 6-5

[-10

loading files (continued)
LOAD, 6-2
Master Files, 6-4
MODIFY requests, 6-6
procedures, 6-4

local variables, 4-6, 4-49, 4-52
LOCASE subroutine, 3-142
LOG function, 3-143

looping, 4-25
controlling, 4-32
ending, 4-27

M

Main Menu, 9-54

Master Files
defining sliding window, 7-13
displaying field information, 2-8
loading, 6-4
samples, A-2

MASTER parameter, 1-31
MAX function, 3-144
MAXLRECL parameter, 1-31
MDY function, 3-86

memory
cache, 2-24

menus, 9-4
creating, 9-2
horizontal, 9-6
pulldown, 9-16
vertical, 9-5

merge
routine invocations, 2-24

MESSAGE parameter, 1-31
MIN function, 3-144

MINIO command, 6-8, 6-9
restrictions, 6-11
usage, 6-9

Information Builders

Index

MINIO parameter, 1-32
MOD subroutines, 3-128

MODIFY, 6-6
compiling, 6-7
loading, 6-6

MOVIES data source, A-24

MTHNAM subroutine, C-14
BAL Assembler language, C-19
C language, C-20
COBOL language, C-16
FOCUS requests, C-21
FORTRAN language, C-15
PL/I language, C-18

multi-input windows, 9-12
creating, 9-18

MULTIPATH parameter, 1-33
multiple-line substitutions, 5-8

MVS, C-13
accessing subroutines, 3-30
compiling subroutines, C-13
storing subroutines, C-13

-MVS RUN command, 4-10, 4-87
subroutines, 3-26

MVSDYNAM subroutine, 3-145

N

naming conventions, C-3

National Language Support (NLS), 2-14
? LANG command, 2-14

natural date literals, 4-33

nesting procedures, 4-40
-INCLUDE command, 4-40

NODATA parameter, 1-33

null substitutions, 5-7

Developing Applications

numeric format, 3-130
converting, 3-130, 3-132, 3-134
converting to, 3-125

numeric functions and subroutines, 3-12
ABS, 3-36
ASIS, 3-38
BAR, 3-47
DMQOD, 3-128
EXP, 3-95
EXPN, 3-96
FMOD, 3-128
IMOD, 3-128
INT, 3-129
LOG, 3-143
MAX, 3-144
MIN, 3-144
PRDNOR, 3-158
PRDUNI, 3-158
RDUNIF, 3-158
RENORM, 3-158
SQRT, 3-163

O

ONLINE-FMT parameter, 1-34
ORIENTATION parameter, 1-34
OVRLAY function/subroutine, 3-149

P

packed decimal fields
validating, 3-59

PAGE-NUM parameter, 1-35
PAGESIZE parameter, 1-35
PANEL parameter, 1-38
PAPER parameter, 1-39
PARAG subroutine, 3-152

parameter settings, 2-17
? SET command, 2-17

[-11

Index

parameters, 1-3
ALLOWCVTERR, 7-31
BUSDAYS, 3-15
DATEDISPLAY, 7-31
DATEFNS, 3-14
DEFCENT, 7-2, 7-7
EUROFILE, 8-8
HDAY, 3-16
LEADZERQO, 3-17
UNITS, 1-55
YRTHRESH, 7-2, 7-7

partitioned data sets, 3-97, 3-101
-PASS command, 4-7, 4-10, 4-87
PASS parameter, 1-39
passwords, 4-7

PAUSE parameter, 1-40
PAYHIST data source, A-20
PCKOUT subroutine, 3-154

PF keys, 9-26

PFnn command, 9-26

PFnn parameter, 1-40

PL/I language, C-4
MTHNAM subroutine, C-18

POSIT function/subroutine, 3-156
positional variables, 4-69
PRDNOR subroutines, 3-158
PRDUNI subroutines, 3-158
PREFIX parameter, 1-41

PRINT parameter, 1-41
PRINTPLUS parameter, 1-42

procedures, 4-2, 4-36, 4-44
comments, 4-8
creating, 4-6
-CRTFORM command, 4-49, 4-75
debugging, 4-42
EXEC command, 4-37, 4-41

[-12

procedures (continued)
executing, 4-7, 4-12
incorporating multiple, 4-37
load, A-2
loading, 6-4
open-ended, 4-41
-PROMPT command, 4-49
prompting, 4-49
SAMPLE, 9-31
sample in Window Painter, 9-51
security, 4-7, 4-44
storing, 4-6
TED, 4-6
testing, 4-42
variables, 4-49
-WINDOW command, 4-49, 4-75

PROD data source, A-10

programming, C-5
considerations, C-5
entry points, C-7
subroutines, C-9

-PROMPT command, 4-10, 4-49, 4-73, 4-88

prompting, 4-49
-CRTFORM command, 4-49, 4-75
implied, 4-49, 4-75
-PROMPT command, 4-49, 4-73
-WINDOW command, 4-49, 4-75

PTFs, 2-16
displaying, 2-16

pulldown menus, 9-16
creating, 9-16

Q

QUALCHAR parameter, 1-43
QUALTITLES parameter, 1-43

guery commands, 2-2
?8&8&,2-25
-? &[string], 4-51
? COMBINE, 2-3
? DEFINE, 2-4
? EUROFILE, 2-5, 8-9

Information Builders

Index

guery commands (continued)
?F, 25
?FDT, 2-6
?FF, 2-8
?FILE, 2-9
?HOLD, 2-12
?JOIN, 2-13
?LANG, 2-14
?LET, 2-14
?LOAD, 2-15, 6-6
?n,2-15
?PTF, 2-16
? RELEASE, 2-17
? SET, 2-17, 7-12
? SET FOR, 2-17
? SET GRAPH, 2-21
? SET NOT, 2-17
? STAT, 2-22
?STYLE, 2-26
?38U, 2-24
? USE, 2-26
testing status, 4-24

QUIT command, 4-44
-QUIT command, 4-10, 4-12, 4-15, 4-89
-QUIT FOCUS command, 4-15

R

RDNORM subroutines, 3-158

RDUNIF subroutines, 3-158

-READ command, 4-10, 4-68, 4-72, 4-90
REBUILDM SG parameter, 1-44

RECAP command, 3-28
subroutinesin, 3-28

RECAP-COUNT parameter, 1-44
RECORDLIMIT parameter, 1-44
recursive substitutions, 5-8

REGION data source, A-15
-REPEAT command, 4-10, 4-25, 4-91

Developing Applications

return value display windows, 9-9
return values, 9-24

REXX subroutines, C-22
RIGHTMARGIN parameter, 1-45
RJUST function/subroutine, 3-161
RPAGESET parameter, 1-45

-RUN command, 3-26, 4-10, 4-12, 4-92
subroutines, 3-26

S
SALES data source, A-8

sample data sources
CAR, A-11
COMASTER, A-21
COURSES, A-16
creating, A-2
EDUCFILE, A-7
EMPDATA, A-17
EMPLOYEE, A-3
EXPERSON, A-18
FINANCE, A-14
Gotham Grinds data sources, A-29
JOBFILE, A-6
LEDGER, A-13
MOVIES, A-24
PAYHIST, A-20
PROD, A-10
REGION, A-15
SALES, A-8
TRAINING, A-19
VIDEOTR2, A-26
VideoTrk, A-24

SAVEMATRIX parameter, 1-45
SBORDER parameter, 1-46
SCREEN parameter, 1-46

screens, 9-51
Entry Menu, 9-53
Main Menu, 9-54
Utilities Menu, 9-72

[-13

Index

screens (continued)
Window Creation Menu, 9-57
Window Design Screen, 9-59
Window Options Menu, 9-61

SET command, 1-2
parameters, 1-3

-SET command, 4-10, 4-27, 4-28, 4-32, 4-33, 4-44,
4-68, 4-71, 4-92
creating amper variables, 3-23
looping, 4-32

SET EUROFILE command, 8-8

SET parameters
ACCBLN, 1-3
AGGR[RATIC], 1-3
ALL, 1-4
ALLOWCVTERR, 1-5
ASNAMES, 1-6
AUTOINDEX, 1-6
AUTOPATH, 1-7
AUTOSTRATEGY, 1-7
AUTOTABLEF, 1-7
BINS, 1-8
BLKCALC, 1-8
BOTTOMMARGIN, 1-9
BUSDAYS, 1-8
BYPANEL, 1-9
BYSCROLL, 1-9
CACHE, 1-10
CARTESIAN, 1-11
CDN, 1-11
COLUMNSCROLL, 1-12
COMPUTE, 1-12
COUNTWIDTH, 1-12
DATEDISPLAY, 1-13
DATEFNS, 1-13
DATEFORMAT, 1-14
DATETIME, 1-14
DEFCENT, 1-15
DISPLAY, 1-15
DTSTRICT, 1-16
EMPTYREPORT, 1-16
ESTRECORDS, 1-17
EUROFILE, 1-18
EXTAGGR, 1-18

[-14

SET parameters (continued)

EXTHOLD, 1-18
EXTSORT, 1-19
EXTTERM, 1-19
FIELDNAME, 1-19
FILENAME, 1-20
FILTER, 1-20
FIXRETRIEVE, 1-21
FOC144, 1-21
FOC2GIGDB, 1-22
FOCALLOC, 1-22
FOCSTACK, 1-22
HDAY, 1-23
HLISUDUMP, 1-23
HLISUTRACE, 1-23
HOLDATTR, 1-24
HOLDLIST, 1-24
HOLDSTAT, 1-25
HOTMENU, 1-25
IBMLE, 1-26
IMMEDTY PE, 1-26
IMS, 1-26

INDEX, 1-27
JOINOPT, 1-27
LANG, 1-28
LEADZERO, 1-29
LEFTMARGIN, 1-30
LINES, 1-30
MASTER, 1-31
MAXLRECL, 1-31
MESSAGE, 1-31
MINIO, 1-32
MULTIPATH, 1-33
NODATA, 1-33
ONLINE-FMT, 1-34
ORIENTATION, 1-34
PAGE-NUM, 1-35
PAGESIZE, 1-35
PANEL, 1-38
PAPER, 1-39

PASS, 1-39

PAUSE, 1-40

PFnn, 1-40

PREFIX, 1-41
PRINT, 1-41
PRINTPLUS, 1-42

Information Builders

Index

SET parameters (continued)
QUALCHAR, 1-43
QUALTITLES, 1-43
REBUILDMSG, 1-44
RECAP-COUNT, 1-44
RECORDLIMIT, 1-44
RIGHTMARGIN, 1-45
RPAGESET, 1-45
SAVEMATRIX, 1-45
SBORDER, 1-46
SCREEN, 1-46
SHADOW, 1-47
SHIFT, 1-47
SORTLIB, 1-48
SPACES, 1-48
SQLTOPTIF, 1-49
SQUEEZE, 1-49
STYLE[SHEET], 1-50
SUMPREFIX, 1-51
Susl, 1-51
SUTABSIZE, 1-51
TEMP[DISK], 1-51
TERM, 1-52
TESTDATE, 1-52
TEXTFIELD, 1-53
TITLE, 1-53
TOPMARGIN, 1-54
TRACKIO, 1-54
TRMOUT, 1-54
UNITS, 1-55
USER, 1-55
WEEKFIRST, 1-57
WIDTH, 1-56, 1-57
XRETRIEVAL, 1-58
YRTHRESH, 1-58

SET TESTDATE command, 7-10
SHADOW parameter, 1-47
SHIFT parameter, 1-47

sliding window, 7-2
calculated value, 7-26
date format, 7-5
date options, 7-31
DEFCENT parameter, 7-2, 7-5
defining, 7-3

Developing Applications

sliding window (continued)
defining in Master File, 7-13
defining with SET, 7-7, 7-10
dynamic window, 7-4, 7-10
field-level, 7-13
file-level, 7-13
global, 7-7
legacy date, 7-5
YRTHRESH parameter, 7-2, 7-5

sort
externa, 2-23, 2-24
status of, 2-23

SORTLIB parameter, 1-48
SPACES parameter, 1-48

special variables, 4-62

SQL date, 7-5

SQLTOPTTF parameter, 1-49
SQRT function, 3-163

SQUEEZE parameter, 1-49

startup profile, 4-36

statistical variables, 4-6, 4-49, 4-60

strings, 3-56, 3-156, 3-170
alphanumeric, 3-93
centering in field, 3-68
character, 3-106
justifying, 3-161
substrings, 3-164

structure diagrams, A-2
STYLE[SHEET] parameter, 1-50

stylesheets, 2-26
? STYLE command, 2-26

SU machine, 2-24

subroutines, C-2
accessing external, 3-30
accessingin MVS, 3-30
accessing on VM/CMS, 3-34
arguments, 3-19, 3-20, C-3
caling, 4-33

[-15

Index

subroutines (continued) substrings, 3-149, 3-164
command calls, 3-18
compiling, C-12 SUMPREFIX parameter, 1-51
compilingin CMS, C-12 SUSI parameter, 1-51
compilingin MVS, C-13
creating, C-2 SUTABSIZE parameter, 1-51
custom, C-14 system date, 7-31
date, 3-9
external. 3-30 system defaults, 4-97
|F command, 3-24 system functions and subroutines, 3-13
-IF command, 3-24 FEXERR, 3-96
in COMPUTE command, 3-22 FINDMEM, 3-97
in DEFINE command, 3-22 GETPDS, 3-101
in functions, 3-21 GETUSER, 3-108
in IF selection tests, 3-23 HHMMSS, 3-120
in VALIDATE command, 3-22 MVSDYNAM, 3-145
in WHERE selection tests, 3-23 TODAY, 3-166
language, C-5 .
MTHNAM, C-14 system variables, 4-6, 4-49, 4-54
programming, C-5, C-7, C-9
RECAP command, 3-28 T
REXX, C-22 .
-RUN commands, 3-26 TED (text editor), 4-6
storing, C-12 TEMP[DISK] parameter, 1-51
storing external, 3-30)
storing in CMS, C-12 temporary fields
stori ng in MVS, C-13 ? DEFINE command, 2-4
storing on VM/CMSS, 3-34 displaying, 2-4
testing, C-13 TERM parameter, 1-52
WHEN criteria, 3-27
with sliding window, 7-5, 7-23 TESTDATE parameter, 1-52
writing, C-3 text display windows, 9-7

substitutions, 2-14 creating, 9-35, 9-39
? LET command, 2-14 text input windows, 9-6
checking, 5-10
clearing, 5-11 TEXTFIELD parameter, 1-53
LET command, 5-2 TITLE parameter, 1-53
multiple-line, 5-8
null, 5-7 TODAY function/subroutine, 3-166
recursive, 5-8 TOPMARGIN parameter, 1-54
saving, 5-12
variable, 5-5 TRACKIO parameter, 1-54
variables, 4-49

TRAINING data source, A-19

SUBSTR function/subroutine, 3-164 TRMOUT parameter, 1-54

I-16 Information Builders

Index

-TSO RUN command, 4-10, 4-93

subroutines, 3-26

-TYPE command, 4-10, 4-11, 4-93

U

UFMT subroutine, 3-168
UNITS parameter, 1-55
UPCASE subroutine, 3-170

user 1Ds, 3-108
retrieving, 3-108

USER parameter, 1-55
Utilities Menu, 9-72

\%

VALIDATE command, 3-22
subroutinesin, 3-22

values, 4-49
decoding, 3-83
default, 4-97
goto, 9-25
maximum, 3-144
minimum, 3-144
variables, 4-49
verifying input values, 4-76

variable operations
altering commands, 4-63
changing value, 4-29
computing, 4-28
concatenating, 4-65
evaluating, 4-63
format conditions, 4-76
in procedures, 4-49
prompting, 4-79
guerying, 4-51
substitution, 4-49
supplying values, 4-66, 4-68
valid values, 4-77

variable substitutions, 5-5

Developing Applications

variable types, 4-6
amper variables, 4-30, 4-49, 4-51
global, 4-6, 4-49, 4-53
local, 4-6, 4-49, 4-52
positional, 4-69
special, 4-62
statistical, 4-6, 4-49, 4-60
system, 4-6, 4-49, 4-54

variable values, 4-68
-DEFAULTS command, 4-70
-READ command, 4-72
-SET sommand, 4-71
supplying from external files, 4-72

vertical menus, 9-5
creating, 9-41, 9-47

VIDEOTR2 Access File, A-27
VIDEOTR?2 data source, A-26
VideoTrk data source, A-24
virtual fields, 7-14

dliding window, 7-20

W

WEEKFIRST parameter, 1-57

WHERE selection tests, 3-23
subroutinesin, 3-23, 3-27

WIDTH parameter, 1-56, 1-57

-window applications
transferring control, 9-22

-WINDOW command, 4-10, 4-49, 4-75, 4-94, 9-3
WINDOW COMPILE command, 9-83

Window Creation Menu, 9-57

Window Design Screen, 9-59

Window facility, 9-22

window files, 9-3, 9-4
creating, 9-33

[-17

Index

Window Options Menu, 9-61 windows (continued)
Display list, 9-65 field names, 9-8
Heading, 9-64 file contents, 9-9
Help window, 9-67, 9-71 file names, 9-7
Hide list, 9-66 horizontal, 9-6, 9-14
Line break, 9-69 multi-input, 9-12, 9-18
Multi-select, 9-70 procedures, 9-21
Popup, 9-67 return value display, 9-9
Quit, 9-71 returning to caller, 9-25
Show awindow, 9-64 text display, 9-7
Unshow a window, 9-64 text input, 9-6

types, 9-5
vertica menu, 9-5

-WRITE command, 4-10, 4-45, 4-95

WINDOW PAINT command, 9-52

Window Painter, 9-2
goto values, 9-3

invoking, 9-52 X

main menu, 9-35

screens, 9-51

tutorial, 9-29 XRETRIEVAL parameter, 1-58
window files, 9-3 Y

Window Painter tutorial, 9-29
SAMPLE, 9-31 Y M subroutine, 3-174

window file, 9-33 YMD function, 3-86

YRTHRESH parameter, 1-58, 7-2, 7-3, 7-5, 7-7
COMPUTE command, 7-26
DEFINE command, 7-20
querying, 7-12
with COMPUTE, 7-27

windows, 9-4
& WINDOWNAME variable, 9-26
& WINDOWVALUE variable, 9-26
creating, 9-2, 9-14
executing, 9-28
execution, 9-11

1-18 Information Builders

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert usto corrections. |dentify
specific pages where applicable. Send comments to

Corporate Publications

Attn: Manager of Documentation Services
Information Builders

Two Penn Plaza

New York, NY 10121-2898

or FAX this page to (212) 967-0460, or call Sara Elam at (212) 736-4433, x3207.

Name:

Company:
Address:
Telephone: Date:

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

FOCUS for S/390 Developing Applications DN1001057.1100
Version 7 Release 1

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

FOCUS for S/390 Developing Applications DN1001057.1100
Version 7 Release 1

	Table of Contents
	Preface
	Customizing Your Environment
	The SET Command
	SET Parameter Syntax

	Querying Your Environment
	Using Query Commands
	Displaying Combined Structures
	Displaying Virtual Fields
	Displaying the Currency Data Source in Effect
	Displaying Available Fields
	Displaying the File Directory Table
	Displaying Field Information for a Master File
	Displaying Data Source Statistics
	Determining the Percentage of File Disorganization

	Displaying DEFINE Functions
	Displaying HOLD Fields
	Displaying JOIN Structures
	Displaying National Language Support
	Displaying LET Substitutions
	Displaying Information About Loaded Files
	Displaying Explanations of Error Messages
	Querying Which PTFs Have Been Applied for a Specific Release
	Displaying the Release Number
	Displaying Parameter Settings
	Displaying Graph Parameters
	Displaying Command Statistics
	Displaying Information About the SU Machine
	Displaying Global Variable Values
	Displaying StyleSheet Parameter Settings
	Displaying Data Sources Specified With USE

	Using Functions and Subroutines
	What Is the Difference Between a Function and a Subroutine?
	Types of Functions and Subroutines
	Bit Functions and Subroutines
	Character Functions and Subroutines
	Data Source Functions and Subroutines
	Date Functions and Subroutines
	Decoding Functions and Subroutines
	Format Conversion Functions and Subroutines
	Numeric Functions and Subroutines
	System Functions and Subroutines

	Date Function and Subroutine Settings
	Using Legacy Versions of Date Subroutines
	Setting Business Day Units
	Setting Holidays
	Enabling Leading Zeros For Date Subroutines in Dialogue Manager

	Subroutine Command (Call) Syntax
	Types of Arguments in Subroutine Calls
	Rules for Arguments in Subroutine Calls
	Using Subroutine Calls in FOCUS Functions
	Using Subroutine Calls in DEFINE, COMPUTE, and VALIDATE Commands
	Using Subroutine Calls in WHERE and IF Tests
	Using Subroutine Calls in -SET Control Commands
	Using Subroutine Calls in -IF and IF Branching Commands
	Operating System -RUN Commands
	Using Subroutine Calls in WHEN Criteria
	Using Subroutine Calls in RECAP Commands

	Storing and Accessing External Subroutines
	Storing and Accessing Subroutines on MVS
	Dynamic Language Environment Support
	Storing and Accessing Subroutines on VM/CMS

	Alphabetical List of Functions and Subroutines
	ABS: Calculating Absolute Value
	ARGLEN: Measuring Argument Length
	ASIS: Distinguishing Between a Blank and a Zero
	ATODBL: Converting Alphanumeric Strings to a Double-Precision Number
	AYM: Adding or Subtracting Months to or From Dates
	AYMD: Adding or Subtracting Days to or From Dates
	BAR: Producing Bar Charts
	BITSON: Determining If Bits Are On or Off
	BITVAL: Evaluating Bit Strings as Binary Integers
	BYTVAL: Translating a Character to Its ASCII or EBCDIC Code
	CHGDAT: Changing Date Formats
	CHKFMT: Checking String Format
	CHKPCK: Validating Packed Fields
	CTRAN: Translating One Character to Another
	CTRFLD: Centering a Character String
	DA Subroutines: Converting a Date to an Integer
	DATEADD: Adding or Subtracting Date Units to or From a Date
	DATECVT: Converting Date Formats
	DATEDIF: Finding the Difference Between Two Dates
	DATEMOV: Moving Dates to a Significant Point
	DECODE: Decoding Values
	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	DOWK and DOWKL: Finding the Day of the Week
	DT Subroutines: Converting an Integer to a Date
	EDIT: Converting the Format of a Field
	EDIT: Extracting or Adding Characters
	EXP: Raising “e” to the Nth Power
	EXPN: Evaluating Scientific Notation
	FEXERR: Retrieving FOCUS Error Messages
	FINDMEM: Finding a Member of a Partitioned Data Set
	FTOA: Converting a Number to Alphanumeric Format
	GETPDS: Determining if a Member of a Partitioned Data Set Exists
	GETTOK: Getting a Token From a String
	GETUSER: Retrieving the User ID
	GREGDT: Converting From Julian to Gregorian Format
	HADD: Incrementing a Date-Time Field
	HCNVRT: Converting a Date-Time Field to Alphanumeric Format
	HDATE: Converting the Date Portion of a Date-Time Field to a Date Format
	HDIFF: Finding the Number of Units Between Two Date-Time Values
	HDTTM: Converting a Date field to a Date˚Time Field
	HEXBYT: Converting a Number to a Character
	HGETC: Storing the Current Date and Time in a Date-Time Field
	HHMMSS: Returning the Current Time
	HINPUT: Converting an Alphanumeric String to a Date-Time Value
	HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight
	HNAME: Extracting a Date-Time Component in Alphanumeric Format
	HPART: Returning a Date-Time Component in Numeric Format
	HSETPT: Inserting a Component Into a Date-Time Field
	HTIME: Converting the Time Portion of a Date-Time Field to a Number
	IMOD, FMOD, and DMOD: Calculating the Remainder From a Division
	INT: Finding the Greatest Integer
	ITONUM: Converting Large Binary Integers to Double-Precision
	ITOPACK: Converting Large Binary Integers to Packed-Decimal Format
	ITOZ: Converting to Zoned Format
	JULDAT: Converting From Gregorian to Julian Format
	LAST: Retrieving the Preceding Value
	LCWORD: Converting Letters in a Word to Mixed Case
	LJUST: Left-justifying a String
	LOCASE: Converting Text to Lowercase
	LOG: Calculating the Natural Logarithm
	MAX and MIN: Finding the Maximum or Minimum Value
	MVSDYNAM: Passing a DYNAM Command to the Command Processor
	OVRLAY: Overlaying a Substring Within a String
	PARAG: Dividing Text Into Smaller Lines
	PCKOUT: Writing Packed Numbers of Different Lengths
	POSIT: Finding Substring Position
	PRDNOR, PRDUNI, RDNORM, and RDUNIF: Generating Random Numbers
	RJUST: Right-justifying a String
	SQRT: Calculating the Square Root
	SUBSTR: Extracting a Substring
	TODAY: Returning the Current Date
	UFMT: Converting Alphanumeric to Hexadecimal
	UPCASE: Converting Text to Uppercase
	YM: Calculating Elapsed Months

	Managing Applications With Dialogue Manager
	Overview of Dialogue Manager Capabilities
	Overview of Dialogue Manager Variables

	Creating and Storing Procedures
	Executing Procedures
	Controlling Access to Data

	Including Comments in a Procedure
	Overview of Dialogue Manager Commands
	Sending a Message to the User: -TYPE
	Controlling Execution: -RUN, -EXIT, and -QUIT
	Executing Stacked Commands and Continuing the Procedure: -RUN
	Executing Stacked Commands and Exiting the Procedure: -EXIT
	Canceling Execution of the Procedure: -QUIT

	Branching
	GOTO Processing
	Compound -IF Tests
	Using Operators and Functions in -IF Tests
	Screening Values With -IF Tests
	Testing the Status of a Query

	Looping
	Ending a Loop

	Using Expressions: -SET
	Computing a New Variable
	Using the DECODE Function
	Using the EDIT Function
	Using the TRUNCATE Function
	Controlling a Loop With -SET
	Setting a Date
	Calling a Subroutine

	Additional Facilities
	Establishing Startup Conditions
	Incorporating Multiple Procedures
	Nesting Procedures With -INCLUDE
	Using EXEC
	Developing an Open-Ended Procedure
	Debugging With &ECHO
	Testing Dialogue Manager Command Logic With &STACK
	Locking Procedure Users Out of FOCUS
	Writing to Files: -WRITE

	Using Variables in Procedures
	Querying the Values of Variables
	Local Variables
	Global Variables
	System Variables
	Statistical Variables
	Special Variables
	Using Variables to Alter Commands
	Evaluating a Variable Immediately
	Concatenating Variables

	Supplying Values for Variables at Run Time
	Supplying Values Without Prompting
	Supplying Values With -DEFAULTS
	Supplying Values With -SET
	Supplying Values With -READ
	Direct Prompting With -PROMPT
	Full-Screen Data Entry With -CRTFORM
	Selecting Data From Menus and Windows With -WINDOW
	Implied Prompting
	Verifying Input Values

	Dialogue Manager Quick Reference
	System Defaults and Limits

	Defining a Word Substitution
	The LET Command
	Variable Substitution
	Null Substitution
	Multiple-line Substitution
	Recursive Substitution
	Using LET Substitution in a COMPUTE or DEFINE Command
	Checking Current LET Substitutions
	Interactive LET Query: LET ECHO
	Clearing LET Substitutions
	Saving LET Substitutions in a File
	Assigning Phrases to Function Keys

	Enhancing Application Performance
	FOCUS Facilities
	Loading a File
	Loading Master Files, FOCUS Procedures, and Access Files
	Loading a Compiled MODIFY Request
	Loading a MODIFY Request
	Displaying Information About Loaded Files

	Compiling a MODIFY Request
	Accessing a FOCUS Data Source (MVS Only)
	Using MINIO
	Determining if a Previous Command Used MINIO

	Working With Cross-Century Dates
	When Do You Use the Sliding Window Technique?
	The Sliding Window Technique
	Defining a Sliding Window
	Creating a Dynamic Window Based on the Current Year

	Applying the Sliding Window Technique
	When to Supply Settings for DEFCENT and YRTHRESH
	Date Validation

	Defining a Global Window With SET
	Defining a Dynamic Global Window With SET
	Querying the Current Global Value of DEFCENT and YRTHRESH
	Defining a File-Level or Field-Level Window in a Master File
	Defining a Window for a Virtual Field
	Defining a Window for a Calculated Value
	Additional Support for Cross-Century Dates

	Euro Currency Support
	Integrating the Euro Currency
	Converting Currencies
	Preparing FOCUS to Process Currency Conversions
	Creating the Currency Data Source
	Identifying Fields That Contain Currency Data

	Activating the Currency Data Source
	Querying the Currency Data Source in Effect
	Processing Currency Data

	Designing Windows With Window Painter
	Introduction
	How Do Window Applications Work?

	Window Files and Windows
	Types of Windows You Can Create
	Creating Windows

	Integrating Windows and the FOCEXEC
	Transferring Control in Window Applications
	Return Values
	Goto Values
	Window System Variables
	Testing Function Key Values
	Executing a Window From the FOCUS Prompt

	Tutorial: A Menu-Driven Application
	Creating the Application FOCEXEC
	Creating the Window File
	Executing the Application

	Window Painter Screens
	Invoking Window Painter
	Entry Menu
	Main Menu
	Window Creation Menu
	Window Design Screen
	Window Options Menu
	Utilities Menu

	Transferring Window Files
	Creating a Transfer File
	Transferring the File to the New Environment
	Editing the Transfer File
	Compiling the Transfer File

	Master Files and Diagrams
	Creating Sample Data Sources
	The EMPLOYEE Data Source
	The EMPLOYEE Master File
	The EMPLOYEE Structure Diagram

	The JOBFILE Data Source
	The JOBFILE Master File
	The JOBFILE Structure Diagram

	The EDUCFILE Data Source
	The EDUCFILE Master File
	The EDUCFILE Structure Diagram

	The SALES Data Source
	The SALES Master File
	The SALES Structure Diagram

	The PROD Data Source
	The PROD Master File
	The PROD Structure Diagram

	The CAR Data Source
	The CAR Master File
	The CAR Structure Diagram

	The LEDGER Data Source
	The LEDGER Master File
	The LEDGER Structure Diagram

	The FINANCE Data Source
	The FINANCE Master File
	The FINANCE Structure Diagram

	The REGION Data Source
	The REGION Master File
	The REGION Structure Diagram

	The COURSES Data Source
	The COURSES Master File
	The COURSES Structure Diagram

	The EMPDATA Data Source
	The EMPDATA Master File
	The EMPDATA Structure Diagram

	The EXPERSON Data Source
	The EXPERSON Master File
	The EXPERSON Structure Diagram

	The TRAINING Data Source
	The TRAINING Master File
	The TRAINING Structure Diagram

	The PAYHIST File
	The PAYHIST Master File
	The PAYHIST Structure Diagram

	The COMASTER File
	The COMASTER Master File
	The COMASTER Structure Diagram

	The VideoTrk and MOVIES Data Sources
	VideoTrk Master File
	MOVIES Master File
	VideoTrk Structure Diagram
	MOVIES Structure Diagram

	The VIDEOTR2 Data Source
	The VIDEOTR2 Master File
	The VIDEOTR2 Access File
	The VIDEOTR2 Structure Diagram

	The Gotham Grinds Data Sources
	The GGDEMOG Data Source
	The GGORDER Data Source
	The GGPRODS Data Source
	The GGSALES Data Source
	The GGSTORES Data Source

	Error Messages
	Accessing Error Files
	Displaying Messages Online

	Creating Your Own Subroutines
	Process Overview
	Considerations for Writing Subroutines
	Naming Conventions
	Argument Considerations
	Programming Considerations
	Language Considerations
	Programming Technique: Entry Points
	Programming Technique: Subroutines With More Than 28 Arguments

	Compilation and Storage
	CMS: Compilation and Storage
	MVS: Compilation and Storage

	Testing the Subroutine
	Example of a Custom Subroutine: The MTHNAM Subroutine
	The MTHNAM Subroutine Written in FORTRAN
	The MTHNAM Subroutine Written in COBOL
	The MTHNAM Subroutine Written in PL/I
	The MTHNAM Subroutine Written in BAL Assembler
	The MTHNAM Subroutine Written in C
	The MTHNAM Subroutine Called by a FOCUS Request

	Subroutines Written in REXX
	Using REXX Subroutines
	Compiling FUSREXX Macros in CMS

	Index

