

Developing Applications
Version 7.1

DN1001057.1100

FOCUS� for S/390�

Developing Applications

Contents
1 Customizing Your Environment ...1-1

The SET Command ..1-2
SET Parameter Syntax..1-3

2 Querying Your Environment ..2-1
Using Query Commands ..2-2
Displaying Combined Structures..2-3
Displaying Virtual Fields ...2-4
Displaying the Currency Data Source in Effect..2-5
Displaying Available Fields ...2-5
Displaying the File Directory Table ...2-6
Displaying Field Information for a Master File..2-8
Displaying Data Source Statistics...2-9

Determining the Percentage of File Disorganization...2-11
Displaying DEFINE Functions...2-11
Displaying HOLD Fields..2-12
Displaying JOIN Structures..2-13
Displaying National Language Support..2-14
Displaying LET Substitutions ..2-14
Displaying Information About Loaded Files ..2-15
Displaying Explanations of Error Messages...2-15
Querying Which PTFs Have Been Applied for a Specific Release..2-16
Displaying the Release Number ...2-17
Displaying Parameter Settings..2-17
Displaying Graph Parameters...2-21
Displaying Command Statistics..2-22
Displaying Information About the SU Machine...2-24
Displaying Global Variable Values ..2-25
Displaying StyleSheet Parameter Settings..2-26
Displaying Data Sources Specified With USE...2-26

Contents

 Information Builders

3 Using Functions and Subroutines ...3-1
What Is the Difference Between a Function and a Subroutine? ...3-2
Types of Functions and Subroutines ..3-3

Bit Functions and Subroutines ..3-3
Character Functions and Subroutines ..3-4
Data Source Functions and Subroutines..3-6
Date Functions and Subroutines..3-6
Decoding Functions and Subroutines ..3-10
Format Conversion Functions and Subroutines...3-11
Numeric Functions and Subroutines ...3-12
System Functions and Subroutines..3-13

Date Function and Subroutine Settings ..3-14
Using Legacy Versions of Date Subroutines...3-14
Setting Business Day Units ...3-15
Setting Holidays ..3-16
Enabling Leading Zeros For Date Subroutines in Dialogue Manager...3-17

Subroutine Command (Call) Syntax...3-18
Types of Arguments in Subroutine Calls ..3-19
Rules for Arguments in Subroutine Calls..3-20
Using Subroutine Calls in FOCUS Functions ...3-21
Using Subroutine Calls in DEFINE, COMPUTE, and VALIDATE Commands..................................3-22
Using Subroutine Calls in WHERE and IF Tests..3-23
Using Subroutine Calls in -SET Control Commands ..3-23
Using Subroutine Calls in -IF and IF Branching Commands..3-24
Operating System -RUN Commands ..3-26
Using Subroutine Calls in WHEN Criteria..3-27
Using Subroutine Calls in RECAP Commands...3-28

Storing and Accessing External Subroutines..3-30
Storing and Accessing Subroutines on MVS ..3-30
Dynamic Language Environment Support ..3-32
Storing and Accessing Subroutines on VM/CMS ...3-34

Alphabetical List of Functions and Subroutines...3-36
ABS: Calculating Absolute Value...3-36
ARGLEN: Measuring Argument Length ..3-37
ASIS: Distinguishing Between a Blank and a Zero...3-38
ATODBL: Converting Alphanumeric Strings to a Double-Precision Number3-39
AYM: Adding or Subtracting Months to or From Dates...3-43
AYMD: Adding or Subtracting Days to or From Dates..3-45
BAR: Producing Bar Charts ..3-47
BITSON: Determining If Bits Are On or Off..3-49
BITVAL: Evaluating Bit Strings as Binary Integers ...3-50
BYTVAL: Translating a Character to Its ASCII or EBCDIC Code..3-52

 Contents

Developing Applications

CHGDAT: Changing Date Formats ..3-53
CHKFMT: Checking String Format..3-56
CHKPCK: Validating Packed Fields...3-59
CTRAN: Translating One Character to Another ...3-62
CTRFLD: Centering a Character String..3-68
DA Subroutines: Converting a Date to an Integer...3-70
DATEADD: Adding or Subtracting Date Units to or From a Date...3-72
DATECVT: Converting Date Formats..3-77
DATEDIF: Finding the Difference Between Two Dates ..3-78
DATEMOV: Moving Dates to a Significant Point..3-80
DECODE: Decoding Values ...3-83
DMY, MDY, YMD: Calculating the Difference Between Two Dates..3-86
DOWK and DOWKL: Finding the Day of the Week..3-88
DT Subroutines: Converting an Integer to a Date ...3-89
EDIT: Converting the Format of a Field ...3-91
EDIT: Extracting or Adding Characters..3-93
EXP: Raising “e” to the Nth Power...3-95
EXPN: Evaluating Scientific Notation..3-96
FEXERR: Retrieving FOCUS Error Messages ...3-96
FINDMEM: Finding a Member of a Partitioned Data Set ..3-97
FTOA: Converting a Number to Alphanumeric Format ...3-100
GETPDS: Determining if a Member of a Partitioned Data Set Exists ..3-101
GETTOK: Getting a Token From a String..3-106
GETUSER: Retrieving the User ID ..3-108
GREGDT: Converting From Julian to Gregorian Format ...3-109
HADD: Incrementing a Date-Time Field ..3-112
HCNVRT: Converting a Date-Time Field to Alphanumeric Format ..3-113
HDATE: Converting the Date Portion of a Date-Time Field to a Date Format3-114
HDIFF: Finding the Number of Units Between Two Date-Time Values..3-115
HDTTM: Converting a Date field to a Date-Time Field ...3-116
HEXBYT: Converting a Number to a Character...3-117
HGETC: Storing the Current Date and Time in a Date-Time Field ..3-119
HHMMSS: Returning the Current Time ...3-120
HINPUT: Converting an Alphanumeric String to a Date-Time Value..3-121
HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight ...3-122
HNAME: Extracting a Date-Time Component in Alphanumeric Format...3-123
HPART: Returning a Date-Time Component in Numeric Format..3-125
HSETPT: Inserting a Component Into a Date-Time Field ..3-126
HTIME: Converting the Time Portion of a Date-Time Field to a Number ...3-127
IMOD, FMOD, and DMOD: Calculating the Remainder From a Division ..3-128
INT: Finding the Greatest Integer ...3-129
ITONUM: Converting Large Binary Integers to Double-Precision ..3-130
ITOPACK: Converting Large Binary Integers to Packed-Decimal Format ..3-132
ITOZ: Converting to Zoned Format ..3-134
JULDAT: Converting From Gregorian to Julian Format ..3-135
LAST: Retrieving the Preceding Value...3-137

Contents

 Information Builders

LCWORD: Converting Letters in a Word to Mixed Case...3-138
LJUST: Left-justifying a String ..3-140
LOCASE: Converting Text to Lowercase...3-142
LOG: Calculating the Natural Logarithm..3-143
MAX and MIN: Finding the Maximum or Minimum Value...3-144
MVSDYNAM: Passing a DYNAM Command to the Command Processor.......................................3-145
OVRLAY: Overlaying a Substring Within a String..3-149
PARAG: Dividing Text Into Smaller Lines ..3-152
PCKOUT: Writing Packed Numbers of Different Lengths...3-154
POSIT: Finding Substring Position ...3-156
PRDNOR, PRDUNI, RDNORM, and RDUNIF: Generating Random Numbers3-158
RJUST: Right-justifying a String ..3-161
SQRT: Calculating the Square Root..3-163
SUBSTR: Extracting a Substring ..3-164
TODAY: Returning the Current Date ...3-166
UFMT: Converting Alphanumeric to Hexadecimal ..3-168
UPCASE: Converting Text to Uppercase ...3-170
YM: Calculating Elapsed Months ...3-174

4 Managing Applications With Dialogue Manager ..4-1
Overview of Dialogue Manager Capabilities ...4-2

Overview of Dialogue Manager Variables..4-6
Creating and Storing Procedures ..4-6
Executing Procedures ...4-7

Controlling Access to Data..4-7
Including Comments in a Procedure ..4-8
Overview of Dialogue Manager Commands ..4-9
Sending a Message to the User: -TYPE ...4-11
Controlling Execution: -RUN, -EXIT, and -QUIT...4-12

Executing Stacked Commands and Continuing the Procedure: -RUN..4-12
Executing Stacked Commands and Exiting the Procedure: -EXIT ...4-13
Canceling Execution of the Procedure: -QUIT ...4-15

Branching ...4-16
-GOTO Processing ..4-16
Compound -IF Tests..4-19
Using Operators and Functions in -IF Tests..4-20
Screening Values With -IF Tests...4-20
Testing the Status of a Query ..4-24

Looping ..4-25
Ending a Loop ...4-27

Using Expressions: -SET..4-27
Computing a New Variable ...4-28

 Contents

Developing Applications

Using the DECODE Function ...4-29
Using the EDIT Function ..4-30
Using the TRUNCATE Function ..4-31
Controlling a Loop With -SET ..4-32
Setting a Date ..4-33
Calling a Subroutine..4-33

Additional Facilities ...4-36
Establishing Startup Conditions ..4-36
Incorporating Multiple Procedures..4-37
Nesting Procedures With -INCLUDE ...4-40
Using EXEC..4-41
Developing an Open-Ended Procedure ...4-41
Debugging With &ECHO ...4-42
Testing Dialogue Manager Command Logic With &STACK ..4-43
Locking Procedure Users Out of FOCUS ...4-44
Writing to Files: -WRITE..4-45

Using Variables in Procedures ...4-49
Querying the Values of Variables ...4-51
Local Variables ...4-52
Global Variables..4-53
System Variables...4-54
Statistical Variables...4-60
Special Variables...4-62
Using Variables to Alter Commands...4-63
Evaluating a Variable Immediately ...4-63
Concatenating Variables..4-65

Supplying Values for Variables at Run Time...4-66
Supplying Values Without Prompting...4-68
Supplying Values With -DEFAULTS...4-70
Supplying Values With -SET ..4-71
Supplying Values With -READ ..4-72
Direct Prompting With -PROMPT..4-73
Full-Screen Data Entry With -CRTFORM..4-75
Selecting Data From Menus and Windows With -WINDOW ..4-75
Implied Prompting...4-75
Verifying Input Values..4-76

Dialogue Manager Quick Reference ..4-80
System Defaults and Limits ..4-97

5 Defining a Word Substitution..5-1
The LET Command..5-2
Variable Substitution ..5-5
Null Substitution...5-7

Contents

 Information Builders

Multiple-line Substitution...5-8
Recursive Substitution..5-8
Using LET Substitution in a COMPUTE or DEFINE Command ..5-9
Checking Current LET Substitutions ...5-10
Interactive LET Query: LET ECHO ..5-10
Clearing LET Substitutions ..5-11
Saving LET Substitutions in a File...5-12
Assigning Phrases to Function Keys ..5-12

6 Enhancing Application Performance..6-1
FOCUS Facilities ...6-2
Loading a File...6-2

Loading Master Files, FOCUS Procedures, and Access Files...6-4
Loading a Compiled MODIFY Request..6-5
Loading a MODIFY Request ..6-6
Displaying Information About Loaded Files...6-6

Compiling a MODIFY Request..6-7
Accessing a FOCUS Data Source (MVS Only) ...6-8

Using MINIO ..6-9
Determining if a Previous Command Used MINIO ..6-10

7 Working With Cross-Century Dates ..7-1
When Do You Use the Sliding Window Technique? ...7-2
The Sliding Window Technique...7-2

Defining a Sliding Window...7-3
Creating a Dynamic Window Based on the Current Year...7-4

Applying the Sliding Window Technique ..7-5
When to Supply Settings for DEFCENT and YRTHRESH..7-5
Date Validation ...7-6

Defining a Global Window With SET..7-7
Defining a Dynamic Global Window With SET ..7-10
Querying the Current Global Value of DEFCENT and YRTHRESH..7-12
Defining a File-Level or Field-Level Window in a Master File ...7-13
Defining a Window for a Virtual Field...7-20
Defining a Window for a Calculated Value ...7-26
Additional Support for Cross-Century Dates ...7-31

8 Euro Currency Support ...8-1

 Contents

Developing Applications

Integrating the Euro Currency ..8-2
Converting Currencies..8-2
Preparing FOCUS to Process Currency Conversions...8-4

Creating the Currency Data Source...8-4
Identifying Fields That Contain Currency Data ..8-6

Activating the Currency Data Source ...8-8
Querying the Currency Data Source in Effect ..8-9
Processing Currency Data ..8-10

9 Designing Windows With Window Painter..9-1
Introduction ..9-2

How Do Window Applications Work? ...9-3
Window Files and Windows...9-4

Types of Windows You Can Create ..9-5
Creating Windows...9-14

Integrating Windows and the FOCEXEC...9-21
Transferring Control in Window Applications..9-22
Return Values..9-24
Goto Values...9-25
Window System Variables ..9-26
Testing Function Key Values ..9-26
Executing a Window From the FOCUS Prompt ...9-28

Tutorial: A Menu-Driven Application..9-29
Creating the Application FOCEXEC ..9-31
Creating the Window File ...9-33
Executing the Application ...9-51

Window Painter Screens...9-51
Invoking Window Painter ...9-52
Entry Menu..9-53
Main Menu ..9-54
Window Creation Menu ..9-57
Window Design Screen ...9-59
Window Options Menu ...9-61
Utilities Menu..9-72

Transferring Window Files...9-75
Creating a Transfer File...9-76
Transferring the File to the New Environment..9-77
Editing the Transfer File..9-77
Compiling the Transfer File ..9-83

A Master Files and Diagrams...A-1
Creating Sample Data Sources ..A-2

Contents

 Information Builders

The EMPLOYEE Data Source ..A-3
The EMPLOYEE Master File ..A-4
The EMPLOYEE Structure Diagram...A-5

The JOBFILE Data Source..A-6
The JOBFILE Master File ..A-6
The JOBFILE Structure Diagram...A-6

The EDUCFILE Data Source ..A-7
The EDUCFILE Master File ..A-7
The EDUCFILE Structure Diagram...A-7

The SALES Data Source ...A-8
The SALES Master File ...A-8
The SALES Structure Diagram..A-9

The PROD Data Source...A-10
The PROD Master File...A-10
The PROD Structure Diagram..A-10

The CAR Data Source ...A-11
The CAR Master File ...A-11
The CAR Structure Diagram..A-12

The LEDGER Data Source ...A-13
The LEDGER Master File..A-13
The LEDGER Structure Diagram ..A-13

The FINANCE Data Source ..A-14
The FINANCE Master File ..A-14
The FINANCE Structure Diagram...A-14

The REGION Data Source ..A-15
The REGION Master File ..A-15
The REGION Structure Diagram ...A-15

The COURSES Data Source ...A-16
The COURSES Master File ...A-16
The COURSES Structure Diagram ..A-16

The EMPDATA Data Source ..A-17
The EMPDATA Master File ..A-17
The EMPDATA Structure Diagram...A-17

The EXPERSON Data Source...A-18
The EXPERSON Master File...A-18
The EXPERSON Structure Diagram..A-18

The TRAINING Data Source ..A-19
The TRAINING Master File ..A-19
The TRAINING Structure Diagram...A-19

The PAYHIST File..A-20

 Contents

Developing Applications

The PAYHIST Master File...A-20
The PAYHIST Structure Diagram ...A-20

The COMASTER File ...A-21
The COMASTER Master File..A-22
The COMASTER Structure Diagram ..A-23

The VideoTrk and MOVIES Data Sources ...A-24
VideoTrk Master File ...A-24
MOVIES Master File ...A-24
VideoTrk Structure Diagram..A-25
MOVIES Structure Diagram ..A-26

The VIDEOTR2 Data Source..A-26
The VIDEOTR2 Master File ..A-26
The VIDEOTR2 Access File..A-27
The VIDEOTR2 Structure Diagram...A-28

The Gotham Grinds Data Sources ...A-29
The GGDEMOG Data Source..A-29
The GGORDER Data Source...A-30
The GGPRODS Data Source ...A-31
The GGSALES Data Source ..A-32
The GGSTORES Data Source..A-33

B Error Messages .. B-1
Accessing Error Files .. B-2
Displaying Messages Online ... B-3

C Creating Your Own Subroutines ...C-1
Process Overview .. C-2
Considerations for Writing Subroutines .. C-3

Naming Conventions.. C-3
Argument Considerations... C-3
Programming Considerations ... C-5
Language Considerations ... C-5
Programming Technique: Entry Points .. C-7
Programming Technique: Subroutines With More Than 28 Arguments.. C-9

Compilation and Storage ... C-12
CMS: Compilation and Storage.. C-12
MVS: Compilation and Storage ... C-13

Testing the Subroutine... C-13
Example of a Custom Subroutine: The MTHNAM Subroutine .. C-14

The MTHNAM Subroutine Written in FORTRAN ... C-15
The MTHNAM Subroutine Written in COBOL .. C-16
The MTHNAM Subroutine Written in PL/I... C-18

Contents

 Information Builders

The MTHNAM Subroutine Written in BAL Assembler .. C-19
The MTHNAM Subroutine Written in C ... C-20
The MTHNAM Subroutine Called by a FOCUS Request ... C-21

Subroutines Written in REXX... C-22
Using REXX Subroutines .. C-22
Compiling FUSREXX Macros in CMS ... C-32

Index ... I-1

Cactus, EDA, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, Information Builders, the Information Builders logo, SmartMode, SNAPpack,
TableTalk, and Web390 are registered trademarks and Parlay, SiteAnalyzer, SmartMart, and WebFOCUS are trademarks of Information
Builders, Inc.

Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.
NOMAD is a registered trademark of Aonix.
UniVerse is a registered trademark of Ardent Software, Inc.
IRMA is a trademark of Attachmate Corporation.
Baan is a registered trademark of Baan Company N.V.
SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.
Impromptu is a registered trademark of Cognos.
Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compaq Computer
Corporation.
CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, and Ingres are registered trademarks of Computer Associates International, Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.
Paradox is a registered trademark of Corel Corporation.
StorHouse is a registered trademark of FileTek, Inc.
HP MPE/iX is a registered trademark of Hewlett Packard Corporation.
Informix is a registered trademark of Informix Software, Inc.
Intel is a registered trademark of Intel Corporation.
ACF/VTAM, AIX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVS, OS/2, OS/400,
RACF, RS/6000, S/390, VM/ESA, and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MVS/ESA, QMF, SQL/DS, VM/XA
and WebSphere are trademarks of International Business Machines Corporation.
INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.
Orbix is a registered trademark of Iona Technologies Inc.
Approach and DataLens are registered trademarks of Lotus Development Corporation.
ObjectView is a trademark of Matesys Corporation.
ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual FoxPro, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.
Teradata is a registered trademark of NCR International, Inc.
Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
NetWare and Novell are registered trademarks of Novell, Inc.
CORBA is a trademark of Object Management Group, Inc.
Oracle is a registered trademark and Rdb is a trademark of Oracle Corporation.
PeopleSoft is a registered trademark of PeopleSoft, Inc.
INFOAccess is a trademark of Pioneer Systems, Inc.
Progress is a registered trademark of Progress Software Corporation.
Red Brick Warehouse is a trademark of Red Brick Systems.
SAP and SAP R/3 are registered trademarks and SAP Business Information Warehouse and SAP BW are trademarks of SAP AG.
Silverstream is a trademark of Silverstream Software.
ADABAS is a registered trademark of Software A.G.
CONNECT:Direct is a trademark of Sterling Commerce.
Java, JavaScript, NetDynamics, Solaris, and SunOS are trademarks of Sun Microsystems, Inc.
PowerBuilder and Sybase are registered trademarks and SQL Server is a trademark of Sybase, Inc.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not all
cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s intent to
use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these
names other than to refer to the product described.
Copyright © 2000, by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed in the U.S.A.

Developing Applications

Preface
This documentation describes FOCUS Application Development tools and environments
for FOCUS� Version 7.1. This manual is intended for any FOCUS user. It is part of the
FOCUS for S/390 documentation set.

The documentation set consists of the following components:

• The Overview and Operating Environments manual contains an introduction to
FOCUS and FOCUS tools and describes how to use FOCUS in the VM/CMS and
MVS (OS/390) environments.

• The Creating Reports manual describes FOCUS Reporting environments and
features.

• The Describing Data manual explains how to create the metadata for the data
sources that your FOCUS procedures will access.

• The Developing Applications manual describes FOCUS Application Development
tools and environments.

• The Maintaining Databases manual describes FOCUS data management facilities
and environments.

The users’ documentation for FOCUS Version 7.1 is organized to provide you with a
useful, comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities
and concepts are related, each chapter fully covers its respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and
conventions.

References to MVS apply to all supported versions of the OS/390 and MVS operating
environments.

Preface

 Information Builders

How This Manual Is Organized
This manual includes the following chapters:

Chapter/Appendix Contents

1 Customizing Your
Environment

Lists commands you use to control output, work
areas, and many other FOCUS features.

2 Querying Your
Environment

Describes how to use query commands to retrieve
information about the FOCUS environment.

3 Using Functions and
Subroutines

Describes how to use the functions and subroutines
available for manipulating numeric, date, and
alphanumeric values.

4 Managing Applications
With Dialogue
Manager

Describes how to make report procedures more
dynamic by using Dialogue Manager control
statements and variables.

5 Defining a Word
Substitution

Describes how to define string substitutions that can
be used in FOCUS report requests.

6 Enhancing Application
Performance

Describes FOCUS facilities for increasing the speed
of your application.

7 Working With
Cross-Century Dates

Describes techniques for assigning a century to dates
stored with two-digit years.

8 Euro Currency Support Describes how to perform currency conversions
according to the rules established by the European
Union.

9 Designing Windows
With Window Painter

Describes how to create FOCUS windows and menus
that work in conjunction with a FOCEXEC.

A Master Files and
Diagrams

Contains Master Files and diagrams of sample data
sources used in the documentation examples.

B Error Messages Describes how to obtain additional information about
error messages in FOCUS.

C Creating Your Own
Subroutines

Describes how to write subroutines that can be called
from FOCUS.

 Summary of New Features

Developing Applications

Summary of New Features
The new FOCUS features and enhancements described in this documentation set are
listed in the following table.

New Feature Manual Chapter

Aggregating and Sorting
Report Columns

Creating Reports Chapter 4, Sorting Tabular
Reports

DEFINE Functions Creating Reports Chapter 6, Creating
Temporary Fields

Reporting From
Independent Paths

Creating Reports Chapter 5, Selecting Records
for Your Report

HOLD FORMAT
INTERNAL

Creating Reports Chapter 11, Saving and
Reusing Report Output

Increased Display Fields
Support

Creating Reports Chapter 1, Creating Tabular
Reports

Embedding Text Fields in
Headings

Creating Reports Chapter 9, Customizing
Tabular Reports

REXX Subroutines Developing
Applications

Appendix C, Creating Your
Own Subroutines

Dialogue Manager
TRUNCATE Function

Developing
Applications

Chapter 4, Managing
Applications With Dialogue
Manager

CRTFORM HTML
Translation

Developing
Applications

Chapter 1, Customizing Your
Environment

Two-Gigabyte and
Partitioned FOCUS
Database Support

Describing Data Chapter 7, Describing
FOCUS Data Sources

Token Delimited Files Describing Data Chapter 5, Describing
Sequential Data Sources

DATASET in Master File Describing Data Chapter 2, Identifying a Data
Source

Date-Time Data Type Describing Data Chapter 4, Describing
Individual Fields

Comma Suppress Edit
Option

Describing Data Chapter 4, Describing
Individual Fields

Preface

 Information Builders

New Feature Manual Chapter

Percent Edit Option Describing Data Chapter 4, Describing
Individual Fields

Using FILEDEF to Create
Extract Files

Overview and
Operating
Environments

Chapter 4, CMS Guide to
Operations

Documentation Conventions
The following conventions apply throughout this manual:

Convention Description

THIS TYPEFACE Denotes a command that you must enter in uppercase, exactly
as shown.

this typeface Denotes a value that you must supply.

{ } Indicates two choices. You must type one of these choices, not
the braces.

| Separates two mutually exclusive choices in a syntax line.
Type one of these choices, not the symbol.

[] Indicates optional parameters. None of them is required, but
you may select one of them. Type only the information within
the brackets, not the brackets.

underscore Indicates the default value.

... Indicates that you can enter a parameter multiple times. Type
only the information, not the ellipsis points.

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications
See the Information Builders Publications Catalog for the most up-to-date listing and
prices of technical publications, plus ordering information. To obtain a catalog, contact
the Publications Order Department at (800) 969-4636.

You can also visit our World Wide Web site, http://www.informationbuilders.com, to
view a current listing of our publications and to place an order.

 Customer Support

Developing Applications

Customer Support
Do you have questions about FOCUS?

Call Information Builders Customer Support Service (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 a.m. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities
and documentation. Please be ready to provide your six-digit site code number (xxxx.xx)
when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. It connects you to the tracking system and
known-problem repository at the Information Builders support center. Registered users
can open, update, and view the status of cases in the tracking system and read
descriptions of reported software issues. New users can register immediately for this
service. The technical support section of www.informationbuilders.com also provides
usage techniques, diagnostic tips, and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code number (xxxx.xx).

• The FOCEXEC procedure (preferably with line numbers).

• Master File with picture (provided by CHECK FILE).

• Run sheet (beginning at login, including call to FOCUS), containing the following
information:

• ? RELEASE

• ? FDT

• ? LET

• ? LOAD

• ? COMBINE

• ? JOIN

• ? DEFINE

• ? STAT

Preface

 Information Builders

• ? SET/? SET GRAPH

• ? USE

• ? TSO DDNAME OR CMS FILEDEF

• The exact nature of the problem:

• Are the results or the format incorrect; are the text or calculations missing or
misplaced?

• The error message and code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, FOCUS, your security
system, or an interface system changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For
example, if you are having problems joining two databases, have you tried executing
a query containing just the code to access the database?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or
production? Do you just have questions about functionality or documentation?

User Feedback
In an effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual. Please
use the Reader Comments form at the end of this manual to relay suggestions for
improving the publication or to alert us to corrections. You can also use the Document
Enhancement Request Form on our Web site, http://www.informationbuilders.com.

Thank you, in advance, for your comments.

Information Builders Consulting and Training
Interested in training? Information Builders Education Department offers a wide variety
of training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes,
visit our World Wide Web site (http://www.informationbuilders.com) or call (800)
969-INFO to speak to an Education Representative.

Developing Applications 1-1

CHAPTER 1

Customizing Your Environment

Topics:

• The SET Command

• SET Parameter Syntax

The SET command enables you to change parameters that
govern your FOCUS environment. These parameters control
output, work areas, the Hot Screen facility and other FOCUS
features.

Customizing Your Environment

1-2 Information Builders

The SET Command
The SET command enables you to customize both the application development and
runtime environment. It controls the way that reports and graphs display on the screen or
printer; the content of reports and graphs; data retrieval characteristics that affect
performance; and system responses to end user requests.

Syntax How to Set Parameters
SET parameter = option[, parameter = option,...]

where:

parameter

Is the FOCUS setting you wish to change.

option

Is one of a number of options available for each parameter.

You can set several parameters in one command by separating each with a comma.

You may include as many parameters as you can fit on one line. Repeat the SET keyword
for each new line.

Syntax How to Set Parameters in a Request
Many SET commands that change system defaults can be issued from within TABLE and
GRAPH requests. SET used in this manner is temporary, affecting only the current
request. The syntax is

ON {TABLE|GRAPH} SET parameter value [AND parameter value ...]

where:

parameter

Is the system default you wish to change.

value

Is an acceptable value that will replace the default value.

 SET Parameter Syntax

Developing Applications 1-3

Example Setting Parameters in a Request
For example,

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
ACROSS DEPARTMENT
ON TABLE SET NODATA NONE
END

changes the default NODATA character for missing data from a period to the word
NONE.

SET commands that cannot be issued from within TABLE include ASNAMES, BINS,
and HOLDATTR.

SET Parameter Syntax
This topic alphabetically lists the SET parameters that control the environment with a
description and their syntax.

Parameter: ACCBLN

Description: Accepts blank or zero values for fields with ACCEPT commands in
the Master File (see the Describing Data manual).

Syntax: SET ACCBLN = {ON|OFF}

where:

ON

Accepts blank and zero values for fields with ACCEPT
commands unless blank or zero values are explicitly coded in the
list of acceptable values. This value is the default.

OFF

Does not accept blank and zero values for fields with ACCEPT
commands unless blank or zero values are explicitly coded in the
list of acceptable values.

Parameter: AGGR[RATIO]

Description: Determines the ratio of aggregation based on retrieved records and
the final size of the answer set.

Syntax: SET AGGR[RATIO] = {n|9}

where:

n

Is the ratio of aggregation. The default value is 9.

Customizing Your Environment

1-4 Information Builders

Parameter: ALL

Description: Handles missing segment instances in a report.

Syntax: SET ALL = {ON|OFF|PASS}

where:

ON

Includes missing segment instances in a report when fields in the
segment are not screened by WHERE or IF criteria in the request.
The missing field values are denoted by the NODATA character,
set with the NODATA parameter (see NODATA).

OFF

Omits missing segment instances from a report. This value is the
default.

PASS

Includes missing segment instances in a report regardless of
WHERE or IF criteria in the request. This option is not supported
when MULTIPATH = COMPOUND (see MULTIPATH).

 SET Parameter Syntax

Developing Applications 1-5

Parameter: ALLOWCVTERR

Description: This parameter applies to non-FOCUS data sources when converting
from the way the date is stored (ACTUAL attribute) to the way it is
formatted (FORMAT or USAGE attribute).

Controls the display of a row of data that contains an invalid date
format (formerly called a smart date). When it is set to ON, the
invalid date format is returned as the base date or a blank, depending
on the settings for the MISSING and DATEDISPLAY parameters.

Syntax: SET ALLOWCVTERR = {ON|OFF}

where:

ON

Displays a row of data that contains an invalid date format. When
ALLOWCVTERR is set to ON, the display of invalid dates is
determined by the settings of the MISSING attribute and
DATEDISPLAY command.

• If DATEDISPLAY and MISSING are set to OFF, a blank is
returned.

• If DATEDISPLAY is set to OFF, and MISSING is set to
ON, the value of the NODATA character (a period, by
default) is returned (see NODATA).

• If DATEDISPLAY and MISSING are set to ON, the value
of the NODATA character (a period, by default) is returned.

• If DATEDISPLAY is set to ON, and MISSING is set to
OFF, the base date is returned (either December 31, 1900,
for dates with YMD or YYMD format; or January 1901, for
dates with YM, YYM, YQ, or YYQ format).

OFF

Does not display a row of data that contains an invalid date
format and generates an error message. This value is the default.

Customizing Your Environment

1-6 Information Builders

Parameter: ASNAMES

Description: Controls the FIELDNAME attribute in a HOLD Master File. When
an AS phrase is used in a TABLE request, the specified literal is
used as a field name in a HOLD file. Also controls how field names
are specified for the values of an ACROSS field when a HOLD file
is created.

Syntax: SET ASNAMES = {ON|OFF|FOCUS}

where:

ON

Uses the AS phrase for the field name, and controls the way
ACROSS fields are named in HOLD files in any format.

OFF

Does not use the AS phrase for the field name, or affect the way
ACROSS fields are named.

FOCUS

Uses the AS phrase for the field name, and controls the way
ACROSS fields are named in HOLD files only. This value is the
default.

Parameter: AUTOINDEX

Description: Retrieves data faster by automatically taking advantage of indexed
fields in most cases where TABLE requests contain equality or range
tests on those fields. Applies only to FOCUS data sources.

 AUTOINDEX is never performed when the TABLE request
contains an alternate file view, for example, TABLE FILE
filename.filename. Indexed retrieval is not performed when the
TABLE request contains BY HIGHEST or BY LOWEST phrases
and AUTOINDEX is ON.

Syntax: SET AUTOINDEX = {ON|OFF}

where:

ON

Uses indexed retrieval when possible.

OFF

Uses indexed retrieval only when explicitly specified via an
indexed view, for example, TABLE FILE filename.fieldname.
This value is the default.

 SET Parameter Syntax

Developing Applications 1-7

Parameter: AUTOPATH

Description: Dynamically selects an optimal retrieval path for accessing a
FOCUS data source by analyzing the data source structure and the
fields referenced, and choosing the lowest possible segment as the
entry point. Use AUTOPATH only if your field is not indexed.

Syntax: SET AUTOPATH = {ON|OFF}

where:

ON

Dynamically selects an optimal retrieval path. This value is the
default.

OFF

Uses sequential data retrieval. The end user controls the retrieval
path through filename.segname.

Parameter: AUTOSTRATEGY

Description: Determines when FOCUS stops the search for a key field specified
in a WHERE or IF test. When set to ON, the search ends when the
key field is found, optimizing retrieval speed. When set to OFF, the
search continues to the end of the data source.

Syntax: SET AUTOSTRATEGY = {ON|OFF}

where:

ON

Stops the search when a match is found. This value is the default.

OFF

Searches the entire data source.

Parameter: AUTOTABLEF

Description: Avoids creating the internal matrix based on the features used in the
query. Avoiding internal matrix creation reduces internal overhead
costs and yields better performance.

Syntax: SET AUTOTABLEF = {ON|OFF}

where:

ON

Does not create an internal matrix. This value is the default.

OFF

 Creates an internal matrix.

Customizing Your Environment

1-8 Information Builders

Parameter: BINS

Description: Specifies the number of pages of core (blocks of 4,096 bytes) used
for data source buffers. You can vary BINS from 13 to 63 pages
depending on the size of your core. The default is roughly two-thirds
of the core remaining after you start FOCUS.

Syntax: SET BINS = n

where:

n

Is the number of core pages used for data source buffers. Valid
values are 13 to 63.

Parameter: BLKCALC

Description: This parameter applies only to MVS.

Enables system-determined blocking for HOLD files written to
DASD; files written to tape have BLKSIZE 32760, the
operating-system maximum.

The SET BLKCALC command must be issued before the TABLE
request and cannot be set within a request.

Syntax: SET BLKCALC = {NEW|OLD}

where:

NEW

Calculates optimal blocking factors for both 3380 and 3390
device types. This value is the default.

OLD

Uses the method of calculating BLKSIZE that was used prior to
FOCUS Release 6.8.

Parameter: BUSDAYS

Description: Specifies which days are considered business days and which days
are not if your business does not follow the traditional Monday
through Friday week.

Syntax: SET BUSDAYS = week

where:

week

Is SMTWTFS, representing the days of the week. Any day that
you do not wish to designate as a business day must be replaced
with an underscore in that day’s designated place.

 SET Parameter Syntax

Developing Applications 1-9

Parameter: BYPANEL

Description: This parameter applies only to HOTSCREEN.

Controls the repetition of BY fields on panels. When BYPANEL is
specified, the maximum number of panels is 99. When BYPANEL is
OFF, the maximum number of panels is four.

Syntax: SET BYPANEL = option

where:

option

Is one of the following:

ON repeats BY field values on panels.

OFF does not repeat field values on panels.

0 does not divide column between panels.

n repeats n columns on each panel.

Parameter: BYSCROLL

Description: This parameter applies only to HOTSCREEN.

Scrolls report headings and footers scroll along with the report
contents.

Syntax: SET {BYSCROLL|BYPANELSCROL} = {ON|OFF}

where:

ON

Scrolls report headings and footings along with report contents.

OFF

Does not scroll report headings and footings along with report
contents.

Parameter: BOTTOMMARGIN

Description: This command applies to PostScript and PDF report formats.

 Sets the bottom boundary, in inches, of report contents on a page.

Syntax: SET BOTTOMMARGIN = {n|.25}

where:

n

Is the bottom margin, in inches, for report contents on a page.
The default is .25 inches.

Customizing Your Environment

1-10 Information Builders

Parameter: CACHE

Description: Stores 4K FOCUS data source pages in memory and buffers them
between the data source and BINS.

When a procedure calls for a read of a data source page, FOCUS
first searches BINS, then cache memory, and then the data source on
disk. If the page is found in cache, FOCUS does not have to perform
an I/O to disk.

When a procedure calls for a write of a data source page, the page is
written from BINS to disk. The updated page is also copied into
cache memory so that the cache and disk versions remain the same.
Unlike reads, cache memory does not save disk I/Os for write
procedures.

FOCSORT pages are also written to cache; when the cache becomes
full, they are written to disk. For optimal results, set cache to hold
the entire data source plus the size of FOCSORT for the request. To
estimate the size of FOCSORT for a given request, issue the ? STAT
command (discussed in Chapter 8, Euro Currency Support, then add
the number of SORTPAGES listed to the number of data source
pages in memory. Issue a SET CACHE command for that amount. If
cache is set to 50, 50 4K pages of contiguous storage are allocated to
cache. The maximum number of cache pages can be set at
installation. For more information, see Technical Memo 7838.1,
Setting the Maximum Number of Cache Pages.

To clear the CACHE setting issue a SET CACHE = n command.
This command flushes the buffer; that is, everything in cache
memory is lost.

Syntax: SET CACHE = {0|n}

where:

0

Allocates no space to cache; cache is inactive. This value is the
default.

n

Is the number of 4K pages of contiguous storage allocated to
cache memory. The minimum is two pages; the maximum is
determined by the amount of memory available.

 SET Parameter Syntax

Developing Applications 1-11

Parameter: CARTESIAN

Description: Applies to requests containing PRINT or LIST.

Generates a report containing all combinations of non-related data
instances in the case of a multi-path request. ACROSS cancels this
parameter.

Syntax: SET CARTESIAN = {ON|OFF}

where:

ON

Generates a report with non-related records.

OFF

Disables the Cartesian product. This value is the default.

Parameter: CDN

Description: Specifies punctuation used in numerical notation. When set to ON, a
comma marks the decimal position, and periods separate groups of
three significant digits.

Continental Decimal Notation (CDN) is supported for output in
TABLE requests. It is not supported in DEFINE or COMPUTE
commands.

Syntax: SET {CDN|EUROPE} = {ON|OFF}

where:

ON

Uses CDN. For example, the number 3,045,000.76 is represented
as 3.045.000,76.

OFF

Turns CDN off. For example, the number 3,045,000.76 is
represented as 3,045,000.76. This value is the default.

Customizing Your Environment

1-12 Information Builders

Parameter: COLUMNSCROLL

Description: Enables you to scroll by column within the panels of a report
provided that the report is wider than the screen width.

Syntax: SET COLUMNSCROLL = {ON|OFF}

where:

ON

Enables column scrolling to the right and left by pressing the
PF10 key and the PF11 key, respectively. To scroll up and down
within the same column, use the PF7 key and the PF8 keys.

OFF

Disables column scrolling. This value is the default.

Parameter: COUNTWIDTH

Description: Expands the default format of COUNT fields from a 5-byte integer
to a 9-byte integer.

Syntax: SET {COUNTWIDTH|LISTWIDTH} = {ON|OFF}

where:

ON

Expands the default format of COUNT fields from a five-byte
integer to a nine-byte integer.

OFF

Does not expand the default format of COUNT fields from a
five-byte integer to a nine-byte integer. This value is the default.

Parameter: COMPUTE

Description: Compiles all COMPUTE calculations in DEFINE commands and
MODIFY requests into machine code at request time; uses this code
to perform calculations at run time.

Syntax: SET COMPUTE = {NEW|OLD}

where:

NEW

Specifies the new, compiled logic. NEW is the default.

OLD

Forces all calculations into the old logic until the FOCUS session
is over, or the SET COMPUTE command is reset.

 SET Parameter Syntax

Developing Applications 1-13

Parameter: DATEDISPLAY

Description: Controls the display of a base date. Previously, TABLE always
displayed a blank when a date read from a file matched the base date
or a field with a smart date format had the value 0. The following
shows the base date for each supported date format:

Format Base Date

YMD and YYMD 1900/12/31

YM and YYM 1901/01

YQ and YYQ 1901/Q1

JUL and YYJUL 00/365 and 1900/365

 Note: You cannot set DATEDISPLAY with the ON TABLE
command.

Syntax: SET DATEDISPLAY = {ON|OFF}

where:

ON

Displays the base date if the data is the base date value.

OFF

Displays a blank if the date is the base date value. This value is
the default.

Parameter: DATEFNS

Description: Loads the year 2000-compliant versions of the FUSELIB
subroutines.

Syntax: SET DATEFNS = {ON|OFF}

where:

ON

Loads the year 2000-compliant versions of the FUSELIB
subroutines. This value is the default.

OLD

Uses non-year 2000-compliant subroutines.

Customizing Your Environment

1-14 Information Builders

Parameter: DATEFORMAT

Description: Specifies the order of the date components (month/day/year) when
date-time values are entered in the formatted string and translated
string formats. It makes a value’s input format independent of the
format of the variable to which it is being assigned.

Syntax: SET DATEFORMAT = datefmt

where:

datefmt

Can be one of the following: MDY, DMY, YMD, or MYD. The
U.S. English default format is MDY.

Parameter: DATETIME

Description: Sets time and date in reports. This command is useful for
determining (statically or dynamically) exactly when your report was
run. You can display the DATETIME value using any FOCUS date
variable, for example, YMD, MDY, TOD, etc. If DATETIME is not
set, the behavior of the FOCUS date variables remain the same.

Syntax: SET DATETIME = option

where:

option

Is one of the following:

STARTUP Is the time and date when you began your
FOCUS session. This setting is the default.

CURRENT|NOW Changes each time it is interrogated. For
example, if your batch job starts before
midnight at 11:59 P.M., it won’t complete until
the next day. If DATETIME is set to
NOW|CURRENT, any reference to the
variable gives the current date, not the date
when the job started.

RESET Freezes the date and time of the current run for
the rest of the session or until another SET
DATETIME command is issued.

 SET Parameter Syntax

Developing Applications 1-15

Parameter: DEFCENT

Description: Defines a default century globally or on a field-level for an
application that does not contain an explicit century. DEFCENT is
used in conjunction with YRTHRESH to interpret the current
century according to the given values. When assigned globally, the
time span created by these parameters applies to every 2-digit year
used by the application unless you specify file-level or field-level
values. (See YRTHRESH.)

Note: This same result can be achieved by including the
FDEFCENT and FYRTHRESH attributes in the Master File.

Syntax: SET DEFCENT = {cc|19}

where:

cc

Is the default century. If you do not supply a value, cc defaults to
19, for the twentieth century.

Parameter: DISPLAY

Description: Is the PC display mode selection.

Syntax: SET DISPLAY = {OFF|PCCOLOR|PCMONO}

where:

option

Is one of the following:

OFF No display mode is selected. This value is the
default.

PCCOLOR The display mode is color.

PCMONO The display mode is black and white.

Customizing Your Environment

1-16 Information Builders

Parameter: DTSTRICT

Description: Controls how much error checking is done on date-time values when
they are input by users, read from an alphanumeric transaction file,
displayed, or used in user-written subroutines.

Syntax: SET DTSTRICT = {ON|OFF}

where:

ON

Invokes strict processing. This means that whenever a date-time
value is input by a user, read from a transaction file, displayed, or
returned by a subroutine it is checked to make sure that the value
represents a valid date and time. For example, a numeric month
must be between 1 and 12, and the day must be within the
number of days for the specified month. ON is the default value.
If you attempt to enter a value that violates this rule, the
following message displays:

(FOC177) INVALID DATE CONSTANT: dt_constant

OFF

Does not invoke strict processing. Any date-time component can
have any value within the constraint of the number of decimal
digits allowed; for example, the month value can be 00 or 13 or
99, but not 115. Furthermore, the values do not have to be
consistent; for example, any month in any year can have 30 or 31
days.

Parameter: EMPTYREPORT

Description: Controls the output generated when a TABLE request retrieves zero
records.

EMPTYREPORT is not supported with TABLEF. When a TABLEF
request retrieves zero records, an empty report is always generated.

Syntax: SET EMPTYREPORT = {ON|OFF}

where:

ON

Generates an empty report when zero records are found.

OFF

Does not generate an empty report when zero records are found.
OFF is the default.

 SET Parameter Syntax

Developing Applications 1-17

Parameter: ESTRECORDS

Description: Passes the estimated number of records to be sorted in the request.
FOCUS queries using external sorts and including the parameter
‘FILSZ=En’ can diminish FOC909 errors. This parameter enables
the sorting algorithms to estimate SORTWORK space requirements
for each sort parameter request.

In order to make an accurate estimate for your ESTRECORDS
setting, it is suggested that you run the report without an external sort
in order to get a record count. If an attempt is made to SET
ESTRECORDS from the FOCUS prompt, FOCPARM, or PROFILE
FOCEXEC the following error is generated:

SET ESTRECORDS = n

(FOC36210) THE SPECIFIED PARAMETER CAN ONLY BE SET ON
TABLE: ESTRECORDS

ESTRECORDS can only be set with the ON TABLE SET command
within the TABLE, MATCH, or GRAPH request.

For CMS/SyncSort the ‘FILSZ=En’ parameter is ignored. Therefore,
SET ESTRECORDS n has no effect.

Syntax: SET ESTRECORDS = n

where:

n

Is the estimated number of records to be sorted.

Customizing Your Environment

1-18 Information Builders

Parameter: EUROFILE

Description: Activates the data source that contains information for the currency
you want to convert. This setting can be changed during a session to
access a different currency data source. This parameter cannot be
issued in a report request.

Note: You cannot set any additional parameters on the same line as
EUROFILE. FOCUS ignores any other parameters specified on the
same line.

Syntax: SET EUROFILE = {ddname|OFF}

where:

ddname

Is the name of the Master File for the currency data source you
want to use. The ddname must refer to a read-only data source
accessible by FOCUS. There is no default value.

OFF

Deactivates the current currency data source and removes it from
memory.

Parameter: EXTAGGR

Description: Uses external sorts to perform aggregation.

Syntax: SET EXTAGGR = {ON|OFF|NOFLOAT}

where:

ON

Uses external sorts to perform aggregation.

OFF

Does not allow aggregation by an external sort.

NOFLOAT

Allows aggregation if there are no floating data fields present.

Parameter: EXTHOLD

Description: Enables you to create HOLD files using an external sort.

Syntax: SET EXTHOLD = {ON|OFF}

where:

ON

Creates HOLD files using an external sort.

OFF

Does not create HOLD files using an external sort.

 SET Parameter Syntax

Developing Applications 1-19

Parameter: EXTSORT

Description: Calls an external sort for use with the TABLE, MATCH, and
GRAPH commands.

If the report can be processed entirely in memory, external sorting
does not occur. In order to determine if the report can be processed
in memory, issue the ? STAT query after the TABLE, MATCH, or
GRAPH command, and check the value of the SORT USED
parameter. For additional information, see the Creating Reports
manual.

Syntax: SET EXTSORT = {ON|OFF}

where:

ON

Enables FOCUS to pass records that are retrieved to an external
sort. This value is the default.

OFF

Uses the FOCUS internal sorting procedure.

Parameter: EXTTERM

Description: Enables the use of extended terminal attributes.

Syntax: SET EXTTERM = {ON|OFF}

where:

ON

Enables the use of attributes. This value is the default.

OFF

Disables the use of attributes.

Parameter: FIELDNAME

Description: Controls the use of long field names (66 characters).

Syntax: SET FIELDNAME = {NEW|NOTRUNC|OLD}

where:

NEW

Supports long field names.

NOTRUNC

Does not support unique truncations.

OLD

Turns off support for long field names.

Customizing Your Environment

1-20 Information Builders

Parameter: FILE[NAME]

Description: Specifies a file to be used, by default, in commands. When you set a
default file name, you can use that file without specifying its name.

Syntax: SET FILE[NAME] = filename

where:

filename

Is a default file to be used in commands.

Parameter: FILTER

Description: Activates and deactivates filters.

The SET FILTER command is limited to one line. To activate more
filters to fit on one line repeat the SET FILTER command.

Syntax: SET FILTER = {*|filter [filter]} IN file {ON|OFF}

where:

*

Denotes all declared filters. This value is the default.

ON

Activates the filter. The maximum number of filters set ON for a
file is limited by the number of IF/WHERE commands in these
filters and should not exceed the standard FOCUS limit of
IF/WHERE commands in any single TABLE request.

OFF

Deactivates the filter. This value is the default.

filter

Is the name of a filter as declared in the NAME = syntax of the
FILTER FILE block.

 SET Parameter Syntax

Developing Applications 1-21

Parameter: FIXRETRIEVE

Description: FOCUS HOLD files support keyed retrieval, which can greatly
reduce the IOs incurred in reading extract files. The performance
gains are accomplished by using the SEGTYPE= parameter in the
Master File as a logical key for sequential files. It allows you to stop
the retrieval process when an equality test on this field holds true.
This changes former behavior, as the interface previously read all of
the records from the QSAM file and then passed them to FOCUS to
apply the screening conditions when creating the final report.

Syntax: SET {FIXRETRIVE|FIXF} = {ON|OFF}

where:

ON

Stops the retrieval process when an equality test on this field
holds true.

OFF

Does not stop the retrieval process when an equality test on this
field holds true.

Parameter: FOC144

Description: Tells FOCUS to suppress warning message FOC144, which reads:
“Warning: Testing in Independent sets of Data.”

Syntax: SET FOC144 = {NEW|OLD}

where:

NEW

Displays the FOC144 warning message. This value is the default.

OLD

Suppresses the FOC144 warning message.

Customizing Your Environment

1-22 Information Builders

Parameter: FOC2GIGDB

Description: Enables two-gigabyte FOCUS data sources. Must be set in the
FOCPARM profile.

Syntax: SET FOC2GIGDB = {ON|OFF}

where:

ON

Enables support for FOCUS data sources larger than one-
gigabyte. Note that an attempt to use FOCUS data sources larger
than one-gigabyte in a release prior to FOCUS Version 7.1 can
cause database corruption.

OFF

Disables support for FOCUS data sources larger than one-
gigabyte. OFF is the default value.

Parameter: FOCALLOC

Description: This parameter applies only to MVS.

Automatically allocates of FOCUS files. Allocation is done based on
Prefix.Master. FOCUS. The DISP will be SHR.

Syntax: SET {FOCALLOC|FALLOC} = {ON|OFF}

where:

ON

Automatically allocates FOCUS files.

OFF

Does not automatically allocate FOCUS files. This value is the
default.

Parameter: FOCSTACK

Description: Is the amount of core in thousands of bytes used by FOCSTACK, the
stack of FOCUS commands from FOCEXECs awaiting execution.
The maximum value of FOCSTACK depends on your current region
size. You can also specify the parameter as FOCSTACK SIZE.

Syntax: SET FOCSTACK = {n|8}

where:

n

Is the amount of core in thousands of bytes used by FOCSTACK.
The default value is 8.

 SET Parameter Syntax

Developing Applications 1-23

Parameter: HDAY

Description: Activates the holiday file that is used in conjunction with the data
functions DATEDEIF, DATEMOV, DATECVT, and DATEADD.

This setting is by default not set at all.

Syntax: SET HDAY = string

where:

string

Is the part of the name of the holiday file after HDAY. This string
must be four characters long.

Parameter: HLISUTRACE

Description: Used for debugging, records the last 20 events that the FOCUS
Database Server (formerly called the sink machine) performed. The
information is written to memory and is intended for use when
reading a dump of the SU address space. This setting may only be
set in the SU profile, HLIPROF.

Syntax: SET HLISUTRACE = {ON|OFF}

where:

ON

Records the last 20 events that the FOCUS Database Server
performed. This value is the default.

OFF

Does not record the last 20 events that the FOCUS Database
Server performed.

Parameter: HLISUDUMP

Description: This setting is only used for debugging FOCUS Database Server
problems and may only be set in the SU profile, HLIPROF.

Syntax: SET HLISUDUMP = n

where:

n

When set to 99999, a dump of the FOCUS Database Server
address space will occur for any error on the server. The user
abend code is set to 275. The user code will also be set to the
error number.

Customizing Your Environment

1-24 Information Builders

Parameter: HOLDATTR[S]

Description: Includes the TITLE and ACCEPT attributes from the original
Master File in the HOLD Master File. This setting does not affect
the way fields are named in the HOLD Master File.

Syntax: SET HOLDATTR = {ON|OFF|FOCUS}

where:

ON

Includes the TITLE attribute from the original Master File in
HOLD Master Files for HOLD files of any format. The ACCEPT
attribute is included in the HOLD Master File when the HOLD
file is in FOCUS format.

OFF

Does not include the TITLE or ACCEPT attributes from the
original Master File in the HOLD Master File.

FOCUS

Includes the TITLE and ACCEPT attributes in HOLD Master
Files when the HOLD file is in FOCUS format. This value is the
default.

Parameter: HOLDLIST

Description: Determines what fields in a report request are included in the HOLD
file.

Syntax: SET HOLDLIST = {PRINTONLY|ALL}

where:

PRINTONLY

Includes only those fields in the HOLD file that are specified in
the report request.

ALL

Includes all verb object fields referenced in a request in the
HOLD file, including both computed fields and fields referenced
in a COMPUTE command. This value is the default. (OLD may
be used as a synonym for ALL.)

 SET Parameter Syntax

Developing Applications 1-25

Parameter: HOLDSTAT

Description: Includes the comments and DBA information in HOLD Master
Files. This information is found in the HOLDSTAT ERRORS file
supplied by Information Builders, or in a user-specified file.

Syntax: SET HOLDSTAT = {ON|OFF|name}

where:

ON

Derives comments and DBA information from the holdstat.mas
or errors.mas file in UNIX and NT. In MVS, this information is
derived from the member HOLDSTAT in the PDS allocated to
the ddname MASTER or ERRORS in MVS.

OFF

Does not include information from the HOLDSTAT file in the
HOLD Master File. This value is the default.

name

Specifies a HOLDSTAT file, created by the end user, whose
information is included in the HOLD Master File.

Parameter: HOTMENU

Description: Automatically displays the Hot Screen PF key legend at the bottom
of the Hot Screen report.

Syntax: SET HOTMENU = {ON|OFF}

where:

ON

Displays the PF key legend.

OFF

Does not display the PF key legend. To see the PF key legend,
the user must press PF1. OFF is the default.

Customizing Your Environment

1-26 Information Builders

Parameter: IBMLE

Description: Determines whether LE preinitialization is on or off.

Syntax: SET IBMLE = {OFF|ON}

where:

OFF

Does not invoke preinitialization. This value is the default and is
required for C++ and FORTRAN subroutines. It is the
recommended setting for COBOL subroutines that should use the
COBOL option RTEREUS (ON).

ON

Invokes preinitialization and is a requirement for PL/I and C
subroutines.

Note: Mixed-mode applications calling both LE and non-LE
subroutines in the same FOCEXEC or FOCUS session are not
supported and may produce unpredictable results.

Parameter: IMMEDTYPE

Description: Used with TOE, tells FOCUS where to send line mode output.

Syntax: SET IMMEDTYPE = {ON|OFF}

where:

ON

Sends all line mode output, such as -TYPE, to the Output
Window as it is executed, line by line.

OFF

Buffers all line mode output. The output appears in the Output
Window as a new full screen. This value is the default.

Parameter: IMS

Description: Tells FOCUS whether to use the new version of the IMS interface.
The new version is for releases after 6.8 PUT level 9406.

Syntax: SET IMS = {NEW|OLD}

where:

NEW

Is the new version of the IMS interface. This value is the default.

OLD

Is the version of IMS interface prior to release 6.8 PUT level
9406.

 SET Parameter Syntax

Developing Applications 1-27

Parameter: INDEX

Description: The indexing scheme used for indexes (fields specified with
FIELDTYPE=I keywords in the Master Files).

Syntax: SET INDEX [TYPE] = {NEW|OLD}

where:

NEW

Creates a binary tree index. This value is the default.

OLD

Creates a hash index.

Parameter: JOINOPT

Description: Allows the joining of two files that contain different numeric data
types.

Syntax: SET JOINOPT = {NEW|OLD}

where:

NEW

Allows the joining of files that contain different numeric data
types.

OLD

Does not allow the joining of files that contain different numeric
data types.

Customizing Your Environment

1-28 Information Builders

Parameter: LANG[UAGE]

Description: Specifies the National Language Support (NLS) environment.

Syntax: SET LANG[UAGE] = value

where:

value

Is a language from the following list. The ID, name, or
abbreviation can be used to specify the language.
These TERM values support DBCS. The default value for TERM
is IBM3270, which does not support DBCS.

ID Name Abbreviation

1 ENGLISH AME

1 AMENGLISH AME

20 ARABIC ARB

359 BULGARIAN BLG

416 CANFRENCH CFR

34 CATALAN CAT

85 S-CHINESE PRC

86 T-CHINESE ROC

45 DANISH DAN

31 DUTCH DUT

358 FINNISH FIN

32 FLEMISH FLM

33 FRENCH FRE

49 GERMAN GER

30 GREEK GRE

972 HEBREW HEB

91 HINDI IND

36 HUNGARIAN HUN

354 ICELANDIC ICL

39 ITALIAN ITA

81 JAPANESE JPN

10081 JAPANESE-E* JPN

82 KOREAN KOR

 SET Parameter Syntax

Developing Applications 1-29

ID Name Abbreviation

47 NORWEGIAN NOR

48 POLISH POL

351 PORTUGUESE POR

7 RUSSIAN RUS

38 SLOVENIAN SLO

34 SPANISH SPA

46 SWEDISH SWE

66 THAI THA

90 TURKISH TUR

44 UKENGLISH UKE

*To specify JAPANESE-E, you can use the ID or the full name,
but not the abbreviation JPN.

In addition, when you select JAPANESE-E, make sure that the
TERM parameter is set to a value that supports DBCS. See
TERM for values that support DBCS.

Parameter: LEADZERO

Description: Leading zeros are truncated in Dialogue Manager strings. The
subroutines in FOCUS, when called in Dialogue Manager, may
return a numeric result. If the format of the result is YMD and
contains a 00 for the year, the 00 is truncated.

Syntax: SET LEADZERO = {ON|OFF}

where:

ON

Allows the display of leading zeros if they are present.

OFF

Truncates leading zeros if they are present.

Customizing Your Environment

1-30 Information Builders

Parameter: LEFTMARGIN

Description: This parameter applies only to PostScript and PDF formats.

Sets the left boundary for report contents on a page.

Syntax: SET LEFTMARGIN = {value|.250}

where:

value

Is the left boundary of report contents on a page. The default is
.25 inches.

Parameter: LINES

Description: Sets the maximum number of lines of printed output that appear on a
page, from the heading at the top to the footing on the bottom. If this
value is less than the value set for PAPER, the difference provides a
bottom margin. FOCUS never puts more lines on a page than the
LINES parameter specifies, but may put less. The value of LINES
can range between 1 and 999999; specify 999999 for continuous
forms.

Note: When you use SKIP-LINE in a report, always set LINES to at
least one less than the value for PAPER. This avoids unintentional
page beaks at the bottom of the page.

When the STYLESHEET parameter is in effect, the setting for
LINES is ignored.

Syntax: SET LINES = {n|57}

where:

n

Is the maximum number of lines of printed output that appear on
a page. The default value is 57.

 SET Parameter Syntax

Developing Applications 1-31

Parameter: MASTER

Description: This parameter applies only to the FUSION option.

New Master Files pass for blank delimited Master Files, which use
the new FUSION syntax.

Syntax: SET MASTER = {NEW|OLD}

where:

NEW

 Passes a new Master File for a blank delimited Master File,
which uses the new FUSION syntax.

OLD

Does not pass a new Master File for a blank delimited Master
File. This value is the default.

Parameter: MAXLRECL

Description: Defines the maximum record length for an external file with
OCCURS segments. The default is 0. However, FOCUS can read a
16K recl by default. This may be set to a maximum of 32K.

Syntax: SET MAXLRECL = {n|0}

where:

n

Is the maximum record length for an external file with OCCURS
segments. The default value is 0.

Parameter: MESSAGE

Description: Controls the display of informational messages.

Syntax: SET {MESSAGE|MSG} = {ON|OFF}

where:

ON

Displays informational messages. This value is the default.

OFF

Suppresses both informational messages and carets that appear
when FOCUS executes commands in procedures. FOCUS still
displays error messages, and the carets that prompt for input.

Customizing Your Environment

1-32 Information Builders

Parameter: MINIO

Description: This parameter applies only to MVS.

Improves performance by reducing I/O operations up to fifty percent
when accessing FOCUS data sources under MVS. This is a buffering
technique.

With FOCUS data sources that are not disorganized, MINIO can
greatly reduce the number of I/O operations for TABLE and
MODIFY commands. The actual I/O reduction will vary depending
on data source structure and average number of children segments
per parent segment. By reducing I/O operations, elapsed time for
TABLE and MODIFY commands also drop.

Syntax: SET MINIO = {ON|OFF}

where:

ON

Does not read a block more than once; the number of reads
performed will be the same as the number of tracks present. This
results in an overall reduction in elapsed times when reading and
writing. This value is the default.

OFF

Disables MINIO.

 SET Parameter Syntax

Developing Applications 1-33

Parameter: MULTIPATH

Description: Controls testing on independent paths.

Syntax: SET MULTIPATH = {SIMPLE|COMPOUND}

where:

SIMPLE

Includes a parent segment in the report output if:

• It has at least one child that passes its screening conditions.

• It lacks any referenced child on a path, but the child is
optional (see the Creating Reports manual).

SIMPLE is the default value for FOCUS for S/390.
The (FOC144) warning message is generated when a request
screens data in a multi-path report.

(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA:

COMPOUND

Includes a parent in the report output if it has all of its required
children (see the Creating Reports manual). The COMPOUND
setting does not generate the (FOC144) warning message.
COMPOUND is the default value for EDA and WebFOCUS.

The segment rule is applied level by level as FOCUS descends the
data source/view hierarchy. That is, a parent segment’s existence
depends on the child segment’s existence and the child segment
depends on the grandchild’s existence, and so on for the full data
source tree.

Parameter: NODATA

Description: Determines the character string that indicates missing data in a
report. The NODATA parameter can be abbreviated to NA.

Syntax: SET {NODATA|NA} = {string|.}

where:

string

Is the character string that indicates missing data in reports. The
default is a period.

Customizing Your Environment

1-34 Information Builders

Parameter: ONLINE-FMT

Description: Determines the format of report output. StyleSheet reports are
generated in PostScript format. Styled reports can only be printed on
a PostScript printer.

Syntax: SET ONLINE-FMT = {STANDARD|POSTSCRIPT}

where:

STANDARD

Produces the report as un-styled character-based output. This
value is the default.

POSTSCRIPT

Saves the report output to a PostScript file with the name
PSOUT. In MVS, the PostScript formatted report output is in a
variable length PDS allocated to the ddname PS. In CMS, the
output is in a file with the file type PS. The parameters set with
the SET STYLESHEET command are in effect. PS can be used
as a synonym for POSTSCRIPT.

Parameter: ORIENTATION

Description: This parameter applies to PostScript and PDF report formats.

Specifies the page orientation for styled reports.

Syntax: SET ORIENTATION = {PORTRAIT|LANDSCAPE}

where:

PORTRAIT

Displays the page in portrait style. This value is the default.

LANDSCAPE

Displays the page in landscape style.

 SET Parameter Syntax

Developing Applications 1-35

Parameter: PAGE[-NUM]

Description: Controls the numbering of output pages.

Syntax: SET PAGE[-NUM] = option

option

Is one of the following:

ON Displays the page number on the upper left-hand
corner of the page. This value is the default.

OFF Suppresses page numbering.

NOPAGE Suppresses page breaks, causing the report to be
printed as a continuous page. When PAGE is set to
NOPAGE, the LINES parameter controls where
column headings are printed.

TOP Omits the line at the top of each page of the report
output for the page number and the blank line that
follows it. The first line of report output contains the
heading, if one was specified, or the column titles if
there is no heading.

Note: The settings ON, TOP, and OFF include the carriage
control character 1 in the first column of each page.

Parameter: PAGESIZE

Description: Specifies the page size for printed output. For optimal report
appearance, the actual paper size must match your setting for
PAGESIZE. If it does not, your report or your report will be cropped
or contain extra blank spaces.

Syntax: SET PAGESIZE = size

where:

size

Specifies the page size. If the actual paper size does not match
the PAGESIZE setting, your report will either be cropped of
contain extra blank space. The options are:

LETTER Sets the page size to 8.5 x 11
inches.

ENVELOPE-PERSONAL Sets the page size to 3.625 x 6.5
inches.

ENVELOPE-MONARCH Sets the page size to 3.875 x 7.5
inches.

Customizing Your Environment

1-36 Information Builders

ENVELOPE-9 Sets the page size to 3.875 x
8.875 inches.

ENVELOPE-10 Sets the page size to 4.125 x 9.5
inches.

ENVELOPE-11 Sets the page size to 4.5 x
10.375 inches.

ENVELOPE-12 Sets the page size to 4.5 x 11
inches.

ENVELOPE-14 Sets the page size to 5 x 11.5
inches.

STATEMENT Sets the page size to 5.5 x 8.5
inches.

EXECUTIVE Sets the page size to 7.5 x 10.5
inches.

GERMAN-STANDARD-FANFOLD Sets the page size to 8.5 x 12
inches.

GERMAN-LEGAL-FANFOLD Sets the page size to 8.5 x 13
inches.

FOLIO Sets the page size to 8.5 x 13
inches.

LEGAL Sets the page size to 8.5 x 14
inches.

10X14 Sets the page size to 10 x 14
inches.

TABLOID Sets the page size to 11 x 17
inches.

C Sets the page size to 17 x 22
inches.

D Sets the page size to 22 x 34
inches.

E Sets the page size to 34 x 44
inches.

US-STANDARD-FANFOLD Sets the page size to 14.875 x
11 inches.

 SET Parameter Syntax

Developing Applications 1-37

LEDGER Sets the page size to 17 x 11
inches.

ENVELOPE-DL Sets the page size to 4.3 x 8.6
inches.

ENVELOPE-ITALY Sets the page size to 4.3 x 9.1
inches.

ENVELOPE-C6 Sets the page size to 4.5 x 6.375
inches.

ENVELOPE-C65 Sets the page size to 4.5 x 9
inches.

A5 Sets the page size to 5.8 x 8.25
inches.

ENVELOPE-C5 Sets the page size to 6.4 x 9
inches.

ENVELOPE-B5 Sets the page size to 6.9 x 9.8
inches.

ENVELOPE-B6 Sets the page size to 6.9 x 4.9
inches.

B5 Sets the page size to 7.2 x 10.1
inches.

A4 Sets the page size to 8.25 x 11.7
inches.

QUARTO Sets the page size to 8.5 x 10.8
inches.

ENVELOPE-C4 Sets the page size to 9 x 12.75
inches.

ENVELOPE-B4 Sets the page size to 9.8 x 13.9
inches.

B4 Sets the page size to 9.8 x 13.9
inches.

A3 Sets the page size to 11.7 x 16.8
inches.

ENVELOPE-C3 Sets the page size to 12.75 x 18
inches.

Customizing Your Environment

1-38 Information Builders

Parameter: PANEL

Description: Sets the maximum line width, in characters, of a report panel for a
screen or printer. If report output exceeds this value, the output is
partitioned into several panels. For example, if you set PANEL to
80, the first 80 characters of a record appear on the first panel, the
second 80 characters appear on the second panel, and so on.

When printing a report to your screen, the ideal value for the
PANEL parameter is the width of your screen (usually 80). When
printing to your printer, the ideal value for PANEL is the print width
of your printer (usually 132). If PANEL is larger or set to 0, long
report lines wrap around the screen or page.

When the BYPANEL parameter is OFF, a report can be divided into
a maximum of four panels. If SET BYPANEL has a value other than
OFF, the report may be divided into 99 panels.

When the STYLESHEET parameter is in effect, PANEL is ignored.

Syntax: SET PANEL = {0|n}

where:

n

Is the maximum line width, in characters, of a report panel.

0

Does not divide the report into panels. Long report lines wrap
around the screen or page. This value is the default.

 SET Parameter Syntax

Developing Applications 1-39

Parameter: PAPER

Description: Specifies the physical length of the paper, in lines, for printed
output. You derive this value by multiplying the length of the paper,
in inches, by the number of lines printed per inch. For example, if
your printer prints six lines per inch on standard 11 inch forms,
PAPER should be set to 66. If you are placing a footing at the
bottom of the page, this value should be less; in this case, 62. Valid
values for PAPER are numbers between 1 and 999999. Specify
999999 for continuous forms.

Note: When the STYLESHEET parameter is in effect, the setting
for PAPER is ignored.

Syntax: SET PAPER = {n|66}

 where:

n

Is the length of paper, in lines, for printed output. Valid values
are numbers between 1 and 999999. The value 999999 denotes
the use of continuous forms. The default value is 66.

Parameter: PASS

Description: Enables user access to a data source or stored procedure protected
by Information Builders security.

Syntax: SET PASS = password [IN filename]

where:

password

Is the password that allows access to data sources protected by
Information Builders database security.

filename

Is the FOCUS data source or stored procedure protected by
security.

Customizing Your Environment

1-40 Information Builders

Parameter: PAUSE

Description: Pauses before displaying a FOCUS report on the terminal. When you
use a printing terminal, this parameter allows you to adjust the paper
before printing the report.

 When the SCREEN parameter is ON, the PAUSE parameter is set
ON (until you set the PAUSE parameter to OFF). If you set the
SCREEN parameter to OFF, the PAUSE parameter is set to OFF.
Note that you can change the PAUSE parameter without affecting
the SCREEN parameter.

 This setting does not affect offline printing (routing output to a
system printer).

Syntax: SET PAUSE = {ON|OFF}

where:

ON

Pauses before displaying a FOCUS report. This value is the
default.

OFF

Does not pause before displaying a FOCUS report.

Parameter: PFnn

Description: Assigns a function to the PF key specified by nn, enabling you to
change the current PF key setting when using FIDEL (and also,
under certain conditions, within the Window facility).

 The current settings are displayed by the ? PFKEY command.

Syntax: SET PFnn = function

where:

nn

Is the PF key you are assigning a function to.

function

Is the function to assign to the PF key specified by PFnn.

 SET Parameter Syntax

Developing Applications 1-41

Parameter: PREFIX

Description: This parameter applies only to MVS.

Specifies the prefix of existing data sets automatically allocated by
FOCUS.

Syntax: SET PREFIX = prefix

where:

prefix

Specifies of the prefix of existing data sets automatically
allocated by FOCUS. The default setting in TSO is your user ID;
the default setting in batch is FOCUS.

Parameter: PRINT

Description: Specifies the report output destination.

 You can enter ONLINE and OFFLINE as separate commands that
have the same effect as specifying ONLINE and OFFLINE as
PRINT settings.

Syntax: SET PRINT = {ONLINE|OFFLINE}

where:

ONLINE

Prints report output to the terminal.

OFFLINE

Prints report output to the system printer.

Customizing Your Environment

1-42 Information Builders

Parameter: PRINTPLUS

Description: Introduces enhancements to the display alternatives offered by the
FOCUS Report Writer. To force a break at a specific spot, you must
use NOSPLIT.

 PRINTPLUS is not supported with StyleSheets. Problems may be
encountered if HOTSCREEN is set to OFFLINE.

Syntax: SET {PRINTPLUS|PRTPLUS} = {ON|OFF}

where:

ON

Handles the PAGE-BREAK internally to provide the correct
spacing of pages, NOSPLIT is handled internally and you can
perform RECAPs in cases where pre-specified conditions are
met. Additionally, a Report SUBFOOT now prints above the
footing instead of below it. ON is the default.

OFF

Does not support StyleSheets.

 SET Parameter Syntax

Developing Applications 1-43

Parameter: QUALCHAR

Description: Specifies the qualifying character to be used in qualified field names.

Syntax: SET QUALCHAR = {character|.}

where:

character

Is a valid qualifying character. They include:
. period (hex 4B)
: colon (hex 7A)
! exclamation point (hex 5A)
% percent sign (hex 6C)
¦ broken vertical bar (hex 6A)
\ backslash (hex E0)
The period is the default character. The use of the other
qualifying characters listed above is restricted; they should not be
used with 66-character field names.
If the qualifying character is a period, you can use any of the
other characters listed above as part of a field name. If you
change the default qualifying character to a character other than
the period, then you cannot use that character in a field name.

In VM, if the TERM tabchar is ON or if the CMS INPUT
command includes the broken vertical bar (hex 6A), then the
broken vertical bar cannot be the qualifying character. To query
INPUT, type Q INPUT at the CMS prompt.

Parameter: QUALTITLES

Description: Uses qualified column titles in report output when duplicate field
names exist in a Master File. A qualified column title distinguishes
between identical field names by including the segment name.

Syntax: SET QUALTITLES = {ON|OFF}

where:

ON

Uses qualified column titles when duplicate field names exist and
FIELDNAME is set to NEW.

OFF

Disables qualified column titles. This value is the default.

Customizing Your Environment

1-44 Information Builders

Parameter: REBUILDMSG

Description: Allows for direct control over the frequency with which REBUILD
issues messages.

Syntax: SET {REBUILDMSG|REMSG} = n

where:

n

Is any number.

Parameter: RECAP-COUNT

Description: Includes lines containing a value created with RECAP when
counting the number of lines per page for printed output. The
number of lines per page is determined by the LINES parameter.

Syntax: SET RECAP-COUNT = {ON|OFF}

where:

ON

Counts lines containing a value created with RECAP.

OFF

Does not count lines containing a value created with RECAP.
This value is the default.

Parameter: RECORDLIMIT

Description: Limits the number of records retrieved.

Syntax: SET RECORDLIMIT = {n|RECORDLIMIT}

where:

n

Is the maximum number of records to be retrieved.

RECORDLIMIT

Respects explicit RECORDLIMIT values only.

 SET Parameter Syntax

Developing Applications 1-45

Parameter: RIGHTMARGIN

Description: This parameter applies to PostScript and PDF report formats.

Sets the right boundary for report contents on a page.

Syntax: SET RIGHTMARGIN = {value|.25}

where:

value

Is the right boundary of report contents on a page. The default
value is .25 inches.

Parameter: RPAGESET

Description: Controls how the number of lines per printed page is determined
when output contains text created with SUBFOOT and a field value
created with RECAP.

Syntax: SET RPAGESET = {NEW|OLD}

where:

NEW

Sets the number of lines per page equal to the LINES value plus
two plus the number of the highest BY field with a SUBFOOT.

OLD

Works as in release 6.0. OLD is the default.

Parameter: SAVEMATRIX

Description: Preserves the internal matrix and keeps it available for subsequent
RETYPE, HOLD, SAVE, SAVB, and REPLOT commands when
followed by Dialog Manager commands.

Syntax: SET SAVEMATRIX = {ON|OFF}

where:

ON

Saves the last internal matrix generated. This value is the default.

OFF

Does not guarantee that the internal matrix will be available.

Customizing Your Environment

1-46 Information Builders

Parameter: SBORDER

Description: Generates a solid border on the screen for full-screen mode.

If the screen appears to be generated incorrectly, it is possible that
the terminal does not support this new feature; change the setting to
OFF to correct the situation.

The amper variable &FOCSBORDER contains the value of the
SBORDER setting. &FOCSBORDER may be included in the
Dialogue Manager -TYPE command.

Syntax: SET SBORDER = {ON|OFF}

where:

ON

Enables solid borders. This value is the default.

OFF

Enables dashed (nonsolid) borders.

Parameter: SCREEN

Description: Selects the Hot Screen facility.

When the SCREEN parameter is ON, the PAUSE parameter is set
ON (until you set the PAUSE parameter OFF). If you set the
SCREEN parameter OFF, the PAUSE parameter is set OFF. Note
that you can change the PAUSE parameter without affecting the
SCREEN parameter.

Syntax: SET SCREEN = {ON|OFF|PAPER}

where:

ON

Activates the Hot Screen facility. This value is the default.

OFF

Deactivates the Hot Screen facility.

PAPER

Activates the Hot Screen facility and causes FOCUS to use the
settings for LINES and PAPER parameters to format screen
display.

 SET Parameter Syntax

Developing Applications 1-47

Parameter: SHADOW

Description: Activates the Absolute File Integrity feature.

Syntax: SET SHADOW [PAGE] = {ON|OFF|OLD}

where:

ON

Activates the Absolute File Integrity feature. The maximum
number of pages shadowed is 256K.

OFF

Deactivates the Absolute File Integrity feature. OFF is the
default.

OLD

Indicates that your FOCUS file was created before Release 7.0.
This means that the maximum number of pages shadowed is
63,551.

Parameter: SHIFT

Description: Controls the use of “shift” strings.

Syntax: SET SHIFT = {ON|OFF}

where:

ON

Specifies a shift string for Hebrew or DBCS (double-byte
character support).

OFF

Indicates that SHIFT is not in effect. OFF is the default.

Customizing Your Environment

1-48 Information Builders

Parameter: SORTLIB

Description: This parameter applies only to FOCUS VM/CMS.

Tells FOCUS which sort package is installed at your site.

Syntax: SET SORTLIB = option

where:

option

Is one of the following:

VMSORT Is the VMSORT sort package.

SYNCSORT Is the SYNCSORT sort package.

DFSORT Is the DFSORT sort package.

SITEDEFINED Use SITEDEFINED if not VMSORT,
SYNCSORT, or DFSORT. This sort package
must be installed in SORTLIB TXTLIB in
order for FOCUS to find it.

Parameter: SPACES

Description: Sets the number of spaces between columns in a report.

Syntax: SET SPACES = {AUTO|n}

where:

AUTO

Automatically places either one or two spaces between columns.
This value is the default.

n

Is the number of spaces to place between columns of a report.
Valid values are integers between 1 and 8.

 SET Parameter Syntax

Developing Applications 1-49

Parameter: SQLTOPTTF

Description: Enables the SQL Translator to generate TABLEF commands instead
of TABLE commands.

Syntax: SET SQLTOPTTF = {ON|OFF}

where:

ON

Generates TABLEF commands when possible. For example, a
TABLEREF command is generated if there is no JOIN or
GROUP BY command.

OFF

Always generates TABLE commands. This value is the default.

Parameter: SQUEEZE

Description: This parameter applies only to the StyleSheet feature.

Determines the column width in report output. The column width is
based on the size of the data value or column title, or on the field
format defined in the Master File.

Syntax: SET SQUEEZE = {ON|OFF}

where:

ON

Assigns column widths based on the widest data value or widest
column title, whichever is longer. This value is the default.

OFF

Assigns column widths based on the field format specified in the
Master File. This value pads the column width to the length of the
column title or field format descriptions, whichever is greater.

Customizing Your Environment

1-50 Information Builders

Parameter: STYLE[SHEET]

Description: Controls the format of report output by accepting or rejecting
StyleSheet parameters. These parameters specify formatting options
such as page size, orientation, and margins.

Syntax: SET STYLE[SHEET] = {stylesheet|ON|OFF}

 where:

stylesheet

Is the name of the StyleSheet file. For UNIX and NT, this is the
name of the StyleSheet file without the file extension .sty. For
MVS, this is the member name in the PDS allocated to ddname
FOCSTYLE by a DYNAM command.
For a PDF or PostScript report, FOCUS uses the page layout
settings for UNITS, TOPMARGIN, BOTTOMMARGIN,
LEFTMARGIN, RIGHTMARGIN, PAGESIZE,
ORIENTATION, and SQUEEZE; the settings for LINES,
PAPER, PANEL, and WIDTH are ignored.

ON

Creates an HTML table using the default proportional font
defined in the end user’s browser. This value is the default.
For a PDF or PostScript report, FOCUS uses the page layout
settings for UNITS, TOPMARGIN, BOTTOMMARGIN,
LEFTMARGIN, RIGHTMARGIN, PAGESIZE,
ORIENTATION, and SQUEEZE; the settings for LINES,
PAPER, PANEL, and WIDTH are ignored.

OFF

Creates a pre-formatted report using the default fixed font
defined in the end user’s browser.
For a PDF or Postscript report, FOCUS uses the settings for
LINES, PAPER, PANEL, and WIDTH; the settings for UNITS,
TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN,
RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE
are ignored.

 SET Parameter Syntax

Developing Applications 1-51

Parameter: SUMPREFIX

Description: When an external sort product performs aggregation of alphanumeric
or smart date formats, the order of the answer set returned differs
from the order of the FOCUS sorted answer sets.

Syntax: SET SUMPREFIX = {FST|LST}

where:

FST

Displays the first value in cases of data aggregation of
alphanumeric or smart date data types.

LST

Displays the last value in cases of data aggregation of
alphanumeric or smart date data types.

Parameter: SUSI

Description: See the Simultaneous Usage Reference Manual for TSO.

Parameter: SUTABSIZE

Description: See the Simultaneous Usage Reference Manual for TSO.

Parameter: TEMP[DISK]

Description: This parameter applied only to CMS.

Determines the disk FOCUS uses for temporary work space, and to
store extract files (HOLD and SAVE).

Syntax: SET TEMP[DISK] = disk

where:

disk

Is the disk FOCUS uses for temporary workspace, and to store
extract files.

Customizing Your Environment

1-52 Information Builders

Parameter: TERM

Description: Selects the terminal type.

Syntax: SET TERM[INAL] = {type|IBM3270}

where:

type

Is the terminal type. The options are:

IBM3270 Is the default value. It does not support
DBCS.

IBM5550 Specifies an IBM 5550 or a PS/55 terminal.
Supports DBCS.

F6650 Specifies a Facom F-6650 terminal. Supports
DBCS.

H56020 Specifies a Hitachi H-560/20 terminal.
Supports DBCS.

Parameter: TESTDATE

Description: Temporarily alters the system date in order to test a dynamic
window. That is, it allows you to simulate clock settings beyond the
year 1999 to determine the behavior of your program.

Only use TESTDATE for testing purposes with test data. The value
of TESTDATE affects all reserved variables that retrieve the current
date from the system. Setting TESTDATE also affects anywhere in
FOCUS that a date is used (such as CREATE, MODIFY,
MAINTAIN) but does not affect the date referenced directly from
the system.

TESTDATE can either be equal to TODAY or a date in the format
YYYYMMDD. If anything else is entered the following message is
displayed:

TESTDATE MUST BE YYYYMMDD OR TODAY

Syntax: SET TESTDATE = {yyyymmdd|TODAY}

where:

yyyymmdd

Is an 8-digit date in the format YYYYMMDD.

TODAY

Is the current date. This value is the default.

 SET Parameter Syntax

Developing Applications 1-53

Parameter: TEXTFIELD

Description: Preserves downward compatibility with prior FOCUS releases.
FOCUS text fields have been enhanced significantly with Release
7.0.

Note: FOCUS Release 7.0 preserves text fields exactly as they are
entered into a data source with the ON MATCH/NOMATCH TED
command. See the Overview and Operating Environments manual
for additional information.

Syntax: SET {TEXTFIELD|TXTFIELD} = {OLD|NEW}

where:

OLD

Enables you to use text field data in prior releases of FOCUS
when that data has been created or modified in Release 7.0. This
value is the default.

NEW

Disables the ability to use text field data in prior FOCUS releases
when that data has been created or modified in Release 7.0.

Parameter: TITLE

Description: Uses pre-defined column titles in the Master File as column titles in
report output.

Syntax: SET TITLE[S] = {ON|OFF}

where:

ON

Uses pre-defined column titles in the Master File as column titles
in report output. This value is the default.

OFF

Uses the field names in the Master File as column titles in report
output.

Customizing Your Environment

1-54 Information Builders

Parameter: TOPMARGIN

Description: This parameter applies to PostScript and PDF report formats.

Sets the top boundary on a page for report output.

Syntax: SET TOPMARGIN = {value|.25}

where:

value

Is the top boundary on a page for report output. The default value
is .25 inches.

Parameter: TRACKIO

Description: MVS FOCUS gathers more pages to fill a track before reading or
writing the pages to disk. This results in significant reductions in I/O
requirements and in elapsed time for FOCUS files.

Syntax: SET TRACKIO = {ON|OFF}

where:

ON

Enables FOCUS to fill a track before reading or writing to disk.
This value is the default.

OFF

Does not fill a track before reading and writing to a disk.

Parameter: TRMOUT

Description: Suppresses all output messages to the terminal.

Syntax: SET TRMOUT = {ON|OFF}

where:

ON

Displays output messages to the terminal. This value is the
default.

OFF

Suppresses messages to the terminal.

 SET Parameter Syntax

Developing Applications 1-55

Parameter: UNITS

Description: This parameter applies to PostScript and PDF report formats.

Specifies the unit of measure for page margins, column positions,
and column widths.

Syntax: SET UNITS = {INCHES|CM|PTS}

where:

INCHES

Uses inches as the unit of measure. This value is the default.

CM

Uses centimeters as the unit of measure.

PTS

Uses points as the unit of measurement. (One inch = 72 points,
one cm = 28.35 points)

Parameter: USER

Description: Enables user access to a data source or stored procedure protected
by Information Builders security.

Syntax: SET USER = user

where:

user

Is the user name that, with a password, enables access to a data
source or stored procedure protected by Information Builders
security.

Customizing Your Environment

1-56 Information Builders

Parameter: WEBTAB

Description: Instructs FOCUS to enclose CRTFORM display fields in @ signs.

When the HTML/TP feature of Web390 generates replacement
HTML forms for a 3270 screen, it can dynamically account for fields
that may or may not be populated with data during execution.
HTML/TP can use this technique with turnaround (T.) fields on
CRTFORMs because they are enclosed in @ signs. These @-sign
markers enable HTML/TP to recognize them and handle them
dynamically on a customized HTML form. In contrast, CRTFORM
display (D.) fields are not normally enclosed in @ signs.

Note: This setting is only for those MODIFY CRTFORM or
Dialogue Manager -CRTFORM applications that will be used in
conjunction with the HTML/TP feature of Web390. For information
about Web390 and the HTML/TP feature, see the Web390 for
OS/390 and MVS Developer’s Guide and Installation Manual.

Syntax: SET WEBTAB = {ON|OFF}

where:

ON

Adds @ signs around CRTFORM display fields. These markers
may cause the fields displayed on the CRTFORM to shift slightly
to the right. Use this setting only for MODIFY CRTFORM or
Dialogue Manager -CRTFORM applications that will be used in
conjunction with the HTML/TP feature of Web390.

OFF

Does not place @ signs around CRTFORM display fields. This
value is the default.

 SET Parameter Syntax

Developing Applications 1-57

Parameter: WEEKFIRST

Description: This parameter is used in week computations by the HDIFF,
HNAME, HPART, and HSETPT functions described in Chapter 3,
Using Functions and Subroutines. The values from 1 to 7 represent
Sunday through Saturday.

Syntax: SET WEEKFIRST = number

where:

number

Is a number from one to seven, where one represents Sunday and
seven represents Saturday. The U.S. English default value is
seven (Saturday) meaning that Saturday is the first day of each
week, so every Friday-Saturday transition is the start of a new
week.
The WEEKFIRST setting does not change the number that
corresponds to each day of the week, it just specifies which one
is considered the start of the week. The default of Saturday (7) as
the first day of the week is consistent with the Microsoft SQL
Server convention.

Parameter: WIDTH

Description: Specifies the logical record length of your output data set when the
STYLESHEET parameter is OFF. When the STYLESHEET
parameter is in effect, FOCUS ignores the setting for WIDTH.

Syntax: SET WIDTH = {n|130}

where:

n

Is the logical record length of your output data set. The default
value is 130.

Customizing Your Environment

1-58 Information Builders

Parameter: XRETRIEVAL

Description: Previews the format of a report without actually accessing any data.
This parameter enables you to perform TABLE, TABLEF, or
MATCH requests and produce HOLD Master Files without
processing the report.

Syntax: SET XRETRIEVAL = {ON|OFF}

where:

ON

Performs retrieval when previewing a report. This value is the
default.

OFF

Specifies that no retrieval is to be performed.

Parameter: YRTHRESH

Description: Defines the start of a 100-year window globally or on a field-level.
Used with DEFCENT, interprets the current century according to the
given values. Two-digit years greater than or equal to YRTHRESH
assume the value of the default century. Two-digit years less than
YRTHRESH assume the value of one more than the default century.
(See DEFCENT.)

Note: This same result can be achieved by including the
FDEFCENT and FYRTHRESH attributes in the Master File.

Syntax: SET YRTHRESH = {[-]yy|0}

where:

yy

Is the year threshold for the window. If you do not supply a
value, yy defaults to zero (0).
If yy is a positive number, that number is the start of the 100-year
window. Any two-digit years greater than or equal to the
threshold assume the value of the default century. Two-digit
years less than the threshold assume the value of one more than
the default century.
If yy is a negative number (-yy), the start date of the window is
derived by subtracting that number from the current year, and the
default century is automatically calculated. The start date is
automatically incremented by one at the beginning of each
successive year.

Developing Applications 2-1

CHAPTER 2
Querying Your Environment

Topics:
• Using Query Commands

You can query your environment to display information such as
status of files, release information, server information, and joins.

Querying Your Environment

2-2 Information Builders

Using Query Commands
Query commands display information about your metadata, physical data sources,
language environment, and development and run-time environment.

Syntax How to Issue a Query Command
? query [filename]

where:
query

Is the subject of the query.
filename

Is the name of the file that is the subject of the query. This parameter applies to only
some queries.

To list the query commands, type a question mark in a stored procedure or at the
command prompt.

Reference Query Command Summary
The following is a list of query commands. A detailed description of each is in this topic.
? COMBINE Lists FOCUS files comprising the current COMBINE

structures.
? DEFINE Displays currently active virtual fields created by the DEFINE

command or attribute.
? EUROFILE Displays the currency data source in effect.
? F Lists fields currently available to you.
? FDT Displays physical attributes of a FOCUS data source.
? FF Lists field names, aliases, and format information for an active

Master File.
? FILE Displays the number of segment instances in a FOCUS data

source and the last time the data sources were changed.
? FUNCTION Displays the defined functions and their parameters.
? HOLD Displays fields described in a HOLD Master File.
? JOIN Displays JOIN structures that exist between data sources.
? LANG Displays information about National Language Support.
? LET Displays word substitutions created with the LET command.
? LOAD Provides information about all loaded files: the file type, file

name and resident size.
? n Displays an explanation of an error message (n represents the

number of the error message).
? PTF Displays the PTFs that have been applied to your version of

FOCUS.

 Displaying Combined Structures

Developing Applications 2-3

? RELEASE Displays the release number of your product.
? SET Displays parameter settings that control your development and

run-time environment.
? SET GRAPH Displays parameter settings that control graphs produced with

the GRAPH command.
? STAT Displays statistics about the last command executed.
? STYLE Displays the current settings for StyleSheet parameters.
? SU Is communication available to the SU machine.
? USE Displays data sources specified with the USE command.
? && Displays values of global variables.

Displaying Combined Structures
The ? COMBINE command displays files that are in the current COMBINE structures.

Syntax How to Display Combined Structures
? COMBINE [filename]

where:
filename

Is the data source containing the virtual fields. If filename is omitted, the command
displays all virtual fields.

Example Displaying Combined Structures
Issuing the command
? COMBINE

produces information similar to the following:
COMBINE EDUCFILE AND JOBFILE AS EDJOB
>
? COMBINE
FILE=EDJOB TAG PREFIX

EDUCFILE
JOBFILE

>

Querying Your Environment

2-4 Information Builders

Displaying Virtual Fields
The ? DEFINE command lists the active virtual fields used in a request. The fields can be
created by either the DEFINE command or DEFINE attribute in the Master File. The
command displays field names of up to 32 characters. If a name exceeds 32 characters,
then an ampersand (&) in the 32nd position indicates a longer field name.

Syntax How to Display Virtual Fields
? DEFINE [filename]

where:
filename

Is the data source containing the virtual fields. If filename is omitted, the command
displays all virtual fields.

Example Displaying Virtual Fields
Assume that you created virtual fields in a request against the EMPLOYEE database.
Issuing
? DEFINE

produces the following information:
FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
EMPLOYEE PROJECTEDSAL D12.2
EMPLOYEE FULLNAME A26
>

Reference ? DEFINE Query Information
The following information is listed for each virtual field created with DEFINE:
FILE Is the name of the data source containing the virtual field.
FIELD NAME Is the name of the virtual field.
FORMAT Is the format of the virtual field. The notation is the same as that

used for the FORMAT attribute in a Master File.
SEGMENT Is the number of the segment in the Master File containing the

virtual field. During reporting, your application treats the virtual
field as a field in this segment. To relate segment numbers to
segment names, use ? FDT.

VIEW Is the root segment of DEFINE that specifies an alternate view. For
example:
DEFINE FILE EMPLOYEE.JOBCODE

TYPE Indicates whether the virtual field is created by the DEFINE
attribute in the Master File, or by a DEFINE command, identified by
MASTER or a blank, respectively.

 Displaying the Currency Data Source in Effect

Developing Applications 2-5

Displaying the Currency Data Source in Effect
The ? EUROFILE command displays the currency data source in effect.

Syntax How to Display the Currency Data Source in Effect
? EUROFILE

Example Displaying the Currency Data Source in Effect
Issuing the command
? EUROFILE

produces information similar to the following:
EUROFILE GBP

Displaying Available Fields
The ?F command displays the fields that are currently available.

Syntax How to Display Available Fields
?F [filename]

where:
filename

Is a data source. If filename is omitted, the command displays all virtual fields.

Example Displaying Available Fields
Issuing the command
?F

produces information similar to the following:
FILENAME = EMPLOYEE
EMP_INFO EMP_ID LAST_NAME FIRST_NAME HIRE_DATE
DEPARTMENT CURR_SAL CURR_JOBCODE ED_HRS
BANK_NAME BANK_CODE BANK_ACCT EFFECT_DATE
DAT_INC PCT_INC SALARY PAYINFO JOBCODE
TYPE ADDRESS_LN1ADDRESS_LN2 ADDRESS_LN3 ACCTNUMBER
PAY_DATE GROSS
DED_CODE DED_AMT
JOBSEG JOBCODE JOB_DESC
SEC_CLEAR
SKILLS SKILLS_DESC
DATE_ATTENDATTENDSEG.EMP_ID
COURSE_CODECOURSE_NAME

Querying Your Environment

2-6 Information Builders

Displaying the File Directory Table
The ? FDT command displays the file directory table, which lists the physical
characteristics of a FOCUS data source.
A FOCUS data source is composed of fixed-length, 4096-byte records called pages. Each
segment and each index (those fields designated by the keyword FIELDTYPE=I in the
Master File) occupies an integral number of pages. The file directory table shows the
amount of space occupied by each segment instance in a page, the starting and ending
page numbers, and the number of pages in between for each segment and index.

Syntax How to Display a File Directory Table
? FDT filename

where:
filename

Is the name of the data source.

Example Displaying a File Directory Table
Issuing the command
? FDT EMPLOYEE

produces the following information:
DIRECTORY:EMPLOYEEFOCUS F ON 09/25/1997 AT 09.50.28
DATE/TIME OF LAST CHANGE: 03/30/1999 16.19.22

SEGNAME LENGTH PARENT START END PAGES LINKS TYPE

1 EMPINFO 22 1 1 1 6
2 FUNDTRAN 10 1 2 2 1 2
3 PAYINFO 8 1 3 3 1 3
4 JOBSEG 11 3 4
5 SECSEG 4 4 2
6 SKILLSEG 11 4 2
7 ADDRESS 19 1 4 4 1 2
8 SALINFO 6 1 5 5 1 3
9 DEDUCT 5 8 6 8 3 2
10 ATTNDSEG 7 1 3
11 COURSEG 11 10 2
>

 Displaying the File Directory Table

Developing Applications 2-7

Reference ? FDT Query Information
The following information is listed in the file directory table:
SEGNAME Is the name of each segment in the file. The segments are also

numbered consecutively down the left of the table. Unnumbered
entries at the foot of the table are indexes, which belong to fields
having the attribute FIELDTYPE=I in the Master File.

LENGTH Is the length in words (units of four bytes) of each segment instance.
Divide this number into 992 to determine the number of instances
that can fit into a page.

PARENT Is the parent segment. Each number refers to a segment name in the
SEGNAME column.

START Is the page number on which the segment or index begins.
END Is the page number on which the segment or index ends.
PAGES Is the number of pages occupied by the segment or index.
LINKS Is the length, in words, of the pointer portion in each segment

instance. Every segment instance consists of two parts, data and
pointers. Pointers are internal numbers that are used to find other
instances.

TYPE Is the type of index. NEW indicates a binary index. OLD indicates a
hash index. Segments of type KU, LM, DKU, DKM, KL, and KLU
are not physically in this file; therefore, this information is omitted
from the table.

Querying Your Environment

2-8 Information Builders

Displaying Field Information for a Master File
The ?FF command displays field names, aliases, and format information for an active
Master File.

Syntax How to Display Field Information for a Master File
?FF [filename] [string]

where:
filename

Is the name of the Master File.
string

Is a character string up to 66 characters long. The command displays information
only for fields beginning with the specified character string. If you omit this
parameter, the command displays information for all fields in the Master File.

Example Displaying Field Information for a Master File
Issuing the command
?FF

produces information similar to the following:
FILENAME= EMPLOYEE
EMP_INFO
EMP_ID EID A9
LAST_NAME LN A15
FIRST_NAME FN A10
HIRE_DATE HDT 16YMD
DEPARTMENT DPT A10
CURR_SAL CSAL D12.2M
CURR_JOBCODE CJC A3
ED_HRS OJT F6.2

BANK_NAME BN A20
BANK_CODE BC I6S
BANK_ACCT BA I9S
EFFECT_DATE EDATE 16YMD

DAT_INC DI I6YMD
PCT_INC PI F6.2
SALARY SAL D12.2M
PAY_INFOJOBCODEJBC A3

 Displaying Data Source Statistics

Developing Applications 2-9

Displaying Data Source Statistics
The ? FILE command displays information such as the number of segment instances in a
FOCUS data source and when the data source was last changed.

Syntax How to Display Data Source Statistics
? FILE filename

where:
filename

Is the name of the data source.

Example Displaying Data Source Statistics
Issuing the command
? FILE EMPLOYEE

produces statistics similar to the following:
STATUS OF FOCUS FILE: EMPLOYEEFOCUS A1 ON 03/12/99 AT 12.29.51

ACTIVE DELETED DATE OF TIME OF LAST TRANS
SEGNAME COUNT COUNT LAST CHG LAST CHG NUMBER

EMPINFO 12 12/21/93 11.01.32 1
FUNDTRAN 6 11/16/89 16.19.19 12
PAYINFO 19 11/16/89 16.19.20 19
ADDRESS 21 11/16/89 16.19.21 21
SALINFO 70 11/16/89 16.19.22 448
DEDUCT 448 11/16/89 16.19.22 448
TOTAL SEGS 576
TOTAL CHARS 8984
TOTAL PAGES 8
LAST CHANGE 01/29/96 11.01.32 1

Querying Your Environment

2-10 Information Builders

Reference ? FILE Query Information
The following data source statistics are listed:
SEGNAME Is the name of each segment in the data source. After the segments,

the indexes are listed, if applicable.
Indexes are those fields specified by the attribute FIELDTYPE=I in
the Master File.

ACTIVE COUNT Is the number of instances of each segment.
DELETED COUNT Is the number of segment instances deleted, for which the space is

not reused.
DATE OF LAST CHG Is the date on which data in a segment instance or index was last

changed.
TIME OF LAST CHG Is the time of day, on a 24-hour clock, when the file’s last update

was made for that segment or index.
LAST TRANS NUMBER Is the number of transactions performed by the last update request to

access the segment. If the data source was changed under
Simultaneous Usage mode, this column refers to the REF NUMB
column of the CR HLIPRINT file.

TOTAL SEGS Is the total number of segment instances in the file (shown under
ACTIVE COUNT), and the number of segments deleted when the
file was last changed (shown under DELETED COUNT).

TOTAL CHARS Is the number of characters of data in the file.
TOTAL PAGES Is the number of pages in the data source. Pages are physical records

in FOCUS data sources. Each page is 4096 bytes.
LAST CHANGE Is the date and time the data source was last changed.

 Displaying DEFINE Functions

Developing Applications 2-11

Determining the Percentage of File Disorganization
If a data source is disorganized by more than 29%, that is, the physical placement of data
in the data source is considerably different from its logical or apparent placement, the
following message appears
FILE APPEARS TO NEED THE -REBUILD- UTILITY
REORG PERCENT IS A MEASURE OF FILE DISORGANIZATION
0 PCT IS PERFECT -- 100 PCT IS BAD
REORG PERCENT IS x%

where:
x

Is a percentage between 30 and 100.
The variable &FOCDISORG also indicates the level of disorganization. Following is an
example of how you can use &FOCDISORG in a Dialogue Manager -TYPE command:
-TYPE THE AMOUNT OF DISORGANIZATION OF THIS FILE IS: &FOCDISORG

This command, depending on the amount of disorganization, produces a message similar
to the following:
THE AMOUNT OF DISORGANIZATION OF THIS FILE IS: 10

When using a -TYPE command with &FOCDISORG, a message is displayed even if the
percentage of disorganization is less than 30%.

Displaying DEFINE Functions
The ? FUNCTION command displays all defined functions and their parameters.

Syntax How to Display DEFINE Functions
? FUNCTION

Example Displaying DEFINE Functions
Issuing the command
? FUNCTION

produces information similar to the following:
Name Format Parameter Format

DIFF D8 VAL1 D8
VAL2 D8

Querying Your Environment

2-12 Information Builders

Displaying HOLD Fields
The ? HOLD command lists fields described in a Master File created by the ON TABLE
HOLD command. The list displays the field names, their aliases, and their formats as
defined by the FORMAT (USAGE) attribute. The ? HOLD command displays field
names up to 32 characters. If a field name exceeds 32 characters, an ampersand (&) in the
32nd position indicates a longer field name.
The ? HOLD command displays fields of a HOLD Master File created by the current
request.

Syntax How to Display HOLD Fields
? HOLD [filename]

where:
filename

Is the name assigned in the AS phrase in the ON TABLE HOLD command. If you
omit the file name, it defaults to HOLD.

Example Displaying HOLD Fields
Issuing the command
? HOLD

produces information similar to the following:
DEFINITION OF CURRENT HOLD FILE
FIELDNAME ALIAS FORMAT

COUNTRY E01 A10
CAR E02 A16

>

 Displaying JOIN Structures

Developing Applications 2-13

Displaying JOIN Structures
The ? JOIN command lists the JOIN structures currently in effect. The command displays
field names up to 12 characters. If a field name exceeds 12 characters, an ampersand in
the twelfth position indicates a longer field name.

Syntax How to Display JOIN Structures
? JOIN

Example Displaying JOIN Structures
Issuing the command
? JOIN

produces information similar to the following:
JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL
----- ---- --- ----- ---- --- -- ---
JOBCODE EMPLOYEE JOBCODE JOBFILE EMPJOB

>

Reference ? JOIN Query Information
The following JOIN information is listed:
HOST FIELD Is the name of the host field that is joining the data sources.
FILE Is the name of the host data source.
TAG Is a tag name used as a unique qualifier for field names in the

host data source.
CROSSREFERENCE FIELD Is the name of the cross-referenced field used to join the data

sources.
FILE Is the name of the cross-referenced data source.
TAG Is a tag name used as a unique qualifier for field names in the

cross-referenced data source.
AS Is the name of the joined structure.
ALL Displays Y for a non-unique join and N for a unique join.

Querying Your Environment

2-14 Information Builders

Displaying National Language Support
The ? LANG command displays information about National Language Support.

Syntax How to Display Information About National Language Support
? LANG

Example Displaying Information About National Language Support
Issuing the command
? LANG

produces information similar to the following:
LANGUAGE AND DBCS STATUS

Language 01/AMENGLISH ()
Code Page 00037
Dollar value 5B($)
DBCS Flag OFF(SBCS)

Displaying LET Substitutions
The ? LET command lists the active word substitutions created by the LET command. A
word in the left column is used in a report request to represent the word or phrase in the
right column. For more information on the LET command, see your documentation on
defining LET substitutions.

Syntax How to Display LET Substitutions
? LET

Example Displaying LET Substitutions
Issuing the command
? LET

produces information similar to the following:
PR PRINT
TF TABLE FILE EMPLOYEE
>

 Displaying Information About Loaded Files

Developing Applications 2-15

Displaying Information About Loaded Files
The ? LOAD command displays the file type, file name, and resident size of currently
loaded files.

Syntax How to Display Information About Loaded Files
? LOAD [filetype]

where:
filetype

Specifies the type of file (MASTER, FOCEXEC, Access File, FOCCOMP, or
MODIFY) on which information will be displayed. To display information on all
memory-resident files, omit file type.

Example Displaying Information About Loaded Files
Issuing the command
? LOAD

produces information similar to the following:
FILES CURRENTLY LOADED

CAR MASTER 4200 BYTES
EXPERSON MASTER 4200 BYTES
CARTEST FOCEXEC 8400 BYTES

Displaying Explanations of Error Messages
The ? n command displays a detailed explanation of an error message, providing
assistance in correcting the error.
Error messages generated by certain data adapters, such as the DB2 and MODEL 204
data adapters, are also accessible through this feature.

Syntax How to Display Explanations of Error Messages
? n

where:
n

Is the error message number.

Querying Your Environment

2-16 Information Builders

Example Displaying Explanations of Error Messages
If you receive the message
(FOC125) RECAP CALCULATIONS MISSING

and want a fuller explanation, issue:
? 125

The following message is displayed:
(FOC125) RECAP CALCULATIONS MISSING
The word RECAP is not followed by a calculation. Either the RECAP should
be removed, or a calculation provided.

Querying Which PTFs Have Been Applied for a
Specific Release

The ? PTF command displays a list of PTFs that have been applied to the version of
FOCUS you are currently using.

Syntax How to Query a List of PTFs
? PTF

Example Querying a List of PTFs
Issuing the command
? PTF

produces results similar to the following:

Note: Dots are used to denote the lack of data if no information exists for a column entry
in the resulting report. If there are no PTFs for the version of FOCUS that you are
currently running, the following is displayed:
NO PTFS HAVE BEEN APPLIED

 Displaying the Release Number

Developing Applications 2-17

Displaying the Release Number
The ? RELEASE command displays the number of the currently installed release of your
product.

Syntax How to Display the Release Number
? RELEASE

Example Displaying the Release Number
Issuing the command
? RELEASE

produces information similar to the following:
FOCUS 7.0.9 created 9/16/1999 QA-30.01

Displaying Parameter Settings
The ? SET command lists the parameter settings that control your development and
run-time environments. Your application sets default values for these parameters, but you
can change them with the SET command.
Two options give you additional information. The FOR option lists the current state of
the command queried, and describes where you can set it. The NOT option produces a
list of SET commands not settable in five specific areas.
SET parameters are described in Chapter 1, Customizing Your Environment.

Syntax How to Display Parameter Settings
? SET [ALL|parameter]

where:
ALL

Optionally displays all possible parameter settings.
parameter

Is a SET parameter.

Querying Your Environment

2-18 Information Builders

Example Displaying Parameter Settings
Issuing the command
? SET

produces information similar to the following:
PARAMETER SETTINGS

ALL. OFF HIPERFOCUS OFF QUALCHAR .
ASNAMES FOCUS HOLDATTRS FOCUS QUALTITLES OFF
AUTOINDEX ON HOLDLIST ALL RECAP-COUNT OFF

AUTOPATH ON HOLDSTAT OFF SAVEMATRIX ON
BINS 64 HOTMENU OFF SCREEN ON
BLKCALC NEW INDEX TYPE NEW SHADOW PAGE OFF

BYPANELING OFF LANGUAGE AMENGLISH SPACES AUTO
CACHE 0 LINES/PAGE 66 SQLENGINE
CARTESIAN OFF LINES/PRINT 57 TCPIPINT OFF

CDN OFF MESSAGE ON TEMP DISK A
COLUMNSCROLL OFF MODE CMS TERMINAL IBM3270
DATETIME STARTUP/RESET NODATA . TITLES ON

DEFCENT 19 PAGE-NUM ON WIDTH 130
EMPTYREPORT OFF PANEL 0 WINPFKEY OLD
EXTSORT ON PAUSE ON XRETRIEVAL ON

FIELDNAME NEW PRINT ONLINE YRTHRESH 0
FOCSTACK SIZE 8 PRINTPLUS ON

>

Some parameters are listed differently from the way you specify them in the SET
command. These include:
FOCSTACK SIZE Is the same as the FOCSTACK parameter.
INDEX TYPE Is the same as the INDEX parameter.
LINES/PAGE Is the same as the PAPER parameter.
LINES/PRINT Is the same as the LINES parameter.
SHADOW PAGES Is the same as the SHADOW parameter.

Example Displaying a Single Parameter Setting
Issuing the command
? SET ONLINE-FMT

produces information similar to the following:
ONLINE-FMT STANDARD

 Displaying Parameter Settings

Developing Applications 2-19

Syntax How to Query a Command
? SET FOR parameter

where:
parameter

Is any SET parameter.

Example Querying Where the EXTSORT Parameter Is Valid
Entering
? SET FOR EXTSORT

yields
EXTSORT ON

SETTABLE FROM COMMAND LINE : YES
SETTABLE ON TABLE : YES
SETTABLE FROM SYSTEM-WIDE PROFILE : YES
SETTABLE FROM HLI PROFILE : YES
POOL TABLE BOUNDARY : YES
>

The preceding screen shows that EXTSORT is currently set ON and that it is settable
from all five features.

Syntax How to Determine Where a Command Is Valid
? SET NOT functional_area

where:
functional_area

Is one of the following:
PROMPT is in a PROMPT command.
ONTABLE is in a report request.
FOCPARM is in the FOCPARM profile.
HLIPROF is in the HLI profile.
PT is in Pooled Tables.

Querying Your Environment

2-20 Information Builders

Example Determining Which Commands Are Not Valid Using ON TABLE
Entering
? SET NOT ONTABLE

yields:
NON-SETTABLE ON TABLE PARAMETER SETTINGS

BINS 64 LANGUAGE AMENGLISH REBUILDMSG 1000
BLKCALC NEW MAXPOOLMEM 32768 SAVEMATRIX ON

BYPANELING OFF MDIBINS 8000 TCPIPINT OFF
CACHE 0 MDIPROGRESS 100000 TEMP DISK C
COLUMNSCROLL OFF MODE CMS TRMSD 24

DATEDISPLAY OFF MPRINT NEW TRMSW 80
DATEFNS ON POOL OFF TRMTYP 1 (3270)
DEFCENT 19 POOLBATCH OFF WEBHOME OFF

EUROFILE POOLFEATURE OFF WIDTH 130
FIELDNAME NEW POOLMEMORY 16384 WINPFKEY OLD
FOCSTACK SIZE 8 POOLRESERVE 1024 YRTHRESH 0

HTMLMODE OFF PRINTPLUS OFF
>

The preceding screen shows a list of parameters that are not settable using ON TABLE.

 Displaying Graph Parameters

Developing Applications 2-21

Displaying Graph Parameters
The ? SET GRAPH command lists the parameter settings that control graphs produced
with the GRAPH command. These parameters are described further in Chapter 1,
Customizing Your Environment.

Syntax How to Display Graph Parameters
? SET GRAPH

Example Displaying Graph Parameters
Issuing the command
? SET GRAPH

produces information similar to the following:
GRAPH PARAMETER SETTINGS

AUTOTICK ON HISTOGRAM ON
BARNUMB OFF HMAX .00
BARSPACE 0 HMIN .00
BARWIDTH 1 HSTACK OFF
BSTACK OFF HTICK .00
DEVICE IBM3270 PIE OFF
GMISSING OFF VAUTO ON
GMISSVAL .00 VAXIS 66
GPROMPT OFF VCLASS .00
GRIBBON(GCOLOR) OFF VGRID OFF
GRID OFF VMAX .00
GTREND OFF VMIN .00
HAUTO ON VTICK .00
HAXIS 130 VZERO OFF
HCLASS .00

>

If you change the PLOT parameter settings, a small table appears at the end of the list:
PLOT TABLE (EBCDIC):

ENTER PLOT MODE 0050 (FOR 3284 WIDTH)
EXIT PLOT MODE 0018 (FOR 3284 HEIGHT)
LEFT 0000
RIGHT 0000
UP 0000
DOWN 0000

The entries in the table at the bottom are:
ENTER PLOT MODE Width of graph on IBM 3284 or 3287 printer.
EXIT PLOT MODE Height of graph on IBM 3284 or 3287 printer.
Ignore the parameters LEFT, RIGHT, UP, and DOWN.

Querying Your Environment

2-22 Information Builders

Displaying Command Statistics
The ? STAT command lists statistics for the most recently executed command.
Each statistic applies only to a certain command. If another command is executed, the
statistic is either 0 or does not appear in the list at all. When you execute commands in
stored procedures, these statistics are automatically stored in Dialogue Manager statistical
variables. For more information, see Chapter 4, Managing Applications With Dialogue
Manager.

Syntax How to Display Command Statistics
? STAT

Example Displaying Command Statistics
Depending on the commands executed
? STAT

produces information similar to the following:
STATISTICS OF LAST COMMAND

RECORDS = 0 SEGS DELTD = 0
LINES = 0 NOMATCH = 0
BASEIO = 0 DUPLICATES = 0
SORTIO = 0 FORMAT ERRORS = 0
SORT PAGES = 0 INVALID CONDTS = 0
READS = 0 OTHER REJECTS = 0
TRANSACTIONS = 0 CACHE READS = 0
ACCEPTED = 0 MERGES = 0
SEGS INPUT = 0 SORT STRINGS = 0
SEGS CHNGD = 0 INDEXIO = 0

INTERNAL MATRIX CREATED: YES AUTOINDEX USED: NO
SORT USED: FOCUS AUTOPATH USED: NO
AGGREGATION BY EXT.SORT: NO HOLD FROM EXTERNAL SORT: NO
>

 Displaying Command Statistics

Developing Applications 2-23

Reference ? STAT Query Information
The following information is listed when the ? STAT query is issued:

RECORDS Is for TABLE, TABLEF, MATCH, and GRAPH commands.
Indicates the number of records used in the report. Note that the
meaning of a record depends on the type of data source used.

LINES Is for TABLE and TABLEF commands. Indicates the number of
lines printed in a report.

BASEIO Is for TABLE, TABLEF, GRAPH, MODIFY, and FSCAN
commands. Indicates the number of I/O operations performed on
the data source.

SORTIO Is for TABLE, TABLEF, MATCH, and GRAPH commands.
Indicates the number of I/O operations performed on the
FOCSORT file, a work file invisible to the user.

SORTPAGES Is for TABLE and TABLEF commands. Indicates the number of
physical records in the FOCSORT file.

READS Is for the MODIFY and FSCAN commands. Indicates the number
of fixed format records read in external files by the FIXFORM
command.

TRANSACTIONS Is for the MODIFY and FSCAN commands. Indicates the number
of transactions processed—inputs, updates, deletions, and
rejections.

ACCEPTED Is for the MODIFY and FSCAN commands. Indicates the number
of transactions accepted.

SEGS INPUT Is for MODIFY and FSCAN commands. Indicates the number of
segment instances accepted into the data source.

SEGS CHNGD Is for MODIFY and FSCAN commands. Indicates the number of
segment instances updated in the data source.

SEGS DELTD Is for MODIFY and FSCAN commands. Indicates the number of
segment instances deleted from the data source.

NOMATCH Is for the MODIFY command. Indicates the number of transactions
rejected for lack of matching values in the data source. This occurs
on an ON NOMATCH REJECT condition.

DUPLICATES Is for the MODIFY command. Indicates the number of transactions
rejected because their matching field values already exist in the
data source. This occurs on an ON MATCH REJECT condition.

FORMAT ERRORS Is for the MODIFY command. Indicates the number of transactions
rejected because data field values for data fields do not conform to
the field formats defined in the Master File.

Querying Your Environment

2-24 Information Builders

INVALID

CONDTS

Is for the MODIFY command. Indicates the number of transactions
rejected because their values failed validation tests.

OTHER REJECTS Is for the MODIFY command. Indicates the number of transactions
rejected for reasons other than those listed above.

CACHE READS Shows the number of CACHE READS performed (see Chapter 1,
Customizing Your Environment).

MERGES Is the number of times that FOCUS merge routines have been
invoked.

SORT STRINGS Is the number of times that the FOCUS SORT capacity has been
exceeded.

INTERNAL

MATRIX

CREATED

Can have a value of YES/NO.

SORT USED Is the type of sort facility used. It can have a value of FOCUS,
EXTERNAL, SQL, or NONE.

Displaying Information About the SU Machine
The ? SU command displays the communication available to the SU machine.

Syntax How to Display Information About the SU Machine
? SU [userid|ddname]

where:
userid

Is a valid user ID.
ddname

Is a valid ddname.

Example Displaying Information About the SU Machine
Issuing the command
? SU SYNCA

produces the following information:
USERID FILEID QUEUE

WIBMLH QUERY
WIBJBP CAR

 Displaying Global Variable Values

Developing Applications 2-25

Displaying Global Variable Values
The ? && command lists Dialogue Manager global variables and their current values.
Global variables maintain their values for the duration of the session.
See your documentation about Dialogue Manager for details on global and other
variables.

Syntax How to Display Global Variable Values
? &&

Your site may replace the ampersand (& or &&) indicating Dialogue Manager variables,
with another symbol. In that case, use the replacement symbol in your query command.
For example, if your installation uses the percent sign (%) to indicate Dialogue Manager
variables, list global variables by issuing:
? %%

You can query all Dialogue Manager variables (local, global, and system) from a stored
procedure by issuing:
-? &

Example Displaying Global Variable Values
Depending on the variables in effect, issuing the command
? &&

produces information similar to the following:
&&STORECODE 001
&&STORENAME MACYS
>

>

Querying Your Environment

2-26 Information Builders

Displaying StyleSheet Parameter Settings
The ? STYLE command displays the current settings for StyleSheet parameters.

Syntax How to Display StyleSheet Parameter Settings
? [SET] STYLE

Example Displaying StyleSheet Parameter Settings
Issuing the command
? STYLE

produces information similar to the following:
ONLINE-FMT
OFFLINE-FMT STANDARD

STYLESHEET ON
SQUEEZE OFF
PAGESIZE LETTER
ORIENTATION PORTRAIT
UNITS INCHES
LABELPROMPT OFF
LEFTMARGIN .250
RIGHTMARGIN .250
TOPMARGIN .250
BOTTOMMARGIN .250
STYLEMODE FULL
TARGETFRAME
FOCEXURL
BASEURL

Displaying Data Sources Specified With USE
The ? USE command displays data sources specified with the USE command.

Syntax How to Display Data Sources Specified With USE
? USE

Example Displaying Data Sources Specified With USE
Issuing the command
? USE

produces information similar to the following:
DIRECTORIES IN USE ARE:
CAR FOCUS F
EMPLOYEE FOCUS F
LEDGER FOCUS F

Developing Applications 3-1

CHAPTER 3

Using Functions and Subroutines

Topics:

• What Is the Difference Between a
Function and a Subroutine?

• Types of Functions and Subroutines

• Date Function and Subroutine
Settings

• Subroutine Command (Call) Syntax

• Storing and Accessing External
Subroutines

• Alphabetical List of Functions and
Subroutines

FOCUS offers a rich set of functions and subroutines that operate
on one or more arguments and return a single value as a result.
Functions and subroutines provide a convenient way to perform
certain calculations and manipulations.

The next few topics describe the following:

• What is the difference between a function and a subroutine?

• Types of functions and subroutines.

• How to use subroutines.

• An alphabetical description of the functions and subroutines.

You can also create your own subroutines.

Using Functions and Subroutines

3-2 Information Builders

What Is the Difference Between a Function and a
Subroutine?

There are two differences between a function and a subroutine:

• How they are invoked.

• How they are accessed.

A function call has the following syntax

function (arg1, arg2, ...)

where:

function

Is the name of the function.

arg1, arg2, ...

Are the arguments.

A subroutine call has the following syntax

subroutine (arg1, arg2, ... {outputfield|'format'})

where:

subroutine

Is the name of the subroutine.

arg1, arg2, ...

Are the arguments.

{outputfield|'format'}

Is the name of the output field or its format.

In addition, on some platforms, the functions are available immediately; whereas, the
subroutines are available in a special subroutine library that you must access.

 Types of Functions and Subroutines

Developing Applications 3-3

Types of Functions and Subroutines
You can access any of the following kinds of functions and subroutines:

Bit
Enable you to manipulate bits.

Character
Enable you to manipulate alphanumeric fields or character strings.

Data Source
Enable you to search for or retrieve data source records or values.

Date and Time
Enable you to manipulate dates and times.

Decoding
Enable you to assign values.

Format Conversion
Enable you to convert fields from one format to another.

Numeric
Enable you to perform numeric calculations on numeric constants and fields.

System
Enable you to make calls to the operating system to obtain information about the
operating environment or to use a system service.

Bit Functions and Subroutines
Bit functions and subroutines enable you to manipulate bits. Unless otherwise noted,
functions and subroutines are supported on all platforms. For more information on these
functions and subroutines, see Alphabetical List of Functions and Subroutines on page
3-36.

BITSON subroutine
Evaluates an individual bit within a character string to determine whether it is on or
off.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

BITVAL subroutine
Evaluates a string of bits within character strings and returns its binary value.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

BYTVAL subroutine
Translates a character to its corresponding ASCII code.

Using Functions and Subroutines

3-4 Information Builders

HEXBYT subroutine
Translates an integer between 0 and 255 (base 10) into the corresponding ASCII or
EBCDIC character (depending on your platform).

UFMT subroutine
Converts characters in alphanumeric field values to hexadecimal (HEX)
representation.
Available on: MVS, VM/CMS, OpenVMS, and WebFOCUS.

Character Functions and Subroutines
The following functions and subroutines enable you to manipulate alphanumeric fields or
character strings. Unless otherwise noted, functions and subroutines are supported on all
platforms. For more information on these functions and subroutines, see Alphabetical List
of Functions and Subroutines on page 3-36.

ARGLEN subroutine
Measures the length of a character string within a field, excluding trailing blanks.

ASIS function
In Dialogue Manager, distinguishes between a blank and a zero.
Available on: MVS, VM/CMS, and WebFOCUS.

BITSON subroutine
Evaluates an individual bit within a character string to determine whether it is on or
off.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

BITVAL subroutine
Evaluates a string of bits within character strings and returns its binary value.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

BYTVAL subroutine
Translates a character to its corresponding ASCII code.

CHKFMT subroutine
Checks for incorrect character types by comparing each character in the input string
to the corresponding character in a mask.

CTRAN subroutine
Converts one character in a string to another character.

CTRFLD subroutine
Centers a character string within a field, excluding trailing blanks.

 Types of Functions and Subroutines

Developing Applications 3-5

EDIT function
Extracts characters or adds characters to an alphanumeric string (with mask).

GETTOK subroutine
Divides a character string at a character called the delimiter and returns a substring
called the token.

LCWORD subroutine
Converts the letters in the given string to mixed case. The subroutine converts to
uppercase the first letter of each new word and the first letter after a single or double
quotation mark.
Available on: MVS, VM/CMS, WebFOCUS, and Windows.

LJUST subroutine
Left-justifies a character string within a field. All leading blanks become trailing
blanks.

LOCASE subroutine
Converts uppercase characters to lowercase.

OVRLAY subroutine
Overlays a substring on another character string.

PARAG subroutine
Divides lines of text into smaller lines with delimiters.

POSIT subroutine
Finds the starting position of a substring within a larger string.

RJUST subroutine
Right-justifies a character string within a field. All trailing blanks become leading
blanks.

SOUNDEX subroutine
Searches for a character string phonetically rather than by the way it is spelled.

SUBSTR subroutine
Extracts substrings, based on where they start and end in the parent string.

UPCASE subroutine
Converts lowercase characters to uppercase.

Using Functions and Subroutines

3-6 Information Builders

Data Source Functions and Subroutines
Data source functions and subroutines enable you to search for or retrieve data source
records or values. Unless otherwise noted, functions and subroutines are supported on all
platforms. For more information on these functions and subroutines, see Alphabetical List
of Functions and Subroutines on page 3-36.

FIND function
Verifies if a value exists in an indexed field in another file.
Available on: MVS, VM/CMS, and UNIX.

LAST function
Retrieves the preceding value selected for a field.

LOOKUP function
Retrieves a value from a cross-referenced file.
Available on: MVS, VM/CMS, and UNIX.

Date Functions and Subroutines
The following functions and subroutines enable you to manipulate dates. Unless otherwise
noted, functions and subroutines are supported on all platforms. For more information on
these functions and subroutines, see Alphabetical List of Functions and Subroutines on
page 3-2.

AYM subroutine
Adds or subtracts months from dates that are in year-month format.

AYMD subroutine
Adds or subtracts days from dates that are in year-month-day format.

CHGDAT subroutine
Rearranges the year, month, and day portions of dates, and converts dates between
long and short date formats.

DA subroutines
Convert dates to the corresponding number of days elapsed since December 31,
1899.

DATEADD subroutine
Adds or subtracts date units to or from a date.
Available on: MVS and VM/CMS.

DATECVT function
Converts dates from one date format to another.
Available on: MVS and VM/CMS.

 Types of Functions and Subroutines

Developing Applications 3-7

DATEDIF function
Calculates the difference between two dates.
Available on: MVS and VM/CMS.

DATEMOV function
Moves a date to a significant point on the calendar.
Available on: MVS and VM/CMS.

DMY, MDY, and YMD functions
Calculate the difference between two dates.

DOWK[L] subroutines
Determine the day of the week for dates.

DT subroutines
Convert smart dates (the number of days elapsed since December 31, 1899) to
corresponding dates.

GREGDT subroutine
Converts dates in Julian format to year-month-day format.

HADD
Increments date-time values by a specified number of units.

HCNVRT
Converts date-time values to alphanumeric format for use with operators such as
EDIT, CONTAINS, and LIKE.

HDATE
Extracts the date components from a date-time field and converts them to a date field.

HDIFF
Finds the number of boundaries of a given type crossed going from date 2 to date 1.

HDTTM
Converts a date field to a date-time field. The time portion is set to midnight.

HGETC
Stores the current date and time in a date-time field.

HHMMSS subroutine
Retrieves the current time from the system.

HINPUT
Converts an alphanumeric string to a date-time value.

HMIDNT
Changes the time portion of a date-time field to midnight.

Using Functions and Subroutines

3-8 Information Builders

HNAME
Extracts specified components of a date-time value and converts them to
alphanumeric format.

HPART
Extracts a component of a date-time value in numeric format.

HSETPT
Inserts the numeric value of a specified component in a date-time field.

HTIME
Extracts all of the time components from a date-time field and converts them to a
number of milliseconds or microseconds in numeric format.

JULDAT subroutine
Converts dates from year-month-day format to Julian (year-day format).

TODAY subroutine
Retrieves the current date from the system.

YM subroutine
Calculates the number of months that elapse between two dates. The dates must be in
year-month format.

Reference Component Names and Values for Use With Date-Time
Functions
The following component names and values are supported as arguments to those
date-time functions that require you to specify a component name as an argument:

Component Name Valid Values
year 0001-9999
quarter 1-4
month 1-12
day-of-year 1-366
day or day-of-month 1-31 (The two names for the component are equivalent.)
week 1-53
weekday 1-7 (Sunday-Saturday)
hour 0-23
minute 0-59
second 0-59
millisecond 0-999
microsecond 0-999999

 Types of Functions and Subroutines

Developing Applications 3-9

Note:

• In those arguments that give you a choice of 8 or 10, use 8 for processing values
without microseconds, 10 when the field value includes microseconds.

• The last argument is always a USAGE format that indicates the data type returned by
the function. The type may be A (alpha), I (integer), D (double precision), DATE
(smart date), or H (date-time).

Valid Date Input
Date subroutines accept the following types of dates:

• Years that have four digits and display the century, such as 2000 and 1900, if their
formats are specified as I8YYMD, P8YYMD, D8YYMD, F8YYMD, or A8YYMD.

The following example uses the DECODE function to assign dates with four-digit
years. It then converts these dates to Julian and Gregorian formats.

DEFINE FILE CAR
DATE/I8YYMD=DECODE COUNTRY (ENGLAND 19960101 FRANCE 19991231 ELSE
20010101);
JDATE/I7=JULDAT(DATE,'I7');
GDATE/I8=GREGDT(JDATE,'I8');
END
TABLE FILE CAR
PRINT DATE JDATE GDATE
END

The request produces the following report:

PAGE 1

DATE JDATE GDATE
---- ----- -----

1996/01/01 1996001 19960101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
1999/12/31 1999365 19991231

Using Functions and Subroutines

3-10 Information Builders

• Two-digit years with a field length of 6 (such as I6YMD). In this case, you can use
the SET DEFCENT and SET YRTHRESH commands to assign the century values.

The following example shows how to return an eight-digit date from the AYMD
subroutine when the input argument has a six-digit date format. Since DEFCENT is
19 and YRTHRESH is 50, year values from 50 through 99 are interpreted as 1950
through 1999, and year values from 00 through 49 are interpreted as 2000 through
2049:

SET DEFCENT=19, YRTHRESH=50
TABLE FILE DATE
PRINT D2_I6YMD AND COMPUTE
NEWDATE/I8YYMD=AYMD(D2_I6YMD,1,'I8');
END

The DEFCENT and YRTHRESH values create a 100-year window as follows:

0 < YRTHRESH=50 ≥ 99

� �

Century=DEFCENT+1 (20) Century=DEFCENT (19)

The request produces the following report:

PAGE 1

D2_I6YMD NEWDATE
-------- ----------
97/09/16 1997/09/17
00/02/29 2000/03/01
01/02/28 2001/03/01
00/02/28 2000/02/29

Note: If you do not require dates for the year 2000 and beyond, you can deactivate
this feature by issuing the following command:

SET DATEFNS=OFF

Decoding Functions and Subroutines
Decoding functions and subroutines enable you to assign values. Unless otherwise noted,
functions and subroutines are supported on all platforms. For more information on these
functions and subroutines, see Alphabetical List of Functions and Subroutines on page
3-36.

DECODE function
Assigns values based on the value of an input field.

 Types of Functions and Subroutines

Developing Applications 3-11

Format Conversion Functions and Subroutines
The following functions and subroutines convert fields from one format to another.
Unless otherwise noted, functions and subroutines are supported on all platforms. For
more information on these functions and subroutines, see Alphabetical List of Functions
and Subroutines on page 3-36.

ASIS function
In Dialogue Manager, distinguishes between a blank and a zero.
Available on: MVS, VM/CMS, and WebFOCUS.

ATODBL subroutine
Converts a number in alphanumeric format to double-precision format.

CHKPCK subroutine
Verifies that the value of a packed field is indeed in packed format.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

EDIT function
Converts an alphanumeric field to numeric or a numeric field to alphanumeric.

FTOA subroutine
Converts a number in a numeric format to alphanumeric format.

ITONUM subroutine
Converts large binary integers in non-FOCUS files to double-precision format.
Available on: MVS, VM/CMS, and WebFOCUS.

ITOPACK subroutine
Converts large binary integers in non-FOCUS files to packed-decimal format.
Available on: MVS, VM/CMS, and WebFOCUS.

ITOZ subroutine
Converts numbers from numeric format to zoned format for extract files.
Available on: MVS, VM/CMS, OpenVMS, and WebFOCUS.

PCKOUT subroutine
Writes packed numbers of varying lengths (between one and 16 bytes) to extract
files.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

UFMT subroutine
Converts characters in alphanumeric field values to hexadecimal (HEX)
representation.
Available on: MVS, VM/CMS, OpenVMS, and WebFOCUS.

Using Functions and Subroutines

3-12 Information Builders

Numeric Functions and Subroutines
The following functions and subroutines enable you to perform numeric calculations on
numeric constants or fields. Unless otherwise noted, functions and subroutines are
supported on all platforms. For more information on these functions and subroutines, see
Alphabetical List of Functions and Subroutines on page 3-16.

ABS function
Returns the absolute value of its argument.

ASIS function
In Dialogue Manager, distinguishes between a blank and a zero.
Available on: MVS, VM/CMS, and WebFOCUS.

BAR subroutine
Produces horizontal bar charts in reports.
Available on: MVS and VM/CMS.

EXP subroutine
Raises the number “e” to a power you specify.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

EXPN function
Evaluates an argument expressed in scientific notation.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

IMOD, DMOD, and FMOD
Calculate the remainder from a division and returns it in integer format.

INT function
Returns the integer part of its argument.

LOG function
Returns the logarithm of its argument.

MAX and MIN functions
Returns the maximum or minimum value from its list of arguments.

PRDNOR, PRDUNI, RDNORM, and RDUNIF subroutines
Generate random numbers.

SQRT function
Returns the square root of its argument.

 Types of Functions and Subroutines

Developing Applications 3-13

System Functions and Subroutines
The following functions and subroutines enable you to make calls to the operating system
to obtain information about the operating environment or to use a system service. Unless
otherwise noted, functions and subroutines are supported on all platforms. For more
information on these functions and subroutines, see Alphabetical List of Functions and
Subroutines on page 3-36.

CALLDOS subroutine
Calls a DOS program, a DOS batch program, or a Windows application.
Available on: Windows.

FEXERR subroutine
Retrieves error messages.
Available on: MVS and VM/CMS.

FINDMEM subroutine
Determines if a specific member of a partitioned data set exists.
Available on: MVS.

GETPDS subroutine
Determines if a specific member of a partitioned data set exists, and if so, returns the
data set name.
Available on: MVS.

GETUSER subroutine
Retrieves the user ID from the system.
Available on: MVS, VM/CMS, UNIX, OpenVMS, and WebFOCUS.

HHMMSS subroutine
Retrieves the current time from the system.

MVSDYNAM subroutine
Passes a DYNAM command to the command processor.
Available on: MVS.

TODAY subroutine
Retrieves the current date from the system.

Using Functions and Subroutines

3-14 Information Builders

Date Function and Subroutine Settings
The following settings affect the behavior of the date functions and subroutines:

• DATEFNS determines whether you use the new or old version of a date subroutine.

• DEFCENT and YRTHRESH determine what century is used for dates that do not
have a century specified. For more information on these two settings, see Chapter 7,
Working With Cross-Century Dates.

• BUSDAYS enables you to define which days of the week are considered business
days and which are not. Then, when you use DATEADD or DATEDIF with the
business day unit, or use DATEMOV, these functions ignore dates that are not
business days.

• HDAY determines a file with a list of holidays. Then, when you use DATEADD or
DATEDIF with the business day unit, or use DATEMOV, these functions ignore
dates that are currently defined as holidays.

• LEADZERO enables you to display leading zeros when a date subroutine in
Dialogue Manager returns a date with leading zeros.

Using Legacy Versions of Date Subroutines
All of the date subroutines have been rewritten to support Year 2000 dates. In some cases,
however, you may want to use the old version of the subroutine. You can “turn off” the
new versions with the DATEFNS setting.

See the description of each subroutine affected by this setting for the result of turning off
DATEFNS.

Note: The old versions of these subroutines may not work correctly with dates after
December 31, 1999.

Syntax How to Activate Legacy Date Subroutines
SET DATEFNS = {ON|OFF}

where:

ON

Activates the subroutines that support dates for the year 2000 and beyond. This value
is the default.

OFF

Deactivates the subroutines that support dates for the year 2000 and beyond; this is
useful if you require the older version that does not have Year 2000 capabilities.

 Date Function and Subroutine Settings

Developing Applications 3-15

Setting Business Day Units
You can direct which days are considered business days and which days are not. Business
days are traditionally Monday through Friday, but not every business works the same
schedule. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday and Saturday, you can tailor business day units to reflect that situation.

Then, when you use DATEADD or DATEDIF with the business day unit, or use
DATEMOV, these functions ignore dates that are not business days.

Syntax How to Set Business Days
SET BUSDAYS = smtwtfs

where:

smtwtfs

Is the seven-character list of days that represents your business week. The list has a
position for each day from Sunday to Saturday.

• If you want a day of the week to be a business day, enter the first letter of that
day in that day’s position.

• If you want a day of the week not to be a business day, enter an underscore (_) in
that day’s position.

If any position within SMTWTFS is either not in its correct position or is not an
underscore, you will see an error message.

Example Setting Business Days to Sunday, Tuesday, Wednesday, Friday,
and Saturday
Using the example of a company that does business on Sunday, Tuesday, Wednesday,
Friday, and Saturday, business days are represented as:

SET BUSDAYS = S_TW_FS

Syntax How to View the Current Setting of Business Days
? SET [ALL]

Using Functions and Subroutines

3-16 Information Builders

Setting Holidays
You can individually tailor holiday schedules that affect the calculation of business days
by skipping those days when calculating offsets. Then, when you use DATEADD or
DATEDIF with the business day unit, or use DATEMOV, these functions ignore dates
that are currently defined as holidays.

For example, in a given week, if Friday is designated as a holiday, the next business day
(BD) after Thursday is the following Monday.

The list of holidays is defined by a file called HDAYxxxx.

• In MVS this file should be a member in ERRORs called HDAYxxxx.

• In CMS the list should be HDAYxxxx ERRORS.

Each year for which data exists must be represented in the holiday file. Calling a date
function with a date value outside the range of the holidays file returns a zero on BD
requests.

Procedure How to Define Holidays Using a Holiday File
1. Open the procedure HDAYMAKE and follow the directions to create the holiday

file. (Information Builders supplies a sample Master File named HDAYDB.)

2. Execute HDAYMAKE.

3. Execute the following SET command

SET HDAY = xxxx

where:

xxxx

Is the part of the name of the holiday file after HDAY.

A sample Master File (HDAYDB) and procedure (HDAYMAKE) that creates an errors
member from a data source used to maintain a list of holidays is available on the FOCUS
disk. Create a flat file of holidays as described in the procedure and execute the procedure
to create the holiday file. The SET HDAY command controls the value of xxxx so that a
single installation can support different holiday schedules.

Example Using the HDAYSTKM Holiday File
For example,

SET HDAY = STKM

reads in the holidays from member HDAYSTKM.

 Date Function and Subroutine Settings

Developing Applications 3-17

Syntax How to View the Current Setting of HDAY
? SET [ALL]

Enabling Leading Zeros For Date Subroutines in Dialogue Manager
If you use a date subroutine in Dialogue Manager that returns a numeric integer format,
Dialogue Manager will truncate any leading zeros. This means, for example, that if your
subroutine returns the value 000101, indicating January 1, 2000, Dialogue Manager will
truncate the leading zeros, and use 101.

To avoid this problem, you can use the LEADZERO setting.

Syntax How to Set the Display of Leading Zeros
SET LEADZERO = {ON|OFF}

where:

ON

Allows the display of leading zeros if they are present.

OFF

Truncates leading zeros if they are present. This is the default.

Example Displaying Leading Zeros
The following request calls the AYM subroutine (which adds months to dates in YM
format) to add one month to the input date of December 1999.

-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

This yields:

1

Adding

SET LEADZERO = ON

before the above example yields

0001

correctly indicating January 2000.

Note: LEADZERO only supports expressions that make a direct call to a subroutine.
Expressions that have nesting or other mathematical functions truncate leading zeros. For
example,

-SET &OUT = AYM(&IN, 1, 'I4'/100);

Using Functions and Subroutines

3-18 Information Builders

Subroutine Command (Call) Syntax
This topic describes the general syntax for subroutine calls, types of arguments, and rules
for using arguments.

Subroutines return a single value or character string which can be stored in a field,
assigned to a Dialogue Manager variable, used in calculations and other processing, or
used in selection or validation tests. Subroutine calls in FOCUS commands have the
general syntax

subroutine (input1, input2, input3, ... {outfield|'format'}

where:

subroutine

Is the name of the subroutine, up to eight characters long.

input1...

Are the input subroutine arguments (data values and fields that the subroutine needs
to do its processing).

{outfield|'format'}

Is the output argument. It is the name of the field that contains the output or the
format of the output value, enclosed in single quotation marks, depending on the
application. For Maintain, specify the field name. Maintain does not support the
output format as an argument. Dialogue Manager requires the output format.

The basic syntax to store the output in a field looks like:

field = subroutine (input1, input2, ... outfield);

Subroutine syntax varies for different FOCUS commands and phrases. These variations
are discussed in subsequent sections.

 Subroutine Command (Call) Syntax

Developing Applications 3-19

Types of Arguments in Subroutine Calls
This topic lists the acceptable arguments for each subroutine distributed in the subroutine
library. Arguments are the values that you specify within the parentheses; this is also
referred to as a “call list.” Arguments can take many different forms. They can be:

• Numeric constants, such as 6 or 15.

• Alphanumeric literals, such as 'STEVENS' or 'NEW YORK NY'. Literals are
enclosed in single quotation marks.

• Numbers stored in alphanumeric format.

• Field names, such as FIRST_NAME or HIRE_DATE. Fields can be data source
fields or temporary fields. The field names can be 66-character or qualified field
names, unique truncations, or aliases.

• Expressions, such as numeric, date, and alphanumeric. Expressions can use the
arithmetic operators and the concatenation sign (|). For example, an expression may
consist of CURR_SAL * 1.03 or FN | | LN.

For example, this calculation uses subroutine output:

field= sub1(input1, input2,...'format') + sub2(input1,
input2,...'format');

The values returned by two subroutines are added and the result is stored in a field.
The 'format' argument in single quotation marks is the format of the value returned by
each subroutine. The format argument is not supported in Maintain.

• Dialogue Manager variables, such as &CODE or &DDNAME.

• Date constants, such as '022894'.

• Formats of the output values, enclosed in single quotation marks.

• As input arguments for RECAP commands only, row and column references (R
notation, E notation, or labels), or names of other RECAP calculations.

Using Functions and Subroutines

3-20 Information Builders

Rules for Arguments in Subroutine Calls
The following rules apply for arguments:

• Depending on the subroutine, arguments can be either alphanumeric or numeric:

• Alphanumeric arguments (such as literals and alphanumeric fields) are stored
internally as one character per byte. Numbers can also be stored in alphanumeric
format. Literals are enclosed in single quotation marks, except when specified in
operating system -RUN commands (-MVS RUN, for example).

Note: If an argument is listed as having a specific alphanumeric format such as
A8, it is a required format and you must specify it.

• Numeric arguments (such as numeric constants and numeric fields) are stored
internally as binary or packed numbers. This includes arguments in integer (I),
floating-point (F), double-precision (D), and packed (P) formats.

Note: If an argument is listed as having a numeric format, you may specify any
of the four numeric formats (I, F, D, and P). If an argument is listed as having a
specific numeric format such as double-precision, it is a required format and you
must specify it.

If you supply the wrong type of data for an argument, you will either cause an error
or the subroutine will not return correct data.

• Arguments are passed to subroutines by reference, meaning that the memory location
of the argument is passed. No indication of length of the argument is implied. The
length, when needed (usually for alphanumeric strings) must be passed as another
argument.

When lengths of arguments are required, you must be careful to ensure that all
lengths are correct. Some subroutines require a length for the input arguments and
output arguments (for example, SUBSTR); others use one length for both input and
output arguments (for example, UPCASE). In general, when one length is specified,
it is used for both input and output fields.

Providing an incorrect length can cause incorrect results:

• If the specified length is shorter than the actual length, an initial subset of a
string is used. For example, passing an argument of 'ABCDEF' and specifying a
length of 3, is treated as a string of 'ABC'.

• If the specified length is too long, whatever is in memory beyond the length is
included. For example, passing an argument of 'ABC' and specifying a length of
6, is treated as a string beginning with 'ABC' plus whatever three characters are
in the next 3 positions of memory. Depending on memory utilization, the extra
three characters can be anything.

 Subroutine Command (Call) Syntax

Developing Applications 3-21

• Arguments must be specified in the exact order as shown for each subroutine; the
order varies, according to each subroutine.

• The number of arguments varies, according to each subroutine. Subroutines may
require up to six arguments.

Customized subroutines may require any number of arguments. The maximum
number of arguments per subroutine call is 28, including the output argument. If the
subroutine requires more than 28 arguments, you must use two or more call
statements to pass the arguments to the subroutine.

• Subroutine calls can serve as arguments in other subroutine calls or in FOCUS
functions.

• You cannot specify a Dialogue Manager amper variable for the output argument
without coding &VAR.EVAL. You may specify an amper variable as an input
argument.

• Dialogue Manager converts arguments to double precision when it deems
appropriate. The determination is made solely based on the value of the argument;
not on what the subroutine expects for its pre-determined formats.

If the argument is numeric (&arg.TYPE is 'N'), the value is converted to double
precision. If the subroutine expects an alphanumeric string and the input is a numeric
string, incorrect results will occur because of the conversion to double precision. To
resolve this problem, append a non-numeric character to the end of the string, but do
not count this extra character in the length of the argument.

For example, to prevent the conversion of a delimiter blank character (' ') to a double
precision zero in the GETTOK subroutine, include a non-numeric character after the
blank (for example, ' @'). The GETTOK uses only the first character (the blank) as a
delimiter and the extra character (@) prevents conversion to double precision.

Using Subroutine Calls in FOCUS Functions
Subroutines can serve as arguments in the FOCUS functions described in this chapter. For
example, the MAX function returns the largest argument in a list. The statement

field = MAX (5000, subroutine (arguments, 'format'));

stores either the value 5000 or the value returned by the subroutine, whichever is larger,
in a field.

Using Functions and Subroutines

3-22 Information Builders

Using Subroutine Calls in DEFINE, COMPUTE, and VALIDATE
Commands

Subroutines may be called from the DEFINE command or Master File attribute,
COMPUTE command, and VALIDATE command. The syntax is:

DEFINE [FILE filename]
tempfield[/format] = subroutine (input1, input2, input3, ...
{outfield|'format2'});

COMPUTE
tempfield[/format] = subroutine (input1, input2, input3, ...
{outfield|'format2'});

VALIDATE
tempfield[/format] = subroutine (input1, input2, input3, ...
{outfield|'format2'});

The resulting temporary field is the same field that is specified for the outfield argument.

The temporary field’s format is required if it is the first time the field is defined;
afterwards, it is optional.

If the subroutine returns output as the format of the output value (format2), the format of
the temporary field must match the 'format2' argument. For example:

CENTER_NAME/A15=CTRFLD (LAST_NAME, 15, 'A15');

For a calculation or a compound IF statement, you must specify the format for the output
value. There are two methods to do this:

• Pre-define the format of the output field with a separate statement. For example:

COMPUTE
AMOUNT/D8.2 =;
AMOUNT_FLAG/A5 = IF subroutine(input1,input2,AMOUNT) GE 500

THEN 'LARGE' ELSE 'SMALL';

The AMOUNT field is pre-defined with the format D8.2. The subroutine returns a
value to the output field AMOUNT (last argument). The IF statement tests if
AMOUNT is greater or less than 500 and stores the result in the temporary flag
AMOUNT_FLAG.

• Specify the last argument in the argument list as the format. For example:

AMOUNT_FLAG/A5 = IF subroutine(input1,input2,'D8.2') GE 500
THEN 'LARGE' ELSE 'SMALL';

The statement tests the returned value directly. This is possible because the
subroutine call defines the format of the return value (D8.2).

 Subroutine Command (Call) Syntax

Developing Applications 3-23

Using Subroutine Calls in WHERE and IF Tests
Subroutines may be specified in WHERE and IF selection tests. The output value of the
subroutine is compared against the test value.

For example, this request prints employee names and current salaries for last names that
begin with the letters MC. The SUBSTR subroutine extracts the first two characters as a
substring.

TABLE FILE EMPLOYEE
PRINT FIRST_NAME LAST_NAME CURR_SAL
WHERE SUBSTR(15,LAST_NAME,1,2,2,'A15') IS 'MC';
END

The report returns as:

FIRST_NAME LAST_NAME CURR_SAL
---------- --------- --------
JOHN MCCOY $18,480.00
ROGER MCKNIGHT $16,100.00

Using Subroutine Calls in -SET Control Commands
In Dialogue Manager, -SET commands are used to create amper variables. To assign the
returned value of a subroutine to an amper variable, use the syntax:

-SET &variable = subroutine (input1,&variable2[.LENGTH],...,'format');

The 'format' argument is the format of the output value, enclosed in single quotation
marks. You cannot specify a Dialogue Manager amper variable for the output argument
('format'); however, you may specify an amper variable as an input argument.

If a subroutine requires the length of a character string as an input argument, you may
prompt for the character string, then use the suffix .LENGTH to test the length.

For example, this Dialogue Manager procedure prompts for a sentence (&SN), then uses
the GETTOK subroutine to extract the third word (token) from the sentence. (See
GETTOK: Getting a Token From a String on page 3-61.) The suffix .LENGTH passes the
number of characters in the sentence to the subroutine. The extra character (%) is
included to prevent the conversion of a delimiter blank character to a double precision
zero (see Rules for Arguments in Subroutine Calls on page 3-20):

-PROMPT &SN.ENTER A SENTENCE.
-SET &WORD3 = GETTOK (&SN, &SN.LENGTH, 3, ' %', 30, 'A30');

Dialogue Manager variables only contain alphanumeric data. If a subroutine returns a
numeric value and you set a Dialogue Manager variable to this value, FOCUS truncates
and converts it to a character string before storing it in the variable based on the format.

Using Functions and Subroutines

3-24 Information Builders

Another example, the AYMD subroutine, adds 14 days to dates:

-SET &OUTDATE = AYMD (&INDATE, 14, 'I6');

For more information, see AYMD: Adding or Subtracting Days to or From Dates on page
3-45.

The &INDATE variable for the input date is previously set in the procedure. The date is
in the six-digit year-month-day format.

The format of the output date is a six-digit integer. Although the format ('I6') indicates
that the output is an integer, it is stored in the &OUTDATE variable as a character string.
For this reason, if you display the value of &OUTDATE, you will not see slashes
separating the year, month, and day.

Using Subroutine Calls in -IF and IF Branching Commands
You can use subroutines in Dialogue Manager -IF and IF branching commands. The
syntax is:

[-]IF subroutine (args) relation expression GOTO label1
[-]ELSE GOTO label2;

Specify input arguments and the format of the output (‘format’).

You may specify any valid relation and logical expression. Depending on whether the
condition is true or false, the procedure branches to the specified Dialogue Manager label
or MODIFY case.

For -IF statements:

• You cannot specify a Dialogue Manager amper variable for the output argument
(‘format’) unless you use the &VAR.EVAL syntax; however, you may specify an
amper variable as an input argument.

• If a subroutine requires the length of a character string as an input argument, you can
prompt for the character string, then use the suffix .LENGTH to test for the length
(see Using Subroutine Calls in -SET Control Commands on page 3-23).

 Subroutine Command (Call) Syntax

Developing Applications 3-25

This annotated example illustrates an -IF statement that executes one of two requests
depending on when a planned project is expected to be completed.

-LOOP
1. -PROMPT &INDATE.ENTER START DATE IN YEAR-MONTH-DAY FORMAT OR ZERO TO EXIT:.
2. -IF &INDATE EQ 0 GOTO EXIT;
3. -SET &WEEKDAY = DOWK(&INDATE,'A4');
4. -TYPE START DATE IS &WEEKDAY &INDATE
5. -PROMPT &DAYS.ENTER ESTIMATED PROJECT LENGTH IN DAYS:.
6. -IF AYMD(&INDATE,&DAYS,'I6YMD') LT 960101 GOTO EARLY;

-TYPE LONG PROJECT
-*EX LONGPROJ

7. -RUN
-GOTO LOOP
-EARLY
-TYPE SHORT PROJECT
-*EX SHRTPROJ

8. -RUN
-GOTO LOOP
-EXIT

This procedure processes as follows:

1. The procedure prompts you for a start date of a project in YYMMDD format.

2. If you enter a 0, the procedure terminates execution.

3. The DOWK subroutine obtains the day of week for the start date.

4. The -TYPE statement displays the day of week and date for the start of the project.

5. The procedure prompts you for the estimated length of the project in days.

6. The AYMD subroutine calculates the date that the project will finish. If this date is
before January 1, 1996, the -IF statement branches to the label EARLY.

7. If the project will finish on or after January 1, 1996, the procedure types the words
“LONG PROJECT” and returns to the top of the procedure.

8. If the procedure branches to the label -EARLY, it types the words “SHORT
PROJECT” and returns to the top of the procedure.

Using Functions and Subroutines

3-26 Information Builders

Operating System -RUN Commands
You can call subroutines with all alphanumeric arguments from Dialogue Manager -CMS
RUN, -TSO RUN, and -MVS RUN commands. These subroutines perform specific tasks
but typically do not return any values (for instance, a private subroutine that clears the
screen of a non-3270 terminal).

The syntax of the RUN command is:

-CMS RUN subroutine, input1, input2, ... [,&output]
-TSO RUN subroutine, input1, input2, ... [,&output]
-MVS RUN subroutine, input1, input2, ... [,&output]

Separate the subroutine name and each argument with a comma. For alphanumeric literals
used as arguments, do not enclose them in single quotation marks.

Specify an output argument as a Dialogue Manager variable if the subroutine returns a
value; otherwise, omit it. If you specify an output variable, you must pre-define its length
using a -SET statement. For example, if the subroutine requires an output argument that is
eight bytes long, you need to define the variable with eight characters enclosed in single
quotation marks before the subroutine call:

-SET &output = '12345678';

For subroutines that require arguments in numeric format, you must first convert the
arguments (whether they are numeric constants or stored in variables) into
double-precision numbers using the ATODBL subroutine. (See ATODBL: Converting
Alphanumeric Strings to a Double-Precision Number on page 3-39 for more details). All
numeric arguments in Dialogue Manager are stored in alphanumeric format and require
conversion before being passed to subroutines. Unlike the -SET statement, operating
system -RUN commands do not automatically convert them. You need to use the
ATODBL subroutine, because the EDIT function cannot store double-precision numbers
in Dialogue Manager variables.

If a subroutine requires the length of a character string as an input argument, you may
prompt for the character string, then use the suffix .LENGTH to test the length. (See
Using Subroutine Calls in -SET Control Commands on page 3-23 for an example.)

The following is an example of a subroutine that does not return any values. Suppose you
write a subroutine called BLANKOUT that clears part of the screen on a Tektronix
terminal (a non-3270 terminal). The subroutine reads one argument that indicates which
part of the screen to blank out. To clear the top half of the screen, you include this
statement in a procedure

-CMS RUN BLANKOUT, H1

or:

-TSO RUN BLANKOUT, H1

 Subroutine Command (Call) Syntax

Developing Applications 3-27

Using Subroutine Calls in WHEN Criteria
Subroutines may be called from the WHEN criteria as part of a Boolean expression. The
syntax is

WHEN (value relation value) [{AND|OR} (value relation value)];

or:

WHEN NOT (logical expression)

Example Using a Subroutine Call in a WHEN Phrase
For example, this report request checks the values in the LAST_NAME field against a
mask. It prints a subfoot message when the condition, a match, occurs.

Note: In this example, in order to produce a true condition, specify WHEN NOT, because
the CHKFMT subroutine returns a 0 value when a match occurs.

TABLE FILE EMPLOYEE
PRINT DEPARTMENT BY LAST_NAME
ON LAST_NAME SUBFOOT
"*** LAST NAME <LAST_NAME DOES MATCH MASK"
WHEN NOT CHKFMT (15, LAST_NAME,'SMITH ','I6');
END

The report returns as:

LAST_NAME DEPARTMENT
--------- ----------
BANNING PRODUCTION
BLACKWOOD MIS
CROSS MIS
GREENSPAN MIS
IRVING PRODUCTION
JONES MIS
MCCOY MIS
MCKNIGHT PRODUCTION
ROMANS PRODUCTION
SMITH MIS

PRODUCTION
*** LAST NAME SMITH DOES MATCH MASK
STEVENS PRODUCTION

Using Functions and Subroutines

3-28 Information Builders

Using Subroutine Calls in RECAP Commands
Subroutines may be called from Financial Modeling Language (FML) RECAP
commands. The syntax is:

RECAP name[(n)][/format] = subroutine (input1,...,'format2');

Instead of a temporary field, specify the name of the calculation. You also may specify
the number (n) of the column where you want the value displayed. If you omit the column
number, the value appears in all columns.

The format of the calculation is optional; the default is D12.2. If the calculation consists
of only the subroutine, make sure that the format of the subroutine output value
('format2') agrees with the calculation’s format. If the calculation format is larger than the
column width, the value displays in that column as asterisks.

The input arguments for a RECAP command may include numeric constants,
alphanumeric literals, row and column references (R notation, E notation, or labels) or
names of other RECAP calculations.

Example Using a Subroutine in a RECAP Command
Suppose you have a subroutine named INVEST in your private collection of subroutines
(INVEST is not available in the supplied library) and it calculates the amount on the basis
of cash on hand, total assets, and the current date. In order to create a report that prints an
account of company assets and calculates how much money the company has available to
invest, you must create a report request that invokes the INVEST subroutine.

The current date is obtained from the &YMD system variable. The NOPRINT option
beside it prevents the date from appearing in the report; the date is solely used as input for
the next RECAP statement.

 Subroutine Command (Call) Syntax

Developing Applications 3-29

The request is:

TABLE FILE LEDGER
HEADING CENTER
"ASSETS AND MONEY AVAILABLE FOR INVESTMENT </2"
SUM AMOUNT ACROSS HIGHEST YEAR
IF YEAR EQ 1985 OR 1986
FOR ACCOUNT
1010 AS 'CASH' LABEL CASH OVER
1020 AS 'ACCOUNTS RECEIVABLE' LABEL ACR OVER
1030 AS 'INTEREST RECEIVABLE' LABEL ACI OVER
1100 AS 'FUEL INVENTORY' LABEL FUEL OVER
1200 AS 'MATERIALS AND SUPPLIES' LABEL MAT OVER
BAR OVER
RECAP TOTCAS = CASH+ACR+ACI+FUEL+MAT; AS 'TOTAL ASSETS' OVER
BAR OVER
RECAP THISDATE/A8 = &YMD; NOPRINT OVER
RECAP INVAIL = INVEST(CASH,TOTCAS,THISDATE,'D12.2'); AS

'AVAIL. FOR INVESTMENT' OVER
BAR AS '='
END

The request produces the following report:

PAGE 1

ASSETS AND MONEY AVAILABLE FOR INVESTMENT

YEAR
1986 1985

--
CASH 2,100 1,684
ACCOUNTS RECEIVABLE 875 619
INTEREST RECEIVABLE 4,026 3,360
FUEL INVENTORY 6,250 5,295
MATERIALS AND SUPPLIES 9,076 7,754

------ ------
TOTAL ASSETS 22,327 18,712

------ ------
AVAIL. FOR INVESTMENT 3,481 2,994

====== ======

Using Functions and Subroutines

3-30 Information Builders

Storing and Accessing External Subroutines
Accessing external subroutines varies by platform. The following topics describe how to
access subroutines on specific platforms.

Note: If you have a private collection of subroutines (you created your own or use
customized subroutines), do not store them in the subroutine library. Store them
separately to avoid overwriting them whenever your site installs a new release.

Storing and Accessing Subroutines on MVS
In MVS, Information Builders-supplied subroutines are stored as part of
FUSELIB.LOAD. In addition to this load library, your site may have private collections
of subroutines stored in separate load libraries. Load libraries are partitioned data sets
containing link-edited modules.

MVS Batch Allocation
To use subroutines stored as load libraries, allocate the load libraries to the ddname
USERLIB in the FOCUS JCL or CLIST. For example, to allocate subroutines stored in
BIGLIB.LOAD in JCL:

//USERLIB DD DISP=SHR,DSN=BIGLIB.LOAD

The FOCUS search order is USERLIB, STEPLIB, JOBLIB, link pack area, and linklist.

MVS/TSO Allocation
To use these subroutines in MVS/TSO, allocate the load libraries to ddname USERLIB.
Issue the ALLOCATE command: 1) in MVS/TSO before going into your FOCUS
session; or 2) from FOCUS before executing your request. You may also include the
command in your PROFILE FOCEXEC.

The syntax is

{MVS|TSO} ALLOCATE FILE(USERLIB) DSN(lib1 lib2 lib3 ...) SHR

where:

MVS or TSO

Specify the prefix if you issue the ALLOCATE command from FOCUS or include it
in your PROFILE FOCEXEC.

lib1...

Are the names of the load libraries. (This concatenates the data sets to ddname
USERLIB.)

 Storing and Accessing External Subroutines

Developing Applications 3-31

Note:

• If you have private collections of subroutines, you need to allocate those load
libraries in addition to the FUSELIB load library.

• If you are in a FOCUS session, you may also use the DYNAM ALLOCATE
command to specify the allocation.

For example, to allocate the FUSELIB.LOAD load library in a FOCUS session, use either
the TSO ALLOCATE or DYNAM ALLOCATE command

TSO ALLOC F(USERLIB) DA('prefix.FUSELIB.LOAD') SHR

or

DYNAM ALLOC FILE USERLIB DA prefix.FUSELIB.LOAD SHR

where prefix is your high-level qualifier.

As another example, suppose a report request calls two subroutines: BENEFIT stored in
library SUBLIB.LOAD, and EXCHANGE stored in library BIGLIB.LOAD. FOCUS can
locate user-written subroutines in ddname USERLIB; therefore, the BIGLIB library is
concatenated to USERLIB. Before executing the report request, enter:

DYNAM ALLOC FILE USERLIB DA SUBLIB.LOAD SHR
DYNAM ALLOC FILE BIGLIB DA BIGLIB.LOAD SHR
DYNAM CONCAT FILE USERLIB BIGLIB

FOCUS searches the load libraries in the order that you specified them in the
ALLOCATE command.

Or, for batch mode, concatenate the load library to the ddname STEPLIB or USERLIB in
your JCL:

//FOCUS EXEC PGM=FOCUS
//STEPLIB DD DSN=FOCUS.FOCLIB.LOAD,DISP=SHR
// DD DSN=FOCUS.FUSELIB.LOAD,DISP=SHR

.

.

.

The FOCUS search order is: USERLIB, STEPLIB, JOBLIB, and link pack area and
linklist.

Using Functions and Subroutines

3-32 Information Builders

Dynamic Language Environment Support
IBM’s Dynamic Language Environment (LE) enables you to use a common run-time
environment for all LE-supported high-level languages (HLLs).

From a non-LE-conforming driver (such as FOCUS), you can use LE preinitialization
facilities to create and initialize a common run-time environment, execute applications
written in an LE-conforming HLL multiple times within the preinitialized environment,
and terminate the preinitialized environment. FOCUS utilizes the CEEPIPI preinitialized
interface to perform these tasks.

In the preinitialized environment, FOCUS provides support for executing subroutines
multiple times.

Language Environment preinitialization is commonly used to enhance performance for
repeated invocations of an application or for a complex application with many repetitive
requests where fast response is required. For example, if FOCUS invokes an HLL
subroutine a number of times, the creation and termination of that HLL environment
multiple times is needlessly inefficient. A more efficient method is to create the HLL
environment only once for use by all invocations of the routine.

 Storing and Accessing External Subroutines

Developing Applications 3-33

The IBMLE parameter controls preinitialization for calls to subroutines from FOCUS.
The following table summarizes FOCUS preinitialization support for user-written
subroutines:

HLL Preinitialization
Supported?

Preinitialization Interface IBMLE
Setting

C Yes C assembler interface. Calls to the
subroutine use a special extended
parameter list.

ON

C++ No OFF

COBOL Yes The COBOL run-time option
RTEREUS(ON) is the recommended
preinitialization interface for COBOL
subroutines. This interface requires
IBMLE=OFF.

FOCUS can also accommodate LE
compliant COBOL subroutines with
IBMLE=ON if required by site
characteristics or restrictions.

RTEREUS preinitialization and
CEEPIPI preinitialization are mutually
exclusive for FOCUS subroutines and
cannot be used simultaneously. If used
simultaneously, unpredictable results
will occur.

OFF

ON

FORTRAN No OFF

PL/I Yes PL/I for MVS & VM-defined
preinitialization interfaces with calls to
CEESTART or PLISTART with a
special extended parameter list.

Preinitialization services do not support
PL/I multitasking applications.

ON

For more information regarding the IBM Language Environment see IBM’s OS/390
V2R10.0 Language Environment for OS/390 & VM Programming Guide, Document
Number: SC28-1939-09.

Using Functions and Subroutines

3-34 Information Builders

Storing and Accessing Subroutines on VM/CMS
In CMS, Information Builders-supplied subroutines are stored as:

• The load library FUSELIB LOADLIB.

• The text library FUSELIB TXTLIB. A text library is a file that is composed of
multiple text files called “members.” Subroutines can be stored as members of one or
more text libraries. The file type for text libraries is TXTLIB.

• Text files. The file name of a text file must match the subroutine name. The file type
is TEXT. For example, the EXCHANGE subroutine stored as a text file has the file
identifier (ID):

EXCHANGE TEXT

Note:

• In addition to the FUSELIB load library, your site may have private collections of
subroutines stored in separate libraries or text files.

• If you create your own subroutines in text files or text libraries, the subroutine must
be 31-bit addressable and created as part of a LOADLIB.

If your request calls subroutines stored as text files, FOCUS can find the subroutines
automatically. Remember, though, that you must have access to the disks where the
subroutines reside.

FOCUS searches for subroutines in the standard CMS search sequence:

1. Load libraries, in the order that you specified them in the GLOBAL LOADLIB
command.

2. Text files, searching attached disks in alphabetical order.

3. Text libraries, in the order that you specified them in the GLOBAL TXTLIB
command.

For subroutines stored as text files in CMS, the access method is automatic. When your
request calls the subroutine, FOCUS searches attached disks in alphabetical order,
provided that you have proper authorization.

For subroutines stored as load or text libraries in CMS, you need to issue the CMS
GLOBAL command. The GLOBAL command enables FOCUS to search specified
libraries for the subroutines.

Issue the command in CMS before starting the server. You may also include the
command in your server’s global profile.

Note: Subroutines written in languages such as COBOL and PL/I, or subroutines that call
system subroutines, require that the GLOBAL command also specify a system library.
FUSELIB subroutines do not require any other system libraries.

 Storing and Accessing External Subroutines

Developing Applications 3-35

Syntax How to Enable FOCUS to Search Specified Libraries for
Subroutines
[CMS] GLOBAL {LOADLIB|TXTLIB} library1 library2 library3 ...

where:

CMS

Specify this prefix if you issue the GLOBAL command from a profile or stored
procedure, or include it in your server’s global profile.

library1...

Are the file names of the load and text libraries containing the subroutines. The
maximum number of libraries is 63.

Note: If you have private collections of subroutines, you need to specify those libraries in
the GLOBAL command in addition to the FUSELIB load library.

Syntax How to List Libraries Specified by the GLOBAL Command
To list load or text libraries specified by the GLOBAL command, issue:

CMS QUERY {LOADLIB|TXTLIB}

Example Using the GLOBAL COMMAND to Access Subroutines
For example, your server’s global profile may contain the GLOBAL command:

CMS GLOBAL LOADLIB FUSELIB

For another example, suppose a report request calls two subroutines: BENEFIT, stored in
text library SUBLIB, and EXCHANGE, stored in text library BIGLIB. Before executing
the request, issue the GLOBAL command in a stored procedure or at the command line:

CMS GLOBAL TXTLIB SUBLIB BIGLIB

If you issue two GLOBAL commands, the second command replaces the first. Once a
library is opened (as a result of referencing one of its members), the library cannot be
changed until you exit FOCUS.

Using Functions and Subroutines

3-36 Information Builders

Alphabetical List of Functions and Subroutines
The following sections describe the functions and subroutines in alphabetical order.

ABS: Calculating Absolute Value
The ABS function returns the absolute value of its argument.

Available on: All platforms.

Syntax How to Calculate Absolute Value
ABS(argument)

where:

argument

Numeric
Is the value on which ABS operates. You may supply the actual value, the name of a
field that contains the value, or an expression that returns the value. If you use an
expression, make sure you use parentheses as needed to ensure the correct order of
evaluation.

Example Report Request Calculating Absolute Value of Difference
Between UNIT_SOLD and DELIVER_AMT
The following request calculates the absolute value of the difference between the number
of units sold and the number delivered:

TABLE FILE SALES
PRINT UNIT_SOLD AND DELIVER_AMT AND
COMPUTE DIFF/I5 = DELIVER_AMT - UNIT_SOLD; AND
COMPUTE ABS_DIFF/I5 = ABS(DIFF);
BY PROD_CODE
WHERE DATE LE '1017';
END

 Alphabetical List of Functions and Subroutines

Developing Applications 3-37

The request produces the following output:

PAGE 1

PROD_CODE UNIT_SOLD DELIVER_AMT DIFF ABS_DIFF
--------- --------- ----------- ---- --------
B10 30 30 0 0
B17 20 40 20 20
B20 15 30 15 15
C17 12 10 -2 2
D12 20 30 10 10
E1 30 25 -5 5
E3 35 25 -10 10

ARGLEN: Measuring Argument Length
The ARGLEN subroutine measures the argument length of a character string within a
field, excluding trailing spaces. (The field format specifies the length of the field,
including trailing spaces.)

Note that in Dialogue Manager, you can measure the length of prompted character strings
using the .LENGTH suffix.

Available on: All platforms.

Syntax How to Measure the Length of a Character String
ARGLEN(inlength, infield, outfield)

where:

inlength

Integer
Is the total length of the field containing the character string.

infield

Alphanumeric
Is the name of the field for which the argument length is to be determined.

outfield

Integer
Is the field to which the integer result is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.

Using Functions and Subroutines

3-38 Information Builders

Example Report Request Measuring Length of Employee Last Names
The following request displays the lengths of employee last names:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
NAME_LEN/I3 = ARGLEN(15, LAST_NAME, NAME_LEN);
WHERE DEPARTMENT EQ 'MIS';
END

The request produces the following output:

PAGE 1

LAST_NAME NAME_LEN
--------- --------
SMITH 5
JONES 5
MCCOY 5
BLACKWOOD 9
GREENSPAN 9
CROSS 5

ASIS: Distinguishing Between a Blank and a Zero
The ASIS function is used in Dialogue Manager to distinguish between a blank and a
zero. By using the ASIS function in Dialogue Manager, numeric string constants and
variables defined as numeric strings (numerics within single quotation marks) can be
differentiated from fields defined simply as numeric. The ASIS function forces FOCUS to
evaluate a variable as it is entered rather than converting it to a number. It is used in
Dialogue Manager equality expressions only.

Available on: All platforms.

Syntax How to Distinguish Between a Blank and a Zero
ASIS(argument)

where:

argument

Is the value on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. The
expression may call a function or a subroutine.
If you specify an alphanumeric literal, enclose it in single quotation marks (’). If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-39

Example Distinguishing Between a Blank and a Zero
The following requests show how the ASIS function affects the way FOCUS recognizes
values. In the first example, the ASIS function is not used. FOCUS does not distinguish
between variables defined as ' ' and 0:

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ &VAR1 GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 TRUE

The second request shows the use of the ASIS function to distinguish between the two
variables:

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ ASIS(&VAR1) GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 NOT TRUE

ATODBL: Converting Alphanumeric Strings to a Double-Precision
Number

The ATODBL subroutine converts numbers from alphanumeric to double-precision
format. You use this subroutine primarily to prepare arguments for other subroutines that
you call from Dialogue Manager -CMS RUN, -TSO RUN, and -MVS RUN statements.
For other applications, the EDIT function performs the same operation.

All numeric arguments in Dialogue Manager are in alphanumeric format. These
arguments must be converted to double-precision format before being passed to
subroutines. The -SET statements automatically convert these arguments, but -CMS
RUN, -TSO RUN, and -MVS RUN statements do not.

In order to call a subroutine from an operating system -RUN statement, you must convert
each numeric argument into double-precision format and store it in a Dialogue Manager
variable. The variable is used in the subroutine argument list. Since the EDIT function
cannot store double-precision numbers in Dialogue Manager variables, you must call the
ATODBL subroutine to convert the arguments.

Using Functions and Subroutines

3-40 Information Builders

Available on: All platforms.

Related functions and subroutines:

• EDIT

• FTOA

Two syntaxes for the ATODBL subroutine exist.

Procedure How to Convert Alphanumeric Strings to a Double-Precision
Number From an Operating System -RUN Statement
To use the ATODBL subroutine in Dialogue Manager, perform these steps:

1. Define the output variable as 8 bytes long. The syntax is

-SET &outfield = '12345678';

where:

&outfield

Is the output variable. The value must be eight characters, enclosed in single
quotation marks.

2. Call the ATODBL subroutine from an operating system -RUN statement, not from a
-SET statement. The syntax is

-{operating system} RUN ATODBL, number, inlength, &outfield

where:

operating system

Is CMS, TSO, or MVS.

number

Alphanumeric
Is the number you want to convert or the variable containing the number. The
number can be up to 15 bytes long. It can contain a sign and a decimal point but
no other character; otherwise, the subroutine returns a 0.

inlength

Alphanumeric
Is the number of bytes in the number argument; maximum value is 15.
Note: This must be a character string.

outfield

A8
Is the predefined output variable.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-41

Syntax How to Convert Alphanumeric Strings to a Double-Precision
Number From a Non-Dialogue Manager Statement
The syntax for specifying the ATODBL subroutine in other applications (except from
-SET statements) is

ATODBL(number, inlength, outfield)

where:

number

Alphanumeric
Is the number to be converted, the field that contains the number, or a variable.

inlength

Alphanumeric
Is the number of bytes in the number argument; maximum value is 15. If you are
specifying this field as a numeric constant, enclose it in single quotation marks.

outfield

Double-Precision
Is the name of the field that contains the double-precision number. This argument can
also be the format of the output value, enclosed in single quotation marks. For
Maintain, specify the field name.

Example MODIFY Request Converting a Prompted Alphanumeric Value
Into a Double-Precision Number
For the following example, the MISSING attribute is specified for the CURR_SAL field
in the EMPLOYEE Master File. This means that, if you do not enter a current salary
value for this double-precision field, the null is interpreted as a default value, a period.

FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $

.

.

.
FIELDNAME=CURR_SAL, ALIAS=CSAL,FORMAT=D12.2M, MISSING=ON,$

.

.

.

Using Functions and Subroutines

3-42 Information Builders

In this MODIFY procedure, the ATODBL subroutine converts the alphanumeric value
from the TCSAL field to double-precision format. After you enter an employee ID and
the employee’s last and first names display, you are prompted to supply a current salary
or the characters N/A, if one is not available. The current salary value is stored in a
temporary alphanumeric field, TCSAL. The ATODBL converts the alphanumeric value
and the TYPE statement displays it.

MODIFY FILE EMPLOYEE
COMPUTE TCSAL/A12=;
PROMPT EID
MATCH EID
ON NOMATCH REJECT
ON MATCH TYPE "EMPLOYEE <D.LAST_NAME <D.FIRST_NAME"
ON MATCH TYPE "ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE"
ON MATCH PROMPT TCSAL
ON MATCH COMPUTE
CSAL MISSING ON=IF TCSAL EQ 'N/A' THEN MISSING

ELSE ATODBL(TCSAL,'12','D12.2');
ON MATCH TYPE "SALARY NOW <CSAL"
DATA

A sample execution is as follows:

EMPLOYEEFOCUS A ON 11/14/96 AT 13.42.55
DATA FOR TRANSACTION 1

EMP_ID =
071382660
EMPLOYEE STEVENS ALFRED
ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE
TCSAL =
n/a
SALARY NOW
DATA FOR TRANSACTION 2

EMP_ID =
112847612
EMPLOYEE SMITH MARY
ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE
TCSAL =
45000
SALARY NOW $45,000.00
DATA FOR TRANSACTION 3

EMP_ID =
end
TRANSACTIONS: TOTAL = 2 ACCEPTED= 2 REJECTED= 0
SEGMENTS: INPUT = 0 UPDATED = 0 DELETED = 0

 Alphabetical List of Functions and Subroutines

Developing Applications 3-43

The procedure processes as:

1. For the first transaction, the procedure prompts you for an employee ID. You enter:
071382660.

2. The procedure displays the last and first name of the employee, STEVENS
ALFRED.

3. Then it prompts you for a current salary. You enter: N/A.

4. It displays a period (.).

5. For the second transaction, the procedure prompts you for an employee ID. You
enter: 112847612.

6. The procedure displays the last and first name of the employee, SMITH MARY.

7. Then it prompts you for a current salary. You enter: 45000.

8. It displays $45,000.00.

AYM: Adding or Subtracting Months to or From Dates
The AYM subroutine adds and subtracts months from dates. The dates must be in
year-month format. You can convert a date to this format by using the CHGDAT
subroutine or the EDIT function.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

• CHGDAT

• EDIT

• AYMD

Using Functions and Subroutines

3-44 Information Builders

Syntax How to Add or Subtract Months to or From Dates
AYM(indate, months, outfield)

where:

indate

Numeric
Is the input date in year-month format. If the date is not valid, AYM returns a 0.

months

Integer
Is the number of months you are adding or subtracting from the date. To subtract
months, make the number negative.

outfield

Integer
Is the name of the field to which the resulting date in year-month format is returned.
This argument can also be the format of the output value, enclosed in single quotation
marks.

Tip:

If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the
date by 100 to convert to year-month format and set the result to be an integer. This
causes the day portion of the date, which is now after the decimal point, to be dropped.

Example Report Request Adding Six Months to Hire Date
The following request adds six months to the hire dates of employees. Note that the
Compute expression converts the dates from year-month-day to year-month formats by
dividing the dates by 100.

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100 ;
AFTER6MONTHS/I4YM = AYM(HIRE_MONTH, 6, AFTER6MONTHS);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

 Alphabetical List of Functions and Subroutines

Developing Applications 3-45

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE HIRE_MONTH AFTER6MONTHS
--------- ---------- --------- ---------- ------------
BLACKWOOD ROSEMARIE 82/04/01 82/04 82/10
CROSS BARBARA 81/11/02 81/11 82/05
GREENSPAN MARY 82/04/01 82/04 82/10
JONES DIANE 82/05/01 82/05 82/11
MCCOY JOHN 81/07/01 81/07 82/01
SMITH MARY 81/07/01 81/07 82/01

AYMD: Adding or Subtracting Days to or From Dates
The AYMD subroutine takes a valid date in the form [YY]YYMMDD and adds or
subtracts a given number of days from the submitted date.

AYMD only operates on dates in year-month-day format. You can convert a date to this
format using the CHGDAT subroutine or the EDIT function.

If the addition (or subtraction) of days crosses forward or back into a century, the century
digits of the output year are adjusted.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

• CHGDAT

• EDIT

• AYM

Using Functions and Subroutines

3-46 Information Builders

Syntax How to Add or Subtract Days to or From Dates
AYMD(indate, days, outfield)

where:

indate

Integer
Is the input date in [YY]YYMMDD format. If the date is not valid, the subroutine
returns a 0. If indate is a field name, it must refer to a field with I6, I6YMD, I8,
I8YYMD, P6, P6YMD, F6, F6YMD, D6, or D6YMD format.

days

Integer
Is the number of days you are adding to indate. To subtract days, make the number
negative.

outfield

I6, I6YMD, I8, or I8YYMD
Is the name of the field to which the resulting date is returned. This argument can
also be the format of the output value, enclosed in single quotation marks. If indate is
a field, both fields must have the same format.

Example Report Request Adding 35 Days to Hire Date
The following request adds 35 days to the hire date of employees:

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
AFTER35DAYS/I6YMD = AYMD(HIRE_DATE, 35, AFTER35DAYS);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE AFTER35DAYS
--------- ---------- --------- -----------
BANNING JOHN 82/08/01 82/09/05
IRVING JOAN 82/01/04 82/02/08
MCKNIGHT ROGER 82/02/02 82/03/09
ROMANS ANTHONY 82/07/01 82/08/05
SMITH RICHARD 82/01/04 82/02/08
STEVENS ALFRED 80/06/02 80/07/07

 Alphabetical List of Functions and Subroutines

Developing Applications 3-47

BAR: Producing Bar Charts
The BAR subroutine enables you to produce horizontal bar charts. The bars, which
consist of repeating characters, constitute a field with each bar as a field value. When a
report request prints the field, the bars appear in the report.

Available on: All platforms.

Syntax How to Produce Bar Charts
BAR(barlength, infield, maxvalue, 'char', outfield)

where:

barlength

Numeric
Is the maximum length of the bar in repeating characters. If this value is less than or
equal to 0, the subroutine does not return a bar.

infield

Numeric
Is the field you wish to illustrate as a bar chart.

maxvalue

Numeric
Is the maximum length of a bar. This value should be greater than the maximum
value stored in the input field (infield). If an infield value is larger than the maxvalue
argument, the subroutine uses maxvalue and returns a bar at maximum length.

'char'

Alphanumeric
Is the repeating character that creates the bars. If the argument specifies more than
one character, only the first character is used to create the bars.

outfield

Alphanumeric
Is the name of the field that contains the bars. This output field must be large enough
to contain a bar at maximum length, as defined by the barlength argument. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

Using Functions and Subroutines

3-48 Information Builders

Example Report Request Creating a Bar Chart of CURR_SAL
The following request prints the salaries of employees and graphs them with a bar chart.
The maximum length of a bar is 30 characters long. The 30-character bar represents a
maximum salary of $30,000 (which is $29,700, rounded up). Each equal sign represents
approximately $1,000. The request is:

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE

SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME CURR_SAL SAL_BAR
--------- ---------- -------- -------
BANNING JOHN $29,700.00 ==============================
IRVING JOAN $26,862.00 ===========================
MCKNIGHT ROGER $16,100.00 ================
ROMANS ANTHONY $21,120.00 =====================
SMITH RICHARD $9,500.00 ==========
STEVENS ALFRED $11,000.00 ===========

Example Report Request Creating a Bar Chart of CURR_SAL With Scale
You may find it useful to print a scale over the bar chart. Consider the following request,
which replaces the name of the computed field with a scale.

Note: If you are running this request on a platform where the default font is proportional
(for example WebFOCUS), either use a non-proportional font, or issue SET
STYLE=OFF before running the request.

SET STYLE=OFF

TABLE FILE EMPLOYEE
HEADING
"CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT"
"GRAPHED IN THOUSANDS OF DOLLARS"
" "
PRINT CURR_SAL AS 'CURRENT_SALARY'
AND COMPUTE

SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);
AS

' 5 10 15 20 25 30,----+----+----+----+----+----+'
BY LAST_NAME AS 'LAST_NAME'
BY FIRST_NAME AS 'FIRST_NAME'
WHERE DEPARTMENT EQ 'PRODUCTION';
END

 Alphabetical List of Functions and Subroutines

Developing Applications 3-49

The request produces the following output:
PAGE 1

CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT
GRAPHED IN THOUSANDS OF DOLLARS

5 10 15 20 25
30
LAST_NAME FIRST_NAME CURRENT_SALARY
----+----+----+----+----+----+
--------- ---------- --------------

BANNING JOHN $29,700.00
==============================
IRVING JOAN $26,862.00 ===========================
MCKNIGHT ROGER $16,100.00 ================
ROMANS ANTHONY $21,120.00 =====================
SMITH RICHARD $9,500.00 ==========
STEVENS ALFRED $11,000.00 ===========

BITSON: Determining If Bits Are On or Off
The BITSON subroutine evaluates individual bits within character strings to determine if
a bit is on or off. If the bit is on, the subroutine returns a value of 1; otherwise, it returns a
value of 0. This subroutine is useful in interpreting multi-punch data, where each punch
conveys an item of information.

Note: BITSON returns different values, depending on your operating system.

Available on: All platforms.

Syntax How to Determine If Bits Are On or Off
BITSON(bitnumber, infield, outfield)

where:

bitnumber

Integer
Is the number of the bit to be evaluated, counting from the left-most bit in the
character string (counting from 1).

infield

Alphanumeric
Is the character string, enclosed in single quotation marks, or the field that contains
the character string. The character string is in multiple 8-bit blocks.

Using Functions and Subroutines

3-50 Information Builders

outfield

Integer
Is the name of the field that contains the value of the bit: 1 or 0. This argument can
also be the format of the output value, enclosed in single quotation marks.

Example Report Request Evaluating the Twenty-Fourth Bit of LAST_NAME
This request evaluates the twenty-fourth bit of the names stored in the LAST_NAME
field.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
BIT_24/I1 = BITSON(24, LAST_NAME, BIT_24);
WHERE DEPARTMENT EQ 'MIS';
END

On the OS/390 platform, the request produces the following output:

PAGE 1

LAST_NAME BIT_24
--------- ------
SMITH 1
JONES 1
MCCOY 1
BLACKWOOD 1
GREENSPAN 1
CROSS 0

BITVAL: Evaluating Bit Strings as Binary Integers
The BITVAL subroutine evaluates strings of bits within character strings. The bit strings
can be any group of bits within the character string and can cross byte and word
boundaries. The subroutine evaluates the bit strings as binary integers and returns the
corresponding values.

Note: BITVAL returns different values, depending on your operating system.

Available on: All platforms.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-51

Syntax How to Evaluate Bit Strings
BITVAL(infield, startbit, number, outfield)

where:

infield

Alphanumeric
Is the character string or field that contains the bit string.

startbit

Integer
Is the number of the first bit in the bit string, counting from the left-most bit in the
character string. If this argument is less than or equal to 0, the subroutine returns a
value of zero (0).

number

Integer
Is the number of bits in the bit string. If this argument is less than or equal to 0, the
subroutine returns a value of zero (0).

outfield

Integer
Is the name of the field that contains the integer equivalent. This argument can also
be the format of the output value, enclosed in single quotation marks.

Example Report Request Evaluating Bits 12 Through 20 of LAST_NAME
This report request evaluates bits 12 through 20 of the last names stored in the field
LAST_NAME:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
STRING_VAL/I5 = BITVAL(LAST_NAME, 12, 9, 'I5');
WHERE DEPARTMENT EQ 'MIS';
END

On the OS/390 platform, the resulting output is:

PAGE 1

LAST_NAME STRING_VAL
--------- ----------
SMITH 332
JONES 365
MCCOY 60
BLACKWOOD 316
GREENSPAN 412
CROSS 413

Using Functions and Subroutines

3-52 Information Builders

BYTVAL: Translating a Character to Its ASCII or EBCDIC Code
The BYTVAL subroutine translates characters to the ASCII or EBCDIC decimal values
that represent them.

Available on: All platforms.

Related functions and subroutines:

HEXBYT

Syntax How to Translate a Character
BYTVAL(character, outfield)

where:

character

Alphanumeric
Is the input character. If you supply more than one character in this argument, the
subroutine evaluates the first character. You can specify a field or amper variable that
contains the character, or specify the character itself.

outfield

Integer
Is the name of the field to which the corresponding decimal value an integer
between 0 and 255 is returned. This argument can also be the format of the output
value, enclosed in single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-53

Example Dialogue Manager Procedure Returning EBCDIC Value for
Prompted Character
This Dialogue Manager request prompts for a character, then returns the corresponding
number:

-PROMPT &CHAR.ENTER THE CHARACTER TO BE DECODED.
-SET &CODE = BYTVAL (&CHAR, 'I3');
-TYPE
-TYPE THE EQUIVALENT VALUE IS &CODE

Suppose you want to know the equivalent value of the exclamation point (!). A sample
execution is:

ENTER THE CHARACTER TO BE DECODED
!

THE EQUIVALENT VALUE IS 90
>

The request processes as:

1. When you execute the request, it prompts:

ENTER THE CHARACTER TO BE DECODED

2. You enter an exclamation point: !.

3. The request responds:

THE EQUIVALENT VALUE IS 90

CHGDAT: Changing Date Formats
The CHGDAT subroutine rearranges the year, month, and day portions of dates and
converts dates between long and short date formats. Long formats contain the year,
month, and day; short formats contain one or two of these elements, such as year and
month or just day. A format can be longer if four digits are used for the year (for example,
1987), or shorter if only the last two digits are used (for example, 87).

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

• DA subroutines

• DATECVT

• DT subroutines

Using Functions and Subroutines

3-54 Information Builders

Syntax How to Change Date Formats
CHGDAT('oldformat', 'newformat', indate, outfield)

where:

'oldformat'

A5
Is the format of the input date.

'newformat'

A5
Is the format of the converted date.

indate

Alphanumeric
Is the input date. If the date is in numeric format, change it to alphanumeric format
using the EDIT function. If the input date is invalid, the subroutine returns spaces.

outfield

Alphanumeric or A17
Is the name of the field to which the converted date is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

Tip:

Since CHGDAT returns the date in alphanumeric format with 17 characters, you can use
the EDIT function to truncate this field to a shorter field or to convert the date to numeric
format.

The date formats specified by the arguments oldformat and newformat contain the
following characters in any combination:

D Days in the month (01 through 31).

M Months in the year (01 through 12).

Y[Y] Year. One Y indicates a two-digit date (such as 94); two Y’s indicate
a four-digit date (such as 1994).

If you want to spell out the month rather than use a number for the month, you can append
one of the following to the format of the new date:

T Displays the month as a three-letter English abbreviation.

X Displays the full English name of month.

Any other character in the format is ignored.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-55

If you are converting a date from short to long format (for example, from year-month to
year-month-day), the subroutine supplies the portion of the date missing in the short
format, as shown in the following table:

Portion of Date Missing Portion Supplied by the Subroutine

Day (that is, from YM to YMD) Last day of the month.

Month (that is, from Y to YM) The month 12 (December).

Year (that is, from MD to YMD) The year 99.

Converting year from short to long form
(that is, from YMD to YYMD)

If DATEFNS=ON, the century will be
determined by the 100-year window
defined by DEFCENT and YRTHRESH.
See Chapter 7, Working With
Cross-Century Dates for details on
DEFCENT and YRTHRESH.

If DATEFNS=OFF, the year 19xx, where
xx is the last two digits in the year.

Example Report Request Converting Numeric Date to Full Name
The following request displays the names and hire dates of employees, both in
year-month-day format and in month-day-year format. The second format displays the full
name of the month and the full year.

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A17 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE HIRE_MDY
--------- ---------- --------- --------
BANNING JOHN 82/08/01 AUGUST 01 1982
IRVING JOAN 82/01/04 JANUARY 04 1982
MCKNIGHT ROGER 82/02/02 FEBRUARY 02 1982
ROMANS ANTHONY 82/07/01 JULY 01 1982
SMITH RICHARD 82/01/04 JANUARY 04 1982
STEVENS ALFRED 80/06/02 JUNE 02 1980

Using Functions and Subroutines

3-56 Information Builders

CHKFMT: Checking String Format
The CHKFMT subroutine checks character strings for incorrect character types. It
compares each string to a second string called a “mask,” comparing each character in the
input string to the corresponding character in the mask. If all characters in the string
match the characters or character types of those in the mask, CHKFMT returns the value
0. Otherwise, CHKFMT returns a value equal to the position of the first character in the
string not matching the mask.

Available on: All platforms.

Syntax How to Check String Format
CHKFMT(numchar, infield, 'mask', outfield)

where:

numchar

Integer
Is the number of characters you want to compare against the mask.

infield

Alphanumeric
Is the character string you are inspecting (enclosed in single quotation marks) or the
field containing the string.

'mask'

Alphanumeric
Is the mask as described with the character symbols (enclosed in single quotation
marks).

outfield

Integer
Is the name of the temporary field to which the result is returned, or the format of the
output value, enclosed in single quotation marks.

Some characters in the mask are generic: they represent character types. If a character in
the string is compared to one of these characters and is the same type, it matches. These
generic characters are:

A Represents any of the letters A-Z (uppercase or lowercase).

9 Represents any of the digits 0-9.

X Represents any of the letters A-Z or digits 0-9.

$ Represents any character.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-57

Any other character in the mask represents only that character. For example, if the third
character in the mask is the letter B, the third character in the string must be the letter B to
match.

If the mask is shorter than the character string, the subroutine checks only the portion of
the character string corresponding to the mask. For example, if you are using a
four-character mask to test a nine-character string, only the first four characters in the
string are checked; the rest are returned as a nomatch with CHKFMT giving the position
as a result.

Example Report Request Checking the Format of EMP_ID
The following request checks the format of EMP_ID against a mask for nine numeric
characters, beginning with the numerals 11.

TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND
COMPUTE CHK_ID/I3 = CHKFMT(9, EMP_ID, '119999999', CHK_ID);
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

EMP_ID LAST_NAME CHK_ID
------ --------- ------
071382660 STEVENS 1
119265415 SMITH 0
119329144 BANNING 0
123764317 IRVING 2
126724188 ROMANS 2
451123478 MCKNIGHT 1

Using Functions and Subroutines

3-58 Information Builders

Example MODIFY Request Checking the Format of EMP_ID
The following MODIFY procedure adds records of new employees to the EMPLOYEE
data source. Each transaction begins as an employee ID that is alphanumeric with the first
five characters as digits. The procedure rejects records with other characters in the
employee ID. The procedure is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH COMPUTE

BAD_CHAR/I3 = CHKFMT (5, EMP_ID, '99999', BAD_CHAR);
ON NOMATCH VALIDATE

ID_TEST = IF BAD_CHAR EQ 0 THEN 1 ELSE 0;
ON INVALID TYPE

"BAD EMPLOYEE ID: <EMP_ID"
"INVALID CHARACTER IN POSITION <BAD_CHAR"

ON NOMATCH INCLUDE
LOG INVALID MSG OFF

DATA

A sample execution is:

>
EMPLOYEEFOCUS A ON 12/05/96 AT 15.42.03
DATA FOR TRANSACTION 1

EMP_ID =
111w2
LAST_NAME =
johnson
FIRST_NAME =
greg
DEPARTMENT =
production
BAD EMPLOYEE ID: 111W2
INVALID CHARACTER IN POSITION 4
DATA FOR TRANSACTION 2

EMP_ID =
end
TRANSACTIONS: TOTAL = 1 ACCEPTED= 0 REJECTED= 1
SEGMENTS: INPUT = 0 UPDATED = 0 DELETED = 0
>

 Alphabetical List of Functions and Subroutines

Developing Applications 3-59

The procedure processes as:

1. The procedure prompts you for an employee ID, last name, first name, and
department assignment. You enter the following data:

EMP_ID: 111w2
LAST_NAME: johnson
FIRST_NAME: greg
DEPARTMENT: production

2. The procedure searches the data source for the ID 111W2. If it does not find this ID,
it continues processing the transaction.

3. The CHKFMT subroutine checks the ID against the mask 99999, which represents
five digits.

4. The fourth character in the ID, the letter “W”, is not a digit. The subroutine returns
the value 4 to the BAD_CHAR field.

5. The VALIDATE statement tests the BAD_CHAR field. Since BAD_CHAR is not
equal to 0, the procedure rejects the transaction and displays a message indicating the
position of the invalid character in the ID.

CHKPCK: Validating Packed Fields
The CHKPCK subroutine validates packed fields (if they are available on your platform),
checking that their values are in packed format. The subroutine prevents data exceptions
that occur when requests read packed fields from files containing values that are not valid
packed numbers.

Available on: All platforms.

Using Functions and Subroutines

3-60 Information Builders

Syntax How to Validate Packed Fields
CHKPCK(inlength, infield, error, outfield)

where:

inlength

Numeric
Is the field length to be validated, from 1 to 16 bytes.

infield

Alphanumeric
Is the input field to be validated. The field is described as alphanumeric, not packed.

error

Numeric
Is the error code that the subroutine returns if a value is not packed. The error code is
first truncated to an integer, then converted to packed. (The error code may appear on
a report with a decimal point because of the format of the output field.) Choose an
error code outside the range of data.

outfield

Packed
Is the name of the field that contains the input value if the value is packed or the error
code. This argument can also be the format of the output value, enclosed in single
quotation marks.

To use the CHKPCK subroutine, use these steps:

1. Make sure that the Master File (FORMAT, USAGE, and ACTUAL attributes), or the
MODIFY FIXFORM statement describing the file, defines the field as alphanumeric,
not packed. This does not change the field data, which remains packed. It enables the
request to read the data without causing data exceptions.

2. Call the CHKPCK subroutine to examine the field. The subroutine returns its output
to a field defined as packed. If the value it examines is a valid packed number, the
subroutine returns the value; otherwise, it returns an error code.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-61

Example Validating Packed Data
In order to reproduce this example, you need to prepare a data source with invalid packed
data. Issue this request:

DEFINE FILE EMPLOYEE
PACK_SAL/A8 = IF EMP_ID CONTAINS '123'

THEN 'AAA' ELSE PCKOUT(CURR_SAL, 8, 'A8');
END

TABLE FILE EMPLOYEE
PRINT DEPARTMENT PACK_SAL BY EMP_ID
ON TABLE SAVE AS TESTPACK
END

The request creates the TESTPACK file that is used in this example. The file contains
employee IDs, department assignments, and salaries. The salary field named PACK_SAL
is defined as alphanumeric but contains packed data. The invalid packed data is a string of
three letters (AAA).

>
NUMBER OF RECORDS IN TABLE= 12 LINES= 12

{EBCDIC|ALPHANUMERIC} RECORD NAMED TESTPACK
FIELDNAME ALIAS FORMAT LENGTH

EMP_ID EID A9 9
DEPARTMENT DPT A10 10
PACK_SAL A8 8

TOTAL 27
[DCB USED WITH FILE TESTPACK IS DCB=(RECFM=FB,LRECL=00027,BLKSIZE=00540)]
>

Next, you must create a Master File for the TESTPACK file. If the description defines the
salary field as packed, the bad values will cause data exceptions when a request reads the
file. Instead, define the field as alphanumeric both in the USAGE and ACTUAL
attributes:

FILE = TESTPACK, SUFFIX = FIX
FIELD = EMP_ID ,ALIAS = EID,FORMAT = A9 ,ACTUAL = A9 ,$
FIELD = DEPARTMENT,ALIAS = DPT,FORMAT = A10,ACTUAL = A10,$
FIELD = PACK_SAL ,ALIAS = PS ,FORMAT = A8 ,ACTUAL = A8 ,$

Using Functions and Subroutines

3-62 Information Builders

After you create the Master File, prepare the request to produce the report. In the
DEFINE command, the CHKPCK subroutine validates the salaries and moves them from
the alphanumeric field, PACK_SAL, to the packed field, GOOD_PACK. The
GOOD_PACK field contains either employees salaries or the error code -999. The
request is:

DEFINE FILE TESTPACK
GOOD_PACK/P8CM = CHKPCK(8, PACK_SAL, -999, GOOD_PACK);
END

TABLE FILE TESTPACK
PRINT DEPARTMENT GOOD_PACK BY EMP_ID
END

The request produces the following output:

PAGE 1

EMP_ID DEPARTMENT GOOD_PACK
------ ---------- ---------
071382660 PRODUCTION $11,000
112847612 MIS $13,200
117593129 MIS $18,480
119265415 PRODUCTION $9,500
119329144 PRODUCTION $29,700
123764317 PRODUCTION -$999
126724188 PRODUCTION $21,120
219984371 MIS $18,480
326179357 MIS $21,780
451123478 PRODUCTION -$999
543729165 MIS $9,000
818692173 MIS $27,062

CTRAN: Translating One Character to Another
The CTRAN subroutine translates one character to another. This subroutine is especially
useful for changing replacement characters to unavailable characters, or to characters that
are difficult to input or unavailable on your keyboard.

Note: This subroutine is especially useful for inputting characters that are difficult to
enter in PROMPT, such as “,” and “ ' “. It eliminates the need to enclose entries in single
quotation marks. To use this subroutine, you need to know the decimal equivalent of the
characters in internal machine representation. Printable EBCDIC or ASCII characters and
their decimal equivalents are listed in character charts.

Available on: All platforms.

Related subroutines:

HEXBYT

 Alphabetical List of Functions and Subroutines

Developing Applications 3-63

Syntax How to Translate One Character to Another
CTRAN(inlen, infield, decfrm, decto, output)

where:

inlen

Integer
Is the length in characters of the input string.

infield

Alphanumeric
Is the input string.

decfrm

Integer
Is the decimal value of the character to be translated.

decto

Integer
Is the decimal ASCII or EBCDIC value of the character to be used as a substitute for
decfrm.

output

Alphanumeric
Is the name of the field that contains the resulting output string or the format of the
output value enclosed in single quotation marks.

Example Report Request Converting Spaces to Underscores
The following request converts blank spaces in a field containing addresses to
underscores:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 32, 95, ALT_ADDR);
BY EMP_ID
WHERE TYPE EQ 'HSM'
END

Using Functions and Subroutines

3-64 Information Builders

The request produces the following output:

PAGE 1

EMP_ID ADDRESS_LN3 ALT_ADDR
------ ----------- --------
117593129 RUTHERFORD NJ 07073 RUTHERFORD_NJ_07073_
119265415 NEW YORK NY 10039 NEW_YORK_NY_10039___
119329144 FREEPORT NY 11520 FREEPORT_NY_11520___
123764317 NEW YORK NY 10001 NEW_YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY_11520___
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CITY NJ 07300 JERSEY_CITY_NJ_07300
818692173 FLUSHING NY 11354 FLUSHING_NY_11354___

Example MODIFY Request Inserting Accented Letter E’s
This MODIFY request enables you to enter the names of new employees containing the
accented letter È, as in the name Adèle Molière, for example. The equivalent EBCDIC
code for an asterisk is 92, for an È, 159.

Note: If you are using the Hot Screen facility, disable it with SET SCREEN=OFF in
order to display the accented letter È.

The request is:

MODIFY FILE EMPLOYEE
CRTFORM
"***** NEW EMPLOYEE ENTRY SCREEN *****"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"
" "
"ENTER EMPLOYEE'S FIRST AND LAST NAME"
"SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS"
" "
"FIRST_NAME: <FIRST_NAME LAST_NAME: <LAST_NAME"
" "
"ENTER THE DEPARTMENT ASSIGNMENT: <DEPARTMENT"
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH COMPUTE

FIRST_NAME/A10 = CTRAN (10, FIRST_NAME, 92, 159, 'A10');
LAST_NAME/A15 = CTRAN (15, LAST_NAME, 92, 159, 'A15');

ON NOMATCH TYPE "FIRST_NAME: <FIRST_NAME LAST_NAME:<LAST_NAME"
ON NOMATCH INCLUDE

DATA
END

 Alphabetical List of Functions and Subroutines

Developing Applications 3-65

A sample execution is as follows:

***** NEW EMPLOYEE ENTRY SCREEN *****

ENTER EMPLOYEE'S ID: 999888777

ENTER EMPLOYEE'S FIRST AND LAST NAME
SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS

FIRST_NAME: AD*LE LAST_NAME: MOLI*RE

ENTER THE DEPARTMENT ASSIGNMENT: SALES

The request processes as:

1. The CRTFORM screen prompts you for an employee ID, last name, first name, and
department assignment. It requests that you substitute an asterisk (*) whenever the
accented letter È appears in a name.

2. You enter the following data:

EMPLOYEE ID: 999888777
FIRST_NAME: AD*LE
LAST_NAME: MOLI*RE
DEPARTMENT: SALES

3. The procedure searches the data source for the employee ID. If it does not find it, it
continues processing the request.

4. The CTRAN subroutine converts the asterisks into È’s in both the first and last
names (ADÈLE MOLIÈRE).

***** NEW EMPLOYEE ENTRY SCREEN *****

ENTER EMPLOYEE'S ID:

ENTER EMPLOYEE'S FIRST AND LAST NAME
SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS

FIRST_NAME: LAST_NAME:

ENTER THE DEPARTMENT ASSIGNMENT:

FIRST_NAME: ADÈLE LAST_NAME: MOLIÈRE

Using Functions and Subroutines

3-66 Information Builders

5. The procedure stores the data in the data source.

Note: If you are using the Hot Screen facility, some unusual characters cannot be
displayed. If Hot Screen does not support the character you chose, enter the FOCUS
command

SET SCREEN = OFF
RETYPE

and redisplay the report that will appear as regular terminal output. If your terminal can
display the character, the character will appear. The display of special characters depends
upon your software and hardware; not all special characters may display.

Example MODIFY Request Inserting Commas
This MODIFY request adds records of new employees to the EMPLOYEE data source.
The PROMPT statement prompts you for data one field at a time. The CTRAN
subroutine enables you to enter commas in names without having to enclose the names in
single quotation marks. Instead of typing the comma, you type a semicolon, which is
converted by the CTRAN subroutine into a comma. The equivalent EBCDIC code for a
semicolon is 94; for a comma, 107.

The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH COMPUTE

LAST_NAME/A15 = CTRAN (15, LAST_NAME, 94, 107, 'A15');
ON NOMATCH INCLUDE

DATA

 Alphabetical List of Functions and Subroutines

Developing Applications 3-67

A sample execution is as follows:

>
EMPLOYEEFOCUS A ON 04/19/96 AT 16.07.29
DATA FOR TRANSACTION 1

EMP_ID =
224466880
LAST_NAME =
BRADLEY; JR.
FIRST_NAME =
JOHN
DEPARTMENT =
MIS
DATA FOR TRANSACTION 2

EMP_ID =
end
TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT = 1 UPDATED = 0 DELETED = 0
>

The request processes as:

1. The request prompts you for an employee ID, last name, first name, and department
assignment. You enter the following data:

EMP_ID: 224466880
LAST_NAME: BRADLEY; JR.
FIRST_NAME:JOHN
DEPARTMENT:MIS

2. The request searches the data source for the ID 224466880. If it does not find the ID,
it continues processing the transaction.

3. The CTRAN subroutine converts the semicolon in “BRADLEY; JR.” to a comma.
The last name is now “BRADLEY, JR.”

4. The request adds the transaction to the data source.

Using Functions and Subroutines

3-68 Information Builders

This request displays the semicolon converted as a comma:

TABLE FILE EMPLOYEE
PRINT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
IF EMP_ID IS 224466880
END

NUMBER OF RECORDS IN TABLE= 1 LINES= 1

PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY

PAGE 1

EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
------ --------- ---------- ----------
224466880 BRADLEY, JR. JOHN MIS

CTRFLD: Centering a Character String
The CTRFLD subroutine centers character strings within fields. The number of leading
spaces is equal to or one less than the number of trailing spaces.

The CTRFLD subroutine is useful for centering the contents of a field and its report
column or a heading that consists only of an embedded field. The report phrase
HEADING CENTER centers each field value including trailing spaces. To center the
field value without the trailing spaces, first center the value within the field using the
CTRFLD subroutine.

Available on: All platforms.

Related functions and subroutines:

• LJUST

• RJUST

Note: Use of CTRFLD in a styled report (StyleSheets feature) generally negates the effect
of this feature unless the item is also styled as a centered element.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-69

Syntax How to Center a Character String
CTRFLD(infield, inlength, outfield)

where:

infield

Alphanumeric
Is the input field or a string enclosed in single quotation marks.

inlength

Integer
Is the length of the input and output fields. This argument must be greater than 0. (A
length less than 0 can cause unpredictable results.)

outfield

Alphanumeric
Is the name of the field to which the centered output is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

Example Report Request Centering LAST_NAME
The following request prints last names left-justified and centered.

Note: If you are running this request on a platform where the default font is proportional
(for example WebFOCUS), either use a non-proportional font, or issue SET
STYLE=OFF before running the request.

SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
CENTER_NAME/A15 = CTRFLD(LAST_NAME, 15, 'A15');
WHERE DEPARTMENT EQ 'MIS'
END

The request produces the following output:

PAGE 1

LAST_NAME CENTER_NAME
--------- -----------
SMITH SMITH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOOD
GREENSPAN GREENSPAN
CROSS CROSS

Using Functions and Subroutines

3-70 Information Builders

DA Subroutines: Converting a Date to an Integer
The DA subroutines convert dates to the corresponding number of days elapsed since
December 31, 1899. By converting dates to the number of days, you can add and subtract
dates and calculate the intervals between them. You can convert the results back to date
format by using the DT subroutines discussed in Report Request Finding the Day of the
Week on page 3-71.

There are six DA subroutines; each one accepts dates in a different format.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

• CHGDAT

• DATEDIF

• DT subroutines

Syntax How to Convert a Date to an Integer
subroutine(indate, outfield)

where:

subroutine

Is one of the following:
DADMY converts dates in day-month-year format.
DADYM converts dates in day-year-month format.
DAMDY converts dates in month-day-year format.
DAMYD converts dates in month-year-day format.
DAYDM converts dates in year-day-month format.
DAYMD converts dates in year-month-day format.

indate

Numeric
Is the input date or a field that contains the date. The date is truncated to an integer
before conversion. The date format is determined by the subroutine, as explained
above.
To specify the year, enter only the last two digits; the subroutine assumes the century
component. If the date is invalid, the subroutine returns a 0.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-71

outfield

Integer
Is the name of the field to which the number of days this century is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks.

Example Report Request Calculating the Difference Between Two Dates
The following example shows the number of days that elapse between the time employees
get raises and the time they were hired:

TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE DATE' AND COMPUTE
DAYS_HIRED/I8 = DAYMD(DAT_INC, 'I8') - DAYMD(HIRE_DATE, 'I8');
BY LAST_NAME BY FIRST_NAME
IF DAYS_HIRED NE 0
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The example produces the following report:

PAGE 1

LAST_NAME FIRST_NAME RAISE DATE DAYS_HIRED
--------- ---------- ---------- ----------
IRVING JOAN 82/05/14 130
MCKNIGHT ROGER 82/05/14 101
SMITH RICHARD 82/05/14 130
STEVENS ALFRED 82/01/01 578

81/01/01 213

Using Functions and Subroutines

3-72 Information Builders

DATEADD: Adding or Subtracting Date Units to or From a Date
The DATEADD function adds or subtracts units to or from a date format. A unit can be
any of the following:

• Year.

• Month. If you use the month unit and create invalid dates (such as February 31),
DATEADD corrects them to the last day of the month. This means that adding one
month to January 31 yields February 28 or February 29 (depending on whether it is a
leap year), not February 31.

• Day.

• Weekday. If you use the weekday unit, DATEADD does not count Saturday and
Sunday when adding days. This means that one weekday past a Friday is the
following Monday. If your input date is a Saturday or Sunday, DATEADD adjusts it
to the following Monday before performing addition or subtraction.

• Business day. If you use the business day unit, DATEADD uses the BUSDAYS
setting and holiday file (determined by the HDAY setting) to determine which days
are working days and disregards the rest. This means that if Monday is not a working
day, then one business day past a Sunday is the following Tuesday.

DATEADD can help you:

• Compute payroll dates.

• Track and ship orders.

• Ensure correct credit card transactions.

Note: You can perform non day-based date calculations (for example YM, YQ) directly
(+, -) without using these functions.

Available on: All platforms.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-73

Syntax How to Add or Subtract Date Units to or From a Date
DATEADD(YYMDdate, 'unit', #units)

where:

YYMDdate

Date
Is any day-based new date, for example, YYMD, MDY, or JUL.

unit

Alphanumeric
Can be one of the following:

Y indicates year units.

M indicates month units.

D indicates day units.

WD indicates weekday units. This means that DATEADD disregards Saturday and
Sunday when performing calculations.

BD indicates business day units. This means that DATEADD uses the BUSDAYS
setting and the holidays file (determined from the HDAY setting) to determine which
days are working days. DATEADD disregards non-working days when performing
calculations.

#units

Integer
Is the number of date units you wish to add or subtract to or from the day-based new
date. If this number is not a whole unit, it is rounded down to the next largest integer.

Example Rounding With DATEADD
The number of units passed to DATEADD is always a whole unit. For example,

DATEADD(DATE, 'M', 1.999)

adds one month because the number of units is less than two.

Using Functions and Subroutines

3-74 Information Builders

Example Using Weekday Units
If you use weekday units and use a Saturday or Sunday as input, DATEADD adjusts the
input to Monday. Thus,

DATEADD(Saturday, 'WD', 1)

and

DATEADD(Sunday, 'WD', 1)

both yield Tuesday as a result because Saturday and Sunday are not business days, so
DATEADD begins with Monday and adds one, yielding Tuesday.

Example Adding Three Business Days to a Date
In this example, DATEADD takes NEW_DATE, in YYMD format, and adds three
weekdays to it:

DATEADD(NEW_DATE, 'WD', 3)

The following table shows sample values for NEW_DATE and
DATEADD(NEW_DATE, 'WD', 3):

NEW_DATE DATEADD(NEW_DATE, 'WD', 3)

1982/04/01 1982/04/06
1981/11/02 1981/11/05
1982/04/01 1982/04/06
1982/05/01 1982/05/06
1981/07/01 1981/07/06
1981/07/01 1981/07/06

Notice that in some cases, DATEADD added more than three days, because otherwise the
resulting date would have been on a weekend.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-75

Example Report Request Adding Three Business Days to a Date
The following request adds three weekdays to HIRE_DATE:

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND HIRE_DATE AND COMPUTE
NEW_DATE/YYMD=DATECVT(HIRE_DATE, 'I6YMD', 'YYMD');
HIRE_DATE_PLUS_THREE/YYMD=DATEADD(NEW_DATE, 'WD', 3);
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

This request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE NEW_DATE HIRE_DATE_PLUS_THREE
--------- ---------- --------- -------- --------------------
BLACKWOOD ROSEMARIE 82/04/01 1982/04/01 1982/04/06
CROSS BARBARA 81/11/02 1981/11/02 1981/11/05
GREENSPAN MARY 82/04/01 1982/04/01 1982/04/06
JONES DIANE 82/05/01 1982/05/01 1982/05/06
MCCOY JOHN 81/07/01 1981/07/01 1981/07/06
SMITH MARY 81/07/01 1981/07/01 1981/07/06

Notice that in some cases, DATEADD added more than three days, because otherwise
HIRE_DATE_PLUS_THREE would have been on a weekend.

Example Report Request That Determines Whether a Date Is a Business
Day
The following example uses DATEADD to determine whether a date is a business day.

To run this example you need a DATE Master File and a DATE data source.

Assume the DATE Master File is as follows:

FILENAME = DATE, SUFFIX=FIX,$
SEGNAME=SEG1, SEGTYPE = S0,$
FIELD = D1_YYMD, ALIAS = D1, FORMAT=YYMD,$

The DATE data source should have the following records:

19980605
19980606

In CMS you must filedef the DATE data source. For example:

FILEDEF DATE DISK DATE DATA A

In MVS, you must allocate the DATE data source to ddname DATE. For example:

DYNAM ALLOC DD DATE DA USER1.DATE.DATA SHR REU

Using Functions and Subroutines

3-76 Information Builders

The request follows:

SET EMPTYREPORT=ON

DEFINE FILE DATE
X/YYMD=DATEADD(D1_YYMD, 'BD', 0);
END

TABLE FILE DATE
HEADING
" USE DATEADD TO DETERMINE WHETHER A SMARTDATE FIELD IS A BUSINESS "
" DAY. THE DATA SOURCE HAS THE DATE '1998/06/05' WHICH IS A FRIDAY "
" STORED IN FIELD D1_YYMD. AN IF TEST IS USED TO DETERMINE IF THE "
" DATE CORRESPONDS TO A BUSINESS DAY. "
PRINT D1_YYMD X
IF X EQ '19980605'
END

TABLE FILE DATE
HEADING
" IT WILL YIELD 0 RECORDS 0 LINES IF THE RESULTING DATE IS NOT "
" A BUSINESS DAY. THE DATA SOURCE ALSO HAS '1998/06/05,' A SATURDAY. "
PRINT D1_YYMD X
IF X EQ '19980606'
END

The preceding request yields the following:

PAGE 1

USE DATEADD TO DETERMINE WHETHER A SMARTDATE FIELD IS A BUSINESS
DAY. THE DATA SOURCE HAS THE DATE '1998/06/05' WHICH IS A FRIDAY
STORED IN FIELD D1_YYMD. AN IF TEST IS USED TO DETERMINE IF THE
DATE CORRESPONDS TO A BUSINESS DAY.
D1_YYMD X
------- -
1998/06/05 1998/06/05

PAGE 1

IT WILL YIELD 0 RECORDS 0 LINES IF THE RESULTING DATE IS NOT
A BUSINESS DAY. THE DATA SOURCE ALSO HAS '1998/06/05,' A SATURDAY.
D1_YYMD X
------- -

 Alphabetical List of Functions and Subroutines

Developing Applications 3-77

DATECVT: Converting Date Formats
DATECVT converts date formats within applications without requiring intermediate
calculations.

DATECVT can help you:

• Compute payroll dates.

• Track and ship orders.

• Ensure correct credit card transactions.

Available on: All platforms.

Related functions and subroutines:

• CHGDAT subroutine

• DA subroutines

• DT subroutines

Syntax How to Convert a Date Format
DATECVT(indate, 'infmt', 'outfmt')

where:

indate

Date
Is the date whose format you wish to change. If you supply an invalid old date,
DATECVT returns a zero value. Indates with old formats obey any DEFCENT and
YRTHRESH values implied for that field when performing the conversion.

infmt and outfmt
Alphanumeric
Can be one of the following:

• Any new date format (for example, YYMD, YQ, M, DMY, JUL) that matches
the format of indate. It can also be in the format of the output value enclosed
within single quotes.

• Any old date format (such as I6YMD or A8MDYY).

• Non-date formats (such as I8 or A6). Non-date formats in the infmt parameter
function as offsets from the base date of a YYMD field (12/31/1900).

The format of the field on the left side of the equal sign must match the outfmt value.

Invalid formats cause DATECVT to return a zero value or blank.

Using Functions and Subroutines

3-78 Information Builders

Example Converting YYMD to DMY
For example,

field/DMY = DATECVT(indate, 'YYMD', 'DMY');

If the value of indate is 19991231 then field is set to the offset, which is 311299. Indates
with old formats obey any DEFCENT and YRTHRESH values implied for that field
when performing the conversion.

DATEDIF: Finding the Difference Between Two Dates
DATEDIF returns the difference between two dates in the form of a whole number,
expressed in terms of units. A unit can be any of the following:

• Year.

• Month.

• Day.

• Weekday. If you use the weekday unit, DATEDIF does not count Saturday and
Sunday when adding days. This means that the difference between Friday, December
21, 1999 and Monday, January 3, 2000, is one day.

• Business day. If you use the business day unit, DATEADD uses the BUSDAYS
parameter and holiday file (determined by the HDAY parameter) to determine which
days are working days and disregards the rest. This means that if Friday, December
31, 1999 is a holiday and Saturday and Sunday are not business days, the difference
between Thursday, December 30, 1999 and Monday, January 3, 2000, is one day.
See Date Function and Subroutine Settings on page 3-14 for more information.

DATEDIF always returns a whole number. If the difference between two dates is not a
whole number, say the number of years between March 2, 1996 and March 1, 1997,
DATEDIF rounds down to the next largest integer. Thus the number of years between
March 2, 1996 and March 1, 1997 is 0.

If you use month units, and one or both of your input dates is the end of the month,
DATEDIF takes this into account. This means that the difference between January 31 and
April 30 is three months, not two months.

If the to-date is before the from-date, DATEDIF returns a negative number.

DATEDIF can help you:

• Compute payroll dates.

• Track and ship orders.

• Ensure correct credit card transactions.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-79

Note: You can perform non day-based date calculations (for example YM, YQ) directly
(+, -) without using DATEDIF.

Available on: All platforms.

Related functions and subroutines:

• DMY, MDY, and YMD subroutines

• YM subroutine

Syntax How to Return the Difference Between Two Dates
DATEDIF(fromYYMD, toYYMD, 'unit')

where:

fromYYMD

Date
Is the starting date from which to calculate the difference.

toYYMD

Date
Is the ending date from which to calculate the difference.

unit

Alphanumeric
Can be one of the following:
Y indicates year units.

M indicates month units.

D indicates day units.

WD indicates weekday units. This means that DATEDIF disregards Saturday and
Sunday when performing calculations.

BD indicates business day units. This means that DATEDIF uses the BUSDAYS
setting and the holidays file (determined from the HDAY setting) to determine which
days are working days. DATEDIF disregards non-working days when performing
calculations.

Example Rounding With DATEDIF
The following expression

DATEDIF(19960302, 19970301, 'Y')

returns 0 because the difference between March 2, 1996 and March 1, 1997 is less than a
whole year.

Using Functions and Subroutines

3-80 Information Builders

Example Using Month Calculations
Using DATEDIF with month units yields the inverse of DATEADD. If adding one month
to date X creates date Y, then the count of months via DATEDIF between date X and date
Y must be one month. The rule is:

If the to-date is an end-of-month then the month difference may be rounded up (in
absolute terms) to guarantee the inverse rule.

The following expressions

DATEDIF(19990228, 19990128, 'M')

DATEDIF(19990228, 19990129, 'M')

DATEDIF(19990228, 19990130, 'M')

DATEDIF(19990228, 19990131, 'M')

all return a result of minus one month.

Additional examples:

DATEDIF(March31, May31, 'M') yields 2.
DATEDIF(March31, May30, 'M') yields 1 (because May 30 is not the end of the month).
DATEDIF(March31, April30, 'M') yields 1.

The same rules apply to year math, the only difference being that February 29th plus one
year is equal to February 28th.

DATEMOV: Moving Dates to a Significant Point
DATEMOV enables you to move a date to a significant point on the calendar.
DATEMOV works with a date format only.

DATEMOV is affected by the BUSDAYS parameter and the holiday file (determined by
the HDAY parameter). See Date Function and Subroutine Settings on page 3-14 for more
information.

DATEMOV can help you:

• Compute payroll dates.

• Track and ship orders.

• Ensure correct credit card transactions.

Available on: All platforms.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-81

Syntax How to Move a Date to a Significant Point
DATEMOV(YYMDdate, 'move-point')

where:

YYMDdate

Date
Is the date you wish to move. May be any new date format as long as it implies a day
component (for example MDYY, DMY, but not YM or MYY).

move-point

Alphanumeric
Is the significant point to which you wish to move. Permissible move-points are:

EOM for end of month.

BOM for beginning of month.

EOQ for end of quarter.

BOQ for beginning of quarter.

EOY for end of year.

BOY for beginning of year.

EOW for end of week.

BOW for beginning of week.

NWD for next weekday.

NBD for next business day (affected by BUSDAYS setting and holiday files).

PWD for prior weekday.

PBD for prior business day (affected by BUSDAYS setting and holiday files).

WD- for a weekday or earlier.

BD- for a business day or earlier (affected by BUSDAYS setting and holiday files).

WD+ for a weekday or later.

BD+ for a business day or later (affected by BUSDAYS setting and holiday files).

Invalid move-points result in a zero being returned.

Using Functions and Subroutines

3-82 Information Builders

Example Report Request Using DATEMOV
The following DEFINE statement defines a date called ADATE, which is May 7, 1998
and calculates significant points for this date:

DEFINE FILE CAR
ANUM/I5 WITH COUNTRY = ANUM+1;
ADATEX/YYMD WITH COUNTRY = 19980507;
ADATE/YMD = ADATEX+ANUM;
NWD/YMDWT = DATEMOV(ADATE, 'NWD');
PWD/YMDWT = DATEMOV(ADATE, 'PWD');
WDP/YMDWT = DATEMOV(ADATE, 'WD+');
WDM/YMDWT = DATEMOV(ADATE, 'WD-');
NBD/YMDWT = DATEMOV(ADATE, 'NBD');
PBD/YMDWT = DATEMOV(ADATE, 'PBD');
WBP/YMDWT = DATEMOV(ADATE, 'BD+');
WBM/YMDWT = DATEMOV(ADATE, 'BD-');
END

The following command sets the business days to Monday, Tuesday, Wednesday, and
Thursday:

SET BUSDAY = _MTWT__

The following TABLE request

TABLE FILE CAR
HEADING
"Examples of DATEMOV"
"Business days are Monday, Tuesday, Wednesday, + Thursday "
" "
"START DATE.. | MOVE POINTS..........................."

PRINT ADATE/WT AS 'DOW'
NWD/WT PWD/WT WDP/WT AS 'WD+' WDM/WT AS 'WD-'
NBD/WT PBD/WT WBP/WT AS 'BD+' WBM/WT AS 'BD-'
BY ADATE
END

yields:

Examples of DATEMOV
Business days are Monday, Tuesday, Wednesday, + Thursday

START DATE.. | MOVE POINTS...........................
ADATE DOW NWD PWD WD+ WD- NBD PBD BD+ BD-
----- --- --- --- --- --- --- --- --- ---
98/05/08 FRI MON THU FRI FRI TUE WED MON THU
98/05/09 SAT TUE THU MON FRI TUE WED MON THU
98/05/10 SUN TUE THU MON FRI TUE WED MON THU
98/05/11 MON TUE FRI MON MON TUE THU MON MON
98/05/12 TUE WED MON TUE TUE WED MON TUE TUE

 Alphabetical List of Functions and Subroutines

Developing Applications 3-83

DECODE: Decoding Values
The DECODE function assigns values based on the value of an input field.

Many times the value of a field is a coded value. For example, the field SEX may have
code F for female employees and M for male employees. This allows the value to be
stored more efficiently (in this case, one character instead of six for female, or four for
male), greatly reducing the storage requirement for the file. One method for decoding
(expanding) these values is to provide a series of nested IF … THEN … ELSE phrases.
For example,

IF SEX IS M THEN 'MALE' ELSE 'FEMALE'

but this can become very cumbersome and inefficient if there are numerous codes. The
DECODE function facilitates the handling of codes.

There are two ways to use DECODE: you can type your values directly into the DECODE
statement, or you can read your values from a separate file.

Available on: All platforms.

Syntax How to Decode Values
DECODE fieldname(code1 result1 code2 result2...[ELSE default]);

where:

fieldname

Alphanumeric or Numeric
Is the name of the input field.

code

Any supported format
Is what DECODE is searching for; once it has found the specified value, it will assign
the corresponding result. If the value has embedded blanks or commas, enclose it in
single quotation marks.

result

Any supported format
Is the value to be assigned when the field has the corresponding code. If the value has
embedded blanks or commas, enclose it in single quotation marks.

default

Any supported format
Is the value to be assigned if the code is not found among the list of codes. If this
default is omitted, DECODE will assign a blank or zero for non-matching codes.

Using Functions and Subroutines

3-84 Information Builders

Note:

• You can use up to 40 lines to define the code and result pairs for any given DECODE
expression. You can use either commas or blanks to separate the code from the result,
or one pair from another.

• When explicitly coded in a procedure, you can use up to 40 lines of DECODE pairs;
39 if you also use an ELSE phrase.

• DECODE may give numeric results. Negative numbers must be enclosed in single
quotation marks.

• Elements that contain either a comma or a blank must be enclosed in single quotation
marks.

Syntax How to Decode Values in a Separate File
DECODE fieldname(ddname [ELSE default]);

where:

fieldname

Alphanumeric or Numeric
Is the name of the input field.

ddname

Is a logical name or a shorthand name that points to the physical file name containing
the decoded values.

default

Any supported format
Is the value to be assigned if the code is not found among the list of codes. If this
default is omitted, DECODE will assign a blank or zero for non-matching codes.

Note:

• Each record in the separate file is expected to contain one pair of elements separated
by a comma or blanks.

• All data is interpreted in ASCII format on UNIX and Windows, or in EBCDIC
format on MVS or CMS, and converted to the USAGE formats of the DECODE
pairs.

• Leading and trailing blanks are ignored.

• The remainder of each record is also ignored and can be used for comments or other
data. This convention is followed in all cases, except when the file name is HOLD. In
that case the file is presumed to have been created by the FOCUS HOLD command,
which writes fields in their internal format, and the DECODE pairs are interpreted
accordingly. In this case, extraneous data in the record is ignored.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-85

• If each record in the file consists of only one element, this element is interpreted as
the code, and the result becomes either blanks or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the
screening condition

IF field IS (filename)

and as a file of literals for an IF condition specified in a computational expression.
For example:

TAKE = DECODE SELECT (filename ELSE 1);
VALUE = IF TAKE IS 0 THEN… ELSE…;

TAKE will be 0 for SELECT values found in the literal file and 1 in all other cases.
The VALUE computation is carried out as if the expression had been:

IF SELECT (filename) THEN… ELSE…;

• When using DECODE via a file, you can have up to 32,767 characters in the file.

Example Report Request Assigning Job Categories Based on
CURR_JOBCODE
The following request uses EDIT to extract the first character of the field
CURR_JOBCODE. It then uses DECODE to create a value for the field
JOB_CATEGORY.

TABLE FILE EMPLOYEE
PRINT CURR_JOBCODE AND COMPUTE
DEPX_CODE/A1 = EDIT(CURR_JOBCODE,'9$$') ; NOPRINT AND COMPUTE
JOB_CATEGORY/A15 = DECODE DEPX_CODE(A 'ADMINISTRATIVE'

B 'DATA PROCESSING') ;
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The request produces the following output:

PAGE 1

LAST_NAME CURR_JOBCODE JOB_CATEGORY
--------- ------------ ------------
BLACKWOOD B04 DATA PROCESSING
CROSS A17 ADMINISTRATIVE
GREENSPAN A07 ADMINISTRATIVE
JONES B03 DATA PROCESSING
MCCOY B02 DATA PROCESSING
SMITH B14 DATA PROCESSING

Using Functions and Subroutines

3-86 Information Builders

Example Report Request Reading DECODE Values From a File
The following request has two parts. The first part creates a file with a list of the
employee IDs for the employees who have taken classes. The second part reads this file
and assigns 0 to those employees who have taken classes and 1 to those employees who
have not. (Notice that the HOLD file contains only one column of values; therefore
DECODE assigns the value 0 to an employee when their EMP_ID appears in the file and
1 when EMP_ID does not appear in the file.)

TABLE FILE EDUCFILE
PRINT EMP_ID
ON TABLE HOLD
END

TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND FIRST_NAME AND
COMPUTE NOT_IN_LIST/I1 = DECODE EMP_ID(HOLD ELSE 1);
WHERE DEPARTMENT EQ 'MIS';
END

This request produces the following output:

PAGE 1

EMP_ID LAST_NAME FIRST_NAME NOT_IN_LIST
------ --------- ---------- -----------
112847612 SMITH MARY 0
117593129 JONES DIANE 0
219984371 MCCOY JOHN 1
326179357 BLACKWOOD ROSEMARIE 0
543729165 GREENSPAN MARY 1
818692173 CROSS BARBARA 0

DMY, MDY, YMD: Calculating the Difference Between Two Dates
The DMY, MDY, and YMD functions calculate the difference between two dates in
integer, alphanumeric, or packed format:

Available on: All platforms.

Related functions and subroutines:

• DATEDIF

• YM

 Alphabetical List of Functions and Subroutines

Developing Applications 3-87

Syntax How to Calculate the Difference Between Two Dates
function(begin, end)

where:

function

Is one of the following:
DMY calculates the difference between two dates in day-month-year order.
MDY calculates the difference between two dates in month-day-year order.
YMD calculates the difference between two dates in year-month-day order.

begin

Numeric
Is the beginning date. You may supply the actual date or the name of a field that
contains the date.

end

Numeric
Is the end date. You may supply the actual date or the name of a field that contains
the date.

Example Report Request Calculating Number of Days Between Start
Date and First Pay Raise
The following request calculates the number of days between employees’ start dates and
their first pay raise:

TABLE FILE EMPLOYEE
SUM HIRE_DATE FST.DAT_INC AS 'FIRST PAY,INCREASE' AND COMPUTE
DIFF/I4 = YMD(HIRE_DATE, FST.DAT_INC) ; AS 'DAYS,BETWEEN'
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The request produces the following output:

PAGE 1

FIRST PAY DAYS
LAST_NAME FIRST_NAME HIRE_DATE INCREASE BETWEEN
--------- ---------- --------- --------- -------
BLACKWOOD ROSEMARIE 82/04/01 82/04/01 0
CROSS BARBARA 81/11/02 82/04/09 158
GREENSPAN MARY 82/04/01 82/06/11 71
JONES DIANE 82/05/01 82/06/01 31
MCCOY JOHN 81/07/01 82/01/01 184
SMITH MARY 81/07/01 82/01/01 184

Using Functions and Subroutines

3-88 Information Builders

DOWK and DOWKL: Finding the Day of the Week
The DOWK and DOWKL subroutines find the day of the week (Sunday through
Saturday) of dates. The DOWK subroutine returns the day as a 3-letter abbreviation; to
display the full name of the day, specify DOWKL instead.

Available on: All platforms.

Syntax How to Find the Day of the Week
DOWK(indate, outfield)

or

DOWKL(indate, outfield)

where:

indate

Numeric
Is the input date in year-month-day format. If the date is not valid, the subroutine
returns spaces. If the date specifies a 2-digit year and DEFCENT and YRTHRESH
values have not been set, the subroutine assumes the 20th century.

outfield

DOWK: A4
DOWKL: A12
Is the name of the field to which the day of the week is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-89

Example Report Request Finding the Day of the Week
The following request shows on which day of the week employees were hired:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND HIRE_DATE AND COMPUTE
DATED/A4 = DOWK(HIRE_DATE, DATED);
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

EMP_ID HIRE_DATE DATED
------ --------- -----
071382660 80/06/02 MON
119265415 82/01/04 MON
119329144 82/08/01 SUN
123764317 82/01/04 MON
126724188 82/07/01 THU
451123478 82/02/02 TUE

DT Subroutines: Converting an Integer to a Date
The DT subroutines convert numbers representing the days elapsed since December 31,
1899 to corresponding dates. The DT subroutines are useful when you are performing
arithmetic on dates converted to the number of days (see DA Subroutines: Converting a
Date to an Integer on page 3-70). The DT subroutines convert the result back to date
format.

There are six DT subroutines; each one converts the numbers into dates of a different
format.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

• CHGDAT

• DA subroutines

• DATEDIF

Using Functions and Subroutines

3-90 Information Builders

Syntax How to Convert Integers to Dates
subroutine(number, outfield)

where:

subroutine

Is one of the following:
DTDMY converts numbers to day-month-year dates.
DTDYM converts numbers to day-year-month dates.
DTMDY converts numbers to month-day-year dates.
DTMYD converts numbers to month-year-day dates.
DTYDM converts numbers to year-day-month dates.
DTYMD converts numbers to year-month-day dates.

number

Numeric
Is the number of days. The number is truncated to an integer.

outfield

Integer
Is the name of the field to which the corresponding date is returned. The date format
is determined by the subroutine, as explained above. This argument can also be the
format of the output value, enclosed in single quotation marks.

Example Report Request Converting Integer to Date
The following request takes a date that has been converted to the number of days (34650)
and converts it back to the corresponding date, in month-day-year format:

-* THIS PROCEDURE CONVERTS HIRE_DATE, WHICH IS IN I6YMD FORMAT,
-* TO A DATE IN I8MDYY FORMAT.
-* FIRST IT USES THE DAYMD SUBROUTINE TO CONVERT HIRE_DATE
-* TO A NUMBER OF DAYS.
-* THEN IT USES THE DTMDY SUBROUTINE TO CONVERT THIS NUMBER OF
-* DAYS TO I8MDYY FORMAT
-*
DEFINE FILE EMPLOYEE
NEWF/I8 WITH EMP_ID=DAYMD(HIRE_DATE,NEWF);
NEW_HIRE_DATE/I8MDYY WITH EMP_ID=DTMDY(NEWF,NEW_HIRE_DATE);
END
TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE
BY FN BY LN
WHERE DEPARTMENT EQ 'MIS'
END

 Alphabetical List of Functions and Subroutines

Developing Applications 3-91

The request produces the following output:

PAGE 1

FIRST_NAME LAST_NAME HIRE_DATE NEW_HIRE_DATE
---------- --------- --------- -------------
BARBARA CROSS 81/11/02 11/02/1981
DIANE JONES 82/05/01 05/01/1982
JOHN MCCOY 81/07/01 07/01/1981
MARY GREENSPAN 82/04/01 04/01/1982

SMITH 81/07/01 07/01/1981
ROSEMARIE BLACKWOOD 82/04/01 04/01/1982

EDIT: Converting the Format of a Field
You can use the EDIT function to convert an alphanumeric field that contains numeric
characters to numeric format, or to convert a numeric field to alphanumeric format. This
is useful when you need to manipulate the field using a command or keyword that
requires a particular format.

Note: The EDIT function also extracts characters from or adds characters to an
alphanumeric string. For more information, see Report Request Converting Numeric Date
to Full Name on page 3-55.

Available on: All platforms.

Related functions and subroutines:

FTOA

Syntax How to Convert Field Formats
EDIT(fieldname);

where:

fieldname

Alphanumeric or Numeric
Is the field name, enclosed in parentheses.

When you use EDIT to assign the converted value to a field, the format of the new field
must correspond to the format of the returned value. For example, if you use EDIT to
convert a numeric field to alphanumeric format, and then assign the resulting value to an
alphanumeric field, you must give the new field an alphanumeric format as follows:

DEFINE ALPHAPRICE/A6 = EDIT(PRICE);

When converting an alphanumeric field to numeric format, a sign or decimal point in the
field is accepted and is reflected in the value stored in the numeric field.

Using Functions and Subroutines

3-92 Information Builders

When converting a floating-point or packed-decimal field to alphanumeric format, EDIT
removes the sign, the decimal point, and any number to the right of the decimal point. It
then right-justifies the remaining digits and adds leading zeros to the specified field
length. Also, converting a number with more than nine significant digits in floating-point
or packed-decimal format may produce an incorrect result.

Example Report Request That Converts HIRE_DATE to Alphanumeric
Format
The following request uses the CHGDAT subroutine to spell out an employee’s hire date.
However, CHGDAT expects its input date to be in alphanumeric format, and the
HIRE_DATE field is numeric. Therefore, this report request defines a hidden field,
ALPHA_HIRE, containing the contents of HIRE_DATE converted to alphanumeric
format. Then CHGDAT uses ALPHA_HIRE as input.

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A17 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX',ALPHA_HIRE,'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS'
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE HIRE_MDY
--------- ---------- --------- --------
BLACKWOOD ROSEMARIE 82/04/01 APRIL 01 1982
CROSS BARBARA 81/11/02 NOVEMBER 02 1981
GREENSPAN MARY 82/04/01 APRIL 01 1982
JONES DIANE 82/05/01 MAY 01 1982
MCCOY JOHN 81/07/01 JULY 01 1981
SMITH MARY 81/07/01 JULY 01 1981

 Alphabetical List of Functions and Subroutines

Developing Applications 3-93

EDIT: Extracting or Adding Characters
You can use the EDIT function to extract characters from or add characters to an
alphanumeric string.

If you want to use EDIT to extract characters from a string, you can also use SUBSTR.
The differences are:

• The EDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

• The SUBSTR subroutine can vary the position of the substring depending on the
values of other fields.

Note: The EDIT function also converts the format of a field. For more information, see
Report Request Converting Integer to Date on page 3-90.

Available on: All platforms.

Related functions and subroutines:

SUBSTR

Syntax How to Extract or Add Characters
EDIT(fieldname, 'mask');

where:

fieldname

Alphanumeric or Numeric
Is the name of the source field.

mask

Alphanumeric
Is a string, enclosed in single quotation marks (').

EDIT compares the characters in the mask to the characters in the source field. When it
encounters a 9 in the mask, EDIT copies the corresponding character from the source
field to the new field. When it encounters a $ (dollar sign) in the mask, EDIT ignores the
corresponding character in the source field. When it encounters any other character in the
mask, EDIT copies that character to the corresponding position in the new field.

Note: To obtain the correct results, the length of the mask, excluding any characters other
than 9 and $, must be the length of the source field. In other words, the total number of
9’s and $’s must match the length of the field.

Using Functions and Subroutines

3-94 Information Builders

Example Report Request Extracting First Initial of FIRST_NAME and
Adding Dashes to EMP_ID
The following request shows how you can use masking to extract the first initial from
FIRST_NAME and add dashes to EMP_ID. EMP_ID has the format A9; FIRST_NAME
has the format A10. The request produces two new fields, FIRST_INIT and
EMPIDEDIT, which contain the first initial, and an employee ID with dashes added to
enhance readability, respectively.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
FIRST_INIT/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$');
EMPIDEDIT/A11 = EDIT(EMP_ID, '999-99-9999');
WHERE DEPARTMENT EQ 'MIS';
END

The request produces the following output.

PAGE 1

LAST_NAME FIRST_INIT EMPIDEDIT
--------- ---------- ---------
SMITH M 112-84-7612
JONES D 117-59-3129
MCCOY J 219-98-4371
BLACKWOOD R 326-17-9357
GREENSPAN M 543-72-9165
CROSS B 818-69-2173

 Alphabetical List of Functions and Subroutines

Developing Applications 3-95

EXP: Raising “e” to the Nth Power
The EXP subroutine raises the value “e” (approximately 2.72) to any power you specify.
This subroutine is the inverse of the LOG function, which returns an argument’s
logarithm.

The subroutine calculates the answer by adding terms of an infinite series. If a term adds
less than .000001 percent to the sum, the subroutine ends the calculation and returns the
result as a double-precision number.

Available on: All platforms.

Related subroutines:

LOG

Syntax How to Raise “e” to the Nth Power
EXP(power, outfield)

where:

power

Numeric
Is the power that “e” is being raised to.

outfield

Double-precision
Is the name of the field that contains the result. This argument can also be the format
of the output value, enclosed in single quotation marks.

Example Raising “e” to the Nth Power
The following Dialogue Manager procedure raises “e” to the power you specify and
returns the result rounded to the nearest integer (the 0.5 added to the result is a rounding
constant). To determine “e” to the third power, set the &POW variable to 3.

-SET &POW = '3';
-SET &RESULT = EXP(&POW, 'D15.3') + 0.5;
-TYPE E TO THE &POW POWER IS APPROXIMATELY &RESULT

The result is 20:

E TO THE 3 POWER IS APPROXIMATELY 20

Using Functions and Subroutines

3-96 Information Builders

EXPN: Evaluating Scientific Notation
The EXPN function evaluates an argument expressed in scientific notation.

Available on: All platforms.

Syntax How to Evaluate Scientific Notation
EXPN(argument)

where:

argument

Is the value on which the function operates and should have the following format

n.nn {E|D} {+|-} p

where:
n.nn is a numeric constant that consists of a whole number component, followed by a
decimal point, followed by a fractional component.
{E|D} denotes scientific notation. E and D are interchangeable.
p is the power of 10 to which you want to raise the number.
You may supply the actual value, the name of a field that contains the value, or an
expression that returns the value. The expression may call a function or a subroutine.
For example, you can use scientific notation to express 103 as:

1.03E+2

FEXERR: Retrieving FOCUS Error Messages
The FEXERR subroutine retrieves a specified FOCUS error message. FOCUS error
messages may consist of up to four lines of text:

• The first line contains the message.

• The remaining three may contain a detailed explanation, if it exists.

The subroutine retrieves the first line, the message portion. This subroutine is especially
useful in procedures when the display of output messages is suppressed for a FOCUS
session. Examples of commands that suppress messages are the CMS halt typing
command (SET CMSTYPE HT) or the FOCUS terminal output command (SET
TRMOUT=OFF).

Available on: All platforms.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-97

Syntax How to Retrieve FOCUS Error Messages
FEXERR(nnnnn, 'A72')

where:

nnnnn

Numeric
Is the FOCUS error number, up to five digits.

'A72'

Is the format of the output value, enclosed in single quotation marks, which contains
the retrieved message. The maximum length of FOCUS error messages is 72
characters. For Maintain, specify the field name.

Example Retrieving FOCUS Error Messages
This Dialogue Manager request initiates a global variable (&&MSGVAR) to store the
retrieved message as a concatenated string, assigns the FOCUS error number 650 to a
local variable (&ERR), and displays the message. The FEXERR subroutine retrieves the
message for the error number specified as a variable.

The request is:

-SET &ERR = 650;
-SET &&MSGVAR = FEXERR(&ERR, 'A72');
-TYPE &&MSGVAR

When you execute this request, it displays the message for FOCUS error number 650:

(FOC650) THE DISK IS NOT ACCESSED
>

FINDMEM: Finding a Member of a Partitioned Data Set
The FINDMEM subroutine, used on MVS or batch only, determines if a specific member
of a partitioned data set (PDS) exists. This subroutine is especially useful in Dialogue
Manager procedures.

In order to use this subroutine, the PDS must be allocated to a ddname, because the
ddname is specified in the subroutine call. You can search multiple partitioned data sets
with one subroutine call if the partitioned data sets are concatenated to one ddname.

Available on: MVS.

Related functions and subroutines:

GETPDS

Using Functions and Subroutines

3-98 Information Builders

Syntax How to Find a Member of a Partitioned Data Set
FINDMEM(ddname, member, outfield)

where:

ddname

A8
Is the ddname to which the PDS is allocated. This argument must be eight characters
long or a variable. If you are using a literal for this argument, enclose it in single
quotation marks. If it is less than eight characters, pad the literal with trailing blanks.

member

A8
Is the member you are searching for. This argument must be eight characters long. If
you are using a literal for this argument that has less than eight characters, pad the
literal with trailing blanks.

outfield

A1
Is the name of the field that contains the result of the search: Y, N, or E. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

The subroutine searches the PDS for a specified member and returns the letter Y, N, or E:

Y

The member exists in the PDS.

N

The member does not exist in the PDS.

E

An error occurred. This can occur for two reasons:

1. The data set is not allocated to the ddname.

2. The data set allocated to the ddname is not a PDS (and may be a sequential file).

 Alphabetical List of Functions and Subroutines

Developing Applications 3-99

Example Finding the Member of a Partitioned Data Set
This Dialogue Manager procedure executes a report request if the EMPLOYEE Master
File exists. The FINDMEM subroutine searches the PDS allocated to ddname MASTER
for the EMPLOYEE Master File. If the subroutine does not find the description, the
procedure returns the appropriate message.

The procedure is:

-SET &FINDCODE = FINDMEM('MASTER ', 'EMPLOYEE', 'A1');
-IF &FINDCODE EQ 'N' GOTO NOMEM;
-IF &FINDCODE EQ 'E' GOTO NOPDS;
-TYPE MEMBER EXISTS, RETURN CODE = &FINDCODE
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME BY FIRST_NAME
WHERE RECORDLIMIT EQ 4
END
-EXIT
-NOMEM
-TYPE EMPLOYEE NOT FOUND IN MASTER FILE PDS
-EXIT
-NOPDS
-TYPE ERROR OCCURRED IN SEARCH
-TYPE CHECK IF FILE IS A PDS ALLOCATED TO DDNAME MASTER
-EXIT

In this sample execution, the procedure finds the member and displays the report:

MEMBER EXISTS, RETURN CODE = Y
> NUMBER OF RECORDS IN TABLE= 4 LINES= 4

PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY

PAGE 1

LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------
JONES DIANE $18,480.00
SMITH MARY $13,200.00

RICHARD $9,500.00
STEVENS ALFRED $11,000.00

Using Functions and Subroutines

3-100 Information Builders

FTOA: Converting a Number to Alphanumeric Format
The FTOA subroutine converts numbers from numeric format to alphanumeric format.

The EDIT function also converts numbers from numeric to alphanumeric format, but
there are differences between FTOA and EDIT:

• FTOA retains the decimal portions of numbers, whereas EDIT truncates numbers to
integers.

• FTOA stores numbers right-justified with leading spaces, whereas EDIT stores
numbers right-justified with leading zeros.

• FTOA enables you to add edit options to the converted number; whereas EDIT does
not.

• FTOA can process any number up to 16 digits; EDIT can process any number up to
nine digits and certain numbers up to ten digits. (The limit for EDIT is due to the
internal representation of the number as a 4-byte integer.)

Available on: All platforms.

Syntax How to Convert Numbers to Characters
FTOA(number, '(format)', outfield)

where:

number

Numeric
Is the number to be converted or the field containing the number.

'(format) '

Alphanumeric
Is the format of the number as it is stored in numeric format, enclosed in both single
quotation marks and parentheses. Only F and D formats are supported. Include any
edit options that you want to appear in the output.
Note: If you are using a field for this argument, specify the field name without
quotation marks or parentheses. The values in the field must be enclosed in
parentheses.

outfield

Alphanumeric
Is the name of the field to which the number in alphanumeric format is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks. The length of this argument must be greater than the length of the number
argument and must account for edit options and a possible negative sign. The D
format automatically supplies commas.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-101

Example Report Request Converting GROSS Salary to Alphanumeric
Format
The following request converts the GROSS salary field from decimal to alphanumeric
format:

TABLE FILE EMPLOYEE
PRINT GROSS AND COMPUTE
ALPHA_GROSS/A14 = FTOA(GROSS, '(D12.2)', ALPHA_GROSS);
BY LAST_NAME
END

The request produces the following output:

PAGE 1

LAST_NAME GROSS ALPHA_GROSS
--------- ----- -----------
BLACKWOOD $1,815.00 1,815.00
CROSS $2,255.00 2,255.00
IRVING $2,238.50 2,238.50
JONES $1,540.00 1,540.00
MCKNIGHT $1,342.00 1,342.00
ROMANS $1,760.00 1,760.00
SMITH $1,100.00 1,100.00
STEVENS $916.67 916.67

GETPDS: Determining if a Member of a Partitioned Data Set Exists
The GETPDS subroutine determines if a specific member of a partitioned data set (PDS)
exists and, if so, returns the PDS name. This subroutine is especially useful in Dialogue
Manager procedures. The FINDMEM subroutine is almost identical to the GETPDS
subroutine, except that the GETPDS subroutine provides either the PDS name or different
status codes.

In order to use this subroutine, the PDS must be allocated to a ddname, because the
ddname is specified in the subroutine call. You can search multiple partitioned data sets
with one subroutine call if the partitioned data sets are concatenated to one ddname.

Available on: MVS.

Related functions and subroutines:

FINDMEM

Using Functions and Subroutines

3-102 Information Builders

Syntax How to Determine if a Member Exists
GETPDS(ddname, member, outfield)

where:

ddname

A8
Is the ddname to which the PDS is allocated. This argument must be eight characters
long or a variable. If you are using a literal for this argument, enclose it in single
quotation marks. If it is less than eight characters, pad the literal with trailing blanks.

member

A8
Is the member you are searching for. This argument must be eight characters long. If
you are using a literal for this argument that has less than eight characters, pad the
literal with trailing blanks.

outfield

A44
Is the name of the field that contains the result of the search. This argument must be
44 characters long, because the maximum length for a PDS name is 44. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

The subroutine searches the PDS for a specified member and returns one of four values:

PDS name

If the specified member exists, the PDS name that contains it.

*D

The ddname is not assigned (allocated) to a data set.

*M

The member does not exist in the PDS.

*E

An error occurred. This often occurs because the data set allocated to the ddname is
not a PDS (and may be a sequential file).

 Alphabetical List of Functions and Subroutines

Developing Applications 3-103

Example Determining if a Member Exists
This Dialogue Manager procedure returns the name of the PDS if the EMPLOYEE
Master File exists. The GETPDS subroutine searches the PDS allocated to ddname
MASTER for the EMPLOYEE Master File.

-SET &DDNAME = 'MASTER ';
-SET &MEMBER = 'EMPLOYEE';
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME,&MEMBER,&PNAME);
-IF &PNAME EQ '*D' THEN GOTO DDNOAL;
-IF &PNAME EQ '*M' THEN GOTO MEMNOF;
-IF &PNAME EQ '*E' THEN GOTO DDERROR;
-*
-TYPE MEMBER &MEMBER IS FOUND IN
-TYPE THE PDS &PNAME
-TYPE ALLOCATED TO &DDNAME
-*
-EXIT
-DDNOAL
-*
-TYPE DDNAME &DDNAME NOT ALLOCATED
-*
-EXIT
-MEMNOF
-*
-TYPE MEMBER &MEMBER NOT FOUND UNDER DDNAME &DDNAME
-*
-EXIT
-DDERROR
-*
-TYPE ERROR IN GETPDS; DATA SET PROBABLY NOT A PDS.
-*
-EXIT

A sample execution is:

MEMBER EMPLOYEE IS FOUND IN
THE PDS USER1.MASTER.DATA
ALLOCATED TO MASTER
> >

Using Functions and Subroutines

3-104 Information Builders

Example Using GETPDS With TED
In this example, the GETPDS subroutine searches for a specified member in the
production MASTER.DATA partitioned data set and returns the PDS name. The
DYNAM commands copy the specified member from the production PDS to your local
PDS. Then, the TED editor enables you to edit the member. The ddnames are allocated
earlier in the session: the production PDS is allocated to the ddname MASTER; your
local PDS to ddname MYMASTER.

-* If the MASTER file in question is in the 'production' pds, it must
-* be copied to a 'local' pds, which has been allocated previously to the
-* ddname MYMASTER before any changes can be made.
-* Assume the MASTER in question is supplied via a -CRTFORM, with
-* a length of 8 characters, as &MEMBER
-*
-SET &DDNAME = 'MASTER ';
-SET &MEMBER = &MEMBER;
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME,&MEMBER,&PNAME);
-IF &PNAME EQ '*D' OR '*M' OR '*E' THEN GOTO DDERROR;
-*
DYNAM ALLOC FILE XXXX DA -

&PNAME MEMBER &MEMBER SHR
DYNAM COPY XXXX MYMASTER MEMBER &MEMBER
-RUN
TED MYMASTER(&MEMBER)
-EXIT
-*
-DDERROR
-*
-TYPE Error in GETPDS; Check allocation for &DDNAME for
-TYPE proper allocation.
-*
-EXIT

Earlier in the FOCUS session, allocate the ddnames:

> > tso alloc f(master) da('wibfoc.p7009505.master.data') shr
> > tso alloc f(mymaster) da('user1.master.data') shr

 Alphabetical List of Functions and Subroutines

Developing Applications 3-105

After you execute the procedure, specify the EMPLOYEE member. The member is
copied to your local PDS and you enter TED.

PLEASE SUPPLY VALUES REQUESTED

MEMBER= > employee

MYMASTER(EMPLOYEE) SIZE=37 LINE=0

00000 * * * TOP OF FILE * * *
00001 FILENAME=EMPLOYEE, SUFFIX=FOC
00002 SEGNAME=EMPINFO, SEGTYPE=S1
00003 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
00004 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
00005 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
00006 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
00007 FIELDNAME=DEPARTMENT, ALIAS=DPT, FORMAT=A10, $

Example Using GETPDS With Query Commands
Suppose you wanted to review the attributes of the PDS that contained a specific member.
This Dialogue Manager procedure searches for the EMPLOYEE member in the PDS
allocated to the ddname MASTER and, based on its existence, allocates the PDS name to
the ddname TEMPMAST. Dialogue Manager MVS system variables are used to display
the attributes.

-SET &DDNAME = 'MASTER ';
-SET &MEMBER = 'EMPLOYEE';
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME,&MEMBER,&PNAME);
-IF &PNAME EQ '*D' OR '*M' OR '*E' THEN GOTO DDERROR;
-*
DYNAM ALLOC FILE TEMPMAST DA -

&PNAME SHR
-RUN
-? MVS DDNAME TEMPMAST
-TYPE The data set attributes include:
-TYPE Data set name is: &DSNAME
-TYPE Volume is: &VOLSER
-TYPE Disposition is: &DISP
-EXIT
-*
-DDERROR
-TYPE Error in GETPDS; Check allocation for &DDNAME for
-TYPE proper allocation.
-*
-EXIT

Using Functions and Subroutines

3-106 Information Builders

A sample execution follows:

> THE DATA SET ATTRIBUTES INCLUDE:
DATA SET NAME IS: USER1.MASTER.DATA
VOLUME IS: USERMO
DISPOSITION IS: SHR
>

When you execute this procedure, it searches the PDS allocated to ddname MASTER for
the member EMPLOYEE. Since the procedure locates the member, it displays the
attributes for the MASTER PDS.

GETTOK: Getting a Token From a String
The GETTOK subroutine divides a character string where a specific character, called the
delimiter, occurs in the string. It then returns one of the substrings, called a token.

For example, suppose you want to extract the fourth word from a sentence. The
subroutine divides the sentence into words using spaces as delimiters, then extracts the
fourth word. If the string is not divided by a delimiter character, use the PARAG
subroutine.

Available on: All platforms.

Related functions and subroutines:

PARAG

 Alphabetical List of Functions and Subroutines

Developing Applications 3-107

Syntax How to Divide a Character String
GETTOK(infield, inlen, toknum, 'delim', outlen, outfield)

where:

infield

Alphanumeric
Is the field containing the parent character string.

inlen

Integer
Is the length of the parent string. If this argument is less than or equal to 0, the
subroutine returns spaces.

toknum

Integer
Is the number of the token you want extracted. If this argument is positive, the tokens
are numbered from left to right. If this argument is negative, the tokens are numbered
from the right to left (for example, an argument of -2 indicates the second to the last
token in the string). If this argument is 0, the subroutine returns spaces. Leading and
trailing null tokens are ignored.

delim

Alphanumeric
Is the delimiter character in the parent string, enclosed in single quotation marks. If
you specify more than one character, only the first character is used.

outlen

Integer
Is the maximum size of the token. If this argument is less than or equal to 0, the
subroutine returns spaces. If the token is longer than this argument, it is truncated; if
it is shorter, it is padded with trailing spaces.

outfield

Alphanumeric
Is the name of the field to which the token is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.
Note: The delimiter is not included in the token.

Tip:

In Dialogue Manager, to prevent the conversion of a delimiter blank character (' ') to a
double precision zero, include a non-numeric character after the blank (for example, ' %').
GETTOK uses only the first character (the blank) as a delimiter and the extra character
(%) prevents conversion to double precision.

Using Functions and Subroutines

3-108 Information Builders

Example Report Request Extracting Zip Code From Address
The following request uses a single blank space as a delimiter to break an address line
into tokens and returns the last token, which is the zip code:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
LAST_TOKEN/A10 = GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, LAST_TOKEN) ;
AS 'LAST TOKEN,(ZIP CODE)'
WHERE TYPE EQ 'HSM'
END

The request produces the following output:

PAGE 1

LAST TOKEN
ADDRESS_LN3 (ZIP CODE)
----------- ----------
RUTHERFORD NJ 07073 07073
NEW YORK NY 10039 10039
FREEPORT NY 11520 11520
NEW YORK NY 10001 10001
FREEPORT NY 11520 11520
ROSELAND NJ 07068 07068
JERSEY CITY NJ 07300 07300
FLUSHING NY 11354 11354

GETUSER: Retrieving the User ID
The GETUSER subroutine retrieves the user ID (userid) of the connected user.

In MVS FOCUS, it can also retrieve the name of an MVS batch job if you run it from the
batch job. To retrieve a logon ID for MSO, use the MSOINFO subroutine described in
the FOCUS for IBM Mainframe Multi-Session Option Installation and Technical
Reference Guide.

Available on: All platforms.

Syntax How to Retrieve the User ID
GETUSER(outfield)

where:

outfield

Alphanumeric eight bytes
Is the name of the field that contains the user ID. Specify a field that is eight bytes
long. This argument can also be the format of the output value, enclosed in single
quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-109

Example Report Request Returning User ID of Person Executing Request
The following request returns employees’ department assignments and salaries; the report
heading returns the user ID of the person executing the request:

DEFINE FILE EMPLOYEE
USERID/A8 WITH EMP_ID = GETUSER(USERID);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES'
BY DEPARTMENT
HEADING
"SALARY REPORT RUN FROM USERID: <USERID"
" "
END

The request produces the following output:

PAGE 1

SALARY REPORT RUN FROM USERID: USER1

DEPARTMENT TOTAL SALARIES
---------- --------------
MIS $108,002.00
PRODUCTION $114,282.00

GREGDT: Converting From Julian to Gregorian Format
The GREGDT subroutine converts dates in Julian format to year-month-day format.
Dates in Julian format are 5- or 7-digit numbers. The first two or four digits are the year;
the last three digits are the number of the day counting from January 1. For example,
January 1, 1987 in Julian format is either 87001 or 1987001, and December 31, 1987 is
either 87365 or 1987365.

Depending on the format of the output, GREGDT converts Julian dates to either YMD or
YYMD format, using the DEFCENT and YRTHRESH settings.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine (which only supports 5-digit input dates and produces only YMD output),
change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

JULDAT

Using Functions and Subroutines

3-110 Information Builders

Syntax How to Convert Julian Format Dates to Gregorian Format
GREGDT(indate, outfield)

where:

indate

Numeric
Is the Julian date, which is truncated to an integer before conversion. Each value
must be a 5- or 7-digit number after truncation. The first two or four digits represent
the year, the last three digits must be between 001 and 365 (366 for a leap year). If
the date is invalid, the subroutine returns a 0.

outfield

Integer at least I6
Is the name of the field to which the date in year-month-day format is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks. For Maintain, specify the field name.

GREGDT returns dates in the following format:

 If the format is I6 or I7 If the format is I8 or greater

If DATEFNS=ON
(the default)

YMD YYMD (GREGDT uses the
DEFCENT and YRTHRESH
settings to determine the century, if
necessary).

If DATEFNS=OFF YMD YMD

Example

 Alphabetical List of Functions and Subroutines

Developing Applications 3-111

Example Report Request Converting Date to Julian and Gregorian Date
The following request converts HIRE_DATE to both a Julian date and a Gregorian date:

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND
COMPUTE JULIAN/I5 = JULDAT(HIRE_DATE, JULIAN); AND
COMPUTE GREG_DATE/I8 = GREGDT(JULIAN, 'I8');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE JULIAN GREG_DATE
--------- ---------- --------- ------ ---------
BANNING JOHN 82/08/01 82213 19820801
IRVING JOAN 82/01/04 82004 19820104
MCKNIGHT ROGER 82/02/02 82033 19820202
ROMANS ANTHONY 82/07/01 82182 19820701
SMITH RICHARD 82/01/04 82004 19820104
STEVENS ALFRED 80/06/02 80154 19800602

Notice that GREGDT determines the century (using the DEFCENT and YRTHRESH
settings).

Using Functions and Subroutines

3-112 Information Builders

HADD: Incrementing a Date-Time Field
The HADD subroutine in an expression to increment a date-time field by a given number
of units.

Syntax How to Increment a Date-Time Field
HADD (dtfield, 'component', increment, length, 'Hformat')

where:

dtfield

Is the date-time value to increment. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

component

Is the name of the component to be incremented, enclosed in single quotation marks.
See Component Names and Values for Use With Date-Time Functions on page 3-8
for a list of supported components.

increment

Is the number of units by which to increment the specified component. You can
supply the actual value, the name of a numeric field that contains the value, or an
expression that returns the value.

length

Is the length of the returned date-time value. Valid values are:
8 for time values down to milliseconds.
10 for time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single quotation
marks.

Example Incrementing the Month Component of a Date-Time Field
The following adds two months to the TRANSDATE field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME ADD_MONTH
------ --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00

 Alphabetical List of Functions and Subroutines

Developing Applications 3-113

If necessary, the day is adjusted to be valid for the resulting month.

HCNVRT: Converting a Date-Time Field to Alphanumeric Format
The HCNVRT subroutine converts a date-time field to alphanumeric format for use with
operators such as EDIT, CONTAINS, and LIKE.

Syntax How to Convert a Date-Time Field to Alphanumeric Format
HCNVRT (dtfield, '(Hfmt)', rlength, 'Ann')

where:

dtfield

Is the date-time value to convert. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

Hfmt

Is the USAGE format of the date-time field being converted, enclosed in parentheses
and single quotation marks.

rlength

Is the length of the alphanumeric field returned. You can supply the actual value, the
name of a numeric field that contains the value, or an expression that returns the
value. If rlength is smaller than the number of characters needed to display the
alphanumeric field, a blank field is returned.

Ann

Is the USAGE format of the returned alphanumeric value, enclosed in single
quotation marks.

Example Converting a Date-Time Field to Alphanumeric Format
The following converts the TRANSDATE field to alphanumeric format:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ALPHA_DATE_TIME1/A20 = HCNVRT (TRANSDATE,'(H17)', 17, 'A20');
ALPHA_DATE_TIME2/A20 = HCNVRT (TRANSDATE,'(HYYMDS)', 20, 'A20');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME ALPHA_DATE_TIME1 ALPHA_DATE_TIME2
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

Using Functions and Subroutines

3-114 Information Builders

HDATE: Converting the Date Portion of a Date-Time Field to a Date
Format

The HDATE subroutine extracts the date portion of a date-time field and converts it to a
date format.

Syntax How to Convert the Date Portion of a Date-Time Field to a
Date Format
HDATE (dtfield, 'dateformat')

where:

dtfield

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

dateformat

Is the USAGE format of the returned date field (for example, YMD), enclosed in
single quotation marks.

Example Converting the Date Portion of the TRANSDATE Field to a Date
Format
The following request converts the date portion of the TRANSDATE field to date format
YYMD:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME TRANSDATE_DATE
------ --------- --------------
1118 2000/06/26 05:45 2000/06/26
1237 2000/02/05 03:30 2000/02/05

 Alphabetical List of Functions and Subroutines

Developing Applications 3-115

HDIFF: Finding the Number of Units Between Two Date-Time Values
You can use the HDIFF subroutine in an expression to find the number of boundaries of a
given type crossed in going from date 2 to date 1.

Syntax How to Find the Number of Units Between Two Date-Time
Values
HDIFF (dtfield1, dtfield2, 'component', 'Dformat')

where:

dtfield1

Is the ending date-time value. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

dtfield2

Is the starting date-time value. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

component

Is the name of the component to be used in the calculation, enclosed in single
quotation marks. If the unit is weeks, the WEEKFIRST setting is used in the
calculation. See Component Names and Values for Use With Date-Time Functions
on page 3-8 for a list of supported components.

Dformat

Is the USAGE format of the resulting number of units, enclosed in single quotation
marks. The format type must be D.

Example Finding the Number of Days Between Two Date-Time Fields
The following request finds the number of days between the ADD_MONTH and
TRANSDATE fields:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
DIFF_DAYS/D12.2 = HDIFF(ADD_MONTH, TRANSDATE, 'DAY', 'D12.2');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME ADD_MONTH DIFF_DAYS
------ --------- --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00 61.00
1237 2000/02/05 03:30 2000/04/05 03:30:00 60.00

Using Functions and Subroutines

3-116 Information Builders

HDTTM: Converting a Date field to a Date-Time Field
You can use the HDTTM subroutine in an expression to convert a date field to a
date-time field. The time portion is set to midnight.

Syntax How to Convert a Date field to a Date-Time Field
HDTTM (datefield, {8|10}, Hformat)

where:

datefield

Is the date value to be converted. You can supply the name of a date field, a date
constant, or an expression that returns a date value.

8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value.

Example Converting a Date Field to a Date-Time Field
The following request converts the date field TRANSDATE_DATE to a date-time field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
DT2/HYYMDIA = HDTTM(TRANSDATE_DATE, 8, 'HYYMDIA');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME TRANSDATE_DATE DT2
------ --------- -------------- ---
1118 2000/06/26 05:45 2000/06/26 2000/06/26 12:00AM
1237 2000/02/05 03:30 2000/02/05 2000/02/05 12:00AM

 Alphabetical List of Functions and Subroutines

Developing Applications 3-117

HEXBYT: Converting a Number to a Character
The HEXBYT subroutine allows you to obtain the ASCII or EBCDIC character
equivalent of a decimal integer value. This subroutine returns a single alphanumeric
character in the ASCII or EBCDIC character set. You can use this subroutine to produce
characters that are not on your keyboard, similar to the CTRAN subroutine.

Note: The display of special characters depends upon your software and hardware; not all
special characters may display. Printable EBCDIC and ASCII characters and their integer
equivalents are listed in character charts.

Available on: All platforms.

Related functions and subroutines:

• BYTVAL

• CTRAN

Syntax How to Convert a Number to a Character
HEXBYT(input, output)

where:

input

Numeric
Is the decimal value to be translated to a single character. A value greater than 255 is
treated as the remainder of (input/256).

output

Alphanumeric
Is the resulting alphanumeric character.

Example Report Request Determining Decimal Value of Character
The following request uses BYTVAL to determine the ASCII or EBCDIC code for the
first letter of LAST_NAME, and then uses HEXBYT to convert the code back to a letter.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');
COMPUTE LAST_INIT/A1 = HEXBYT(LAST_INIT_CODE, LAST_INIT);
WHERE DEPARTMENT EQ 'MIS';
END

Using Functions and Subroutines

3-118 Information Builders

The request produces the following output on ASCII platforms:

PAGE 1

LAST_NAME LAST_INIT_CODE LAST_INIT
--------- -------------- ---------
SMITH 83 S
JONES 74 J
MCCOY 77 M
BLACKWOOD 66 B
GREENSPAN 71 G
CROSS 67 C

The request produces the following output on EBCDIC platforms:

PAGE 1

LAST_NAME LAST_INIT_CODE LAST_INIT
--------- -------------- ---------
SMITH 226 S
JONES 209 J
MCCOY 212 M
BLACKWOOD 194 B
GREENSPAN 199 G
CROSS 195 C

Example Report Request Inserting Braces
The following request displays the names of employees and their salaries. The names of
employees earning less than $12,000 a year are enclosed in braces. The braces are
produced by the HEXBYT subroutine. The integer equivalent for the left brace is 192; for
the right, 208.

DEFINE FILE EMPLOYEE
BRACE/A17 = HEXBYT(192, 'A1') | LAST_NAME | HEXBYT(208, 'A1');
BNAME/A17 = IF CURR_SAL LT 12000 THEN BRACE

ELSE LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT BNAME CURR_SAL BY EMP_ID
END

 Alphabetical List of Functions and Subroutines

Developing Applications 3-119

The resulting output is:

PAGE 1

EMP_ID BNAME CURR_SAL
------ ----- --------
071382660 {STEVENS } $11,000.00
112847612 SMITH $13,200.00
117593129 JONES $18,480.00
119265415 {SMITH } $9,500.00
119329144 BANNING $29,700.00
123764317 IRVING $26,862.00
126724188 ROMANS $21,120.00
219984371 MCCOY $18,480.00
326179357 BLACKWOOD $21,780.00
451123478 MCKNIGHT $16,100.00
543729165 {GREENSPAN } $9,000.00
818692173 CROSS $27,062.00

Note: If you are using the Hot Screen facility, some unusual characters cannot be
displayed. If Hot Screen does not support the character you chose, enter the FOCUS
command

SET SCREEN = OFF
RETYPE

and redisplay the output which will appear as regular terminal output. If your terminal can
display the character, the character will appear. The display of special characters depends
upon your software and hardware; not all special characters may display.

HGETC: Storing the Current Date and Time in a Date-Time Field
You can use the HGETC subroutine in an expression to store the current date and time in
a date-time field. If millisecond or microsecond values are not available in your operating
environment, the value returned for these components is zero.

Syntax How to Store the Current Date and Time in a Date-Time Field
HGETC ({8|10}, 'Hformat')

where:

8 | 10

Is the length of the returned date-time value. Use 8 for time values down to
milliseconds, 10 for input time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single quotation
marks.

Using Functions and Subroutines

3-120 Information Builders

Example Storing the Current Date and Time in a Date-Time Field
The following request stores the current date and time in field DT2:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DT2/HYYMDm = HGETC(10, 'HYYMDm');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME DT2
------ --------- ---
1118 2000/06/26 05:45 2000/10/03 15:34:24.000000
1237 2000/02/05 03:30 2000/10/03 15:34:24.000000

HHMMSS: Returning the Current Time
The HHMMSS subroutine retrieves the current time from the system. It returns the time
as an eight-character string with embedded periods separating the hours, minutes, and
seconds.

Note:

• &TOD returns the current time of day.

• Compiled MODIFY procedures must use the HHMMSS subroutine to obtain the
time; they cannot use the &TOD variable. The &TOD variable is made current only
when you execute a MODIFY, SCAN, or FSCAN procedure.

Available on: All platforms.

Syntax How to Retrieve the Current Time
HHMMSS(outfield)

where:

outfield

Alphanumeric
Is the name of the field to which the time (in HH.MM.SS format) is returned. This
argument can also be the format of the output value, enclosed in single quotation
marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-121

Example Report Request Displaying Current Time
The following request retrieves the current time and displays it in a report footing:

TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES' AND COMPUTE
NOWTIME/A8 = HHMMSS(NOWTIME); NOPRINT
BY DEPARTMENT
FOOTING
"SALARY REPORT RUN AT TIME <NOWTIME"
END

The request produces the following output:

PAGE 1

DEPARTMENT TOTAL SALARIES
---------- --------------
MIS $108,002.00
PRODUCTION $114,282.00

SALARY REPORT RUN AT TIME 15.21.14

HINPUT: Converting an Alphanumeric String to a Date-Time Value
The HINPUT subroutine converts an alphanumeric string to a date-time value.

Syntax How to Convert and Alphanumeric String to a Date-Time
Value
HINPUT (inputlength, 'inputstring', length, 'Hfmt')

where:

inputlength

Is the length of the alphanumeric string to convert. You can supply the actual value,
the name of a numeric field that contains the value, or an expression that returns the
value.

inputstring

Is the alphanumeric string to convert. You can supply the actual string enclosed in
single quotation marks, the name of an alphanumeric field, or an expression that
returns an alphanumeric value. The alphanumeric string can consist of any valid
date-time input value as described in the Describing Data manual.

length

Is the length of the returned date-time value. Valid values are:
8 for time values down to milliseconds.
10 for time values down to microseconds.

Using Functions and Subroutines

3-122 Information Builders

Hfmt

Is the USAGE format of the returned date-time value, enclosed in single quotation
marks.

Example Converting an Alphanumeric String to a Date-Time Value
The following request converts the TRANSDATE field to alphanumeric format (using the
HCNVRT function) and then uses the HINPUT routine to convert the alphanumeric string
to a date-time value:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ALPHA_DATE_TIME/A20 = HCNVRT (TRANSDATE,'(H17)', 17, 'A20');
DT_FROM_ALPHA/HYYMDS = HINPUT(14, ALPHA_DATE_TIME, 8, 'HYYMDS');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME ALPHA_DATE_TIME1 ALPHA_DATE_TIME2
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight
The HMIDNT subroutine changes the time portion of a date-time field to midnight (all
zeroes). This function can be used for testing date-time fields for a given date.

Syntax How to Set the Time Portion of a Date-Time Field to Midnight
HMIDNT (dtfield, length, 'Hformat')

where:

dtfield

Is date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

length

Is the length of the returned date-time value. Valid values are:
8 for time values down to milliseconds.
10 for time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single quotation
marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-123

Example Setting the Time to Midnight
The following request sets the time portion of the TRANSDATE field to midnight in both
the 24- and 12-hour systems:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_MID_24/HYYMDS = HMIDNT(TRANSDATE, 8, 'HYYMDS');
TRANSDATE_MID_12/HYYMDSA = HMIDNT(TRANSDATE, 8, 'HYYMDSA');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME TRANSDATE_MID_24 TRANSDATE_MID_12
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 2000/06/26 00:00:00 2000/06/26 12:00:00AM
1237 2000/02/05 03:30 2000/02/05 00:00:00 2000/02/05 12:00:00AM

HNAME: Extracting a Date-Time Component in Alphanumeric
Format

The HNAME subroutine extracts a specified component from a date-time field and
returns it in alphanumeric format.

Syntax How to Extract a Date-Time Component in Alphanumeric
Format
HNAME (dtfield, 'component', Aformat)

where:

dtfield

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

component

Is the name of the component to be extracted, enclosed in single quotation marks. See
Component Names and Values for Use With Date-Time Functions on page
3-8 for a list of supported components.

Aformat

Is the alphanumeric USAGE format of the returned component, enclosed in single
quotation marks. All other components are converted to strings of digits only. The
year is always four digits, and the hour assumes the 24-hour system.

Using Functions and Subroutines

3-124 Information Builders

Example Extracting the Day Component in Alphanumeric Format From
a Date-Time Field
The following request extracts the day in alphanumeric format from the TRANSDATE
field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/A2 = HNAME(TRANSDATE, 'DAY', 'A2');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 05

Example Extracting the Week Component With Different WEEKFIRST
Settings
The following request extracts the week in alphanumeric format from the TRANSDATE
field. Changing the WEEKFIRST setting changes the value of the extracted component:

SET WEEKFIRST = 7
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
WEEK_COMPONENT/A10 = HNAME(TRANSDATE, 'WEEK', 'A10');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 06

Running the same request setting WEEKFIRST to 3 produces the following output (see
Chapter 1, Customizing Your Environment):
CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 25
1237 2000/02/05 03:30 05

 Alphabetical List of Functions and Subroutines

Developing Applications 3-125

HPART: Returning a Date-Time Component in Numeric Format
The HPART subroutine extracts a specified component from a date-time field and returns
it in numeric format.

Syntax How to Return a Date-Time Component in Numeric Format
HPART (dtfield, 'component', 'Iformat')

where:

dtfield

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

component

Is the name of the component to be extracted, enclosed in single quotation marks. See
Component Names and Values for Use With Date-Time Functions on page 3-8 for a
list of supported components.

Iformat

Is the integer USAGE format of the returned component, enclosed in single quotation
marks. The year is always four digits, and the hour assumes the 24-hour system.

Example Extracting the Day Component in Numeric Format From a
Date-Time Field
The following request extracts the day in integer format from the TRANSDATE field:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/I2 = HPART(TRANSDATE, 'DAY', 'I2');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 5

Using Functions and Subroutines

3-126 Information Builders

HSETPT: Inserting a Component Into a Date-Time Field
The HSETPT subroutine inserts the numeric value of a specified component into a
date-time field.

Syntax How to Insert a Component Into a Date-Time Field
HSETPT (dtfield, 'component', value, length, 'Hformat')

where:

dtfield

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

component

Is the name of the component to be inserted, enclosed in single quotation marks. See
Component Names and Values for Use With Date-Time Functions on page 3-8 for a
list of supported components.

value

Is the numeric value to use for the requested component. You can supply the actual
value, the name of a numeric field that contains the value, or an expression that
returns the value.

length

Is the length of the returned date-time value. Valid values are:
8 for time values down to milliseconds.
10 for time values down to microseconds.

Hformat

Is the USAGE format of the returned date-time value, enclosed in single quotation
marks.

Example Inserting the Day Component Into a Date-Time Field
The following request inserts the day into the ADD_MONTH field:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH, 'DAY', 28, 8, 'HYYMDS');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ADD_MONTH INSERT_DAY
------ --------- --------- ----------
1118 2000/06/26 05:45 2000/08/26 05:45:00 2000/08/28 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00 2000/04/28 03:30:00

 Alphabetical List of Functions and Subroutines

Developing Applications 3-127

HTIME: Converting the Time Portion of a Date-Time Field to a
Number

The HTIME subroutine converts the time portion of a date-time field to a numeric
number of milliseconds (if the first argument is 8) or microseconds (if the first argument
is 10). For microseconds, the input date-time field must be a 10-byte field.

Syntax How to Convert the Time Portion of a Date-Time Field to a
Number
HTIME (length, dtfield, 'Dformat')

where:

length

Is the length of the input date-time value. Valid values are:
8 for time values down to milliseconds.
10 for input time values down to microseconds.

dtfield

Is the date-time value to use for extracting the time. You can supply the name of a
date-time field, a date-time constant, or an expression that returns a date-time value.

Dformat

Is the USAGE format of the returned number of milliseconds or microseconds,
enclosed in single quotation marks.

Example Converting the Time Portion of a Date-Time Field to a Number
The following request converts time portion of the TRANSDATE field to a number of
milliseconds:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
MILLISEC/D12.2 = HTIME(8, TRANSDATE, 'D12.2');
WHERE DATE EQ 2000
END

The output is:

CUSTID DATE-TIME MILLISEC
------ --------- --------
1118 2000/06/26 05:45 20,700,000.00
1237 2000/02/05 03:30 12,600,000.00

Using Functions and Subroutines

3-128 Information Builders

IMOD, FMOD, and DMOD: Calculating the Remainder From a
Division

The MOD subroutines calculate the remainder from a division. There are three MOD
subroutines:

• IMOD returns the remainder as an integer.

• FMOD returns the remainder as a floating-point number.

• DMOD returns the remainder as a decimal number.

The three subroutines use the formula:

remainder = dividend - INT(dividend/divisor) * divisor

Available on: All platforms.

Related functions and subroutines:

INT

Syntax How to Calculate the Remainder From a Division
subroutine(dividend, divisor, outfield)

where:

subroutine

Is one of the following:
IMOD returns the remainder as an integer.
FMOD returns the remainder as a floating-point number.
DMOD returns the remainder as a decimal number.

dividend

Numeric
Is the dividend.

divisor

Numeric
Is the divisor.

outfield

Numeric
Is the name of the field to which the remainder is returned. Remember that the
subroutine name (IMOD, FMOD, or DMOD) determines the format. This argument
can also be the format of the output value, enclosed in single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-129

Example Report Request Extracting Last Three Digits From Account
Number
The following request extracts the last three digits from the employee bank account
numbers by dividing by 1000 and finding the remainder:

TABLE FILE EMPLOYEE
PRINT ACCTNUMBER AND
COMPUTE LAST3_ACCT/I3L = IMOD(ACCTNUMBER, 1000, LAST3_ACCT);
BY LAST_NAME BY FIRST_NAME
WHERE (ACCTNUMBER NE 000000000) AND (DEPARTMENT EQ 'MIS');
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME ACCTNUMBER LAST3_ACCT
--------- ---------- ---------- ----------
BLACKWOOD ROSEMARIE 122850108 108
CROSS BARBARA 163800144 144
GREENSPAN MARY 150150302 302
JONES DIANE 040950036 036
MCCOY JOHN 109200096 096
SMITH MARY 027300024 024

INT: Finding the Greatest Integer
The INT function returns the integer part of its argument.

Available on: All platforms.

Related functions and subroutines:

IMOD, FMOD, and DMOD

Syntax How to Calculate the Greatest Integer
INT(argument)

where:

argument

Numeric
Is the value on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

Using Functions and Subroutines

3-130 Information Builders

Example Report Request Calculating the Greatest Integer in DED_AMT
The following request calculates the greatest integer in the DED_AMT field:

TABLE FILE EMPLOYEE
SUM DED_AMT AND COMPUTE
INT_DED_AMT/I11=INT(DED_AMT);
BY LAST_NAME BY FIRST_NAME
WHERE (DEPARTMENT EQ 'MIS') AND (PAY_DATE EQ 820730);
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME DED_AMT INT_DED_AMT
--------- ---------- ------- -----------
BLACKWOOD ROSEMARIE $1,261.40 1261
CROSS BARBARA $1,668.69 1668
GREENSPAN MARY $127.50 127
JONES DIANE $725.34 725
SMITH MARY $334.10 334

ITONUM: Converting Large Binary Integers to Double-Precision
The ITONUM subroutine converts large binary integers in non-FOCUS files to
double-precision format. Some programming languages and some non-FOCUS data
storage systems use large binary integer formats. Large binary integers (more than 4 bytes
in length) are not supported in the Master File syntax and, therefore, require conversion to
double-precision format.

The ITONUM subroutine processes a large byte binary format input string and converts it
to a double-precision number. The user specifies how many of the rightmost bytes in the
input string are significant. The output of ITONUM is an 8-byte double-precision field.

Available on: All platforms.

Related functions and subroutines:

ITOPACK

 Alphabetical List of Functions and Subroutines

Developing Applications 3-131

Syntax How to Convert Large Binary Integers to Double-Precision
ITONUM(sigbytes, infield, outfield)

where:

sigbytes

Numeric
Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 The left-most 3 bytes are ignored.

6 The left-most 2 bytes are ignored.

7 The left-most byte is ignored.

infield

A8
Is the field that contains the binary number. Both the USAGE and ACTUAL formats
must be A8.

outfield

Numeric
Is the name of the field that contains the double-precision number. This argument can
also be the format of the output value, enclosed in single quotation marks. The format
must be specified as Dn or Dn.d.

Example Report Request Converting a Large Binary Integer to
Double-Precision
Suppose a binary number in an external file has the following COBOL format:

PIC 9(8)V9(4) COMP

It is defined in the EUROCAR Master File as a field called BINARYFLD. Its field
formats are USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.

The field can be converted to a double-precision number using the following request:

DEFINE FILE EUROCAR
MYFLD/D12.2 = ITONUM(6, BINARYFLD, MYFLD);
END
TABLE FILE EUROCAR
PRINT MYFLD BY CAR
END

Using Functions and Subroutines

3-132 Information Builders

ITOPACK: Converting Large Binary Integers to Packed-Decimal
Format

The ITOPACK subroutine converts large binary integers in non-FOCUS files to
packed-decimal format. Some programming languages and some non-FOCUS data
storage systems use double-word binary integer formats. These are similar to the
single-word binary integers used by FOCUS, but they allow larger numbers. Large binary
integers (more than 4 bytes in length) are not supported in the Master File syntax and,
therefore, require conversion to packed format.

The ITOPACK subroutine processes an 8-byte binary format input string and converts it
to a packed number. The user specifies how many of the rightmost bytes in the input
string are significant. The output of ITOPACK is an 8-byte packed field of up to 15
significant numeric positions (for example, P15 or P16.d).

Available on: All platforms.

Related functions and subroutines:

ITONUM

Syntax How to Convert Large Binary Integers to Packed-Decimal
Format
ITOPACK(sigbytes, infield, outfield)

where:

sigbytes

Numeric
Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 Up to 11 significant positions (the first 3 bytes are ignored).

6 Up to 14 significant positions (the first 2 bytes are ignored).

7 Up to 15 significant positions (the first byte is ignored).

infield

A8
Is the field that contains the binary number. Both the USAGE and ACTUAL formats
must be A8.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-133

outfield

Numeric
Is the name of the field that contains the packed number. This argument can also be
the format of the output value, enclosed in single quotation marks. The format must
be specified as Pn or Pn.d.

Note: The only restriction is that for a field defined as ‘PIC 9(15) COMP’ or the
equivalent (15 significant digits), the maximum number that can be translated is
167,744,242,712,576.

Example Report Request Converting a Large Binary Integer to
Packed-Decimal Format
Suppose a binary number in an external file has the following COBOL format:

PIC 9(8)V9(4) COMP

It is defined to FOCUS in the EUROCAR Master File as a field called BINARYFLD. Its
field formats are USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.

The field can be converted to a packed number using the following request:

DEFINE FILE EUROCAR
PACKFLD/P14.4 = ITOPACK(6, BINARYFLD, PACKFLD);
END
TABLE FILE EUROCAR
PRINT PACKFLD BY CAR
END

Using Functions and Subroutines

3-134 Information Builders

ITOZ: Converting to Zoned Format
The ITOZ subroutine converts numbers in numeric format to zoned format. Although
FOCUS does not process zoned numbers, FOCUS requests can write zoned fields to
extract files for use by external programs.

Available on: All platforms.

Syntax How to Convert to Zoned Format
ITOZ(outlength, number, outfield)

where:

outlength

Numeric
Is the length of the zoned number in bytes, up to 15 bytes. The last byte includes the
sign.

number

Numeric
Is the number to be converted or the field that contains the number. The number is
truncated to an integer before it is converted.

outfield

Alphanumeric
Is the name of the field that contains the zoned number. This argument can also be
the format of the output value, enclosed in single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-135

Example Converting to Zoned Format
The following request prepares an extract file containing employee IDs and salaries in
zoned format for a COBOL program. The request is:

DEFINE FILE EMPLOYEE
ZONE_SAL/A8 = ITOZ(8, CURR_SAL, ZONE_SAL);
END
TABLE FILE EMPLOYEE
PRINT ZONE_SAL BY EMP_ID
ON TABLE SAVE AS SALARIES
END

The resulting extract file is:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

EBCDIC RECORD NAMED SALARIES
FIELDNAME ALIAS FORMAT LENGTH

EMP_ID EID A9 9
ZONE_SAL A8 8

TOTAL 17
DCB USED WITH FILE SALARIES IS DCB=(RECFM=FB,LRECL=00017,BLKSIZE=00340)
>

JULDAT: Converting From Gregorian to Julian Format
The JULDAT subroutine converts dates from year-month-day format to Julian (year-day)
format. Dates in Julian format are 5- or 7-digit numbers. The first two or four digits are
the year, the last three digits are the number of the day counting from January 1. For
example, January 1, 1987 in Julian format is either 87001 or 1987001, and December 31,
1987 is 87365 or 1987365.

Depending on the format of the output, JULDAT converts dates to either YYNNN or
YYYYNNN format, using the DEFCENT and YRTHRESH settings.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine (which only produces 5-digit dates), change the DATEFNS setting to
OFF.

Available on: All platforms.

Related functions and subroutines:

GREGDT

Using Functions and Subroutines

3-136 Information Builders

Syntax How to Convert a Gregorian Date to a Julian Date
JULDAT(indate, outfield)

where:

indate

Numeric
Is the date or field containing the date in year-month-day format (YMD or YYMD).

outfield

Integer at least I5
Is the field to which the Julian date is returned. This argument can also be the format
of the output value, enclosed in single quotation marks (I5 or I7). For Maintain,
specify the field name.

JULDAT returns dates in the following format:

 If the format is I5 or I6 If the format is I7 or greater

If DATEFNS=ON
(the default)

YYNNN YYYYNNN (JULDAT uses the
DEFCENT and YRTHRESH
settings to determine the century, if
necessary).

If DATEFNS=OFF YYNNN YYNNN

Example Report Request Converting Gregorian Date to Julian Date
The following request prints employee names and hire dates, in both year-month-day and
Julian formats for the PRODUCTION department:
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND
COMPUTE JULIAN/I7 = JULDAT(HIRE_DATE, JULIAN);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:
PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE JULIAN
--------- ---------- --------- ------
BANNING JOHN 82/08/01 1982213
IRVING JOAN 82/01/04 1982004
MCKNIGHT ROGER 82/02/02 1982033
ROMANS ANTHONY 82/07/01 1982182
SMITH RICHARD 82/01/04 1982004
STEVENS ALFRED 80/06/02 1980154

Notice that JULDAT determines the century (using the DEFCENT and YRTHRESH
settings).

 Alphabetical List of Functions and Subroutines

Developing Applications 3-137

LAST: Retrieving the Preceding Value
The LAST function retrieves the preceding value selected for a field.

Available on: All platforms.

Syntax How to Retrieve the Preceding Value
LAST fieldname

where:

fieldname

Alphanumeric or Numeric
Is the field name.

The effect of the keyword LAST depends on whether it appears in a DEFINE or
COMPUTE. In a DEFINE, the LAST value is that of the previous record retrieved from
the file before sorting takes place. In a COMPUTE, the LAST value is that of the record
in the previous line in the report.

LAST cannot be used with -SET in Dialogue Manager.

Example Report Request Displaying Running Total of Current Salaries by
Department
The following request produces a running total of the CURR_SAL field within
departments. It uses LAST to determine whether the previously retrieved value of
DEPARTMENT equals the current value. If the values are equal, CURR_SAL is added to
RUN_TOT. If the values are different, the department has changed and RUN_TOT starts
with the value of the first CURR_SAL in the new department.

TABLE FILE EMPLOYEE
PRINT LAST_NAME CURR_SAL AND COMPUTE
RUN_TOT/D12.2M = IF DEPARTMENT EQ LAST DEPARTMENT THEN

(RUN_TOT + CURR_SAL) ELSE CURR_SAL ;
AS 'RUNNING,TOTAL,SALARY'
BY DEPARTMENT SKIP-LINE
END

Using Functions and Subroutines

3-138 Information Builders

The request produces the following output:

PAGE 1

RUNNING
TOTAL

DEPARTMENT LAST_NAME CURR_SAL SALARY
---------- --------- -------- -------

MIS SMITH $13,200.00 $13,200.00
JONES $18,480.00 $31,680.00
MCCOY $18,480.00 $50,160.00
BLACKWOOD $21,780.00 $71,940.00
GREENSPAN $9,000.00 $80,940.00
CROSS $27,062.00 $108,002.00

PRODUCTION STEVENS $11,000.00 $11,000.00
SMITH $9,500.00 $20,500.00
BANNING $29,700.00 $50,200.00
IRVING $26,862.00 $77,062.00
ROMANS $21,120.00 $98,182.00
MCKNIGHT $16,100.00 $114,282.00

LCWORD: Converting Letters in a Word to Mixed Case
The LCWORD subroutine converts the letters in the given string to mixed case. The
subroutine converts to lowercase every alphanumeric character except:

• The first letter of each new word.

• The first letter after a single or double quotation mark. For example, O’CONNOR is
converted to O’Connor and JACK’S to Jack’S (not Jack’s).

The rest of the word is converted to lowercase. The result is a word with an initial
uppercase character followed by lowercase characters.

If the subroutine encounters a number in the string, the subroutine treats it as an uppercase
character and continues to convert the following alphabetic characters to lowercase.

Available on: All platforms.

Related functions and subroutines:

• LOCASE

• UPCASE

 Alphabetical List of Functions and Subroutines

Developing Applications 3-139

Syntax How to Convert Letters to Mixed Case
LCWORD(inlength, infield, outfield)

where:

inlength

Integer
Is the length of the input field.

infield

Alphanumeric
Is the name of the input field or the input string enclosed in single quotation marks.

outfield

Alphanumeric
Is the name of the output field. The length of the outfield must be greater than or
equal to the length of the infield.

Example Report Request Converting LAST_NAME to Mixed Case
The following request converts LAST_NAME values, which are all uppercase, to mixed
case:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
MIXED_CASE/A15 = LCWORD(15, LAST_NAME, MIXED_CASE) ;
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

LAST_NAME MIXED_CASE
--------- ----------
STEVENS Stevens
SMITH Smith
BANNING Banning
IRVING Irving
ROMANS Romans
MCKNIGHT Mcknight

Using Functions and Subroutines

3-140 Information Builders

LJUST: Left-justifying a String
The LJUST subroutine left-justifies a character string within a field. All leading spaces
become trailing spaces. The LJUST subroutine is helpful in left-justifying character
strings previously right-justified or centered.

Available on: All platforms.

Related functions and subroutines:

• CTRFLD

• RJUST

Note: LJUST will not have any visible effect in a report that uses StyleSheets (SET
STYLE=ON) unless you center the item.

Syntax How to Left-justify a String
LJUST(inlength, infield, outfield)

where:

inlength

Integer
Is the length of infield and outfield.

infield

Alphanumeric
Is the name of the data field to be left-justified or the input string enclosed in single
quotation marks.

outfield

Alphanumeric
Is the name of the field to which the output is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-141

Example Report Request Left-justifying a Formerly Numeric Field
The following request converts current salaries from numeric to alphanumeric format
using the FTOA subroutine. It then left-justifies the resulting alphanumeric values.

Note: If you are running this request on a platform where StyleSheets are turned on by
default (for example WebFOCUS), issue SET STYLE=OFF before running the request.

SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND COMPUTE
SAL_STRING/A12 = FTOA(CURR_SAL, '(D8.2M)', SAL_STRING);
LEFT_SAL/A12 = LJUST(12, SAL_STRING, LEFT_SAL);
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS'
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME SAL_STRING LEFT_SAL
--------- ---------- ---------- --------
BLACKWOOD ROSEMARIE $21,780.00 $21,780.00
CROSS BARBARA $27,062.00 $27,062.00
GREENSPAN MARY $9,000.00 $9,000.00
JONES DIANE $18,480.00 $18,480.00
MCCOY JOHN $18,480.00 $18,480.00
SMITH MARY $13,200.00 $13,200.00

Using Functions and Subroutines

3-142 Information Builders

LOCASE: Converting Text to Lowercase
The LOCASE subroutine converts the alphabetical text in a field to lowercase.

This is useful for converting input fields from FIDEL CRTFORMs and from non-FOCUS
applications to lowercase.

Note: This subroutine used to be named LOWCASE on the Windows platform. For
upward compatibility, you can issue the command LET LOCASE = LOWCASE.

Available on: All platforms.

Related functions and subroutines:

• LCWORD

• UPCASE

Syntax How to Convert Text to Lowercase
LOCASE(inlength, infield, outfield)

where:

inlength

Integer
Is the length of the input and output fields. It must be greater than 0. The length, in
characters, must be equal for both arguments; otherwise, an error occurs.

infield

Alphanumeric
Is the name of the field to convert or the input string enclosed in single quotation
marks.

outfield

Alphanumeric
Is the name of the field in which to store the converted text. This can be the same as
the infield. This argument can also be the format of the output value, enclosed in
single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-143

Example Report Request Converting LAST_NAME to Lowercase
The following request converts LAST_NAME values, which are all uppercase, to
lowercase:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWER_NAME/A15 = LOCASE(15, LAST_NAME, LOWER_NAME);
WHERE DEPARTMENT EQ 'MIS';
END

The request produces the following output:

PAGE 1

LAST_NAME LOWER_NAME
--------- ----------
SMITH smith
JONES jones
MCCOY mccoy
BLACKWOOD blackwood
GREENSPAN greenspan
CROSS cross

LOG: Calculating the Natural Logarithm
The LOG function returns the natural logarithm of its argument.

Available on: All platforms.

Related functions and subroutines:

EXP

Syntax How to Calculate the Natural Logarithm
LOG(argument)

where:

argument

Numeric
Is the value on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation. If you enter an argument less than or equal to 0, LOG returns 0.

Using Functions and Subroutines

3-144 Information Builders

Example Report Request Calculating Natural Logarithm of Current
Salary
The following request calculates the log of employees’ current salaries:

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
LOG_CURR_SAL/D12.2 = LOG(CURR_SAL);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME CURR_SAL LOG_CURR_SAL
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 10.30
IRVING JOAN $26,862.00 10.20
MCKNIGHT ROGER $16,100.00 9.69
ROMANS ANTHONY $21,120.00 9.96
SMITH RICHARD $9,500.00 9.16
STEVENS ALFRED $11,000.00 9.31

MAX and MIN: Finding the Maximum or Minimum Value
The MAX and MIN functions return either the maximum or minimum value
(respectively) from a list of arguments.

Available on: All platforms.

Syntax How to Find the Maximum or Minimum Value
The syntax for MAX is

MAX(argument1, argument2, ...)

and the syntax for MIN is

MIN(argument1, argument2, ...)

where:

argument1, argument2

Numeric
Is the value on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-145

Example Report Request Determining Minimum of ED_HRS and 30
The following request finds the minimum value from the ED_HRS field and the value 30:

TABLE FILE EMPLOYEE
PRINT ED_HRS AND COMPUTE
MIN_EDHRS_30/D12.2=MIN(ED_HRS, 30);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

This request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME ED_HRS MIN_EDHRS_30
--------- ---------- ------ ------------
BLACKWOOD ROSEMARIE 75.00 30.00
CROSS BARBARA 45.00 30.00
GREENSPAN MARY 25.00 25.00
JONES DIANE 50.00 30.00
MCCOY JOHN .00 .00
SMITH MARY 36.00 30.00

MVSDYNAM: Passing a DYNAM Command to the Command
Processor

The MVSDYNAM subroutine transfers a specified FOCUS DYNAM command to the
DYNAM command processor. A zero (0) return code indicates successful processing;
non-zero codes indicate failure. This is useful in compiled MODIFY procedures after the
CASE AT START statement to pass allocation statements to the processor.

Available on: MVS.

Using Functions and Subroutines

3-146 Information Builders

Syntax How to Pass a DYNAM Command to the Command Processor
MVSDYNAM(command, length, rc)

where:

command

Alphanumeric
Is the DYNAM command, enclosed in single quotation marks, or a field or variable
that contains the command. The subroutine converts lowercase input to uppercase.

length

Numeric
Is the command length from 1 to 256 characters long.

rc

I4
Is the name of the field that contains the return code. This argument can also be the
format of the output value, enclosed in single quotation marks. For Maintain, specify
the field name.

MVSDYNAM returns one of three possible types of codes:

0

The DYNAM command transferred and successfully executed.

positive number

FOCUS error number corresponding to a FOCUS error.

negative number

FOCUS error number corresponding to DYNAM failure (from the SVC).

 Alphabetical List of Functions and Subroutines

Developing Applications 3-147

Example Executing the DYNAM FREE Command
In this MODIFY request, the MVSDYNAM subroutine transfers the DYNAM FREE
command to the processor. Query commands display the results before and after the
DYNAM FREE command is specified. The successful return code of zero (0) is stored in
the RES field.

-* THE RESULT OF ? TSO DDNAME CAR WILL BE BLANK AFTER ENTERING
-* 'FREE FILE CAR' AS YOUR COMMAND
DYNAM ALLOC FILE CAR DS USER1.CAR.FOCUS SHR REUSE
? TSO DDNAME CAR
-RUN
-PROMPT &XX.ENTER A SPACE TO CONTINUE.
MODIFY FILE CAR
COMPUTE LINE/A60=;

RES/I4 = 0;
CRTFORM
" ENTER DYNAM COMMAND BELOW:"
" <LINE>"
COMPUTE
RES = MVSDYNAM(LINE, 60, RES);
GOTO DISPLAY

CASE DISPLAY
CRTFORM LINE 1
" THE RESULT OF DYNAM WAS <D.RES"
GOTO EXIT
ENDCASE
DATA
END
? TSO DDNAME CAR

Using Functions and Subroutines

3-148 Information Builders

The first query command displays the allocation that results from the DYNAM
ALLOCATE command. Type one space and press the Enter key to continue.

DDNAME = CAR
DSNAME = USER1.CAR.FOCUS
DISP = SHR
DEVICE = DISK
VOLSER = USERMN
DSORG = PS
RECFM = F
SECONDARY = 100
ALLOCATION = BLOCKS
BLKSIZE = 4096
LRECL = 4096
TRKTOT = 8
EXTENTSUSED = 1
BLKSPERTRK = 12
TRKSPERCYL = 15
CYLSPERDISK = 2227
BLKSWRITTEN = 96
FOCUSPAGES = 8
ENTER A SPACE TO CONTINUE >

Then, enter the DYNAM FREE command. (The DYNAM keyword is assumed.)

ENTER DYNAM COMMAND BELOW:
free file car

The subroutine successfully transfers the DYNAM FREE command to the processor and
the return code displays. Press the Enter key to continue.

THE RESULT OF DYNAM WAS 0

Then, the second query command indicates that the allocation has been freed.

DDNAME = CAR
DSNAME =
DISP =
DEVICE =
VOLSER =
DSORG =
RECFM =
SECONDARY = ****
ALLOCATION =
BLKSIZE = 0
LRECL = 0
TRKTOT = 0
EXTENTSUSED = 0
BLKSPERTRK = 0
TRKSPERCYL = 0
CYLSPERDISK = 0
BLKSWRITTEN = 0
>

 Alphabetical List of Functions and Subroutines

Developing Applications 3-149

OVRLAY: Overlaying a Substring Within a String
The OVRLAY subroutine overlays a substring on another character string. When
specified in MODIFY procedures, the subroutine enables you to edit a part of an
alphanumeric field without replacing the field entirely.

Available on: All platforms.

Related functions and subroutines:

• EDIT

• POSIT

• SUBSTR

Syntax How to Overlay a Substring
OVRLAY(base, baselen, substring, sublen, position, outfield)

where:

base

Alphanumeric
Is the character string to be overlaid.

baselen

Integer
Is the length of the base and outfield strings. If this argument is less than or equal to
0, unpredictable results occur.

substring

Alphanumeric
Is the substring to overlay the base string.

sublen

Integer
Is the length of the substring. If this argument is less than or equal to 0, the
subroutine returns spaces.

position

Integer
Is the position in the base string where the overlay is to begin. If this argument is less
than or equal to 0, the subroutine returns spaces. If the argument is larger than
baselen, the subroutine returns the base string.

Using Functions and Subroutines

3-150 Information Builders

outfield

Alphanumeric
Is the name of the field to which the overlaid string is returned. If the overlaid string
is longer than the output field, the string is truncated to fit the field. This argument
can also be the format of the output value, enclosed in single quotation marks.

Example Report Request Replacing Last Three Characters of EMP_ID
The following request replaces the last three characters of EMP_ID (starting at the 7th
position) with the three-character job code found in CURR_JOBCODE, creating a new
security identification code:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND CURR_JOBCODE AND COMPUTE
NEW_ID/A9 = OVRLAY(EMP_ID, 9, CURR_JOBCODE, 3, 7, NEW_ID);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME EMP_ID CURR_JOBCODE NEW_ID
--------- ---------- ------ ------------ ------
BLACKWOOD ROSEMARIE 326179357 B04 326179B04
CROSS BARBARA 818692173 A17 818692A17
GREENSPAN MARY 543729165 A07 543729A07
JONES DIANE 117593129 B03 117593B03
MCCOY JOHN 219984371 B02 219984B02
SMITH MARY 112847612 B14 112847B14

 Alphabetical List of Functions and Subroutines

Developing Applications 3-151

Example MODIFY Request Using OVRLAY
This MODIFY procedure prompts for input using a CRTFORM screen and updates first
names in the EMPLOYEE data source. The CRTFORM LOWER option enables you to
update the names in lowercase, but the procedure ensures that the first letter of each name
is capitalized. The procedure is:

MODIFY FILE EMPLOYEE
CRTFORM LOWER
"ENTER EMPLOYEE'S ID: <EMP_ID"
"ENTER FIRST_NAME IN LOWER CASE: <FIRST_NAME"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH COMPUTE
F_UP/A1 = UPCASE (1, FIRST_NAME,'A1');
FIRST_NAME/A10 = OVRLAY (FIRST_NAME, 10, F_UP,

1, 1, 'A10');
ON MATCH TYPE "CHANGING FIRST NAME TO <FIRST_NAME "
ON MATCH UPDATE FIRST_NAME

DATA
END

The COMPUTE statement invokes two subroutines:

• The UPCASE subroutine extracts the first letter and converts it to uppercase.

• The OVRLAY subroutine replaces the present first letter in the name with the
uppercase initial.

A sample execution is:

ENTER EMPLOYEE'S ID: 071382660
ENTER FIRST_NAME IN LOWER CASE: alfred

The procedure processes as:

1. The procedure prompts you from a CRTFORM screen for an employee ID and a first
name. You type the following data and press the Enter key:

EMPLOYEE'S ID: 071382660
FIRST NAME: alfred

2. The procedure searches the data source for the ID 071382660. If it finds the ID, it
continues processing the transaction. In this case, the ID exists and belongs to Alfred
Stevens.

3. The UPCASE subroutine extracts the letter a from alfred and converts it to the letter
A.

Using Functions and Subroutines

3-152 Information Builders

4. The OVRLAY subroutine overlays the letter A on alfred. The first name is now
Alfred.

ENTER EMPLOYEE'S ID:
ENTER FIRST_NAME IN LOWER CASE:

CHANGING FIRST NAME TO Alfred

5. The procedure updates the first name in the data source.

6. When you exit the procedure with PF3, the FOCUS transaction message indicates
that one update occurred.

TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT = 0 UPDATED = 1 DELETED = 0

PARAG: Dividing Text Into Smaller Lines
The PARAG subroutine divides lines of text into smaller lines by marking them off with a
delimiter character. The GETTOK subroutine can then place the smaller lines, called
sublines, into different fields.

The PARAG subroutine works by scanning a specific number of characters from the
beginning of the line and replacing the last space in this group with a delimiter. It then
scans the next group of characters starting from the delimiter and replaces the last space
in this group with a second delimiter. It repeats this process until the end of the line. Each
group of characters marked off by the delimiter becomes a subline.

If the subroutine finds no spaces in the group it scans, it replaces the next character after
the group with the delimiter. Therefore, be sure that no word of text is longer than the
number of characters scanned by the subroutine (the maximum subline length).

Available on: All platforms.

Related functions and subroutines:

GETTOK

 Alphabetical List of Functions and Subroutines

Developing Applications 3-153

Syntax How to Divide Text Into Smaller Lines
PARAG(inlen, infield, 'delim', subsize, outfield)

where:

inlen

Integer
Is the length of input string and the outfield.

infield

Alphanumeric
Is the input string.

delim

Alphanumeric
Is the delimiter character. Choose a character that does not appear in the text.

subsize

Integer
Is the maximum length of the subline.

outfield

Alphanumeric
Is the name of the field to which the delimited text is returned. This argument can
also be the format of the output value, enclosed in single quotation marks.

Note: If the input lines of text are roughly equal in length, you can keep the sublines
equal by specifying a subline length that evenly divides into the length of the text lines.
For example, if you are dividing text lines 120 characters long, you can divide each of
them into two sublines 60 characters long, three sublines 40 characters long, and so on.
This enables you to print lines of text in paragraph form.

However, if you divide the lines evenly, you may create more sublines than you intend.
For example, suppose you divide 120-character text lines into two lines of 60 characters
maximum length. One line is divided so that the first subline is 50 characters long and the
second is 55. This leaves room for a third subline 15 characters long.

To correct this, insert a space (using weak concatenation) at the beginning of the extra
subline, then append this subline (using strong concatenation) to the end of the one before
it.

Using Functions and Subroutines

3-154 Information Builders

Example Report Request Dividing Address Line Into Smaller Lines
The following request divides an address line into smaller lines using commas as
delimiters:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN2 AND COMPUTE
PARA_ADDR/A20 = PARAG(20, ADDRESS_LN2, ',', 10, PARA_ADDR);
BY LAST_NAME
WHERE TYPE EQ 'HSM';
END

The request produces the following output:

PAGE 1

LAST_NAME ADDRESS_LN2 PARA_ADDR
--------- ----------- ---------
BANNING APT 4C APT 4C ,
CROSS 147-15 NORTHERN BLD 147-15,NORTHERN,BLD
GREENSPAN 13 LINDEN AVE. 13 LINDEN,AVE.
IRVING 123 E 32 ST. 123 E 32,ST. ,
JONES 235 MURRAY HIL PKWY 235 MURRAY,HIL PKWY
MCKNIGHT 117 HARRISON AVE. 117,HARRISON,AVE.
ROMANS 271 PRESIDENT ST. 271,PRESIDENT,ST.
SMITH 136 E 161 ST. 136 E 161,ST.

PCKOUT: Writing Packed Numbers of Different Lengths
The PCKOUT subroutine enables requests to write packed numbers (where the operating
system supports it) of different lengths to extract files (HOLD and SAVE files). When a
request saves packed fields in extract files, it writes them as 8- or 16-byte fields regardless
of their format specifications. With the PCKOUT subroutine, you can vary their lengths
between 1 to 16 bytes.

Available on: All platforms.

Related functions and subroutines:

• CHKPCK

• ITOPACK

 Alphabetical List of Functions and Subroutines

Developing Applications 3-155

Syntax How to Write Packed Numbers of Different Lengths
PCKOUT(infield, outlength, outfield)

where:

infield

Numeric
Is the input field that contains the values. The field can be packed, integer,
floating-point or double-precision. If the field is not integer, its values are rounded to
the nearest integer.

outlength

Numeric
Is the output field length from 1 to 16 bytes.

outfield

Alphanumeric
Is the name of the output field written to the extract file. The subroutine returns the
field as alphanumeric although it contains packed data. This argument can also be the
format of the output value, enclosed in single quotation marks.

Example Writing Packed Numbers of Different Lengths
This request writes names, salaries, and dates of hire to a SAVE file. The salaries from
the CURR_SAL field (USAGE=D12.2M) are converted and written to the 5-byte packed
field SHORT_SAL:

DEFINE FILE EMPLOYEE
SHORT_SAL/A5 = PCKOUT(CURR_SAL, 5, SHORT_SAL);
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME SHORT_SAL HIRE_DATE
ON TABLE SAVE
END

Using Functions and Subroutines

3-156 Information Builders

After FOCUS creates the SAVE file, the FOCUS message returns the fields and their
lengths:

>
NUMBER OF RECORDS IN TABLE= 12 LINES= 12

EBCDIC RECORD NAMED SAVE
FIELDNAME ALIAS FORMAT LENGTH

LAST_NAME LN A15 15
SHORT_SAL A5 5
HIRE_DATE HDT I6YMD 6

TOTAL 26
DCB USED WITH FILE SAVE IS DCB=(RECFM=FB,LRECL=00026,BLKSIZE=00520)
>

POSIT: Finding Substring Position
The POSIT subroutine finds the starting positions of substrings within larger strings. For
example, the position of the substring DUCT in the character string PRODUCTION is
position 4.

If the substring is not in the parent string, the subroutine returns the value 0.

Available on: All platforms.

Related functions and subroutines:

OVRLAY

Syntax How to Find a Substring Position
POSIT(parent, inlength, substring, sublength, outfield)

where:

parent

Alphanumeric
Is the field containing the parent character string.

inlength

Integer
Is the parent field length. If this argument is less than or equal to 0, the subroutine
returns 0.

substring

Alphanumeric
Is the substring whose position you wish to find, enclosed in single quotation marks,
or a field that contains the string.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-157

sublength

Integer
Is the length of substring. If this argument is less than or equal to 0, or if it is greater
than the inlength argument, the subroutine returns a 0.

outfield

Integer
Is the name of the field to which the position is returned. This argument can also be
the format of the output value, enclosed in single quotation marks.

Example Report Request Determining First Position of the Letter I in
LAST_NAME
The following request displays the positions of the first capital letter I in last names:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2');
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following output:

PAGE 1

LAST_NAME I_IN_NAME
--------- ---------
STEVENS 0
SMITH 3
BANNING 5
IRVING 1
ROMANS 0
MCKNIGHT 5

Using Functions and Subroutines

3-158 Information Builders

PRDNOR, PRDUNI, RDNORM, and RDUNIF: Generating Random
Numbers

The PRDNOR, PRDUNI, RDNORM, and RDUNIF subroutines generate random
numbers:

• RDNORM generates double-precision random numbers that are normally distributed
with an arithmetic mean of 0 and a standard deviation of 1. If you use the RDNORM
subroutine to generate a large set of numbers (between 1 and 32768), it has the
following properties:

• The numbers in the set lie roughly on a bell curve, as shown in the following
figure. The bell curve is highest at the 0 mark, which means that there are more
numbers close to 0 than farther away.

Frequency
 of
Occurrence

Random Number Generated

-4 -3 -2 -1 0 1 2 3 4

• The average of the set is close to 0.

• The set can contain numbers of any size, but most of the numbers are between 3
and -3.

• PRDNOR does the same thing as RDNORM, except that the set of random numbers
is reproducible.

• RDUNIF generates double-precision random numbers uniformly distributed between
0 and 1 (that is, any random number it generates has an equal probability of being
anywhere between 0 and 1).

• PRDUNI does the same thing as RDUNIF, except that the set of random numbers is
reproducible.

Available on: All platforms.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-159

Syntax How to Use RDNORM and RDUNIF to Generate Random
Numbers
subroutine(outfield)

where:

subroutine

Is one of the following:
RDNORM generates normally distributed random numbers with an arithmetic mean of 0
and a standard deviation of 1.
RDUNIF generates random numbers uniformly distributed between 0 and 1.

outfield

Double-precision
Is the name of the double-precision field that contains the random numbers. This
argument can also be the format of the output value, enclosed in single quotation
marks.

Syntax How to Use PRDNOR and PRDUNI to Generate Random
Numbers
subroutine(seed, outfield)

where:

subroutine

Is one of the following:
PRDNOR generates reproducible normally distributed random numbers with an
arithmetic mean of 0 and a standard deviation of 1.
PRDUNI generates reproducible random numbers uniformly distributed between 0 and
1.

seed

Numeric
Is the seed or the field that contains the seed, up to nine bytes. The seed is truncated
to an integer.

outfield

Double-precision
Is the name of the field that contains the random numbers. This argument can also be
the format of the output value, enclosed in single quotation marks.

Using Functions and Subroutines

3-160 Information Builders

Note: For the PRDUNI subroutine, CMS behavior differs from MVS behavior. In CMS,
the seed number changes upon multiple executions as the subroutine is reloaded. In MVS,
the subroutine is loaded once. To keep the subroutine loaded for the duration of the
session, we recommend assigning the subroutine to a temporary field using a DEFINE
command. The subroutine remains loaded in memory until the DEFINE is cleared.

Example Report Request Using RDNORM to Generate Random Numbers
Suppose you want to randomly pick five employees in your company to participate in a
survey. The following request generates a random number for each employee and then
chooses the top five:

DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = RDNORM(RAND);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END

(You could also use RDUNIF to generate RAND.)

The request produces output similar to the following (your output will appear differently,
since each time RDNORM generates different random numbers):

PAGE 1

RAND LAST_NAME FIRST_NAME
---- --------- ----------
.65 CROSS BARBARA
.20 BANNING JOHN
.19 IRVING JOAN
.00 BLACKWOOD ROSEMARIE
-.14 GREENSPAN MARY

 Alphabetical List of Functions and Subroutines

Developing Applications 3-161

Example Report Request Using PRDNOR to Generate Random Numbers
This is the same request used for the RDNORM subroutine, except, that every time you
execute it, the PRDNOR subroutine produces the same results. To change the results,
change the seed, specified here as 40. The request is:

DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = PRDNOR(40, RAND);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END

The request produces the following output:

PAGE 1

RAND LAST_NAME FIRST_NAME
---- --------- ----------
1.38 STEVENS ALFRED
1.12 MCCOY JOHN
.55 SMITH RICHARD
.21 JONES DIANE
.01 IRVING JOAN

RJUST: Right-justifying a String
The RJUST subroutine right-justifies a character string within a field. All trailing spaces
become leading spaces. This subroutine is helpful when you display alphanumeric fields
containing numbers.

Available on: All platforms.

Related functions and subroutines:

• CTRFLD

• LJUST

Note: RJUST will not have any visible effect in a report that uses StyleSheets (SET
STYLE=ON) unless you center the item.

Using Functions and Subroutines

3-162 Information Builders

Syntax How to Right-justify a String
RJUST(inlength, infield, outfield)

where:

inlength

Integer
Is the length of infield and outfield.

infield

Alphanumeric
Is the input field or string enclosed in single quotation marks.

outfield

Alphanumeric
Is the name of the field to which the output is returned. This argument can also be the
format of the output value, enclosed in single quotation marks.

To avoid justification problems, inlength and infield must be the same length.

Example Report Request Right-justifying a Field
The following request shows last names left-justified and right-justified.

Note: If you are running this request on a platform where StyleSheets are turned on by
default (for example WebFOCUS), issue SET STYLE=OFF before running the request.

SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
RIGHT_NAME/A15 = RJUST(15, LAST_NAME, RIGHT_NAME);
WHERE DEPARTMENT EQ 'MIS'
END

The request produces the following output:

PAGE 1

LAST_NAME RIGHT_NAME
--------- ----------
SMITH SMITH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOOD
GREENSPAN GREENSPAN
CROSS CROSS

 Alphabetical List of Functions and Subroutines

Developing Applications 3-163

SQRT: Calculating the Square Root
The SQRT function calculates the square root of its argument.

Available on: All platforms.

Syntax How to Calculate the Square Root
SQRT(argument)

where:

argument

Numeric
Is the value on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

Example Report Request Calculating Square Root of Movies’ List Price
The following request calculates the square root of a movie’s list price:

TABLE FILE MOVIES
PRINT LISTPR AND COMPUTE
SQRT_LISTPR/D12.2 = SQRT(LISTPR);
BY TITLE
WHERE CATEGORY EQ 'MUSICALS';
END

This request produces the following output:

PAGE 1

TITLE LISTPR SQRT_LISTPR
----- ------ -----------
ALL THAT JAZZ 19.98 4.47
CABARET 19.98 4.47
CHORUS LINE, A 14.98 3.87
FIDDLER ON THE ROOF 29.95 5.47

Using Functions and Subroutines

3-164 Information Builders

SUBSTR: Extracting a Substring
The SUBSTR subroutine extracts a substring from a large character string called a parent
string.

Another way to extract substrings is to use the EDIT function. The differences are:

• The EDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

• The SUBSTR subroutine can vary the position of the substring depending on the
values of other fields.

Available on: All platforms.

Related functions and subroutines:

EDIT

Syntax How to Extract a Substring
SUBSTR(inlength, parent, start, end, sublength, outfield)

where:

inlength

Integer
Is the length of the parent string.

parent

Alphanumeric
Is the field containing the parent string or the parent string enclosed in single
quotation marks.

start

Integer
Is the starting position of the substring in the parent string. If this argument is less
than 1, the subroutine returns spaces.

end

Integer
Is the ending position of the substring. If this argument is less than the start argument
or greater than the inlength argument, the subroutine returns spaces.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-165

sublength

Integer
Is the length of the substring (normally end - start + 1). If the sublength is longer than
end
- start +1, the substring is padded with trailing spaces. If it is shorter, the substring is
truncated. This value should be the declared length of outfield. Only sublength
characters will be processed.

outfield

Alphanumeric
Is the name of the field to which the substring is returned. This argument can also be
the format of the output value, enclosed in single quotation marks.

Example Report Request Extracting Three Characters From LAST_NAME
Beginning With the Letter I
The following request uses the POSIT subroutine to determine the position of the first
letter I in LAST_NAME. Then the report extracts the letter I and the next two characters.

TABLE FILE EMPLOYEE
PRINT
COMPUTE I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2'); AND
COMPUTE I_SUBSTR/A3 = SUBSTR(15, LAST_NAME, I_IN_NAME, I_IN_NAME+2, 3,
I_SUBSTR);

BY LAST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The request produces the following report:

PAGE 1

LAST_NAME I_IN_NAME I_SUBSTR
--------- --------- --------
BANNING 5 ING
IRVING 1 IRV
MCKNIGHT 5 IGH
ROMANS 0
SMITH 3 ITH
STEVENS 0

Notice that since Stevens and Romans have no I in their names, SUBSTR extracts a blank
string.

Using Functions and Subroutines

3-166 Information Builders

TODAY: Returning the Current Date
The TODAY subroutine retrieves the current date from the system in the format
MM/DD/YY or MM/DD/YYYY, depending on the format of the output field.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine (which always returns the current date in the format MM/DD/YY), change
the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

HHMMSS

Syntax How to Retrieve the Current Date
TODAY(outfield)

where:

outfield

Alphanumeric, at least A8
Is the name of the field to which the current date in MM/DD/YY[YY] format is
returned. This argument can also be the format of the output value, enclosed in single
quotation marks.
If DATEFNS=ON and outfield is A8 or A9, TODAY returns the 2-digit year. If
DATEFNS=ON and outfield is A10 or greater, TODAY returns the 4-digit year. If
DATEFNS=OFF, TODAY returns the 2-digit year, regardless of the format of
outfield.

Note:

• You can retrieve the date in the same format (separated by slashes) by using the
system variable &DATE. You can retrieve the date without the slashes using the
system variables &YMD, &MDY, and &DMY. The system variable &DATEfmt
retrieves the date in a specified format.

• You can remove the embedded slashes using the EDIT function.

• Compiled MODIFY procedures cannot use Dialogue Manager system variables.
They must use the TODAY subroutine to obtain the date.

The TODAY subroutine always returns a date that is current. Therefore, if you are
running an application late at night, you may want to use the TODAY subroutine.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-167

Example Report Request Displaying the Current Date
The following request retrieves the current date and displays it in a report heading:

DEFINE FILE EMPLOYEE
DATE/A10 WITH EMP_ID=TODAY(DATE);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL BY DEPARTMENT
HEADING
"PAGE <TABPAGENO "
"SALARY REPORT RUN ON <DATE "
END

The request produces the following output:

PAGE 1
SALARY REPORT RUN ON 12/13/1999
DEPARTMENT CURR_SAL
---------- --------
MIS $108,002.00
PRODUCTION $114,282.00

Using Functions and Subroutines

3-168 Information Builders

UFMT: Converting Alphanumeric to Hexadecimal
The UFMT subroutine converts characters in alphanumeric field values to hexadecimal
(HEX) representation.

This subroutine is especially useful for examining data of unknown format. As long as the
length of the data is known, its content can be examined.

Available on: MVS, OpenVMS, VM/CMS, WebFOCUS.

Syntax How to Convert Alphanumeric to Hexadecimal
UFMT(infield, inlength, outfield)

where:

infield

Alphanumeric
Is the input field or an alphanumeric string enclosed in single quotation marks.

inlength

Numeric
Is the input field length.

outfield

Alphanumeric
Is the name of the field that contains the HEX equivalent. The format of the outfield
argument must be alphanumeric and have a length that is twice as long as the inlength
argument (2*inlength). This argument can also be the format of the output value,
enclosed in single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-169

Example Report Request Converting JOBCODE to Hexadecimal
The following request uses the UFMT subroutine to convert the values in the JOBCODE
field to their HEX representation and store them in the HEXCODE temporary field.
Notice that the format of the temporary field is twice as large as the inlength argument:

DEFINE FILE JOBFILE
HEXCODE/A6 = UFMT(JOBCODE, 3, HEXCODE);
END
TABLE FILE JOBFILE
PRINT JOBCODE HEXCODE
END

The resulting output is:

PAGE 1

JOBCODE HEXCODE
------- -------
A01 C1F0F1
A02 C1F0F2
A07 C1F0F7
A12 C1F1F2
A14 C1F1F4
A15 C1F1F5
A16 C1F1F6
A17 C1F1F7
B01 C2F0F1
B02 C2F0F2
B03 C2F0F3
B04 C2F0F4
B14 C2F1F4

Using Functions and Subroutines

3-170 Information Builders

UPCASE: Converting Text to Uppercase
The UPCASE subroutine converts a string of characters to uppercase.

One reason you might use UPCASE is when you are sorting on a field that contains both
mixed case and uppercase values. In these cases, sorting uses the ASCII or EBCDIC
sorting order, which may cause unpredictable results. To obtain consistent results, define
a new field with all of the values in uppercase, and sort on that.

In FIDEL, CRTFORM LOWER retains the case of entries as they were typed. You can
use the UPCASE subroutine to convert entries for particular fields to uppercase.

Available on: All platforms.

Related functions and subroutines:

• LCWORD

• LOCASE

• MXCASE

Syntax How to Convert Text to Uppercase
UPCASE(length, input, output)

where:

length

Integer
Is the length of both the input and the output strings.

input

Alphanumeric
Is the mixed-case input string or field.

output

Alphanumeric
Is the uppercase output string or field. This argument can also be the format of the
output value, enclosed in single quotation marks.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-171

Example Report Request Converting Mixed Case Names to Uppercase
Suppose you are sorting on a field that contains both uppercase and mixed case values.
The following request defines a field called LAST_NAME_MIXED that contains both
uppercase and mixed case values:

DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE
LCWORD (15 , LAST_NAME, 'A15');

END

Suppose you execute a request that sorts by this field:

TABLE FILE EMPLOYEE
PRINT FIRST_NAME BY LAST_NAME_MIXED
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

On an EBCDIC-based platform, this request produces the following output:

PAGE 1

LAST_NAME_MIXED FIRST_NAME
--------------- ----------
Banning JOHN
BLACKWOOD ROSEMARIE
CROSS BARBARA
Mcknight ROGER
MCCOY JOHN
Romans ANTHONY

On an ASCII-based platform, this request produces the following output:

PAGE 1

LAST_NAME_MIXED FIRST_NAME
--------------- ----------
BLACKWOOD ROSEMARIE
Banning JOHN
CROSS BARBARA
MCCOY JOHN
Mcknight ROGER
Romans ANTHONY

In the first example, Mcknight appears before MCCOY, since the EBCDIC sorting order
places lowercase letters before uppercase letters. In the second example, Blackwood
appears before Banning, since the ASCII sorting order places uppercase letters before
lowercase letters. In either case, this is not how you would expect your report to be sorted.

Using Functions and Subroutines

3-172 Information Builders

The solution is to create a new field with all uppercase letters and sort using this field:

DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE
LCWORD (15, LAST_NAME, 'A15');

LAST_NAME_UPPER/A15=UPCASE (15, LAST_NAME_MIXED, 'A15') ;
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME_MIXED AND FIRST_NAME BY LAST_NAME_UPPER
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

Now, when you execute the request, the names are sorted correctly:

PAGE 1

LAST_NAME_UPPER LAST_NAME_MIXED FIRST_NAME
--------------- --------------- ----------
BANNING Banning JOHN
BLACKWOOD BLACKWOOD ROSEMARIE
CROSS CROSS BARBARA
MCCOY MCCOY JOHN
MCKNIGHT Mcknight ROGER
ROMANS Romans ANTHONY

If you don’t want to see the field with all uppercase values, you can NOPRINT it.

Example MODIFY Request Using UPCASE
Suppose your company decided to store employee names in mixed case and the
department assignments in uppercase in the EMPLOYEE data source.

To enter records of new employees, execute this MODIFY procedure:

MODIFY FILE EMPLOYEE
CRTFORM LOWER
"ENTER EMPLOYEE'S ID : <EMP_ID"
"ENTER LAST_NAME: <LAST_NAME FIRST_NAME: <FIRST_NAME"
"TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET"
" "
"ENTER DEPARTMENT ASSIGNMENT: <DEPARTMENT"
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH COMPUTE

DEPARTMENT = UPCASE (10, DEPARTMENT, 'A10');
ON NOMATCH INCLUDE
ON NOMATCH TYPE "DEPARTMENT VALUE CHANGED TO UPPERCASE: <DEPARTMENT"

DATA
END

 Alphabetical List of Functions and Subroutines

Developing Applications 3-173

A sample execution is as follows:

ENTER EMPLOYEE'S ID : 444555666
ENTER LAST_NAME: Cutter FIRST_NAME: Alan
TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET

ENTER DEPARTMENT ASSIGNMENT: sales

The procedure processes as:

1. The procedure prompts you for an employee ID, last name, first name, and
department on a CRTFORM screen. The CRTFORM LOWER option retains the
case of entries as they were typed.

2. You type the following data and press the ENTER key:

EMPLOYEE'S ID: 444555666
LAST_NAME: Cutter
FIRST_NAME: Alan
DEPARTMENT ASSIGNMENT: sales

3. The procedure searches the data source for the ID 444555666. If it does not find the
ID, it continues processing the transaction.

4. The UPCASE subroutine converts the DEPARTMENT entry “sales” to “SALES.”

ENTER EMPLOYEE'S ID :
ENTER LAST_NAME: FIRST_NAME:
TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET

ENTER DEPARTMENT ASSIGNMENT:

DEPARTMENT VALUE CHANGED TO UPPERCASE: SALES

5. The procedure adds the transaction to the data source.

6. When you exit the procedure with PF3, the FOCUS transaction message indicates the
number of transactions accepted or rejected.

TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0

SEGMENTS: INPUT = 1 UPDATED = 0 DELETED = 0

Using Functions and Subroutines

3-174 Information Builders

YM: Calculating Elapsed Months
The YM subroutine calculates the number of months that elapse between two dates. The
dates must be in year-month format. You can convert a date to this format by using the
CHGDAT subroutine or the EDIT function.

This subroutine has been rewritten to support Year 2000 dates. To use the old version of
this subroutine, change the DATEFNS setting to OFF.

Available on: All platforms.

Related functions and subroutines:

• CHGDAT

• DATEDIF

• DMY, MDY, YMD

Syntax How to Calculate Elapsed Months
YM(fromdate, todate, outfield)

where:

fromdate

Numeric
Is the starting date in year-month format (for example, I4YM). If the date is not valid,
the subroutine returns a 0.

todate

Numeric
Is the ending date in year-month format. If the date is not valid, the subroutine returns
a 0.

outfield

Integer
Is the name of the field to which the number of months between the two dates is
returned. This argument can also be the format of the output value, enclosed in single
quotation marks.

Tip:

If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the
date by 100 to convert to year-month format and set the result to be an integer. This
causes the day portion of the date, which is now after the decimal point, to be dropped.

 Alphabetical List of Functions and Subroutines

Developing Applications 3-175

Example Report Request Calculating Difference in Months Between Two
Dates
The following request shows the number of months that elapse between the time
employees get raises and the time they were hired. Note that the COMPUTE expression
converts the dates from year-month-day to year-month format by dividing the dates by
100.

TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE DATE' AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100; NOPRINT AND COMPUTE
MONTH_INC/I4YM = DAT_INC/100; NOPRINT AND COMPUTE
MONTHS_HIRED/I3 = YM(HIRE_MONTH, MONTH_INC, 'I3');
BY LAST_NAME BY FIRST_NAME BY HIRE_DATE
IF MONTHS_HIRED NE 0
WHERE DEPARTMENT EQ 'MIS';
END

The request produces the following output:

PAGE 1

LAST_NAME FIRST_NAME HIRE_DATE RAISE DATE MONTHS_HIRED
--------- ---------- --------- ---------- ------------
CROSS BARBARA 81/11/02 82/04/09 5
GREENSPAN MARY 82/04/01 82/06/11 2
JONES DIANE 82/05/01 82/06/01 1
MCCOY JOHN 81/07/01 82/01/01 6
SMITH MARY 81/07/01 82/01/01 6

Developing Applications 4-1

CHAPTER 4

Managing Applications With Dialogue
Manager

Topics:

• Overview of Dialogue Manager
Capabilities

• Creating and Storing Procedures

• Executing Procedures

• Including Comments in a Procedure

• Overview of Dialogue Manager
Commands

• Sending a Message to the User: -TYPE

• Controlling Execution: -RUN, -EXIT, and
-QUIT

• Branching

• Looping

• Using Expressions: -SET

• Additional Facilities

• Using Variables in Procedures

• Supplying Values for Variables at Run
Time

• Dialogue Manager Quick Reference

This topic describes how to make report procedures more
dynamic by using Dialogue Manager control commands and
variables.

Managing Applications With Dialogue Manager

4-2 Information Builders

Overview of Dialogue Manager Capabilities
Dialogue Manager enables you to execute stored procedures. In the FOCUS community,
stored procedures are referred to as FOCEXECs. In this topic, they are referred to simply
as procedures.

Dialogue Manager helps you build and manage the execution of procedures, giving you
flexibility in application design. You can use Dialogue Manager control commands to
determine the sequence in which FOCUS commands (such as TABLE) execute. Dialogue
Manager also enables you to use variables in your procedures and supply values for those
variables at run time. You can create a dialogue between the user and the terminal through
various prompting methods, including full-screen forms, menus and windows that you
design yourself, and system queries, as well as supplying values directly in the procedure.

Using Dialogue Manager control commands and variables, your application can respond
to user input and environment conditions at run time. It is important to understand how
Dialogue Manager processes an application’s commands and variables.

Example Processing a Procedure
The following example traces the execution process of a procedure. The numbers at the
left refer to explanatory notes that follow the example.

1. -TOP
2. -PROMPT &WHICHCITY.ENTER NAME OF CITY OR DONE.
3. -IF &WHICHCITY EQ 'DONE' GOTO QUIT;
4. TABLE FILE SALES

SUM UNIT_SOLD
BY PROD_CODE
IF CITY IS &WHICHCITY
END

5. -RUN
6. -GOTO TOP
7. -QUIT

 Overview of Dialogue Manager Capabilities

Developing Applications 4-3

Assume that this procedure is stored in a file named SLRPT. To execute it, the user types
either of the following:

EXEC SLRPT

or

EX SLRPT

The following describes the individual steps of the procedure:

1. -TOP

This is a label, which serves as a target to which -IF … GOTO or -GOTO commands
transfer processing control. Labels themselves call for no special processing, so in
this case control passes to the next command.

2. -PROMPT &WHICHCITY.ENTER NAME OF CITY OR DONE.

The prompt “ENTER NAME OF CITY OR DONE” appears on the terminal.
Assume the user types “STAMFORD” and the variable value is stored for later use.
Processing continues with the next line.

3. -IF &WHICHCITY EQ 'DONE' GOTO QUIT;

Had DONE been entered, control would pass to -QUIT at the bottom of the
procedure. This would end processing, cause an immediate exit from this procedure,
and return control to the FOCUS prompt. Since STAMFORD was entered,
processing continues with the next line.

4. TABLE FILE SALES
.
.
.

Since there is no leading hyphen, this is interpreted as a FOCUS command. Only
Dialogue Manager commands execute immediately, so the next five lines are placed
in the stack where FOCUS commands are kept until executed; this is referred to as
FOCSTACK. Note that the value STAMFORD, entered in response to the prompt, is
inserted into the FOCUS command line as the value for &WHICHCITY.

At this point the FOCSTACK looks like this:

TABLE FILE SALES
SUM UNIT_SOLD
BY PROD_CODE
IF CITY IS STAMFORD
END

Control passes to the next Dialogue Manager command.

Managing Applications With Dialogue Manager

4-4 Information Builders

5. -RUN

This command sends the stack to FOCUS, which executes the stored request and
returns control to the next Dialogue Manager command.

6. -GOTO TOP

Control is now routed back to -TOP, thus establishing a loop. Execution continues
from -TOP with the -PROMPT command.

7. -QUIT

This command is reached when the user types DONE in response to the prompt. The
procedure is exited and the FOCUS prompt appears.

FOCEXEC
Exec

TABLE MODIFY

Terminal
(Enter Values)FOCEXEC

Processor
Resolve Variables

FOCSTACK

FOCUS
COMMAND

PROCESSOR
(Executes FOCSTACK)

1

2

4

5

3

6

FOCEXEC

Figure 4-1. Schematic Diagram of Procedure Processing

1. Processing begins from the command processor when a procedure is invoked for
execution at the FOCUS prompt (for example, EX SLRPT).

2. The FOCEXEC Processor reads each line of the procedure. Any variables on the line
are assigned their current values.

3. If a variable is missing a value, FOCUS issues a prompt. The user then supplies the
missing value.

 Overview of Dialogue Manager Capabilities

Developing Applications 4-5

4. When a command line that contains no Dialogue Manager commands is fully
expanded with any variables resolved (through either a -SET command or
prompting), it is placed onto the command execution stack (FOCSTACK).

5. Dialogue Manager execution commands (for example, -RUN) and statistical
variables flush the FOCSTACK and route all currently stacked commands to the
FOCUS Command Processor.

6. In the previous example the FOCUS Command Processor routes execution to the
TABLE module and executes the TABLE request that was stacked.

By the time your FOCSTACK is ready for execution, this has happened:

• All variables have received values and these values have been integrated into the
command lines containing variables.

• Dialogue Manager commands have been used to place FOCUS commands into
proper sequential order for execution.

• At this point the FOCUS Command Processor no longer sees any Dialogue Manager
commands. It only sees FOCUS command lines in the stack.

Note: Any FOCUS command can be placed in a procedure. This includes the EXEC
command itself. When an EXEC command is processed in a procedure, the commands
from the new procedure are first stacked and then executed. Multiple levels of nesting are
permitted when you use the EXEC command, while only four levels of nesting are
permitted when you use -INCLUDE.

Overview of Dialogue Manager Variables
You can write procedures that contain variables whose values are unknown until run time;
this technique allows a user to customize the procedure by supplying different values each
time it executes. Variables fall into two categories:

• Local and global variables, whose values must be supplied at run time. Local
variables retain their values only for one procedure. Global variables retain their
values across procedures unless you explicitly clear them. They lose their values
when you exit from FOCUS. You create a local variable by choosing a name that
starts with a single ampersand (&); you create a global variable by choosing a name
that starts with a double ampersand (&&).

• System and statistical variables, whose values are automatically supplied by the
system when a procedure references them. System and statistical variables have
names that begin with a single ampersand (&). For example, the variable &LINES
indicates how many lines of output were produced, and the variable &DATE
indicates the current date.

For complete information about variables, see Using Variables in Procedures on page
4-49.

Managing Applications With Dialogue Manager

4-6 Information Builders

Creating and Storing Procedures
You can create procedures with your system editor or with the FOCUS integrated text
editor, TED. TED has two features that make it particularly useful for creating and editing
procedures:

• If you type TED without specifying a procedure name, the last executed procedure is
automatically selected. This is convenient when developing and testing new
procedures.

• You can test the execution of the procedure by typing RUN on the TED command
line. This automatically saves the procedure and executes it. If there is an error in
your procedure, type TED. This brings you back into the editor and places you
directly on the line in which the error was detected.

These options complement the FILE and SAVE options that are common to other editors.

Follow these general rules when you are creating procedures:

• Dialogue Manager commands must begin in the first position of the line.

• At least one space must be inserted between the Dialogue Manager command and
other text.

• If a Dialogue Manager command exceeds one line, the following line must begin with
a hyphen (-) in the first position. The continuation line can begin immediately after
the hyphen, or you may insert a space between the hyphen and the rest of the line.

• Procedures must have the record format RECFM=F and the logical record length
(LRECL) 80.

 Executing Procedures

Developing Applications 4-7

Executing Procedures
Procedures are generally initiated from the FOCUS prompt (>). Type the command
EXEC, or its abbreviation EX, followed by the name of the procedure.

Example Executing a Procedure
Either of the following commands

EXEC SLRPT

or

EX SLRPT

will summon the procedure named SLRPT for execution.

Controlling Access to Data
You can set a password in a procedure and tie it to different portions of a procedure.

Syntax How to Set a Password in a Procedure
-PASS password

where:

password

Is a password or a variable containing a password.

Since -PASS is a Dialogue Manager command, it executes immediately and is not sent to
the FOCSTACK. This means that the user need not issue the password with the SET
command.

Managing Applications With Dialogue Manager

4-8 Information Builders

Including Comments in a Procedure
It is good practice to include comments in procedures for the benefit of others who may
read or refine them at a later date. Comments are particularly recommended as procedure
headers to give version, date, and other relevant information. It is easier to track and
maintain large software applications when they are carefully commented. Comments are
ignored during actual execution.

To add comment lines to a Dialogue Manager procedure, precede them with a hyphen and
an asterisk (-*). Any text whatsoever may immediately follow the -*. You can place
comment lines anywhere in a procedure.

Comments do not appear on the terminal nor do they trigger any processing. They are
visible only when viewing the contents of the procedure through the editor and are strictly
for the benefit of the developer. However, you can view comments on the terminal by
using the option ECHO = ALL.

Example Including Comments in a Procedure
The following example contains two comment lines:

-* Version 1 6/30/85 SLRPT FOCEXEC
-* Component of Retail Sales Reporting Module
TABLE FILE SALES
HEADING CENTER
"MONTHLY SALES FOR STAMFORD"
.
.
.

 Overview of Dialogue Manager Commands

Developing Applications 4-9

Overview of Dialogue Manager Commands
Dialogue Manager provides commands for accomplishing the following tasks:

• Sending messages to the user.

• Displaying values.

• Controlling the values of variables, including reading variables from and writing
values to an external file.

• Testing conditions and branching.

• Controlling the execution of stacked commands.

• Calling another procedure.

• Issuing operating system commands specific to your environment.

Reference Summary of Dialogue Manager Commands
The following pages describe all Dialogue Manager commands. They are listed in
alphabetical order. The categories used to describe them in the quick reference at the end
of this topic are briefly outlined below:

Command Lists the name of the command.

Syntax Shows exactly how the command components must appear in a
procedure.

Function Outlines the meaning and purpose of the command.

Similar Command Describes the relationship between the Dialogue Manager
command and other FOCUS commands (for example, -TYPE
and TYPE).

Command Meaning
-* Is a comment line; it has no action.
-CLOSE ddname Closes the specified -READ or -WRITE file.
-CLOSE * Closes all -READ and -WRITE files currently open.
-CMS Executes a CMS command from within Dialogue Manager.
-CMS RUN In CMS, loads and executes a user-written subroutine.
-CRTCLEAR Clears the screen display.
-CRTFORM Initiates full-screen variable data entry.

Managing Applications With Dialogue Manager

4-10 Information Builders

Command Meaning
-DEFAULT
-DEFAULTS

Presets initial values for variable substitution.

-EXIT Executes stacked commands and returns to the FOCUS
prompt.

-GOTO Establishes an unconditional branch.
-HTMLFORM For use with the Web Interface to FOCUS.
-IF Tests and branches control based on test results.
-INCLUDE Dynamically incorporates one procedure in another.
-label Is a user-supplied name that identifies the target for -GOTO or

-IF.
-MVS RUN Same as -TSO RUN.
-PASS Sets password directly.
-PROMPT Types a prompt message on the screen and reads a reply.
-QUIT Exits the procedure without executing it.
-READ Reads records from a non-FOCUS file.
-REPEAT Executes a loop.
-RUN Executes all stacked FOCUS commands and returns to

procedure for further processing.
-SET Assigns a value to a variable.
-TSO RUN In MVS/TSO, loads and executes a user-written subroutine.
-TYPE Types informative message to screen or other output device.
-WINDOW Invokes Window Painter, transferring control from the

procedure to the specified window file.
-WRITE Writes a record to a non-FOCUS file.
-"…" Brackets contents for -CRTFORM display line.
-? SET SETCOMMAND
&myvar

Captures the setting of SETCOMMAND in &myvar.

-? &[string] Displays the values of currently defined amper variables.

 Sending a Message to the User: -TYPE

Developing Applications 4-11

Sending a Message to the User: -TYPE
The Dialogue Manager command -TYPE enables you to send informative messages to the
screen while a procedure is processing. These messages serve a variety of functions. They
can explain the purpose of the procedure, the results of computations or calculations, or
preface prompts requesting information from the terminal. -TYPE triggers these
messages.

Syntax How to Send a Message to the User
-TYPE[+] text
-TYPE[0] text
-TYPE[1] text

where:

+

Suppresses the line feed following the printing of text.

0

Forces a line feed before the message text is displayed.

1

Forces a page eject before the message text is printed.

text

Is all succeeding text including variable values supplied on the same command line.
It sends the text to the screen, followed by a line feed. It remains on screen until
scrolled off or replaced by a new screen.

The options +, 0, and 1 are used to pass printer control characters to the output device and
are particularly useful for character printers. Options + and 1 do not work on IBM
3270-type terminals. -TYPE sends the text to the terminal as soon as it is encountered in
the processing of a procedure.

Managing Applications With Dialogue Manager

4-12 Information Builders

Example Sending a Message to the Users
The following is an example of the use of -TYPE:

-* Version 1 6/30/85 SALERPT FOCEXEC
-TYPE This report calculates percentage of returns
TABLE FILE SALES
.
.
.

Note: The -TYPE message need not be enclosed in quotation marks, since FOCUS
understands that -TYPE signals a following textual message. If you use quotation marks,
they will appear along with the message. This differs from the use of TYPE in MODIFY,
where quotation marks are used as delimiters and must enclose informative text.

Controlling Execution: -RUN, -EXIT, and -QUIT
Dialogue Manager enables you to manage the flow of execution with these commands:

• -RUN executes stacked commands and continues the procedure.

• -EXIT executes stacked commands and exits the procedure.

• -QUIT cancels execution and exits the procedure.

Executing Stacked Commands and Continuing the Procedure:
-RUN

The Dialogue Manager command -RUN causes immediate execution of all stacked
FOCUS commands and closes any external files opened with -READ or -WRITE.
Following execution, processing of the procedure continues with the line that follows
-RUN.

 Controlling Execution: -RUN, -EXIT, and -QUIT

Developing Applications 4-13

Example Executing Stacked Commands and Continuing the Procedure
The following example illustrates the use of -RUN to execute stacked code and then
return to the procedure.

1. -TYPE This report calculates percentage of returns.
2. TABLE FILE SALES

.

.

.
END

3. -RUN
4. -TYPE This routine reports on data in the employee file.

TABLE FILE EMPLOYEE
.
.
.
END

The procedure processes as follows:

1. The command -TYPE generates a message.

2. The FOCUS code is stacked.

3. The command -RUN causes the stacked commands to be executed and the output
returned.

4. Processing continues with the line following -RUN. In this case, another message is
sent and another TABLE request is initiated.

Executing Stacked Commands and Exiting the Procedure: -EXIT
-EXIT forces execution of stacked FOCUS commands as soon as it is encountered.
However, instead of returning to the procedure, -EXIT closes all external files, terminates
the procedure, and, either returns you to the FOCUS prompt or to the calling procedure.

Managing Applications With Dialogue Manager

4-14 Information Builders

Example Executing Stacked Commands and Exiting the Procedure
In the following example, either the first TABLE request or the second TABLE request
will execute, but not both:

1. -TYPE This report calculates percentage of returns.
2. -IF &PROC EQ 'EMPLOYEE' GOTO EMPLOYEE;
3. -SALES

TABLE FILE SALES
.
.
.
END

4. -EXIT
-EMPLOYEE

TABLE FILE EMPLOYEE
.
.
.
END

The procedure processes as follows:

1. The command -TYPE generates a message.

2. Assume the value passed to &PROC is SALES.

The -IF test checks the value of &PROC. Since it is not equal to EMPLOYEE,
control passes to the label -SALES.

3. The FOCUS code is stacked. Control passes to the next line, -EXIT.

4. The command -EXIT executes the stacked commands. The output is sent to the
terminal or output device and the procedure is exited.

The TABLE request under the label -EMPLOYEE is not executed.

This example also illustrates an implicit exit. If the value of &PROC was EMPLOYEE,
control would pass to the label -EMPLOYEE after the -IF test, and the procedure would
never encounter the -EXIT. The TABLE FILE EMPLOYEE request would execute and
the procedure would automatically terminate.

 Controlling Execution: -RUN, -EXIT, and -QUIT

Developing Applications 4-15

Canceling Execution of the Procedure: -QUIT
-QUIT cancels execution of any stacked commands and causes an immediate exit from
the procedure.

This command is useful if tests or computations generate results that make additional
processing unnecessary.

Example Canceling Execution of the Procedure
The following example illustrates the use of -QUIT to cancel execution based on the
results of an -IF test.

1. -TYPE This report calculates percentage of returns.
TABLE FILE SALES
.
.
.
END

2. -IF &CODE GT 'B10' OR &CODE EQ 'DONE' GOTO QUIT;
3. -QUIT

The procedure processes as follows:

1. The command -TYPE generates a message. The FOCUS code is stacked.

2. Assume that the value of &CODE is B11.

The command -IF tests the value and passes control to -QUIT.

3. The command -QUIT cancels execution of the stacked commands and exits the
procedure.

Exiting FOCUS and Setting Return Codes: -QUIT FOCUS
The Dialogue Manager command -QUIT FOCUS causes an immediate exit not only from
the procedure, but from FOCUS as well. It returns you to the operating system and sets a
return code.

Managing Applications With Dialogue Manager

4-16 Information Builders

Syntax How to Exit FOCUS and Set a Return Code
-QUIT FOCUS [n|8]

where:

n|8

Is the operating system return code number. It can be a constant or variable. A
variable should be an integer. If you do not supply a value or if you supply a
non-integer value, the return code posted to the operating system is 8 (the default
value).

A major function of user-controlled return codes is to detect processing problems. The
return code value determines whether to continue or terminate processing. This is
particularly useful for batch processing.

Branching
The execution flow of a procedure is determined with the following commands:

• -GOTO. Used for unconditional branching, -GOTO transfers control to a label.

• -IF…GOTO. Used for conditional branching, -IF…GOTO transfers control to a label
depending on the outcome of a test.

-GOTO Processing
Dialogue Manager processes a -GOTO as follows:

• It searches forward through the procedure for the target label. If it reaches the end
without finding the label, it continues the search from the beginning of the procedure.

• The first time through a procedure, Dialogue Manager notes the addresses of all the
labels so that they can be found immediately if needed again.

• Dialogue Manager takes no action on labels that do not have a corresponding
-GOTO.

• If a -GOTO does not have a corresponding label, execution halts and an error
message is displayed.

 Branching

Developing Applications 4-17

Syntax How to Unconditionally Branch With -GOTO
-GOTO label
.
.
.

-label [TYPE text]

where:

label

Is a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that can be confused with functions or arithmetic or logical operations.
The label may precede or follow the -GOTO command in the procedure.

TYPE text

Optionally sends a message to a client application.

Example Unconditional Branching With -GOTO
The following example “comments out” all the FOCUS code using an unconditional
branch rather than -* in front of every line:

-START TYPE PROCESSING BEGINS
-GOTO DONE
TABLE FILE SALES
PRINT UNIT_SOLD RETURNS
WHERE PROD_CODE BETWEEN '&CODE1' AND '&CODE2'
AND PRODUCT = '&PRODUCT'
BY PROD_CODE,CITY
END
-RUN
-DONE

Managing Applications With Dialogue Manager

4-18 Information Builders

Syntax How to Conditionally Branch With -IF…GOTO
-IF expression [THEN] GOTO label1; [ELSE IF...;]

[ELSE GOTO label2;]

where:

expression

Is a valid expression. Literals need not be enclosed in single quotation marks unless
they contain embedded blanks or commas.

THEN

Is an optional keyword that increases readability of the command.

GOTO label

Is a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that can be confused with functions or arithmetic or logical operations.
The label may precede or follow the -IF command in the procedure.

ELSE IF

Optionally specifies a compound -IF test. See Compound -IF Tests on page 4-19.

ELSE GOTO

Optionally passes control to label2 when the -IF test fails.

The command -IF must end with a semicolon (;) to signal that all logic has been specified.
Continuation lines must begin with a hyphen (-).

 Branching

Developing Applications 4-19

Example Conditional Branching With -IF…GOTO
In the following example, control passes to the label -PRODSALES if &OPTION is equal
to S. Otherwise, control falls through to the label -PRODRETURNS, the line following
the -IF test.

-IF &OPTION EQ 'S' GOTO PRODSALES;
-PRODRETURNS

TABLE FILE SALES
.
.
.
END

-EXIT
-PRODSALES

TABLE FILE SALES
.
.
.
END

-EXIT

The following command specifies both transfers explicitly:

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE
- GOTO PRODRETURNS;

Notice that the continuation line begins with a hyphen (-).

Compound -IF Tests
You can use compound -IF tests provided each test specifies a target label.

Example Using Compound -IF Tests
In the following example, if the value of &OPTION is neither R nor S, the procedure
terminates (GOTO QUIT). The -QUIT serves both as a target label for the GOTO and as
an executable command.

-IF &OPTION EQ 'R' THEN GOTO PRODRETURNS ELSE IF
- &OPTION EQ 'S' THEN GOTO PRODSALES ELSE
- GOTO QUIT;

.

.

.
-QUIT

Managing Applications With Dialogue Manager

4-20 Information Builders

Using Operators and Functions in -IF Tests
Expressions in an -IF test can include all FOCUS arithmetic and logical operators, as well
as available functions or subroutines. See the Creating Reports manual for details.

Example Testing System and Statistical Variables
You can use system and statistical variables in -IF tests.

In the following example, if data (&LINES) is retrieved with the request, then the
procedure branches to the label -PRODSALES; otherwise, it terminates.

TABLE FILE SALES
.
.
.

-IF &LINES NE 0 GOTO PRODSALES;
-EXIT
-PRODSALES
.
.
.

Screening Values With -IF Tests
To ensure that a supplied value is valid in a procedure, you can test it for the following:

• Presence

• Length

• Type

For instance, you would not want to perform a numerical computation on a variable for
which alphanumeric data has been supplied.

 Branching

Developing Applications 4-21

Syntax How to Test for the Presence of a Value
-IF &name.EXIST [expression]GOTO label...;

where:

&name

Is a user-supplied variable.

.EXIST

Indicates that you are testing for the presence of a value. If a value is not present, a
zero (0) is passed to the expression. Otherwise, a non-zero value is passed.

expression

Is the remainder of a valid expression that uses &name.EXIST as an amper variable.

GOTO label

Specifies a label to branch to.

Example Testing for the Presence of a Variable
In the following example, if no value is supplied, &OPTION.EXIST is equal to zero and
control is passed to the label -CANTRUN. The procedure sends a message to the client
application and then exits. If a value is supplied, control passes to the label
-PRODSALES.

-IF &OPTION.EXIST GOTO PRODSALES ELSE GOTO CANTRUN;
.
.
.

-PRODSALES
TABLE FILE SALES
.
.
.

END
-EXIT
-CANTRUN
-TYPE TOTAL REPORT CAN'T BE RUN WITHOUT AN OPTION.
-EXIT

Managing Applications With Dialogue Manager

4-22 Information Builders

Syntax How to Test for the Length of a Value
-IF &name.LENGTH expression GOTO label...;

where:

&name

Is a user-supplied variable.

.LENGTH

Indicates that you are testing for the length of a value. If a value is not present, a zero
(0) is passed to the expression. Otherwise, the number of characters in the value is
passed.

expression

Is the remainder of a valid expression after &name is expanded.

GOTO label

Specifies a label to branch to.

Example Testing for Variable Length
In the following example, if the length of &OPTION is greater than one, control passes to
the label -FORMAT, which informs the client application that only a single character is
allowed.

-IF &OPTION.LENGTH GT 1 GOTO FORMAT ELSE
-GOTO PRODSALES;

.

.

.
-PRODSALES

TABLE FILE SALES
.
.
.

END
-EXIT
-FORMAT
-TYPE ONLY A SINGLE CHARACTER IS ALLOWED.

Example Storing the Length of a Variable
The following example sets the variable &WORDLEN to the length of the string
contained in the variable &WORD:

-PROMPT &WORD.ENTER WORD.
-SET &WORDLEN = &WORD.LENGTH;

 Branching

Developing Applications 4-23

Syntax How to Test for the Type of a Value
-IF &name.TYPE expression GOTO label...;

where:

&name

Is a user-supplied variable.

TYPE

Indicates that you are testing for the type of a value. The letter N (numeric) is passed
to the expression if the value can be interpreted as a number up to 109–1 and can be
stored in four bytes as a floating point format. In Dialogue Manager, the result of an
arithmetic operation with numeric fields is truncated to an integer after the whole
result of an expression is calculated. If the value could not be interpreted as numeric,
the letter A (alphanumeric) of the letter U (undefined) is passed to the expression.

expression

Is the remainder of a valid expression after &name is expanded.

GOTO label

Specifies a label to branch to.

Example Testing for Variable Type
In the following example, if &OPTION is not alphanumeric, control passes to the label
-NOALPHA, which informs the client application that only alphanumeric characters are
allowed.

-IF &OPTION.TYPE NE A GOTO NOALPHA ELSE
- GOTO PRODSALES;

.

.

.
-PRODSALES

TABLE FILE SALES
.
.
.

END
-EXIT
-NOALPHA
-TYPE ENTER A LETTER ONLY.

Managing Applications With Dialogue Manager

4-24 Information Builders

Testing the Status of a Query
The system variable &RETCODE returns a code after a query is executed. If the query
results in a normal display, the value of &RETCODE is 0. If a display error occurs, or no
display results (as can happen when the query finds no data), the value of &RETCODE is
8. (If the error occurs on a ? SU, the value of &RETCODE is 16.)

The value of &RETCODE is set following the execution of any of these queries:

 NORMAL NODISPLAY ERROR
? HOLD 0 8
? SU* 0 8 16
? JOIN 0 8
? COMBINE 0 8
? DEFINE 0 8
? USE 0 8
? LOAD 0 8
? FILEDEF 0 8

*The &RETCODE value of ? SU means: 0 indicates that the FOCUS Database Server
(formerly called the sink machine) is up with one or more users; 8 indicates that the
FOCUS Database Server is up with no users; 16 indicates that there is an error in
communicating to the FOCUS Database Server.

You can test the status of any of these queries by checking the &RETCODE variable and
providing branching instructions in your procedure.

For example, if you are using Simultaneous Usage (SU), you must know if the FOCUS
Database Server is available before you can begin a particular procedure. The following
procedure tests whether SINK1 is available before launching PROC1.

? SU SINK1
-RUN
-IF &RETCODE EQ 16 GOTO BAD;
-INCLUDE PROC1
-BAD
-EXIT

 Looping

Developing Applications 4-25

Looping
The Dialogue Manager command -REPEAT allows looping in a procedure.

Syntax How to Specify a Loop
-REPEAT label n TIMES
-REPEAT label WHILE condition
-REPEAT label FOR &variable [FROM fromval] [TO toval] [STEP s]

where:

label

Identifies the end of the code to be repeated (the loop). A label can include another
loop if the label for the second loop has a different name from the first.

n TIMES

Specifies the number of times to execute the loop. The value of n can be a local
variable, a global variable, or a constant. If it is a variable, it is evaluated only once,
so the only way to end the loop early is with -QUIT or -EXIT (you cannot change the
number of times to execute the loop) or to branch out of the loop.

WHILE condition

Specifies the condition under which to execute the loop. The condition is any logical
expression that can be true or false. The loop is run if the condition is true.

FOR &variable

Is a variable that is tested at the start of each execution of the loop. It is compared
with the value of fromval and toval (if supplied). The loop is executed only if
&variable is less than or equal to toval (STEP is positive), or greater than or equal to
toval (STEP is negative).

FROM fromval

Is a constant that is compared with &variable at the start of each execution of the
loop. The default value is 1.

TO toval

Is a value that is compared with &variable at the start of each execution of the loop.
The default is 1,000,000.

STEP s

Is a constant used to increment &variable at the end of each execution of the loop. It
may be positive or negative. The default value is 1.

The parameters FROM, TO, and STEP can appear in any order.

Managing Applications With Dialogue Manager

4-26 Information Builders

Example Using -REPEAT to Create a Loop
These examples illustrate how to write each of the syntactical elements of -REPEAT.

1. -REPEAT label n TIMES

Example:

-REPEAT LAB1 2 TIMES
-TYPE INSIDE
-LAB1 TYPE OUTSIDE

The output is:

INSIDE
INSIDE
OUTSIDE

2. -REPEAT label WHILE condition

Example:

-SET &A = 1;
-REPEAT LABEL WHILE &A LE 2;
-TYPE &A
-SET &A = &A + 1;
-LABEL TYPE END: &A

The output is:

1
2
END: 3

3. -REPEAT label FOR &variable FROM fromval TO toval STEP s

Example:

-REPEAT LABEL FOR &A STEP 2 TO 4
-TYPE INSIDE &A
-LABEL TYPE OUTSIDE &A

The output is:

INSIDE 1
INSIDE 3
OUTSIDE 5

 Using Expressions: -SET

Developing Applications 4-27

Ending a Loop
A loop can end in one of three ways:

• It executes in its entirety.

• A -QUIT or -EXIT is issued.

• A -GOTO is issued to a label outside of the loop.

Note: If you later issue another -GOTO to return to the loop, the loop proceeds from
the point it left off.

Using Expressions: -SET
The Dialogue Manager command -SET can be used in various ways to define values for
variables in Dialogue Manager. You can compute new variables or recompute existing
ones using arithmetic and logical expressions. You can also control loops, set indexes for
variables, and call subroutines.

The following is a list of what can be included in a -SET expression and some specific
rules for computations when using amper variables. Some calculations and special
functions require that the amper variables have numeric values. FOCUS substitutes the
value before placing the calculation in the stack. The variable does not have to have an I
(integer) format, but the value for the variable must not contain alphanumeric characters.
Note that the LAST operator used for reporting has no meaning in Dialogue Manager, nor
do special MODIFY functions like FIND or LOOKUP.

• You can perform concatenations with the concatenation symbol. You must insert a
space separating the amper variable from the concatenation symbol.

• You can use the DECODE function.

• You can use the EDIT function; however, its use is limited to the mask option.

• You can use the TRUNCATE function

• You can use the date functions.

• You can use subroutines.

For more information on expressions, functions, and subroutines, see the Creating
Reports manual.

Managing Applications With Dialogue Manager

4-28 Information Builders

Computing a New Variable
You can use -SET to define a value for a substituted variable based on the results of a
logical or arithmetic expression or a combination.

Syntax How to Compute a New Variable
-SET &name = expression;

where:

&name

Is a user-supplied variable that has its value assigned with the expression.

expression

Is an expression following the rules outlined in the Creating Reports manual, but
with limitations as defined in this topic. The semicolon after the expression is
required to terminate the -SET command.

Example Altering a Variable Value
The following example demonstrates the use of -SET to alter variable values based on
tests.

-START
-TYPE RETAIL PRICE ABOVE OR BELOW $1.00 IN THIS REPORT?
-PROMPT &CHOICE.ENTER A OR B.
-SET &REL = IF &CHOICE EQ A THEN 'GT' ELSE 'LT';

TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD RETAIL_PRICE
BY STORE_CODE BY DATE
IF RETAIL_PRICE &REL 1.00
END

In the example, the &CHOICE variable receives either A or B as the value supplied
through -PROMPT. Assuming the user enters the letter A, -SET assigns the string value
GT to &REL. Then, the value GT is passed to the &REL variable in the procedure, so
that the expanded FOCUS command at execution time is:

IF RETAIL_PRICE GT 1.00

Note that literals are enclosed by single quotation marks. These are optional unless the
literal contains embedded commas or blanks. To produce a literal that includes a single
quotation mark, place two single quotation marks where you want one to appear.

 Using Expressions: -SET

Developing Applications 4-29

Using the DECODE Function
You can use the DECODE function to change a variable to an associated value.

Example Assigning a Value to a Variable With DECODE

In the following example, the variable refers to a label:

1. -PROMPT &SELECT. ENTER CHOICE (A,B,C,D,E).
2. -SET &GO=DECODE &SELECT (A ONE B TWO C THREE

-D FOUR E FIVE ELSE EXIT);
3. -GOTO &GO

-ONE
.
.
.
-TWO
.
.
.

The example processes as follows:

1. -PROMPT prompts the user at the terminal for a value for the variable &SELECT.
Assume the user enters A.

2. -SET defines the variable &GO in terms of the DECODE function. Depending on the
value input for &SELECT, DECODE associates a substitution. In this case, ONE is
substituted for A.

3. -GOTO &GO transfers control to the label -ONE.

In the example, &GO can be another procedure (see Incorporating Multiple Procedures
on page 4-37) that is executed, depending on the value that is decoded:

-TOP
-TYPE
-PROMPT &SELECT.ENTER 1, 2, 3, 4, 5, OR EXIT TO END.
-SET &GO=DECODE &SELECT (1 ONE 2 TWO 3 THREE
- 4 FOUR 5 FIVE ELSE EXIT);
-IF &GO IS EXIT GOTO EXIT;
EX &GO
-RUN
-GOTO TOP
-EXIT

For more information on DECODE, see the Creating Reports manual.

Managing Applications With Dialogue Manager

4-30 Information Builders

Using the EDIT Function
You can use the mask option of the EDIT function with amper variables. You can insert
characters into an alphanumeric value, or extract certain characters from the value.

Example Using the EDIT Function With Amper Variables
In the following example, EDIT extracts a particular character, in this case the J, for
comparison in order to branch to the appropriate label. Assume there are nested menus
and the user must supply a number to branch to a particular menu. If the first character is
a J, the branch is to the label JUMP that enables the user to jump in nested menus (the
numbers refer to the explanation below):

1. -TYPE CHOOSE 1 for Edit, 2 for Print, 3 for Math
1. -TYPE TO JUMP LEVELS OF MENUS TYPE J1.3 ETC.
2. -PROMPT &OPTION.A4.Please enter selection:.
3. -SET &XYZ = EDIT(&OPTION, '9$$$');

4. -IF &XYZ EQ J THEN GOTO JUMP;
.
.
.

5. -JUMP
.
.
.

The example processes as follows:

1. -TYPE send messages to the screen explaining the options to the user.

2. -PROMPT asks the user to enter a value for the variable &OPTION. It can have as
many as four characters.

3. -SET calculates the variable &XYZ, which is the &OPTION variable, using the mask
option of EDIT. The first character is screened.

4. -IF determines the branch. If the variable &XYZ is equal to J, processing continues
to the label JUMP. Otherwise, processing continues to the next command in the
procedure.

5. -JUMP is a label. The coding that follows contains the necessary FOCUS commands
to enable the user to jump to the various menus.

 Using Expressions: -SET

Developing Applications 4-31

Using the TRUNCATE Function
The Dialogue Manager TRUNCATE function removes trailing blanks from Dialogue
Manager amper variables and adjusts the length accordingly.

The Dialogue Manager TRUNCATE function has only one argument, the string or
variable to be truncated. If you attempt to use the Dialogue Manager TRUNCATE
function with more than one argument, the following error message is generated:

(FOC03665) Error loading external function 'TRUNCATE'

This function can only be used in Dialogue Manager commands that support subroutine
calls, such as -SET and -IF commands. It cannot be used in -TYPE or -CRTFORM
commands or in arguments passed to stored procedures.

Note: A user-written subroutine of the same name can exist without conflict.

Syntax How to Use the TRUNCATE Function
-SET &var2 = TRUNCATE(&var1);

where:

&var2

Is the Dialogue Manager variable to which the truncated string is returned. The
length of this variable is the length of the original string or variable minus the trailing
blanks. However, if the original string consisted of only blanks, a single blank, with a
length of one is returned.

&var1

Is a Dialogue Manager variable or a literal string enclosed in single quotation marks.
System variables and statistical variables are allowed as well as user-created local
and global variables.

Example Using the Dialogue Manager TRUNCATE Function
The following example shows the result of truncating trailing blanks:

-SET &LONG = 'ABC ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABC LENGTH = 03

Managing Applications With Dialogue Manager

4-32 Information Builders

The following example shows the result of truncating a string that consists of all blanks:

-SET &LONG = ' ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = LENGTH = 06
RESULT = LENGTH = 01

The following example uses the TRUNCATE function as an argument for EDIT:

-SET &LONG = 'ABC ' ;
-SET &RESULT = EDIT(TRUNCATE(&LONG)|'Z','9999');
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABCZ LENGTH = 04

Controlling a Loop With -SET
You can use the -SET command to control the repetition limit of a loop.

Example Controlling a Loop With -SET
In the following example, the variable &N is incremented using -SET and tested to
terminate the loop:

1. -DEFAULTS &N=0
2. -START
3. -SET &N=&N+1;
4. EX SLRPT

-RUN
5. -IF &N GT 5 GOTO NOMORE;
6. -GOTO START
5. -NOMORE TYPE EXCEEDING REPETITION LIMIT

-EXIT

Execution proceeds in this way:

1. The -DEFAULTS command initializes the loop-controlling variable &N to 0.

2. -START is a Dialogue Manager label that begins the loop. It is the target of an
unconditional -GOTO.

 Using Expressions: -SET

Developing Applications 4-33

3. The -SET command increments the value of &N by one each time through the loop.

4. The FOCUS command EX SLRPT is stacked. The command -RUN then calls for the
execution of the stacked command.

5. This -IF command tests the current value of the variable &N. If the value is greater
than 5, control passes to the label -NOMORE, which displays a message for the user
and forces an exit. If the value of &N is 5 or less, control falls through to the next
Dialogue Manager command.

6. The unconditional Dialogue Manager command -GOTO START causes the loop to
repeat.

Setting a Date
Natural date literals can be used in Dialogue Manager. They provide a way to take
advantage of the powerful date handling capabilities of FOCUS. For more information on
the FOCUS DATE format, see the Creating Reports manual.

Example Setting Dates and Computing the Difference in Days
Consider the following example:

-SET &NOW= 'MAR 11 1999';
-SET &LATER= '2000 11 MAR';
-SET &DELAY = &LATER - &NOW;

The value of &DELAY is set to the difference, in days, between &LATER and &NOW.

Note:

• A computation that adds or subtracts a fixed number of days from a variable in
DATE format is not yet supported.

• A date given to Dialogue Manager cannot exceed 20 characters, including spaces.

• Dialogue Manager accepts only full-format dates (that is, MDY or MDYY, in any
order).

Calling a Subroutine
Any function name encountered in a Dialogue Manager expression which is not
recognized as a system standard name or FOCUS function is assumed to be a subroutine.
These subroutines are externally programmed by users and stored in a library that is
available at the time they are referenced. One or more arguments are passed to the user
program, which performs an operation or calculation and returns a single value or
character string.

Dialogue Manager variables can receive their values from subroutines through -SET.

Managing Applications With Dialogue Manager

4-34 Information Builders

Syntax How to Set a Variable Value Based on the Result From a
Subroutine
-SET &name = routine(argument,...,'format');

where:

name

Is the name of the variable in which the result is stored.

routine

Is the name of the subroutine.

argument

Represents the argument(s) that must be passed to the subroutine. These arguments
are converted to decimal format.

format

Is the predefined format of the result. This is used to convert the numeric format back
to character representation. It must be enclosed in single quotation marks.

Example Setting a Variable Value Based on the Result From a
Subroutine
In the following example, FOCUS invokes the subroutine RATE, adds 0.5 to the
calculated value, and then formats the result as a double precision number. This result is
then stored in the variable &COST:

-PROMPT &COMPANY.WHAT COMPANY ARE YOU USING?.
-PROMPT &DEST.WHERE ARE YOU SENDING THE PACKAGE TO?.
-PROMPT &WEIGHT.HOW HEAVY IS THE PACKAGE IN POUNDS?.
-SET &COST = RATE(&COMPANY,&DEST,&WEIGHT,'D6.2') + 0.5;
-TYPE THE COST TO SEND A &WEIGHT pound PACKAGE
-TYPE TO &DEST BY &COMPANY IS &COST

 Using Expressions: -SET

Developing Applications 4-35

Syntax How to Load and Execute a Subroutine
The following is an alternate way of calling subroutines. The Dialogue Manager
command causes the subroutine to be loaded and then executed. The syntax is

{-CMS } RUN routine, argument,...
{-TSO } RUN routine, argument,...
{-MVS } RUN routine, argument,...

where:

routine

Is the name of the subroutine.

argument

Represents the argument(s) that must be passed to the subroutine. Arguments that are
variables must have sizes predefined in prior -SET commands.

The numeric arguments to the subroutine are not automatically converted to D format in
this syntax. Any required conversion must be done externally by the user or in the
subroutine.

Example Loading and Executing a Subroutine
The following is an example of the preceding syntax:

-PROMPT &MYCODE.A3.
-SET &MYNAME = '';
-SET &MYFACTOR = '' ;
-CMS RUN CODENAME,&MYCODE,&MYNAME,&MYFACTOR

In this example the program is CODENAME. The arguments that are variables are either
prompted for or set at the beginning of the procedure and the values are then supplied for
the arguments. Note that in this syntax the user program may use an argument for both
input and output purposes. It is the responsibility of the user program to move the correct
number of characters into the output variables.

Managing Applications With Dialogue Manager

4-36 Information Builders

Additional Facilities
Dialogue Manager supports a number of facilities for building applications. These
facilities include:

• Creating startup files (profiles) that set overall environment conditions, which apply
throughout your working session with FOCUS.

• Using -INCLUDE and EXEC to dynamically insert a procedure in another procedure,
or to nest them up to four levels.

• Creating windows and menus for displaying information and collecting data in a
procedure.

• Debugging procedures.

• Managing data integrity and security.

• Transferring data to and from non-FOCUS files.

Establishing Startup Conditions
FOCUS supports a startup profile that executes its content immediately upon entry into
FOCUS. Using this procedure you can:

• Establish standard conditions that apply throughout the subsequent working session.
For example, you can predefine environment parameters or automatically compute
variables and make them available for later use.

• Provide a menu of subsequent user options.

• Control use of an application.

You can create a profile using any text editor or the FOCUS editor TED. The file is a
FOCEXEC named PROFILE.

Note: It is possible to use an alternate FOCEXEC as a profile or not to execute a profile
at all. For more information, see the Overview and Operating Environments manual.

 Additional Facilities

Developing Applications 4-37

Example Creating a Startup Profile
Note the following example of a profile (under CMS):

USE
SALES FOCUS A1
MASTER FOCUS C1
END
CMS FILEDEF MYSAV DISK SAVE TEMP (LRECL 304 RECFM V
DEFINE FILE SALES
RATIO/D5.2 = (RETURNS/UNIT_SOLD);
END
-TYPE FOCUS SESSION ON &DATE MDYY &TOD

LET WORKREPORT=TABLE FILE EMPLOYEE
SET LINES=57, PAPER=66, PAGE=OFF
OFFLINE

Upon entering FOCUS, the profile is executed and a message showing the current date
and time is displayed:

FOCUS SESSION ON 03/11/99 AT 14:21:06

Incorporating Multiple Procedures
Dialogue Manager supports dynamic inclusion of other procedures into a stored
procedure at run time to enhance efficiency. There are two ways to do this:

• You can use the EXEC command in a procedure. The command will be stacked with
other FOCUS commands and executed when an appropriate Dialogue Manager
command forces execution of the stack. The procedure must be a fully executable
procedure.

• The -INCLUDE command incorporates a file, which may be whole or partial
procedures. A partial procedure could not be executed alone, but can be saved in a
file and included in a calling procedure. This is particularly useful for procedures
containing common header text, or partial processing cases that can be included at
run time, based on tests and branches initiated in the original procedure. You can nest
-INCLUDEs up to four levels.

The major difference between these two methods is when the procedure is executed. An
EXEC command would be stacked and subsequently executed when the appropriate
Dialogue Manager command is encountered, whereas -INCLUDE occurs immediately.

Managing Applications With Dialogue Manager

4-38 Information Builders

Using -INCLUDE
Lines inserted from a -INCLUDE are incorporated into the calling procedure as if they
had originally been placed there.

There are many more uses for -INCLUDE files:

• As a control over the user environment. The included procedure must be present and
some switches set before the present procedure continues execution.

• As a security mechanism. The included procedure can be encrypted and a direct
password set. For more information, see the Describing Data manual.

• The name of the included file can be determined by the procedure (for example,
-INCLUDE &NEWLINES, where NEWLINES is a variable whose value is a file
name). This can shorten the main procedure when there are many alternate
procedures.

Syntax How to Incorporate a File
-INCLUDE filename [filetype [filemode]]

where:

filename

Is the name of a FOCUS procedure.

filetype

Is the procedure’s file type. If none is included, a file type of FOCEXEC is assumed.

filemode

Is the procedure’s file mode. If none is included, a file mode of A is assumed.

 Additional Facilities

Developing Applications 4-39

Example Incorporating a File
In this example, -INCLUDE searches for a file named DATERPT:

-IF &OPTION EQ S GOTO PRODSALES
-ELSE GOTO PRODRETURNS;
.
.
.
-PRODRETURNS
-INCLUDE DATERPT
-RUN
.
.
.

Assume that DATERPT is a procedure containing the following TABLE request:

TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD
BY STORE_CODE
IF PROD_CODE IS &PRODUCT
END

-INCLUDE incorporates this request into the calling procedure. FOCUS prompts for a
value for the variable &PRODUCT as soon as the -INCLUDE is encountered. The
ensuing -RUN forces the execution of this included TABLE request.

Example Incorporating Non-Executable Code
You can use -INCLUDE to call files containing code that is not executable. For instance,
a common heading used throughout all reports can be stored in a separate file and
incorporated into any procedure as needed. For example,

TABLE FILE SALES
-INCLUDE SALEHEAD
SUM UNIT_SOLD AND RETURNS AND COMPUTE …

where the SALEHEAD file contains:

HEADING
"THE ABC CORPORATION"
"RETAIL SALES DIVISION"
"MONTHLY SALES REPORT"

Managing Applications With Dialogue Manager

4-40 Information Builders

Example Incorporating a Defined Field
As another example, a defined field can be placed in a separate file and called from a
procedure as follows

-INCLUDE DEFRATIO
TABLE FILE SALES
-INCLUDE SALEHEAD
SUM UNIT_SOLD AND RETURNS AND RATIO
BY CITY
.
.
.

where the DEFRATIO file contains:

DEFINE FILE SALES
RATIO/D5.2=(RETURNS/UNIT_SOLD);
END

This DEFINE will be dynamically included before the TABLE request executes.

Nesting Procedures With -INCLUDE
Any number of different procedures can be invoked from a single calling procedure. You
can also nest -INCLUDE commands within each other, up to four levels deep.

-PRODSALES
-INCLUDE FILE1
-RUN

FILE1
-INCLUDE FILE2
-RUN

FILE2
-INCLUDE FILE3
-RUN

FILE3
-INCLUDE FILE4
-RUN

FILE4
-RUN

Files 1 through 4 are incorporated into the original procedure. All of the included files are
viewed as part of the original procedure. A procedure cannot branch to a label in an
included file.

 Additional Facilities

Developing Applications 4-41

Using EXEC
A procedure can also call another one with the command EXEC (EX). The called
procedure must be fully executable. You can also pass values to variables on the
command line.

Example Using EXEC to Call a Procedure
In the following example, a procedure calls DATERPT:

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE GOTO PRODRETURNS;
.
.
.

-PRODRETURNS
EX DATERPT
.
.
.

-RUN

Note: If the last executable command in the called procedure is a -CRTFORM, control
will not be returned to the calling procedure unless another Dialogue Manager command
is included to terminate the -CRTFORM, such as -RUN or a -label.

Developing an Open-Ended Procedure
A file of stored FOCUS commands without variables looks and executes exactly as
though it had been typed interactively into FOCUS from the terminal. However, if there is
an error in your procedure file, it is rejected. If you make an error while typing
interactively from the terminal, FOCUS issues prompts to help you correct the error.

If you store a procedure without the END command, you can execute all the procedure
lines. The terminal then “opens” to allow interactive completion of the procedure. You
can add additional command lines and enter the END command from the terminal to
complete the procedure.

Note that you cannot use amper variables when typing online at a terminal. Open-ended
procedures do not support variable substitution in lines entered after the terminal is
opened. Variable substitution is supported in the stored portion of the procedure.

Managing Applications With Dialogue Manager

4-42 Information Builders

Example Developing and Running an Open-Ended Procedure
Assume the following open-ended procedure is stored as SLRPT:

-TYPE ENTER REST OF PROCEDURE
TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;

You can invoke the procedure by typing EX SLRPT. It executes normally but fails to
encounter an END command in the file. It then opens up the terminal displaying the
FOCUS prompt. Depending on what you want, you could supply:

BY STORE_CODE
END

Or, alternatively:

IF CITY IS STAMFORD
BY STORE_CODE
END

Debugging With &ECHO
It can be helpful to display command lines as they execute in order to test and debug
procedures. The variable &ECHO is available for this purpose.

Syntax How to Display Command Lines as They Execute
&ECHO = display

Valid values are:

ON

Displays lines that are expanded and stacked for execution.

ALL

Displays Dialogue Manager commands as well as lines that are expanded and stacked
for execution.

OFF

Suppresses display of both stacked lines and Dialogue Manager commands. This
value is the default.

 Additional Facilities

Developing Applications 4-43

You can set &ECHO through -DEFAULTS, -SET, or on the command line. For example,
you can set ECHO to ALL for the execution of the procedure SLRPT using any of the
following commands:

-DEFAULTS &ECHO = ALL

or

-SET &ECHO = ALL;

or

EX SLRPT ECHO = ON

If you use -SET or -DEFAULTS and place it in the procedure, display begins from that
point in the procedure, and can be turned off and on again at any other point in the
procedure.

Note that if the procedure is encrypted, &ECHO automatically receives the value OFF,
regardless of the value that is assigned explicitly.

Testing Dialogue Manager Command Logic With &STACK
To test the logic of Dialogue Manager commands, you can run the procedure but prevent
actual execution of the stacked commands by setting the &STACK variable.

Syntax How to Test Dialogue Manager Command Logic
&STACK = {ON|OFF}

where:

ON

Results in normal execution of stacked commands. This value is the default.

OFF

Prevents execution of stacked commands. In addition, system variables (for example,
&RECORDS or &LINES) are not set. Dialogue Manager commands are executed so
you can test the logic of the procedure.

Managing Applications With Dialogue Manager

4-44 Information Builders

You can set &STACK through -DEFAULTS, -SET, or on the command line. For
example, you can set &STACK to OFF for the execution of the procedure SLRPT using
any of the following commands:

-DEFAULTS &STACK = OFF

or

-SET &STACK = OFF;

or

EX SLRPT STACK = OFF

This is usually used with ECHO = ALL for debugging purposes. The terminal displays
both the Dialogue Manager commands, as well as the FOCUS commands with the
supplied values. You can view the logic of the procedure.

Locking Procedure Users Out of FOCUS
Normally, users can respond to a Dialogue Manager value request with QUIT and return to
the FOCUS command level or the prior procedure. In situations where it is important to
prevent users from entering native FOCUS or QUIT from a particular procedure, the
environment can be locked and QUIT deactivated.

Syntax How to Lock Procedure Users Out of FOCUS
Enter the following command within the procedure:

-SET &QUIT=OFF;

With QUIT deactivated, any attempt to return to native FOCUS produces an error
message indicating that “quit” is not a valid value. Then the user is prompted for another
value.

A user can terminate the FOCUS session from inside a locked procedure by responding to
a prompt with

QUIT FOCUS

to return to the operating system, not the FOCUS command level.

Note: The default value for &QUIT is ON.

 Additional Facilities

Developing Applications 4-45

Writing to Files: -WRITE
In addition to conducting a dialogue with the user, Dialogue Manager can read from and
write to files. For information on reading values from files, see Supplying Values Without
Prompting on page 4-68.

The Dialogue Manager -WRITE enables you to write lines of text to a file.

Syntax How to Write to a File
-WRITE ddname [NOCLOSE] text

where:

ddname

Is the logical name of the file as defined to FOCUS using FILEDEF, ALLOCATE,
or DYNAM ALLOCATE. For information about file allocations, see the Overview
and Operating Environments manual.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is
closed upon completion of the procedure or when a -CLOSE or subsequent -READ
command is encountered.

text

Is any combination of variables and text. To write more than one line, end the first
line with a comma (,) and begin the next line with a hyphen followed by a space (-).

-WRITE opens the file to receiving the text and closes it upon exit from the procedure.
When the file is reopened for writing, the new material overwrites the old. If you wish to
reopen to add new records instead of overwriting existing ones, use the attribute DISP
MOD when you define the file to the operating system.

Example Writing to a File
The following example reopens the file PASS under CMS to add new text:

-CMS FILEDEF PASS DISK PASS DATA (DISP MOD
-WRITE PASS &DIV &RED &TEST RESULT IS,
- &RECORDS AT END OF RUN

Managing Applications With Dialogue Manager

4-46 Information Builders

Example Reading From and Writing to Sequential Files
The following example illustrates reading from and writing to sequential files and the use
of operating system commands (in this example, CMS). The numbers in the margin refer
to notes that follow the example.

1. -TOP
2. -PROMPT &CITY.ENTER NAME OF CITY -- TYPE QUIT WHEN DONE.
3. -CMS FILEDEF PASS DISK PASS DATA A (LRECL 80 RECFM FB
4. -WRITE PASS &CITY

TABLE FILE SALES
HEADING CENTER
"LOWEST MONTHLY SALES FOR &CITY"
" "
PRINT DATE PROD_CODE
BY LOWEST 1 UNIT_SOLD
BY STORE_CODE
BY CITY
IF CITY EQ &CITY
FOOTING CENTER
"CALCULATED AS OF &DATE"
ON TABLE SAVE AS INFO
END

5. -RUN
6. -CMS FILEDEF LOG DISK LOG DATA A1 (LRECL 80 RECFM FB

MODIFY FILE SALES
COMPUTE
TODAY/I6=&YMD;
CITY='&CITY';
FIXFORM X5 STORE_CODE/A3 X15 DATE/A4 PROD_CODE/A3
MATCH STORE_CODE DATE PROD_CODE
ON MATCH TYPE ON LOG
"<STORE_CODE><DATE><PROD_CODE><TODAY>"
ON MATCH DELETE
ON NOMATCH REJECT
DATA ON INFO
END

7. -RUN
EX SLRPT3

8. -RUN
11. -GOTO TOP
12. -QUIT

 Additional Facilities

Developing Applications 4-47

The procedure SLRPT3, which is invoked from the calling procedure, contains the
following lines:

9. -READ PASS &CITY.A8.
TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"LOWEST SALES DELETED"
" "
PRINT PROD_CODE UNIT_SOLD RETURNS DAMAGED
BY STORE_CODE
BY CITY
IF CITY EQ &CITY
FOOTING CENTER
"CALCULATED AS OF &DATE"
END

10. -RUN

The following paragraphs explain the logic and show the dialogue between the user and
the screen. User entries are in lowercase:

1. -TOP marks the beginning of the procedure.

2. -PROMPT sends the following prompt to the screen after the procedure is executed:

3. FILEDEF defines and opens a file named PASS.

4. -WRITE writes the value of &CITY to the non-FOCUS file named PASS. In this
case the value written is STAMFORD.

Managing Applications With Dialogue Manager

4-48 Information Builders

5. -RUN executes the stacked TABLE request. In this case, a non-FOCUS file named
INFO is created with the SAVE command. This is a sequential file, containing the
result of the TABLE request as shown below.

NUMBER OF RECORDS IN TABLE= 7 LINES= 7
(BEFORE TOTAL TESTS)

EBCDIC RECORD NAMED INFO

FIELDNAME ALIAS FORMAT LENGTH

UNIT_SOLD SOLD I5 5
STORE_CODE SNO A3 3
CITY CTY A15 15
DATE DTE A4MD 4
PROD_CODE PCODE A3 3

--
TOTAL 30

DEFAULT FILEDEF ISSUED

FILEDEF INFO DISK INFO FOCTEMP A1 (LRECL 30 BLKSIZE 300 RECFM F6)
>
>

6. FILEDEF defines a log file for the subsequent MODIFY request.

7. -RUN executes the stacked MODIFY request. The data comes directly from the
INFO file created in the prior TABLE request and is entered using FIXFORM.
Hence, the product with the lowest UNIT_SOLD is deleted from the file, and logged
to a log file.

8. The next -RUN executes another procedure called SLRPT3.

9. -READ reads the value for &CITY from the non-FOCUS file PASS. In this case the
value passed is STAMFORD.

 Using Variables in Procedures

Developing Applications 4-49

10. The -RUN executes the TABLE request and control is routed back to the calling
procedure.

11. -GOTO TOP routes control to the top.

12. When the user types QUIT, processing ends.

Using Variables in Procedures
Interactive variable substitution is at the heart of Dialogue Manager. You can create
procedures that include variables (also called amper variables) and supply values for them
at run time. These variables store a string of text or numbers and can be placed anywhere
in a procedure. A variable can refer to a field, a command, descriptive text, a file name—
literally anything.

Variables can be used only in procedures. They are ignored if you use them while creating
reports live at the terminal. Values for variables may be supplied either directly on the
command line when you execute the procedure, or through the -DEFAULTS command,
the -SET command, or a -READ command in the procedure itself.

This topic describes how to use amper variables in procedures and how to supply values
for them. Variables fall into two classifications:

• Local and global variables have values supplied at run time. Local variable values
remain in effect for the respective procedure, while global variable values remain in
effect for all procedures executed during an entire FOCUS session (that is, from the
time you enter FOCUS until you exit with the FIN command).

• System, statistical, and special variables have values that the system automatically
resolves whenever you request them.

Managing Applications With Dialogue Manager

4-50 Information Builders

Leading double ampersands (&&) denote global variables. All other Dialogue Manager
variables begin with a single ampersand (&). For this reason, in the FOCUS community
they are known as amper variables.

The maximum number of local, global, system, statistical, special and index variables
available in a procedure is 512. Approximately 30 are reserved for use by FOCUS.

Additionally, Dialogue Manager supports four types of prompting. You can alter the
execution flow of your procedure, or change the substance of the request based on the
values entered. These are

• Direct Prompting with -PROMPT: You can request a set of values before they are
actually needed. You can write your own text for these prompts and then validate the
entered values to confirm that they fit a preset list of acceptable items or match a
predefined format.

• Full-Screen Data Entry with -CRTFORM: The -CRTFORM command gathers
variable values through full-screen data entry. Many values can be input and
manipulated at the same time. Several screens can be included in a single procedure
and used for a variety of purposes, including the development of menu-driven
applications.

-CRTFORM invokes FIDEL, the FOCUS Interactive Data Entry Language, and
incorporates most of its functions. You can also use Screen Painter to design and
paint -CRTFORM data entry screens directly on your terminal screen.

Note that the Dialogue Manager command -CRTFORM is used for entering Dialogue
Manager amper variable values. The equivalent MODIFY command, CRTFORM
(without a hyphen), is used in MODIFY requests to enter field values.

• Selecting Items from a Menu with -WINDOW: You can create a series of menus
and windows using the Window Painter facility and display them on the screen using
the -WINDOW command. When displayed, the menus and windows can collect data
by prompting users to select a value, enter a value, or press a program function (PF)
key.

• Implied Prompting: FOCUS recognizes variables in a procedure by the leading
ampersand (&). If a value has not been provided by some other means, FOCUS
automatically requests a value from the terminal when needed.

 Using Variables in Procedures

Developing Applications 4-51

Querying the Values of Variables
Amper variable values can be queried during execution.

Syntax How to Query the Values of Variables
-? &[string]

where:

string

Is a complete amper variable or a partial string of up to 12 characters. Only amper
variables starting with the specified string are displayed.

The command displays the following message, followed by a list of currently defined
amper variables and their values:

CURRENTLY DEFINED & VARIABLES:

Note that this is a Dialogue Manager query. Since local variables do not exist outside a
procedure, no similar query is available from the FOCUS command line.

Querying Parameter Value Settings
There is a Dialogue Manager query that enables you to capture previously defined SET
parameter values in amper variables.

Syntax How to Query Parameter Value Settings
-? SET parameter ampervar

where:

parameter

Is any valid FOCUS setting that may be queried with the ? SET or ? SET ALL
command.

ampervar

Is the name of the variable where the value is to be stored.

Example Querying a Parameter Value Setting
For example, if you enter

-? SET ASNAMES &abc
-TYPE &ABC

the value stored in &abc becomes the value of ASNAMES. If you omit &abc from the
command, then a variable called &ASNAMES is created that contains the value of
ASNAMES.

Managing Applications With Dialogue Manager

4-52 Information Builders

Local Variables
Local variables are identified by a single ampersand (&) preceding the name of the
variable. They remain in effect throughout a single procedure.

Example Using Local Variables
In the following example, &CITY, &CODE1, and &CODE2 are local variables:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
END

Assume you supply the values when you execute the procedure:

EX SLRPT CITY = STAMFORD, CODE1=B10, CODE2=B20

The procedure looks like this before it processes:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"
"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ STAMFORD
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
END

Values supplied for local variables remain current in the procedure. That is, all instances
of the variables receive the values supplied. However, the values are not passed to other
procedures containing the same variables (that is, &CODE1 and &CODE2 in another
procedure). The values disappear after SLRPT has finished processing.

 Using Variables in Procedures

Developing Applications 4-53

Global Variables
Global variables differ from local variables in that once a value is supplied, it remains
current throughout the FOCUS session, unless set to another value with -SET or cleared
by the LET CLEAR command. For information on LET CLEAR, see Chapter 5, Defining
a Word Substitution. They are useful for gathering values at the start of a work session for
use by several subsequent procedures. All procedures that use a particular global variable
will receive the current value until you exit from FOCUS.

Global variables are specified through the use of a double ampersand (&&) preceding the
variable name. It is possible to have a local and global variable with the same name. They
are distinct and may have different values.

Example Using Global Variables
The following is an example of a procedure containing global variables:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &&CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &&CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &&CODE1 TO &&CODE2
END

Syntax How to Query the Values of Global Variables
Since global variable values remain current throughout the FOCUS session, it is helpful to
be able to display their values on demand. Do this by issuing the following command,

? &&

which displays the values of all global variables in use during the FOCUS session.

Managing Applications With Dialogue Manager

4-54 Information Builders

Example Querying the Values of Global Variables
The following example displays the values of three global variables:

System Variables
FOCUS automatically substitutes values for system variables encountered in a Dialogue
Manager request. System-supplied variables cannot be overridden. For example, you can
use the system variable &DATE to automatically incorporate the system date in your
request.

Reference Summary of System Variables
A list of Dialogue Manager system variables follows:

Variable Format or Value Description

&DATE MM/DD/YY Returns the current date.

&DATEfmt Any date format. Returns the current date, where fmt can be
any combination of YYMD, MDYY, etc.

&DMY DDMMYY Returns the current date.

&DMYY DDMMCCYY Returns the current (four-digit year) date.

&FOCCPU milliseconds Calculates the OS CPU time. MVS only. In
CMS, this returns the same value as
&FOCTTIME.

&FOCEXTTRM ON

OFF

Indicates the availability of extended
terminal attributes.

&FOCFIELDNAME NEW

OLD

NOTRUNC

Returns a string indicating whether long and
qualified field names are supported. A value
of OLD means that they are not; NEW means
that they are; and NOTRUNC means that
they are supported, but unique truncations of
field names cannot be used.

 Using Variables in Procedures

Developing Applications 4-55

Variable Format or Value Description

&FOCFOCEXEC Manages reporting operations involving
many similarly named requests that are
executed using EX. &FOCFOCEXEC
enables you to easily determine which
procedure is running. &FOCFOCEXEC can
be specified within a request or in a Dialogue
Manager command to display the name of the
currently running procedure.

&FOCINCLUDE Manages reporting operations involving
many similarly named requests that are
included using -INCLUDE.
&FOCINCLUDE can be specified within a
request or in a Dialogue Manager command
to display the name of the current included
procedure.

&FOCMODE CMS

CRJE

MSO

OS

TSO

Identifies the operating environment.

&FOCPRINT ONLINE

OFFLINE

Returns the current print setting.

&FOCPUTLVL FOCUS PUT level

number.

(For example, 9306 or 9310.)
&FOCPUTLVL is no longer supported.

&FOCQUALCHAR .

:

!

%

|

\

Returns the character used to separate the
components of qualified field names.

&FOCREL release number Identifies the FOCUS Release number (for
example, 6.5 or 6.8).

&FOCSBORDER ON

OFF

Whether solid borders will be used in
full-screen mode.

&FOCSYSTYP HIPER

CP/A

CMS system type.

Managing Applications With Dialogue Manager

4-56 Information Builders

Variable Format or Value Description

&FOCTMPDSK A … Z Identifies the disk where FOCUS places
temporary work files (for example, HOLD
files). CMS only.

&FOCTRMSD 24

27

32

43

Indicates terminal height. (This can be any
value; the examples shown are common
settings.)

&FOCTRMSW 80

132

Indicates terminal width. (This can be any
value; the examples shown are common
settings.)

&FOCTRMTYP 3270

TTY

UNKNOWN

Identifies the terminal type.

&FOCTTIME milliseconds Calculates total CPU time. CMS only.

&FOCVTIME milliseconds Calculates virtual CPU time. CMS only.

&HIPERFOCUS ON

OFF

Returns a string showing whether
HiperFOCUS is on.

&IORETURN Returns the code set by the last Dialogue
Manager -READ or -WRITE operation.

&MDY MMDDYY Returns the current date. The format makes
this variable useful for numerical
comparisons.

&MDYY MMDDCCYY Returns the current (four-digit year) date.

&RETCODE numeric Returns the return code set upon execution of
an operating system command. Executes all
FOCUS commands in the FOCSTACK just
as the -RUN command would.

&TOD HH.MM.SS Returns the current time. When you enter
FOCUS, this variable is updated to the
current system time only when you execute a
MODIFY, SCAN, or FSCAN command. To
obtain the exact time during any process, use
the HHMMSS subroutine.

&YMD YYMMDD Returns the current date.

&YYMD CCYYMMDD Returns the current (four-digit year) date.

 Using Variables in Procedures

Developing Applications 4-57

Example Using the System Variable &DATE
The following example illustrates the use of a system variable in a request:

TABLE FILE SALES
.
.
.
FOOTING "CALCULATED AS OF &DATEMDYY"
END
-EXIT

The system variable &DATEMDYY ensures that the date that appears in the report is
always the current system date.

Example Using the System Variable &FOCFOCEXEC
This next example illustrates how to use the system variable &FOCFOCEXEC in a
request to display the name of the currently running procedure:

TABLE FILE EMPLOYEE
"REPORT: &FOCFOCEXEC -- EMPLOYEE SALARIES"
PRINT CURR_SAL BY EMP_ID
END

If the request is stored as a procedure called SALPRINT, when executed it will produce
the following:

Managing Applications With Dialogue Manager

4-58 Information Builders

&FOCFOCEXEC and &FOCINCLUDE can also be used in -TYPE commands. For
example, you have a procedure named EMPNAME that contains the following:

-TYPE &|FOCFOCEXEC is: &FOCFOCEXEC

When EMPNAME is executed, the following output is produced:

&FOCFOCEXEC IS: EMPNAME

Displaying a Date Variable Containing a Four-Digit Year
You can display a date variable containing a 4-digit year without separators. The
variables are &YYMD, &MDYY, and &DMYY. These variables complement the 2-digit
year variables &YMD, &MDY, and &DMY.

Example Using the System Variable &YYMD
The following example shows a report using &YYMD:

TABLE FILE EMPLOYEE
HEADING
"SALARY REPORT RUN ON DATE &YYMD"
" "
PRINT DEPARTMENT CURR_SAL
BY LAST_NAME BY FIRST_NAME
END

 Using Variables in Procedures

Developing Applications 4-59

The resulting output for May 18, 1998 is:

Managing Applications With Dialogue Manager

4-60 Information Builders

Statistical Variables
FOCUS posts many statistics concerning overall operations while a procedure executes in
the form of statistical variables. As with system variables, FOCUS can automatically
supply values for these variables on request.

Reference Summary of Statistical Variables
A list of Dialogue Manager statistical variables follows:

Variable Description

&ACCEPTS Indicates the number of transactions accepted. This variable applies
only to MODIFY requests.

&BASEIO Indicates the number of input/output operations performed.

&CHNGD Indicates the number of segments updated. This variable applies only
to MODIFY requests.

&DELTD Indicates the number of segments deleted. This variable applies only
to MODIFY requests.

&DUPLS Indicates the number of transactions rejected as a result of duplicate
values in the data source. This variable applies only to MODIFY
requests.

&FOCDISORG Indicates the percentage of disorganization for a FOCUS file. This
variable can be displayed or tested even if the value is less than 30%
(the level at which ? FILE displays the amount of disorganization).

&FOCERRNUM Indicates the last error number, in the format FOCnnnn, displayed
after the execution of a procedure. If more than one occurred,
&FOCERRNUM will hold the number of the most recent error. If no
error occurred, &FOCERRNUM will have a value of 0. This value
can be passed to the operating system with the line -QUIT FOCUS
&FOCERRNUM. It can also be used to control branching from a
procedure to execute an error-handling routine.

&FORMAT Indicates the number of transactions rejected as a result of a format
error. This variable applies only to MODIFY requests.

&INPUT Indicates the number of segments added to the data source. This
variable applies only to MODIFY requests.

&INVALID Indicates the number of transactions rejected as a result of an invalid
condition. This variable applies only to MODIFY requests.

 Using Variables in Procedures

Developing Applications 4-61

Variable Description

&LINES Indicates the number of lines printed in last report. This variable
applies only to report requests.

&NOMATCH Indicates the number of transactions rejected as a result of not
matching a value in the data source. This variable applies only to
MODIFY requests.

&READS Indicates the number of records read from a non-FOCUS file.

&RECORDS Indicates the number of records retrieved in last report. This variable
applies only to report requests.

&REJECTS Indicates the number of transactions rejected for reasons other than
the ones specifically tracked by other statistical variables. This
variable applies only to MODIFY requests.

&TRANS Indicates the number of transactions processed. This variable applies
only to MODIFY requests.

Example Using &LINES to Control Execution of a Request
The following example illustrates how to use the statistical variable &LINES to control
execution of a request:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
ON TABLE HOLD
END
-RUN
-IF &LINES EQ 0 GOTO NORECORDS;
MODIFY FILE SALES

.

.

.
DATA ON HOLD
END
-RUN
-NORECORDS
-TYPE No record satisfies this report request
-QUIT

Managing Applications With Dialogue Manager

4-62 Information Builders

In the example, the system calculates the statistical variable &LINES (the number of lines
produced by the TABLE request). If the number is 0, there are no lines in the report;
-QUIT tells FOCUS to halt processing and the user is returned to the FOCUS prompt. If
&LINES is greater than 0, processing continues to the MODIFY request.

Syntax How to Query the Values of Statistical Variables
You can query the current value of all statistical variables except &FOCDISORG and
&FOCERRNUM by typing the query command

? STAT

from the FOCUS prompt.

Special Variables
FOCUS provides special variables that apply to the cursor, function keys, windows, and
other features.

Reference Summary of Special Variables

A list of special variables follow:

Variable Description

&CURSOR Holds the cursor position.

&CURSORAT Reads the cursor position.

&ECHO Controls the display of commands for debugging purposes.

&PFKEY Holds the PF Key function.

&QUIT Controls whether the response QUIT, or PF1 in - CRTFORM, to a
prompt causes an exit from the procedure.

&STACK Controls whether the entire procedure, or only the Dialogue
Manager commands are executed.

&WINDOWNAME Holds the name of the last window activated by the most recently
executed -WINDOW command (see Chapter 9, Designing Windows
With Window Painter).

&WINDOWVALUE Holds the return value of the last window activated by the most
recently executed -WINDOW command (see Chapter 9, Designing
Windows With Window Painter).

 Using Variables in Procedures

Developing Applications 4-63

Using Variables to Alter Commands
A variable can refer to a FOCUS command or to a particular field. In this way, the
command structure of a procedure can be determined by the value of the variable.

Example Using a Field Variable
In the following example, the variable &FIELD determines the field to print in the
TABLE request. For example, &FIELD could have the value RETURNS, DAMAGED,
or UNIT_SOLD from a file named SALES.

TABLE FILE SALES
.
.
.
PRINT &FIELD
BY PROD_CODE
.
.
.

Evaluating a Variable Immediately
The .EVAL operator enables you to evaluate a variable’s value immediately, making it
possible to change a procedure dynamically. It is used for substitution and re-evaluated by
Dialogue Manager.

Syntax How to Evaluate a Variable
.EVAL uses the following syntax

[&]&variable.EVAL

where:

variable

Is a local or global amper variable.

When the command procedure is executed, the expression is replaced with the value of
the specified variable before any other action is performed.

Managing Applications With Dialogue Manager

4-64 Information Builders

Example Excluding and Including the .EVAL Operator
Without the .EVAL operator, an amper variable cannot be used in place of some FOCUS
commands, as shown by the following example:

-SET &A='-TYPE';
&A HELLO

This example’s output shows that FOCUS does not recognize the value of &A:

UNKNOWN FOCUS COMMAND -TYPE

Appending the .EVAL operator to the &A amper variable makes it possible for FOCUS
to interpret the variable correctly. For example, adding the .EVAL operator as follows,

-SET &A='-TYPE';
&A.EVAL HELLO

produces the following output:

HELLO
>>

Example Evaluating a Variable Immediately
The .EVAL operator is particularly useful in modifying code at run time. The following
example illustrates how to use the .EVAL operator in a record selection expression. The
numbers to the left apply to the notes that follow:

1. -SET &R='IF COUNTRY IS ENGLAND';
2. -IF &Y EQ 'YES' THEN GOTO START;
3. -SET &R = '-*';

-START
4. TABLE FILE CAR

PRINT CAR BY COUNTRY
5. &R.EVAL

END

The procedure executes as follows:

1. The procedure sets the value of &R to ‘IF COUNTRY IS ENGLAND’.

2. If the &Y is YES, the procedure branches to the START label, bypassing the second
-SET command.

3. If the &Y is NO, the procedure continues to the second -SET command, which sets
&R to ‘-*’, which is a comment.

4. The report request is stacked.

 Using Variables in Procedures

Developing Applications 4-65

5. The procedure evaluates &R’s value. If the user wanted a record selection test, &R’s
value is ‘IF COUNTRY IS ENGLAND’ and this line is stacked.

If the user did not want a record selection test, &R’s value is ‘-*’ and this line is
ignored.

Concatenating Variables
You can append a variable to a character string or you can combine two or more variables
and/or literals. See the Creating Reports manual for full details on concatenation. When
using variables, it is important to separate each variable from the concatenation symbol
(||) with a space.

Syntax How to Concatenate Variables
-SET &name3 = &name1 || &name2;

where:

&name3

Is the name of the concatenated variable.

&name1 || &name2

Are the variables, separated by a space and the concatenation symbol.

Note: The example shown uses strong concatenation, indicated by the || symbol. Strong
concatenation removes any trailing blanks from &name1. Conversely, weak
concatenation, indicated by the symbol |, preserves any trailing blanks in &name1.

Managing Applications With Dialogue Manager

4-66 Information Builders

Supplying Values for Variables at Run Time
When you design a Dialogue Manager procedure, you must decide how the variables in
the procedure will acquire values. Values for variables can be supplied in two ways:

• When you call a procedure. You can include the variable names and their
corresponding values as parameters in an EXEC command that calls one procedure
from another.

• Directly in a procedure. The Dialogue Manager commands -DEFAULTS, -SET, and
-READ enable you to supply values directly in a procedure.

Example Supplying Values for Variables
The example in this topic illustrates the use of the commands -DEFAULTS and -SET to
supply values for variables. In the example, the user supplies the value of &CODE1,
&CODE2, and ®IONMGR as prompted by an HTML form.

The numbers to the left of the example apply to the notes that follow:
1. -DEFAULTS &VERB='SUM'
2. -SET &CITY=IF &CODE1 GT 'B09' THEN 'STAMFORD' ELSE 'UNIONDALE';
3. -TYPE REGIONAL MANAGER FOR &CITY
5. TABLE FILE SALES

HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
" "
&VERB UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.1 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
FOOTING CENTER

4. "REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATEMDYY"
END

6. -RUN

The procedure executes as follows:

1. The -DEFAULTS command sets the value of &VERB to SUM.

2. The -SET command supplies the value for &CITY depending on the value for
&CODE1 typed by the user on the form. Because the user typed B10 for &CODE1,
the value for &CITY becomes STAMFORD.

3. When the user runs the report, FOCUS writes a message that incorporates the value
for &CITY:

REGIONAL MANAGER FOR STAMFORD

 Supplying Values for Variables at Run Time

Developing Applications 4-67

4. The user supplied the value for ®IONMGR on the form. FOCUS supplies the
current date at run time.

5. The FOCUS stack contains the following lines:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"
"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.1 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
FOOTING CENTER
"REGION MANAGER: SMITH"
"CALCULATED AS OF 03/11/99"
END

Reference General Rules for Supplying Variable Values
The following general rules apply to values for variables:

• The maximum length of a variable value to be displayed on the screen is 80
characters.

• A physical FOCSTACK line with values substituted for variables cannot exceed 80
characters; therefore, you should not use variable values longer than 80 characters.

• If a value contains an embedded space, comma (,) or equal sign (=), you must enclose
the variable name in single quotation marks when you use it in an expression. For
example, if the value for &CITY is NY, NY, you must refer to the variable as
‘&CITY’ in any expression.

• Once a value is supplied for a local variable, it is used throughout the procedure,
unless it is changed by -CRTFORM, -PROMPT, -READ, -SET, or -WINDOW.

• Once a value is supplied for a global variable, it is used throughout the FOCUS
session in all procedures, unless it is changed by -CRTFORM, -PROMPT, -READ,
-SET, or -WINDOW, or cleared by LET CLEAR.

• Dialogue Manager automatically prompts the terminal if a value has not been
supplied for a variable.

Managing Applications With Dialogue Manager

4-68 Information Builders

Supplying Values Without Prompting
There are several ways to supply values for local and global variables besides prompting
methods. These are outlined below:

• Supplying values on the command line: You can supply values when you execute the
procedure.

• Supplying values with -DEFAULTS: You supply initial default values in the
procedure to ensure that you will not be implicitly prompted for the value.

• Supplying values with -SET: You supply values by setting them in the procedure
using the -SET command. The values can be constants or the result of an expression.

• Supplying values with -READ: You can supply values by reading them in from a
sequential file.

Supplying Values on the Command Line
When the user knows the values required by a procedure, they can be typed on the
command line following the name of the procedure itself. This saves time, since FOCUS
now has values to pass to each local or global variable and the user will not be prompted
to supply them.

Example Supplying Values on the Command Line
Consider the following procedure:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
BY CITY
IF CITY EQ &CITY
END

In order to execute this procedure and supply values for the variables on the command
line, the user would type the following:

EX SLRPT CITY = STAMFORD, CODE1=B10, CODE2=B20

 Supplying Values for Variables at Run Time

Developing Applications 4-69

Syntax How to Supply Values on the Command Line
Each name-value pair must have the syntactic form

name=value

and pairs must be separated by commas. It is not necessary to enter the name-value pairs
in the order that they are encountered in the procedure.

When the list of values to be supplied exceeds the width of the terminal, insert a comma
as the last character on the line and enter the balance of the list on the following line(s), as
shown:

EX SLRPT AREA=S, CITY = STAMFORD, VERB=COUNT, FIELDS = UNIT_SOLD,
CODE1=B10, CODE2=B20

It is acceptable to supply some but not all values on the command line, in which case,
values not supplied will trigger prompts to the terminal.

To supply global amper variable values on the command line, you must supply the double
ampersand prefix, as in the following example:

EX SLRPT &&GLOBAL=value, CITY = STAMFORD, CODE1=B10, CODE2=B20

Example Using Positional Variables
When the variable is numbered (a positional variable; for example, &1, &2, &3) there is
no need to specify the name, in this case a number, on the command line. FOCUS
matches the values, one by one to the positional variables as they are encountered in the
procedure. Therefore, it is vital to enter the appropriate value for each variable, in the
proper order.

Consider the following example:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &1"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY PROD_CODE
IF PROD_CODE IS-FROM &2 TO &3
BY CITY
IF CITY EQ &1
END

The command line for entry of positional values should read:

EX SLRPT STAMFORD, B10, B20

Managing Applications With Dialogue Manager

4-70 Information Builders

Example Mixing Named and Positional Variables
You can mix named and positional variables freely on the command line, providing that
names are associated with values for named variables and values are supplied for
positional variables in the order that these variables are numbered in the procedure. For
example:

EX SLRPT CITY = STAMFORD, B10, B20, VERB=COUNT

Supplying Values With -DEFAULTS
The Dialogue Manager command -DEFAULTS supplies an initial (default) value for a
variable that had no value before the command was processed. It ensures that values will
be passed to variables whether or not they are provided elsewhere.

Syntax How to Supply Default Values
-DEFAULTS &[&]name=value [...]

where:

&name

Is the name of the variable.

value

Is the default value assigned to the variable.

Example Supplying Default Values
In the following example, -DEFAULTS sets default values for &CITY and
®IONMGR.

-DEFAULTS &CITY=STAMFORD, ®IONMGR=SMITH
TABLE FILE SALES

.

.

.

Overriding Default Values
You can override default values by supplying new values on the command line or by an
explicit prompt.

 Supplying Values for Variables at Run Time

Developing Applications 4-71

Supplying Values With -SET
With -SET, you can assign a value computed in an expression.

Syntax How to Set a Variable Value
-SET &[&]name=expression;

where:

&name

Is the name of the variable.

expression;

Is a valid literal, arithmetic, or logical expression. Expressions can occupy several
lines, so you should end the command with a semicolon (;).

Example Setting Variable Values
In the following example, -SET assigns the value 14Z or 14B to the variable
&STORECODE, as determined by the logical IF expression. The value of &CODE is
supplied by the user.

-SET &STORECODE = IF &CODE GT C2 THEN '14Z' ELSE '14B';
TABLE FILE SALES
SUM UNIT_SOLD AND RETURNS
BY PROD_CODE
IF PROD_CODE GE &CODE
BY STORE_CODE
IF STORE_CODE IS &STORECODE
END

Example Setting a Literal Value
Single quotation marks around a literal is optional unless it contains embedded blanks,
commas, or equal signs, in which case you must include them as shown:

-SET &NAME='JOHN DOE';

To assign a literal value that includes a single quotation mark, place two single quotation
marks where you want one to appear:

-SET &NAME='JOHN O''HARA';

Managing Applications With Dialogue Manager

4-72 Information Builders

Supplying Values With -READ
You can supply values for variables by reading them from a sequential file.

Syntax How to Supply Values With -READ
-READ ddname[,] [NOCLOSE] &name[.format.][,] …

where:

ddname

Is the logical name of the file as defined to FOCUS using FILEDEF. (When using
MVS, use ALLOCATE or DYNAM ALLOCATE.) A space after the ddname
denotes a fixed format file while a comma denotes a comma-delimited file.

NOCLOSE

Indicates that the file should be kept open even if a -RUN is encountered. The file is
closed upon completion of the procedure or when a -CLOSE or subsequent -WRITE
command is encountered.

name

Is the variable name. You may specify more than one variable. Using commas to
separate variables is optional.
If the list of variables is longer than one line, end the first line with a comma and
begin the next line with a dash followed by a blank (-). For example:
Comma-delimited files

-READ EXTFILE, &CITY,&CODE1,
- &CODE2

Fixed format files

-READ EXTFILE &CITY.A8. &CODE1.A3.,
- &CODE2.A3.

format

Is the format of the variable. Note that format must be delimited by periods. The
format is ignored for comma-delimited files.
Note: -SET provides an alternate method for defining the length of a variable using
the corresponding number of characters enclosed in single quotation marks (‘). For
example, the following command defines the length of &CITY as 8:

-SET &CITY=' ';

 Supplying Values for Variables at Run Time

Developing Applications 4-73

Example Reading Data and Testing a System Variable
The example below reads data from EXTFILE, a fixed format file that contains the
following data:

STAMFORDB10B20

The example tests the system variable &IORETURN. If there is no record to be read, the
value of &IORETURN is not equal to zero and the procedure branches to the label after
the TABLE request.

-READ EXTFILE &CITY.A8. &CODE1.A3. &CODE2.A3.
-IF &IORETURN NE 0 GOTO RESUME;

TABLE FILE SALES
SUM UNIT_SOLD
BY CITY
IF CITY IS &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
END

-RESUME
.
.
.

Direct Prompting With -PROMPT
The Dialogue Manager command -PROMPT solicits values before the variables to which
they refer are used in the procedure. The user is prompted for a value as soon as
-PROMPT is encountered. If a looping condition is present, -PROMPT requests a new
value for the variable, even if a value exists already. Thus, each time through the loop, the
user is prompted for a new value.

With -PROMPT you can specify format, text, and lists in the same way as all other
variables.

Managing Applications With Dialogue Manager

4-74 Information Builders

Example Prompting for Variable Values
The following is an example of the use of -PROMPT:

-PROMPT &CODE1
-PROMPT &CODE2
-SET &CITY = IF &CODE1 GT B09 THEN STAMFORD ELSE UNION;
-TYPE REGIONAL MANAGER FOR &CITY
-PROMPT ®IONMGR

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * (RETURNS/UNIT_SOLD);
BY CITY
IF CITY EQ &CITY
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

-PROMPT sends the following prompts to the screen. User input is shown in lowercase:

Note how the sequence of supplied values determines the overall flow of the procedure.
The value of &CODE1 determines the value of &CITY that gives meaning to the -TYPE
command. -TYPE gives the user the necessary information to make the correct choice
when supplying the value for ®IONMGR.

By default, all user input is automatically converted to uppercase.

 Supplying Values for Variables at Run Time

Developing Applications 4-75

Full-Screen Data Entry With -CRTFORM
-CRTFORM sets up full-screen menus for entering values. The -CRTFORM command in
Dialogue Manager and the CRTFORM command in MODIFY are two versions of FIDEL
for use in different contexts. The syntax, functions and features are fully outlined in the
Maintaining Databases manual.

Selecting Data From Menus and Windows With -WINDOW
You can create a series of menus and windows using Window Painter, and then display
those menus and windows on the screen using the -WINDOW command. When
displayed, the menus and windows can collect data by prompting a user to select a value,
to enter a value, or to press a program function (PF) key.

Implied Prompting
If a value is not supplied by any other means for a variable, FOCUS automatically
prompts the user for the value. This is known as an implied prompt. These occur
sequentially as each variable is encountered in the procedure.

Example Automatically Prompting for Variable Values
Consider the following example:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
.
.
.
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
.
.
.
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

Managing Applications With Dialogue Manager

4-76 Information Builders

When you execute the procedure, FOCUS prompts for the values for the variables one at
a time. The terminal dialogue is as follows. User input is in lowercase:

At the point when all variables have values, FOCUS processes the report request.

Verifying Input Values
Input values can be verified in the following ways:

• Format conditions can be specified against which the entered values are compared.

• Lists of acceptable values can be specified against which the entered values are
compared.

• Text can be supplied that either explains what type of value is needed or lists choices
of acceptable values on the screen.

Using Format Specifications
You can specify variables with format conditions against which the entered values are
compared. If the entered values do not have the specified format, FOCUS prints error
messages and prompts the user again for the value(s).

Alphanumeric formats are described by the letter A followed by the number of characters.
The number of characters can be from 1 to 255. Integer formats are described by the letter
I followed by the number of digits to be entered. The number can be from 1 to 9 (value
must be less than 231-1).

The description of the format must be enclosed by periods.

If you test field names against input variable values, we recommend that you specify
formats of the input variables. If you do not, and the supplied value exceeds the format
specification from the Master File, the procedure is ended and error messages are
displayed. To continue, the procedure must be executed again. However, if you do
include the format, and the supplied value exceeds the format, Dialogue Manager rejects
the value and the user is prompted again.

 Supplying Values for Variables at Run Time

Developing Applications 4-77

Note: FOCUS internally stores all Dialogue Manager variables as alphanumeric codes.
To perform arithmetic operations, Dialogue Manager converts the variable value to
double-precision floating point decimal and then converts the result back to alphanumeric
codes, dropping the decimal places. For this reason, do not perform tests that look for the
decimal places in the numeric codes.

Example Using a Format Specification
Consider the following format specification:

&STORECODE.A3.

No special message is sent to the screen detailing the specified format. However, if, in the
above example, the user enters more than three alphanumeric characters, the value is
rejected, the error message FOC291 is displayed and the user is prompted again.

Note the following example detailing the dialogue between FOCUS and the user:

Using Lists of Value Ranges
Variables can be further customized by providing lists of values describing the acceptable
range of prompted responses. If the user does not enter one of the available options, the
terminal displays the list and re-prompts the user. This is an excellent way to limit the
values supplied and to provide help information to the screen while prompting.

Example Providing a List of Valid Values
For example:

-PROMPT &CITY.(STAMFORD,UNIONDALE,NEWARK).

A message is printed if the user does not respond with one of the replies on the list. This
is followed by a display of the value list. Finally, another prompt is issued for the needed
value. For example:

Managing Applications With Dialogue Manager

4-78 Information Builders

Syntax How to Use a Variable to Provide the Reply List
You can also use a variable to provide the reply list, in conjunction with the -SET
command. The syntax is

-SET &list='value,...';
-PROMPT &variable.(&list)[.text.]

where:

list

Is the name of the reply list variable. Note that in the -PROMPT command, the value
is substituted between the parentheses and delimited by periods. If the prompt text
has parentheses, enclose that text in single quotation marks (‘).

value

Is the desired value. You may list more than one value, separated by commas.
Enclose the value(s) in single quotation marks (‘). A semicolon is required when
using -SET.

variable

Is the name of the variable for which you are prompting the user for values.

Example Using a Variable to Provide the Reply List
For example:

-SET &CITIES='STAMFORD,UNIONDALE,NEWARK';
-PROMPT &CITY.(&CITIES).'(ENTER CITY)'.

The resulting screen is exactly the same as when the list itself is provided in the
parentheses.

You can also create more complex combinations. For example:

-SET &CITIES=IF &CODE1 IS B10 THEN 'STAMFORD, NEWARK'
-ELSE 'STAMFORD, UNIONDALE, NEWARK';

 Supplying Values for Variables at Run Time

Developing Applications 4-79

Example Supplying Text for Variable Prompting
A variable can be further specified with customized text explaining the prompt at the
screen.

For example:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY.ENTER CITY. "

.

.

.
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1.A3.BEGINNING CODE. TO

&CODE2.A3.ENDING CODE.
.
.
.

"REGION MANAGER: ®IONMGR.REGIONAL SUPERVISOR."
"CALCULATED AS OF &DATEMDYY"
END

Notice that text has been specified for &CITY and ®IONMGR without specification
of a format.

Based on the example, the terminal displays the following prompts one by one:

Managing Applications With Dialogue Manager

4-80 Information Builders

Dialogue Manager Quick Reference
This topic describes all the Dialogue Manager commands in alphabetical order. The
following commands are included:

-* -? -CLOSE
-CLOSE * -CMS -CMS RUN
-CRTCLEAR -CRTFORM -DEFAULTS
-DEFAULTS -EXIT -GOTO
-IF -INCLUDE -label
-MVS RUN -PASS -PROMPT
-QUIT -READ -REPEAT
-RUN -SET -TSO RUN
-TYPE -WINDOW -WRITE
-“ “

Command: -*

Function: The command -* signals the beginning of a comment line.

 Any number of comment lines can follow one another, but each must
begin with -*. A comment line may be placed at the beginning or end
of a procedure, or in between commands. However, it cannot be on
the same line as a command.

 Use comment lines liberally to document a procedure so that its
purpose and history are clear to others.

Syntax: -* text

where:

text

Is a comment. A space is not required between -* and text.

Command: -?

Function: The command -? displays the current value of a local variable.

Syntax: -? &[string]

where:

string

Is an optional variable name of up to 12 characters. If this
parameter is not specified, the current values of all local, global,
and defined system and statistical variables are displayed.

 Dialogue Manager Quick Reference

Developing Applications 4-81

Command: -CLOSE

Function: -CLOSE closes an external file opened with the -READ or -WRITE
NOCLOSE option. The NOCLOSE option keeps a file open until
the -READ or -WRITE operation is complete.

Syntax: -CLOSE ddname|*

where:

ddname

Is the ddname of the open file described to FOCUS via an
allocation (TSO, MSO) or FILEDEF (CMS) command.

*

Closes all -READ and -WRITE files that are currently open.

Command: -CMS

Function: CMS executes a CMS operating system command from within
Dialogue Manager.

Syntax: CMS command

where:

command

Is a CMS command.

Command: -CMS RUN

Function: In CMS, loads and executes the specified user-written subroutine.

 SET can also execute user-written programs.

Syntax: -CMS RUN subroutine

 where:

subroutine

Is a FOCUS user-written subroutine.

Command: -CRTCLEAR

Function: Clears the current screen display.

Syntax: -CRTCLEAR

Managing Applications With Dialogue Manager

4-82 Information Builders

Command: -CRTFORM

Function: Creates forms to prompt the user for values for variables.

 All lines following a -CRTFORM command that begin with a
hyphen and enclose text in double quotation marks (“) are part of a
single-screen form. Pressing ENTER passes all input data to
associated variables.

 With -CRTFORM, the first line that does not begin with a -“ signals
the end of the form. With -CRTFORM BEGIN, the command
-CRTFORM END signals the end of the form.

 All FIDEL facilities are available to -CRTFORM except HEIGHT,
WIDTH, and LINE.

 CRTFORM in MODIFY functions identically to -CRTFORM in
Dialogue Manager.

 See -PROMPT.

Syntax: -CRTFORM [TYPE n] [BEGIN|END [LOWER|UPPER]]

 where:

-CRTFORM

Invokes FIDEL and signals the beginning of the screen form.

TYPE n

Enables you to define the number of lines (n) to reserve for
messages. You can specify a number from 1 to 4. The default is
4.

BEGIN

Supports the use of other Dialogue Manager commands to help
build the form.

END

Signals the end of the -CRTFORM. Used with -CRTFORM
BEGIN.

LOWER

Reads lowercase data from the screen. Once you specify
LOWER, every screen thereafter is a lowercase screen until you
specify otherwise.

UPPER

Translates lowercase letters to uppercase. This is the default.

 Dialogue Manager Quick Reference

Developing Applications 4-83

Command: -DEFAULTS

Syntax: -DEFAULTS &name=value, &name=value...

 where:

name

Is the variable name.

value

Is the variable value.

Function: Sets initial values for the named variables in the procedure.

 You can override -DEFAULTS values by supplying values for the
variables on the command line, by specifically prompting for values
with -PROMPT or -CRTFORM, or by supplying a value with -SET
subsequent to -DEFAULTS.

 -DEFAULTS guarantees that the variables are always given a value
and therefore that it will execute correctly.

 Default values are provided in other FOCUS modules to anticipate
user needs and reduce the need for keystrokes in situations where
most users desire a predefined outcome. See also -SET.

Command: -EXIT

Function: -EXIT forces a procedure to end. All stacked commands are
executed and the procedure exits (if the procedure was called by
another one, the calling procedure continues processing).

 Use -EXIT for terminating a procedure after processing a final
branch that completes the desired task.

 The last line of a procedure is an implicit -EXIT. In other words, the
procedure ends after the last line is read.

Syntax: -EXIT

Managing Applications With Dialogue Manager

4-84 Information Builders

Command: -GOTO

Function: -GOTO forces an unconditional branch to the specified label.

 If Dialogue Manager finds the label, processing continues with the
line following it.

 If Dialogue Manager does not find the label, processing ends and an
error message is displayed.

Syntax: -GOTO label

.

.

.
-label [TYPE text]

where:

label

Is a user-defined name of up to 12 characters that specifies the
target of the -GOTO action.

Do not use embedded blanks or the name of any other Dialogue
Manager command except -QUIT or -EXIT. Do not use words
that can be confused with functions, arithmetic and logical
operations, and so on.

TYPE text

Optionally sends a message to the client application.

Command: -HTMLFORM

Function: For use with the Web Interface to FOCUS.

Syntax: -HTMLFORM

 Dialogue Manager Quick Reference

Developing Applications 4-85

Command: -IF

Function: -IF routes execution of a procedure based on the evaluation of the
specified expression.

 An -IF without an explicitly specified ELSE whose expression is
false continues processing with the line immediately following it.

Syntax: -IF expression [THEN] GOTO label1; [ELSE GOTO label2;]
[ELSE IF...;]

where:

label

Is a user-defined name of up to 12 characters that specifies the
target of the GOTO action.
Do not use embedded blanks or the name of any other Dialogue
Manager command except -QUIT or -EXIT. Do not use words
that can be confused with functions, arithmetic or logical
operations, and so on.

expression

Is a valid expression. Literals need not be enclosed in single
quotation marks unless they contain embedded blanks or
commas.

THEN

Is an optional keyword that increases readability of the
command.

ELSE GOTO

Optionally passes control to label2 when the -IF test fails.

ELSE IF

Optionally specifies a compound -IF test.

 The semicolon (;) is required at the end of the command.

 Continuation lines must begin with a hyphen (-).

Managing Applications With Dialogue Manager

4-86 Information Builders

Command: -INCLUDE

Function: Specifies another procedure to be attached and executed at run time,
as if it were part of the calling procedure. The specified procedure
may comprise either a fully developed or partial procedure. Note
that a partial procedure does not execute if called outside of the
procedure containing -INCLUDE.

 When using -INCLUDE, you may not branch to a label outside of
the specified procedure.

 A procedure may contain more than one -INCLUDE. Up to four
-INCLUDEs may be nested.

 You may use any valid command in a -INCLUDE.

 EXEC may also be used to execute a procedure inside another
procedure.

Syntax: -INCLUDE filename [filetype [filemode]]

 where:

filename

Is the procedure to be incorporated in the calling procedure.

filetype

Is the procedure’s file type. If none is included, a file type of
FOCEXEC is assumed.

filemode

Is the procedure’s file mode. If none is included, a file mode of
A is assumed.

Command: -label

Function: A label is the target of a -GOTO or -IF command.

Syntax: -label [TYPE message]

where:

label

Is a user-supplied name of up to 12 characters that identifies the
target for a branch.
Do not use embedded blanks or the name of any other Dialogue
Manager command except -QUIT or -EXIT. Do not use words
that can be confused with functions, arithmetic or logical
operations, and so on.

TYPE message

Optionally sends a message to the client application.

 Dialogue Manager Quick Reference

Developing Applications 4-87

Command: -MVS RUN

Function: Same as -TSO RUN.

Syntax: -MVS RUN

Command: -PASS

Function: Passwords can be directly issued and controlled by the Dialogue
Manager. This is especially useful to specify a particular file or set
of files that a given user can read or write. Passwords have detailed
sets of functions associated with them through DBA module.

 The procedure that sets passwords should be encrypted so that it and
the passwords that it sets cannot be typed and made known.

 A variable can be associated with -PASS so that a password value is
prompted for and assigned.

 The PASS command provides the same function at the command
level, as does the PASS parameter of the SET command.

Syntax: -PASS password

 where:

password

Is a password or a variable containing a password.

Managing Applications With Dialogue Manager

4-88 Information Builders

Command: -PROMPT

Function: -PROMPT types a message to the terminal and reads the reply from
the user. This reply assigns a value to the variable named.

 If a format is specified and the supplied value does not conform,
FOCUS displays an error message and prompts the user again for the
value.

 If a (list) is specified and the user does not reply with a value on the
list, FOCUS reprompts and prints the list of acceptable values.

 Note: You cannot use format and list together.

 In MODIFY, PROMPT specifies additional data input needs.

 In GRAPH, when it is set on, GPROMPT automatically prompts for
all parameters needed to execute the graph request. This is quite a
different function from -PROMPT in Dialogue Manager.

 See -CRTFORM.

Syntax: -PROMPT &name [[.format|.(list)] [.text].]

 where:

&name

Is a user-defined variable.

format

Optionally specifies alphanumeric or integer data type and
length.

text

Optionally specifies prompting text that appears on the screen.
Must be delimited by periods.

list

Optionally specifies a range of acceptable responses. Must be
enclosed in parentheses.

 Dialogue Manager Quick Reference

Developing Applications 4-89

Command: -QUIT

Syntax: -QUIT or -QUIT FOCUS [n]

 where:

n

Is the operating system return code. It can be a constant or an
integer variable up to 4095. If you do not supply a value or if
you supply a non-integer value for n, the return code is 8 (the
default value).

Function: Forces an immediate exit from the procedure. Lines that have been
stacked are not executed. This differs from an -EXIT, which
executes all lines that are currently on the stack.

 Like -EXIT, -QUIT returns the user to the FOCUS prompt.

 -QUIT FOCUS takes the user out of FOCUS altogether and returns
the user to the operating system level.

 -QUIT can be made the target of a branch, with the same results as
those already described.

 QUIT can be entered in response to -PROMPT or -CRTFORM to
force an exit from the procedure. The QUIT command can, however,
be turned off from within Dialogue Manager to prevent the user from
exiting FOCUS prompt.

 The QUIT command can also be used to exit from MODIFY and
TABLE requests as well as Dialogue Manager procedures.

 The principle of QUIT remains consistent throughout FOCUS,
namely that the exited request or procedure is not executed and the
user is returned to the FOCUS prompt.

 See also -RUN and -EXIT.

Managing Applications With Dialogue Manager

4-90 Information Builders

Command: -READ

Function: Reads data from non-FOCUS files. -READ can access data in either
fixed or free form.

 See -WRITE.

Syntax: -READ ddname[,] [NOCLOSE] &name[.format.][,] ...

 where:

ddname

Is the logical name of the file as defined to FOCUS using
FILEDEF (or, for MVS, ALLOCATE or DYNAM
ALLOCATE). A space after the ddname denotes a fixed format
file while a comma denotes a comma-delimited file.

NOCLOSE

Indicates that the ddname should be kept open even after a
-RUN is executed. The ddname is closed upon completion of
the procedure or when a -CLOSE or subsequent -WRITE
command is encountered.

name

Is the variable name. You may specify more than one variable.
Using a comma to separate variables is optional.

If the list of variables is longer than one line, end the first line with a
comma and begin the next line with a dash followed by a blank (-)
for comma-delimited files or a dash followed by a comma followed
by a blank (-,) for fixed format files. For example:

Comma-delimited files

-READ EXTFILE, &CITY,&CODE1,
- &CODE2

Fixed format files

-READ EXTFILE &CITY.A8. &CODE1.A3.,
-, &CODE2.A3

format

Is the format of the variable. Note that format must be delimited
by periods. The format is ignored for comma-delimited files.

 Dialogue Manager Quick Reference

Developing Applications 4-91

Command: -REPEAT

Function: -REPEAT allows looping in a procedure.

 The parameters FROM, TO, and STEP can appear in any order.

 A loop ends when any of the following occurs:

• It is executed in its entirety.

• A -QUIT or -EXIT is issued.

• A -GOTO is issued to a label outside of the loop. If a -GOTO is
later issued to return to the loop, the loop proceeds from the
point it left off.

Syntax: -REPEAT label n TIMES
-REPEAT label WHILE condition
-REPEAT label FOR &variable [FROM fromval] [TO toval]
[STEP s]

where:

label

Identifies the code to be repeated (the loop). A label can include
another loop if the label for the second loop has a different
name from the first.

n TIMES

Specifies the number of times to execute the loop. The value of
n can be a local variable, a global variable, or a constant. If it is
a variable, it is evaluated only once, so the only way to end the
loop early is with -QUIT or -EXIT (you cannot change the
number of times to execute the loop).

WHILE condition

Specifies the condition under which to execute the loop. The
condition is any logical expression that can be true or false. The
loop is run if the condition is true.

FOR &variable
Is a variable that is tested at the start of each execution of the
loop. It is compared with the value of fromval and toval (if
supplied). The loop is executed only if &variable is less than or
equal to toval (STEP is positive), or greater than or equal to
toval (STEP is negative).

FROM fromval

Is a constant that is compared with &variable at the start of each
execution of the loop. The default value is 1.

Managing Applications With Dialogue Manager

4-92 Information Builders

TO toval

Is a value against which &variable is tested. The default is
1,000,000.

STEP s

Is a constant used to increment &variable at the end of each
execution of the loop. It may be positive or negative. The
default value is 1.

Command: -RUN

Function: -RUN causes immediate execution of all stacked FOCUS
commands.

 Following execution, processing of the procedure continues with the
line that follows -RUN.

 -RUN is commonly used to do the following:

• Generate results from a request that can then be used in testing
and branching.

• Close an external file opened with -READ or -WRITE. When a
file is closed, the line pointer is placed at the beginning of the
file for a -READ. The line pointer for -WRITE is positioned
depending on the allocation and definition of the file.

Syntax: -RUN

Command: -SET

Function: -SET assigns a literal value to a variable, or a value that is computed
in an arithmetic or logical expression.

 Single quotation marks around a literal value are optional unless it
contains embedded blanks or commas, in which case you must
include them.

Syntax: -SET &[&]name=expression;

where:

&name

Is the name of a variable whose value will be set.

expression

Is a valid expression. Expressions can occupy several lines, so
end the command with a semicolon (;).

 Dialogue Manager Quick Reference

Developing Applications 4-93

Command: -TSO RUN

Function: In TSO, loads and executes the specified user-written subroutine.

 Note: The prefix -TSO can be used only with RUN.

 -SET can also execute user-written programs.

Syntax: -TSO RUN subroutine

 where:

subroutine

Is the name of a FOCUS user-written subroutine.

Command: -TYPE

Function: Transmits informative messages to the user at the terminal. Any
number of -TYPE lines may follow one another but each must begin
with -TYPE.

 Substitutable variables may be embedded in text. The values
currently assigned to each variable will be displayed in their
assigned position in the text.

 -TYPE1 and TYPE+ are not supported by IBM 3270-type terminals.

 TYPE is used in a variety of ways in FOCUS to send informative
messages to the screen. A TYPE command may appear on the same
line as a label in Dialogue Manager. In MODIFY, TYPE is used to
print messages at the start and end of processes, at selected positions
in MATCH or NOMATCH, NEXT or NONEXT, and to send a
message after an INVALID data condition.

Syntax: -TYPE[+] text
-TYPE[0] text
-TYPE[1] text

where:

-TYPE1

Sends the text after issuing a page eject.

-TYPE0

Sends the text after skipping a line.

-TYPE+

Sends the text but does not add a line feed.

text

Is a character string that fits on a line.

Managing Applications With Dialogue Manager

4-94 Information Builders

Command: -WINDOW

Function: Executes a window file. When the command is encountered, control
is transferred from the procedure to the specified window file. The
window specified in the command becomes the first active window.
Control remains within the window file until a menu option is
chosen, or a window is activated, for which there is no goto value.

 The window file, and the windows in it, are created using Window
Painter.

Syntax: -WINDOW windowfile windowname

[PFKEY|NOPFKEY] [GETHOLD] [BLANK|NOBLANK]
[CLEAR|NOCLEAR]

 where:

windowfile

Identifies the file in which the windows are stored. In CMS, this
is a file name. The file must have a file type of FMU.
In MVS/TSO, this is a member name. The member must belong
to a PDS allocated to ddname FMU.

windowname

Identifies which window in the file will be displayed first.

PFKEY

Enables you to test for function key values during window
execution.

NOPFKEY

You are unable to test for function key values during window
execution.

GETHOLD

Retrieves stored amper variables collected from a Multi-Select
window.

BLANK

Clears all previously set amper variable values when
-WINDOW is encountered. This is the default setting.

NOBLANK

When -WINDOW is encountered, the values of previously set
amper variables are retained.

 Dialogue Manager Quick Reference

Developing Applications 4-95

CLEAR

Clears the screen before displaying the first window. This is the
default behavior. When specified in conjunction with the
Terminal Operator Environment (TOE), the TOE screen is
redisplayed when control is transferred back to the procedure.

NOCLEAR

Displays the specified window directly over the current screen.

Command: -WRITE

Function: Writes information to non-FOCUS files.

 Note that all files that have been written should be closed upon any
exit from the procedure using -QUIT, -EXIT, or -RUN.

 In TABLE, WRITE is a synonym for SUM; functionally it is quite
different from -WRITE.

 See -READ.

Syntax: -WRITE ddname [NOCLOSE] text

 where:

ddname

Is the logical name of the file as defined to FOCUS using
FILEDEF (or for MVS, ALLOCATE or DYNAM
ALLOCATE).

NOCLOSE

Indicates that the file should be kept open even if a -RUN is
encountered. The file is closed upon completion of the
procedure or when a -CLOSE or subsequent -READ command
is encountered.

text

Is any combination of variables and text. To write more than
one line, end the first line with a comma (,) and begin the next
line with a hyphen followed by a space (-).

Managing Applications With Dialogue Manager

4-96 Information Builders

Command: -“ “

Function: The -“ “ syntax is associated with the FIDEL -CRTFORM
command. All textual data enclosed by the double quotation marks is
printed to the screen. You can use position markers and specify
variable fields within double quotation marks.

 When -CRTFORM is processed, the screen displays a form and the
cursor stops at each amper variable date entry field. If a variable has
not been declared prior to the -CRTFORM, FOCUS prompts the
user for a value to assign to the variable.

 In MODIFY, enclosing data in double quotation marks (“ “) without
the leading hyphen is used with CRTFORM, or for headings,
footings, subheads, and subfoots within a TABLE request.

 See -CRTFORM.

Syntax: -" "

 where:

" "

Enclose textual information, fields and spot markers.

 Dialogue Manager Quick Reference

Developing Applications 4-97

System Defaults and Limits
This topic provides you with an easier way of locating default values, operating system
and FOCUS limits, summary tables, general rules, and tips for ease-of-use.

Some general rules to follow when you are creating procedures are:

• If a Dialogue Manager command exceeds one line, the following line must begin with
a hyphen (-).

• The hyphen (-) must be placed at the first position of the command line.

• The command is usually attached to the hyphen (-), but you may leave space between
the hyphen and the Dialogue Manager command.

• At least one space must be inserted between the Dialogue Manager command and
other text.

• Procedure files must have the record format (RECFM) F and the logical record
length (LRECL) 80.

The following are some general rules that apply in regard to supplying values for
variables:

• The maximum length of a variable value is 79 characters.

• A physical FOCSTACK line with all variables expanded to their full values cannot
exceed 80 characters. Since most variables are part of a line in a procedure, it is
recommended that you use values that are less than 80 characters long.

• If a value contains an embedded comma (,) or embedded equal sign (=) the value
must be enclosed between single quotation marks. For example:

EX SLRPT AREA=S, CITY='NY, NY'

• Once a value is supplied for a local variable, it is used for that variable throughout
the procedure, unless it is changed through a -PROMPT, -SET, or -READ.

• Once a value is supplied for a global variable, it is used for that global variable
throughout the FOCUS session in all procedures, unless it is changed through a
-PROMPT, -SET, or -READ.

• Dialogue Manager automatically sends a prompt to the terminal if a value has not
been supplied for a variable. Automatic prompts (implied prompting) are identical in
syntax and function to the direct prompts created with -PROMPT.

Managing Applications With Dialogue Manager

4-98 Information Builders

The following is a list of operating system default values, limits, and format
specifications.

• The default value for the operating system return code value is 8.

• The maximum number of amper variables available in a procedure is 512, of which
approximately 30 are reserved for use by FOCUS. This includes all local, global,
system, statistical, special, and index variables.

• Literals must be surrounded by single quotation marks if they contain embedded
blanks or commas. To produce a literal that includes a single quotation mark, place
two single quotation marks where you want one to appear.

• Alphanumeric formats are described by the letter A followed by the number of
characters. The number of characters can be from 1 to 255.

• Integer formats are described by the letter I followed by the number of digits to be
entered. The number can be from one to nine digits in length, value must be less than
231-1.

• A label is a user-defined name of up to 12 characters. You cannot use blanks and
should not use the name of any other Dialogue Manager command. The label may
precede or follow GOTO in the procedure.

• A date given to the Dialogue Manager cannot be more than 20 characters long,
including spaces.

• -INCLUDE files can be nested up to 4 levels deep.

• The default setting for &QUIT is ON.

• When using Window Painter:

• Screens should not begin in row 0, column 0, or column 1.

• The maximum screen size is 22 rows by 77 columns.

• A File Contents window has a limit of 12K worth of data. This is approximately
150 lines.

• The maximum number of menu items is 41.

• File Name windows must have a WIDTH of 24 or greater, or meaningless
characters will appear.

Developing Applications 5-1

CHAPTER 5

Defining a Word Substitution

Topics:
• The LET Command

• Variable Substitution

• Null Substitution

• Multiple-line Substitution

• Recursive Substitution

• Using LET Substitution in a COMPUTE
or DEFINE Command

• Checking Current LET Substitutions

• Interactive LET Query: LET ECHO

• Clearing LET Substitutions

• Saving LET Substitutions in a File

• Assigning Phrases to Function Keys

A LET substitution enables you to define a word to represent
other words and phrases. By substituting words for phrases, you
can reduce the typing necessary to enter requests (especially
when entering phrases repeatedly) and make your requests
easier to understand.

Defining a Word Substitution

5-2 Information Builders

The LET Command
The LET command enables you to represent a word or phrase with another word. This
reduces the amount of typing necessary for issuing requests, and makes your requests
easier to understand. A substitution is especially useful when you use the same phrase
repeatedly. Note that you cannot use LET substitutions in Dialogue Manager commands.

You can substitute any phrase that you enter online unless you are entering a MODIFY
request.

The LET command has a short form and a long form. Use the short form for one or two
LET definitions that fit on one line. Otherwise, use the long form.

When you define a word with LET and then use that word in a request, the word is
translated into the word or phrase it represents. The result is the same as if you entered
the original word or phrase directly.

Once defined, a LET substitution lasts until it is cleared or until the request terminates.
To clear active LET substitutions, issue the LET CLEAR command. To use the same
substitutions in many requests, place the LET commands in a stored procedure. If you
want to save currently active LET substitutions, use the LET SAVE facility. These
substitutions can then be executed later with one short command.

Syntax How to Make a Substitution (Short Form)
LET word = phrase [;word = phrase...]

where:
word

Is a string of up to 80 characters with no embedded blanks.
phrase

Is a string of up to 256 characters, which can include embedded blanks. The phrase
can also include other special characters, but semicolons and pound signs need
special consideration. If the word you are defining appears in the phrase you are
replacing, you must enclose it in single quotation marks.

More than one substitution can be defined on the same line by placing a semicolon
between definitions.

 The LET Command

Developing Applications 5-3

Example Making a Substitution (Short Form)
The LET command defines the word WORKREPORT as a substitute for the phrase
TABLE FILE EMPLOYEE:
LET WORKREPORT = TABLE FILE EMPLOYEE

Issuing the following
WORKREPORT
PRINT LAST_NAME
END

results in this request:
TABLE FILE EMPLOYEE
PRINT LAST_NAME
END

The next command includes TABLE as both the word you are defining and as part of the
phrase it is replacing. It is enclosed in single quotation marks in the phrase:
LET TABLE = 'TABLE' FILE EMPLOYEE

More than one word is defined in the following command. The definitions are separated
by a semicolon:
LET WORKREPORT=TABLE FILE EMPLOYEE; PR=PRINT

Syntax How to Make a Substitution (Long Form)
LET
word = phrase
.
.
.
END

where:
word

Is a string of up to 80 characters with no embedded blanks.
phrase

Is a string of up to 256 characters that can include embedded blanks.
END

Is required to terminate the command.

As shown, LET and END must each be on a separate line.

As with the short form, you can define several words on one line by separating the
definitions with a semicolon. A semicolon is not required after the last definition on a
line.

Defining a Word Substitution

5-4 Information Builders

Example Making a Single Substitution (Long Form)
The following example illustrates a single substitution.
LET
RIGHTNAME = 'STEVENS' OR 'SMITH' OR 'JONES' OR 'BANNING' OR 'MCCOY' OR
'MCKNIGHT'
END

Example Making Multiple Substitutions (Long Form)
The following example illustrates substitutions that span more than one line. Notice that
there is no semicolon after the definition PR = PRINT:
LET
WORKREPORT = TABLE FILE EMPLOYEE; PR = PRINT
RIGHTNAME = 'STEVENS' OR 'SMITH' OR 'JONES'
END

Example Defining Substitutions for Translation
Non-English speakers can use LET commands to translate a request into another
language. For example, this request
TABLE FILE CAR
SUM AVE.RCOST OVER AVE.DCOST
BY CAR ACROSS COUNTRY
END

can be translated into French as:
CHARGER FICHIER CAR
SOMMER AVE.RCOST SUR AVE.DCOST
PAR CAR TRAVERS COUNTRY
FIN

 Variable Substitution

Developing Applications 5-5

Variable Substitution
Using the LET command, you can define a word that represents a variable phrase. A
variable phrase contains placeholder symbols (carets) to indicate missing elements in the
phrase. This allows you to give a phrase different meanings in different requests.
Placeholders can be parts of words within phrases. They can also be used to represent
system commands.

Placeholders can be unnumbered or numbered. If the placeholders are not numbered, then
they are filled from left to right: the first word in the request after the LET-defined word
fills the first placeholder, the second word fills the second placeholder, and so on to the
last placeholder. If they are numbered, the placeholders are filled in numerical order. If
you do not supply enough words to fill all the placeholders, the extra placeholders are
null.

Example Making a Variable Substitution
The command
LET UNDERSCORE = ON < > UNDER-LINE

contains one placeholder. After issuing this command, you can use the word
UNDERSCORE in a request:
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID BY HIRE_DATE
UNDERSCORE EMP_ID
END

The field name following the LET-defined word supplies the missing value to the
placeholder. In the example, EMP_ID follows the defined word UNDERSCORE. This
field name is inserted in the placeholder and translates UNDERSCORE EMP_ID as:
ON EMP_ID UNDER-LINE

Example Making Multiple Variable Substitutions (Unnumbered)
Issuing the LET command
LET TESTNAME = WHERE LAST_NAME IS < > OR < > OR < >

and then including the following line in a request
TESTNAME 'MCKNIGHT' 'STEVENS' 'BLACKWOOD'

translates the line as:
WHERE LAST_NAME IS 'MCKNIGHT' OR 'STEVENS' OR 'BLACKWOOD'

Notice that the variable phrase needs no placeholder at the end, and could also be coded
as WHERE LAST_NAME IS <> OR <>. Once all the placeholders are filled, the rest of
the definition follows. In this example, the words MCKNIGHT and STEVENS would fill
the two placeholders. BLACKWOOD would be left over, so it would follow the variable
phrase.

Defining a Word Substitution

5-6 Information Builders

If you do not supply enough words to fill in all the placeholders, the extra placeholders
are null. For example, issuing this LET command
LET TESTNAME = WHERE LAST_NAME IS < > OR < > OR

and then entering this command
TESTNAME 'MCCOY'

translates the statement into:
WHERE LAST_NAME IS 'MCCOY' OR OR

This statement is illegal and produces an error message.

Example Making Multiple Variable Substitutions (Numbered)
The following LET command contains numbered placeholders:
LET TESTNAME = WHERE LAST_NAME IS <1> OR <2> OR <3>

Therefore, the following line
TESTNAME 'STEVENS' 'MCKNIGHT' 'BLACKWOOD'

is translated as follows:
WHERE LAST_NAME IS 'STEVENS' OR 'MCKNIGHT' OR 'BLACKWOOD'

If two placeholders have the same number, both placeholders are filled with the same
word. For example, if you issue this LET command
LET RANGE = SUM MAX.<1> AND MIN.<1>

and this line
RANGE SALARY

the translated statement is:
SUM MAX.SALARY AND MIN.SALARY

Example Making a Variable Substitution in a Phrase
Issuing the following LET command
LET BIGGEST = MAX.< >

and entering the line
WRITE BIGGEST SALARY

translates the statement as:
WRITE MAX.SALARY

Example Defining a System Command
Each of the following LET commands define a system command in MVS:
LET ALFOC = TSO ALLOC F(< >) DA(< >.FOCUS) SHR
LET LISTMEM = TSO LISTDS < > MEMBERS

 Null Substitution

Developing Applications 5-7

Null Substitution
With a null substitution, you can use more than one word to represent a phrase. By using
more than one word in a request instead of a single word, you can make the request more
readable.

You can define a null word using LET. A null word is ignored by the application.

Syntax How to Define a Null Word
LET word=;

Example Defining a Null Word
This LET command defines DISPLAY as a null word:
LET
DISPLAY=;
AVESAL = SUM AVE.SALARY BY DEPARTMENT
END

In the following request, the word DISPLAY is used in the code DISPLAY AVESAL,
for readability, to make clear that the request prints the value represented by AVESAL:
TABLE FILE EMPLOYEE
DISPLAY AVESAL
WHERE DEPARTMENT IS 'PRODUCTION'
END

The word DISPLAY is ignored and the request is translated as:
TABLE FILE EMPLOYEE
SUM AVE.SALARY BY DEPARTMENT
WHERE DEPARTMENT IS 'PRODUCTION'
END

Defining a Word Substitution

5-8 Information Builders

Multiple-line Substitution
Many commands, such as END, must appear on a separate line in a report request. To
include such a command in a LET definition, place a number sign (#) and a space before
the command to indicate a new line. This allows you to substitute one word for several
lines of code.

Special considerations regarding number signs apply in the CMS environment.

Example Making Multiple-line Substitutions
This LET command uses the number sign and a space to indicate that a new line is
required for the END command:
LET HOLDREP = ON TABLE HOLD # END

The following request
TABLE FILE EMPLOYEE
SUM AVE.GROSS BY EMP_ID BY PAY_DATE
HOLDREP

is translated as:
TABLE FILE EMPLOYEE
SUM AVE.GROSS BY EMP_ID BY PAY_DATE
ON TABLE HOLD
END

Recursive Substitution
Recursive substitution allows a phrase in one LET definition to contain a word defined in
another LET definition. Recursive substitution can also be used to abbreviate long
phrases within LET commands.

Example Making a Recursive Substitution
In the following LET command
LET
TESTNAME=IF LAST_NAME IS RIGHTNAME
RIGHTNAME = STEVENS OR MCKNIGHT OR MCCOY
END

the word RIGHTNAME in the phrase in the first definition is defined in the second
definition. (Note that the two phrases in the LET command could be reversed.) This LET
command is equivalent to:
LET
TESTNAME = IF LAST_NAME IS STEVENS OR MCKNIGHT OR MCCOY
END

 Using LET Substitution in a COMPUTE or DEFINE Command

Developing Applications 5-9

Example Abbreviating a Long Phrase
Consider the following LET command, which illustrates recursive substitution:
LET
TESTNAME = STEVENS OR SMITH OR MCCOY OR CONT1
CONT1 = BANNING OR IRVING OR ROMANS OR CONT2
CONT2 = JONES OR BLACKWOOD
END

You can use TESTNAME in this request:
TABLE FILE EMPLOYEE
PRINT SALARY BY LAST_NAME
IF LAST_NAME IS TESTNAME
END

This is the equivalent of:
TABLE FILE EMPLOYEE
PRINT SALARY BY LAST_NAME
IF LAST_NAME IS STEVENS OR SMITH OR MCCOY OR
BANNING OR IRVING OR ROMANS
OR JONES OR BLACKWOOD
END

Using LET Substitution in a COMPUTE or DEFINE
Command

A semicolon must follow an expression in a COMPUTE or DEFINE command. To use a
LET substitution n a DEFINE or COMPUTE, you must include two semicolons in the
LET syntax. You cannot create a LET substitution for a phrase that contains a semicolon.

Example Using a LET Substitution in a COMPUTE or DEFINE Command
The following LET syntax includes two semicolons, since the substitution will be made
in a COMPUTE command:
LET
SALTEST = LEVEL/A4 = IF SALARY GT 35000 THEN HIGH
ELSE LOW;;
END

Issuing the command
AND COMPUTE SALTEST

translates the line into
AND COMPUTE LEVEL/A4 = IF SALARY GT 35000 THEN HIGH
ELSE LOW;

with one semicolon after the word LOW, as required by the expression in the
COMPUTE.

Defining a Word Substitution

5-10 Information Builders

Checking Current LET Substitutions
The ? LET command displays the currently active LET substitutions.

Syntax How to Check Current LET Substitutions
? LET [word1 word2 ... wordn]

where:
word1 word 2...wordn

Are the LET-defined words you want to check. If you omit these parameters, ? LET
displays a two-column list of all active LET substitutions. The left column contains
the LET-defined words; the right column contains the phrases the words represent.

Example Checking Selected LET Substitutions
Issuing
? LET CHART TESTNAME RIGHTNAME

displays a two-column list of the LET substitutions for CHART, TESTNAME, and
RIGHTNAME.

Example Checking All Current LET Substitutions
Issuing
? LET

displays a list of all current LET substitutions.

Interactive LET Query: LET ECHO
The LET ECHO facility shows how FOCUS interprets FOCUS statements. This facility
is a diagnostic tool you can use when statements containing LET-defined words are not
being interpreted the way you expect them to. Enter:
LET ECHO

This turns on the LET ECHO facility. When you enter a FOCUS statement, LET ECHO
displays the statement as interpreted by FOCUS.

Note:

• If you enter a statement containing no LET-defined words, LET ECHO displays the
statement as you entered it.

• If you enter a statement containing LET-defined words, LET ECHO displays the
statement with the substitutions made.

• If the statement contains variable substitutions, LET ECHO displays the substitutions
with the placeholders filled in.

• If the statement contains multiple-line substitutions, LET ECHO displays the
statement with the substitutions on multiple lines.

 Clearing LET Substitutions

Developing Applications 5-11

• If the statement contains null substitutions, LET ECHO displays the statement with
the LET-defined words deleted.

• If the statement contains recursive substitutions, the substitutions appear as they are
finally resolved.

• LET ECHO may be coded at the top of a FOCEXEC. END ECHO gets coded on the
last line of the FOCEXEC.

To turn off the LET ECHO facility and return to the FOCUS command level, enter:
ENDECHO

Note: If you enter a statement containing a variable substitution, you must enter as many
words after the LET-defined word as there are placeholders in the phrase; otherwise, LET
ECHO will wait for additional input.

Clearing LET Substitutions
Use the LET CLEAR command to clear LET substitutions.

Syntax How to Clear LET Substitutions
LET CLEAR {*|word1 [word2...wordn]}

where:
*

Clears all substitutions.
word1...wordn

Are the LET-defined words that you want to clear.

Example Clearing LET Substitutions
Issuing the following command
LET CLEAR CHART TESTNAME RIGHTNAME

clears substitutions for CHART, TESTNAME, and RIGHTNAME. If there are no
additional LET substitutions in effect, the following command would have the same
effect:
LET CLEAR *

Defining a Word Substitution

5-12 Information Builders

Saving LET Substitutions in a File
Since LET substitutions only last the duration of a request, saving them is helpful if you
need the same substitutions for another request.

To save LET substitutions currently in effect, use the LET SAVE command.

Syntax How to Save LET Substitutions
LET SAVE [filename]

where:
filename

Is the eight-character name of the file in which you want to save the substitutions. If
you do not supply a file name, the default file name is LETSAVE.

Assigning Phrases to Function Keys
You can assign a phrase to a function key. Then when you have a blank line and press a
function key, that phrase appears as if you actually typed it. This process works only in
situations where the LET facility is operative.

Syntax How to Assign a Phrase to a Function Key
LET !n = [.]phrase

where:
n

Is a function key number from 1 to 24.
.

Suppresses the echo of the phrase when you press the function key.
phrase

Is the phrase that the specified function key represents.

Example Assigning Phrases to Function Keys
LET !4 = EX DAILYRPT
LET !6 = END
LET !20 = IF RECORDLIMIT EQ 10
LET !21 = .EX MYREPORT

Developing Applications 6-1

CHAPTER 6

Enhancing Application Performance

Topics:

• FOCUS Facilities

• Loading a File

• Compiling a MODIFY Request

• Accessing a FOCUS Data Source (MVS
Only)

This topic covers FOCUS facilities that are available to you
across command environment boundaries. These facilities are
easy to use and, in many cases, step-by-step instructions are
provided.

Enhancing Application Performance

6-2 Information Builders

FOCUS Facilities
The FOCUS facilities discussed in this topic are classified as file utilities for FOCUS and
external files. They are summarized in the following table:

Command Description

LOAD Loads FOCUS procedures and Master Files into memory (see Loading
a File on page 6-2).

COMPILE Translates MODIFY requests into compiled code ready for execution
(see Compiling a MODIFY Request on page 6-7).

MINIO Note: This facility is for MVS only.

Improves performance by reducing I/O operations when accessing
FOCUS data sources (see Accessing a FOCUS Data Source (MVS
Only) on page 6-8).

Loading a File
Use the LOAD command to load the following types of files into memory for use within
a FOCUS session:

• Master Files (MASTER).

• Access Files.

• FOCUS procedures (FOCEXEC).

• Compiled MODIFY requests (FOCCOMP).

• MODIFY requests (MODIFY).

Using memory-resident files decreases execution time because the files do not have to be
read from disk. Use the UNLOAD command to remove the files from memory.

Syntax How to Load a File
LOAD filetype filename1... [filename2...]

where:

filetype

Specifies the type of file to be loaded (MASTER, access file, FOCEXEC,
FOCCOMP, or MODIFY).

filename1...

Specifies one or more files to be loaded. Separate the file type and file name(s) with
a space.

 Loading a File

Developing Applications 6-3

Example Loading Multiple Files
The following command loads the four FOCEXECs CARTEST, FOCMAP1,
FOCMAP2, and FOCMAP3 into memory:

>LOAD FOCEXEC CARTEST FOCMAP1 FOCMAP2 FOCMAP3

A subsequent reference to one of these files during the current FOCUS session will use
the loaded, rather than the disk, version.

Syntax How to Unload a File
UNLOAD [*|filetype] [*| filename1... [filename2...]]

where:

filetype

Specifies the type of file to be unloaded (MASTER, access file, FOCEXEC,
MODIFY, or FOCCOMP). To unload all files of all types, use an asterisk.

filename1...

Specifies one or more files to be unloaded. Separate the file type and file name(s)
with a space. To unload all files of that file type, use an asterisk.

Example Unloading Multiple Files
The following command unloads the two memory-resident FOCEXECs CARTEST and
FOCMAP3:

>UNLOAD FOCEXEC CARTEST FOCMAP3

Any subsequent reference to one of these files will use the disk version.

Enhancing Application Performance

6-4 Information Builders

Loading Master Files, FOCUS Procedures, and Access Files
Loading Master Files, Access Files, and FOCEXECs into memory eliminates the I/Os
required to read them each time they are referenced. Whenever FOCUS requires a Master
File, Access File, or executes a FOCEXEC, it first looks for a memory-resident
MASTER, access file, or FOCEXEC file; if FOCUS cannot find the file in memory, it
then searches for a disk version in the normal way.

Reference Considerations for Loading a Master File, FOCUS Procedure, or
Access File
The following are considerations for loading a Master File, FOCUS procedure, and
Access File:

• If you load a Master File, Access File, or a FOCEXEC that has already been loaded
into memory, the new copy replaces the old copy.

• Do not load a Master File, Access File, or a FOCEXEC that you are developing,
because FOCUS will always use the memory-resident copy of the file (until you
reload it), rather than the one you are developing. This is because the copy that you
are developing on TED or your system editor is the disk copy, not the
memory-resident copy.

• A loaded Master File, Access File, or FOCEXEC requires a maximum of 80 bytes of
memory for each of its records plus a small amount of control information, rounded
up to a multiple of 4200 bytes.

 Loading a File

Developing Applications 6-5

• The following are the file types for the various Access Files:

Access File File Type

ADABAS FOCADBS

DATACOM FOCDTCM

UDB FOCSQL

IDMS FOCIDMS

IMS (IMS=NEW only) ACCESS

MODEL 204 FOCM204

ORACLE FOCSQL

SQLDS FOCSQL

S2K FOCS2K

SUPRA ACCESS

TERADATA FOCSQL

TOTAL FOCTOTAL

Loading a Compiled MODIFY Request
When you load a compiled MODIFY request, FOCUS loads the FOCCOMP file from
disk into memory, then reads and parses the Master File and binds the description to the
FOCCOMP file. You may then run the request by issuing the RUN command. The RUN
command causes FOCUS to search for a memory-resident FOCCOMP file. If FOCUS
cannot find the file, it searches for a disk version in the normal way.

Loading FOCCOMP files not only eliminates the I/Os required to read large FOCCOMP
files and their associated Master Files, but also causes another, more subtle effect. When
you issue the RUN command to execute a FOCCOMP file from disk, virtual storage must
be paged in to accommodate it. If the FOCCOMP file is large, it may require many pages
(and a large virtual storage area) in a very short time. If you load the FOCCOMP file
first, the initial surge of paging occurs only once at LOAD time. After that, each
execution of the loaded file requires a lower paging rate.

Syntax How to Execute a Compiled Request
RUN request

where:

request

Is the name of the compiled request stored in memory.

Enhancing Application Performance

6-6 Information Builders

Loading a MODIFY Request
The LOAD MODIFY command is similar to the COMPILE command (described in the
Maintaining Databases manual) except that instead of writing the compiled output to a
FOCCOMP file on disk, FOCUS writes the output into memory as a pre-loaded,
compiled MODIFY. FOCUS then reads the Master File associated with the MODIFY
command from disk and translates it into an internal table that is tightly bound with the
compiled MODIFY. Thus the command

>LOAD MODIFY NEWTAX

has substantially the same effect as

>COMPILE NEWTAX
>LOAD FOCCOMP NEWTAX

except that the compiled code is never written to disk.

After you enter a LOAD MODIFY command, the resulting compiled MODIFY is
indistinguishable from code loaded with LOAD FOCCOMP. Thus the UNLOAD
MODIFY and ? LOAD MODIFY commands produce exactly the same results as the
UNLOAD FOCCOMP and ? LOAD FOCCOMP commands. Note that the UNLOAD
FOCCOMP and UNLOAD MODIFY commands unload the bound Master File as well.

When you issue the RUN command to invoke a MODIFY procedure, FOCUS looks for a
memory-resident compiled procedure (created by a LOAD FOCCOMP or LOAD
MODIFY command) of that name. If the procedure cannot be found, FOCUS then
searches for a disk version of the FOCCOMP file in the normal way.

The benefits of the LOAD MODIFY command are that disk space is not used to store the
FOCCOMP file, disk I/Os are reduced, the FOCEXEC cannot get out of step with the
compiled version, and the paging rate is reduced as it is with FOCCOMP files.

Displaying Information About Loaded Files
The ? LOAD command displays the file type, file name, and resident size of currently
loaded files.

Syntax How to Display Information About Loaded Files
? LOAD [filetype]

where:

filetype

Specifies the type of file (MASTER, FOCEXEC, access file, FOCCOMP, or
MODIFY) on which information will be displayed. To display information on all
memory-resident files, omit file type.

 Compiling a MODIFY Request

Developing Applications 6-7

Example Displaying Information About Loaded Files
Issuing the command

? LOAD

produces information similar to the following:

FILES CURRENTLY LOADED

 CAR MASTER 4200 BYTES
 EXPERSON MASTER 4200 BYTES
 CARTEST FOCEXEC 8400 BYTES

Compiling a MODIFY Request
The COMPILE command translates a MODIFY request stored in a FOCEXEC into an
executable code module. This module, like an object code module, cannot be edited by a
user. However, it loads faster than the original request because the MODIFY commands
have already been interpreted by FOCUS (the initialization time of a compiled MODIFY
module can be four to ten times faster than the original request). Compiling a request can
save a significant amount of time if the request is large and must be executed repeatedly.
You compile the request once, and execute the module as many times as you need it.

Enter the COMPILE command at the FOCUS command level (the FOCUS prompt). To
module, use the RUN command from the FOCUS command level.

Syntax How to Compile MODIFY Request
COMPILE focexec [AS module]

where:

focexec

Is the name of the FOCEXEC where the request is stored.

module

Is the name of the module. The default is the FOCEXEC name. FOCEXEC names
and module names are system dependent.

Syntax How to Execute a Module
RUN module

where:

module

Is the name of the module.

You will see no difference in execution between the module and the original request, but
it will load much faster.

Enhancing Application Performance

6-8 Information Builders

Reference Considerations for Compiling a MODIFY Request
The following are considerations for compiling a MODIFY request:

• The FOCEXEC procedure to be compiled may only contain one MODIFY request. It
may not contain any other FOCUS, Dialogue Manager, or operating system
commands.

• Before compiling a request or executing a module, allocate all input and output files
such as transaction files and log files. These allocations must be in effect at run time.

• Before compilation, issue any SET, USE, COMBINE, or JOIN commands necessary
to run the request.

• If the data source you are modifying is joined to another file (using the JOIN
command) during compilation, it must be joined to the file at run time.

• If you are modifying a combined structure (using the COMBINE command), the
structure must be combined both at compilation and at run time.

• FOCEXECs prompt for Dialogue Manager variable values at compilation time.
These values cannot be changed at run time.

• If you are using FOCUS security to prevent unauthorized users from executing the
request, the password you set at compilation time must be the same one set at run
time.

Accessing a FOCUS Data Source (MVS Only)
MINIO is a new I/O buffering technique that improves performance by reducing I/O
operations when accessing FOCUS data sources under MVS. With MINIO set on, no
block is ever read more than once, and therefore the number of reads performed will be
the same as the number of tracks present. This results in an overall reduction in elapsed
times when reading and writing.

With FOCUS data sources that are not disorganized, MINIO can greatly reduce the
number of I/O operations for TABLE and MODIFY commands. I/O reductions of up to
fifty percent are achievable with MINIO. The actual reduction will vary depending on
data source structure and average numbers of children segments per parent segment. By
reducing I/O operations, elapsed times for TABLE and MODIFY commands also drop.

 Accessing a FOCUS Data Source (MVS Only)

Developing Applications 6-9

Syntax How to Set MINIO
SET MINIO = {ON|OFF}

where:

ON

Does not read a block more than once; the number of reads performed will be the
same as the number of tracks present. This results in an overall reduction in elapsed
times when reading and writing. This value is the default.

OFF

Disables MINIO.

Using MINIO
MINIO reduces CPU time slightly while slightly raising memory utilization. MINIO
requires one track I/O buffer per referenced segment type. Between 40K and 48K of
above-the-line virtual memory is needed per referenced segment.

When MINIO is enabled, FOCUS decides for each command whether or not to employ it,
and which data sources to use it with. It is possible in executing a single command
referencing several data sources that MINIO might be used for some but not for others.
Data sources accessed via indexes, or physically disordered through online updates, are
not candidates for MINIO buffering. Physical disorganization, in this case, means that the
sequence of selected records jumps all over the data source, as opposed to progressing
steadily forward. When disorganization occurs, MINIO abandons its buffering techniques
and resorts to the standard I/O methodology.

When reading data sources, MINIO is used with TABLE, TABLEF, GRAPH, MATCH
and during the DUMP phase of the REBUILD command, provided the target data source
is not accessed via an index or is physically disorganized.

When writing to data sources, MINIO is used with MODIFY but never with
MAINTAIN, provided there is no CRTFORM or COMMIT subcommand. CRTFORMs
indicate online transaction processing, which requires that completed transactions be
written out to the data source. COMMITs are explicit orders to do so. These events are
incompatible with MINIO minimization logic and therefore rule out its use.

As with reads, using MINIO with MODIFY also requires that a data source be accessed
sequentially. Attempts to access an index, or update physically disorganized data sources
both cause MINIO to be disabled. In addition, frequent repositioning to previously
accessed records, even within well-organized data sources, will cause MINIO to be
disabled.

Enhancing Application Performance

6-10 Information Builders

Determining if a Previous Command Used MINIO
The ? STAT command is used to determine whether the previous data source access
command employed MINIO.

Syntax How to Determine if a Previous Command Used MINIO
? STAT

Example Determining if a Previous Command Used MINIO
Typing ? STAT generates a screen similar to the following:

 STATISTICS OF LAST COMMAND

RECORDS = 0 SEGS CHNGD = 0
LINES = 0 SEGS DELTD = 0
BASEIO = 87 NOMATCH = 0
TRACKIO = 16 DUPLICATES = 0
SORTIO = 0 FORMAT ERRORS = 0
SORT PAGES = 0 INVALID CONDTS = 0
READS = 1 OTHER REJECTS = 0
TRANSACTIONS = 1500 CACHE READS = 0
ACCEPTED = 1500 MERGES = 0
SEGS INPUT = 1500 SORT STRINGS = 0

INTERNAL MATRIX CREATED: YES AUTOINDEX USED: NO
SORT USED: FOCUS AUTOPATH USED: NO
MINIO USED: YES

In the preceding example MINIO USED is displayed as YES. It may also display NO or
DISABLED.

• YES means that MINIO buffering has taken place reducing the number of tracks
read/written to the FOCUS data source.

• NO, means that MINIO buffering has not taken place.

• DISABLED means that MINIO buffering was started but terminated as no
performance gains could be made. This does not mean that the command did not
complete successfully. It only indicates that MINIO buffering began and ended
during the read/write.

 Accessing a FOCUS Data Source (MVS Only)

Developing Applications 6-11

Reference Restrictions for Using MINIO
Note the following restrictions when you are using the MINIO command:

• When MINIO is used with MODIFY, all CHECK subcommands are ignored. If a
MODIFY command terminates abnormally, the condition of the data source is
unpredictable, and it should be restored from a backup copy and the update repeated.
Since MINIO is designed to minimize I/O during large data source loads and
updates, it has no checkpoint or restart facility. If this is unacceptable, set MINIO
off.

• MINIO is not used to access data sources through FOCUS Database Servers
(formerly called sink machines) or HLI programs.

• MINIO requires the presence of the TRACKIO feature. Meaning, TRACKIO must
be set to ON which is the default setting. If TRACKIO is set to OFF, then MINIO is
deactivated.

• MINIO buffering starts when the FOCUS data source exceeds 64 pages in size. If
this size is never reached, MINIO is never activated.

• If the file being modified UPDATEs, INCLUDEs, or DELETEs a field that is
indexed, MINIO is disabled. In other words, FIELDTYPE=I or INDEX=I is coded in
the Master File for this field.

• CRTFORM and COMMIT commands disable MINIO.

• MAINTAIN procedures will not use MINIO buffering techniques.

• MINIO is not enabled if the data source is physically disorganized by transaction
processing.

Developing Applications 7-1

CHAPTER 7

Working With Cross-Century Dates

Topics:
• When Do You Use the Sliding Window

Technique?

• The Sliding Window Technique

• Applying the Sliding Window
Technique

• Defining a Global Window With SET

• Defining a Dynamic Global Window
With SET

• Querying the Current Global Value
of DEFCENT and YRTHRESH

• Defining a File-Level or Field-Level
Window in a Master File

• Defining a Window for a Virtual Field

• Defining a Window for a Calculated
Value

• Additional Support for Cross-Century
Dates

Many existing business applications use two digits to designate
a year, instead of four digits. When they receive a value for a
year, such as 00, they typically interpret it as 1900, assuming
that the first two digits are 19, for the twentieth century. These
applications require a way to handle dates when the century
changes (for example, from the twentieth to the twenty-first), or
when they need to perform comparisons or arithmetic on dates
that span more than one century.

The cross-century date feature described in this topic enables the
correct interpretation of the century if it is not explicitly
provided, or is assumed to be the twentieth. The feature is
application-based, that is, it involves modifications to
procedures or metadata so that dates are accurately interpreted
and processed. The feature is called the sliding window
technique.

Working With Cross-Century Dates

7-2 Information Builders

When Do You Use the Sliding Window Technique?
If your application accesses dates that contain an explicit century, the century is accepted
as is. Your application can run correctly across centuries, and you do not need to use the
sliding window technique.

If your application accesses dates without explicit centuries, they assume the default
value 19. Your application will require remediation, such as the sliding window
technique, to ensure the correct interpretation of the century if the default is not valid, and
to run as expected in the next century.

This topic covers the use of the sliding window technique in reporting applications.
Details on when to use the sliding window technique are provided later in this topic. It
also includes reference information on the use of the technique with FOCUS MODIFY
requests. For additional information on implementing this technique with Maintain, see
your database maintenance documentation.

This topic does not cover remediation options such as date expansion, which requires that
data be changed in the data source to accommodate explicit century values. For a list of
Information Builders documentation on remediation, see your latest Technical
Publications Catalog.

The Sliding Window Technique
With the sliding window technique, you do not need to change stored data from a 2-digit
year format to a 4-digit year format in order to determine the century. Instead, you can
continue storing 2-digit years and expand them when your application accesses them.

The sliding window technique recognizes that the earliest and latest values for a single
date field in most business applications are within 100 years of one another. For example,
a human resources application typically contains a field for the birth date of each active
employee. The difference in the birth date (or age) of the oldest active employee and the
youngest active employee is not likely to be more than 100.

The technique is implemented as follows:

• You define the start of a 100-year sliding window by supplying two values: one for
the default century (DEFCENT) and one for the year threshold (YRTHRESH). For
example, a value of 19 for the century, combined with a value of 60 for the
threshold, creates a window that starts in 1960 and ends in 2059.

• The threshold provides a way to assign a value to the century of a 2-digit year:

• A year greater than or equal to the threshold assumes the value of the default
century (DEFCENT). Using the sample value 19 for the default century and 60
for the threshold, a 2-digit year of 70 is interpreted as 1970 (70 is greater than
60).

• A year less than the threshold assumes the value of the default century plus 1
(DEFCENT + 1). Using the same sample values (19 and 60), a 2-digit year of 50
is interpreted as 2050 (50 is less than 60), and a 2-digit year of 00 is interpreted
as 2000 (00 is also less than 60).

 The Sliding Window Technique

Developing Applications 7-3

The conversion rule for this example is illustrated as follows:

0 < YRTHRESH = 60 ≥ 99
 � �

 Century = DEFCENT + 1 (20) Century = DEFCENT (19)

Any 2-digit year is assumed to fall within the window. You must handle dates that
fall outside the defined window by coding.

Each file or each date field used in an application can have its own conversion rule,
which provides the flexibility required by most applications.

Defining a Sliding Window
You can define a sliding window in several ways, depending on the specific requirements
of your application:

• Globally. The SET DEFCENT and SET YRTHRESH commands define a window
on a global level.

• On a file level. The FDEFCENT and FYRTHRESH attributes in a Master File
define a window on a file level, allowing the correct interpretation of date fields from
multiple files that span different time periods.

• On a field level. The DEFCENT and YRTHRESH attributes in a Master File define
a window on a field level, allowing the correct interpretation of date fields, within a
single file, that span different time periods.

• For a virtual field. The DEFCENT and YRTHRESH parameters on a DEFINE
command, in either a request or a Master File, define a window for a virtual field.

• For a calculated value. The DEFCENT and YRTHRESH parameters on a
COMPUTE command define a window for a calculated value.

If you define more than one window using any of the preceding methods, the precedence
is as follows:

1. DEFCENT and YRTHRESH on a DEFINE or COMPUTE command.

2. DEFCENT and YRTHRESH field-level attributes in a Master File.

3. FDEFCENT and FYRTHRESH file-level attributes in a Master File.

4. SET DEFCENT and SET YRTHRESH on a global level; if you do not specify
values, the defaults are used (DEFCENT = 19, YRTHRESH = 0).

Working With Cross-Century Dates

7-4 Information Builders

Creating a Dynamic Window Based on the Current Year
An optional feature of the sliding window technique enables you to create a dynamic
window, defining the start of a 100-year span based on the current year. The start year
and threshold for the window automatically change at the beginning of each new year.

If an application requires that a window’s start year change when a new year begins, use
of this feature avoids the necessity of manually re-coding it.

To implement this feature, YRTHRESH or FYRTHRESH is offset from the current year,
or given a negative value.

For example, if the current year is 1999 and YRTHRESH is set to -38, a window from
1961 to 2060 is created. The start year 1961 is derived by subtracting 38 (the value of
YRTHRESH) from 1999 (the current year). To interpret dates that fall within this
window, the threshold 61 is used.

At the beginning of the year 2000, a new window from 1962 to 2061 is automatically
created; for dates that fall within this window, the threshold 62 is used. In the year 2001,
the window becomes 1963 to 2062, and the threshold is 63, and so on.

With each new year, the start year for the window is incremented by one.

When using this feature, do not code a value for DEFCENT or FDEFCENT, since the
feature is designed to automatically calculate the value for the default century. Be aware
of the following:

• If you do code a value for DEFCENT on the field level in a Master File, or for
FDEFCENT on the file level in a Master File, the feature will not work as intended.
The value for the century, which is automatically calculated by YRTHRESH by
design, will be reset to the value you code for DEFCENT or FDEFCENT.

• If you code a value for DEFCENT anywhere other than the field level in a Master
File (for example, on the global level), and YRTHRESH is negative, the coded value
will be ignored. The default century will be automatically calculated as designed.

 Applying the Sliding Window Technique

Developing Applications 7-5

Applying the Sliding Window Technique
To apply the sliding window technique correctly, you need to understand the difference
between a date format (formerly called a smart date) and a legacy date:

• A date format refers to an internally stored integer that represents the number of days
between a real date value and a base date (either December 31, 1900, for dates with
YMD or YYMD format; or January 1901, for dates with YM, YYM, YQ, or YYQ
format). A Master File does not specify a data type or length for a date format;
instead, it specifies display options such as D (day), M (month), Y (2-digit year), or
YY (4-digit year). For example, MDYY in the USAGE (also known as FORMAT)
attribute of a Master File is a date format. A real date value such as March 5, 1999,
displays as 03/05/1999, and is internally stored as the offset from December 31,
1900.

• A legacy date refers to an integer, packed decimal, double precision, floating point,
or alphanumeric format with date edit options, such as I6YMD, A6MDY, I8YYMD,
or A8MDYY. For example, A6MDY is a 6-byte alphanumeric string; the suffix
MDY indicates how Information Builders will return the data in the field. The
sample value 030599 displays as 03/05/99.

For details on date fields, see your documentation on describing data.

When to Supply Settings for DEFCENT and YRTHRESH
The rest of this topic refers simply to DEFCENT when either DEFCENT or FDEFCENT
applies, and to YRTHRESH when either YRTHRESH or FYRTHRESH applies.

Supply settings for DEFCENT and YRTHRESH in the following cases:

• When you issue a DEFINE or COMPUTE command to convert a legacy date
without century digits to a date format with century digits (for example, to convert
the format I6YMD to YYMD). With DEFINE and COMPUTE, DEFCENT and
YRTHRESH do not work directly on legacy dates; for example, you cannot use them
to convert the legacy date format I6YMD to the legacy date format I8YYMD.

• When a DEFINE command, COMPUTE command, or Dialogue Manager -SET
command calls a function or subroutine, supplied by Information Builders, that uses
legacy dates, and the input date does not contain century digits.

On input, the subroutine will use the window defined for an I6 legacy date field
(with edit options). The output format may be I8 (again, with edit options), which
includes a 4-digit year.

• When data is entered or changed in a date format field in a FOCUS data source, or
an SQL date is entered or changed in a Relational Database Management System
(RDBMS), and the input date does not contain century digits.

For example, you can use the sliding window technique in applications that use
FIXFORM or CRTFORM with MODIFY.

Working With Cross-Century Dates

7-6 Information Builders

• When a data source is read, and the ACTUAL attribute in the Master File is non-date
specific (for example, A6, I6, or P6), without century digits, and the FORMAT or
USAGE attribute specifies a date format. This case does not apply to FOCUS data
sources.

Follow these rules when implementing the sliding window technique:

• Specify values for both DEFCENT and YRTHRESH to ensure consistent coding and
accurate results, except when YRTHRESH has a negative value. In that case, specify
a value for YRTHRESH only; do not code a value for DEFCENT.

• Do not use DEFCENT and YRTHRESH with ON TABLE SET.

Finally, keep in mind that the sliding window technique does not change the way existing
data is stored. Rather, it accurately interprets data during application processing.

Reference Restrictions With MODIFY
The following results occur when you use the sliding window technique with a MODIFY
request or FOCCOMP procedure:

• A MODIFY request compiled prior to Version 7.0 Release 6, when run with global
SET DEFCENT and SET YRTHRESH settings, or with file-level or field-level
settings, yields a FOC1886 error message. You must recompile the MODIFY
request.

• A MODIFY request compiled in Version 7.0 Release 6, when run with global SET
DEFCENT and SET YRTHRESH settings, or with file-level or field-level settings,
yields a FOC1885 warning message.

• A FOCCOMP procedure, compiled with global SET DEFCENT and SET
YRTHRESH settings, and run in releases prior to Version 7.0 Release 6, yields a
FOC548 invalid version message. You must recompile the MODIFY request.

• A FOCCOMP procedure that contains DEFCENT/YRTHRESH or
FDEFCENT/FYRTHRESH attributes in the associated Master File, and run in
releases prior to Version 7.0 Release 6, yields a FOC306 description error message.

Date Validation
Date formats are validated on input. For example, 11/99/1999 is rejected as input to a
date field formatted as MDYY, because 99 is not a valid day. Information Builders
generates an error message.

Legacy dates are not validated. The date 11991999, described with the format A8MDYY,
is accepted, even though it, too, contains the invalid day 99.

 Defining a Global Window With SET

Developing Applications 7-7

Defining a Global Window With SET
The SET DEFCENT and SET YRTHRESH commands define a window on a global
level. The time span created by the SET commands applies to every 2-digit year used by
the application unless you specify file-level or field-level windows elsewhere.

For details on specifying parameters that govern the environment, see your
documentation on the SET command.

Syntax How to Define a Global Window With SET
To define a global window, issue two SET commands.

The first command is
SET DEFCENT = {cc|19}

where:
cc

Is the century for the start date of the window. If you do not supply a value, cc
defaults to 19, for the twentieth century.

The second command is
SET YRTHRESH = {[-]yy|0}

where:
yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of FDEFCENT for the century. Two-digit years less than the
threshold assume the value of FDEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and FDEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

Working With Cross-Century Dates

7-8 Information Builders

Example Defining a Global Window With SET
In the following request, the SET command defines a global window from 1983 to 2082.

As SET syntax allows, the command is entered on one line, with the parameters separated
by a comma. You do not need to repeat the keyword SET for YRTHRESH.

The DEFINE command converts the legacy date EFFECT_DATE into the date format
NEW_DATE. It creates NEW_DATE as a virtual field, derived from the existing field
EFFECT_DATE. The format of EFFECT_DATE is I6YMD, which is a 2-digit year.
NEW_DATE is formatted as YYMD, which is a 4-digit year. For details on DEFINE, see
your documentation on creating reports.

The request is:
SET DEFCENT = 19, YRTHRESH = 83

DEFINE FILE EMPLOYEE
NEW_DATE/YYMD = EFFECT_DATE;
END

TABLE FILE EMPLOYEE
PRINT EFFECT_DATE NEW_DATE BY EMP_ID
END

In the report, the value of the 2-digit year 82 is less than the threshold 83, so it assumes
the value 20 for the century (DEFCENT + 1) and is returned as 2082 in the NEW_DATE
column. The other year values (83 and 84) are greater than or equal to the threshold 83,
so their century defaults to the value 19 (DEFCENT); they are returned as 1983 and 1984
under NEW_DATE.

The output is:
PAGE 1

EMP_ID EFFECT_DATE NEW_DATE
------ ----------- --------
071382660
112847612
117593129 82/11/01 2082/11/01
119265415
119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188
219984371
326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/09/01
543729165
818692173 83/05/01 1983/05/01

 Defining a Global Window With SET

Developing Applications 7-9

In the example, missing date values appear as blanks by default. To retrieve the base date
value for the NEW_DATE field instead of blanks, issue the command
SET DATEDISPLAY = ON

before running the request. The base date value for NEW_DATE, which is formatted as
YYMD, is returned as 1900/12/31:
PAGE 1

EMP_ID EFFECT_DATE NEW_DATE
------ ----------- --------
071382660 1900/12/31
112847612 1900/12/31
117593129 82/11/01 2082/11/01
119265415 1900/12/31
119329144 83/01/01 1983/01/01
123764317 83/03/01 1983/03/01
126724188 1900/12/31
219984371 1900/12/31
326179357 82/12/01 2082/12/01
451123478 84/09/01 1984/09/01
543729165 1900/12/31
818692173 83/05/01 1983/05/01

If NEW_DATE had a YYM format, the base date would appear as 1901/01. If it had a
YYQ format, it would appear as 1901 Q1.

If the value of NEW_DATE is 0 and SET DATEDISPLAY = OFF (the default), blanks
are displayed. With SET DATEDISPLAY = ON, the base date is displayed instead of
blanks. Zero (0) is treated as an offset from the base date, which results in the base date.

For details on SET DATEDISPLAY, see your documentation on the SET command.

Working With Cross-Century Dates

7-10 Information Builders

Defining a Dynamic Global Window With SET
This topic illustrates the creation of a dynamic window using the global command SET
YRTHRESH. You can also implement this feature on the file and field level, and on a
DEFINE or COMPUTE.

With this option of the sliding window technique, the start year and threshold for the
window automatically change at the beginning of each new year. The default century
(DEFCENT) is automatically calculated.

You can use SET TESTDATE to alter the system date when testing a dynamic window
(that is, when YRTHRESH has a negative value). However, when testing a dynamic
window defined in a Master File, you must issue a CHECK FILE command each time
you issue a SET TESTDATE command. CHECK FILE reloads the Master File into
memory and ensures the correct recalculation of the start date of the dynamic window.
For details on SET TESTDATE, see your documentation on the SET command. For
details on CHECK FILE, see your documentation on describing data.

Example Defining a Dynamic Global Window With SET
In the following request, the COMPUTE command calls the subroutine AYMD, supplied
by Information Builders. AYMD adds one day to the input field, HIRE_DATE; the
output field, HIRE_DATE_PLUS_ONE, contains the result. HIRE_DATE is formatted
as I6YMD, which is a legacy date with a 2-digit year. HIRE_DATE_PLUS_ONE is
formatted as I8YYMD, which is a legacy date with a 4-digit year.

The subroutine uses the YRTHRESH value set at the beginning of the request to create a
dynamic window for the input field HIRE_DATE. The start date of the window is
incremented by one at the beginning of each new year. Notice that DEFCENT is not
coded, since the default century is automatically calculated whenever YRTHRESH has a
negative value.

The subroutine inputs a 2-digit year, which is windowed. It then outputs a 4-digit year
that includes the century digits.

Sample values are shown in the reports for 1999, 2000, and 2018, which follow the
request.

For details on AYMD, see your documentation on creating reports.

The request is:
SET YRTHRESH = -18

TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
 HIRE_DATE_PLUS_ONE/I8YYMD = AYMD(HIRE_DATE, 1, HIRE_DATE_PLUS_ONE);
END

In 1999, the window spans the years 1981 to 2080. The threshold is 81 (1999 - 18). In the
report, the 2-digit year 80 is less than the threshold 81, so it assumes the value 20 for the
century (DEFCENT + 1), and is returned as 2080 in the HIRE_DATE_PLUS_ONE
column. The other year values (81 and 82) are greater than or equal to the threshold 81,
so their century defaults to the value of DEFCENT (19); they are returned as 1981 and
1982.

 Defining a Dynamic Global Window With SET

Developing Applications 7-11

The output is:
PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
 80/06/02 2080/06/03
 81/07/01 1981/07/02
 82/05/01 1982/05/02
 82/01/04 1982/01/05
 82/08/01 1982/08/02
 82/01/04 1982/01/05
 82/07/01 1982/07/02
 81/07/01 1981/07/02
 82/04/01 1982/04/02
 82/02/02 1982/02/03
 82/04/01 1982/04/02
 81/11/02 1981/11/03

In 2000, the window spans the years 1982 to 2081. The threshold is 82 (2000 - 18). In the
report, the 2-digit years 80 and 81 are less than the threshold; for the century, they
assume the value 20 (DEFCENT + 1). The 2-digit year 82 is equal to the threshold; for
the century, it defaults to the value 19 (DEFCENT).

The output is:
PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
 80/06/02 2080/06/03
 81/07/01 2081/07/02
 82/05/01 1982/05/02
 82/01/04 1982/01/05
 82/08/01 1982/08/02
 82/01/04 1982/01/05
 82/07/01 1982/07/02
 81/07/01 2081/07/02
 82/04/01 1982/04/02
 82/02/02 1982/02/03
 82/04/01 1982/04/02
 81/11/02 2081/11/03

Running the report in 2018 illustrates the automatic recalculation of DEFCENT from 19
to 20. In 2018, the window spans the years 2000 to 2099. The threshold is 0 (2018 - 18).
A 2-digit year greater than or equal to 0 defaults to the recalculated value 20
(DEFCENT).

Since all the values for the HIRE_DATE year are greater than 0, their century defaults to
20.

Working With Cross-Century Dates

7-12 Information Builders

The output is:
PAGE 1

HIRE_DATE HIRE_DATE_PLUS_ONE
--------- ------------------
 80/06/02 2080/06/03
 81/07/01 2081/07/02
 82/05/01 2082/05/02
 82/01/04 2082/01/05
 82/08/01 2082/08/02
 82/01/04 2082/01/05
 82/07/01 2082/07/02
 81/07/01 2081/07/02
 82/04/01 2082/04/02
 82/02/02 2082/02/03
 82/04/01 2082/04/02
 81/11/02 2081/11/03

Querying the Current Global Value of DEFCENT and
YRTHRESH

You can query the current global value of DEFCENT and YRTHRESH.

Syntax How to Query the Current Global Value of DEFCENT and
YRTHRESH
? SET [ALL]

where:
ALL

Returns values for every possible environment setting. Excluding it generates a
shorter list of the most common settings.

Example Querying the Current Global Value of DEFCENT and YRTHRESH
Enter
? SET

to query the current global value of DEFCENT and YRTHRESH.

 Defining a File-Level or Field-Level Window in a Master File

Developing Applications 7-13

The following is a response to the query:
 PARAMETER SETTINGS

ALL OFF HDAY . PRINT ONLINE
.
.
.
DEFCENT 20 PAGE-NUM ON TRACKIO ON
.
.
.
FOCSTACK SIZE 8 PREFIX . YRTHRESH 0

Defining a File-Level or Field-Level Window in a
Master File

In this implementation of the sliding window technique, you change the metadata used by
an application. Two pairs of Master File attributes enable you to define a window on a
file or field level:

• The FDEFCENT and FYRTHRESH attributes define a window on a file level. They
enable the correct interpretation of legacy date fields from multiple files that span
different time periods.

A file-level window takes precedence over a global window for the dates associated
with that file.

• The DEFCENT and YRTHRESH attributes define a window on a field level,
enabling the correct interpretation of legacy date fields, within a single file, that span
different time periods. Each legacy date field in a file can have its own window. For
example, in an insurance application, the range of dates for date of birth may be from
1910 to 2009, and the range of dates for expected death may be from 1990 to 2089.

A field-level window takes precedence over a file-level or global window for the
dates associated with that field.

For details on Master Files, see your documentation on describing data.

Working With Cross-Century Dates

7-14 Information Builders

Syntax How to Define a File-Level Window in a Master File
To define a window that applies to all legacy date fields in a file, add the FDEFCENT
and FYRTHRESH attributes to the Master File on the file declaration.

The syntax for the first attribute is
{FDEFCENT|FDFC} = {cc|19}

where:
cc

Is the century for the start date of the window. If you do not supply a value, cc
defaults to 19, for the twentieth century.

The syntax for the second attribute is
{FYRTHRESH|FYRT} = {[-]yy|0}

where:
yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

Example Defining a File-Level Window in a Master File
Tip:
Use the abbreviated forms of FDEFCENT/FYRTHRESH or DEFCENT/YRTHRESH to
reduce keystrokes. The examples in this topic use the abbreviated forms where available
(for instance, FDFC instead of FDEFCENT). Maintain supports only the abbreviated forms
in certain command syntax (for example, on a COMPUTE or DECLARE command). For
details, see your database maintenance documentation.

In the following example, the FDEFCENT and FYRTHRESH attributes define a window
from 1982 to 2081. The window is applied to all legacy date fields in the file, including
HIRE_DATE, DAT_INC, and others, if they are converted to a date format.

 Defining a File-Level or Field-Level Window in a Master File

Developing Applications 7-15

The Master File is:
FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=82
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
.
.
.
 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
.
.
.

The DEFINE command in the following request creates two virtual fields named
NEW_HIRE_DATE, which is derived from the existing field HIRE_DATE; and
NEW_DAT_INC, which is derived from DAT_INC. The format of HIRE_DATE and
DAT_INC is I6YMD, which is a legacy date with a 2-digit year. NEW_HIRE_DATE
and NEW_DAT_INC are date formats with 4-digit years (YYMD). For details on
DEFINE, see your documentation on creating reports.
DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
END

The window created in the Master File applies to both legacy date fields. In the report,
the year 82 (which is equal to the threshold), for both HIRE_DATE and DAT_INC,
defaults to the century value 19 and is returned as 1982 in the NEW_HIRE_DATE and
NEW_DAT_INC columns. The year 81, for both HIRE_DATE and DAT_INC, is less
than the threshold 82 and assumes the century value 20 (FDEFCENT + 1).

The partial output is:
PAGE 1

HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
--------- ------------- ------- -----------
 80/06/02 2080/06/02 82/01/01 1982/01/01
 80/06/02 2080/06/02 81/01/01 2081/01/01
 81/07/01 2081/07/01 82/01/01 1982/01/01
 82/05/01 1982/05/01 82/06/01 1982/06/01
 82/05/01 1982/05/01 82/05/01 1982/05/01
.
.
.

Working With Cross-Century Dates

7-16 Information Builders

Syntax How to Define a Field-Level Window in a Master File
To define a window that applies to a specific legacy date field, add the DEFCENT and
YRTHRESH attributes to the Master File on the field declaration.

The syntax for the first attribute is
{DEFCENT|DFC} = {cc|19}

where:
cc

Is the century for the start date of the window. If you do not supply a value, cc
defaults to 19, for the twentieth century.

The syntax for the second attribute is
{YRTHRESH|YRT} = {[-]yy|0}

where:
yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

Example Defining a Field-Level Window in a Master File
In this example, the application requires a different window for two legacy date fields in
the same file.

The DEFCENT and YRTHRESH attributes in the Master File define a window for
HIRE_DATE from 1982 to 2081, and a window for DAT_INC from 1983 to 2082.

The Master File is:
FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $
.
.
.
 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, DFC=19, YRT=83, $
.
.
.

 Defining a File-Level or Field-Level Window in a Master File

Developing Applications 7-17

The request is the same one used in the previous example (defining a file-level window in
a Master File):
DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
END

However, the report illustrates the use of two different windows for the two legacy date
fields. For example, the year 82 for HIRE_DATE defaults to the century value 19, since
82 is equal to the threshold for the window for this field. The date returned for
NEW_HIRE_DATE is 1982.

The year 82 for DAT_INC assumes the century value 20 (DEFCENT + 1), since 82 is
less than the threshold for the window for this field (83). The date returned for
NEW_DAT_INC is 2082.

The partial output is:
PAGE 1

HIRE_DATE NEW_HIRE_DATE DAT_INC NEW_DAT_INC
--------- ------------- ------- -----------
 80/06/02 2080/06/02 82/01/01 2082/01/01
 80/06/02 2080/06/02 81/01/01 2081/01/01
 81/07/01 2081/07/01 82/01/01 2082/01/01
 82/05/01 1982/05/01 82/06/01 2082/06/01
 82/05/01 1982/05/01 82/05/01 2082/05/01
.
.

Example Defining a Field-Level Window in a Master File Used With
MODIFY
This example illustrates the use of field-level DEFCENT and YRTHRESH attributes to
define a window used with MODIFY. To run this example yourself, you need to create a
Master File named DATE and a procedure named DATELOAD.

The Master File describes a segment with 12 date fields of different formats. The first
field is a date format field. The DEFCENT and YRTHRESH attributes included on this
field create a window from 1990 to 2089. The window is required because the input data
for the first date field does not contain century digits, and the default value 19 cannot be
assumed.

Working With Cross-Century Dates

7-18 Information Builders

The Master File looks like this:
FILENAME=DATE, SUFFIX=FOC
 SEGNAME=ONE, SEGTYPE=S1
 FIELDNAME=D1_YYMD, ALIAS=D1, FORMAT=YYMD, DFC=19, YRT=90, $
 FIELDNAME=D2_I6YMD, ALIAS=D2, FORMAT=I6YMD, $
 FIELDNAME=D3_I8YYMD, ALIAS=D3, FORMAT=I8, $
 FIELDNAME=D4_A6YMD, ALIAS=D4, FORMAT=A6YMD, $
 FIELDNAME=D5_A8YYMD, ALIAS=D5, FORMAT=A8YYMD, $
 FIELDNAME=D6_I4YM, ALIAS=D6, FORMAT=I4YM, $
 FIELDNAME=D7_YQ, ALIAS=D7, FORMAT=YQ, $
 FIELDNAME=D8_YM, ALIAS=D8, FORMAT=YM, $
 FIELDNAME=D9_JUL, ALIAS=D9, FORMAT=JUL, $
 FIELDNAME=D10_Y, ALIAS=D10, FORMAT=Y, $
 FIELDNAME=D11_YY, ALIAS=D11, FORMAT=YY, $
 FIELDNAME=D12_MDYY, ALIAS=D12, FORMAT=MDYY, $

The procedure (DATELOAD) creates a FOCUS data source named DATE and loads two
records into it. The first field of the first record contains the 2-digit year 92. The first field
of the second record contains the 2-digit year 88. For details on commands such as
CREATE and MODIFY, and others used in this file, see your database maintenance
documentation.

The procedure looks like this:
CREATE FILE DATE
MODIFY FILE DATE
FIXFORM D1/8 D2/6 D3/8 D4/6 D5/8 D6/4 D7/4 D8/4 D9/5 D10/2 D11/4 D12/8
MATCH D1
 ON NOMATCH INCLUDE
 ON MATCH REJECT
DATA
 92022900022920000229000229200002290002000100020006000200002292000
 88022900022920000229000229200002290002000100020006000200002292000
END

The following request accesses all the fields in the new data source:
TABLE FILE DATE
PRINT *
END

In the report, the year 92 for D1_YYMD defaults to the century value 19, since 92 is
greater than the threshold for the window for this field (90). It is returned as 1992 in the
D1_YYMD column. The year 88 assumes the century value 20 (DEFCENT + 1), because
88 is less than the threshold. It is returned as 2088 in the D1_YYMD column.

The partial output is:
PAGE 1

D1_YYMD D2_I6YMD D3_I8YYMD D4_A6YMD D5_A8YYMD D6_I4YM D7_YQ D8_YM ...
------- -------- --------- -------- --------- ------- ----- -----
1992/02/29 00/02/29 20000229 00/02/29 2000/02/29 00/02 00 Q1 00/02 ...

2088/02/29 00/02/29 20000229 00/02/29 2000/02/29 00/02 00 Q1 00/02 ...

 Defining a File-Level or Field-Level Window in a Master File

Developing Applications 7-19

Example Defining Both File-Level and Field-Level Windows
The following Master File defines windows at both the file and field level:
FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=83
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $
.
.
.
 FIELDNAME=EFFECT_DATE, ALIAS=EDATE, FORMAT=I6YMD, $
.
.
.

 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
.
.
.

The request is:
DEFINE FILE EMPLOYEE
NEW_HIRE_DATE/YYMD = HIRE_DATE;
NEW_EFFECT_DATE/YYMD = EFFECT_DATE;
NEW_DAT_INC/YYMD = DAT_INC;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE EFFECT_DATE NEW_EFFECT_DATE DAT_INC
NEW_DAT_INC
END

When the field HIRE_DATE is accessed, the time span 1982 to 2081 is applied. For all
other legacy date fields in the file, such as EFFECT_DATE and DAT_INC, the time span
specified at the file level is applied, that is, 1983 to 2082.

For example, the year 82 for HIRE_DATE is returned as 1982 in the NEW_HIRE_DATE
column, since 82 is equal to the threshold of the window for that particular field. The year
82 for EFFECT_DATE and DAT_INC is returned as 2082 in the columns
NEW_EFFECT_DATE and NEW_DAT_INC, since 82 is less than the threshold of the
file-level window (83).

Working With Cross-Century Dates

7-20 Information Builders

The partial output is:
PAGE 1

HIRE_DATE NEW_HIRE_DATE EFFECT_DATE NEW_EFFECT_DATE DAT_INC NEW_DAT_INC
--------- ------------- ----------- --------------- ------- ----------
 80/06/02 2080/06/02 82/01/01 2082/01/01

 80/06/02 2080/06/02 81/01/01 2081/01/01
 81/07/01 2081/07/01 82/01/01 2082/01/01
 82/05/01 1982/05/01 82/11/01 2082/11/01 82/06/01 2082/06/01

 82/05/01 1982/05/01 82/11/01 2082/11/01 82/05/01 2082/05/01
.

Missing date values for NEW_EFFECT_DATE appear as blanks by default. To retrieve
the base date value for NEW_EFFECT_DATE instead of blanks, issue the command
SET DATEDISPLAY = ON

before running the request. The base date value is returned as 1900/12/31. See the last
example in Defining a Global Window With SET on page 7-8 for sample results.

Defining a Window for a Virtual Field
The DEFCENT and YRTHRESH parameters on a DEFINE command create a window
for a virtual field. The window is used to interpret date values for the virtual field when
the century is not supplied. You can issue a DEFINE command in either a request or a
Master File.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; their values are always taken from the left side of the DEFINE syntax (that
is, from the left side of the equal sign). If the expression in the DEFINE contains a
subroutine call, the subroutine uses the DEFCENT and YRTHRESH values for the input
field. The standard order of precedence (field level/file level/global level) applies to the
DEFCENT and YRTHRESH values for the input field.

Syntax How to Define a Window for a Virtual Field in a Request
Use standard DEFINE syntax for a request, as described in your documentation on
creating reports. Partial DEFINE syntax is shown here.

On the line that specifies the name of the virtual field, include the DEFCENT and
YRTHRESH parameters and values. The parameters must immediately follow the field
format information.
DEFINE FILE filename
 fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}] =
 expression;
.
.
.
END

 Defining a Window for a Virtual Field

Developing Applications 7-21

where:
filename

Is the name of the file for which you are creating the virtual field.
fieldname

Is the name of the virtual field.
format

Is a date format such as DMY or YYMD.
DEFCENT

Is the parameter for the default century.
cc

Is the century for the start date of the window. If you do not supply a value, cc
defaults to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code a value for
YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expression

Is a valid arithmetic or logical expression, function, or subroutine that determines the
value of the virtual field.

END

Is required to terminate the DEFINE command.

Working With Cross-Century Dates

7-22 Information Builders

Example Defining a Window for a Virtual Field in a Request
In the following request, the DEFINE command creates two virtual fields,
GLOBAL_HIRE_DATE and WINDOWED_HIRE_DATE. Both virtual fields are
derived from the existing field HIRE_DATE. The format of HIRE_DATE is I6YMD,
which is a legacy date with a 2-digit year. The virtual fields are date formats with a
4-digit year (YYMD).

The second virtual field, WINDOWED_HIRE_DATE, has the additional parameters
DEFCENT and YRTHRESH, which define a window from 1982 to 2081. Notice that
both DEFCENT and YRTHRESH are coded, as required.

The request is:
DEFINE FILE EMPLOYEE
GLOBAL_HIRE_DATE/YYMD = HIRE_DATE;
WINDOWED_HIRE_DATE/YYMD DFC 19 YRT 82 = HIRE_DATE;
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE GLOBAL_HIRE_DATE WINDOWED_HIRE_DATE
END

Assuming that there are no FDEFCENT and FYRTHRESH file-level settings in the
Master File for EMPLOYEE, the global default settings (DEFCENT = 19, YRTHRESH
= 0) are used to interpret 2-digit years for HIRE_DATE when deriving the value of
GLOBAL_HIRE_DATE. For example, the value of all years for HIRE_DATE (80, 81,
and 82) is greater than 0; consequently they default to 19 for the century and are returned
as 1980, 1981, and 1982 in the GLOBAL_HIRE_DATE column.

For WINDOWED_HIRE_DATE, the window created specifically for that field (1982 to
2081) is used. The 2-digit years 80 and 81 for HIRE_DATE are less than the threshold
for the window (82); consequently, they are returned as 2080 and 2081 in the
WINDOWED_HIRE_DATE column.

The output is:
PAGE 1

HIRE_DATE GLOBAL_HIRE_DATE WINDOWED_HIRE_DATE
--------- ---------------- ------------------
 80/06/02 1980/06/02 2080/06/02
 81/07/01 1981/07/01 2081/07/01
 82/05/01 1982/05/01 1982/05/01
 82/01/04 1982/01/04 1982/01/04
 82/08/01 1982/08/01 1982/08/01
 82/01/04 1982/01/04 1982/01/04
 82/07/01 1982/07/01 1982/07/01
 81/07/01 1981/07/01 2081/07/01
 82/04/01 1982/04/01 1982/04/01
 82/02/02 1982/02/02 1982/02/02
 82/04/01 1982/04/01 1982/04/01
 81/11/02 1981/11/02 2081/11/02

 Defining a Window for a Virtual Field

Developing Applications 7-23

Example Defining a Window for Subroutine Input in a DEFINE Command
The following sample request illustrates a call to the subroutine AYMD in a DEFINE
command. AYMD adds 60 days to the input field, HIRE_DATE; the output field,
SIXTY_DAYS, contains the result. HIRE_DATE is formatted as I6YMD, which is a
legacy date with a 2-digit year. SIXTY_DAYS is formatted as I8YYMD, which is a
legacy date with a 4-digit year.

For details on AYMD, see your documentation on creating reports.
DEFINE FILE EMPLOYEE
SIXTY_DAYS/I8YYMD = AYMD(HIRE_DATE, 60, 'I8YYMD');
END

TABLE FILE EMPLOYEE
PRINT HIRE_DATE SIXTY_DAYS
END

The subroutine uses the DEFCENT and YRTHRESH values for the input field
HIRE_DATE. In this example, they are set on the field level in the Master File:
FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, DFC=19, YRT=82, $
.
.
.

The subroutine inputs a 2-digit year, which is windowed. It then outputs a 4-digit year
that includes the century digits.

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the
century.

The output is:
PAGE 1

HIRE_DATE SIXTY_DAYS
--------- ----------
 80/06/02 2080/08/01
 81/07/01 2081/08/30
 82/05/01 1982/06/30
 82/01/04 1982/03/05
 82/08/01 1982/09/30
 82/01/04 1982/03/05
 82/07/01 1982/08/30
 81/07/01 2081/08/30
 82/04/01 1982/05/31
 82/02/02 1982/04/03
 82/04/01 1982/05/31
 81/11/02 2082/01/01

Working With Cross-Century Dates

7-24 Information Builders

Syntax How to Define a Window for a Virtual Field in a Master File
Use standard DEFINE syntax for a Master File, as discussed in your documentation on
describing data. Partial DEFINE syntax is shown here.

The parameters DEFCENT and YRTHRESH must immediately follow the field format
information.
DEFINE fieldname/[format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}]
=
 expression;$

where:
fieldname

Is the name of the virtual field.
format

Is a date format such as DMY or YYMD.
DEFCENT

Is the parameter for the default century.
cc

Is the century for the start date of the window. If you do not supply a value, cc
defaults to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code a value for
YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expression

Is a valid arithmetic or logical expression, function, or subroutine that determines the
value of the virtual field.

 Defining a Window for a Virtual Field

Developing Applications 7-25

Example Defining a Window for a Virtual Field in a Master File
In the following example, the DEFINE command in a Master File creates a virtual field
named NEW_HIRE_DATE. It is derived from the existing field HIRE_DATE. The
format of HIRE_DATE is I6YMD, which is a legacy date with a 2-digit year.
NEW_HIRE_DATE is a date format with a 4-digit year (YYMD).

The parameters DEFCENT and YRTHRESH on the DEFINE command create a window
from 1982 to 2081, which is used to interpret all 2-digit years for the virtual field. Notice
that both DEFCENT and YRTHRESH are coded, as required.

The field-level window takes precedence over any global settings in effect. There is no
file-level setting in the Master File.

The Master File is:
FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
.
.
.
DEFINE NEW_HIRE_DATE/YYMD DFC 19 YRT 82 = HIRE_DATE;$

The following request generates the values in the sample report:
TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE
END

Since the 2-digit years 80 and 81 are less than the threshold 82, their century assumes the
value of DEFCENT + 1 (20), and they are returned as 2080 and 2081 in the
NEW_HIRE_DATE column. The 2-digit year 82 is equal to the threshold and therefore
defaults to the value of DEFCENT (19). It is returned as 1982.

The output is:
PAGE 1

HIRE_DATE NEW_HIRE_DATE
--------- -------------
 80/06/02 2080/06/02
 81/07/01 2081/07/01
 82/05/01 1982/05/01
 82/01/04 1982/01/04
 82/08/01 1982/08/01
 82/01/04 1982/01/04
 82/07/01 1982/07/01
 81/07/01 2081/07/01
 82/04/01 1982/04/01
 82/02/02 1982/02/02
 82/04/01 1982/04/01
 81/11/02 2081/11/02

Working With Cross-Century Dates

7-26 Information Builders

Defining a Window for a Calculated Value
Use the DEFCENT and YRTHRESH parameters on a COMPUTE command in a report
request to create a window for a temporary field that is calculated from the result of a
PRINT, LIST, SUM, or COUNT command. The window is used to interpret a date value
for that field when the century is not supplied.

You can also use the parameters on a COMPUTE command in a MODIFY or Maintain
procedure, or on a DECLARE command in Maintain. For details on the use of the
parameters in Maintain, see your database maintenance documentation.

The DEFCENT and YRTHRESH parameters must immediately follow the field format
specification; their values are always taken from the left side of the COMPUTE syntax
(that is, from the left side of the equal sign). If the expression in the COMPUTE contains
a subroutine call, the subroutine uses the DEFCENT and YRTHRESH values for the
input field. The standard order of precedence (field level/file level/global level) applies to
the DEFCENT and YRTHRESH values for the input field.

Syntax How to Define a Window for a Calculated Value in a Report
Use standard COMPUTE syntax, as described in your documentation on creating reports.
Partial COMPUTE syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and
YRTHRESH parameters and values. The parameters must immediately follow the field
format information.
TABLE FILE filename
command
[AND] COMPUTE
 fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}] =
 expression;
.
.
.
END

where:
filename

Is the name of the file for which you are creating the calculated value.
command

Is a command such as PRINT, LIST, SUM, or COUNT.
fieldname

Is the name of the calculated value.
format

Is a date format such as DMY or YYMD.
DEFCENT

Is the parameter for the default century.

 Defining a Window for a Calculated Value

Developing Applications 7-27

cc

Is the century for the start date of the window. If you do not supply a value, cc
defaults to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code a value for
YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expression

Is a valid arithmetic or logical expression, function, or subroutine that determines the
value of the temporary field.

END

Is required to terminate the request.

Syntax How to Define a Window for a Calculated Value in a MODIFY
Request
Use standard MODIFY and COMPUTE syntax, as described in your database
maintenance documentation; partial syntax is shown here.

On the line that specifies the name of the calculated value, include the DEFCENT and
YRTHRESH parameters and values. The parameters must immediately follow the field
format information.
MODIFY FILE filename
.
.
.
COMPUTE
 fieldname[/format] [{DEFCENT|DFC} {cc|19} {YRTHRESH|YRT} {[-]yy|0}] =
 expression;
.
.
.
[END]

Working With Cross-Century Dates

7-28 Information Builders

where:
filename

Is the name of the file you are modifying.
fieldname

Is the name of the field being set to the value of expression.
format

Is a date format such as MDY or YYMD.
DEFCENT

Is the parameter for the default century.
cc

Is the century for the start date of the window. If you do not supply a value, cc
defaults to 19, for the twentieth century.

YRTHRESH

Is the parameter for the year threshold. You must code values for both DEFCENT
and YRTHRESH unless YRTHRESH is negative. In that case, only code a value for
YRTHRESH.

yy

Is the year threshold for the window. If you do not supply a value, yy defaults to zero
(0).

If yy is a positive number, two-digit years greater than or equal to the threshold
default to the value of DEFCENT for the century. Two-digit years less than the
threshold assume the value of DEFCENT + 1.

If yy is a negative number (-yy), the start date of the window is derived by
subtracting that number from the current year, and DEFCENT is automatically
calculated. The start date is automatically incremented by one at the beginning of
each successive year.

expression

Is a valid arithmetic or logical expression, function, or subroutine that determines the
value of fieldname.

END

Terminates the request. Do not add this command if the request contains PROMPT
statements.

 Defining a Window for a Calculated Value

Developing Applications 7-29

Example Defining a Window for a Calculated Value
In the following request, the parameters DEFCENT and YRTHRESH on the COMPUTE
command define a window from 1999 to 2098. Notice that both DEFCENT and
YRTHRESH are coded, as required. The window is applied to the field created by the
COMPUTE command, LATEST_DAT_INC.

DAT_INC is formatted as I6YMD, which is a legacy date with a 2-digit year.
LATEST_DAT_INC is a date format with a 4-digit year (YYMD). The prefix MAX
retrieves the highest value of DAT_INC.

The request is:
TABLE FILE EMPLOYEE
SUM SALARY AND COMPUTE
 LATEST_DAT_INC/YYMD DFC 19 YRT 99 = MAX.DAT_INC;
END

The highest value of DAT_INC is 82/08/01. Since the year 82 is less than the threshold
99, it assumes the value 20 for the century (DEFCENT + 1).

The output is:
PAGE 1

 SALARY LATEST_DAT_INC
 ------ --------------
 $332,929.00 2082/08/01

Example Defining a Window for Subroutine Input in a COMPUTE
Command
The following sample request illustrates a call to the subroutine JULDAT in a
COMPUTE command. JULDAT converts dates from Gregorian format (year/month/day)
to Julian format (year/day). For century display, dates in Julian format are 7-digit
numbers. The first 4 digits are the century. The last three digits represent the number of
days, counting from January 1.

For details on JULDAT, see your documentation on creating reports.

In the request, the input field is HIRE_DATE. The subroutine converts it to Julian format
and returns it as JULIAN_DATE. HIRE_DATE is formatted as I6YMD, which is a
legacy date with a 2-digit year. JULIAN_DATE is formatted as I7, which is a legacy date
with a 4-digit year.
TABLE FILE EMPLOYEE
PRINT DEPARTMENT HIRE_DATE
AND COMPUTE
 JULIAN_DATE/I7 = JULDAT(HIRE_DATE, JULIAN_DATE);
BY LAST_NAME BY FIRST_NAME
END

Working With Cross-Century Dates

7-30 Information Builders

The subroutine uses the FDEFCENT and FYRTHRESH values for the input field
HIRE_DATE. In this example, they are set on the file level in the Master File:
FILENAME=EMPLOYEE, SUFFIX=FOC, FDFC=19, FYRT=82
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
.
.
.

The subroutine inputs a 2-digit year, which is windowed. It then outputs a 4-digit year
that includes the century digits.

The input values 80 and 81 are less than the threshold 82, so they assume the value 20 for
the century. The input value 82 is equal to the threshold, so it defaults to 19 for the
century.

The output follows. By default, the second occurrence of the last name SMITH displays
as blanks.
PAGE 1

LAST_NAME FIRST_NAME DEPARTMENT HIRE_DATE JULIAN_DATE
--------- ---------- ---------- --------- -----------
BANNING JOHN PRODUCTION 82/08/01 1982213
BLACKWOOD ROSEMARIE MIS 82/04/01 1982091
CROSS BARBARA MIS 81/11/02 2081306
GREENSPAN MARY MIS 82/04/01 1982091
IRVING JOAN PRODUCTION 82/01/04 1982004
JONES DIANE MIS 82/05/01 1982121
MCCOY JOHN MIS 81/07/01 2081182
MCKNIGHT ROGER PRODUCTION 82/02/02 1982033
ROMANS ANTHONY PRODUCTION 82/07/01 1982182
SMITH MARY MIS 81/07/01 2081182
 RICHARD PRODUCTION 82/01/04 1982004
STEVENS ALFRED PRODUCTION 80/06/02 2080154

 Additional Support for Cross-Century Dates

Developing Applications 7-31

Additional Support for Cross-Century Dates
The following features apply to the use of dates in your applications.

Default Date Display Format
The default date display format is MM/DD/CCYY, where MM is the month; DD is the
day of the month; CC is the first two digits of a 4-digit year, indicating the century; and
YY is the last two digits of a 4-digit year.

For example:
02/11/1999

For a table that fully describes the display of a date based on the specified format and
user input, see the Describing Data manual.

Date Display Options
The following date display options are available:

• You can display a row of data, even though it contains an invalid date field, using the
command SET ALLOWCVTERR. The invalid date field is returned as the base date
or as blanks, depending on other settings. For details, see your documentation on the
SET command. This feature applies to non-FOCUS data sources when converting
from the way data is stored (ACTUAL attribute) to the way it is formatted
(FORMAT or USAGE attribute).

• If a date format field contains the value zero (0), you can display its base date, using
the command SET DATEDISPLAY = ON. By default, the value zero in a date
format field such as YYMD is returned as a blank. For details, see your
documentation on the SET command.

• You can display the current date with a 4-digit year using the Dialogue Manager
system variables &YYMD, &MDYY, and &DMYY. The system variable
&DATEfmt displays the current date as specified by the value of fmt, which is a
combination of allowable date options, including a 4-digit year (for example,
&DATEYYMD). For details, see your documentation on Dialogue Manager.

System Date Masking
You can temporarily alter the system date for application testing and debugging, using
the command SET TESTDATE. With this feature, you can simulate clock settings
beyond the year 1999 to determine the way your program will behave. For details, see
your documentation on the SET command.

Date Functions and Subroutines
The date functions and subroutines supplied with your software work across centuries.
Many of them facilitate date manipulation. For details on date functions and subroutines,
see your documentation on creating reports.

Working With Cross-Century Dates

7-32 Information Builders

Date Conversion
You can convert a legacy date to a date format in a FOCUS data source using the option
DATE NEW on the REBUILD command. For details, see your documentation on
database maintenance.

Century and Threshold Information
The ALL option, in conjunction with the HOLD option, on the CHECK FILE command
includes file-level and field-level default century and year thresholds as specified in a
Master File. For details, see your documentation on describing data.

Date Time Stamp
The year in the time stamp for a FOCUS data source is physically written to page one of
the file in the format CCYY.

Developing Applications 8-1

CHAPTER 8

Euro Currency Support

Topics:

• Integrating the Euro Currency

• Converting Currencies

• Preparing FOCUS to Process
Currency Conversions

• Activating the Currency Data Source

• Querying the Currency Data Source
in Effect

• Processing Currency Data

This topic describes how to create and use a currency data
source to convert to and from the new euro currency.

Euro Currency Support

8-2 Information Builders

Integrating the Euro Currency
With the introduction of the euro currency, businesses need to maintain books in two
currencies, add new fields to their data source designs, and perform new types of
currency conversions. FOCUS can perform currency conversions according to the rules
specified by the European Union. Before you can use FOCUS to process currency
conversions, you must:

• Create a currency data source with the currency IDs and exchange rates you will use.
See Creating the Currency Data Source on page 8-4.

• Identify fields in your data sources that represent currency data. See Identifying
Fields That Contain Currency Data on page 8-6.

• Activate your currency data source. See Activating the Currency Data Source on
page 8-8.

After you complete these preliminary steps, you can perform currency conversions. See
Processing Currency Data on page 8-10.

Note: Operating system vendors are in the process of integrating the euro currency
symbol into their environments. As the euro symbol becomes available, FOCUS will
support it.

Converting Currencies
Although the euro was introduced in 11 countries of the European Union on January 1,
1999, it will not immediately replace local currencies in those countries. During the
transition period from 1999 to 2002, both traditional currencies and the euro will be used
simultaneously for accounting purposes and non-cash transactions in each participating
country. Euro cash will not be introduced until January 1, 2002, and by July 1, 2002 the
traditional currencies will no longer be legal tender.

On the last day of 1998, the European Union set fixed exchange rates between the euro
and the traditional national currency in each of the 11 adopting member nations. While
the exchange rates within Euroland will remain fixed, exchange rates between the euro
and non-euro countries will continue to vary freely and, in fact, several rates may be in
use at one time (for example, actual and budgeted rates).

 Converting Currencies

Developing Applications 8-3

The European Union has established the following rules for currency conversion:

• The exchange rate must be specified as a decimal value, r, with six significant digits
(not six decimal places). For example, 123.456 has six significant digits but not six
decimal places. This rate will establish the following relationship between the euro
and the particular national currency:

1 euro = r national units

• To convert from the euro to the national unit, multiply by r and round the result to
two decimal places.

• To convert from the national currency to the euro, divide by r and round the result to
two decimal places.

• To convert from one national currency to another, first convert from one national
unit to the euro, rounding the result to at least three decimal places (FOCUS rounds
to exactly three decimal places). Then convert from the euro to the second national
unit, rounding the result to two decimal places. The following diagram illustrates this
two-step conversion process known as triangulation:

Euro Currency Support

8-4 Information Builders

Preparing FOCUS to Process Currency Conversions
Although 11 or more currencies in the European Union will be converting to the euro,
more than 100 currencies have a recognized status worldwide. In addition, you may need
to define custom currencies for some applications.

You identify your currency codes and rates by creating a currency data source. The
currency data source can be any type of data source that FOCUS can access.

Creating the Currency Data Source
For each type of currency you need, you must supply the following values in your
currency data source:

• A three-character code to identify the currency, such as USD for U.S. dollars or BEF
for Belgian francs. (For a partial list of recognized currency codes, see Sample
Currency Codes on page 8-13.)

• One or more exchange rates for the currency.

There is no limit to the number of currencies you can add to your currency data source;
the currencies you can define are not limited to official currencies and, therefore, the
currency data source can be fully customized for your applications.

We strongly recommend that you create a separate data source for the currency data
rather than adding the currency fields to another data source. A separate currency data
source enhances performance and minimizes resource utilization because FOCUS loads
the currency data source into memory before you perform currency conversions.

 Preparing FOCUS to Process Currency Conversions

Developing Applications 8-5

Syntax How to Specify Currency Codes and Rates in a Master File
The currency data source can be any type of data source accessible by FOCUS (for
example, FOCUS, FIX, DB2, or VSAM). The currency Master File must have one field
that identifies each currency ID you will use and one or more fields to specify the
exchange rates.

The syntax is

FIELD = CURRENCY_ID, FORMAT = A3, ACTUAL = A3 ,$
FIELD = rate1, FORMAT = {D12.6|numeric_format1}, ACTUAL = A12,$
 .
 .
 .
FIELD = raten, FORMAT = {D12.6|numeric_formatn}, ACTUAL = A12,$

where:

CURRENCY_ID

Is the required field name. The values stored in this field are the three-character
codes that identify each currency, such as USD for U.S. dollars. Each currency ID
can be a universally recognized code or a user-defined code.

Note: FOCUS automatically recognizes the code EUR; you should not store this
code in your currency data source. See Sample Currency Codes on page 8-13 for a
list of common currency codes.

rate1,...,raten

Are types of rates (such as BUDGET, FASB, ACTUAL) to be used in currency
conversions. Each rate is the number of national units that represent one euro.

numeric_format1,...,numeric_formatn

Are the display formats for the exchange rates. Each format must be numeric. The
recommended format, D12.6, ensures that the rate is expressed with six significant
digits as required by the European Union conversion rules. Do not use Integer format
(I).

ACTUAL An

Is required only for non-FOCUS data sources.

Note: The maximum number of fields in the currency data source must not exceed 255
(that is, the CURRENCY_ID field plus 254 currency conversion fields).

Euro Currency Support

8-6 Information Builders

Example Specifying Currency Codes and Rates in a Master File
The following Master File for a comma-delimited currency data source specifies two
rates for each currency, ACTUAL and BUDGET:

FILE = CURRCODE, SUFFIX = COM,$
FIELD = CURRENCY_ID, FORMAT = A3, ACTUAL = A3 ,$
FIELD = ACTUAL, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$
FIELD = BUDGET, ALIAS =, FORMAT = D12.6, ACTUAL = A12 ,$

The following is sample data for the currency data source defined by this Master File:

FRF, 6.55957, 6.50000,$
USD, 1.17249, 1.20000,$
BEF, 40.3399, 41.00000,$

Identifying Fields That Contain Currency Data
Once you have created your currency data source, you must identify the fields in your
data sources that represent currency values. To designate a field as a
currency-denominated value (a value that represents a number of units in a specific type
of currency) add the CURRENCY attribute to one of the following:

• The FIELD specification in the Master File.

• The left side of a DEFINE or COMPUTE.

 Preparing FOCUS to Process Currency Conversions

Developing Applications 8-7

Syntax How to Identify a Currency Value
Use the following syntax to identify a currency-denominated value.

• In a Master File:

FIELD = currfield, FORMAT = numeric_format, , CURR =
{curr_id|codefield} ,$

• In a DEFINE in the Master File:

DEFINE currfield/numeric_format CURR curr_id = expression ;$

• In a DEFINE FILE command:

DEFINE FILE filename
currfield/numeric_format CURR curr_id = expression ;
END

• In a COMPUTE command:

COMPUTE currfield/numeric_format CURR curr_id = expression ;

where:

filename

Is the name of the file for which this field is defined.

currfield

Is the name of the currency-denominated field.

numeric_format

Is a numeric format. Depending on the currency denomination involved, the
recommended number of decimal places is either two or zero. Do not use I or F
format.

CURR

Indicates that the field value represents a currency-denominated value. CURR is an
abbreviation of CURRENCY, which is the full attribute name.

curr_id

Is the three-character currency ID associated with the field. In order to perform
currency conversions, this ID must either be the value EUR or match a
CURRENCY_ID value in your currency data source.

Euro Currency Support

8-8 Information Builders

codefield

Is the name of a field, qualified if necessary, that contains the currency ID associated
with currfield. The code field should have format A3 or longer and is interpreted as
containing the currency ID value in its first three bytes. For example:

FIELD = PRICE, FORMAT = P12.2C, ..., CURR = TABLE.FLD1,$
 .
 .
 .
FIELD = FLD1, FORMAT = A3, ...,$

The field named FLD1 contains the currency ID for the field named PRICE.

expression

Is a valid expression.

Example Identifying a Currency-Denominated Field
Assume that the currency data source contains the currency ID value BEF (Belgian
francs).

If the FINANCE data source contains a field named PRICE that is denominated in
Belgian francs, the description of PRICE in the FINANCE Master File could be:

FIELD = PRICE, ALIAS=, FORMAT = P17.2, CURR=BEF,$

Activating the Currency Data Source
Before you can perform currency conversions, you must bring the relevant currency data
source into memory by issuing the SET EUROFILE command.

Syntax How to Activate Your Currency Data Source
Issue the following command at the FOCUS command prompt, in a FOCEXEC, or in any
supported profile:

SET EUROFILE = {ddname|OFF}

where:

ddname

Is the name of the Master File for the currency data source. There is no default value
for EUROFILE. The ddname must refer to a data source known to FOCUS and
accessible by FOCUS in read-only mode.

OFF

Deactivates the currency data source and removes it from memory.

During your FOCUS session, if you want to access a different currency data source, you
can re-issue the SET EUROFILE command.

 Querying the Currency Data Source in Effect

Developing Applications 8-9

Note:

• You cannot append any additional SET parameters to the SET EUROFILE command
line. For example, the PAUSE setting would be lost if you issued the following
command:

SET EUROFILE=filename , PAUSE=OFF

• You cannot issue the SET EUROFILE command within a TABLE request.

Querying the Currency Data Source in Effect
You can issue a query to determine what currency data source is in effect. To do this,
issue the ? SET ALL query command or the ? EUROFILE query command.

Syntax How to Determine the Currency Data Source in Effect
If you want to determine which currency data source is in effect, issue the ? SET ALL
command or the new EUROFILE query command:

? SET EUROFILE

Example Determining the Currency Data Source in Effect
Issuing the command

? EUROFILE

produces information similar to the following:

EUROFILE GBP

Reference SET EUROFILE Error Messages and Notes
Issuing the SET EUROFILE command when the currency data source Master File does
not exist generates the following error message:

(FOC205) THE DESCRIPTION CANNOT BE FOUND FOR FILE NAMED: ddname

Issuing the SET EUROFILE command when the currency Master File specifies a
FOCUS data source and the associated FOCUS data source does not exist generates the
following error message:

(FOC036) NO DATA FOUND FOR THE FOCUS FILE NAMED: name

Note for Pooled Table users: The SET EUROFILE command creates a pool boundary.

Euro Currency Support

8-10 Information Builders

Processing Currency Data
After you have created your currency data source, identified the currency-denominated
fields in your data sources, and activated your currency data source, you can perform
currency conversions.

Each currency ID in your currency data source generates a virtual conversion function
whose name is the same as its currency ID. For example, if you added BEF to your
currency data source, a virtual BEF currency conversion function will be generated.

The euro function, EUR, is supplied automatically with FOCUS. You do not need to add
the EUR currency ID to your currency data source.

Syntax How to Convert Currency Data
Use the following syntax for calling a currency conversion function.

• In a TABLE, GRAPH, or MODIFY procedure:

DEFINE FILE filename
result/format [CURR curr_id] = curr_id(infield, rate1 [,rate2]);
END

or

COMPUTE result/format [CURR curr_id] = curr_id(infield, rate1
[,rate2]);

• In a Master File:

DEFINE result/format [CURR curr_id] = curr_id(infield, rate1
[,rate2]);$

where:

filename

Is the name of the file for which this field is defined.

result

Is the converted currency value.

format

Must be a numeric format. Depending on the currency denomination involved, the
recommended number of decimal places is either two or zero. Do not use I or F
format. The result will always be rounded to two decimal places, which will display
if the format allows at least two decimal places.

 Processing Currency Data

Developing Applications 8-11

curr_id

Is the currency ID of the result field. This ID must be the value EUR or match a
currency ID in your currency data source; any other value generates the following
message

(FOC263) EXTERNAL FUNCTION OR LOAD MODULE NOT FOUND: curr_id

Note: The CURR attribute on the left side of the DEFINE or COMPUTE identifies
the result field as a currency-denominated value which can be passed as an argument
to a currency function in subsequent currency calculations. Adding this attribute to
the left side of the DEFINE or COMPUTE does not invoke any format or value
conversion on the calculated result.

infield

Is a currency-denominated value. This input value will be converted from its original
currency to the curr_id denomination. If the infield and result currencies are the
same, no calculation is performed and the result value is the same as the infield
value.

rate1

Is the name of a rate field from the currency data source. The infield value is divided
by its currency’s rate1 value to produce the equivalent number of euros.

If rate2 is not specified in the currency calculation and triangulation is required, this
intermediate result is then multiplied by the result currency’s rate1 value to complete
the conversion.

In certain cases, you may need to provide different rates for special purposes. In
these situations you can specify any field or numeric constant for rate1 as long as it
indicates the number of units of the infield currency denomination that equals one
euro.

rate2

Is the name of a rate field from the currency data source. This argument is only used
for those cases of triangulation in which you need to specify different rate fields for
the infield and result currencies. It is ignored if the euro is one of the currencies
involved in the calculation.

The number of euros that was derived using rate1 is multiplied by the result
currency’s rate2 value to complete the conversion.

In certain cases, you may need to provide different rates for special purposes. In
these situations you can specify any field or numeric constant for rate2 as long as it
indicates the number of units of the result currency denomination that equals one
euro.

Note: Maintain does not support these currency conversion functions.

Euro Currency Support

8-12 Information Builders

Example Converting Currencies
Assume that the currency data source contains the currency IDs USD and BEF, and that
PRICE is denominated in Belgian francs as follows:

FIELD = PRICE, ALIAS=, FORMAT = P17.2, CURR=BEF,$

• The following example converts PRICE to euros and stores the result in PRICE2
using the BUDGET conversion rate for the BEF currency ID:

COMPUTE PRICE2/P17.2 CURR EUR = EUR(PRICE, BUDGET);

• This example converts PRICE from Belgian francs to US dollars using the
triangulation rule:

DEFINE PRICE3/P17.2 CURR USD = USD(PRICE, ACTUAL);$

First PRICE is divided by the ACTUAL rate for Belgian francs to derive the number
of euros rounded to three decimal places. Then this intermediate value is multiplied
by the ACTUAL rate for US dollars and rounded to two decimal places.

• The following example uses a numeric constant for the conversion rate:

DEFINE PRICE4/P17.2 CURR EUR = EUR(PRICE,5);$

• The next example uses the ACTUAL rate for Belgian francs in the division and the
BUDGET rate for US dollars in the multiplication:

DEFINE PRICE5/P17.2 CURR USD = USD(PRICE, ACTUAL, BUDGET);$

Reference Currency Calculation Processing and Messages
The result is always calculated with very high precision, 31 to 36 significant digits,
depending on platform. The precision of the final result is always rounded to two decimal
places. In order to display the result to the proper precision, its format must allow at least
two decimal places.

Issuing a TABLE request against a Master File that specifies a currency code not listed in
the active currency data source generates the following message:

(FOC1911) CURRENCY IN FILE DESCRIPTION NOT FOUND IN DATA

A syntax error or undefined field name in a currency conversion expression generates the
following message:

(FOC1912) ERROR IN PARSING CURRENCY STATEMENT

 Processing Currency Data

Developing Applications 8-13

Reference Sample Currency Codes
The following rates were in effect on December 31, 1998. Euroland countries as of that
date are marked with an asterisk (*). Their rates are fixed and will not change; the rates
for other countries can change over time:

Country Currency Code Rate

Austria* ATS 13.7603

Belgium* BEF 40.3399

Canada CAD 1.7978

Denmark DKK 7.46215

European Union EUR 1

Finland* FIM 5.94573

France* FRF 6.55957

Germany* DEM 1.95583

Greece GRD 328.6

Ireland* IEP 0.787564

Italy* ITL 1936.27

Japan JPY 133.149

Luxembourg* LUF 40.3399

Netherlands* NLG 2.20371

Norway NOK 8.91039

Portugal* PTE 200.482

Spain* ESP 166.386

Sweden SEK 9.52669

Switzerland CHF 1.61093

UK GBP 0.706739

USA USD 1.17249

Euro Currency Support

8-14 Information Builders

Example Converting U.S. Dollars to Euros, French Francs, and Belgian
Francs
Assume PRICE is denominated in U.S. dollars and ACTUAL is the name of a rate in the
currency data source. Using the currency conversion rates from Sample Currency Codes
on page 8-13, the following FOCEXEC converts PRICE to euros, French francs, and
Belgian francs:

-* CURRCODE IS THE CURRENCY DATA SOURCE
-* CURRDATA IS THE DATA SOURCE WITH CURRENCY-DENOMINATED FIELDS

-* THE FOLLOWING FILEDEFS ARE FOR RUNNING UNDER CMS
CMS FILEDEF CURRCODE DISK CURRCODE TEXT A
CMS FILEDEF CURRDATA DISK CURRDATA TEXT A

-* THE FOLLOWING ALLOCATIONS ARE FOR RUNNING UNDER MVS
-* DYNAM ALLOC FILE CURRCODE DA USER1.FOCEXEC.DATA(CURRCODE) SHR REU
-* DYNAM ALLOC FILE CURRDATA DA USER1.FOCEXEC.DATA(CURRDATA) SHR REU

SET EUROFILE = CURRCODE

DEFINE FILE CURRDATA
PRICEEUR/P17.2 CURR EUR = EUR(PRICE, ACTUAL);
END

TABLE FILE CURRDATA
PRINT PRICE PRICEEUR AND COMPUTE
PRICEFRF/P17.2 CURR FRF = FRF(PRICE, ACTUAL);
PRICEBEF/P17.2 CURR BEF = BEF(PRICE, ACTUAL);
END

This request generates the following report:

 PAGE 1

 PRICE PRICEEUR PRICEFRF PRICEBEF

 ----- -------- -------- --------
 5.00 4.26 27.97 172.01
 6.00 5.12 33.57 206.42

 40.00 34.12 223.78 1376.20
 10.00 8.53 55.95 344.06

 Processing Currency Data

Developing Applications 8-15

Note: You cannot use the derived euro value PRICEEUR in a conversion from USD to
BEF. PRICEEUR has two decimal places (P17.2), not three, as the triangulation rules
require. Therefore, PRICEEUR yields the following inaccurate result (see PRICEBEF
above) and is not valid as the intermediate value in a currency conversion that requires
triangulation:

COMPUTE PRICENEW/P17.2 CURR BEF = BEF(PRICEEUR, ACTUAL);

 PRICENEW

 171.85
 206.54
 1376.40
 344.10

Developing Applications 9-1

CHAPTER 9

Designing Windows With Window Painter

Topics:

• Introduction

• Window Files and Windows

• Integrating Windows and the
FOCEXEC

• Tutorial: A Menu-Driven Application

• Window Painter Screens

• Transferring Window Files

This topic describes how to create FOCUS menus and windows
that work with FOCEXECs.

Designing Windows With Window Painter

9-2 Information Builders

Introduction
FOCUS Window Painter is a tool that helps you design and create your own menus and
screens for attractive and easy-to-use applications.

Many window types and features are available. You can implement horizontal menus and
multi-input windows as part of your FOCUS application. Horizontal menus can also have
pulldown menus associated with each menu item.

You can perform a string search in an active window by entering any pattern followed by
a blank and then pressing Enter. Within the pattern:

• An asterisk (*) is a multiple character wildcard.

• A question mark (?) is a single character wildcard.

• An equal sign (=) repeats the last string.

FOCUS tries to locate the line matching the pattern starting from the line following the
current line. The search concludes at the line preceding the current line. If no match is
found, a beep sounds and the cursor remains at the current position.

The windows you can design with FOCUS Window Painter look just like the menus and
screens you see in the FOCUS Talk Technologies, such as TableTalk and PlotTalk, but
you can customize them to fit your application. You can design user-friendly menus and
can display convenient and eye-catching instructions onscreen.

FOCUS Window Painter itself guides you step by step, using windows like those you
will be creating.

On the windows you create, you can prompt users to:

• Select menu items from a list.

• Enter data.

• Select from automatically generated lists of available files and field names.

• Register a choice by pressing a function key.

You can also simply display explanations and instructions.

Window Painter is flexible enough to design the many different types of windows you
might need for any application you can write with FOCUS.

You can also upload window files from FOCUS running in one operating environment,
such as PC/FOCUS, and edit them using Window Painter for use on another operating
environment such as MVS or CMS.

 Introduction

Developing Applications 9-3

How Do Window Applications Work?
Window Painter stores the windows you design in window files. Window files work in
conjunction with FOCEXEC procedures that use Dialogue Manager.

There are two major parts in any window application, each of which is a step for the
developer:

• The windows, created with Window Painter, which users will see.

• The Dialogue Manager FOCEXEC.

You can invoke Window Painter to create and edit windows by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

You can invoke the Window facility in your FOCEXEC by including the Dialogue
Manager command -WINDOW in the FOCEXEC. The -WINDOW command provides
the name of the window file, and the name of the individual window that should be
displayed first. When the -WINDOW command is executed by Dialogue Manager,
control in the FOCEXEC passes to the Window facility.

The user is moved through the window file by goto values. A goto value tells the
Window facility which window to display next.

You specify goto values when creating the windows with Window Painter. When your
window is a menu with several items, you may assign a different goto value for each
menu item, so that the next window depends on the user’s selection.

When you create the windows, you also specify return values. As with goto values, you
may assign a different return value to each item on a menu. Return values are collected as
the user moves through the windows, and are substituted for “amper variables” which
can be used later in the window file or in the FOCEXEC when control passes back.
(Amper variables are Dialogue Manager variables of the format &variablename.)

When the selected value is inserted in the FOCEXEC, you may test it with a Dialogue
Manager IF…THEN command and branch accordingly to a label in the FOCEXEC. In
this way, you move the user through a series of windows, collecting return values for
amper variables, using only one command in your FOCEXEC.

You can use windows to collect amper variable values in place of any other method of
prompting available through Dialogue Manager.

For a complete discussion of the Dialogue Manager facility, see Chapter 4, Managing
Applications With Dialogue Manager. For details of integrating a FOCEXEC with the
Window facility using return and goto values see Integrating Windows and the
FOCEXEC on page 9-21.

Designing Windows With Window Painter

9-4 Information Builders

Window Files and Windows
Windows—that is, menus and screens—are stored in window files. Windows are
included in a specified window file as you create and save them during a Window Painter
session.

• In CMS, window files have file type FMU, and are created and updated on the A
disk automatically by Window Painter.

• In MVS, window files are contained in a partitioned data set (PDS) allocated to
ddname FMU. Before any window files can be created, a PDS must be created and
ddname FMU must be allocated to it.

Note, however, that creating a PDS is not necessary if you are creating window files
to be used only in the current FOCUS session: Window Painter will temporarily
allocate the PDS. For a full description of allocation requirements, see the
appropriate Guide to Operations topic in the FOCUS Overview and Operating
Environments manual.

A window file can contain a maximum of 384 windows, and a number of windows may
be displayed on the screen at once. All the windows in a single application may be stored
together in one window file, or you may create separate window files for different parts
of the application such as Help Windows.

You can make an application more attractive by presenting menus in windows containing
titles and other design elements, and can make an application easier to use by displaying
function key definitions or other useful information.

 Window Files and Windows

Developing Applications 9-5

Types of Windows You Can Create
Window Painter creates 10 different types of windows, each with its own special uses:

• Vertical menus

• Horizontal menus

• Text input windows

• Text display windows

• File names windows

• Field names windows

• File contents windows

• Return value display windows

• Execution windows

• Multi-input windows

These windows are described in the following topics.

Vertical Menus
This is a vertical menu:

A menu is a window that lets users select an option from a list. These options are called
menu items. A vertical menu lists its menu items one below the other. A user can select
an item by moving the cursor down the list with the arrow keys and pressing Enter when
the cursor is on the line of the desired item. A user can select more than one item if the
window includes the Multi-Select option, which is part of the Window Options Menu.
Help information can be specified for each item in the menu by using the menu-item help
feature of help windows. For additional information on Multi-Select and Help windows
see Window Options Menu on page 9-61.

Designing Windows With Window Painter

9-6 Information Builders

Horizontal Menus
This is a horizontal menu:

A horizontal menu displays its menu items on a line, from left to right. You select an
item by using PF11 or the Tab key to move right and PF10 or Shift+Tab to move left
across the line, and pressing Enter when the cursor is at the desired item. You can also
select an item by employing the search techniques available for FOCUS windows.
(Search techniques are not available with pulldown windows).

If you use PF11 at the last item on the menu, the cursor moves to the first item on the
menu. If you use PF10 at the first item on the menu, the cursor moves to the last item on
the menu, unless there is another screen to scroll to.

An application can display an associated pulldown menu for an item on a horizontal
menu when the cursor is on that item. Choose the pulldown option from the Window
Options menu as discussed in Creating Windows on page 9-14. An option to display
descriptive text above or below the horizontal menu is also available from the Window
Options menu.

You can assign any return value to each item on the menu. When you select a menu item,
the corresponding return value is collected.

In a horizontal or vertical menu, you can assign a goto value to each menu item.

Text Input Windows
This is a text input window:

Amper variables can be used in a Windows application. A text input window prompts the
user to supply information needed in a FOCEXEC. It is also possible to display an
existing value to be edited. Each text input window accepts one line of input up to 76
characters long. You assign the length and format of the field when you create the
window. Additional information about creating a text input window is found in Window
Creation Menu on page 9-57.

 Window Files and Windows

Developing Applications 9-7

Text Display Windows
This is a text display window:

A text display window lets you present information such as instructions or messages. No
selections can be made from a text display window, and no data can be entered in it.

File Names Windows
This is a file names window:

A file names window presents a list of names of up to 409 files (in CMS) or 1023 PDS
members (in MVS). The user can select one of these names by moving the cursor and
pressing Enter when the cursor is on the line of the desired file name. You can specify
selection criteria for the displayed file names when the window is created. A user can
select more than one file if the window includes the Multi-Select option, which is
available on the Window Options Menu.

Designing Windows With Window Painter

9-8 Information Builders

Note that the maximum number of file (or member) names which can be displayed
decreases as the width of the window increases. Narrower windows can display a greater
number of names.

Field Names Windows
This is a field names window:

A field names window presents a list of all field names from a Master File; the user can
select one by moving the cursor and pressing Enter when the cursor is on the line of the
desired field name. A user can select more than one field if the window includes the
Multi-Select option, which is available on the Window Options Menu.

You can use a field names window as the next step after a file names window. That way,
you can present a selection of files first, followed by the fields in a selected file.

The field names will be qualified when duplicates exist. You can use PF10 and PF11 to
scroll left and right if a field name exceeds the maximum number of characters allowed
on a line in a data field window.

Use PF6 as a three-way toggle to sort the fields in one of the following ways:

1. Display field names in the order in which they appear in the Master File.

2. Display field names in alphabetical order.

3. Display the fully qualified field names in the order in which they appear in the
Master File.

 Window Files and Windows

Developing Applications 9-9

File Contents Windows
This is a file contents window:

The file contents window displays the contents of a file. There is no limit on the size of a
file contents window. The user can select a line of contents by moving the cursor to it
and pressing Enter. Each line can be up to 77 characters long. A user can select more
than one line if the window includes the Multi-Select option, which is described as part
of the Window Options Menu in Window Options Menu on page 9-61.

• In CMS, the contents of any file (except as noted below) can be displayed. You will
be prompted for the file name and file type.

• In MVS, the contents of any member of a PDS (except as noted below) can be
displayed. Sequential files can also be displayed in TSO. You will be prompted for a
file name (the ddname) and a file type (the member name). This information should
be entered as “member name ddname.”

Note: You cannot display a file with unprintable characters in a file contents window.
This includes files such as FOCUS files, HOLD files, SAVB files, FOCCOMP files, and
encrypted files.

Return Value Display Windows
This is a return value display window:

Designing Windows With Window Painter

9-10 Information Builders

The return value display window displays amper variables that have been collected from
other windows. No selections can be made from a return value display window, and no
data can be entered into it.

Return value display windows are very useful for constructing a command (or any string
of words or terms) by working through a series of windows. An example of this type of
application is seen when you construct a TABLE request using TableTalk.

Each line of the return value display window is stored in a variable called
&windownamexx, where windowname is the name of the window and xx is a line
number.

Unless you use the Line-break option to place return values on separate lines, all
collected return values are placed on the same line until the end of the line is reached.
The length of the line is determined by the size of the window created. A description of
the Line-break option on the Window Options Menu can be found in Window Options
Menu on page 9-61.

Only one return value display window may be displayed at a time on the screen. It will
collect a value from any active window (that is, a window from which a selection is
being made or to which text is being entered, or an active text display window) if it is on
that window’s display list. A description of the Display lists option on the Window
Options Menu can be found in Window Options Menu on page 9-61.

You can clear the collected values from a return value display window by including it on
the hide list of a window that is being used. A description of the Hide lists option on the
Window Options Menu can be found in Window Options Menu on page 9-61.

For a Multi-Select window, the return value display window gives the number of
selections, not the values selected. The values can be retrieved by using the -WINDOW
command with the GETHOLD option.

 Window Files and Windows

Developing Applications 9-11

Execution Windows
This is an execution window:

The execution window contains FOCUS commands such as Dialogue Manager
commands, and TABLE requests.

You can create an execution window by choosing its option on the Window Creation
menu.

When this window is first displayed, it has a width of 77 characters, and no heading. You
can place FOCUS commands within it. Note that the commands in an execution window
appear just as you type them; commands are not automatically converted to uppercase.

The Window Painter Main Menu contains an option enabling you to run a window in
order to see any return values collected. If you were to run (not execute) the execution
window from the Window Painter Main Menu, you would see the execution window
contents, then any windows called, and finally any return values collected by running the
windows.

Note the following rules when using execution windows:

• When you GOTO an execution window, the contents of the window are executed. In
all cases, execution begins at the top of the window.

• An execution window is not displayed when executed, although the commands it
contains may generate a display.

• An execution window can use an amper variable as a goto value.

• An execution window clears the screen and the Return Value display window.

Designing Windows With Window Painter

9-12 Information Builders

• Execution windows have no return values.

• Execution windows can contain up to 22 lines.

• Execution windows can use local variables.

• Goto values for execution windows should be assigned at line 1.

• Windows called from within execution windows preempt window goto values. For
example, a -WINDOW command issued from within an execution window preempts
an assigned goto value.

• The FOCUS commands within an execution window follow normal Dialogue
Manager execution (that is, FOCUS commands are stacked, Dialogue Manager
commands are executed immediately). Any windows called from the execution
window will follow the logic determined by the windows themselves. This will
substantially affect the application’s transfer of control.

• Use -RUN for immediate execution; otherwise requests will be performed after
leaving the window application.

Normally, FOCUS returns to the window designated by the assigned goto value after the
contents of the execution window have been executed. However, when a jump is made to
a window from inside an execution window, the commands in the execution window
following the jump are skipped (along with any attached gotos). This differs from
initiating a window from inside Dialogue Manager, which when finished returns you to
the command following the GOTO.

Multi-Input Windows
This is a multi-input window:

 Window Files and Windows

Developing Applications 9-13

A multi-input window prompts you for information that will be used in the application. A
multi-input window may include up to 50 input fields, each of which can be up to 76
characters long. You assign the length, name, and format of the field when you create the
window.

Use the Tab key to move the cursor between the fields on a multi-input window.

You can supply help information for each field in a multi-input window by using the
Help window option. For information on Help windows, see Window Options Menu on
page 9-61.

For a multi-input window, the return value is the name of the input field occupied by the
cursor when you pressed Enter or a function key. The name that you supply for each
input field is assigned to an amper variable with the same name as the field (each input
field has a unique name). The variable &WINDOWVALUE contains the value of the
input field occupied by the cursor when you pressed Enter or a function key.

Use a unique name for each field on a multi-input window. To display the field names
specified, use the Input Fields option on the Window Options menu.

Designing Windows With Window Painter

9-14 Information Builders

Creating Windows
The process of creating windows begins with choosing the type of window you want to
create from the Window Creation menu. Each type of window requires slightly different
instructions. The tutorial in Tutorial: A Menu-Driven Application on page 9-29 describes
how to create and implement text display window, vertical menu, and file names
windows. This topic describes how to create horizontal menus (with or without
associated pulldown menus) and multi-input windows.

Creating a Horizontal Menu
To create a horizontal menu, begin by placing the cursor at the Menu (horizontal) option
on the Window Creation menu:

You will be prompted to enter a name and brief description for the window, after which
you will reach the creation screen. On this screen:

1. Move the cursor to the location in which you want the top left corner of the menu to
be displayed. Press Enter.

2. Next, use the arrow keys to move the cursor down (enough spaces to leave a line for
each item you want to display as a menu choice) and to the right (enough spaces to
just fit the longest menu item). Press PF4. You will see two windows: one is for
entering information and the other is the corresponding horizontal menu.

3. Enter the menu items in the window containing the cursor. Press the Enter key after
each item; the item automatically appears on the horizontal menu.

 Window Files and Windows

Developing Applications 9-15

The following is an example of a completed creation screen:

Once you have entered the items on your menu, there are several options you can select
for each item. Move the cursor to any item and press PF2 to display the Window Options
menu:

Designing Windows With Window Painter

9-16 Information Builders

Position the cursor on any option you want to select and press Enter.

Two features available for horizontal menus are Menu text and Text line. Menu text is a
line of text displayed when the cursor is on a menu item. The line on which the text is
displayed is called the text line. You can position the text line one or two lines either
above or below the horizontal menu.

The following example illustrates Menu text and Text line. When the cursor is positioned
on Vertical in the example below, the following is displayed:

In this example, the Menu text VERTICAL MENU TESTS is positioned at Text line x-1,
one line above the menu. To place the Text line two lines above the Menu text, change
x-1 to x-2. For Text lines below the menu text, use x+1 or x+2.

You can also select the Pulldown option for a horizontal menu. With this option, you can
assign a pulldown menu to be displayed for a horizontal menu item whenever the cursor
is positioned on that item.

Pulldown Menus
When you set the Pulldown option ON, you can display an associated pulldown menu for
an item in a horizontal menu by positioning the cursor on that item. The default is OFF.
To change the setting to ON, position the cursor on the Pulldown option and press Enter.
Note that when Pulldown is set ON, Menu Text is automatically set OFF.

The associated pulldown menu must be a vertical menu. When creating the horizontal
menu, you must assign a Goto value to point to the pulldown menu. To do so, position
the cursor on the goto value, press Enter, and enter the name of the pulldown menu you
want to display in the space provided:

You must create the vertical menu, rpts, as you would any other vertical menu. See
Tutorial: A Menu-Driven Application on page 9-29 for examples.

 Window Files and Windows

Developing Applications 9-17

The following example shows a horizontal menu with the Reporting pulldown menu
displayed:

The following screen shows the same menu with the Ad hoc pulldown menu displayed:

The following screen shows the same menu with the Maintenance pulldown menu
displayed:

Note: To move from item to item in a horizontal menu, use PF10 and PF11.

Designing Windows With Window Painter

9-18 Information Builders

Creating a Multi-Input Window
To create a multi-input window, begin by placing the cursor at the Multi-Input window
option on the Window Creation menu and press Enter. You will then be prompted for a
name, description and heading. Place the window on the screen and size it as desired.

To place entries on the window:

1. Type the text for display.

2. Press PF6 at the point where the field begins.

3. Space along for the length of the field.

4. Press PF6 again to signify the end of the input area.

5. Enter name and information for the field.

 Window Files and Windows

Developing Applications 9-19

The following example shows a multi-input window, with Name: entered as display text.

This is what the developer’s screen looks like after several fields have been included in
the multi-input window:

Note: Text fields may be supplied without headings or instructions. For example, see the
city and state portion of the address line.

Designing Windows With Window Painter

9-20 Information Builders

This is how the window appears when run as part of the application:

The following screen shows what is returned from the window when it is run inside the
Window Painter:

Note: To move from field to field in a multi-input window, use the Tab key.

 Integrating Windows and the FOCEXEC

Developing Applications 9-21

Integrating Windows and the FOCEXEC
The windows you create with Window Painter are designed for you to use within an
application FOCEXEC. This topic discusses how to integrate your windows into your
FOCEXEC.

Syntax The -WINDOW Command
To invoke the Window facility, insert the following Dialogue Manager command in your
FOCEXEC

-WINDOW windowfile windowname [PFKEY|NOPFKEY] [GETHOLD] [BLANK|NOBLANK] [CLEAR|NOCLEAR]

where:

windowfile

Identifies the file in which the windows are stored. In CMS, this is a file name. The
file must have a file type of FMU or TRF. In MVS, this is a member name. The
member must belong to a PDS allocated to ddname FMU.

windowname

Optional. Identifies which window in the file to display first. Can be set in Window
Painter or in first window displayed.

PFKEY/NOPFKEY

Enables (prevents) testing for function key values during window execution.

GETHOLD

Retrieves stored amper variables collected from a Multi-Select window. Does not
cause window to be displayed.

BLANK

Clears all previously set amper variable values when the -WINDOW command is
encountered. This is the default setting.

NOBLANK

No amper variable values are cleared when the -WINDOW command is
encountered.

CLEAR

When FOCUS is being used with the Terminal Operator Environment (described in
the Overview and Operating Environments manual), the -WINDOW command
clears the screen before displaying the first window. The Terminal Operator
Environment screen will be redisplayed when control is transferred from the
Window facility back to the FOCEXEC. This is the default setting.

Designing Windows With Window Painter

9-22 Information Builders

NOCLEAR

When FOCUS is being used with the Terminal Operator Environment, the window
file’s windows are displayed directly over the Terminal Operator Environment
screens.

Note: NOBLANK is particularly important in applications that use more than one
-WINDOW command.

Transferring Control in Window Applications
When the -WINDOW command is encountered, control in the FOCEXEC is transferred
to the Window facility. Control remains with the Window facility until one of the
following occurs:

• The user makes a selection for which you have assigned no goto value.

• The PFKEY option is in effect and the user presses a function key (the function key
must be set to RETURN, HX, CANCEL, or END, as described in the Testing
Function Key Values on page 9-26.)

Once control passes back to the FOCEXEC, control only returns to the Window facility
if another WINDOW command is encountered.

Example Window File in an Application FOCEXEC
This example shows an application FOCEXEC and a window file named REPORT
which contains three windows: R1, R2, and R3.

The numbers at the left of the example refer to the flow of execution (that is, the order in
which the commands and windows are executed).

1. -START
2. -WINDOW REPORT R1 PFKEY
 -*
3. -*Control is transferred from the above command
 -*to window R1 in window file REPORT.
 -*
4. -IF &PFKEY EQ PF05 GOTO LABEL1;
 -*
 -*Control returns to the above command from
 -*window R2 in window file REPORT.
 .
 .
 -LABEL1
5. -WINDOW REPORT R3
 -*
6. -*Control is transferred from the above command
 -*to window R3 in window file REPORT.
 -*
7. -IF &R3 EQ EXIT GOTO EXIT;
 -*
 -*Control returns to the above command from

 Integrating Windows and the FOCEXEC

Developing Applications 9-23

 -*WINDOW R3 in window file REPORT.
 .
 .
 -EXIT

Note:

• At Step 3, the user selects an option from Window R1. This option’s goto value is
R2. Control is transferred to Window R2.

• The user presses a function key in Window R2. Control is transferred to the
FOCEXEC, to the command following the -WINDOW command (Step 4).

• At Step 6, the user selects the option to exit; no goto value was set for that option.
Control is transferred to the FOCEXEC, to the command following the -WINDOW
command
(Step 7).

The flow of control has certain implications for the design of your window applications:

• Any time you wish to pass control back to the FOCEXEC, the window or menu
option must have no goto value, or else must prompt the user to press a function key
(as described in Testing Function Key Values on page 9-26).

• At some point in the window session, control should return to the FOCEXEC so that
the accumulated return values can be substituted for amper variables, and the
variables then used in the FOCEXEC.

• Any time you wish to pass control from the FOCEXEC to the Window facility you
must insert the -WINDOW command in the FOCEXEC.

• Note that it is not necessary to create a new window file for each -WINDOW
command; you can simply enter the same file again at whatever window you wish.

• If you wish to test for a function key value in the middle of a series of windows,
remember that pressing the function key automatically returns control to the
FOCEXEC; an -IF test command should follow the -WINDOW command, and a
second -WINDOW command should be placed after the -IF command to transfer
control back to the window file.

• If you want to clear an existing set of variable values, you may do so by returning
control to the FOCEXEC and executing another -WINDOW command with the
BLANK option in effect.

To back up a step during window execution, the user may press the PF12 or PF24 keys.
This will not cause control to pass to the FOCEXEC. However, you can force Dialogue
Manager to return control to a FOCEXEC by a PF key setting as described in Testing
Function Key Values on page 9-26.

Designing Windows With Window Painter

9-24 Information Builders

Return Values
When the user responds to your window prompt by entering text, selecting an item from
a menu, or pressing a function key, this response is the return value that fills in an amper
variable in your FOCEXEC.

There are two ways in which amper variables are most commonly used in FOCEXECs:

• To collect values to plug into a FOCUS procedure such as a TABLE or GRAPH
request so it can run.

• To test the value returned in a variable, and branch accordingly to a different part of
the FOCEXEC or to another FOCEXEC.

The return value collected can be almost anything you desire: a character string, a
number, the name of a file, a procedure name, or part of a FOCUS command.

A return value amper variable in the FOCEXEC has the same name as the window in
which it is collected; that is:

&windowname

For example, the return value collected by the window MAIN supplies a value for the
variable &MAIN.

• In vertical menu and horizontal menu windows, you assign any return value you
wish to each item on the menu. If the user selects that option, that return value is
collected.

• In text input windows, the return value is the text that the user types.

• In text display windows, you can assign one return value to the entire window.
Unlike other return values, a text display window return value is collected as soon as
control passes to the window, without the user needing to select anything.

• Return value display windows display return values collected from other types of
windows. These return values can be displayed one per line, or several together on a
single line. Although this type of window does not itself have a return value, each
line has a corresponding amper variable (&windownamexx, where xx is the line
number).

• For a multi-input window, the return value is the name of the input field on which
the cursor is positioned when you press Enter or a PF key.

• In windows with the Multi-Select option, the return value is the number of items
selected.

• In file names, field names, and file contents windows, the return value is,
respectively, the file name, field name, or line of file contents that the user selects
from the display.

 Integrating Windows and the FOCEXEC

Developing Applications 9-25

Example Return Value in a Menu-Driven Application
For example, assume that you have written a menu-driven application that enables a user
to report from any one of a list of files. You have created a series of windows for this
application, one of which is a file names window named FILE designed to collect a
return value for &FILE. The window displays a list of all the user’s files that meet certain
file-identification criteria you specified when you created the window.

Your FOCEXEC contains these lines:

-START
-WINDOW EXAMPLE FILE
.
.
.
TABLE FILE &FILE

When the user moves the cursor to SALES and presses ENTER, SALES is collected to
be substituted for &FILE in the FOCEXEC:

TABLE FILE SALES

Goto Values
When you are creating your windows, you will also assign goto values telling the
Window facility which window to display next. These values allow you to move the user
through a series of windows, collecting return values for amper variables, without adding
lines to your FOCEXEC.

• In vertical menu and horizontal menu windows, you assign a goto value for each
menu item.

• In all other windows, you assign a single goto value.

• You can use an amper variable as a GOTO value.

As described in Transferring Control in Window Applications on page 9-22, if you assign
no goto value to a menu option or window, control passes back to the FOCEXEC when
the user selects that option or presses Enter at that window.

It is important not to confuse these goto values with the Dialogue Manager -GOTO
command. The goto value points your application to a new window in the window file;
the -GOTO command transfers control to a label in your FOCEXEC.

Returning From a Window to Its Caller
You can return from a window to its caller via the <ESCAPE> option. If you enter this
string as the goto value of a window, control will return to the previous window upon
completion of the current window (enter the right and left carets as part of the goto
value).

Designing Windows With Window Painter

9-26 Information Builders

Window System Variables
We have already discussed return values: these are specific to each window. Two other
Window facility variables, &WINDOWNAME and &WINDOWVALUE, are specific to
the -WINDOW session (not to each window) and receive their values when the Window
facility passes control from a window file back to the FOCEXEC.

&WINDOWNAME
&WINDOWNAME is an amper variable containing the name of the last window that
was displayed before the Window facility transferred control back to the FOCEXEC.

This variable can be used in many ways. For example, if the goto values/function key
prompts in a window file allow a user to leave the window file from several different
windows, you can test &WINDOWNAME in the FOCEXEC to determine which
window the user was in last (and, therefore, which path the user navigated through the
window file).

&WINDOWVALUE
&WINDOWVALUE is an amper variable containing the return value from the last
window that was displayed before the Window facility transferred control back to the
FOCEXEC. If the user selected a line for which no return value was set (for example, a
blank line between two menu options in a vertical menu window), then
&WINDOWVALUE will contain the line number of the line that was selected.

This variable can be used in many ways. For example, if the goto values/function key
prompts allow a user to leave the window file from several different windows, and you
need to know the return value of the last window the user was in before she or he left the
file by pressing a function key, you can test &WINDOWVALUE.

Testing Function Key Values
If you wish to test for function key values, you must specify the PFKEY option on the
-WINDOW command line. When the PFKEY option is set and a user presses a function
key during window execution, the name of that key is stored in the amper variable
&PFKEY.

For example, if the user presses PF1, the 4-character value of &PFKEY is PF01. If PF2,
the value is PF02, and so forth. If the user presses Enter, the value is ENTR. The value of
&PFKEY is reset each time the user presses a function key.

 Integrating Windows and the FOCEXEC

Developing Applications 9-27

Note that if the PFKEY option is specified, the Window facility’s default PF key actions
are overridden by the general FOCUS PF key settings. This means that when you specify
the PFKEY option, if you still want the standard Window facility PF key actions to be
available to window users (for example, PF1 = HELP, PF3 = UNDO), you must use the
SET command in your application FOCEXEC, followed by a -RUN command, to
explicitly set those actions.

For example, if you specify the PFKEY option but you want to retain all of the Window
facility’s default PF key actions using the same PF keys, you need to include the
following commands before the -WINDOW command in your application FOCEXEC:

SET PF01=HELP
SET PF03=UNDO
SET PF04=TOP
SET PF05=BOTTOM
SET PF06=SORT
SET PF07=BACKWARD
SET PF08=FORWARD
SET PF09=SELECT
SET PF10=LEFT
SET PF11=RIGHT
SET PF12=UNDO
-RUN

When you specify the PFKEY option, any PF key which you want to test for in the
application FOCEXEC must be set to RETURN. (HX, CANCEL, and END also function
as RETURN within the Window facility, and can be used in place of it.)

For example, if you design your application so that a user can press PF2 to choose an
additional menu option, and therefore you want to test &PFKEY for the value PF02 in
your application FOCEXEC, then you must include the following SET command before
the -WINDOW command in your application FOCEXEC:

SET PF02=RETURN

The SET PF command is discussed in Chapter 1, Customizing Your Environment, and in
the Maintaining Databases manual.

You can list the current general FOCUS PF key settings by issuing the ? PFKEY
command. The ? PFKEY command is discussed in Chapter 2, Querying Your
Environment.

The variable &PFKEY can be tested just like any other amper variable. Note that the
name of the variable is always &PFKEY; it is not linked to a window name like other
amper variables collected through windows.

You may test the PFKEY variable repeatedly throughout the FOCEXEC. Additional SET
commands are not required.

Designing Windows With Window Painter

9-28 Information Builders

One of the advantages of using the &PFKEY variable is that it enables you to collect two
return values from a single menu. You might, for example, create a window called
FILES, which prompts the user to enter the name of a file, then press PF7 to produce a
graph or PF8 to produce a report. Both the file name as &FILES and the function key
value as &PFKEY would be collected as return values.

It is always important to remember that pressing a function key will immediately return
control to the FOCEXEC if that key was set to RETURN (or to HX, CANCEL, or END).

Note: If the cursor is on a menu that has a FOCEXEC associated with it, the FOCEXEC
is executed and the GOTO value associated with the menu choice is assumed. The
PFKEY is ignored.

In the example above, if the user presses a function key before typing the file name, the
&FILES variable will not be collected. If the key was set to something other than
RETURN, HX, CANCEL, or END, then the action it was set to is invoked, and control
remains within the Window facility.

Executing a Window From the FOCUS Prompt
You can execute a window directly from the FOCUS command prompt.

Syntax How to Execute a Window From the FOCUS Prompt
EX 'windowfile FMU' [windowname] [PFKEY|NOPFKEY] [BLANK|NOBLANK]
[CLEAR|NOCLEAR]

where:

windowfile

Is the file containing the windows. It must have file type FMU, and appear within
single quotation marks.

windowname

Identifies the first window to be executed. If a window name is not specified,
FOCUS will execute the default start window, or the first window created.

PFKEY/NOPFKEY

Tells FOCUS you will (will not) be testing for function key values during execution.

BLANK

Clears previously set amper variables when the window is called. This is the default
setting.

NOBLANK

Retains previously set amper variables.

 Tutorial: A Menu-Driven Application

Developing Applications 9-29

CLEAR

When FOCUS is being used with the Terminal Operator Environment, the screen is
cleared when the EX command is encountered. The Terminal Operator Environment
screen is restored when the last window in the chain has been executed. This is the
default setting.

NOCLEAR

When FOCUS is being used with the Terminal Operator Environment, the screen is
not cleared when the EX command is encountered, and any windows are displayed
within the Terminal Operator Environment screens.

For example, to execute the window MAIN in the window file REPORT, you could issue
EX ‘REPORT FMU’ MAIN from the FOCUS command prompt, which is equivalent to
issuing -WINDOW REPORT MAIN from Dialogue Manager.

Tutorial: A Menu-Driven Application
This tutorial describes a menu-driven system that clerical personnel can use to produce
sales reports and graphs at your chain of retail stores. The system must fulfill three major
requirements:

• Ease of use. Your system must let employees be productive without extensive
training.

• Functionality. The system has to work properly with only a few steps.

• Appearance. There should be continuity between screens, and a general unity of
design. The reports and graphs produced must be attractive and easy to read.

The application prompts the user to select reporting or creating a graph.

Then, the user may opt to execute an existing FOCUS request or to create a new one. A
user who chooses to execute an existing request will be shown an automatically
generated list of FOCEXECs from which to pick. A user who chooses to create a new
request will be placed in either TableTalk or PlotTalk, depending on whether reporting or
creating a graph was chosen in the first step.

While the report or graph is being generated, a corresponding message will be displayed
on the terminal screen. And, after the output is displayed, the user can choose to generate
another report or graph, or else to exit.

Designing Windows With Window Painter

9-30 Information Builders

The following figure illustrates the logic of the application FOCEXEC.

-START
-WINDOW SAMPLE MAIN
-*
-*Control is transferred from the above command
-*to window MAIN in window file SAMPLE.
-*
-IF &MAIN ...
-*
-*Control returns to the above command
-*from option "Exit?" in window MAIN,
-*from option "New Request?" in window EXECTYPE,
-*and from every selection in window EXECNAME.
-*
.
.
.
-GOTO START
-EXIT

Window If option selected is… Then go to:

MAIN Report?
Graph?
Exit?

window EXECTYPE
window EXECTYPE
back to FOCEXEC

EXECTYPE Existing Request?
New Request?

window EXECNAME
back to FOCEXEC

EXECNAME The options in this window are a
list of report and graph requests
from which the user can select.

Control is transferred back to the
FOCEXEC.

 Tutorial: A Menu-Driven Application

Developing Applications 9-31

Creating the Application FOCEXEC
A FOCEXEC called SAMPLE will drive this application.

Begin by using the TED editor to create the FOCEXEC file SAMPLE. At the FOCUS
prompt, type

TED SAMPLE

and press Enter. (In CMS, TED assigns the file type FOCEXEC unless you specify
another file type. In MVS, you must specify ddname as follows:

FOCEXEC (SAMPLE)

Type in the following FOCEXEC. Note that the numbers on the left refer to explanatory
notes. Do not type them in your FOCEXEC file, but read the notes as you go along. All
commands that begin with a hyphen, such as -WINDOW, are Dialogue Manager
commands, and they must begin in the first column. Dialogue Manager is discussed in
Chapter 4, Managing Applications With Dialogue Manager.

You will notice that this application determines variable values in two ways: there are
variables for which values are collected by windows, and variables which are set within
the FOCEXEC using the -SET command.

 -START
1. -WINDOW SAMPLE MAIN
2. -IF &MAIN EQ XXIT GOTO EXIT;
 -IF &MAIN EQ RPT GOTO GENERATE;
 -IF &MAIN EQ GRPH GOTO GENERATE;
 -GOTO START
 -***************** GENERATE ********************
3. -GENERATE
4. -IF &EXECTYPE EQ EXIST GOTO RPTEX ELSE GOTO NEWRPT;
5. -RPTEX
6. EX &EXECNAME
7. -SET &FORMAT=IF &MAIN EQ RPT THEN REPORT
 -ELSE IF &MAIN EQ GRPH THEN GRAPH;
8. -TYPE GENERATING &FORMAT
9. -RUN
10. -GOTO START
11. -NEWRPT
12. -SET &PROCNAME=IF &MAIN EQ RPT THEN TABLETALK
 -ELSE IF &MAIN EQ GRPH THEN PLOTTALK;
13. &PROCNAME
14. -RUN
15. -GOTO START
 -********************** EXIT **********************
16. -EXIT

Designing Windows With Window Painter

9-32 Information Builders

1. The -WINDOW command transfers control to the Window facility. SAMPLE is the
name of the window file this application will use. (We will create it in this tutorial.)
MAIN is the window where the procedure will begin.

Control will not return to the next line of the FOCEXEC until a window is processed
for which no goto value has been assigned, in this case, EXECTYPE or
EXECNAME.

2. The return value collected for &MAIN—collected from the window MAIN—is
tested. The FOCEXEC branches to a label depending on its value.

If the return value for &MAIN is RPT or GRPH, the FOCEXEC will branch to
-GENERATE; if XXIT, to -EXIT. Each return value corresponds to a selection on
the menu window MAIN.

3. This label begins the GENERATE section of the FOCEXEC.

4. The value collected for &EXECTYPE (from window EXECTYPE) is tested and the
FOCEXEC branches accordingly. Note that this value was collected from the
window EXECTYPE while the Window facility was in control, without a prompt
from Dialogue Manager.

5. This label begins the RPTEX section of the FOCEXEC.

6. The FOCUS command that will execute an existing report is stacked. The value of
&EXECNAME—the name of the existing report—was collected while the window
file was in control. The single quotation marks around &EXECNAME tell FOCUS
to treat the value—which may contain more than one word (in CMS, for example, a
file name and a file type)—as part of a single file identification.

7. The value of the variable &FORMAT is set according to the return value from the
MAIN window. If the value was RPT, &FORMAT is set to REPORT; if the value is
GRPH, &FORMAT is set to GRAPH.

8. A message containing the value of &FORMAT is displayed for the user while the
stacked FOCUS request is executing.

9. -RUN executes the stacked command(s).

10. When the request output has been displayed, the FOCEXEC branches back to
-START, where the user can choose to exit or to create another report or graph. All
amper variable values collected in the previous round are cleared when the
-WINDOW command is encountered.

11. This label begins the section NEWRPT.

12. This command sets the value of &PROCNAME to TABLETALK if the value of
&MAIN is RPT, to PLOTTALK if the value is GRPH.

13. This line stacks the command TABLETALK or PLOTTALK.

14. -RUN executes the stacked command.

 Tutorial: A Menu-Driven Application

Developing Applications 9-33

15. This command returns to -START, as in note 10.

16. This command ends FOCEXEC execution.

Creating the Window File
The -WINDOW command SAMPLE FOCEXEC tells FOCUS to look for a window file
named SAMPLE and a window named MAIN. The complete list of windows used in this
application is:

BORDER A text display window used as a background display for the other
windows.

BANNER A text display window that introduces the application.

MAIN A vertical menu from which the user can choose to create a graph or
a report, or exit the application.

EXECTYPE A vertical menu from which the user chooses to execute an existing
procedure or create a new one.

EXECNAME A file names window displaying all FOCEXEC files, from which
the user can select one to execute. This window is seen only if the
user opts to execute an existing report in EXECTYPE.

All these windows will be included in the window file named SAMPLE. You are going
to start by building that window file.

• In CMS, when you use Window Painter to create a window file, the file is
automatically created by the system on your A disk.

• In MVS, before you can use Window Painter to create a window file, a PDS must be
allocated with ddname FMU, LRECL 4096, and RECFM F. BLKSIZE 4096 is
recommended.

You can reach the FOCUS Window Painter Entry Menu by typing

WINDOW [PAINT]

at the FOCUS prompt, and pressing Enter.

The Entry Menu is the first screen you see:

Designing Windows With Window Painter

9-34 Information Builders

Since you are creating a new window file, choose NEW FILE, and press Enter. The next
screen you see prompts you to name the window file.

Since the FOCEXEC will look for a window file named SAMPLE, type

SAMPLE

and press Enter.

You will see a screen asking for a description of the window file.

 Tutorial: A Menu-Driven Application

Developing Applications 9-35

Type

Sample file for Window Painter tutorial

and press Enter.

Creating the Text Display Window Named BORDER
Now you are ready to create the first window. The screen that appears on your display is
the Window Painter Main Menu. Select

Create a new window

and press Enter.

Designing Windows With Window Painter

9-36 Information Builders

The Window Creation Menu asks what kind of window you want to create.

The BORDER window is the first window you will create for the application. BORDER
will supply a background border for other windows. It is a text display window, so select

Text display

and press Enter.

Next, you are asked to name the window. Type

BORDER

and press Enter.

 Tutorial: A Menu-Driven Application

Developing Applications 9-37

The Window Description Screen appears next. This description does not appear when the
window is displayed, but becomes part of the document file that Window Painter creates
describing all windows in the file. Since the document file is very useful when writing
your FOCEXEC, it is a good idea to enter a functional description here. To describe this
window, type

This window borders all my screens.

and press Enter. The ability to annotate screens in this manner is very useful when
selecting windows to edit.

The Window Heading Screen comes next. Since you do not want a heading displayed on
this window, simply press Enter to bypass it.

The Window Design Screen displayed now is nearly blank, with a cursor for you to
position where you want the upper left-hand corner of BORDER to be. Leave the cursor
where it is and press Enter.

A small box appears around the cursor: this is the window. You will now make the
window larger. Using the arrow keys, move the cursor to the right edge of the screen, on
the line just above the status line: this will be the new lower right corner of the window.
Now press PF4 to resize the window. (PF4 functions as the SIZE key in the Window
Design Screen.) The window has been resized so that its lower right corner is where you
positioned the cursor: the window now fills the entire screen.

When resizing a window, remember that the window’s lower right corner refers to the
lower right corner of the window border, which is shown as a plus sign (+) on the screen.
It is this corner that you are moving when you resize the window. On the other hand, the
last row of the window refers to the last row that can contain data or text: this is the row
immediately above the bottom border.

This window’s border will form the background border for the other windows in this
application.

Designing Windows With Window Painter

9-38 Information Builders

If you need help using the keyboard while in the Window Design Screen, press PF1 (the
Window Painter Help key) to see the following display:

 Tutorial: A Menu-Driven Application

Developing Applications 9-39

Press Enter to continue.

Now that the window is complete, you should save it. Press PF3.

Press Enter to select Save. You will be returned to the Main Menu.

Creating the Text Display Window Named BANNER
BANNER is also a text display window, but is smaller than BORDER and contains text
that identifies this application.

From the Window Painter Main Menu, select

Create a new window

and press Enter. Select

Text Display

and press Enter. The name of this window is

BANNER

and its description is:

Banner for application MAIN menu.

Enter this name and description just as you did for the BORDER window. When
prompted for a heading, press Enter.

Designing Windows With Window Painter

9-40 Information Builders

At the Window Design Screen, use the arrow keys to move the cursor two spaces to the
right, and press Enter. Now position the cursor 64 more spaces to the right and two rows
down, and press PF4 to resize the window.

You will now enter text to be displayed in the window. Reposition the cursor on the first
line within the window, ten spaces to the right of the window’s left border, and type:

The Milkmore Farms Weekly Reporting System

Type a line of asterisks (*) all the way across the window’s second line. (Begin at the
second column within the window, because the first column of every window is
protected.)

You will now center the banner in the width of the screen. Estimate where the upper left
corner of the window would be if the window were centered. Position the cursor there,
and then press PF9. The window moves to its new location. Repeat the process if you
need to center it more precisely.

The window should look like this:

Press PF3 and save the window.

 Tutorial: A Menu-Driven Application

Developing Applications 9-41

Creating the Vertical Menu Window Named MAIN
Now you will create the MAIN vertical menu window, which collects the amper variable
&MAIN. Select

Create a new window

and press Enter.

BORDER and BANNER are text display windows, from which no options may be
selected. Since MAIN, however, is a menu from which a selection must be made, choose

Menu (vertical)

and press Enter. Name the window:

MAIN

On the Description screen, type

User can report, graph, or exit.

and press Enter.

When prompted for a heading, type ten spaces, then

Would you like to:

and press Enter.

On the Window Design Screen, move the cursor five rows from the top and 20 columns
from the left, and press Enter. The window will be created wide enough to contain the
heading. Now position the cursor six rows below the window’s bottom edge, and ten
columns to the right of its right edge. Press PF4 and the window will be resized.

Designing Windows With Window Painter

9-42 Information Builders

Type the following menu options as they appear below:

Now you will assign goto and return values for each menu option. To assign either value
to an option, the cursor must first be on that option.

 Tutorial: A Menu-Driven Application

Developing Applications 9-43

Move your cursor back to

Create a report?

and press PF2 to display the pop-up Window Options Menu.

Assigning a goto value tells the Window facility to display another window when this
item is selected during execution.

In the next window of this application, the user will be prompted to either execute an
existing report or create a new one. The window that displays that prompt will be called
EXECTYPE, so the goto value of the first two menu options will be EXECTYPE.

Move the cursor to

Goto value

and press Enter.

Designing Windows With Window Painter

9-44 Information Builders

In the space provided, type

EXECTYPE

and press Enter.

The return value collected by this window—&MAIN—will be tested in the FOCEXEC:

-START
-WINDOW SAMPLE MAIN
-IF &MAIN EQ XXIT GOTOEXIT;
-IF &MAIN EQ RPT GOTO GENERATE;
-IF &MAIN EQ GRPH GOTO GENERATE;
.
.
.

Now move the cursor to

Return value

and press Enter.

 Tutorial: A Menu-Driven Application

Developing Applications 9-45

Type the value

RPT

as shown, and press Enter.

Exit the Window Options Menu by moving the cursor to

Exit this menu

and pressing Enter.

Now you will set the values for:

Create a graph?

Move the cursor to the second menu item, and press PF2.

Repeat the steps you just performed, assigning the goto value

EXECTYPE

and the return value:

GRPH

Leave the Window Options menu and move the cursor to

EXIT?

For this option, you will not assign a goto value. Since it exits to the FOCEXEC, there is
no next window to be displayed.

Designing Windows With Window Painter

9-46 Information Builders

Repeat the steps to assign the return value:

XXIT

With the Window Options Menu still on the screen, move the cursor to

Display list

and press Enter.

The display list may specify up to 16 windows to be displayed when this window is
visible during execution. Since you want BORDER and BANNER to be displayed with
MAIN, you must add them to the list.

Select:

Add to the list

A list of windows appears, from which you select by moving the cursor and pressing
Enter. The windows must be selected in the order in which they should appear, because
they will be overlaid one on top of another when displayed. Select BORDER and
BANNER for MAIN’s display list, being certain to select BORDER first so that it will be
displayed behind BANNER.

When you have finished, choose Quit to return to the Window Options Menu.

Quit the Window Options Menu and press PF3 to save MAIN.

Before moving on, look at what you have done so far. Select

Run the window file

and press Enter.

 Tutorial: A Menu-Driven Application

Developing Applications 9-47

Select

MAIN

as the starting screen. Press Enter, and you will see a screen like this:

Position the cursor on the “Create a report” line. When you press Enter to continue the
display, you will see an error message because EXECTYPE—the goto value—has not
been created yet. Ignore it, and press Enter to continue. You will see a screen displaying
amper variables for this window and their values. Press Enter to return to the Main Menu.

Creating the Vertical Menu Window Named EXECTYPE
So far you have created two text display windows and a vertical menu. The next window
we will create will also be a vertical menu.

Select

Create a new window

from the Main Menu, and choose

Menu (vertical)

from the Window Creation Menu. Enter

EXECTYPE

as the window name.

Designing Windows With Window Painter

9-48 Information Builders

When prompted for a description, type

Create a new FOCEXEC or run existing one

and press Enter. When prompted for a heading, press Enter.

When the Window Design Screen appears, move the cursor 12 rows down the screen and
22 columns to the right, and press Enter. Now reposition the cursor four rows beneath the
bottom edge of the window and 32 columns to the right of the right edge of the window,
and press PF4 to resize it.

Type the following two menu options as they appear below:

When you created the MAIN window, you used the Window Options Menu to set each
return value and goto value. There is an easier way to set return and goto values using the
PF6 and PF5 keys.

Pressing PF5 prompts you successively for a GOTO value, a Return value and a
FOCEXEC name. When prompted for a GOTO value press Enter again and you will be
prompted for the Return value. Enter EXIST and press PF5 again and you are prompted
for FOCEXEC name. Just press Enter.

If you select

... using an existing request.

from the EXECTYPE menu, the file names window EXECNAME will be displayed next.
EXECNAME will contain a list of existing FOCEXEC files from which you may choose.

Move the cursor to the second menu item.

Now you need to consider the return and goto values for this option.

 Tutorial: A Menu-Driven Application

Developing Applications 9-49

If you choose to create a new report or graph request, EXECNAME will not be
displayed. Rather, control must pass back to the FOCEXEC, which will execute these
lines:

.

.

.
-IF &EXECTYPE EQ EXIST GOTO RPTEX ELSE GOTO NEWRPT;
.
.
.
-NEWRPT
-SET &PROCNAME=IF &MAIN EQ RPT THEN TABLETALK
ELSE IF &MAIN EQ GRPH THEN PLOTTALK;
&PROCNAME
-RUN

Since you want control to pass to the FOCEXEC if this option is chosen, you will not
assign a goto value to it. Remember that during execution control passes to the
FOCEXEC when an option without a goto value is selected.

The return value may be anything other than EXIST. For now, press PF6, and enter

NEXIST

Rather than create display and hide lists for EXECTYPE, make it a pop-up window. A
pop-up window is displayed like any other window, but disappears when the user presses
Enter. EXECTYPE pops up in front of MAIN.

Press PF2 to display the Window Options Menu, move the cursor to

Popup(Off)

and press Enter. You will see that (Off) changes to (On).

Exit the Window Options Menu, press PF3, and save the window.

Creating the File Names Window Named EXECNAME
Your final window is the file names window that displays a list of existing FOCUS report
requests. On the Window Creation Menu, select:

File names

Name the window

EXECNAME

and type in the description:

Select an existing FOCEXEC from list.

Enter an explanatory heading:

Select the request you want to execute and press ENTER:

Designing Windows With Window Painter

9-50 Information Builders

You will be prompted for file-identification criteria. Type

* FOCEXEC

and press Enter.

• In CMS, when the application is executed, this will select all files having the file
type FOCEXEC.

• In MVS, when the application is executed, this will select all members of ddname
FOCEXEC.

On the Window Design Screen, move the cursor two rows down and press Enter. Use
PF9 to center the window on the screen. Resize the window: reposition the cursor two
columns to the right of the window’s right edge and ten rows below the window’s bottom
edge, and press PF4.

Since only BORDER should be displayed with this window, add BANNER, MAIN, and
EXECTYPE to the hide list and add BORDER to the display list.

When the user selects a file name from this window during execution, that file name will
automatically be collected as the return value. You cannot set the return value any other
way for this type of window.

In the FOCEXEC, that return value will be plugged into the line

EX &EXECNAME

and the report or graph request will be executed.

But in order for this to happen, you must return control to the FOCEXEC. Therefore, you
will assign no goto value to this window.

 Window Painter Screens

Developing Applications 9-51

If you want to change the file identification criteria of a file names window (or of a field
names or file contents window) after it has been created, change the “return value.”
Although these two window types cannot have their actual return values set when the
window is created or edited, the “return value” which is displayed and can be set is
actually the window’s file identification criteria. You can change the file identification
criteria just as you would change the actual return value of a vertical menu window.

Exit from the Window Options Menu, press PF3, and save the window. The window file
is complete. Exit from Window Painter.

Executing the Application
To execute the SAMPLE FOCEXEC, at the FOCUS prompt, type

EX SAMPLE

and press Enter. When prompted to choose a new or existing FOCEXEC, select

... using a new request.

unless you have created one in an earlier FOCUS session. The application will execute
PlotTalk or TableTalk. If you save the request you create, you can try the SAMPLE
FOCEXEC again, and execute the new request by selecting:

... using an existing request.

This completes the tutorial.

Window Painter Screens
The creation of windows is itself an automated window-driven process. There are six
major screens:

• The Entry Menu

• The Main Menu

• The Window Creation Menu

• The Window Design Screen

• The Window Options Menu

• The Utilities Menu

These screens assist you whenever you create or edit windows.

Designing Windows With Window Painter

9-52 Information Builders

Invoking Window Painter
To invoke Window Painter, type the WINDOW PAINT command at the FOCUS prompt
and press Enter.

Syntax How to Invoke Window Painter
WINDOW [PAINT [filename]]

where:

PAINT

Is optional.

filename

Is the name of the window file that you want to work with.

In CMS, this is a file name. The file must have a file type of FMU.

In MVS, this is a member name. The member must belong to ddname FMU.

If you do not specify file name, you will begin your Window Painter session at the Entry
Menu, where you can choose a window file to use or can create a new window file. If
you do specify file name, you will skip the Entry Menu and begin your Window Painter
session at the Main Menu, working with the window file you specified.

If the file name does not exist, you will be asked if you want to create a new file. If not,
the Window Painter Entry Menu will be displayed.

 Window Painter Screens

Developing Applications 9-53

Entry Menu
You can reach the Window Painter Entry Menu by typing

WINDOW [PAINT]

at the FOCUS prompt, and then pressing Enter.

The Entry Menu is the first screen you see:

The Entry Menu invites you to choose a window file in which to work. If you are
creating windows for a new application, you should start a new window file. If you are
maintaining or creating windows for an existing application, use the window file that
corresponds to your application.

When you become comfortable working with windows, you can write FOCEXECs that
include branching between window files. Refer to Transferring Control in Window
Applications on page 9-22 for a detailed discussion on branching and transferring
control.

Designing Windows With Window Painter

9-54 Information Builders

Main Menu
Once you have selected a window file from the Entry Menu, or entered the WINDOW
PAINT command with the file name option, the Main Menu appears:

 Window Painter Screens

Developing Applications 9-55

The following table summarizes the options on the Main Menu, along with illustrations
of screens that appear when you select some of the options:

Menu Option Description

Create a new
window

Brings up the Window Creation Menu. You can select the type of
window you want to create.

Edit an existing
window

Brings up a list of windows in your current window file. You can
select the one you want to edit.

Menu Option Description

Delete an existing
window

Brings up a list of windows in your current window file. You
can select the one you want to delete.

Designing Windows With Window Painter

9-56 Information Builders

Menu Option Description

Run the window
file

Brings up a list of windows in your current window file. You
can select the one from which you want to start running the
window file.

After the window file is run, the windows’ amper variable
values are displayed. The display includes the first 20
characters of each value.

This option shows you how your windows work without
executing the FOCEXEC. Use this option to test your window
file.

Switch Window
files

Returns you to the Window Painter Entry Menu, from which
you can select another window file. The previous window file is
saved whenever you switch window files.

Utilities Brings up the Utilities Menu, which is discussed in Utilities
Menu on page 9-72.

End Returns you to native FOCUS. All work that you saved during
the Window Painter session is kept.

Quit without
saving

Returns you to native FOCUS. All work that you saved during
the Window Painter session is discarded.

 Window Painter Screens

Developing Applications 9-57

Window Creation Menu
You can reach the Window Creation Menu by selecting

Create a New Window

from the Main Menu. You will see the following screen:

You will first need to select the type of window you will create. You will then be asked
to enter an 8-character name and an optional 40-character description. These are for your
use only; they do not appear in the window during execution.

For a vertical menu, horizontal menu, text input, text display, file names, field names, file
contents, multi-input, or return value display window, you are prompted to supply a
60-character heading.

For a text input window, you are prompted to choose the format of the text entry field
(alphanumeric, with all text translated to uppercase; alphanumeric, with no case
translation; or numeric). Later, in the Window Design Screen, you can make the length
of the text entry field shorter than the window’s header length by typing a single
character in the window immediately following the last desired field position, or by
typing characters continuously from the first field position to the last desired field
position.

For a file names, field names, or file contents window, you are prompted to produce
file-identification criteria that can consist of an amper variable, a complete file
identification, or (for file names windows) a file specification which includes an asterisk
(for example, * MASTER).

Designing Windows With Window Painter

9-58 Information Builders

The asterisk is used as a wildcard character: it indicates that any character or sequence of
characters can occupy that position. In CMS, an asterisk used in file-identification criteria
can be embedded (for example, *DEPT FOCEXEC); the asterisk can be used in the file
name, the file type, and the file mode. In MVS, the asterisk can be used as the member
name but not in the ddname.

If an amper variable is used, you can prompt for the file identification criteria at run time.

• File-identification criteria in CMS must specify the file name first, the file type
second, and an optional file mode third. If the file mode is not specified, it defaults
to an asterisk.

• File-identification criteria in MVS must specify the member name first and the
ddname second.

If you are creating a field names window, your file-identification criterion is the name of
a Master File.

In addition, you can create execution windows containing FOCUS commands such as
Dialogue Manager commands or TABLE requests. You will be prompted for the window
name and heading. Once a window has been specified, you will see the Window Design
screen.

For complete information about the types of windows you can create in Window Painter,
see Types of Windows You Can Create on page 9-4.

The next screen displayed is the Window Design Screen, discussed in Window Design
Screen on page 9-59. This screen enables you to enter information, and position and size
your window.

 Window Painter Screens

Developing Applications 9-59

Window Design Screen
In this screen you design the appearance and functionality of your windows. It appears
during the window creation process, when you press Enter after typing the heading of
your window.

The Window Design Screen consists of a blank screen, a cursor, and text asking you to
move the cursor to the starting position for the window. This starting position becomes
the upper left corner of the window. Use the cursor arrow keys to move the cursor to the
place where you want the upper left corner of the window to be, and press Enter.

When you press Enter this time, the window appears, with its heading at the top. You can
enlarge it, type text in it, and move it around the screen.

The Window Design Screen lets you use the keyboard to manipulate the window you are
creating.

Designing Windows With Window Painter

9-60 Information Builders

The following chart summarizes Window Design Screen key functions in all window
types.

PF Key Function

PF1 Displays a window of help information.

PF2 Displays the Window Options menu. This menu is discussed in
Window Options Menu on page 9-61.

PF3 Displays the exit menu. You can select:

• Exiting from the Window Design Screen while saving your work.

• Quitting from the Screen without saving your work.

• Continuing your work.

PF4 Resizes the window. First move the cursor to the desired position of
the window’s lower right corner. When you press PF4, the window’s
upper left corner remains in the same position; the window’s lower
right corner moves to the current cursor position.

If the window size is reduced, nothing in the window is deleted; all
window contents beyond the window border can be seen by scrolling
the window.

PF5 Gets the GOTO value, the Return value and the FOCEXEC name for
the active window.

PF6 Sets the return value of the line that the cursor is on.

PF7 Scrolls the window up if the window contents extend beyond the top
border.

PF8 Scrolls the window down if the window contents extend beyond the
bottom border.

PF9 Moves the window. First move the cursor to the desired position of the
window’s upper left corner. When you press PF9, the window’s upper
left corner (the + in the border) moves to the current cursor position.
The rest of the window moves accordingly.

PF10 Deletes the line of window contents identified by the current cursor
position. If the window contents do not extend beyond the window
borders, then the window itself will be reduced by one line.

PF11 Adds one line of window contents beneath the line identified by the
current cursor position. If the window contents do not extend beyond
the window borders, then the window itself will increase by one line.

 Window Painter Screens

Developing Applications 9-61

PF Key Function

PF12 Provides the same function as the PF3 key.

PF13 -
PF24

These keys provide the same functions as the corresponding keys PF1
- PF12.

If a window’s contents extend beyond a top or bottom border, then the message

(MORE)

is displayed on that border. This reminds you that there are more lines of contents that
are hidden beyond that border. You can view these lines by scrolling the window toward
the border. When the window is used in an application, the user can also scroll the
window to see all of the contents.

The display line at the bottom of the Window Design Screen shows instructions or
information. When you first see the Window Design Screen, the display line tells you to
move the cursor and press Enter. When you press Enter, the display line shows the name
of the window file, and the name and type of window being created; it also tells which
keys to press for the HELP function, the SIZE function, and the Window Options Menu.

Window Options Menu
When the Window Design Screen is displayed, pressing PF2 brings up the following
Window Options Menu:

Designing Windows With Window Painter

9-62 Information Builders

The following table summarizes the options on this menu, along with illustrations of
screens that appear when you select some of the options:

Menu Option Description

Goto value Selecting this option lets you specify the next window in the
path from this selection field or window. You will be asked to
supply the name of the window. (It does not matter whether or
not this window exists. You can create it later, but remember
the name you chose for it.)

In menu windows, goto values are assigned to each menu item.
In other windows, there is a single goto value for the entire
window.

To assign a goto value, your cursor must be on the proper line
when the Window Options Menu is brought up. Select Goto
value from the Window Options Menu and you will be
prompted to enter the name of the window that is the target of
the goto. Type the name in the space provided and press Enter
again. The goto value is assigned.

 Window Painter Screens

Developing Applications 9-63

Menu Option Description

Return value The return value supplies a value for an amper variable. If the
user selects this field during execution, the return value you
have assigned is plugged into the amper variable in your
FOCEXEC. Return values are assigned to each menu item in
menu windows, and one per window for other window types.
The only exceptions are the multi-input window, whose return
value is the name of the input field occupied by the cursor when
you pressed Enter or a PF key, and the return value display
window, which does not have a return value but instead
displays other windows’ return values. The return value for a
Multi-Select window is the number of selections.

To assign a return value, your cursor must be on the proper line
when the Window Options Menu is brought up. Select Return
value from the Window Options Menu and you will be
prompted to enter a return value. Note that for file names, field
names, and file contents windows, the value that you enter is
the file-identification criterion for that window. Type the value
in the space provided and press Enter again. The return value is
assigned.

Designing Windows With Window Painter

9-64 Information Builders

Menu Option Description

FOCEXEC name Attaches a FOCEXEC to each menu selection of the window.
The FOCEXEC is executed when the menu item is selected.

Heading Changes the heading of any window you are working on. You
can also add or remove a heading.

Description Changes the description of any window you are working on.

Show a window Used only during window editing, brings another window onto
the screen for reference. You cannot edit the second window.

Unshow a window Removes the shown window from the display.

 Window Painter Screens

Developing Applications 9-65

Menu Option Description

Display list Enables you to specify a list of up to 16 windows that will be
visible when this window is displayed during execution.

Note that if part of a window on the display list extends beyond
the window border or does not fit on the screen, it cannot be
scrolled.

As many as 16 windows can be displayed on the screen at one
time. This applies to all windows on the screen (that is, a
window displayed during execution, windows displayed when
executed previously and not hidden afterward, and windows
displayed because specified on a display list). The window
facility interprets each window heading as a separate window: if
all of the windows have headings, 16 of them can be displayed
on the screen at one time.

Designing Windows With Window Painter

9-66 Information Builders

Menu Option Description

Hide list Allows you to specify windows that will not appear when this
window is displayed during execution. You can specify up to
16 specific windows or all windows in the window file. If you
select “All,” all the windows will be hidden except those in the
display list. -- If you do not hide a window that was displayed,
it will remain on the screen until another window that includes
it on a hide list is displayed during execution.

 Window Painter Screens

Developing Applications 9-67

Menu Option Description

Popup (Off/On) Makes the window disappear when the user presses Enter
during execution. Defaults to OFF, which leaves the window on
screen. Set Popup to OFF with text display windows as they do
not work even if set to ON.

Help window Lets you display information about a window or a menu item
when a user presses PF1 (the Window facility HELP key)
during execution. The information displayed is text within a
specified Help window.

Note that if the PFKEY option is specified in the -WINDOW
command, you will have to explicitly set a PF key as the HELP
key, as described in Testing Function Key Values on page 9-26.

When selecting the Help window option, you will be asked to
supply the name of the Help window file that contains the Help
window. Next, you will be asked to supply the name of the
Help window itself. The Help window can be an existing
window, or one that you will create.

If the Help window displays field names, it qualifies duplicates
with the segment name.

You can use any window type for a Help window. A text
display window is easiest, except when you want to supply
different help information for each item in a vertical menu,
horizontal menu (that is, item-specific help).

If you wish to assign item-specific help, use a file contents
window that displays a file containing text in the following
format:

=>HELPFILE
=> menu item
this is the Help message you want the user to see.

where:

=>

Is entered with an equal sign (=) and a greater-than sign
(>).

HELPFILE

Must be uppercase.

Designing Windows With Window Painter

9-68 Information Builders

Help window
(continued)

menu item

Is the exact text of the menu item. Any blank spaces that
precede this text in the menu must also precede this text
here in the Help file. Note that at least one blank space
always precedes the menu item text in a vertical menu,
horizontal menu, or multi-input window.

For example, if the first three lines of a vertical menu are

(1) Generate a sales report
(2) Generate a stock report

and there are three blank spaces between the left border of the
window and the beginning of the text, then the file containing
help text could look like this:

=>HELPFILE
=> (1) Generate a sales report
This option displays a list of existing sales report
requests, and lets you select one of these requests
to execute.
=> (2) Generate a stock report
This option displays a list of existing stock report
requests, and lets you select one of these requests
to execute.

The lines immediately following the menu item text are
displayed when the user positions the cursor on the menu item
and presses PF1.

In some cases you may wish to assign topic-specific help, but
you may want the help text for some of the topics to be
contained in a separate file. In these cases, on the line following
the menu item text, replace the help message with the file
identification of the file containing that menu item’s help
message.

In CMS, use this file-identification format:

FILENAME= filename filetype [filemode]

In MVS, use this file-identification format:

FILENAME= membername ddname

To assign one set of instructions that can be used for multiple
menu items, use the following syntax:

=>DEFAULT
This text appears when you have not written
topic-specific help.

 Window Painter Screens

Developing Applications 9-69

Help window
(continued)

The DEFAULT text must be the last section in the Help file.

Lines beginning with an * are comment lines that are not
displayed.

What follows is an example of a topic-specific Help file for the
Main Menu used in the tutorial.

=>HELPFILE
*Help file for tutorial/Main Menu
=> Create a report?
Choose this option if you wish to create a new
report.
=> Create a graph?
Select this option if you wish to create pie charts,
bar charts or other graphics.
=> Exit?
If you wish to leave the application, choose this
option.

Line-break Formats the contents of the return value display window. This
option is set when designing the windows from which you
collect the return value(s) to be displayed.

When you select this option, you will see:

None
New line before value
New line after value
Both

where:

None

Places return value directly after preceding value. If there is
not enough room on this line, return value is placed on the
next line.

New line before value

Places return value on the next line.

New line after value

Places return value on the same line as preceding value.
Places next return value on next line.

Both

Places return value on a line by itself.

Designing Windows With Window Painter

9-70 Information Builders

Multi-Select Enables you to select multiple items from one window. The
number of items you select is collected as the return value from
that window; each selected item’s return value is stored in a
temporary file in memory. You can later retrieve these stored
values for use in a FOCEXEC. Values for up to eight windows
can be stored at one time.

When you select this option, you will see:

-Select Multi(On)

During execution, the user selects individual values by pressing
PF9. After all selections have been made, the user presses
Enter.

Note that when the -WINDOW command is issued with the
PFKEY option, the PF9 key cannot be used to make selections
unless a SET command is issued before the -WINDOW
command. For example:

SET PF09=SELECT

You can also set a different PF key for selecting multiple items.

A Multi-Select window can have no more than one goto value.
Although in a vertical menu window you can assign a different
goto value to each menu item, only the value assigned to the
first item is effective.

The return value collected for a window using the Multi-Select
option is the number of values selected by the user.

To retrieve the individual values, issue a special WINDOW call,
as follows:

-WINDOW windowfile windowname GETHOLD

where:

windowfile

Is the name of the window file.

windowname

Is the name of the Multi-Select window.

GETHOLD

Is the special parameter that retrieves one value at a time
from the temporary file.

The value is assigned to the variable &windowname.

 Window Painter Screens

Developing Applications 9-71

Multi-Select
(continued)

The GETHOLD option requires at least two -WINDOW
commands in your FOCEXEC. The first -WINDOW command
(without the GETHOLD option) transfers control to the
Window facility where a Multi-Select window is used. The
second and subsequent -WINDOW commands use the
GETHOLD option to retrieve the stored amper variables
collected in a particular Multi-Select window.

For each value to be retrieved, you will need a -WINDOW
command with the GETHOLD option. Each value will be
stored in &windowname. If you wish to use this value, we
recommend assigning it to another variable. For example, if the
return value has the value 4, you would issue the special
-WINDOW command four times; each time you would collect
the value from &windowname. Alternatively, you could
perform a loop.

Note that -WINDOW with the GETHOLD option will not
transfer control from the FOCEXEC to the Window facility.

Quit Returns you to the Window Painter Entry Menu.

Input fields Input fields pertain to Multi Input Windows. Selecting the field
takes you to that field.

Menu text Specifies a line of descriptive text, up to 60 characters long, for
items on a horizontal menu. Use the Text line option to position
the text.

Text line (x+1) On a horizontal menu, positions descriptive text one or two
lines above or below the menu. Valid values are x+1 or x+2 to
place the text above the horizontal menu, x-1 or x-2 to place the
text below the horizontal menu. Use the Menu text option to
define the descriptive text.

Pulldown (off/on) If the setting is ON, placing the cursor on an item in a
horizontal menu can display an associated pulldown menu. The
default setting is OFF. Turn the setting ON by positioning the
cursor on this option and pressing Enter. — The pulldown
menu must be a vertical menu and must be assigned as the goto
value for the horizontal menu item. Note that setting Pulldown
ON automatically shuts off Menu Text.

Switch window Enables you to work on and move between two windows.
When you select this option, you can create a new window, or
edit an existing window without returning to the Main Menu.

Designing Windows With Window Painter

9-72 Information Builders

Utilities Menu
If you select the Utilities option from the Window Painter Main Menu, the Utilities Menu
will be displayed:

 Window Painter Screens

Developing Applications 9-73

The following table summarizes the options on this menu, along with illustrations of
screens that appear when you select some of the options:

Menu Option Description

Document the file When you select this utility, Window Painter creates
documentation of the window file. You can display the
document on the screen using TED or another system editor, or
send it to a printer or disk file.

In CMS, this option creates a file with file type TRF on your A
disk.

In MVS, this option creates a member of the TRF PDS; that
PDS must have already been allocated. However, creating a
PDS is not necessary if you are only going to use the
documentation file during the current FOCUS session: Window
Painter will temporarily allocate the PDS.

This document contains detailed information about all the
windows in the window file. It shows you the kinds of
windows, their structure and format, and any options you have
assigned from the Window Options Menu, including return and
goto values. The text you enter when prompted for a window
file description or individual window description is part of this
document.

The document is especially useful when creating a FOCEXEC,
since it provides return and goto values in addition to other
information.

Note: If you create another file with the same name, the file is
not overwritten. It is appended.

Designing Windows With Window Painter

9-74 Information Builders

Menu Option Description

Change the file
description

Changes the description of the current window.

Compress the file This utility is provided to help you save space in memory. It
allows space made available by deleted or edited windows to be
reused.

Rename a window When you select this utility, you see a list of the windows in the
current window file. You can change the name of any of these
windows.

Copy a window This function copies a window from one window file to
another, or duplicates it within the same file.

The copy function is useful when you create a new application,
or need to add windows to an existing application, and want the
windows to look like those you have already created. You can
copy any window and edit it to conform to the new application.

Select the start
window

Enables you to choose a default start window. This window is
the first to be entered if a specific window is not selected upon
startup. If a default start window is not explicitly chosen,
FOCUS will select the first window created to be the start
window.

 Transferring Window Files

Developing Applications 9-75

Menu Option Description

Create a transfer
file

Creates a file to be transferred for use with the Window facility
in PC/FOCUS, TSO or another FOCUS environment.

In CMS, this option creates a file with file type TRF on your A
disk.

In MVS, this option creates a member of the TRF PDS; that
PDS must have already been allocated.

Quit the utilities
menu

Returns you to the Main Menu.

Transferring Window Files
If you use FOCUS in more than one operating environment, you can transfer an existing
window file from one environment to be used in another environment. For example, if
you have a fully-developed window application in PC/FOCUS, and you want to develop
a similar application in mainframe FOCUS, you can transfer the PC/FOCUS window file
to mainframe FOCUS; this saves you the trouble of recreating the window file from
scratch in mainframe FOCUS.

You can transfer a window file to a new environment in four simple steps:

1. Create a transfer file from the original window file using Window Painter.

2. Transfer the new file to the new environment using the XFER command.

3. Edit the transferred file in TED, if necessary.

4. Compile the transferred file using the WINDOW COMPILE command.

These steps are described in the following topics.

Designing Windows With Window Painter

9-76 Information Builders

Creating a Transfer File
The window files that you design in Window Painter are compiled files; before a window
file can be transferred to another environment, a user-readable source code version must
be created. This user-readable file is called a transfer file, and is created using the transfer
file option of Window Painter.

• In CMS, this Window Painter option automatically creates a transfer file with a file
type of TRF on your A disk.

• In MVS, this Window Painter option automatically creates a new member of the
PDS allocated to ddname TRF; the PDS must already have been allocated (with
LRECL between 80 and 132 and RECFM FB). However, it is not necessary to create
the PDS if you are only going to use the transfer file during the current FOCUS
session: Window Painter will temporarily allocate the PDS.

• For information about the transfer files created by FOCUS Window Painter in other
operating environments, see the appropriate FOCUS Users Manual for those
environments.

To convert a window file to a transfer file, go to the Window Painter Utilities Menu and
select:

Create a transfer file

You will then be prompted for the name of the new transfer file. Enter any name that you
wish; it can have the same name as the window file, or an entirely new name. In CMS the
name that you enter is the file name; in MVS it is the member name.

Note that you should not give the transfer file a name already assigned to a window
documentation file. Also, you should not give the transfer file a name already assigned to
an existing transfer file unless you want to merge the two files, as described below. See
the appropriate operating environment topic in the Overview and Operating
Environments manual for more information about duplicate window transfer and window
documentation file names.

You will be asked to select which window(s) you want to transfer. You can select

All

to transfer all of the windows in the current window file, or you can select any single
window in the file. This is the last step in creating a transfer file.

Note that you can merge transfer files: if a transfer file already exists for your window
file, and you only need to add a new window to it, you can give the new transfer file the
same name as the old one, and then select the new window. Window Painter will merge
the source code for the new window into the existing file, so that you have a single
complete transfer file.

 Transferring Window Files

Developing Applications 9-77

Transferring the File to the New Environment
Once the transfer file exists, it can be transferred to the new environment using the XFER
command. The XFER command is described in Chapter 6, Enhancing Application
Performance.

Editing the Transfer File
Window facility features introduced in one FOCUS release may not be fully supported in
earlier releases. Because different operating environments may be running different
releases of FOCUS, the transfer file created by the FOCUS Window facility in one
environment may contain features not fully supported by the Window facility in another
environment.

If your transfer file contains Window facility features not fully supported in the new
environment, you may need to remove or fine-tune those features. If, on the other hand,
the new environment supports features not supported in the original environment, you
can add those features to the transfer file. Adding, removing, and fine-tuning features can
be done by simply editing the transfer file.

The Format of the Transfer File
The transfer file is a user-readable source code listing of all of the windows, and their
features, that were included from the original window file. You can remove or fine-tune
an unsupported feature by simply editing or deleting the appropriate line in the transfer
file. You can accomplish this by using TED or any other editor.

Each transfer file contains:

• One set of window file attributes describing the file.

• For each window defined in the file, one set of window attributes describing that
window.

• For each line in each window, one set of attributes describing that line.

Designing Windows With Window Painter

9-78 Information Builders

If any attribute is not specified in the transfer file, it defaults to a value of zero or blank
(depending on whether the value is normally numeric or alphanumeric).

Attribute Description

FILENAME The name of the original window file.

DESCRIPTION A comment field describing the file.

WINDOWNAME The name of the window.

TYPE The type of window:

1. Vertical menu

2. Text input window

3. Text display window

4. Horizontal menu

5. File names window

6. Field names window

7. File contents window

8. Return value display window

9. Execution window

10. Multi-input window

COMMENT A comment field describing the window.

TRANSLATE Type of input for text input windows (Type 2).

0 Allow mixed case input.

1 Allow numeric input only.

2 Translate input to uppercase.

ROW The row number of the upper left corner of the window.

COLUMN The column number of the upper left corner of the window.

HEIGHT The height of the window data (the number of lines of window
data, not the height of the actual window frame).

If there are more data lines than will fit in the window frame,
the PF7 and PF8 keys can scroll the window.

TEXT LINE Position of menu text. Values are: +1, +2, -1, -2.

WIDTH The width of the window frame, not including the border.

 Transferring Window Files

Developing Applications 9-79

Attribute Description

INPUT FIELDS Fields for multi-input windows.

WINDOW The number of lines in the actual window frame (not the
number of lines of window data). This does not include borders.

POPUP Sets the pop-up feature.

0 This will not be a pop-up window.

1 This will be a pop-up window.

Figure 9-1. Transfer File Syntax: Window File Attributes

Attribute Description

BORDER Sets the window border.

0 There will be no window border.

1 There will be a window border.

2 There will be a window border.

Options 1 and 2 both result in a basic window border.

HEADLEN Length of the window heading. If this value is 0, there will be
no heading.

RETURN Sets the line break feature for use with return value display
windows.

0 Line break will not be used.

1 New line before this return value.

2 New line after this return value.

3 New line before and after this value.

MULTI Sets the multi-select feature.

0 This will not be a multi-select window.

1 This will be a multi-select window.

HEADING The text of the window heading.

HELP The name of the help window for this window.

HELPFILE The name of the window file that contains the help window.

Designing Windows With Window Painter

9-80 Information Builders

Attribute Description

DISPLAY The name of a window to be displayed at the same time this one
is displayed. There can be up to 16 DISPLAY values for each
window. This attribute is optional.

HIDE The name of a window to be hidden when this one is displayed.
There can be up to 16 HIDE values for each window. This
attribute is optional.

Figure 9-2. Transfer File Syntax: Window Attributes

Attribute Description

DATA A line to be displayed in the window (for example, a menu
choice in a vertical menu Window, or a line of text in a text
display window). The data can include amper variables
(including &windowname).

GOTO The name of the window to go to if this line is selected by the
user. The value can be an amper variable (including
&windowname). If the value is blank, and this line is selected,
Windows will return to Dialogue Manager.

VALUE The return value supplied if this line is selected by the user.
This value will be placed in the amper variable &windowname,
where windowname is the name of the window.

For file names windows (TYPE = 5), this is the file selection
criteria (including asterisks) of the file names to be displayed.

For field names windows (TYPE = 6), this is the name of the
Master File whose fields will be displayed.

For file contents windows (TYPE = 7), this is the name of the
file whose contents are to be displayed.

Figure 9-3. Transfer File Syntax: Window Line Attributes

 Transferring Window Files

Developing Applications 9-81

Operating Environment Considerations
When you transfer a window file to a mainframe operating environment from a different
environment, differences in hardware and operating software may require that you make
changes to the file. These changes are discussed below.

• Screen position. Windows should not begin in row 1 or in column 1. If you transfer
a window with these row or column positions, truncation will occur. Adjust the
ROW and COLUMN attributes if necessary.

• Screen size. Windows should not have more than 22 rows or 77 columns. Windows
that extend beyond the end of the terminal screen will automatically be truncated
without any warning message.

This is important to note if you are transferring a window file from an environment
where the screen size differs from that in the mainframe environment. Adjust the
ROW and COLUMN attributes if necessary.

• Window Position. Column 1 of vertical menu, horizontal menu, multi-input and text
display windows cannot be used. Window text must begin to the right of column 1.

• Function keys. Windows transferred from other environments may refer to function
keys not present in the mainframe environment. Change function key references if
necessary.

• Blank lines. Are acknowledged by Window Painter.

• Colors and Border Types. The use of colored windows and background and
multiple border types is not supported.

• File Naming Conventions. File naming conventions differ in different operating
environments. When transferring a file from some environments, the Window
facility will automatically translate references to FOCEXECs, Master Files, and error
files, as shown below. You must change other file references yourself when you edit
the transfer file.

PC or UNIX Extension Mainframe File Type or ddname

.FEX FOCEXEC

.MAS MASTER

.ERR ERRORS

Designing Windows With Window Painter

9-82 Information Builders

Example Sample Transfer File
To illustrate the transfer file format, part of the transfer file for the SAMPLE window file
is shown below (SAMPLE is described in the tutorial). The MAIN and EXECNAME
windows from the file are included in the example.

FILENAME=SAMPLE
DESCRIPTION='Sample file for windows tutorial'
WINDOWNAME=MAIN,TYPE=1
COMMENT='User can report, graph, or exit.'
ROW= 6,COLUMN=23,HEIGHT= 7,WIDTH=38,WINDOW= 7,POPUP= 0,BORDER= 2,HEADLEN=28
RETURN=0
MULTI=0
HEADING='Would you like to:'
DATA=' '
$
DATA=' Create a report?'
GOTO='EXECTYPE',VALUE='RPT '
$
DATA=' '
$
DATA=' Create a graph?'
GOTO='EXECTYPE',VALUE='GRPH'
$
DATA=' '
$
DATA=' Exit?'
GOTO=' ',VALUE='XXIT'
$
DATA=' '
$
DISPLAY=BORDER ,$
DISPLAY=BANNER ,$
WINDOWNAME=EXECNAME,TYPE=5
COMMENT='Select an existing FOCEXEC from list.'
ROW= 4,COLUMN=11,HEIGHT=11,WIDTH=57,WINDOW=11,POPUP= 0,BORDER=
2,HEADLEN=55,
RETURN=0
MULTI=0
HEADING='Select the request you want to execute and press ENTER:'
DATA=' '
GOTO=' ',VALUE='* FOCEXEC'
$
DISPLAY=BORDER,$
HIDE=BANNER,$
HIDE=MAIN,$
HIDE=EXECTYPE,$

 Transferring Window Files

Developing Applications 9-83

Compiling the Transfer File
The transfer file can be executed in its current format, but it may execute slowly, and it
will use a large amount of memory. You can make your window application more
efficient, requiring less time and memory for execution, by compiling it.

You can compile a transfer file using the WINDOW COMPILE command. This produces
a new compiled window file, in the same format as the window files produced by
Window Painter.

Note that before you can issue this command in MVS, a PDS with LRECL 4096 and
RECFM F must have already been allocated to ddname FMU. However, you do not need
to create this PDS if you are only going to use the transfer file during the current FOCUS
session: Window Painter will temporarily allocate the PDS.

Syntax How to Compile a Transfer File
WINDOW COMPILE windowfile

where:

windowfile

Is the name of the transfer file.

In CMS, this must be the file name of a file with file type TRF.

The command will create a new file with the file name specified in the command,
and a file type of FMU, on the A disk. Once it has been created, you can move the
file to any disk you wish.

In MVS, this must be a member name of a member of a PDS allocated to ddname
TRF.

The command will create a new member of the PDS allocated to ddname FMU, with
the same member name specified in the command.

When a Dialogue Manager -WINDOW command is encountered in a FOCEXEC,
FOCUS will search for a compiled window file (an FMU file) with the specified file
name. If the compiled file is not found, the transfer file (TRF file) with the same file
name will be used.

Note that if you compile a transfer file and later make changes to it, you will need to
recompile the updated transfer file: otherwise, FOCUS will continue to use the older,
unchanged compiled file.

Developing Applications A-1

APPENDIX A

Master Files and Diagrams

Topics:

• Creating Sample Data Sources

• The EMPLOYEE Data Source

• The JOBFILE Data Source

• The EDUCFILE Data Source

• The SALES Data Source

• The PROD Data Source

• The CAR Data Source

• The LEDGER Data Source

• The FINANCE Data Source

• The REGION Data Source

• The COURSES Data Source

• The EMPDATA Data Source

• The EXPERSON Data Source

• The TRAINING Data Source

• The PAYHIST File

• The COMASTER File

• The VideoTrk and MOVIES Data
Sources

• The VIDEOTR2 Data Source

• The Gotham Grinds Data Sources

This appendix contains data source descriptions and structure
diagrams for the examples used throughout the documentation.

Master Files and Diagrams

A-2 Information Builders

Creating Sample Data Sources
You can create the sample data sources on your user ID by executing the procedures
specified below. These FOCEXECs are supplied with FOCUS. If they are not available
to you or if they produce error messages, contact your systems administrator.

To create these files, first make sure you have read access to the Master Files.

Data Source Load Procedure Name

EMPLOYEE,
EDUCFILE, and
JOBFILE

Under CMS enter:

EX EMPTEST

Under MVS, enter:

EX EMPTSO

These FOCEXECs also test the data sources by generating
sample reports. If you are using Hot Screen, remember to press
either Enter or the PF3 key after each report. If the
EMPLOYEE, EDUCFILE, and JOBFILE data sources already
exist on your user ID, the FOCEXEC will replace the data
sources with new copies. This FOCEXEC assumes that the
high-level qualifier for the FOCUS data sources will be the
same as the high-level qualifier for the MASTER PDS that was
unloaded from the tape.

SALES
PROD

EX SALES
EX PROD

CAR none (created automatically during installation)

LEDGER
FINANCE
REGION
COURSES
EXPERSON

EX LEDGER
EX FINANCE
EX REGION
EX COURSES
EX EXPERSON

EMPDATA
TRAINING

EX LOADEMP
EX LOADTRAI

PAYHIST none (PAYHIST DATA is a sequential data source and is
allocated during the installation process)

COMASTER none (COMASTER is used for debugging other Master Files)

VideoTrk and
MOVIES

EX LOADVTRK

VIDEOTR2 EX LOADVID2

Gotham Grinds EX LOADGG

 The EMPLOYEE Data Source

Developing Applications A-3

The EMPLOYEE Data Source
The EMPLOYEE data source contains data about a company’s employees. Its segments
are:

• EMPINFO, which contains employee IDs, names, and positions.

• FUNDTRAN, which specifies employees’ direct deposit accounts. This segment is
unique.

• PAYINFO, which contains the employee’s salary history.

• ADDRESS, which contains employees’ home and bank addresses.

• SALINFO, which contains data on employees’ monthly pay.

• DEDUCT, which contains data on monthly pay deductions.

The EMPLOYEE data source also contains cross-referenced segments belonging to the
JOBFILE and EDUCFILE files, described later in this appendix. The segments are:

• JOBSEG (from JOBFILE), which describes the job positions held by each employee.

• SECSEG (from JOBFILE), which lists the skills required by each position.

• SKILLSEG (from JOBFILE), which specifies the security clearance needed for each
job position.

• ATTNDSEG (from EDUCFILE), which lists the dates that employees attended
in-house courses.

• COURSEG (from EDUCFILE), which lists the courses that the employees attended.

Master Files and Diagrams

A-4 Information Builders

The EMPLOYEE Master File

 The EMPLOYEE Data Source

Developing Applications A-5

The EMPLOYEE Structure Diagram
 STRUCTURE OF FOCUS FILE EMPLOYEE ON 09/15/00 AT 10.16.27

 EMPINFO

 01 S1

 *EMP_ID **

 *LAST_NAME **

 *FIRST_NAME **

 *HIRE_DATE **

 * **

 I

 +-----------------+-----------------+-----------------+-----------------+

 I I I I I

 I FUNDTRAN I PAYINFO I ADDRESS I SALINFO I ATTNDSEG

 02 I U 03 I SH1 07 I S1 08 I SH1 10 I KM

 ************** ************** ************** **************

 *BANK_NAME * *DAT_INC ** *TYPE ** *PAY_DATE ** :DATE_ATTEND ::

 *BANK_CODE * *PCT_INC ** *ADDRESS_LN1 ** *GROSS ** :EMP_ID ::K

 *BANK_ACCT * *SALARY ** *ADDRESS_LN2 ** * ** : ::

 *EFFECT_DATE * *JOBCODE ** *ADDRESS_LN3 ** * ** : ::

 * * * ** * ** * ** : ::

 ************** *************** *************** *************** :............::

 ************** ************** ************** :

 I I I EDUCFILE

 I I I

 I I I

 I JOBSEG I DEDUCT I COURSEG

 04 I KU 09 I S1 11 I KLU

 **************

 :JOBCODE :K *DED_CODE ** :COURSE_CODE :

 :JOB_DESC : *DED_AMT ** :COURSE_NAME :

 : : * ** : :

 : : * ** : :

 : : * ** : :

 :............: *************** :............:

 I JOBFILE ************** EDUCFILE

 I

 +-----------------+

 I I

 I SECSEG I SKILLSEG

 05 I KLU 06 I KL

 :SEC_CLEAR : :SKILLS ::

 : : :SKILL_DESC ::

 : : : ::

 : : : ::

 : : : ::

 :............: :............::

 JOBFILE :

 JOBFILE

Master Files and Diagrams

A-6 Information Builders

The JOBFILE Data Source
The JOBFILE data source contains information on a company’s job positions. Its
segments are:

• JOBSEG describes what each position is. The field JOBCODE in this segment is
indexed.

• SKILLSEG lists the skills required by each position.

• SECSEG specifies the security clearance needed, if any. This segment is unique.

The JOBFILE Master File

The JOBFILE Structure Diagram

 The EDUCFILE Data Source

Developing Applications A-7

The EDUCFILE Data Source
The EDUCFILE data source contains data on a company’s in-house courses. Its segments
are:

• COURSEG contains data on each course.

• ATTNDSEG specifies which employees attended the courses. Both fields in the
segment are key fields. The field EMP_ID in this segment is indexed.

The EDUCFILE Master File

The EDUCFILE Structure Diagram

Master Files and Diagrams

A-8 Information Builders

The SALES Data Source
The SALES data source records sales data for a dairy company (or a store chain). Its
segments are:

• STOR_SEG lists the stores buying the products.

• DAT_SEG contains the dates of inventory.

• PRODUCT contains sales data for each product on each date. Note the following
about fields in this segment:

• The PROD_CODE field is indexed.

• The RETURNS and DAMAGED fields have the MISSING=ON attribute.

The SALES Master File

 The SALES Data Source

Developing Applications A-9

The SALES Structure Diagram

Master Files and Diagrams

A-10 Information Builders

The PROD Data Source
The PROD data source lists products sold by a dairy company. It consists of one
segment, PRODUCT. The field PROD_CODE is indexed.

The PROD Master File

The PROD Structure Diagram

 The CAR Data Source

Developing Applications A-11

The CAR Data Source
The CAR data source contains specifications and sales information for rare cars. Its
segments are:

• ORIGIN lists the country that manufactures the car. The field COUNTRY is
indexed.

• COMP contains the car name.

• CARREC contains the car model.

• BODY lists the body type, seats, dealer and retail costs, and units sold.

• SPECS lists car specifications. This segment is unique.

• WARANT lists the type of warranty.

• EQUIP lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

The CAR Master File

Master Files and Diagrams

A-12 Information Builders

The CAR Structure Diagram

 The LEDGER Data Source

Developing Applications A-13

The LEDGER Data Source
The LEDGER data source lists accounting information. It consists of one segment, TOP.
This data source is specified primarily for FML examples. Aliases do not exist for the
fields in this Master File, and the commas act as placeholders.

The LEDGER Master File

 The LEDGER Structure Diagram

Master Files and Diagrams

A-14 Information Builders

The FINANCE Data Source
The FINANCE data source contains financial information for balance sheets. It consists
of one segment, TOP. This data source is specified primarily for FML examples. Aliases
do not exist for the fields in this Master File, and the commas act as placeholders.

The FINANCE Master File

The FINANCE Structure Diagram

 The REGION Data Source

Developing Applications A-15

The REGION Data Source
The REGION data source lists account information for the east and west regions of the
country. It consists of one segment, TOP. This data source is specified primarily for FML
examples. Aliases do not exist for the fields in this Master File, and the commas act as
placeholders.

The REGION Master File

The REGION Structure Diagram

Master Files and Diagrams

A-16 Information Builders

The COURSES Data Source
The COURSES data source describes education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

The COURSES Master File

The COURSES Structure Diagram

 The EMPDATA Data Source

Developing Applications A-17

The EMPDATA Data Source
The EMPDATA data source contains organizational data about a company’s employees.
It consists of one segment, EMPDATA. Note the following:

• The PIN field is indexed.

• The AREA field is a temporary one.

The EMPDATA Master File

The EMPDATA Structure Diagram

Master Files and Diagrams

A-18 Information Builders

The EXPERSON Data Source
The EXPERSON data source contains personal data about individual employees. It
consists of one segment, ONESEG.

The EXPERSON Master File

The EXPERSON Structure Diagram

 The TRAINING Data Source

Developing Applications A-19

The TRAINING Data Source
The TRAINING data source contains training course data for employees. It consists of
one segment, TRAINING. Note the following:

• The PIN field is indexed.

• The EXPENSES, GRADE, and LOCATION fields have the MISSING=ON
attribute.

The TRAINING Master File

The TRAINING Structure Diagram

Master Files and Diagrams

A-20 Information Builders

The PAYHIST File
The PAYHIST data source contains the employees’ salary history. It consists of one
segment, PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format
sequential file.

The PAYHIST Master File

The PAYHIST Structure Diagram

 The COMASTER File

Developing Applications A-21

The COMASTER File
The COMASTER file is used to display the file structure and contents of each segment in
a data source. Since COMASTER is used for debugging other Master Files, a
corresponding FOCEXEC does not exist for the COMASTER file. Its segments are:

• FILEID lists file information.

• RECID lists segment information.

• FIELDID lists field information.

• DEFREC lists a description record.

• PASSREC lists read/write access.

• CRSEG lists cross-reference information for segments.

• ACCSEG lists DBA information.

Master Files and Diagrams

A-22 Information Builders

The COMASTER Master File

 The COMASTER File

Developing Applications A-23

The COMASTER Structure Diagram

Master Files and Diagrams

A-24 Information Builders

The VideoTrk and MOVIES Data Sources
The VideoTrk data source tracks customer, rental, and purchase information for a video
rental business. It can be joined to the MOVIES data source. VideoTrk and MOVIES are
used in examples that illustrate the use of the Maintain facility.

VideoTrk Master File
FILENAME=VIDEOTRK, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

MOVIES Master File
FILENAME=MOVIES, SUFFIX=FOC
SEGNAME=MOVINFO, SEGTYPE=S1
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
 FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
 FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
 FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
 FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
 FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
 FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
 FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

 The VideoTrk and MOVIES Data Sources

Developing Applications A-25

VideoTrk Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/21/99 AT 12.25.19

 CUST
 01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

 I
 I
 I
 I TRANSDAT
 02 I SH1

*TRANSDATE **
* **
* **
* **
* **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
 ************** **************

Master Files and Diagrams

A-26 Information Builders

MOVIES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE MOVIES ON 05/21/99 AT 12.26.05

 MOVINFO
 01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

The VIDEOTR2 Data Source
The VIDEOTR2 data source tracks customer, rental, and purchase information for a
video rental business. It is similar to VideoTrk but is a partitioned data source with both
a Master and Access File and with a date-time field.

The VIDEOTR2 Master File
FILENAME=VIDEOTR2, SUFFIX=FOC,
ACCESS=VIDEOACX, $
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
 FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $
 DEFINE DATE/I4 = HPART(TRANSDATE, 'YEAR', 'I4');

 The VIDEOTR2 Data Source

Developing Applications A-27

The VIDEOTR2 Access File
On CMS,

MASTER VIDEOTR2
 DATANAME 'VIDPART1 FOCUS A'
 WHERE DATE EQ 1991;

 DATANAME 'VIDPART2 FOCUS A'
 WHERE DATE FROM 1996 TO 1998;

 DATANAME 'VIDPART3 FOCUS A'
 WHERE DATE FROM 1999 TO 2000;

On MVS, the data set names include your user ID as the high-level qualifier:

MASTER VIDEOTR2
 DATANAME userid.VIDPART1.FOCUS
 WHERE DATE EQ 1991;

 DATANAME userid.VIDPART2.FOCUS
 WHERE DATE FROM 1996 TO 1998;

 DATANAME userid.VIDPART2.FOCUS
 WHERE DATE FROM 1999 TO 2000;

Master Files and Diagrams

A-28 Information Builders

The VIDEOTR2 Structure Diagram
 STRUCTURE OF FOCUS FILE VIDEOTR2 ON 09/27/00 AT 16.45.48

 CUST
 01 S1

 *CUSTID **
 *LASTNAME **
 *FIRSTNAME **
 *EXPDATE **
 * **

 I
 I
 I
 I TRANSDAT
 02 I SH1

 *TRANSDATE **
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
 ************** **************
 *TRANSCODE ** *MOVIECODE **I
 *QUANTITY ** *COPY **
 *TRANSTOT ** *RETURNDATE **
 * ** *FEE **
 * ** * **
 *************** ***************
 ************** **************

 The Gotham Grinds Data Sources

Developing Applications A-29

The Gotham Grinds Data Sources
Gotham Grinds is a group of data sources that contain information about a specialty items
company.

The GGDEMOG Data Source
The GGDEMOG data source contains demographic information about the customers of
Gotham Grinds, a company that sells specialty items like coffee, gourmet snacks, and
gifts. It consists of one segment, DEMOG01.

The GGDEMOG Master File

Master Files and Diagrams

A-30 Information Builders

The GGDEMOG Structure Diagram

The GGORDER Data Source
The GGORDER data source contains order information for Gotham Grinds. It consists of
two segments, ORDER01 and ORDER02, respectively.

The GGORDER Master File

 The Gotham Grinds Data Sources

Developing Applications A-31

The GGORDER Structure Diagram

The GGPRODS Data Source
The GGPRODS data source contains product information for Gotham Grinds. It consists
of one segment, PRODS01.

The GGPRODS Master File

Master Files and Diagrams

A-32 Information Builders

The GGPRODS Structure Diagram

The GGSALES Data Source
The GGSALES data source contains sales information for Gotham Grinds. It consists of
one segment, SALES01.

The GGSALES Master File

 The Gotham Grinds Data Sources

Developing Applications A-33

The GGSALES Structure Diagram

The GGSTORES Data Source
The GGSTORES data source contains information for each of Gotham Grinds’ 12 stores
in the United States. It consists of one segment, STORES01.

The GGSTORES Master File

Master Files and Diagrams

A-34 Information Builders

The GGSTORES Structure Diagram

Developing Applications B-1

APPENDIX B

Error Messages

Topics:

• Accessing Error Files

• Displaying Messages Online

If you need to see the text or explanation for any error message,
you can display it online in your FOCUS session or find it in a
standard FOCUS ERRORS file. All of the FOCUS error
messages are stored in eight system ERRORS files.

Error Messages

B-2 Information Builders

Accessing Error Files
For CMS, the ERRORS files are:

• FOT004 ERRORS

• FOG004 ERRORS

• FOM004 ERRORS

• FOS004 ERRORS

• FOA004 ERRORS

• FSQLXLT ERRORS

• FOCSTY ERRORS

• FOB004 ERRORS

For MVS, these files are the following members in the ERRORS PDS:

• FOT004

• FOG004

• FOM004

• FOS004

• FOA004

• FSQLXLT

• FOCSTY

• FOB004

 Displaying Messages Online

Developing Applications B-3

Displaying Messages Online
To display a message online, issue the following query command at the FOCUS
command level

? n

where n is the message number.

The message number and text will display along with a detailed explanation of the
message (if one exists). For example, issuing the following command:

? 210

displays the following

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:

An alphabetic character has been found where all numerical digits are
required.

Developing Applications C-1

APPENDIX C

Creating Your Own Subroutines

Topics:

• Process Overview

• Considerations for Writing Subroutines

• Compilation and Storage

• Testing the Subroutine

• Example of a Custom Subroutine: The
MTHNAM Subroutine

• Subroutines Written in REXX

This topic discusses how to create your own private
collection of subroutines to use with FOCUS.

Creating Your Own Subroutines

C-2 Information Builders

Process Overview
The process of creating a subroutine involves four steps:

1. Write the subroutine for FOCUS the same way you would for a program. Use any
language that supports subroutine calls; among the most common languages are
FORTRAN, COBOL, PL/I, Assembler, and C.

2. Store the subroutine in a separate file; do not include it in the main program.

3. Compile the subroutine. In MVS, link-edit it; in CMS, add the subroutine to a load
library using the GENSUBLL command.

4. Test the subroutine; specify it in a FOCUS command, report request, or procedure.

For example, suppose you write a program named INTCOMP that calculates the amount
of money in an account earning simple interest. The program reads a record, tests if the
data is acceptable, and then calls a subroutine called SIMPLE that computes the amount
of money. The program and the subroutine are stored together in the same file.

The program and the subroutine shown here are written in pseudocode (a method of
representing computer code in a general way):

Begin program INTCOMP.
Execute this loop until end-of-file.

Read next record, fields: PRINCPAL, DATE_PUT, YRRATE.
If PRINCPAL is negative or greater than 100,000,

reject record.
If DATE_PUT is before January 1, 1975, reject record.
If YRRATE is negative or greater than 20%, reject record.
Call subroutine SIMPLE (PRINCPAL, DATE_PUT, YRRATE, TOTAL).
Print PRINCPAL, YEARRATE, TOTAL.

End of loop.
End of program.

Subroutine SIMPLE (AMOUNT, DATE, RATE, RESULT).
Retrieve today's date from the system.
Let NO_DAYS = Days from DATE until today's date.
Let DAY_RATE = RATE / 365 days in a year.
Let RESULT = AMOUNT * (NO_DAYS * DAY_RATE + 1).
End of subroutine.

If you move the SIMPLE subroutine into a file separate from the main program and
compile it, you can call the subroutine from FOCUS. The following report request shows
how much money employees would accrue if they invested their salaries in accounts
paying 12%:

TABLE FILE EMPLOYEE
PRINT LAST_NAME DAT_INC SALARY AND COMPUTE

INVESTED/D10.2 = SIMPLE (SALARY, DAT_INC, 0.12, INVESTED);
BY EMP_ID
END

 Considerations for Writing Subroutines

Developing Applications C-3

Note: The subroutine is designed to return only the amount of the investment, not today’s
date. This is because a subroutine can return only a single value to FOCUS each time it is
called.

Considerations for Writing Subroutines
When you write a subroutine for FOCUS, there are requirements and limits that you need
to consider. The topic provides information about:

• Naming conventions

• Argument considerations

• Programming considerations

• Language considerations

• A programming technique that uses entry points. Entry points enable you to use one
algorithm to produce different results.

• A programming technique that allows multiple subroutine calls. Multiple calls enable
the subroutine to process more than 28 arguments.

Naming Conventions
The subroutine name may consist of up to eight characters, unless the language you are
using to write the subroutine supports a shorter naming convention. Each character can be
a letter or number. The first character of the name must be a letter (A-Z). Special symbols
are not permitted.

Argument Considerations
When you create your arguments, consider these points:

• The argument maximum. Subroutine calls in FOCUS may contain up to 28
arguments. However, you can bypass this restriction if you create a subroutine that
accepts multiple calls, as described in Programming Technique: Subroutines With
More Than 28 Arguments on page C-9.

• Types of arguments. Subroutine calls can serve as arguments in other subroutine
calls or in FOCUS functions. For types of acceptable arguments and rules, see
Chapter 3, Using Functions and Subroutines.

• Input arguments. FOCUS passes input arguments to subroutines using standard
conventions. Register 1 points to the list of argument addresses. Each address is a full
word.

Creating Your Own Subroutines

C-4 Information Builders

• Output arguments. Subroutines may return only one output argument to the FOCUS
request. Place this argument last in the subroutine argument list. You can choose any
format for the output argument except in Dialogue Manager statements.

• Internal processing. When you specify values for arguments and FOCUS passes the
arguments to a subroutine,

• Alphanumeric arguments remain unchanged.

• Numeric arguments are converted to 8-byte, double-precision data (except in
-CMS RUN and -MVS RUN statements and amper variables, as discussed
below).

Various languages represent double-precision fields as declarations:

Language Declaration

Assembler DS, D

C Double

COBOL COMP-2

FORTRAN REAL*8

PL/I DECIMAL FLOAT (16)

• Dialogue Manager requirements. If you are writing a subroutine specifically for
Dialogue Manager, you may need to code your subroutine to perform conversion for
these situations:

• Operating system -RUN statements. FOCUS passes all arguments from -CMS
RUN, -TSO RUN, and -MVS RUN statements as alphanumeric data. If your
subroutine requires numeric arguments, you may choose to have your subroutine
convert these arguments into numeric format. Otherwise, the user can use the
ATODBL subroutine to convert the arguments into double-precision format
before passing them to the subroutine. The ATODBL subroutine is described in
Chapter 3, Using Functions and Subroutines.

• Operating system -RUN statements and output argument format. If the
subroutine is called from a -CMS or -TSO RUN statement, the output argument
is stored in the output variable in numeric format. Since FOCUS cannot interpret
data stored in Dialogue Manager variables in numeric format, the data is
unreadable. To prevent this, have your subroutine convert the output value into a
character string.

 Considerations for Writing Subroutines

Developing Applications C-5

• -SET and output argument format. If the output argument is in numeric format,
the -SET statement truncates the output value to an integer, converts it to a
character string, and stores the value in a specified amper variable. To prevent
this, have your subroutine convert the output value into a character string. This
enables the numeric value to be passed to Dialogue Manager without being
truncated to an integer.

Programming Considerations
When you plan your programming requirements, consider these points:

• Write the subroutine as a proper subroutine, not as a function.

• If the subroutine initializes variables, it must initialize them each time it is executed
(serial reusability).

• Since a single FOCUS request may execute a subroutine hundreds or even thousands
of times, code the subroutine as efficiently as possible.

• If you create your own subroutines in text files or text libraries, the subroutine must
be 31-bit addressable.

Language Considerations
Language considerations include:

• Available memory.

If you write the subroutine in a language that brings libraries into memory (for
example, FORTRAN and COBOL), the libraries reduce the amount of memory
available to the subroutine.

• FORTRAN input/output operations (I/O).

In CMS, FOCUS does not support FORTRAN input/output operations. If a
subroutine written in FORTRAN must read or write data, write the I/O portions in a
separate subroutine in another language.

In MVS/TSO, FOCUS does support FORTRAN input/output operations.

• PL/I notes:

• Do not use the RETURNS attribute.

• Include the following attribute in the procedure (PROC) statement:

OPTIONS (COBOL)

Creating Your Own Subroutines

C-6 Information Builders

• Declare alphanumeric arguments received from FOCUS requests as

CHARACTER (n)

where n is the field length as defined by the FOCUS request. Do not use the
VARYING attribute.

• Declare numeric arguments received from FOCUS requests as

DECIMAL FLOAT (16)

or

BINARY FLOAT (53)

• The format of the output argument to be returned to the FOCUS request depends
on how the format is described in the DEFINE or COMPUTE commands:

FOCUS Format PL/I Declaration
An CHARACTER (n) (Do not use the VARYING attribute.)
I BINARY FIXED (31)
F DECIMAL FLOAT (6) or BINARY FLOAT (21)
D DECIMAL FLOAT (16) or BINARY FLOAT (53)
P DECIMAL FIXED (15) (for small packed numbers, 8

bytes)

DECIMAL FIXED (31) (for large packed numbers, 16
bytes)

• Declare variables that are not arguments with the STATIC attribute. This avoids
dynamically allocating these variables every time the subroutine is executed.

 Considerations for Writing Subroutines

Developing Applications C-7

• C language notes:

• Do not return a value with the return statement.

• Declare double-precision fields as ‘double’.

• The format of the output parameter to be returned to the FOCUS request
depends on how the format is defined in the request, as shown by the chart
below:

FOCUS Format C Declaration
An char *xxx n

(Note: Alphabetical fields are not terminated with a
null byte and, therefore, cannot be processed by
many of the string manipulation subroutines in the
run-time library.)

I long *xxx
F float *xxx
D double *xxx
P No equivalent in C.

Programming Technique: Entry Points
Normally, subroutines are executed starting from their first statement. However, they can
be executed starting from any place in their code if you designate that place as an entry
point. (How you designate entry points depends on the language you are using.) Each
entry point has a name.

To execute a subroutine at an entry point, specify the entry name in the subroutine call
instead of the subroutine name. The general syntax is:

{subroutine|entrypoint} (input1, input2,...{'format'|outfield})

Entry points enable a subroutine to use one basic algorithm to produce different results.
For example, the DOWK subroutine calculates the days of the week on which dates fall.
When you specify the subroutine name DOWK, you obtain a 3-letter abbreviation of the
day. If you specify the entry name DOWKL, you obtain the full name. The calculation,
however, is the same.

Creating Your Own Subroutines

C-8 Information Builders

Entry Point Example
This example illustrates how entry points work. The FTOC subroutine, written in
pseudocode below, converts Fahrenheit temperatures to Centigrade. The entry point
FTOK (designated by the Entry statement) sets a flag that causes 273 to be subtracted
from the Centigrade temperature (Kelvin temperature). The subroutine is:

Subroutine FTOC (FAREN, CENTI).
Let FLAG = 0.
Go to label X.
Entry FTOK (FAREN, CENTI).
Let FLAG = 1.
Label X.
Let CENTI = (5/9) * (FAREN - 32).
If FLAG = 1 then CENTI = CENTI - 273.
Return.
End of subroutine.

Here is a shorter way to write the subroutine. Notice that the kelv output argument listed
for the entry point is different from the centi output argument listed at the beginning of
the subroutine:

Subroutine FTOC (FAREN, CENTI).
Entry FTOK (FAREN, KELV).
Let CENTI = (5/9) * (FAREN - 32).
KELV = CENTI - 273.
Return.
End of Subroutine.

To obtain the Centigrade temperature, specify the subroutine name FTOC in the
subroutine call. For example:

CENTIGRADE/D6.2 = FTOC (TEMPERATURE, CENTIGRADE);

To obtain the Kelvin temperature, specify the entry name FTOK in the subroutine call.
For example:

KELVIN/D6.2 = FTOK (TEMPERATURE, KELVIN);

Note: In CMS, subroutines can be executed from their entry points only if the subroutines
are stored in libraries. You must specify these libraries in the GLOBAL command, as
described in CMS: Compilation and Storage on page C-13.

 Considerations for Writing Subroutines

Developing Applications C-9

Programming Technique: Subroutines With More Than 28
Arguments

Subroutine call syntax cannot specify more than 28 arguments, including the output
argument. To process more than 28 arguments, you must write the subroutine so that the
user can specify two or more call statements to pass the arguments to the subroutine.

We recommend the following technique for writing subroutines with multiple call
statements:

1. Divide the subroutine into segments. Each segment will receive the arguments passed
by one corresponding subroutine call.

The argument list in the beginning of your subroutine must represent the same
number of arguments in the subroutine call, including a call number argument and an
output argument.

You may process some of the arguments as dummy arguments if you have an unequal
number of arguments. For example, if you divide 32 arguments among six segments,
the each segment processes six arguments; the sixth segment processes two
arguments and four dummy arguments.

2. Include a statement at the beginning of the subroutine that reads the call number (first
argument) and branches to a corresponding segment. Each segment processes the
arguments from one call. (For example, number 1 branches to the first segment,
number 2 to the second segment, and so on.)

3. Have each segment store the arguments it receives in other variables (which can be
processed by the last segment) or accumulate them in a running total.

End each segment with a statement returning control back to the FOCUS request
(RETURN statement).

4. The last segment returns the final output value to the FOCUS request.

The following sample of pseudocode illustrates the four steps:

1. Subroutine name (num, input1, input2, input3, input4, outfield).
2. If NUM is 1 then goto label ONE

else goto label TWO.

Label ONE.
3. Let variable = input1 + input2.

Return.

4. Label TWO
LET outfield = variable + input3 + input4
Return
End of subroutine

Note: You can also use the entry point technique, described in Programming Technique:
Entry Points on page C-7, to write subroutines that process more than 28 arguments.

Creating Your Own Subroutines

C-10 Information Builders

Syntax How to Use Subroutines With Multiple Call Statements
To use a subroutine that requires more than 28 arguments, you must specify two or more
call statements to pass the arguments to the subroutine.

The syntax for calling a subroutine with multiple call statements is

dummy = subroutine (1, group1, dummy);
dummy = subroutine (2, group2, dummy);

.

.

.
outfield = subroutine (n, groupn, outfield);

where:

dummy

Is either the name of a dummy field or its format, enclosed in single quotation marks.
It must have the same format as the outfield argument.
Note: Do not specify the dummy argument for the last call statement; use the outfield
argument.

subroutine

Is the name of the subroutine, up to eight characters long, depending on your
programming language.

n

Is a number that identifies each subroutine call. It must be the first argument in each
subroutine call. The subroutine uses this call number to branch to segments of code.

group1...

Are lists of input arguments passed by each subroutine call. Each group contains the
same number of arguments, but no more than 26 arguments.
26 + call number + output =28

outfield

Is the output field that contains the value returned by the subroutine. It is the
fieldname of the field that contains the output or the format of the output value,
enclosed in single quotation marks, depending on the application. It is last argument
in the last call.

Note:

• Each subroutine call contains the same number of arguments. This is because the
argument list in each call must correspond to the argument list in the beginning of the
subroutine. The last call may contain several dummy arguments.

• Subroutines may require additional arguments as determined by the programmer who
created the subroutine.

 Considerations for Writing Subroutines

Developing Applications C-11

Example Creating a Subroutine With 32 Input Arguments
This example illustrates how to create a subroutine with 32 input arguments using the
recommended technique. It also shows how the subroutine is specified in a DEFINE
command.

The ADD32 subroutine, written in pseudocode, sums 32 numbers. It is divided into six
segments, each of which adds six numbers from a subroutine call. (The total number of
input arguments is 36 but the last four are dummy arguments.) The sixth segment adds
two arguments to the SUM variable and returns the final output value. The sixth segment
does not process any values supplied for the four dummy arguments.

The subroutine is:

Subroutine ADD32 (NUM, A, B, C, D, E, F, TOTAL).
If NUM is 1 then goto label ONE
else if NUM is 2 then goto label TWO
else if NUM is 3 then goto label THREE
else if NUM is 4 then goto label FOUR
else if NUM is 5 then goto label FIVE
else goto label SIX.

Label ONE.
Let SUM = A + B + C + D + E + F.
Return.

Label TWO
Let SUM = SUM + A + B + C + D + E + F
Return

Label THREE
Let SUM = SUM + A + B + C + D + E + F
Return

Label FOUR
Let SUM = SUM + A + B + C + D + E + F
Return

Label FIVE
Let SUM = SUM + A + B + C + D + E + F
Return

Label SIX
LET TOTAL = SUM + A + B
Return
End of subroutine

Creating Your Own Subroutines

C-12 Information Builders

To use the ADD32 subroutine, list all six call statements; each call specifying six
numbers. The last four numbers, represented by zeroes, are dummy arguments. In this
example, the DEFINE command stores the total of the 32 numbers in the SUM32 field.

DEFINE FILE EMPLOYEE
DUMMY/D10 = ADD32 (1, 5, 7, 13, 9, 4, 2, DUMMY);
DUMMY/D10 = ADD32 (2, 5, 16, 2, 9, 28, 3, DUMMY);
DUMMY/D10 = ADD32 (3, 17, 12, 8, 4, 29, 6, DUMMY);
DUMMY/D10 = ADD32 (4, 28, 3, 22, 7, 18, 1, DUMMY);
DUMMY/D10 = ADD32 (5, 8, 19, 7, 25, 15, 4, DUMMY);
SUM32/D10 = ADD32 (6, 3, 27, 0, 0, 0, 0, SUM32);
END

Compilation and Storage
Once you have written your subroutine, you need to compile and store it. This topic
discusses compiling and storing your subroutine for CMS and MVS.

CMS: Compilation and Storage
On CMS, compile the subroutine and use the GENSUBLL command to add the compiled
object code to a load library (filetype LOADLIB). Enter:

GENSUBLL ?

to display for online information about the command. Do not store subroutine in the
FUSELIB load library (FUSELIB LOADLIB), as it may be overwritten when your site
installs the next release of FOCUS.

You may also compile the subroutine and store the compiled object code either as a text
file (filetype TEXT), or as a member in a text library (filetype TXTLIB). Do not store it
in the FUSELIB text library (FUSELIB TXTLIB), as it may be overwritten when your
site installs the next release of FOCUS.

Individual text files are easier to maintain and control. Text libraries, on the other hand,
enable you to build different entry points into the subroutine (as shown in Programming
Technique: Entry Points on page C-7). Note that there are two CMS commands regarding
text libraries:

• The TXTLIB command allows you to create, add to, and delete text libraries.

• The GLOBAL TXTLIB command allows users to specify text libraries to gain access
to their subroutines.

 Testing the Subroutine

Developing Applications C-13

If the subroutine is written in PL/I, append this line at the end of the text file

ENTRY subroutine

where:

subroutine

Is the name of the subroutine. You can do this using your system editor.

Make sure that any subroutines that your subroutine calls are also compiled and placed in
text files or libraries.

MVS: Compilation and Storage
On MVS, compile and link-edit the subroutine and store the module in a load library. If
your subroutine calls other subroutines, compile and link-edit all the subroutines together
in a single module.

If the subroutine is written in PL/I, include this link-editor control statement when
link-editing the subroutine

ENTRY subroutine

where:

subroutine

Is the name of the subroutine.

Do not store the subroutine in the FUSELIB load library (FUSELIB.LOAD), as it may be
overwritten when your site installs the next release of FOCUS.

Testing the Subroutine
Once you have successfully compiled your subroutine, access it and test it. In order to
access the subroutine, you need to issue the GLOBAL command for CMS or the
ALLOCATE command for MVS.

If an error occurs during your testing, check to see if the error is in the FOCUS request or
in the subroutine. If you are uncertain about its source, apply this test:

1. Write a dummy subroutine that has the same arguments but only returns a constant.

2. Execute the request with the dummy subroutine.

If the request executes the dummy subroutine normally, the error is in your
subroutine. If the request still generates an error, the error is in the request.

If you intend to make your subroutine available to other users, be sure to document what
your subroutine does, what the arguments are, what formats they have, and in what order
they must appear in the FOCUS subroutine call.

Creating Your Own Subroutines

C-14 Information Builders

Example of a Custom Subroutine: The MTHNAM
Subroutine

This topic illustrates how a subroutine can be written in FORTRAN, COBOL, PL/I, BAL
Assembler, and C, and then executed in a FOCUS request. The subroutine, called
MTHNAM, converts a number from 1 to 12 to the full name of the corresponding month
(from January to December).

The subroutine performs the following:

1. The subroutine receives the input argument from the FOCUS request as a
double-precision number.

2. It adds .000001 to the number. This compensates for rounding errors. (Rounding
errors can occur since floating-point numbers are approximations and may be
inaccurate in the last significant digit.)

3. It moves the number into an integer field.

4. If the number is less than 1 or greater than 12, it changes the number to 13.

5. It defines a 13-element array containing the names of the months. The last element is
an error message.

6. It sets the index of the array equal to the number in the integer field. It then places the
corresponding array element into the output argument. If the number is 13, the
argument contains the error message.

7. It passes the output argument back to FOCUS.

 Example of a Custom Subroutine: The MTHNAM Subroutine

Developing Applications C-15

The MTHNAM Subroutine Written in FORTRAN
This is a FORTRAN version of the MTHNAM subroutine. The fields are:

MTH

Is the double-precision number passed by FOCUS.

MONTH

Is the name of the month passed back to FOCUS. Since the character string
‘September’ contains nine letters, MONTH is a 3-element array. The subroutine
passes the three elements back to FOCUS; FOCUS concatenates them into one field.

A

Is a 2-dimensional, 13 by 3 array containing the names of the months. The last three
elements contain the error message.

IMTH

Is the integer representing the month.

The program is:

SUBROUTINE MTHNAM (MTH,MONTH)
REAL*8 MTH
INTEGER*4 MONTH(3),A(13,3),IMTH
DATA
+ A(1,1)/'JANU'/, A(1,2)/'ARY '/, A(1,3)/' '/,
+ A(2,1)/'FEBR'/, A(2,2)/'UARY'/, A(2,3)/' '/,
+ A(3,1)/'MARC'/, A(3,2)/'H '/, A(3,3)/' '/,
+ A(4,1)/'APRI'/, A(4,2)/'L '/, A(4,3)/' '/,
+ A(5,1)/'MAY '/, A(5,2)/' '/, A(5,3)/' '/,
+ A(6,1)/'JUNE'/, A(6,2)/' '/, A(6,3)/' '/,
+ A(7,1)/'JULY'/, A(7,2)/' '/, A(7,3)/' '/,
+ A(8,1)/'AUGU'/, A(8,2)/'ST '/, A(8,3)/' '/,
+ A(9,1)/'SEPT'/, A(9,2)/'EMBE'/, A(9,3)/'R '/,
+ A(10,1)/'OCTO'/, A(10,2)/'BER '/, A(10,3)/' '/,
+ A(11,1)/'NOVE'/, A(11,2)/'MBER'/, A(11,3)/' '/,
+ A(12,1)/'DECE'/, A(12,2)/'MBER'/, A(12,3)/' '/,
+ A(13,1)/'**ER'/, A(13,2)/'ROR*'/, A(13,3)/'* '/
IMTH=MTH+0.000001
IF (IMTH .LT. 1 .OR. IMTH .GT. 12) IMTH=13
DO 1 I=1,3

1 MONTH(I)=A(IMTH,I)
RETURN
END

Creating Your Own Subroutines

C-16 Information Builders

The MTHNAM Subroutine Written in COBOL
This is a COBOL version of the MTHNAM subroutine. The fields are:

MONTH-TABLE

Is a field containing the names of the months and the error message.

MLINE

Is a 13-element array that redefines the MONTH-TABLE field. Each element (called
A) contains the name of a month; the last element contains the error message.

A

Is one element in the MLINE array.

IX

Is an integer field that indexes MLINE.

IMTH

Is the integer representing the month.

MTH

Is the double-precision number passed by FOCUS.

MONTH

Is the name of the month passed back to FOCUS.

 Example of a Custom Subroutine: The MTHNAM Subroutine

Developing Applications C-17

The program is:

IDENTIFICATION DIVISION.
PROGRAM-ID. MTHNAM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 MONTH-TABLE.
05 FILLER PIC X(9) VALUE 'JANUARY '.
05 FILLER PIC X(9) VALUE 'FEBRUARY '.
05 FILLER PIC X(9) VALUE 'MARCH '.
05 FILLER PIC X(9) VALUE 'APRIL '.
05 FILLER PIC X(9) VALUE 'MAY '.
05 FILLER PIC X(9) VALUE 'JUNE '.
05 FILLER PIC X(9) VALUE 'JULY '.
05 FILLER PIC X(9) VALUE 'AUGUST '.
05 FILLER PIC X(9) VALUE 'SEPTEMBER'.
05 FILLER PIC X(9) VALUE 'OCTOBER '.
05 FILLER PIC X(9) VALUE 'NOVEMBER '.
05 FILLER PIC X(9) VALUE 'DECEMBER '.
05 FILLER PIC X(9) VALUE '**ERROR**'.

01 MLIST REDEFINES MONTH-TABLE.
05 MLINE OCCURS 13 TIMES INDEXED BY IX.

10 A PIC X(9).
01 IMTH PIC S9(5) COMP.

LINKAGE SECTION.
01 MTH COMP-2.
01 MONTH PIC X(9).

PROCEDURE DIVISION USING MTH, MONTH.
BEG-1.

ADD 0.000001 TO MTH.
MOVE MTH TO IMTH.
IF IMTH < +1 OR > 12
SET IX TO +13

ELSE
SET IX TO IMTH.

MOVE A (IX) TO MONTH.
GOBACK.

Creating Your Own Subroutines

C-18 Information Builders

The MTHNAM Subroutine Written in PL/I
This is a PL/I version of the MTHNAM subroutine. The fields are:

MTHNUM

Is the double-precision number passed by FOCUS.

FULLMTH

Is the name of the month passed back to FOCUS.

MONTHNUM

Is the integer representing the month.

MONTH_TABLE

A 13-element array containing the names of the months. The last element contains the
error message.

The program is:

MTHNAM: PROC(MTHNUM,FULLMTH) OPTIONS(COBOL);
DECLARE MTHNUM DECIMAL FLOAT (16) ;
DECLARE FULLMTH CHARACTER (9) ;
DECLARE MONTHNUM FIXED BIN (15,0) STATIC ;
DECLARE MONTH_TABLE(13) CHARACTER (9) STATIC

INIT ('JANUARY',
'FEBRUARY',
'MARCH',
'APRIL',
'MAY',
'JUNE',
'JULY',
'AUGUST',
'SEPTEMBER',
'OCTOBER',
'NOVEMBER',
'DECEMBER',
'**ERROR**') ;

MONTHNUM = MTHNUM + 0.00001 ;
IF MONTHNUM < 1 MONTHNUM > 12 THEN

MONTHNUM = 13 ;
FULLMTH = MONTH_TABLE(MONTHNUM) ;

RETURN;
END MTHNAM;

 Example of a Custom Subroutine: The MTHNAM Subroutine

Developing Applications C-19

The MTHNAM Subroutine Written in BAL Assembler
This is a BAL Assembler version of the MTHNAM subroutine.

START 0
STM 14,12,12(13) save registers
BALR 12,0 load base reg
USING *,12

*
L 3,0(0,1) load addr of first arg into R3
LD 4,=D'0.0' clear out FPR4 and FPR5
LE 6,0(0,3) FP number in FPR6
LPER 4,6 abs value in FPR4
AW 4,=D'0.00001' add rounding constant
AW 4,DZERO shift out fraction
STD 4,FPNUM move to memory
L 2,FPNUM+4 integer part in R2
TM 0(3),B'10000000' check sign of original no
BNO POS branch if positive
LCR 2,2 complement if negative

*
POS LR 3,2 copy month number into R3

C 2,=F'0' is it zero or less?
BNP INVALID yes. so invalid
C 2,=F'12' is it greater than 12?
BNP VALID no. so valid

INVALID LA 3,13(0,0) set R3 to point to item @13 (error)
*
VALID SR 2,2 clear out R2

M 2,=F'9' multiply by shift in table
*

LA 6,MTH(3) get addr of item in R6
L 4,4(0,1) get addr of second arg in R4
MVC 0(9,4),0(6) move in text

*
LM 14,12,12(13) recover regs
BR 14 return

*

Creating Your Own Subroutines

C-20 Information Builders

DS 0D alignment
FPNUM DS D floating point number
DZERO DC X'4E00000000000000' shift constant
MTH DC CL9'dummyitem' month table

DC CL9'JANUARY'
DC CL9'FEBRUARY'
DC CL9'MARCH'
DC CL9'APRIL'
DC CL9'MAY'
DC CL9'JUNE'
DC CL9'JULY'
DC CL9'AUGUST'
DC CL9'SEPTEMBER'
DC CL9'OCTOBER'
DC CL9'NOVEMBER'
DC CL9'DECEMBER'
DC CL9'**ERROR**'
END MTHNAM

The MTHNAM Subroutine Written in C
This is a C language version of the MTHNAM subroutine.
void mthnam(double *,char *);
void mthnam(mth,month)
double *mth;
char *month;
{
char *nmonth[13] = {"January ",

"February ",
"March ",
"April ",
"May ",
"June ",
"July ",
"August ",
"September",
"October ",
"November ",
"December ",
"**Error**"};

int imth, loop;
imth = *mth + .00001;
imth = (imth < 1 ¦¦ imth > 12 ? 13 : imth);
for (loop=0;loop < 9;loop++)
month[loop] = nmonth[imth-1][loop];
}

 Example of a Custom Subroutine: The MTHNAM Subroutine

Developing Applications C-21

The MTHNAM Subroutine Called by a FOCUS Request
The following example demonstrates how a FOCUS request uses the MTHNAM
subroutine. The DEFINE command extracts the month portion of the pay date and
executes the MTHNAM subroutine to convert it into the full name of the month. The
name is stored in the PAY_MONTH field. The report request prints the monthly pay of
Alfred Stevens.

The request is as follows:

DEFINE FILE EMPLOYEE
MONTH_NUM/M = PAY_DATE;
PAY_MONTH/A12 = MTHNAM (MONTH_NUM, PAY_MONTH);
END
TABLE FILE EMPLOYEE
PRINT PAY_MONTH GROSS
BY EMP_ID BY FIRST NAME BY LAST_NAME
BY PAY_DATE
IF LN IS STEVENS
END

This request produces the following report:

PAGE 1

EMP_ID FIRST NAME LAST_NAME PAY_DATE PAY_MONTH GROSS
------- ---------- --------- -------- --------- -----
071382660 ALFRED STEVENS 81/11/30 NOVEMBER $833.33

81/12/31 DECEMBER $833.33
82/01/29 JANUARY $916.67
82/02/26 FEBRUARY $916.67
82/03/31 MARCH $916.67
82/04/30 APRIL $916.67
82/05/28 MAY $916.67
82/06/30 JUNE $916.67
82/07/30 JULY $916.67
82/08/31 AUGUST $916.67

Creating Your Own Subroutines

C-22 Information Builders

Subroutines Written in REXX
A FOCUS request can call user-written subroutines coded in REXX. These routines, also
called FUSREXX macros, provide a 4GL option to the languages supported for
user-written subroutines.

Using REXX Subroutines
REXX subroutines are supported in the VM/CMS and MVS environments:

• In CMS, a FUSREXX macro can contain either REXX source code or compiled
REXX code created by running the source code through the REXX compiler. In
addition, you can load either type of FUSREXX macro into memory using the
EXECLOAD command. The compilation and load process reduces the CPU
requirements and increases speed. Compilation also is a security tool, making private
information difficult to read.

• In MVS, FOCUS supports source versions of REXX subroutines only.

Because of CPU requirements, the use of FUSREXX routines in large production jobs
should be monitored carefully.

The following notes apply to the examples in this topic:

• REXX versions are not necessarily the same in all operating environments.
Therefore, some of the examples may use REXX functions that are not available in
your environment.

• The REXX code is listed, but not fully explained. See your REXX documentation for
information about REXX instructions and functions.

Syntax How to Call a REXX User-Written Subroutine
In a DEFINE FILE command:

DEFINE FILE filename
fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);
END

In a DEFINE attribute in the Master File:

DEFINE fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);

In a COMPUTE command:

fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);

In a Dialogue Manager -SET command:

-SET &var = subname(inlen1, inparm1, ..., outlen, outparm);

 Subroutines Written in REXX

Developing Applications C-23

where:

fieldname

Is the name of the field to receive the return value.

An|In

Is the format of the field to receive return value.

subname

Is the name of the REXX routine.

inlen1, inparm1 ...

Are the input parameters. Each parameter consists of a pair of values: a length and an
alphanumeric parameter value. You can supply the name of an alphanumeric field, an
alphanumeric literal, or an expression that resolves to an alphanumeric value. Up to
13 input parameter pairs are supported by FOCUS. Each parameter value can be up
to 256 bytes long.
Note: Dialogue Manager converts input parameters that consist of numeric digits to
decimal format, regardless of their original data type. Therefore, you cannot pass
numeric input parameters to a REXX routine using -SET.

outlen, outparm

Is the output parameter pair, consisting of a length and a return value. In most cases,
the return value should be alphanumeric, but integer return values are also supported.
The return value can be the name of the field or Dialogue Manager variable to which
the value is returned or its USAGE format enclosed in single quotation marks. The
return value can be a minimum of one byte long and a maximum (for an
alphanumeric value) of 256 bytes.
Note: If the value returned is integer, outlen must be 4 because FOCUS reserves four
bytes for integer fields.

&var

Is the name of the Dialogue Manager variable to receive the return value.

REXX subroutines:

• Require input data to be character and should return character output. Integer return
values are also supported, but the output length in the subroutine call must be four.
FOCUS has a 256-byte limit on character variables. This limit also applies to
FUSREXX routines. FUSREXX routines return variable length data. For this reason,
you must supply the length of the input arguments and the maximum length of the
output data.

• Do not require any input parameters, but do require one return parameter, which must
return at least one byte of data. It is possible for a FUSREXX function to need no
input, such as a function that returns USERID.

Creating Your Own Subroutines

C-24 Information Builders

• Do not support floating-point numbers (REXX does not have native floating-point
conversion routines). All numeric fields should be converted to character format with
no commas using a FOCUS function such as EDIT before being passed to the
FUSREXX routine. This prevents FOCUS from converting numbers to floating point
before passing them to the FUSREXX routine.

• Are not supported in Dialogue Manager -CMS RUN commands.

• On VM/CMS, the FILETYPE of REXX user-written functions is FUSREXX; they
can be stored on any accessed disk.

• On MVS, DDNAME FUSREXX must be allocated to a PDS, and that library will be
searched before other MVS libraries.

• The search order for subroutines is:

1. FUSREXX

2. Standard CMS or MVS search order.

Example Returning the Day of the Week
The FUSREXX routine DOW returns the day of the week an employee was hired. The
routine passes one input parameter pair and one return field pair.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. DAY_OF_WEEK/A9 WITH AHDT= DOW(6,AHDT,9,DAY_OF_WEEK) ;

END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAY_OF_WEEK
END

1. The input field is six bytes long. Data is passed in field AHDT. The hire date is
converted to an alphanumeric field.

2. The return field is up to nine bytes long and is named DAY_OF_WEEK.

 Subroutines Written in REXX

Developing Applications C-25

The output is:

LAST_NAME HIRE_DATE DAY_OF_WEEK
--------- --------- -----------
STEVENS 80/06/02 Monday
SMITH 81/07/01 Wednesday
JONES 82/05/01 Saturday
SMITH 82/01/04 Monday
BANNING 82/08/01 Sunday
IRVING 82/01/04 Monday
ROMANS 82/07/01 Thursday
MCCOY 81/07/01 Wednesday
BLACKWOOD 82/04/01 Thursday
MCKNIGHT 82/02/02 Tuesday
GREENSPAN 82/04/01 Thursday
CROSS 81/11/02 Monday

The FUSREXX macro is displayed below. The FUSREXX routine reads the input date,
reformats it to MM/DD/YY format, and returns the day of the week using a REXX DATE
call.

/* DOW routine. Return WEEKDAY from YYMMDD format date */
Arg ymd .
Return Date('W',Translate('34/56/12',ymd,'123456'),'U')

Example Returning Text Format
The REXX function called in this request returns the number of copies of each classic
movie in text format. It passes one input parameter and one return field.

TABLE FILE MOVIES
PRINT TITLE AND COMPUTE

1. ACOPIES/A3 = EDIT(COPIES); AS 'COPIES'
AND COMPUTE

2. TXTCOPIES/A8 = NUMCNT(3,ACOPIES,8,TXTCOPIES);
WHERE CATEGORY EQ 'CLASSIC'
END

1. The input field is 3 bytes long. Data is passed in field ACOPIES. The COPIES field
is converted to an alphanumeric field.

2. The return field is up to 8 bytes long and is named TXTCOPIES.

Creating Your Own Subroutines

C-26 Information Builders

The output is:

TITLE COPIES TXTCOPIES
----- ------ ---------
EAST OF EDEN 001 One
CITIZEN KANE 003 Three
CYRANO DE BERGERAC 001 One
MARTY 001 One
MALTESE FALCON, THE 002 Two
GONE WITH THE WIND 003 Three
ON THE WATERFRONT 002 Two
MUTINY ON THE BOUNTY 002 Two
PHILADELPHIA STORY, THE 002 Two
CAT ON A HOT TIN ROOF 002 Two
CASABLANCA 002 Two

The FUSREXX macro is:

/* NUMCNT routine. Pass a number from 0 to 10 and return a character value
*/
Arg numbr .
data = 'Zero One Two Three Four Five Six Seven Eight Nine Ten'
numbr = numbr + 1 /* so 0 equals 1 element in array */
Return Word(data,numbr)

Example Passing Multiple Arguments
The following example shows how to pass multiple arguments to a FUSREXX routine. It
is an interest calculation using the present salary for the employee and the employee start
date to calculate a present value. It passes four input parameters and one return field.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. ACSAL/A12 = EDIT(CURR_SAL) ;
3. DCSAL/D12.2 = CURR_SAL ;
4. PV/A12 = INTEREST(6,AHDT,6,'&YMD',3,'6.5',12,ACSAL,12,PV) ;

END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
END

1. The first input field is six bytes long. Data is passed in field AHDT. The hire date is
converted to an alphanumeric field.

2. The current salary is converted to an alphanumeric field for use in the interest
calculation.

3. The current salary is converted to a double-precision field to include commas and a
decimal point in the output.

 Subroutines Written in REXX

Developing Applications C-27

4. The second input field is six bytes long. Data is passed as a FOCUS character
variable &YMD in YYMMDD format.

The third input field is a character value of 6.5, which is 3 bytes long to account for
the decimal point in the character string.

The fourth input field is 12 bytes long. This passes the character field ACSAL.

The return field is up to 12 bytes long and is named PV.

The output is:

LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
--------- ---------- --------- ----- --
STEVENS ALFRED 80/06/02 11,000.00 14055.14
SMITH MARY 81/07/01 13,200.00 15939.99
JONES DIANE 82/05/01 18,480.00 21315.54
SMITH RICHARD 82/01/04 9,500.00 11155.60
BANNING JOHN 82/08/01 29,700.00 33770.53
IRVING JOAN 82/01/04 26,862.00 31543.35
ROMANS ANTHONY 82/07/01 21,120.00 24131.19
MCCOY JOHN 81/07/01 18,480.00 22315.99
BLACKWOOD ROSEMARIE 82/04/01 21,780.00 25238.25
MCKNIGHT ROGER 82/02/02 16,100.00 18822.66
GREENSPAN MARY 82/04/01 9,000.00 10429.03
CROSS BARBARA 81/11/02 27,062.00 32081.82

The FUSREXX macro is displayed below. The REXX format command is used to format
the return value.

/* Simple INTEREST program. dates are yymmdd format */
Arg start_date,now_date,percent,open_balance, .

begin = Date('B',Translate('34/56/12',start_date,'123456'),'U')
stop = Date('B',Translate('34/56/12',now_date,'123456'),'U')
valnow = open_balance * (((stop - begin) * (percent / 100)) / 365)

Return Format(valnow,9,2)

Creating Your Own Subroutines

C-28 Information Builders

Example Accepting Multiple Tokens in Parameters
FUSREXX routines can accept multiple tokens in a parameter. The following procedure
passes employee information (pay date and monthly gross pay) as separate tokens in the
first parameter. It passes three input parameters and one return field.

DEFINE FILE EMPLOYEE
1. COMPID/A256 = FN | ' ' | LN | ' ' | DPT | ' ' | EID ;
2. APD/A6 = EDIT(PAY_DATE) ;
3. APAY/A12 = EDIT(MO_PAY) ;
4. OK4RAISE/A1 = OK4RAISE(256,COMPID,6,APD,12,APAY,1,OK4RAISE) ;

END

TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
IF OK4RAISE EQ '1'
END

1. The first input field is 256 bytes long. Data is passed in field COMPID. COMPID is
the concatenation of several character fields passed as the first parameter. Each of the
other parameters is a single argument.

2. The second input field is six bytes long. Data is passed in field APD. The pay date is
converted to an alphanumeric field.

3. The third input field is 12 bytes long. Data is passed in field APAY. The monthly
gross pay is converted to an alphanumeric field.

4. The return field is up to one byte long and is named OK4RAISE.

The output is:

EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
------ ---------- --------- ----------
071382660 ALFRED STEVENS PRODUCTION

The FUSREXX macro is displayed below. Commas separate FUSREXX parameters. The
ARG command specifies multiple variable names before the first comma and, therefore,
separates the first FUSREXX parameter into separate REXX variables, using blanks as
delimiters between the variables.

/* OK4RAISE routine. Parse separate tokens in the 1st parm, then more parms
*/

Arg fname lname dept empid, pay_date, gross_pay, .

If dept = 'PRODUCTION' & pay_date < '820000'
Then retvalue = '1'
Else retvalue = '0'

Return retvalue

 Subroutines Written in REXX

Developing Applications C-29

FUSREXX routines should use the REXX RETURN function to return data to FOCUS.
REXX EXIT is acceptable, but is generally used to end an EXEC, not a FUNCTION.

Correct
/* Some FUSREXX function */
Arg input
some rexx process ...
Return data_to_Focus

Not as Clear
/* Another FUSREXX function */
Arg input
some rexx process ...
Exit 0

Example Returning an Integer Value
It is possible for REXX to return a value that is not character format. The following
example shows how REXX returns an integer value. This example also shows how the
format of the integer field is used as the last field in the return argument. It passes two
input fields and one return field. The FUSREXX routine NUMDAYS returns the number
of days between hire date and date of increase. Note that the return value for an integer is
always four bytes long.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. ADI/A6 = EDIT(DAT_INC) ;
3. BETWEEN/I6 = NUMDAYS(6,AHDT,6,ADI,4,'I6') ;

END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAT_INC BETWEEN
IF BETWEEN NE 0
END

1. The first input field is six bytes long. Data is passed in field AHDT. The hire date is
converted to an alphanumeric field.

2. The second input field is six bytes long. Data is passed in field ADI. The date of
increase is converted to an alphanumeric field.

3. The return field is up to six bytes long and is named BETWEEN.

The output is:

LAST_NAME HIRE_DATE DAT_INC BETWEEN
--------- --------- ------- -------

STEVENS 80/06/02 82/01/01 578
STEVENS 80/06/02 81/01/01 213
SMITH 81/07/01 82/01/01 184
JONES 82/05/01 82/06/01 31
SMITH 82/01/04 82/05/14 130
IRVING 82/01/04 82/05/14 130
MCCOY 81/07/01 82/01/01 184
MCKNIGHT 82/02/02 82/05/14 101
GREENSPAN 82/04/01 82/06/11 71
CROSS 81/11/02 82/04/09 158

Creating Your Own Subroutines

C-30 Information Builders

The FUSREXX macro is displayed below. The return value is converted from REXX
character to HEX and formatted to be four bytes long.

/* NUMDAYS routine. Return number of days between 2 dates in yymmdd format
*/
/* The value returned will be in hex format

*/

Arg first,second .

base1 = Date('B',Translate('34/56/12',first,'123456'),'U')
base2 = Date('B',Translate('34/56/12',second,'123456'),'U')

Return D2C(base2 - base1,4)

Example Returning a Date Field From a FUSREXX Macro
FOCUS smart date fields contain the integer number of days since the base date
12/31/1900. REXX has a date function that can accept and return several types of date
formats, including one called Base format (‘B’) that contains the number of days since the
REXX base date 01/01/0001 (Jan. 1 of the Year 1).

Because input arguments must be alphanumeric, you cannot pass a smart date field to a
REXX subroutine. Therefore, you can either:

• Pass the REXX routine an alphanumeric field with date display options and have it
return a smart date value, if you account for the number of days difference between
the FOCUS base date and the REXX base date and convert the result to integer.

• Pass the REXX routine a smart date value converted to alphanumeric format. With
this technique, you must account for the difference in base dates for both the input
and output.

The following example uses the technique of passing the subroutine an alphanumeric field
with date display options. The FUSREXX macro called DATEREX1 takes two input
arguments: an alphanumeric date in A8YYMD format and a number of days in character
format. It returns a smart date in YYMD format that represents the input date plus the
number of days. The FOCUS format A8YYMD corresponds to the REXX Standard
format (‘S’).

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX1 routine. Add indate (format A8YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate,'S')+ days - 693959, 4)

 Subroutines Written in REXX

Developing Applications C-31

The following request uses the DATEREX1 macro to calculate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of days to add. Because HIRE_DATE is in I6YMD format, it must be converted
to A8YYMD before being passed to the macro:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
ADATE/YYMD = HIRE_DATE; NOPRINT

AND COMPUTE
INDATE/A8YYMD= ADATE; NOPRINT

AND COMPUTE
NEXT_DATE/YYMD = DATEREX1(8,INDATE,3,'365',4,NEXT_DATE);

BY LAST_NAME NOPRINT
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE NEXT_DATE
--------- ---------- --------- ---------
BANNING JOHN 82/08/01 1983/08/01
BLACKWOOD ROSEMARIE 82/04/01 1983/04/01
CROSS BARBARA 81/11/02 1982/11/02
GREENSPAN MARY 82/04/01 1983/04/01
IRVING JOAN 82/01/04 1983/01/04
JONES DIANE 82/05/01 1983/05/01
MCCOY JOHN 81/07/01 1982/07/01
MCKNIGHT ROGER 82/02/02 1983/02/02
ROMANS ANTHONY 82/07/01 1983/07/01
SMITH MARY 81/07/01 1982/07/01
SMITH RICHARD 82/01/04 1983/01/04
STEVENS ALFRED 80/06/02 1981/06/02

The following example uses the technique of passing the subroutine a smart date
converted to alphanumeric format. The FUSREXX macro called DATEREX2 takes two
input arguments: an alphanumeric number of days that represents a smart date, and a
number of days to add. It returns a smart date in YYMD format that represents the input
date plus the number of days. Both the input date and output date are in REXX base date
(‘B’) format.

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX2 routine. Add indate (original format YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate+693959,'B') + days - 693959, 4)

Creating Your Own Subroutines

C-32 Information Builders

The following request uses the DATEREX2 macro to calculate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of days to add. Because HIRE_DATE is in I6YMD format, it must be converted
to an alphanumeric number of days before being passed to the macro:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
ADATE/YYMD = HIRE_DATE; NOPRINT

AND COMPUTE
INDATE/A8 = EDIT(ADATE); NOPRINT

AND COMPUTE
NEXT_DATE/YYMD = DATEREX2(8,INDATE,3,'365',4,NEXT_DATE);

BY LAST_NAME NOPRINT
END

The report output is the same as that produced by the DATEREX1 macro.

Compiling FUSREXX Macros in CMS
The SUM2 FUSREXX macro takes two amounts as input and returns the sum in integer
format:
/* SUM2 routine. Add amount1 to amount2 and return as integer */
Arg amt1, amt2 .
Return D2C(amt1 + amt2,4)

To compile and compress this FUSREXX macro in CMS, issue the following command.
Note that the file identifier must be in upper case:

rexxcomp SUM2 FUSREXX A (condense

A FILELIST of SUM2 * A lists the following files:

SUM2 CFUSREXX A1 F 1024 2 1 1/31/00 12:07:19
SUM2 LISTING A1 V 121 42 1 1/31/00 12:07:19
SUM2 FUSREXX A1 F 80 3 1 1/31/00 12:04:19

The file SUM2 FUSREXX is the original source file. The file SUM2 CFUSREXX is the
compiled version. To call the compiled version in a FOCUS request, you must rename it
to have the file type FUSREXX. The file SUM2 LISTING details the results of the
compilation.

To use the compiled version in a FOCUS request, issue the following commands. The
EXECLOAD command, which loads the routine into memory and improves performance,
is optional:

rename sum2 fusrexx a ssum2 fusrexx a
rename sum2 cfusrexx a sum2 fusrexx a
execload sum2 fusrexx a

 Subroutines Written in REXX

Developing Applications C-33

Then, in FOCUS, issue the following request:

TABLE FILE EMPLOYEE
PRINT CSAL AND COMPUTE
ASAL/A12 = EDIT(CSAL);
AMOUNT/A4 = '1000';
TOTSAL/I6 = SUM2(12, ASAL, 4, AMOUNT, 4, TOTSAL);
END

The output is:

CURR_SAL ASAL AMOUNT TOTSAL
-------- ---- ------ ------

$11,000.00 000000011000 1000 12000
$13,200.00 000000013200 1000 14200
$18,480.00 000000018480 1000 19480
$9,500.00 000000009500 1000 10500
$29,700.00 000000029700 1000 30700
$26,862.00 000000026862 1000 27862
$21,120.00 000000021120 1000 22120
$18,480.00 000000018480 1000 19480
$21,780.00 000000021780 1000 22780
$16,100.00 000000016100 1000 17100
$9,000.00 000000009000 1000 10000
$27,062.00 000000027062 1000 28062

Developing Applications I-1

Index

Symbols
-"..." command, 4-10, 4-96

& (local variables), 4-6

&& (global variables), 4-6

&ACCEPTS variable, 4-60

&BASEIO variable, 4-60

&CHNGD variable, 4-60

&CURSOR variable, 4-62

&CURSORAT variable, 4-62

&DATE variable, 4-54

&DATEfmt variable, 4-54, 7-31

&DELTD variable, 4-60

&DMY variable, 4-54

&DMYY variable, 4-54, 4-58, 7-31

&DUPLS variable, 4-60

&ECHO variable, 4-42, 4-62

&FOCCPU variable, 4-54

&FOCDISORG variable, 2-11, 4-60

&FOCERRNUM variable, 4-60

&FOCEXTTRM variable, 4-54

&FOCFIELDNAME variable, 4-54

&FOCFOCEXEC variable, 4-55

&FOCINCLUDE variable, 4-55

&FOCMODE variable, 4-55

&FOCPRINT variable, 4-55

&FOCPUTLVL variable, 4-55

&FOCQUALCHAR variable, 4-55

&FOCREL variable, 4-55

&FOCSBORDER variable, 4-55

&FOCSYSTYP variable, 4-55

&FOCTMPDSK variable, 4-56

&FOCTRMSD variable, 4-56

&FOCTRMSW variable, 4-56

&FOCTRMTYP variable, 4-56

&FOCTTIME variable, 4-56

&FOCVTIME variable, 4-56

&FORMAT variable, 4-60

&HIPERFOCUS variable, 4-56

&INPUT variable, 4-60

&INVALID variable, 4-60

&IORETURN variable, 4-56

&LINES variable, 4-61

&MDY variable, 4-56

&MDYY variable, 4-56, 4-58, 7-31

&NOMATCH variable, 4-61

&PFKEY variable, 4-62, 9-26

&QUIT variable, 4-44, 4-62

&READS variable, 4-61

&RECORDS variable, 4-61

&REJECTS variable, 4-61

&RETCODE variable, 4-24, 4-56

&STACK variable, 4-43, 4-62

&TOD variable, 4-56

&TRANS variable, 4-61

&WINDOWNAME variable, 4-62, 9-26

&WINDOWVALUE variable, 4-62, 9-26

Index

I-2 Information Builders

&YMD variable, 4-56

&YYMD variable, 4-56, 4-58, 7-31

(&& global variables), 2-25

-* command, 4-8, 4-9, 4-80

.EVAL operator, 4-63

.EXIST operator, 4-21

.LENGTH operator, 4-22

.TYPE operator, 4-23

? && command, 2-25

-? &[string] command, 4-10, 4-51

? COMBINE command, 2-3

-? command, 4-80

? DEFINE query command, 2-4

? EUROFILE command, 2-5, 8-9

? F command, 2-5

? FDT command, 2-6

? FF command, 2-8

? FILE command, 2-9

? HOLD command, 2-12

? JOIN command, 2-13

? LANG command, 2-14

? LET command, 2-14

? LOAD command, 2-15, 6-6

? n command, 2-15

? PTF command, 2-16

? RELEASE command, 2-17

? SET ALL query command, 8-9

? SET command, 2-17, 7-12

? SET FOR query command, 2-17, 2-19

? SET GRAPH command, 2-21

? SET NOT query command, 2-17, 2-19, 2-20

-? SET SETCOMMAND &myvar, 4-10

? STAT command, 2-22

? STYLE command, 2-26

? SU command, 2-24

? USE command, 2-26

A
ABS function, 3-36

ACCBLN parameter, 1-3

ACCEPT attribute, 1-24

Access Files, 6-4
loading, 6-4
VIDEOTR2, A-27

AGGR[RATIO] parameter, 1-3

ALL parameter, 1-4

ALLOWCVTERR parameter, 1-5

alphanumeric format, 3-121, 3-123, 3-168
converting, 3-121, 3-168

alphanumeric strings
converting from, 3-121

amper variables, 4-49
EDIT function, 4-30
return values, 9-24

applications, 9-51
executing, 9-51

ARGLEN subroutine, 3-37

arguments, 3-36, C-3
calculating square root, 3-163
calculating value, 3-36
in scientific notation, 3-96
in subroutines, 3-19, 3-20
length, 3-37
maximum value, 3-144
minimum value, 3-144
returning logarithm, 3-143

 Index

Developing Applications I-3

AS phrase, 1-6

ASIS function, 3-38

ASNAMES parameter, 1-6

Assembler language, C-4

ATODBL subroutine, 3-39

AUTOINDEX parameter, 1-6

AUTOPATH parameter, 1-7

AUTOSTRATEGY parameter, 1-7

AUTOTABLEF parameter, 1-7

AYM subroutine, 3-43

AYMD subroutine, 3-45

B
BAL Assembler language, C-19

MTHNAM subroutine, C-19

bar charts, 3-47

BAR subroutine, 3-47

BINS parameter, 1-8

bit functions and subroutines, 3-3
BITSON, 3-49
BITVAL, 3-50
BYTVAL, 3-52
HEXBYT, 3-117
UFMT, 3-168

bits, 3-3
evaluating, 3-49
strings, 3-50

BITSON subroutine, 3-49

BITVAL subroutine, 3-50

BLKCALC parameter, 1-8

BOTTOMMARGIN parameter, 1-9

branching, 4-16
-IF command, 3-24

BUSDAYS parameter, 1-8

BUSDAYS setting, 3-15

business day units, 3-15

BYPANEL parameter, 1-9

BYSCROLL parameter, 1-9

BYTVAL subroutine, 3-52

C
C language, C-4

MTHNAM subroutine, C-20

Cache memory
Number of reads performed, 2-24

CACHE parameter, 1-10

calculated values, 7-26
sliding window, 7-26

CAR data source, A-11

CARTESIAN parameter, 1-11

CDN parameter, 1-11

character functions and subroutines, 3-4
ARGLEN, 3-37
ASIS, 3-38
BITSON, 3-49
BITVAL, 3-50
BYTVAL, 3-52
CHKFMT, 3-56
CTRAN, 3-62
CTRFLD, 3-68
EDIT, 3-93, 4-30
GETTOK, 3-106
LCWORD, 3-138
LJUST, 3-140
LOCASE, 3-142
OVRLAY, 3-149
PARAG, 3-152
POSIT, 3-156
RJUST, 3-161
SUBSTR, 3-164
UPCASE, 3-170

character strings
converting, 3-138, 3-142, 3-170

Index

I-4 Information Builders

character strings (continued)
dividing, 3-106
extracting substring, 3-164
justifying, 3-140, 3-161
overlaying substring, 3-149

characters, 3-4
converting, 3-117
translating, 3-62

CHECK FILE command, 7-10

CHGDAT subroutine, 3-53

CHKFMT subroutine, 3-56

CHKPCK subroutine, 3-59

-CLOSE command, 4-9, 4-81

-CLOSE ddname command, 4-9

-CMS command, 4-9, 4-81

CMS environment, C-12
compiling subroutines, C-12
FUSREXX macros, C-32
storing subroutines, C-12

-CMS RUN command, 4-9
subroutines, 3-26

COBOL language, C-4
MTHNAM subroutine, C-16

COLUMNSCROLL parameter, 1-12

COMASTER data source, A-21

COMBINE structures, 2-3
? COMBINE command, 2-3

command statistics, 2-22, 2-24
? STAT command, 2-22

commands, 1-2
CHECK FILE, 7-10
COMPILE, 6-7
COMPUTE, 7-26
DEFINE, 7-5, 7-20
Dialogue Manager, 4-9
EXEC, 4-7, 4-37, 4-41
GLOBAL, C-13
LET, 5-2

commands (continued)
LET CLEAR, 4-53
LET ECHO, 5-10
LOAD, 6-2
LOAD MODIFY, 6-6
MINIO, 6-8, 6-9, 6-11
query, 2-2
QUIT, 4-44
SET, 1-2
SET EUROFILE, 8-8
SET TESTDATE, 7-10
WINDOW COMPILE, 9-83
WINDOW PAINT, 9-52

comments, 4-8

COMPILE command, 6-7

compound -IF tests, 4-19

COMPUTE command, 7-26
sliding window, 7-26
subroutines in, 3-22

COMPUTE parameter, 1-12

concatenation, 4-65

conversions
alphanumeric format, 3-168
character strings, 3-138, 3-142, 3-170
characters, 3-117
currency, 8-2
dates, 3-53, 3-77, 7-32
date-time fields, 3-113, 3-114
format, 3-39
from alphanumeric format, 3-91
from Gregorian format, 3-135
from Julian format, 3-109
from numeric format, 3-89, 3-100
numeric format, 3-130, 3-132, 3-134
strings, 3-121
to alphanumeric format, 3-100
to date format, 3-89, 3-114
to EBCDIC, 3-52
to Gregorian format, 3-109
to Julian format, 3-135
to numeric format, 3-91
to zone format, 3-134

 Index

Developing Applications I-5

COUNTWIDTH parameter, 1-12

COURSES data source, A-16

cross-century dates, 7-1, 7-31

-CRTCLEAR command, 4-9, 4-81

-CRTFORM command, 4-10, 4-49, 4-75, 4-82

CTRAN subroutine, 3-62

CTRFLD subroutine, 3-68

currencies, 8-2
converting, 8-2
euro, 8-2

CURRENCY attribute, 8-6

currency conversions, 8-2, 8-10
currency data source, 8-4

currency data source, 8-4
? EUROFILE command, 2-5
activating, 8-8
creating, 8-4
CURRENCY attribute, 8-6
displaying, 2-5
querying, 8-9

custom subroutines, C-14

D
data source functions and subroutines, 3-6

LAST, 3-137

data source statistics, 2-9
? FILE command, 2-9

data sources
currency data source, 8-4
MINIO command, 6-8
statistics, 2-9
USE command, 2-26

date conversions, 3-53, 3-77

date formats, 7-5
with sliding window, 7-5

date functions and subroutines, 3-6, 7-31
AYM, 3-43
AYMD, 3-45
CHGDAT, 3-53
DATEADD, 3-72
DATECVT, 3-77
DATEDIF, 3-78
DATEMOV, 3-80
DMY, 3-86
DOWK, 3-88
DOWKL, 3-88
DTDMY, 3-89
DTDYM, 3-89
DTMDY, 3-89
DTMYD, 3-89
DTYDM, 3-89
DTYMD, 3-89
GREGDT, 3-109
HADD, 3-112
HCNVRT, 3-113
HDATE, 3-114
HDIFF, 3-115
HDTTM, 3-116
HGETC, 3-119
HHMMSS, 3-120
HINPUT, 3-121
HMIDNT, 3-122
HNAME, 3-123
HPART, 3-125
HSETPT, 3-126
HTIME, 3-127
JULDAT, 3-135
legacy versions, 3-14
MDY, 3-86
settings, 3-14
TODAY, 3-166
valid date input, 3-9
YM, 3-174
YMD, 3-86

DATEADD function/subroutine, 3-72

DATECVT function, 3-77

DATEDIF function, 3-78

DATEDISPLAY parameter, 1-13

Index

I-6 Information Builders

DATEFNS parameter, 1-13, 3-14

DATEFORMAT parameter, 1-14

DATEMOV function, 3-80

dates, 3-6, 7-2
calculating difference, 3-174
converting, 3-116, 7-32
date display format, 7-31
date display options, 4-58, 7-31
difference between, 3-86
functions and subroutines, 3-78, 3-166
holidays, 3-16
incrementing, 3-112
natural date literals, 4-33
setting, 4-33
system, 7-31
time stamp, 7-32
validating, 7-6

date-time fields, 3-119, 3-122, 3-123, 3-125, 3-126
converting, 3-113, 3-127
converting to, 3-116

date-time functions
component names, 3-8

DATETIME parameter, 1-14

date-time values, 3-121

DECODE function, 3-83, 4-29

decoding functions and subroutines
DECODE, 3-83, 4-29

default century, 7-32

-DEFAULTS command, 4-10, 4-68, 4-70, 4-83

DEFCENT parameter, 1-15, 7-2, 7-3, 7-5, 7-7
COMPUTE command, 7-26
DEFINE command, 7-20
querying, 7-12
with COMPUTE, 7-27

DEFINE command, 7-5
sliding window, 7-5, 7-20
subroutines in, 3-22

Dialogue Manager, 4-2
ASIS function, 3-38
canceling a procedure, 4-15
commands, 4-9
executing stacked commands, 4-13
exiting from FOCUS, 4-15
facilities, 4-36
leading zeros, 3-17
sending a message to the user, 4-11
stacked commands, 4-12
testing logic, 4-43
variables, 4-6

Dialogue Manager commands, 4-9
-*, 4-8, 4-9, 4-80
-?, 4-80
-? &[string], 4-10, 4-51
-? SET COMMAND &myvar, 4-10
-CLOSE, 4-9, 4-81
-CLOSE ddname, 4-9
-CMS, 4-9, 4-81
-CMS RUN, 4-9
-CRTCLEAR, 4-9, 4-81
-CRTFORM, 4-10, 4-49, 4-75, 4-82
-DEFAULTS, 4-10, 4-70, 4-83
-EXIT, 4-10, 4-13, 4-83
-GOTO, 4-10, 4-16, 4-84
-HTMLFORM, 4-10, 4-84
-IF, 4-10, 4-85
-INCLUDE, 4-10, 4-37, 4-38, 4-86
-label, 4-10, 4-86
-MVS RUN, 4-10, 4-87
-PASS, 4-7, 4-10, 4-87
-PROMPT, 4-10, 4-49, 4-73, 4-88
-QUIT, 4-10, 4-15, 4-89
-QUIT FOCUS, 4-15
-READ, 4-10, 4-72, 4-90
-REPEAT, 4-10, 4-25, 4-91
-RUN, 4-10, 4-12, 4-92
-SET, 3-23, 4-10, 4-27, 4-28, 4-32, 4-44, 4-71,

4-92
-TSO RUN, 4-10, 4-93
-TYPE, 4-10, 4-11, 4-93
-WINDOW, 4-10, 4-49, 4-75, 4-94, 9-3
-WRITE, 4-10, 4-45, 4-95

disorganized files, 2-11

 Index

Developing Applications I-7

DISPLAY parameter, 1-15

DMOD subroutine, 3-128

DMY function, 3-86

DOWK subroutine, 3-88

DOWKL subroutine, 3-88

DT subroutines, 3-89

DTDMY subroutine, 3-89

DTDYM subroutine, 3-89

DTMDY subroutine, 3-89

DTMYD subroutine, 3-89

DTSTRICT parameter, 1-16

DTYDM subroutine, 3-89

DTYMD subroutine, 3-89

dynamic window, 7-4, 7-10

E
EDIT function, 3-91, 3-93, 4-30

EDUCFILE data source, A-7

EMPDATA data source, A-17

EMPLOYEE data source, A-3

EMPTYREPORT parameter, 1-16

Entry Menu, 9-53

error messages
? n command, 2-15
displaying explanations, 2-15
retrieving, 3-96

ESTRECORDS parameter, 1-17

euro currency, 8-2
converting, 8-2, 8-10

EUROFILE parameter, 1-18, 8-8

EXEC command, 4-7, 4-37, 4-41

execution windows, 9-11

-EXIT command, 4-10, 4-12, 4-13, 4-83

EXP subroutine, 3-95

EXPERSON data source, A-18

EXPN function, 3-96

EXTAGGR parameter, 1-18

external subroutines, 3-30

EXTHOLD parameter, 1-18

EXTSORT parameter, 1-19

EXTTERM parameter, 1-19

F
FDEFCENT attribute, 7-3, 7-13

FEXERR subroutine, 3-96

field names windows, 9-8

field-level sliding window, 7-13

FIELDNAME parameter, 1-19

fields, 2-5
? F command, 2-5
? FF command, 2-8

file contents windows, 9-9

file directory table, 2-6
? FDT command, 2-6

file names windows, 9-7
creating, 9-49

file-level sliding window, 7-13

FILENAME parameter, 1-20

files, 6-2
disorganization, 2-11
loading, 6-2
writing to, 4-45

FILTER parameter, 1-20

FINANCE data source, A-14

Financial Modeling Language (FML), 3-28

Index

I-8 Information Builders

FINDMEM subroutine, 3-97

FIXRETRIEVE parameter, 1-21

FMOD subroutine, 3-128

FOC144 parameter, 1-21

FOC2GIGDB parameter, 1-22

FOCALLOC parameter, 1-22

FOCCOMP file, 6-5
with sliding window, 7-6

FOCSTACK parameter, 1-22

FOCUS facilities, 6-2
accessing FOCUS data sources, 6-8
compiling MODIFY requests, 6-7
loading files, 6-2

format conversion functions and subroutines, 3-11
ASIS, 3-38
ATODBL, 3-39
CHKPCK, 3-59
EDIT, 3-91
FTOA, 3-100
ITONUM, 3-130
ITOPACK, 3-132
ITOZ, 3-134
PCKOUT, 3-154
UFMT, 3-168

format conversions, 3-39

format specifications, 4-76

FORTRAN language, C-4
MTHNAM subroutine, C-15

FTOA subroutine, 3-100

function keys, 5-12
LET substitution, 5-12
testing values, 9-26

functions and subroutines, 3-1, 3-21
bit, 3-3
character, 3-4
data source, 3-6
date, 3-6
date-time, 3-119

functions and subroutines (continued)
differences between, 3-2
format conversion, 3-11
numeric, 3-12
system, 3-13
types, 3-3
with sliding window, 7-5, 7-23, 7-29

FUSELIB LOAD library, 3-30

FUSREXX macros, C-32
compiling in CMS, C-32

FYRTHRESH attribute, 7-3, 7-13

G
GETPDS subroutine, 3-101

GETTOK subroutine, 3-106

GETUSER subroutine, 3-108

GGDEMOG data source, A-29

GGORDER data source, A-30

GGPRODS data source, A-31

GGSALES data source, A-32

GGSTORES data source, A-33

GLOBAL command, C-13

global sliding window, 7-7

global variables, 4-6, 4-49, 4-53
? && command, 2-25

Gotham Grinds data sources, A-29
GGDEMOG, A-29
GGORDER, A-30
GGPRODS, A-31
GGSALES, A-32
GGSTORES, A-33

-GOTO command, 4-10, 4-16, 4-84

goto values, 9-3, 9-25, 9-62

graph parameters, 2-21
? SET GRAPH command, 2-21

GREGDT subroutine, 3-109

 Index

Developing Applications I-9

H
HADD subroutine, 3-112

HCNVRT subroutine, 3-113

HDATE subroutine, 3-114

HDAY parameter, 1-23, 3-16

HDIFF subroutine, 3-115

HDTTM subroutine, 3-116

HEXBYT subroutine, 3-117

HGETC subroutine, 3-119

HHMMSS function/subroutine, 3-120

HINPUT subroutine, 3-121

HLISUDUMP parameter, 1-23

HLISUTRACE parameter, 1-23

HMIDNT subroutine, 3-122

HNAME subroutine, 3-123

HOLD fields, 2-12
? HOLD command, 2-12

HOLDATTR parameter, 1-24

HOLDLIST parameter, 1-24

HOLDSTAT parameter, 1-25

holidays, 3-16

horizontal menus, 9-6
creating, 9-14

HOTMENU parameter, 1-25

HPART subroutine, 3-125

HSETPT subroutine, 3-126

HTIME subroutine, 3-127

-HTMLFORM command, 4-10, 4-84

I
IBMLE parameter, 1-26

IF command, 3-24
subroutines in, 3-24

-IF command, 4-10, 4-16, 4-85
-IF tests, 4-19
subroutines in, 3-24

IF selection tests, 3-23
subroutines in, 3-23

-IF tests, 4-19
compound, 4-19
operators and functions, 4-20
screening values, 4-20

IMMEDTYPE parameter, 1-26

IMOD subroutine, 3-128

implied prompting, 4-49, 4-75

IMS parameter, 1-26

-INCLUDE command, 4-10, 4-37, 4-38, 4-86

INDEX parameter, 1-27

INT function, 3-129

ITONUM subroutine, 3-130

ITOPACK subroutine, 3-132

ITOZ subroutine, 3-134

J
JOBFILE data source, A-6

JOINOPT parameter, 1-27

joins, 2-13
? JOIN command, 2-13

JULDAT subroutine, 3-135

L
-label command, 4-10, 4-86

LANG parameter, 1-28

Index

I-10 Information Builders

languages, C-5
considerations, C-5
environment support, 3-32

LAST function, 3-137

LCWORD function/subroutine, 3-138

leading zeros, 3-17

LEADZERO parameter, 1-29, 3-17

LEDGER data source, A-13

LEFTMARGIN parameter, 1-30

legacy dates, 7-5
with sliding window, 7-5

LET CLEAR command, 4-53

LET command, 5-2
checking substitutions, 5-10
clearing substitutions, 5-11
long form, 5-2
multiple-line substitutions, 5-8
null substitutions, 5-7
recursive substitutions, 5-8
saving substitutions, 5-12
short form, 5-2
variable substitutions, 5-5

LET ECHO command, 5-10

LET substitutions
function key, 5-12

LINES parameter, 1-30

LJUST function/subroutine, 3-140

LOAD command, 6-2

LOAD MODIFY command, 6-6

load procedures, A-2

loading files, 2-15, 6-2
? LOAD command, 2-15
Access Files, 6-4
compiled MODIFY requests, 6-5
displaying, 6-6
FOCCOMP file, 6-5

loading files (continued)
LOAD, 6-2
Master Files, 6-4
MODIFY requests, 6-6
procedures, 6-4

local variables, 4-6, 4-49, 4-52

LOCASE subroutine, 3-142

LOG function, 3-143

looping, 4-25
controlling, 4-32
ending, 4-27

M
Main Menu, 9-54

Master Files
defining sliding window, 7-13
displaying field information, 2-8
loading, 6-4
samples, A-2

MASTER parameter, 1-31

MAX function, 3-144

MAXLRECL parameter, 1-31

MDY function, 3-86

memory
cache, 2-24

menus, 9-4
creating, 9-2
horizontal, 9-6
pulldown, 9-16
vertical, 9-5

merge
routine invocations, 2-24

MESSAGE parameter, 1-31

MIN function, 3-144

MINIO command, 6-8, 6-9
restrictions, 6-11
usage, 6-9

 Index

Developing Applications I-11

MINIO parameter, 1-32

MOD subroutines, 3-128

MODIFY, 6-6
compiling, 6-7
loading, 6-6

MOVIES data source, A-24

MTHNAM subroutine, C-14
BAL Assembler language, C-19
C language, C-20
COBOL language, C-16
FOCUS requests, C-21
FORTRAN language, C-15
PL/I language, C-18

multi-input windows, 9-12
creating, 9-18

MULTIPATH parameter, 1-33

multiple-line substitutions, 5-8

MVS, C-13
accessing subroutines, 3-30
compiling subroutines, C-13
storing subroutines, C-13

-MVS RUN command, 4-10, 4-87
subroutines, 3-26

MVSDYNAM subroutine, 3-145

N
naming conventions, C-3

National Language Support (NLS), 2-14
? LANG command, 2-14

natural date literals, 4-33

nesting procedures, 4-40
-INCLUDE command, 4-40

NODATA parameter, 1-33

null substitutions, 5-7

numeric format, 3-130
converting, 3-130, 3-132, 3-134
converting to, 3-125

numeric functions and subroutines, 3-12
ABS, 3-36
ASIS, 3-38
BAR, 3-47
DMOD, 3-128
EXP, 3-95
EXPN, 3-96
FMOD, 3-128
IMOD, 3-128
INT, 3-129
LOG, 3-143
MAX, 3-144
MIN, 3-144
PRDNOR, 3-158
PRDUNI, 3-158
RDUNIF, 3-158
RENORM, 3-158
SQRT, 3-163

O
ONLINE-FMT parameter, 1-34

ORIENTATION parameter, 1-34

OVRLAY function/subroutine, 3-149

P
packed decimal fields

validating, 3-59

PAGE-NUM parameter, 1-35

PAGESIZE parameter, 1-35

PANEL parameter, 1-38

PAPER parameter, 1-39

PARAG subroutine, 3-152

parameter settings, 2-17
? SET command, 2-17

Index

I-12 Information Builders

parameters, 1-3
ALLOWCVTERR, 7-31
BUSDAYS, 3-15
DATEDISPLAY, 7-31
DATEFNS, 3-14
DEFCENT, 7-2, 7-7
EUROFILE, 8-8
HDAY, 3-16
LEADZERO, 3-17
UNITS, 1-55
YRTHRESH, 7-2, 7-7

partitioned data sets, 3-97, 3-101

-PASS command, 4-7, 4-10, 4-87

PASS parameter, 1-39

passwords, 4-7

PAUSE parameter, 1-40

PAYHIST data source, A-20

PCKOUT subroutine, 3-154

PF keys, 9-26

PFnn command, 9-26

PFnn parameter, 1-40

PL/I language, C-4
MTHNAM subroutine, C-18

POSIT function/subroutine, 3-156

positional variables, 4-69

PRDNOR subroutines, 3-158

PRDUNI subroutines, 3-158

PREFIX parameter, 1-41

PRINT parameter, 1-41

PRINTPLUS parameter, 1-42

procedures, 4-2, 4-36, 4-44
comments, 4-8
creating, 4-6
-CRTFORM command, 4-49, 4-75
debugging, 4-42
EXEC command, 4-37, 4-41

procedures (continued)
executing, 4-7, 4-12
incorporating multiple, 4-37
load, A-2
loading, 6-4
open-ended, 4-41
-PROMPT command, 4-49
prompting, 4-49
SAMPLE, 9-31
sample in Window Painter, 9-51
security, 4-7, 4-44
storing, 4-6
TED, 4-6
testing, 4-42
variables, 4-49
-WINDOW command, 4-49, 4-75

PROD data source, A-10

programming, C-5
considerations, C-5
entry points, C-7
subroutines, C-9

-PROMPT command, 4-10, 4-49, 4-73, 4-88

prompting, 4-49
-CRTFORM command, 4-49, 4-75
implied, 4-49, 4-75
-PROMPT command, 4-49, 4-73
-WINDOW command, 4-49, 4-75

PTFs, 2-16
displaying, 2-16

pulldown menus, 9-16
creating, 9-16

Q
QUALCHAR parameter, 1-43

QUALTITLES parameter, 1-43

query commands, 2-2
? &&, 2-25
-? &[string], 4-51
? COMBINE, 2-3
? DEFINE, 2-4
? EUROFILE, 2-5, 8-9

 Index

Developing Applications I-13

query commands (continued)
? F, 2-5
? FDT, 2-6
? FF, 2-8
? FILE, 2-9
? HOLD, 2-12
? JOIN, 2-13
? LANG, 2-14
? LET, 2-14
? LOAD, 2-15, 6-6
? n, 2-15
? PTF, 2-16
? RELEASE, 2-17
? SET, 2-17, 7-12
? SET FOR, 2-17
? SET GRAPH, 2-21
? SET NOT, 2-17
? STAT, 2-22
? STYLE, 2-26
? SU, 2-24
? USE, 2-26
testing status, 4-24

QUIT command, 4-44

-QUIT command, 4-10, 4-12, 4-15, 4-89

-QUIT FOCUS command, 4-15

R
RDNORM subroutines, 3-158

RDUNIF subroutines, 3-158

-READ command, 4-10, 4-68, 4-72, 4-90

REBUILDMSG parameter, 1-44

RECAP command, 3-28
subroutines in, 3-28

RECAP-COUNT parameter, 1-44

RECORDLIMIT parameter, 1-44

recursive substitutions, 5-8

REGION data source, A-15

-REPEAT command, 4-10, 4-25, 4-91

return value display windows, 9-9

return values, 9-24

REXX subroutines, C-22

RIGHTMARGIN parameter, 1-45

RJUST function/subroutine, 3-161

RPAGESET parameter, 1-45

-RUN command, 3-26, 4-10, 4-12, 4-92
subroutines, 3-26

S
SALES data source, A-8

sample data sources
CAR, A-11
COMASTER, A-21
COURSES, A-16
creating, A-2
EDUCFILE, A-7
EMPDATA, A-17
EMPLOYEE, A-3
EXPERSON, A-18
FINANCE, A-14
Gotham Grinds data sources, A-29
JOBFILE, A-6
LEDGER, A-13
MOVIES, A-24
PAYHIST, A-20
PROD, A-10
REGION, A-15
SALES, A-8
TRAINING, A-19
VIDEOTR2, A-26
VideoTrk, A-24

SAVEMATRIX parameter, 1-45

SBORDER parameter, 1-46

SCREEN parameter, 1-46

screens, 9-51
Entry Menu, 9-53
Main Menu, 9-54
Utilities Menu, 9-72

Index

I-14 Information Builders

screens (continued)
Window Creation Menu, 9-57
Window Design Screen, 9-59
Window Options Menu, 9-61

SET command, 1-2
parameters, 1-3

-SET command, 4-10, 4-27, 4-28, 4-32, 4-33, 4-44,
4-68, 4-71, 4-92

creating amper variables, 3-23
looping, 4-32

SET EUROFILE command, 8-8

SET parameters
ACCBLN, 1-3
AGGR[RATIO], 1-3
ALL, 1-4
ALLOWCVTERR, 1-5
ASNAMES, 1-6
AUTOINDEX, 1-6
AUTOPATH, 1-7
AUTOSTRATEGY, 1-7
AUTOTABLEF, 1-7
BINS, 1-8
BLKCALC, 1-8
BOTTOMMARGIN, 1-9
BUSDAYS, 1-8
BYPANEL, 1-9
BYSCROLL, 1-9
CACHE, 1-10
CARTESIAN, 1-11
CDN, 1-11
COLUMNSCROLL, 1-12
COMPUTE, 1-12
COUNTWIDTH, 1-12
DATEDISPLAY, 1-13
DATEFNS, 1-13
DATEFORMAT, 1-14
DATETIME, 1-14
DEFCENT, 1-15
DISPLAY, 1-15
DTSTRICT, 1-16
EMPTYREPORT, 1-16
ESTRECORDS, 1-17
EUROFILE, 1-18
EXTAGGR, 1-18

SET parameters (continued)
EXTHOLD, 1-18
EXTSORT, 1-19
EXTTERM, 1-19
FIELDNAME, 1-19
FILENAME, 1-20
FILTER, 1-20
FIXRETRIEVE, 1-21
FOC144, 1-21
FOC2GIGDB, 1-22
FOCALLOC, 1-22
FOCSTACK, 1-22
HDAY, 1-23
HLISUDUMP, 1-23
HLISUTRACE, 1-23
HOLDATTR, 1-24
HOLDLIST, 1-24
HOLDSTAT, 1-25
HOTMENU, 1-25
IBMLE, 1-26
IMMEDTYPE, 1-26
IMS, 1-26
INDEX, 1-27
JOINOPT, 1-27
LANG, 1-28
LEADZERO, 1-29
LEFTMARGIN, 1-30
LINES, 1-30
MASTER, 1-31
MAXLRECL, 1-31
MESSAGE, 1-31
MINIO, 1-32
MULTIPATH, 1-33
NODATA, 1-33
ONLINE-FMT, 1-34
ORIENTATION, 1-34
PAGE-NUM, 1-35
PAGESIZE, 1-35
PANEL, 1-38
PAPER, 1-39
PASS, 1-39
PAUSE, 1-40
PFnn, 1-40
PREFIX, 1-41
PRINT, 1-41
PRINTPLUS, 1-42

 Index

Developing Applications I-15

SET parameters (continued)
QUALCHAR, 1-43
QUALTITLES, 1-43
REBUILDMSG, 1-44
RECAP-COUNT, 1-44
RECORDLIMIT, 1-44
RIGHTMARGIN, 1-45
RPAGESET, 1-45
SAVEMATRIX, 1-45
SBORDER, 1-46
SCREEN, 1-46
SHADOW, 1-47
SHIFT, 1-47
SORTLIB, 1-48
SPACES, 1-48
SQLTOPTIF, 1-49
SQUEEZE, 1-49
STYLE[SHEET], 1-50
SUMPREFIX, 1-51
SUSI, 1-51
SUTABSIZE, 1-51
TEMP[DISK], 1-51
TERM, 1-52
TESTDATE, 1-52
TEXTFIELD, 1-53
TITLE, 1-53
TOPMARGIN, 1-54
TRACKIO, 1-54
TRMOUT, 1-54
UNITS, 1-55
USER, 1-55
WEEKFIRST, 1-57
WIDTH, 1-56, 1-57
XRETRIEVAL, 1-58
YRTHRESH, 1-58

SET TESTDATE command, 7-10

SHADOW parameter, 1-47

SHIFT parameter, 1-47

sliding window, 7-2
calculated value, 7-26
date format, 7-5
date options, 7-31
DEFCENT parameter, 7-2, 7-5
defining, 7-3

sliding window (continued)
defining in Master File, 7-13
defining with SET, 7-7, 7-10
dynamic window, 7-4, 7-10
field-level, 7-13
file-level, 7-13
global, 7-7
legacy date, 7-5
YRTHRESH parameter, 7-2, 7-5

sort
external, 2-23, 2-24
status of, 2-23

SORTLIB parameter, 1-48

SPACES parameter, 1-48

special variables, 4-62

SQL date, 7-5

SQLTOPTTF parameter, 1-49

SQRT function, 3-163

SQUEEZE parameter, 1-49

startup profile, 4-36

statistical variables, 4-6, 4-49, 4-60

strings, 3-56, 3-156, 3-170
alphanumeric, 3-93
centering in field, 3-68
character, 3-106
justifying, 3-161
substrings, 3-164

structure diagrams, A-2

STYLE[SHEET] parameter, 1-50

stylesheets, 2-26
? STYLE command, 2-26

SU machine, 2-24

subroutines, C-2
accessing external, 3-30
accessing in MVS, 3-30
accessing on VM/CMS, 3-34
arguments, 3-19, 3-20, C-3
calling, 4-33

Index

I-16 Information Builders

subroutines (continued)
command calls, 3-18
compiling, C-12
compiling in CMS, C-12
compiling in MVS, C-13
creating, C-2
custom, C-14
date, 3-9
external, 3-30
IF command, 3-24
-IF command, 3-24
in COMPUTE command, 3-22
in DEFINE command, 3-22
in functions, 3-21
in IF selection tests, 3-23
in VALIDATE command, 3-22
in WHERE selection tests, 3-23
language, C-5
MTHNAM, C-14
programming, C-5, C-7, C-9
RECAP command, 3-28
REXX, C-22
-RUN commands, 3-26
storing, C-12
storing external, 3-30
storing in CMS, C-12
storing in MVS, C-13
storing on VM/CMS, 3-34
testing, C-13
WHEN criteria, 3-27
with sliding window, 7-5, 7-23
writing, C-3

substitutions, 2-14
? LET command, 2-14
checking, 5-10
clearing, 5-11
LET command, 5-2
multiple-line, 5-8
null, 5-7
recursive, 5-8
saving, 5-12
variable, 5-5
variables, 4-49

SUBSTR function/subroutine, 3-164

substrings, 3-149, 3-164

SUMPREFIX parameter, 1-51

SUSI parameter, 1-51

SUTABSIZE parameter, 1-51

system date, 7-31

system defaults, 4-97

system functions and subroutines, 3-13
FEXERR, 3-96
FINDMEM, 3-97
GETPDS, 3-101
GETUSER, 3-108
HHMMSS, 3-120
MVSDYNAM, 3-145
TODAY, 3-166

system variables, 4-6, 4-49, 4-54

T
TED (text editor), 4-6

TEMP[DISK] parameter, 1-51

temporary fields
? DEFINE command, 2-4
displaying, 2-4

TERM parameter, 1-52

TESTDATE parameter, 1-52

text display windows, 9-7
creating, 9-35, 9-39

text input windows, 9-6

TEXTFIELD parameter, 1-53

TITLE parameter, 1-53

TODAY function/subroutine, 3-166

TOPMARGIN parameter, 1-54

TRACKIO parameter, 1-54

TRAINING data source, A-19

TRMOUT parameter, 1-54

 Index

Developing Applications I-17

-TSO RUN command, 4-10, 4-93
subroutines, 3-26

-TYPE command, 4-10, 4-11, 4-93

U
UFMT subroutine, 3-168

UNITS parameter, 1-55

UPCASE subroutine, 3-170

user IDs, 3-108
retrieving, 3-108

USER parameter, 1-55

Utilities Menu, 9-72

V
VALIDATE command, 3-22

subroutines in, 3-22

values, 4-49
decoding, 3-83
default, 4-97
goto, 9-25
maximum, 3-144
minimum, 3-144
variables, 4-49
verifying input values, 4-76

variable operations
altering commands, 4-63
changing value, 4-29
computing, 4-28
concatenating, 4-65
evaluating, 4-63
format conditions, 4-76
in procedures, 4-49
prompting, 4-79
querying, 4-51
substitution, 4-49
supplying values, 4-66, 4-68
valid values, 4-77

variable substitutions, 5-5

variable types, 4-6
amper variables, 4-30, 4-49, 4-51
global, 4-6, 4-49, 4-53
local, 4-6, 4-49, 4-52
positional, 4-69
special, 4-62
statistical, 4-6, 4-49, 4-60
system, 4-6, 4-49, 4-54

variable values, 4-68
-DEFAULTS command, 4-70
-READ command, 4-72
-SET sommand, 4-71
supplying from external files, 4-72

vertical menus, 9-5
creating, 9-41, 9-47

VIDEOTR2 Access File, A-27

VIDEOTR2 data source, A-26

VideoTrk data source, A-24

virtual fields, 7-14
sliding window, 7-20

W
WEEKFIRST parameter, 1-57

WHERE selection tests, 3-23
subroutines in, 3-23, 3-27

WIDTH parameter, 1-56, 1-57

-window applications
transferring control, 9-22

-WINDOW command, 4-10, 4-49, 4-75, 4-94, 9-3

WINDOW COMPILE command, 9-83

Window Creation Menu, 9-57

Window Design Screen, 9-59

Window facility, 9-22

window files, 9-3, 9-4
creating, 9-33

Index

I-18 Information Builders

Window Options Menu, 9-61
Display list, 9-65
Heading, 9-64
Help window, 9-67, 9-71
Hide list, 9-66
Line break, 9-69
Multi-select, 9-70
Popup, 9-67
Quit, 9-71
Show a window, 9-64
Unshow a window, 9-64

WINDOW PAINT command, 9-52

Window Painter, 9-2
goto values, 9-3
invoking, 9-52
main menu, 9-35
screens, 9-51
tutorial, 9-29
window files, 9-3

Window Painter tutorial, 9-29
SAMPLE, 9-31
window file, 9-33

windows, 9-4
&WINDOWNAME variable, 9-26
&WINDOWVALUE variable, 9-26
creating, 9-2, 9-14
executing, 9-28
execution, 9-11

windows (continued)
field names, 9-8
file contents, 9-9
file names, 9-7
horizontal, 9-6, 9-14
multi-input, 9-12, 9-18
procedures, 9-21
return value display, 9-9
returning to caller, 9-25
text display, 9-7
text input, 9-6
types, 9-5
vertical menu, 9-5

-WRITE command, 4-10, 4-45, 4-95

X
XRETRIEVAL parameter, 1-58

Y
YM subroutine, 3-174

YMD function, 3-86

YRTHRESH parameter, 1-58, 7-2, 7-3, 7-5, 7-7
COMPUTE command, 7-26
DEFINE command, 7-20
querying, 7-12
with COMPUTE, 7-27

Reader Comments
In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections. Identify
specific pages where applicable. Send comments to

 Corporate Publications
 Attn: Manager of Documentation Services
 Information Builders
 Two Penn Plaza
 New York, NY 10121-2898

or FAX this page to (212) 967-0460, or call Sara Elam at (212) 736-4433, x3207.

Name: __

Company: ___

Address: __

Telephone: ___ Date:______________________________

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Developing Applications DN1001057.1100
Version 7 Release 1

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Developing Applications DN1001057.1100
Version 7 Release 1

	Table of Contents
	Preface
	Customizing Your Environment
	The SET Command
	SET Parameter Syntax

	Querying Your Environment
	Using Query Commands
	Displaying Combined Structures
	Displaying Virtual Fields
	Displaying the Currency Data Source in Effect
	Displaying Available Fields
	Displaying the File Directory Table
	Displaying Field Information for a Master File
	Displaying Data Source Statistics
	Determining the Percentage of File Disorganization

	Displaying DEFINE Functions
	Displaying HOLD Fields
	Displaying JOIN Structures
	Displaying National Language Support
	Displaying LET Substitutions
	Displaying Information About Loaded Files
	Displaying Explanations of Error Messages
	Querying Which PTFs Have Been Applied for a Specific Release
	Displaying the Release Number
	Displaying Parameter Settings
	Displaying Graph Parameters
	Displaying Command Statistics
	Displaying Information About the SU Machine
	Displaying Global Variable Values
	Displaying StyleSheet Parameter Settings
	Displaying Data Sources Specified With USE

	Using Functions and Subroutines
	What Is the Difference Between a Function and a Subroutine?
	Types of Functions and Subroutines
	Bit Functions and Subroutines
	Character Functions and Subroutines
	Data Source Functions and Subroutines
	Date Functions and Subroutines
	Decoding Functions and Subroutines
	Format Conversion Functions and Subroutines
	Numeric Functions and Subroutines
	System Functions and Subroutines

	Date Function and Subroutine Settings
	Using Legacy Versions of Date Subroutines
	Setting Business Day Units
	Setting Holidays
	Enabling Leading Zeros For Date Subroutines in Dialogue Manager

	Subroutine Command (Call) Syntax
	Types of Arguments in Subroutine Calls
	Rules for Arguments in Subroutine Calls
	Using Subroutine Calls in FOCUS Functions
	Using Subroutine Calls in DEFINE, COMPUTE, and VALIDATE Commands
	Using Subroutine Calls in WHERE and IF Tests
	Using Subroutine Calls in -SET Control Commands
	Using Subroutine Calls in -IF and IF Branching Commands
	Operating System -RUN Commands
	Using Subroutine Calls in WHEN Criteria
	Using Subroutine Calls in RECAP Commands

	Storing and Accessing External Subroutines
	Storing and Accessing Subroutines on MVS
	Dynamic Language Environment Support
	Storing and Accessing Subroutines on VM/CMS

	Alphabetical List of Functions and Subroutines
	ABS: Calculating Absolute Value
	ARGLEN: Measuring Argument Length
	ASIS: Distinguishing Between a Blank and a Zero
	ATODBL: Converting Alphanumeric Strings to a Double-Precision Number
	AYM: Adding or Subtracting Months to or From Dates
	AYMD: Adding or Subtracting Days to or From Dates
	BAR: Producing Bar Charts
	BITSON: Determining If Bits Are On or Off
	BITVAL: Evaluating Bit Strings as Binary Integers
	BYTVAL: Translating a Character to Its ASCII or EBCDIC Code
	CHGDAT: Changing Date Formats
	CHKFMT: Checking String Format
	CHKPCK: Validating Packed Fields
	CTRAN: Translating One Character to Another
	CTRFLD: Centering a Character String
	DA Subroutines: Converting a Date to an Integer
	DATEADD: Adding or Subtracting Date Units to or From a Date
	DATECVT: Converting Date Formats
	DATEDIF: Finding the Difference Between Two Dates
	DATEMOV: Moving Dates to a Significant Point
	DECODE: Decoding Values
	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	DOWK and DOWKL: Finding the Day of the Week
	DT Subroutines: Converting an Integer to a Date
	EDIT: Converting the Format of a Field
	EDIT: Extracting or Adding Characters
	EXP: Raising “e” to the Nth Power
	EXPN: Evaluating Scientific Notation
	FEXERR: Retrieving FOCUS Error Messages
	FINDMEM: Finding a Member of a Partitioned Data Set
	FTOA: Converting a Number to Alphanumeric Format
	GETPDS: Determining if a Member of a Partitioned Data Set Exists
	GETTOK: Getting a Token From a String
	GETUSER: Retrieving the User ID
	GREGDT: Converting From Julian to Gregorian Format
	HADD: Incrementing a Date-Time Field
	HCNVRT: Converting a Date-Time Field to Alphanumeric Format
	HDATE: Converting the Date Portion of a Date-Time Field to a Date Format
	HDIFF: Finding the Number of Units Between Two Date-Time Values
	HDTTM: Converting a Date field to a Date˚Time Field
	HEXBYT: Converting a Number to a Character
	HGETC: Storing the Current Date and Time in a Date-Time Field
	HHMMSS: Returning the Current Time
	HINPUT: Converting an Alphanumeric String to a Date-Time Value
	HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight
	HNAME: Extracting a Date-Time Component in Alphanumeric Format
	HPART: Returning a Date-Time Component in Numeric Format
	HSETPT: Inserting a Component Into a Date-Time Field
	HTIME: Converting the Time Portion of a Date-Time Field to a Number
	IMOD, FMOD, and DMOD: Calculating the Remainder From a Division
	INT: Finding the Greatest Integer
	ITONUM: Converting Large Binary Integers to Double-Precision
	ITOPACK: Converting Large Binary Integers to Packed-Decimal Format
	ITOZ: Converting to Zoned Format
	JULDAT: Converting From Gregorian to Julian Format
	LAST: Retrieving the Preceding Value
	LCWORD: Converting Letters in a Word to Mixed Case
	LJUST: Left-justifying a String
	LOCASE: Converting Text to Lowercase
	LOG: Calculating the Natural Logarithm
	MAX and MIN: Finding the Maximum or Minimum Value
	MVSDYNAM: Passing a DYNAM Command to the Command Processor
	OVRLAY: Overlaying a Substring Within a String
	PARAG: Dividing Text Into Smaller Lines
	PCKOUT: Writing Packed Numbers of Different Lengths
	POSIT: Finding Substring Position
	PRDNOR, PRDUNI, RDNORM, and RDUNIF: Generating Random Numbers
	RJUST: Right-justifying a String
	SQRT: Calculating the Square Root
	SUBSTR: Extracting a Substring
	TODAY: Returning the Current Date
	UFMT: Converting Alphanumeric to Hexadecimal
	UPCASE: Converting Text to Uppercase
	YM: Calculating Elapsed Months

	Managing Applications With Dialogue Manager
	Overview of Dialogue Manager Capabilities
	Overview of Dialogue Manager Variables

	Creating and Storing Procedures
	Executing Procedures
	Controlling Access to Data

	Including Comments in a Procedure
	Overview of Dialogue Manager Commands
	Sending a Message to the User: -TYPE
	Controlling Execution: -RUN, -EXIT, and -QUIT
	Executing Stacked Commands and Continuing the Procedure: -RUN
	Executing Stacked Commands and Exiting the Procedure: -EXIT
	Canceling Execution of the Procedure: -QUIT

	Branching
	GOTO Processing
	Compound -IF Tests
	Using Operators and Functions in -IF Tests
	Screening Values With -IF Tests
	Testing the Status of a Query

	Looping
	Ending a Loop

	Using Expressions: -SET
	Computing a New Variable
	Using the DECODE Function
	Using the EDIT Function
	Using the TRUNCATE Function
	Controlling a Loop With -SET
	Setting a Date
	Calling a Subroutine

	Additional Facilities
	Establishing Startup Conditions
	Incorporating Multiple Procedures
	Nesting Procedures With -INCLUDE
	Using EXEC
	Developing an Open-Ended Procedure
	Debugging With &ECHO
	Testing Dialogue Manager Command Logic With &STACK
	Locking Procedure Users Out of FOCUS
	Writing to Files: -WRITE

	Using Variables in Procedures
	Querying the Values of Variables
	Local Variables
	Global Variables
	System Variables
	Statistical Variables
	Special Variables
	Using Variables to Alter Commands
	Evaluating a Variable Immediately
	Concatenating Variables

	Supplying Values for Variables at Run Time
	Supplying Values Without Prompting
	Supplying Values With -DEFAULTS
	Supplying Values With -SET
	Supplying Values With -READ
	Direct Prompting With -PROMPT
	Full-Screen Data Entry With -CRTFORM
	Selecting Data From Menus and Windows With -WINDOW
	Implied Prompting
	Verifying Input Values

	Dialogue Manager Quick Reference
	System Defaults and Limits

	Defining a Word Substitution
	The LET Command
	Variable Substitution
	Null Substitution
	Multiple-line Substitution
	Recursive Substitution
	Using LET Substitution in a COMPUTE or DEFINE Command
	Checking Current LET Substitutions
	Interactive LET Query: LET ECHO
	Clearing LET Substitutions
	Saving LET Substitutions in a File
	Assigning Phrases to Function Keys

	Enhancing Application Performance
	FOCUS Facilities
	Loading a File
	Loading Master Files, FOCUS Procedures, and Access Files
	Loading a Compiled MODIFY Request
	Loading a MODIFY Request
	Displaying Information About Loaded Files

	Compiling a MODIFY Request
	Accessing a FOCUS Data Source (MVS Only)
	Using MINIO
	Determining if a Previous Command Used MINIO

	Working With Cross-Century Dates
	When Do You Use the Sliding Window Technique?
	The Sliding Window Technique
	Defining a Sliding Window
	Creating a Dynamic Window Based on the Current Year

	Applying the Sliding Window Technique
	When to Supply Settings for DEFCENT and YRTHRESH
	Date Validation

	Defining a Global Window With SET
	Defining a Dynamic Global Window With SET
	Querying the Current Global Value of DEFCENT and YRTHRESH
	Defining a File-Level or Field-Level Window in a Master File
	Defining a Window for a Virtual Field
	Defining a Window for a Calculated Value
	Additional Support for Cross-Century Dates

	Euro Currency Support
	Integrating the Euro Currency
	Converting Currencies
	Preparing FOCUS to Process Currency Conversions
	Creating the Currency Data Source
	Identifying Fields That Contain Currency Data

	Activating the Currency Data Source
	Querying the Currency Data Source in Effect
	Processing Currency Data

	Designing Windows With Window Painter
	Introduction
	How Do Window Applications Work?

	Window Files and Windows
	Types of Windows You Can Create
	Creating Windows

	Integrating Windows and the FOCEXEC
	Transferring Control in Window Applications
	Return Values
	Goto Values
	Window System Variables
	Testing Function Key Values
	Executing a Window From the FOCUS Prompt

	Tutorial: A Menu-Driven Application
	Creating the Application FOCEXEC
	Creating the Window File
	Executing the Application

	Window Painter Screens
	Invoking Window Painter
	Entry Menu
	Main Menu
	Window Creation Menu
	Window Design Screen
	Window Options Menu
	Utilities Menu

	Transferring Window Files
	Creating a Transfer File
	Transferring the File to the New Environment
	Editing the Transfer File
	Compiling the Transfer File

	Master Files and Diagrams
	Creating Sample Data Sources
	The EMPLOYEE Data Source
	The EMPLOYEE Master File
	The EMPLOYEE Structure Diagram

	The JOBFILE Data Source
	The JOBFILE Master File
	The JOBFILE Structure Diagram

	The EDUCFILE Data Source
	The EDUCFILE Master File
	The EDUCFILE Structure Diagram

	The SALES Data Source
	The SALES Master File
	The SALES Structure Diagram

	The PROD Data Source
	The PROD Master File
	The PROD Structure Diagram

	The CAR Data Source
	The CAR Master File
	The CAR Structure Diagram

	The LEDGER Data Source
	The LEDGER Master File
	The LEDGER Structure Diagram

	The FINANCE Data Source
	The FINANCE Master File
	The FINANCE Structure Diagram

	The REGION Data Source
	The REGION Master File
	The REGION Structure Diagram

	The COURSES Data Source
	The COURSES Master File
	The COURSES Structure Diagram

	The EMPDATA Data Source
	The EMPDATA Master File
	The EMPDATA Structure Diagram

	The EXPERSON Data Source
	The EXPERSON Master File
	The EXPERSON Structure Diagram

	The TRAINING Data Source
	The TRAINING Master File
	The TRAINING Structure Diagram

	The PAYHIST File
	The PAYHIST Master File
	The PAYHIST Structure Diagram

	The COMASTER File
	The COMASTER Master File
	The COMASTER Structure Diagram

	The VideoTrk and MOVIES Data Sources
	VideoTrk Master File
	MOVIES Master File
	VideoTrk Structure Diagram
	MOVIES Structure Diagram

	The VIDEOTR2 Data Source
	The VIDEOTR2 Master File
	The VIDEOTR2 Access File
	The VIDEOTR2 Structure Diagram

	The Gotham Grinds Data Sources
	The GGDEMOG Data Source
	The GGORDER Data Source
	The GGPRODS Data Source
	The GGSALES Data Source
	The GGSTORES Data Source

	Error Messages
	Accessing Error Files
	Displaying Messages Online

	Creating Your Own Subroutines
	Process Overview
	Considerations for Writing Subroutines
	Naming Conventions
	Argument Considerations
	Programming Considerations
	Language Considerations
	Programming Technique: Entry Points
	Programming Technique: Subroutines With More Than 28 Arguments

	Compilation and Storage
	CMS: Compilation and Storage
	MVS: Compilation and Storage

	Testing the Subroutine
	Example of a Custom Subroutine: The MTHNAM Subroutine
	The MTHNAM Subroutine Written in FORTRAN
	The MTHNAM Subroutine Written in COBOL
	The MTHNAM Subroutine Written in PL/I
	The MTHNAM Subroutine Written in BAL Assembler
	The MTHNAM Subroutine Written in C
	The MTHNAM Subroutine Called by a FOCUS Request

	Subroutines Written in REXX
	Using REXX Subroutines
	Compiling FUSREXX Macros in CMS

	Index

